1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CriticalAntiDepBreaker class, which 10 // implements register anti-dependence breaking along a blocks 11 // critical path during post-RA scheduler. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CriticalAntiDepBreaker.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/ScheduleDAG.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <cassert> 35 #include <utility> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "post-RA-sched" 40 41 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 42 const RegisterClassInfo &RCI) 43 : MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()), 44 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 45 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 46 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 47 48 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; 49 50 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 51 const unsigned BBSize = BB->size(); 52 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 53 // Clear out the register class data. 54 Classes[i] = nullptr; 55 56 // Initialize the indices to indicate that no registers are live. 57 KillIndices[i] = ~0u; 58 DefIndices[i] = BBSize; 59 } 60 61 // Clear "do not change" set. 62 KeepRegs.reset(); 63 64 bool IsReturnBlock = BB->isReturnBlock(); 65 66 // Examine the live-in regs of all successors. 67 for (const MachineBasicBlock *Succ : BB->successors()) 68 for (const auto &LI : Succ->liveins()) { 69 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 70 unsigned Reg = *AI; 71 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 72 KillIndices[Reg] = BBSize; 73 DefIndices[Reg] = ~0u; 74 } 75 } 76 77 // Mark live-out callee-saved registers. In a return block this is 78 // all callee-saved registers. In non-return this is any 79 // callee-saved register that is not saved in the prolog. 80 const MachineFrameInfo &MFI = MF.getFrameInfo(); 81 BitVector Pristine = MFI.getPristineRegs(MF); 82 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 83 ++I) { 84 unsigned Reg = *I; 85 if (!IsReturnBlock && !Pristine.test(Reg)) 86 continue; 87 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 88 unsigned Reg = *AI; 89 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 90 KillIndices[Reg] = BBSize; 91 DefIndices[Reg] = ~0u; 92 } 93 } 94 } 95 96 void CriticalAntiDepBreaker::FinishBlock() { 97 RegRefs.clear(); 98 KeepRegs.reset(); 99 } 100 101 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 102 unsigned InsertPosIndex) { 103 // Kill instructions can define registers but are really nops, and there might 104 // be a real definition earlier that needs to be paired with uses dominated by 105 // this kill. 106 107 // FIXME: It may be possible to remove the isKill() restriction once PR18663 108 // has been properly fixed. There can be value in processing kills as seen in 109 // the AggressiveAntiDepBreaker class. 110 if (MI.isDebugInstr() || MI.isKill()) 111 return; 112 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 113 114 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 115 if (KillIndices[Reg] != ~0u) { 116 // If Reg is currently live, then mark that it can't be renamed as 117 // we don't know the extent of its live-range anymore (now that it 118 // has been scheduled). 119 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 120 KillIndices[Reg] = Count; 121 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 122 // Any register which was defined within the previous scheduling region 123 // may have been rescheduled and its lifetime may overlap with registers 124 // in ways not reflected in our current liveness state. For each such 125 // register, adjust the liveness state to be conservatively correct. 126 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 127 128 // Move the def index to the end of the previous region, to reflect 129 // that the def could theoretically have been scheduled at the end. 130 DefIndices[Reg] = InsertPosIndex; 131 } 132 } 133 134 PrescanInstruction(MI); 135 ScanInstruction(MI, Count); 136 } 137 138 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 139 /// critical path. 140 static const SDep *CriticalPathStep(const SUnit *SU) { 141 const SDep *Next = nullptr; 142 unsigned NextDepth = 0; 143 // Find the predecessor edge with the greatest depth. 144 for (const SDep &P : SU->Preds) { 145 const SUnit *PredSU = P.getSUnit(); 146 unsigned PredLatency = P.getLatency(); 147 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 148 // In the case of a latency tie, prefer an anti-dependency edge over 149 // other types of edges. 150 if (NextDepth < PredTotalLatency || 151 (NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) { 152 NextDepth = PredTotalLatency; 153 Next = &P; 154 } 155 } 156 return Next; 157 } 158 159 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { 160 // It's not safe to change register allocation for source operands of 161 // instructions that have special allocation requirements. Also assume all 162 // registers used in a call must not be changed (ABI). 163 // FIXME: The issue with predicated instruction is more complex. We are being 164 // conservative here because the kill markers cannot be trusted after 165 // if-conversion: 166 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 167 // ... 168 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 169 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 170 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 171 // 172 // The first R6 kill is not really a kill since it's killed by a predicated 173 // instruction which may not be executed. The second R6 def may or may not 174 // re-define R6 so it's not safe to change it since the last R6 use cannot be 175 // changed. 176 bool Special = 177 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); 178 179 // Scan the register operands for this instruction and update 180 // Classes and RegRefs. 181 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 182 MachineOperand &MO = MI.getOperand(i); 183 if (!MO.isReg()) continue; 184 Register Reg = MO.getReg(); 185 if (Reg == 0) continue; 186 const TargetRegisterClass *NewRC = nullptr; 187 188 if (i < MI.getDesc().getNumOperands()) 189 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 190 191 // For now, only allow the register to be changed if its register 192 // class is consistent across all uses. 193 if (!Classes[Reg] && NewRC) 194 Classes[Reg] = NewRC; 195 else if (!NewRC || Classes[Reg] != NewRC) 196 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 197 198 // Now check for aliases. 199 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 200 // If an alias of the reg is used during the live range, give up. 201 // Note that this allows us to skip checking if AntiDepReg 202 // overlaps with any of the aliases, among other things. 203 unsigned AliasReg = *AI; 204 if (Classes[AliasReg]) { 205 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 206 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 207 } 208 } 209 210 // If we're still willing to consider this register, note the reference. 211 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 212 RegRefs.insert(std::make_pair(Reg, &MO)); 213 214 if (MO.isUse() && Special) { 215 if (!KeepRegs.test(Reg)) { 216 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 217 SubRegs.isValid(); ++SubRegs) 218 KeepRegs.set(*SubRegs); 219 } 220 } 221 } 222 223 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 224 const MachineOperand &MO = MI.getOperand(I); 225 if (!MO.isReg()) continue; 226 Register Reg = MO.getReg(); 227 if (!Reg.isValid()) 228 continue; 229 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 230 // it or any of its sub or super regs. We need to use KeepRegs to mark the 231 // reg because not all uses of the same reg within an instruction are 232 // necessarily tagged as tied. 233 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 234 // def register but not the second (see PR20020 for details). 235 // FIXME: can this check be relaxed to account for undef uses 236 // of a register? In the above 'xor' example, the uses of %eax are undef, so 237 // earlier instructions could still replace %eax even though the 'xor' 238 // itself can't be changed. 239 if (MI.isRegTiedToUseOperand(I) && 240 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 241 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 242 SubRegs.isValid(); ++SubRegs) { 243 KeepRegs.set(*SubRegs); 244 } 245 for (MCSuperRegIterator SuperRegs(Reg, TRI); 246 SuperRegs.isValid(); ++SuperRegs) { 247 KeepRegs.set(*SuperRegs); 248 } 249 } 250 } 251 } 252 253 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { 254 // Update liveness. 255 // Proceeding upwards, registers that are defed but not used in this 256 // instruction are now dead. 257 assert(!MI.isKill() && "Attempting to scan a kill instruction"); 258 259 if (!TII->isPredicated(MI)) { 260 // Predicated defs are modeled as read + write, i.e. similar to two 261 // address updates. 262 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 263 MachineOperand &MO = MI.getOperand(i); 264 265 if (MO.isRegMask()) { 266 auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) { 267 for (MCSubRegIterator SRI(PhysReg, TRI, true); SRI.isValid(); ++SRI) 268 if (!MO.clobbersPhysReg(*SRI)) 269 return false; 270 271 return true; 272 }; 273 274 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 275 if (ClobbersPhysRegAndSubRegs(i)) { 276 DefIndices[i] = Count; 277 KillIndices[i] = ~0u; 278 KeepRegs.reset(i); 279 Classes[i] = nullptr; 280 RegRefs.erase(i); 281 } 282 } 283 } 284 285 if (!MO.isReg()) continue; 286 Register Reg = MO.getReg(); 287 if (Reg == 0) continue; 288 if (!MO.isDef()) continue; 289 290 // Ignore two-addr defs. 291 if (MI.isRegTiedToUseOperand(i)) 292 continue; 293 294 // If we've already marked this reg as unchangeable, don't remove 295 // it or any of its subregs from KeepRegs. 296 bool Keep = KeepRegs.test(Reg); 297 298 // For the reg itself and all subregs: update the def to current; 299 // reset the kill state, any restrictions, and references. 300 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 301 unsigned SubregReg = *SRI; 302 DefIndices[SubregReg] = Count; 303 KillIndices[SubregReg] = ~0u; 304 Classes[SubregReg] = nullptr; 305 RegRefs.erase(SubregReg); 306 if (!Keep) 307 KeepRegs.reset(SubregReg); 308 } 309 // Conservatively mark super-registers as unusable. 310 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 311 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 312 } 313 } 314 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 315 MachineOperand &MO = MI.getOperand(i); 316 if (!MO.isReg()) continue; 317 Register Reg = MO.getReg(); 318 if (Reg == 0) continue; 319 if (!MO.isUse()) continue; 320 321 const TargetRegisterClass *NewRC = nullptr; 322 if (i < MI.getDesc().getNumOperands()) 323 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 324 325 // For now, only allow the register to be changed if its register 326 // class is consistent across all uses. 327 if (!Classes[Reg] && NewRC) 328 Classes[Reg] = NewRC; 329 else if (!NewRC || Classes[Reg] != NewRC) 330 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 331 332 RegRefs.insert(std::make_pair(Reg, &MO)); 333 334 // It wasn't previously live but now it is, this is a kill. 335 // Repeat for all aliases. 336 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 337 unsigned AliasReg = *AI; 338 if (KillIndices[AliasReg] == ~0u) { 339 KillIndices[AliasReg] = Count; 340 DefIndices[AliasReg] = ~0u; 341 } 342 } 343 } 344 } 345 346 // Check all machine operands that reference the antidependent register and must 347 // be replaced by NewReg. Return true if any of their parent instructions may 348 // clobber the new register. 349 // 350 // Note: AntiDepReg may be referenced by a two-address instruction such that 351 // it's use operand is tied to a def operand. We guard against the case in which 352 // the two-address instruction also defines NewReg, as may happen with 353 // pre/postincrement loads. In this case, both the use and def operands are in 354 // RegRefs because the def is inserted by PrescanInstruction and not erased 355 // during ScanInstruction. So checking for an instruction with definitions of 356 // both NewReg and AntiDepReg covers it. 357 bool 358 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 359 RegRefIter RegRefEnd, 360 unsigned NewReg) { 361 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 362 MachineOperand *RefOper = I->second; 363 364 // Don't allow the instruction defining AntiDepReg to earlyclobber its 365 // operands, in case they may be assigned to NewReg. In this case antidep 366 // breaking must fail, but it's too rare to bother optimizing. 367 if (RefOper->isDef() && RefOper->isEarlyClobber()) 368 return true; 369 370 // Handle cases in which this instruction defines NewReg. 371 MachineInstr *MI = RefOper->getParent(); 372 for (const MachineOperand &CheckOper : MI->operands()) { 373 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 374 return true; 375 376 if (!CheckOper.isReg() || !CheckOper.isDef() || 377 CheckOper.getReg() != NewReg) 378 continue; 379 380 // Don't allow the instruction to define NewReg and AntiDepReg. 381 // When AntiDepReg is renamed it will be an illegal op. 382 if (RefOper->isDef()) 383 return true; 384 385 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 386 // NewReg. 387 if (CheckOper.isEarlyClobber()) 388 return true; 389 390 // Don't allow inline asm to define NewReg at all. Who knows what it's 391 // doing with it. 392 if (MI->isInlineAsm()) 393 return true; 394 } 395 } 396 return false; 397 } 398 399 unsigned CriticalAntiDepBreaker:: 400 findSuitableFreeRegister(RegRefIter RegRefBegin, 401 RegRefIter RegRefEnd, 402 unsigned AntiDepReg, 403 unsigned LastNewReg, 404 const TargetRegisterClass *RC, 405 SmallVectorImpl<unsigned> &Forbid) { 406 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 407 for (unsigned NewReg : Order) { 408 // Don't replace a register with itself. 409 if (NewReg == AntiDepReg) continue; 410 // Don't replace a register with one that was recently used to repair 411 // an anti-dependence with this AntiDepReg, because that would 412 // re-introduce that anti-dependence. 413 if (NewReg == LastNewReg) continue; 414 // If any instructions that define AntiDepReg also define the NewReg, it's 415 // not suitable. For example, Instruction with multiple definitions can 416 // result in this condition. 417 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 418 // If NewReg is dead and NewReg's most recent def is not before 419 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 420 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 421 && "Kill and Def maps aren't consistent for AntiDepReg!"); 422 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 423 && "Kill and Def maps aren't consistent for NewReg!"); 424 if (KillIndices[NewReg] != ~0u || 425 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 426 KillIndices[AntiDepReg] > DefIndices[NewReg]) 427 continue; 428 // If NewReg overlaps any of the forbidden registers, we can't use it. 429 bool Forbidden = false; 430 for (unsigned R : Forbid) 431 if (TRI->regsOverlap(NewReg, R)) { 432 Forbidden = true; 433 break; 434 } 435 if (Forbidden) continue; 436 return NewReg; 437 } 438 439 // No registers are free and available! 440 return 0; 441 } 442 443 unsigned CriticalAntiDepBreaker:: 444 BreakAntiDependencies(const std::vector<SUnit> &SUnits, 445 MachineBasicBlock::iterator Begin, 446 MachineBasicBlock::iterator End, 447 unsigned InsertPosIndex, 448 DbgValueVector &DbgValues) { 449 // The code below assumes that there is at least one instruction, 450 // so just duck out immediately if the block is empty. 451 if (SUnits.empty()) return 0; 452 453 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 454 // This is used for updating debug information. 455 // 456 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 457 DenseMap<MachineInstr *, const SUnit *> MISUnitMap; 458 459 // Find the node at the bottom of the critical path. 460 const SUnit *Max = nullptr; 461 for (const SUnit &SU : SUnits) { 462 MISUnitMap[SU.getInstr()] = &SU; 463 if (!Max || SU.getDepth() + SU.Latency > Max->getDepth() + Max->Latency) 464 Max = &SU; 465 } 466 assert(Max && "Failed to find bottom of the critical path"); 467 468 #ifndef NDEBUG 469 { 470 LLVM_DEBUG(dbgs() << "Critical path has total latency " 471 << (Max->getDepth() + Max->Latency) << "\n"); 472 LLVM_DEBUG(dbgs() << "Available regs:"); 473 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 474 if (KillIndices[Reg] == ~0u) 475 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 476 } 477 LLVM_DEBUG(dbgs() << '\n'); 478 } 479 #endif 480 481 // Track progress along the critical path through the SUnit graph as we walk 482 // the instructions. 483 const SUnit *CriticalPathSU = Max; 484 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 485 486 // Consider this pattern: 487 // A = ... 488 // ... = A 489 // A = ... 490 // ... = A 491 // A = ... 492 // ... = A 493 // A = ... 494 // ... = A 495 // There are three anti-dependencies here, and without special care, 496 // we'd break all of them using the same register: 497 // A = ... 498 // ... = A 499 // B = ... 500 // ... = B 501 // B = ... 502 // ... = B 503 // B = ... 504 // ... = B 505 // because at each anti-dependence, B is the first register that 506 // isn't A which is free. This re-introduces anti-dependencies 507 // at all but one of the original anti-dependencies that we were 508 // trying to break. To avoid this, keep track of the most recent 509 // register that each register was replaced with, avoid 510 // using it to repair an anti-dependence on the same register. 511 // This lets us produce this: 512 // A = ... 513 // ... = A 514 // B = ... 515 // ... = B 516 // C = ... 517 // ... = C 518 // B = ... 519 // ... = B 520 // This still has an anti-dependence on B, but at least it isn't on the 521 // original critical path. 522 // 523 // TODO: If we tracked more than one register here, we could potentially 524 // fix that remaining critical edge too. This is a little more involved, 525 // because unlike the most recent register, less recent registers should 526 // still be considered, though only if no other registers are available. 527 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 528 529 // Attempt to break anti-dependence edges on the critical path. Walk the 530 // instructions from the bottom up, tracking information about liveness 531 // as we go to help determine which registers are available. 532 unsigned Broken = 0; 533 unsigned Count = InsertPosIndex - 1; 534 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 535 MachineInstr &MI = *--I; 536 // Kill instructions can define registers but are really nops, and there 537 // might be a real definition earlier that needs to be paired with uses 538 // dominated by this kill. 539 540 // FIXME: It may be possible to remove the isKill() restriction once PR18663 541 // has been properly fixed. There can be value in processing kills as seen 542 // in the AggressiveAntiDepBreaker class. 543 if (MI.isDebugInstr() || MI.isKill()) 544 continue; 545 546 // Check if this instruction has a dependence on the critical path that 547 // is an anti-dependence that we may be able to break. If it is, set 548 // AntiDepReg to the non-zero register associated with the anti-dependence. 549 // 550 // We limit our attention to the critical path as a heuristic to avoid 551 // breaking anti-dependence edges that aren't going to significantly 552 // impact the overall schedule. There are a limited number of registers 553 // and we want to save them for the important edges. 554 // 555 // TODO: Instructions with multiple defs could have multiple 556 // anti-dependencies. The current code here only knows how to break one 557 // edge per instruction. Note that we'd have to be able to break all of 558 // the anti-dependencies in an instruction in order to be effective. 559 unsigned AntiDepReg = 0; 560 if (&MI == CriticalPathMI) { 561 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 562 const SUnit *NextSU = Edge->getSUnit(); 563 564 // Only consider anti-dependence edges. 565 if (Edge->getKind() == SDep::Anti) { 566 AntiDepReg = Edge->getReg(); 567 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 568 if (!MRI.isAllocatable(AntiDepReg)) 569 // Don't break anti-dependencies on non-allocatable registers. 570 AntiDepReg = 0; 571 else if (KeepRegs.test(AntiDepReg)) 572 // Don't break anti-dependencies if a use down below requires 573 // this exact register. 574 AntiDepReg = 0; 575 else { 576 // If the SUnit has other dependencies on the SUnit that it 577 // anti-depends on, don't bother breaking the anti-dependency 578 // since those edges would prevent such units from being 579 // scheduled past each other regardless. 580 // 581 // Also, if there are dependencies on other SUnits with the 582 // same register as the anti-dependency, don't attempt to 583 // break it. 584 for (const SDep &P : CriticalPathSU->Preds) 585 if (P.getSUnit() == NextSU 586 ? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg) 587 : (P.getKind() == SDep::Data && 588 P.getReg() == AntiDepReg)) { 589 AntiDepReg = 0; 590 break; 591 } 592 } 593 } 594 CriticalPathSU = NextSU; 595 CriticalPathMI = CriticalPathSU->getInstr(); 596 } else { 597 // We've reached the end of the critical path. 598 CriticalPathSU = nullptr; 599 CriticalPathMI = nullptr; 600 } 601 } 602 603 PrescanInstruction(MI); 604 605 SmallVector<unsigned, 2> ForbidRegs; 606 607 // If MI's defs have a special allocation requirement, don't allow 608 // any def registers to be changed. Also assume all registers 609 // defined in a call must not be changed (ABI). 610 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 611 // If this instruction's defs have special allocation requirement, don't 612 // break this anti-dependency. 613 AntiDepReg = 0; 614 else if (AntiDepReg) { 615 // If this instruction has a use of AntiDepReg, breaking it 616 // is invalid. If the instruction defines other registers, 617 // save a list of them so that we don't pick a new register 618 // that overlaps any of them. 619 for (const MachineOperand &MO : MI.operands()) { 620 if (!MO.isReg()) continue; 621 Register Reg = MO.getReg(); 622 if (Reg == 0) continue; 623 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 624 AntiDepReg = 0; 625 break; 626 } 627 if (MO.isDef() && Reg != AntiDepReg) 628 ForbidRegs.push_back(Reg); 629 } 630 } 631 632 // Determine AntiDepReg's register class, if it is live and is 633 // consistently used within a single class. 634 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 635 : nullptr; 636 assert((AntiDepReg == 0 || RC != nullptr) && 637 "Register should be live if it's causing an anti-dependence!"); 638 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 639 AntiDepReg = 0; 640 641 // Look for a suitable register to use to break the anti-dependence. 642 // 643 // TODO: Instead of picking the first free register, consider which might 644 // be the best. 645 if (AntiDepReg != 0) { 646 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 647 std::multimap<unsigned, MachineOperand *>::iterator> 648 Range = RegRefs.equal_range(AntiDepReg); 649 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 650 AntiDepReg, 651 LastNewReg[AntiDepReg], 652 RC, ForbidRegs)) { 653 LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " 654 << printReg(AntiDepReg, TRI) << " with " 655 << RegRefs.count(AntiDepReg) << " references" 656 << " using " << printReg(NewReg, TRI) << "!\n"); 657 658 // Update the references to the old register to refer to the new 659 // register. 660 for (std::multimap<unsigned, MachineOperand *>::iterator 661 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 662 Q->second->setReg(NewReg); 663 // If the SU for the instruction being updated has debug information 664 // related to the anti-dependency register, make sure to update that 665 // as well. 666 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 667 if (!SU) continue; 668 UpdateDbgValues(DbgValues, Q->second->getParent(), 669 AntiDepReg, NewReg); 670 } 671 672 // We just went back in time and modified history; the 673 // liveness information for the anti-dependence reg is now 674 // inconsistent. Set the state as if it were dead. 675 Classes[NewReg] = Classes[AntiDepReg]; 676 DefIndices[NewReg] = DefIndices[AntiDepReg]; 677 KillIndices[NewReg] = KillIndices[AntiDepReg]; 678 assert(((KillIndices[NewReg] == ~0u) != 679 (DefIndices[NewReg] == ~0u)) && 680 "Kill and Def maps aren't consistent for NewReg!"); 681 682 Classes[AntiDepReg] = nullptr; 683 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 684 KillIndices[AntiDepReg] = ~0u; 685 assert(((KillIndices[AntiDepReg] == ~0u) != 686 (DefIndices[AntiDepReg] == ~0u)) && 687 "Kill and Def maps aren't consistent for AntiDepReg!"); 688 689 RegRefs.erase(AntiDepReg); 690 LastNewReg[AntiDepReg] = NewReg; 691 ++Broken; 692 } 693 } 694 695 ScanInstruction(MI, Count); 696 } 697 698 return Broken; 699 } 700 701 AntiDepBreaker * 702 llvm::createCriticalAntiDepBreaker(MachineFunction &MFi, 703 const RegisterClassInfo &RCI) { 704 return new CriticalAntiDepBreaker(MFi, RCI); 705 } 706