xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CriticalAntiDepBreaker class, which
10 // implements register anti-dependence breaking along a blocks
11 // critical path during post-RA scheduler.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CriticalAntiDepBreaker.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/ScheduleDAG.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cassert>
35 #include <utility>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "post-RA-sched"
40 
41 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
42                                                const RegisterClassInfo &RCI)
43     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
44       TII(MF.getSubtarget().getInstrInfo()),
45       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
46       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
47       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
48 
49 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
50 
51 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
52   const unsigned BBSize = BB->size();
53   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
54     // Clear out the register class data.
55     Classes[i] = nullptr;
56 
57     // Initialize the indices to indicate that no registers are live.
58     KillIndices[i] = ~0u;
59     DefIndices[i] = BBSize;
60   }
61 
62   // Clear "do not change" set.
63   KeepRegs.reset();
64 
65   bool IsReturnBlock = BB->isReturnBlock();
66 
67   // Examine the live-in regs of all successors.
68   for (const MachineBasicBlock *Succ : BB->successors())
69     for (const auto &LI : Succ->liveins()) {
70       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
71         unsigned Reg = *AI;
72         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
73         KillIndices[Reg] = BBSize;
74         DefIndices[Reg] = ~0u;
75       }
76     }
77 
78   // Mark live-out callee-saved registers. In a return block this is
79   // all callee-saved registers. In non-return this is any
80   // callee-saved register that is not saved in the prolog.
81   const MachineFrameInfo &MFI = MF.getFrameInfo();
82   BitVector Pristine = MFI.getPristineRegs(MF);
83   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
84        ++I) {
85     unsigned Reg = *I;
86     if (!IsReturnBlock && !Pristine.test(Reg))
87       continue;
88     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
89       unsigned Reg = *AI;
90       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
91       KillIndices[Reg] = BBSize;
92       DefIndices[Reg] = ~0u;
93     }
94   }
95 }
96 
97 void CriticalAntiDepBreaker::FinishBlock() {
98   RegRefs.clear();
99   KeepRegs.reset();
100 }
101 
102 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
103                                      unsigned InsertPosIndex) {
104   // Kill instructions can define registers but are really nops, and there might
105   // be a real definition earlier that needs to be paired with uses dominated by
106   // this kill.
107 
108   // FIXME: It may be possible to remove the isKill() restriction once PR18663
109   // has been properly fixed. There can be value in processing kills as seen in
110   // the AggressiveAntiDepBreaker class.
111   if (MI.isDebugInstr() || MI.isKill())
112     return;
113   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
114 
115   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
116     if (KillIndices[Reg] != ~0u) {
117       // If Reg is currently live, then mark that it can't be renamed as
118       // we don't know the extent of its live-range anymore (now that it
119       // has been scheduled).
120       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
121       KillIndices[Reg] = Count;
122     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
123       // Any register which was defined within the previous scheduling region
124       // may have been rescheduled and its lifetime may overlap with registers
125       // in ways not reflected in our current liveness state. For each such
126       // register, adjust the liveness state to be conservatively correct.
127       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
128 
129       // Move the def index to the end of the previous region, to reflect
130       // that the def could theoretically have been scheduled at the end.
131       DefIndices[Reg] = InsertPosIndex;
132     }
133   }
134 
135   PrescanInstruction(MI);
136   ScanInstruction(MI, Count);
137 }
138 
139 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
140 /// critical path.
141 static const SDep *CriticalPathStep(const SUnit *SU) {
142   const SDep *Next = nullptr;
143   unsigned NextDepth = 0;
144   // Find the predecessor edge with the greatest depth.
145   for (const SDep &P : SU->Preds) {
146     const SUnit *PredSU = P.getSUnit();
147     unsigned PredLatency = P.getLatency();
148     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
149     // In the case of a latency tie, prefer an anti-dependency edge over
150     // other types of edges.
151     if (NextDepth < PredTotalLatency ||
152         (NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) {
153       NextDepth = PredTotalLatency;
154       Next = &P;
155     }
156   }
157   return Next;
158 }
159 
160 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
161   // It's not safe to change register allocation for source operands of
162   // instructions that have special allocation requirements. Also assume all
163   // registers used in a call must not be changed (ABI).
164   // FIXME: The issue with predicated instruction is more complex. We are being
165   // conservative here because the kill markers cannot be trusted after
166   // if-conversion:
167   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
168   // ...
169   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
170   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
171   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
172   //
173   // The first R6 kill is not really a kill since it's killed by a predicated
174   // instruction which may not be executed. The second R6 def may or may not
175   // re-define R6 so it's not safe to change it since the last R6 use cannot be
176   // changed.
177   bool Special =
178       MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
179 
180   // Scan the register operands for this instruction and update
181   // Classes and RegRefs.
182   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
183     MachineOperand &MO = MI.getOperand(i);
184     if (!MO.isReg()) continue;
185     Register Reg = MO.getReg();
186     if (Reg == 0) continue;
187     const TargetRegisterClass *NewRC = nullptr;
188 
189     if (i < MI.getDesc().getNumOperands())
190       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
191 
192     // For now, only allow the register to be changed if its register
193     // class is consistent across all uses.
194     if (!Classes[Reg] && NewRC)
195       Classes[Reg] = NewRC;
196     else if (!NewRC || Classes[Reg] != NewRC)
197       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
198 
199     // Now check for aliases.
200     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
201       // If an alias of the reg is used during the live range, give up.
202       // Note that this allows us to skip checking if AntiDepReg
203       // overlaps with any of the aliases, among other things.
204       unsigned AliasReg = *AI;
205       if (Classes[AliasReg]) {
206         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
207         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
208       }
209     }
210 
211     // If we're still willing to consider this register, note the reference.
212     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
213       RegRefs.insert(std::make_pair(Reg, &MO));
214 
215     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
216     // it or any of its sub or super regs. We need to use KeepRegs to mark the
217     // reg because not all uses of the same reg within an instruction are
218     // necessarily tagged as tied.
219     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
220     // def register but not the second (see PR20020 for details).
221     // FIXME: can this check be relaxed to account for undef uses
222     // of a register? In the above 'xor' example, the uses of %eax are undef, so
223     // earlier instructions could still replace %eax even though the 'xor'
224     // itself can't be changed.
225     if (MI.isRegTiedToUseOperand(i) &&
226         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
227       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
228            SubRegs.isValid(); ++SubRegs) {
229         KeepRegs.set(*SubRegs);
230       }
231       for (MCSuperRegIterator SuperRegs(Reg, TRI);
232            SuperRegs.isValid(); ++SuperRegs) {
233         KeepRegs.set(*SuperRegs);
234       }
235     }
236 
237     if (MO.isUse() && Special) {
238       if (!KeepRegs.test(Reg)) {
239         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
240              SubRegs.isValid(); ++SubRegs)
241           KeepRegs.set(*SubRegs);
242       }
243     }
244   }
245 }
246 
247 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
248   // Update liveness.
249   // Proceeding upwards, registers that are defed but not used in this
250   // instruction are now dead.
251   assert(!MI.isKill() && "Attempting to scan a kill instruction");
252 
253   if (!TII->isPredicated(MI)) {
254     // Predicated defs are modeled as read + write, i.e. similar to two
255     // address updates.
256     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
257       MachineOperand &MO = MI.getOperand(i);
258 
259       if (MO.isRegMask()) {
260         auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) {
261           for (MCSubRegIterator SRI(PhysReg, TRI, true); SRI.isValid(); ++SRI)
262             if (!MO.clobbersPhysReg(*SRI))
263               return false;
264 
265           return true;
266         };
267 
268         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
269           if (ClobbersPhysRegAndSubRegs(i)) {
270             DefIndices[i] = Count;
271             KillIndices[i] = ~0u;
272             KeepRegs.reset(i);
273             Classes[i] = nullptr;
274             RegRefs.erase(i);
275           }
276         }
277       }
278 
279       if (!MO.isReg()) continue;
280       Register Reg = MO.getReg();
281       if (Reg == 0) continue;
282       if (!MO.isDef()) continue;
283 
284       // Ignore two-addr defs.
285       if (MI.isRegTiedToUseOperand(i))
286         continue;
287 
288       // If we've already marked this reg as unchangeable, don't remove
289       // it or any of its subregs from KeepRegs.
290       bool Keep = KeepRegs.test(Reg);
291 
292       // For the reg itself and all subregs: update the def to current;
293       // reset the kill state, any restrictions, and references.
294       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
295         unsigned SubregReg = *SRI;
296         DefIndices[SubregReg] = Count;
297         KillIndices[SubregReg] = ~0u;
298         Classes[SubregReg] = nullptr;
299         RegRefs.erase(SubregReg);
300         if (!Keep)
301           KeepRegs.reset(SubregReg);
302       }
303       // Conservatively mark super-registers as unusable.
304       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
305         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
306     }
307   }
308   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
309     MachineOperand &MO = MI.getOperand(i);
310     if (!MO.isReg()) continue;
311     Register Reg = MO.getReg();
312     if (Reg == 0) continue;
313     if (!MO.isUse()) continue;
314 
315     const TargetRegisterClass *NewRC = nullptr;
316     if (i < MI.getDesc().getNumOperands())
317       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
318 
319     // For now, only allow the register to be changed if its register
320     // class is consistent across all uses.
321     if (!Classes[Reg] && NewRC)
322       Classes[Reg] = NewRC;
323     else if (!NewRC || Classes[Reg] != NewRC)
324       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
325 
326     RegRefs.insert(std::make_pair(Reg, &MO));
327 
328     // It wasn't previously live but now it is, this is a kill.
329     // Repeat for all aliases.
330     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
331       unsigned AliasReg = *AI;
332       if (KillIndices[AliasReg] == ~0u) {
333         KillIndices[AliasReg] = Count;
334         DefIndices[AliasReg] = ~0u;
335       }
336     }
337   }
338 }
339 
340 // Check all machine operands that reference the antidependent register and must
341 // be replaced by NewReg. Return true if any of their parent instructions may
342 // clobber the new register.
343 //
344 // Note: AntiDepReg may be referenced by a two-address instruction such that
345 // it's use operand is tied to a def operand. We guard against the case in which
346 // the two-address instruction also defines NewReg, as may happen with
347 // pre/postincrement loads. In this case, both the use and def operands are in
348 // RegRefs because the def is inserted by PrescanInstruction and not erased
349 // during ScanInstruction. So checking for an instruction with definitions of
350 // both NewReg and AntiDepReg covers it.
351 bool
352 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
353                                                 RegRefIter RegRefEnd,
354                                                 unsigned NewReg) {
355   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
356     MachineOperand *RefOper = I->second;
357 
358     // Don't allow the instruction defining AntiDepReg to earlyclobber its
359     // operands, in case they may be assigned to NewReg. In this case antidep
360     // breaking must fail, but it's too rare to bother optimizing.
361     if (RefOper->isDef() && RefOper->isEarlyClobber())
362       return true;
363 
364     // Handle cases in which this instruction defines NewReg.
365     MachineInstr *MI = RefOper->getParent();
366     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
367       const MachineOperand &CheckOper = MI->getOperand(i);
368 
369       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
370         return true;
371 
372       if (!CheckOper.isReg() || !CheckOper.isDef() ||
373           CheckOper.getReg() != NewReg)
374         continue;
375 
376       // Don't allow the instruction to define NewReg and AntiDepReg.
377       // When AntiDepReg is renamed it will be an illegal op.
378       if (RefOper->isDef())
379         return true;
380 
381       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
382       // NewReg.
383       if (CheckOper.isEarlyClobber())
384         return true;
385 
386       // Don't allow inline asm to define NewReg at all. Who knows what it's
387       // doing with it.
388       if (MI->isInlineAsm())
389         return true;
390     }
391   }
392   return false;
393 }
394 
395 unsigned CriticalAntiDepBreaker::
396 findSuitableFreeRegister(RegRefIter RegRefBegin,
397                          RegRefIter RegRefEnd,
398                          unsigned AntiDepReg,
399                          unsigned LastNewReg,
400                          const TargetRegisterClass *RC,
401                          SmallVectorImpl<unsigned> &Forbid) {
402   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
403   for (unsigned i = 0; i != Order.size(); ++i) {
404     unsigned NewReg = Order[i];
405     // Don't replace a register with itself.
406     if (NewReg == AntiDepReg) continue;
407     // Don't replace a register with one that was recently used to repair
408     // an anti-dependence with this AntiDepReg, because that would
409     // re-introduce that anti-dependence.
410     if (NewReg == LastNewReg) continue;
411     // If any instructions that define AntiDepReg also define the NewReg, it's
412     // not suitable.  For example, Instruction with multiple definitions can
413     // result in this condition.
414     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
415     // If NewReg is dead and NewReg's most recent def is not before
416     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
417     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
418            && "Kill and Def maps aren't consistent for AntiDepReg!");
419     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
420            && "Kill and Def maps aren't consistent for NewReg!");
421     if (KillIndices[NewReg] != ~0u ||
422         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
423         KillIndices[AntiDepReg] > DefIndices[NewReg])
424       continue;
425     // If NewReg overlaps any of the forbidden registers, we can't use it.
426     bool Forbidden = false;
427     for (unsigned R : Forbid)
428       if (TRI->regsOverlap(NewReg, R)) {
429         Forbidden = true;
430         break;
431       }
432     if (Forbidden) continue;
433     return NewReg;
434   }
435 
436   // No registers are free and available!
437   return 0;
438 }
439 
440 unsigned CriticalAntiDepBreaker::
441 BreakAntiDependencies(const std::vector<SUnit> &SUnits,
442                       MachineBasicBlock::iterator Begin,
443                       MachineBasicBlock::iterator End,
444                       unsigned InsertPosIndex,
445                       DbgValueVector &DbgValues) {
446   // The code below assumes that there is at least one instruction,
447   // so just duck out immediately if the block is empty.
448   if (SUnits.empty()) return 0;
449 
450   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
451   // This is used for updating debug information.
452   //
453   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
454   DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
455 
456   // Find the node at the bottom of the critical path.
457   const SUnit *Max = nullptr;
458   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
459     const SUnit *SU = &SUnits[i];
460     MISUnitMap[SU->getInstr()] = SU;
461     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
462       Max = SU;
463   }
464   assert(Max && "Failed to find bottom of the critical path");
465 
466 #ifndef NDEBUG
467   {
468     LLVM_DEBUG(dbgs() << "Critical path has total latency "
469                       << (Max->getDepth() + Max->Latency) << "\n");
470     LLVM_DEBUG(dbgs() << "Available regs:");
471     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
472       if (KillIndices[Reg] == ~0u)
473         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
474     }
475     LLVM_DEBUG(dbgs() << '\n');
476   }
477 #endif
478 
479   // Track progress along the critical path through the SUnit graph as we walk
480   // the instructions.
481   const SUnit *CriticalPathSU = Max;
482   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
483 
484   // Consider this pattern:
485   //   A = ...
486   //   ... = A
487   //   A = ...
488   //   ... = A
489   //   A = ...
490   //   ... = A
491   //   A = ...
492   //   ... = A
493   // There are three anti-dependencies here, and without special care,
494   // we'd break all of them using the same register:
495   //   A = ...
496   //   ... = A
497   //   B = ...
498   //   ... = B
499   //   B = ...
500   //   ... = B
501   //   B = ...
502   //   ... = B
503   // because at each anti-dependence, B is the first register that
504   // isn't A which is free.  This re-introduces anti-dependencies
505   // at all but one of the original anti-dependencies that we were
506   // trying to break.  To avoid this, keep track of the most recent
507   // register that each register was replaced with, avoid
508   // using it to repair an anti-dependence on the same register.
509   // This lets us produce this:
510   //   A = ...
511   //   ... = A
512   //   B = ...
513   //   ... = B
514   //   C = ...
515   //   ... = C
516   //   B = ...
517   //   ... = B
518   // This still has an anti-dependence on B, but at least it isn't on the
519   // original critical path.
520   //
521   // TODO: If we tracked more than one register here, we could potentially
522   // fix that remaining critical edge too. This is a little more involved,
523   // because unlike the most recent register, less recent registers should
524   // still be considered, though only if no other registers are available.
525   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
526 
527   // Attempt to break anti-dependence edges on the critical path. Walk the
528   // instructions from the bottom up, tracking information about liveness
529   // as we go to help determine which registers are available.
530   unsigned Broken = 0;
531   unsigned Count = InsertPosIndex - 1;
532   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
533     MachineInstr &MI = *--I;
534     // Kill instructions can define registers but are really nops, and there
535     // might be a real definition earlier that needs to be paired with uses
536     // dominated by this kill.
537 
538     // FIXME: It may be possible to remove the isKill() restriction once PR18663
539     // has been properly fixed. There can be value in processing kills as seen
540     // in the AggressiveAntiDepBreaker class.
541     if (MI.isDebugInstr() || MI.isKill())
542       continue;
543 
544     // Check if this instruction has a dependence on the critical path that
545     // is an anti-dependence that we may be able to break. If it is, set
546     // AntiDepReg to the non-zero register associated with the anti-dependence.
547     //
548     // We limit our attention to the critical path as a heuristic to avoid
549     // breaking anti-dependence edges that aren't going to significantly
550     // impact the overall schedule. There are a limited number of registers
551     // and we want to save them for the important edges.
552     //
553     // TODO: Instructions with multiple defs could have multiple
554     // anti-dependencies. The current code here only knows how to break one
555     // edge per instruction. Note that we'd have to be able to break all of
556     // the anti-dependencies in an instruction in order to be effective.
557     unsigned AntiDepReg = 0;
558     if (&MI == CriticalPathMI) {
559       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
560         const SUnit *NextSU = Edge->getSUnit();
561 
562         // Only consider anti-dependence edges.
563         if (Edge->getKind() == SDep::Anti) {
564           AntiDepReg = Edge->getReg();
565           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
566           if (!MRI.isAllocatable(AntiDepReg))
567             // Don't break anti-dependencies on non-allocatable registers.
568             AntiDepReg = 0;
569           else if (KeepRegs.test(AntiDepReg))
570             // Don't break anti-dependencies if a use down below requires
571             // this exact register.
572             AntiDepReg = 0;
573           else {
574             // If the SUnit has other dependencies on the SUnit that it
575             // anti-depends on, don't bother breaking the anti-dependency
576             // since those edges would prevent such units from being
577             // scheduled past each other regardless.
578             //
579             // Also, if there are dependencies on other SUnits with the
580             // same register as the anti-dependency, don't attempt to
581             // break it.
582             for (const SDep &P : CriticalPathSU->Preds)
583               if (P.getSUnit() == NextSU
584                       ? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg)
585                       : (P.getKind() == SDep::Data &&
586                          P.getReg() == AntiDepReg)) {
587                 AntiDepReg = 0;
588                 break;
589               }
590           }
591         }
592         CriticalPathSU = NextSU;
593         CriticalPathMI = CriticalPathSU->getInstr();
594       } else {
595         // We've reached the end of the critical path.
596         CriticalPathSU = nullptr;
597         CriticalPathMI = nullptr;
598       }
599     }
600 
601     PrescanInstruction(MI);
602 
603     SmallVector<unsigned, 2> ForbidRegs;
604 
605     // If MI's defs have a special allocation requirement, don't allow
606     // any def registers to be changed. Also assume all registers
607     // defined in a call must not be changed (ABI).
608     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
609       // If this instruction's defs have special allocation requirement, don't
610       // break this anti-dependency.
611       AntiDepReg = 0;
612     else if (AntiDepReg) {
613       // If this instruction has a use of AntiDepReg, breaking it
614       // is invalid.  If the instruction defines other registers,
615       // save a list of them so that we don't pick a new register
616       // that overlaps any of them.
617       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
618         MachineOperand &MO = MI.getOperand(i);
619         if (!MO.isReg()) continue;
620         Register Reg = MO.getReg();
621         if (Reg == 0) continue;
622         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
623           AntiDepReg = 0;
624           break;
625         }
626         if (MO.isDef() && Reg != AntiDepReg)
627           ForbidRegs.push_back(Reg);
628       }
629     }
630 
631     // Determine AntiDepReg's register class, if it is live and is
632     // consistently used within a single class.
633     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
634                                                     : nullptr;
635     assert((AntiDepReg == 0 || RC != nullptr) &&
636            "Register should be live if it's causing an anti-dependence!");
637     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
638       AntiDepReg = 0;
639 
640     // Look for a suitable register to use to break the anti-dependence.
641     //
642     // TODO: Instead of picking the first free register, consider which might
643     // be the best.
644     if (AntiDepReg != 0) {
645       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
646                 std::multimap<unsigned, MachineOperand *>::iterator>
647         Range = RegRefs.equal_range(AntiDepReg);
648       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
649                                                      AntiDepReg,
650                                                      LastNewReg[AntiDepReg],
651                                                      RC, ForbidRegs)) {
652         LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
653                           << printReg(AntiDepReg, TRI) << " with "
654                           << RegRefs.count(AntiDepReg) << " references"
655                           << " using " << printReg(NewReg, TRI) << "!\n");
656 
657         // Update the references to the old register to refer to the new
658         // register.
659         for (std::multimap<unsigned, MachineOperand *>::iterator
660              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
661           Q->second->setReg(NewReg);
662           // If the SU for the instruction being updated has debug information
663           // related to the anti-dependency register, make sure to update that
664           // as well.
665           const SUnit *SU = MISUnitMap[Q->second->getParent()];
666           if (!SU) continue;
667           UpdateDbgValues(DbgValues, Q->second->getParent(),
668                           AntiDepReg, NewReg);
669         }
670 
671         // We just went back in time and modified history; the
672         // liveness information for the anti-dependence reg is now
673         // inconsistent. Set the state as if it were dead.
674         Classes[NewReg] = Classes[AntiDepReg];
675         DefIndices[NewReg] = DefIndices[AntiDepReg];
676         KillIndices[NewReg] = KillIndices[AntiDepReg];
677         assert(((KillIndices[NewReg] == ~0u) !=
678                 (DefIndices[NewReg] == ~0u)) &&
679              "Kill and Def maps aren't consistent for NewReg!");
680 
681         Classes[AntiDepReg] = nullptr;
682         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
683         KillIndices[AntiDepReg] = ~0u;
684         assert(((KillIndices[AntiDepReg] == ~0u) !=
685                 (DefIndices[AntiDepReg] == ~0u)) &&
686              "Kill and Def maps aren't consistent for AntiDepReg!");
687 
688         RegRefs.erase(AntiDepReg);
689         LastNewReg[AntiDepReg] = NewReg;
690         ++Broken;
691       }
692     }
693 
694     ScanInstruction(MI, Count);
695   }
696 
697   return Broken;
698 }
699 
700 AntiDepBreaker *
701 llvm::createCriticalAntiDepBreaker(MachineFunction &MFi,
702                                    const RegisterClassInfo &RCI) {
703   return new CriticalAntiDepBreaker(MFi, RCI);
704 }
705