xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1*0b57cec5SDimitry Andric //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2*0b57cec5SDimitry Andric //
3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0b57cec5SDimitry Andric //
7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
8*0b57cec5SDimitry Andric //
9*0b57cec5SDimitry Andric // This file implements the CriticalAntiDepBreaker class, which
10*0b57cec5SDimitry Andric // implements register anti-dependence breaking along a blocks
11*0b57cec5SDimitry Andric // critical path during post-RA scheduler.
12*0b57cec5SDimitry Andric //
13*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
14*0b57cec5SDimitry Andric 
15*0b57cec5SDimitry Andric #include "CriticalAntiDepBreaker.h"
16*0b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
17*0b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h"
18*0b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
19*0b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
20*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
21*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
22*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
23*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
24*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
25*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
26*0b57cec5SDimitry Andric #include "llvm/CodeGen/RegisterClassInfo.h"
27*0b57cec5SDimitry Andric #include "llvm/CodeGen/ScheduleDAG.h"
28*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetInstrInfo.h"
29*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
30*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h"
31*0b57cec5SDimitry Andric #include "llvm/MC/MCInstrDesc.h"
32*0b57cec5SDimitry Andric #include "llvm/MC/MCRegisterInfo.h"
33*0b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
34*0b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
35*0b57cec5SDimitry Andric #include <cassert>
36*0b57cec5SDimitry Andric #include <map>
37*0b57cec5SDimitry Andric #include <utility>
38*0b57cec5SDimitry Andric #include <vector>
39*0b57cec5SDimitry Andric 
40*0b57cec5SDimitry Andric using namespace llvm;
41*0b57cec5SDimitry Andric 
42*0b57cec5SDimitry Andric #define DEBUG_TYPE "post-RA-sched"
43*0b57cec5SDimitry Andric 
44*0b57cec5SDimitry Andric CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
45*0b57cec5SDimitry Andric                                                const RegisterClassInfo &RCI)
46*0b57cec5SDimitry Andric     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
47*0b57cec5SDimitry Andric       TII(MF.getSubtarget().getInstrInfo()),
48*0b57cec5SDimitry Andric       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
49*0b57cec5SDimitry Andric       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
50*0b57cec5SDimitry Andric       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
51*0b57cec5SDimitry Andric 
52*0b57cec5SDimitry Andric CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
53*0b57cec5SDimitry Andric 
54*0b57cec5SDimitry Andric void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
55*0b57cec5SDimitry Andric   const unsigned BBSize = BB->size();
56*0b57cec5SDimitry Andric   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
57*0b57cec5SDimitry Andric     // Clear out the register class data.
58*0b57cec5SDimitry Andric     Classes[i] = nullptr;
59*0b57cec5SDimitry Andric 
60*0b57cec5SDimitry Andric     // Initialize the indices to indicate that no registers are live.
61*0b57cec5SDimitry Andric     KillIndices[i] = ~0u;
62*0b57cec5SDimitry Andric     DefIndices[i] = BBSize;
63*0b57cec5SDimitry Andric   }
64*0b57cec5SDimitry Andric 
65*0b57cec5SDimitry Andric   // Clear "do not change" set.
66*0b57cec5SDimitry Andric   KeepRegs.reset();
67*0b57cec5SDimitry Andric 
68*0b57cec5SDimitry Andric   bool IsReturnBlock = BB->isReturnBlock();
69*0b57cec5SDimitry Andric 
70*0b57cec5SDimitry Andric   // Examine the live-in regs of all successors.
71*0b57cec5SDimitry Andric   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
72*0b57cec5SDimitry Andric          SE = BB->succ_end(); SI != SE; ++SI)
73*0b57cec5SDimitry Andric     for (const auto &LI : (*SI)->liveins()) {
74*0b57cec5SDimitry Andric       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
75*0b57cec5SDimitry Andric         unsigned Reg = *AI;
76*0b57cec5SDimitry Andric         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
77*0b57cec5SDimitry Andric         KillIndices[Reg] = BBSize;
78*0b57cec5SDimitry Andric         DefIndices[Reg] = ~0u;
79*0b57cec5SDimitry Andric       }
80*0b57cec5SDimitry Andric     }
81*0b57cec5SDimitry Andric 
82*0b57cec5SDimitry Andric   // Mark live-out callee-saved registers. In a return block this is
83*0b57cec5SDimitry Andric   // all callee-saved registers. In non-return this is any
84*0b57cec5SDimitry Andric   // callee-saved register that is not saved in the prolog.
85*0b57cec5SDimitry Andric   const MachineFrameInfo &MFI = MF.getFrameInfo();
86*0b57cec5SDimitry Andric   BitVector Pristine = MFI.getPristineRegs(MF);
87*0b57cec5SDimitry Andric   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
88*0b57cec5SDimitry Andric        ++I) {
89*0b57cec5SDimitry Andric     unsigned Reg = *I;
90*0b57cec5SDimitry Andric     if (!IsReturnBlock && !Pristine.test(Reg))
91*0b57cec5SDimitry Andric       continue;
92*0b57cec5SDimitry Andric     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
93*0b57cec5SDimitry Andric       unsigned Reg = *AI;
94*0b57cec5SDimitry Andric       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
95*0b57cec5SDimitry Andric       KillIndices[Reg] = BBSize;
96*0b57cec5SDimitry Andric       DefIndices[Reg] = ~0u;
97*0b57cec5SDimitry Andric     }
98*0b57cec5SDimitry Andric   }
99*0b57cec5SDimitry Andric }
100*0b57cec5SDimitry Andric 
101*0b57cec5SDimitry Andric void CriticalAntiDepBreaker::FinishBlock() {
102*0b57cec5SDimitry Andric   RegRefs.clear();
103*0b57cec5SDimitry Andric   KeepRegs.reset();
104*0b57cec5SDimitry Andric }
105*0b57cec5SDimitry Andric 
106*0b57cec5SDimitry Andric void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
107*0b57cec5SDimitry Andric                                      unsigned InsertPosIndex) {
108*0b57cec5SDimitry Andric   // Kill instructions can define registers but are really nops, and there might
109*0b57cec5SDimitry Andric   // be a real definition earlier that needs to be paired with uses dominated by
110*0b57cec5SDimitry Andric   // this kill.
111*0b57cec5SDimitry Andric 
112*0b57cec5SDimitry Andric   // FIXME: It may be possible to remove the isKill() restriction once PR18663
113*0b57cec5SDimitry Andric   // has been properly fixed. There can be value in processing kills as seen in
114*0b57cec5SDimitry Andric   // the AggressiveAntiDepBreaker class.
115*0b57cec5SDimitry Andric   if (MI.isDebugInstr() || MI.isKill())
116*0b57cec5SDimitry Andric     return;
117*0b57cec5SDimitry Andric   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
118*0b57cec5SDimitry Andric 
119*0b57cec5SDimitry Andric   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
120*0b57cec5SDimitry Andric     if (KillIndices[Reg] != ~0u) {
121*0b57cec5SDimitry Andric       // If Reg is currently live, then mark that it can't be renamed as
122*0b57cec5SDimitry Andric       // we don't know the extent of its live-range anymore (now that it
123*0b57cec5SDimitry Andric       // has been scheduled).
124*0b57cec5SDimitry Andric       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
125*0b57cec5SDimitry Andric       KillIndices[Reg] = Count;
126*0b57cec5SDimitry Andric     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
127*0b57cec5SDimitry Andric       // Any register which was defined within the previous scheduling region
128*0b57cec5SDimitry Andric       // may have been rescheduled and its lifetime may overlap with registers
129*0b57cec5SDimitry Andric       // in ways not reflected in our current liveness state. For each such
130*0b57cec5SDimitry Andric       // register, adjust the liveness state to be conservatively correct.
131*0b57cec5SDimitry Andric       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
132*0b57cec5SDimitry Andric 
133*0b57cec5SDimitry Andric       // Move the def index to the end of the previous region, to reflect
134*0b57cec5SDimitry Andric       // that the def could theoretically have been scheduled at the end.
135*0b57cec5SDimitry Andric       DefIndices[Reg] = InsertPosIndex;
136*0b57cec5SDimitry Andric     }
137*0b57cec5SDimitry Andric   }
138*0b57cec5SDimitry Andric 
139*0b57cec5SDimitry Andric   PrescanInstruction(MI);
140*0b57cec5SDimitry Andric   ScanInstruction(MI, Count);
141*0b57cec5SDimitry Andric }
142*0b57cec5SDimitry Andric 
143*0b57cec5SDimitry Andric /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
144*0b57cec5SDimitry Andric /// critical path.
145*0b57cec5SDimitry Andric static const SDep *CriticalPathStep(const SUnit *SU) {
146*0b57cec5SDimitry Andric   const SDep *Next = nullptr;
147*0b57cec5SDimitry Andric   unsigned NextDepth = 0;
148*0b57cec5SDimitry Andric   // Find the predecessor edge with the greatest depth.
149*0b57cec5SDimitry Andric   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
150*0b57cec5SDimitry Andric        P != PE; ++P) {
151*0b57cec5SDimitry Andric     const SUnit *PredSU = P->getSUnit();
152*0b57cec5SDimitry Andric     unsigned PredLatency = P->getLatency();
153*0b57cec5SDimitry Andric     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
154*0b57cec5SDimitry Andric     // In the case of a latency tie, prefer an anti-dependency edge over
155*0b57cec5SDimitry Andric     // other types of edges.
156*0b57cec5SDimitry Andric     if (NextDepth < PredTotalLatency ||
157*0b57cec5SDimitry Andric         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
158*0b57cec5SDimitry Andric       NextDepth = PredTotalLatency;
159*0b57cec5SDimitry Andric       Next = &*P;
160*0b57cec5SDimitry Andric     }
161*0b57cec5SDimitry Andric   }
162*0b57cec5SDimitry Andric   return Next;
163*0b57cec5SDimitry Andric }
164*0b57cec5SDimitry Andric 
165*0b57cec5SDimitry Andric void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
166*0b57cec5SDimitry Andric   // It's not safe to change register allocation for source operands of
167*0b57cec5SDimitry Andric   // instructions that have special allocation requirements. Also assume all
168*0b57cec5SDimitry Andric   // registers used in a call must not be changed (ABI).
169*0b57cec5SDimitry Andric   // FIXME: The issue with predicated instruction is more complex. We are being
170*0b57cec5SDimitry Andric   // conservative here because the kill markers cannot be trusted after
171*0b57cec5SDimitry Andric   // if-conversion:
172*0b57cec5SDimitry Andric   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
173*0b57cec5SDimitry Andric   // ...
174*0b57cec5SDimitry Andric   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
175*0b57cec5SDimitry Andric   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
176*0b57cec5SDimitry Andric   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
177*0b57cec5SDimitry Andric   //
178*0b57cec5SDimitry Andric   // The first R6 kill is not really a kill since it's killed by a predicated
179*0b57cec5SDimitry Andric   // instruction which may not be executed. The second R6 def may or may not
180*0b57cec5SDimitry Andric   // re-define R6 so it's not safe to change it since the last R6 use cannot be
181*0b57cec5SDimitry Andric   // changed.
182*0b57cec5SDimitry Andric   bool Special =
183*0b57cec5SDimitry Andric       MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
184*0b57cec5SDimitry Andric 
185*0b57cec5SDimitry Andric   // Scan the register operands for this instruction and update
186*0b57cec5SDimitry Andric   // Classes and RegRefs.
187*0b57cec5SDimitry Andric   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
188*0b57cec5SDimitry Andric     MachineOperand &MO = MI.getOperand(i);
189*0b57cec5SDimitry Andric     if (!MO.isReg()) continue;
190*0b57cec5SDimitry Andric     unsigned Reg = MO.getReg();
191*0b57cec5SDimitry Andric     if (Reg == 0) continue;
192*0b57cec5SDimitry Andric     const TargetRegisterClass *NewRC = nullptr;
193*0b57cec5SDimitry Andric 
194*0b57cec5SDimitry Andric     if (i < MI.getDesc().getNumOperands())
195*0b57cec5SDimitry Andric       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
196*0b57cec5SDimitry Andric 
197*0b57cec5SDimitry Andric     // For now, only allow the register to be changed if its register
198*0b57cec5SDimitry Andric     // class is consistent across all uses.
199*0b57cec5SDimitry Andric     if (!Classes[Reg] && NewRC)
200*0b57cec5SDimitry Andric       Classes[Reg] = NewRC;
201*0b57cec5SDimitry Andric     else if (!NewRC || Classes[Reg] != NewRC)
202*0b57cec5SDimitry Andric       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
203*0b57cec5SDimitry Andric 
204*0b57cec5SDimitry Andric     // Now check for aliases.
205*0b57cec5SDimitry Andric     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
206*0b57cec5SDimitry Andric       // If an alias of the reg is used during the live range, give up.
207*0b57cec5SDimitry Andric       // Note that this allows us to skip checking if AntiDepReg
208*0b57cec5SDimitry Andric       // overlaps with any of the aliases, among other things.
209*0b57cec5SDimitry Andric       unsigned AliasReg = *AI;
210*0b57cec5SDimitry Andric       if (Classes[AliasReg]) {
211*0b57cec5SDimitry Andric         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
212*0b57cec5SDimitry Andric         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
213*0b57cec5SDimitry Andric       }
214*0b57cec5SDimitry Andric     }
215*0b57cec5SDimitry Andric 
216*0b57cec5SDimitry Andric     // If we're still willing to consider this register, note the reference.
217*0b57cec5SDimitry Andric     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
218*0b57cec5SDimitry Andric       RegRefs.insert(std::make_pair(Reg, &MO));
219*0b57cec5SDimitry Andric 
220*0b57cec5SDimitry Andric     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
221*0b57cec5SDimitry Andric     // it or any of its sub or super regs. We need to use KeepRegs to mark the
222*0b57cec5SDimitry Andric     // reg because not all uses of the same reg within an instruction are
223*0b57cec5SDimitry Andric     // necessarily tagged as tied.
224*0b57cec5SDimitry Andric     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
225*0b57cec5SDimitry Andric     // def register but not the second (see PR20020 for details).
226*0b57cec5SDimitry Andric     // FIXME: can this check be relaxed to account for undef uses
227*0b57cec5SDimitry Andric     // of a register? In the above 'xor' example, the uses of %eax are undef, so
228*0b57cec5SDimitry Andric     // earlier instructions could still replace %eax even though the 'xor'
229*0b57cec5SDimitry Andric     // itself can't be changed.
230*0b57cec5SDimitry Andric     if (MI.isRegTiedToUseOperand(i) &&
231*0b57cec5SDimitry Andric         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
232*0b57cec5SDimitry Andric       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
233*0b57cec5SDimitry Andric            SubRegs.isValid(); ++SubRegs) {
234*0b57cec5SDimitry Andric         KeepRegs.set(*SubRegs);
235*0b57cec5SDimitry Andric       }
236*0b57cec5SDimitry Andric       for (MCSuperRegIterator SuperRegs(Reg, TRI);
237*0b57cec5SDimitry Andric            SuperRegs.isValid(); ++SuperRegs) {
238*0b57cec5SDimitry Andric         KeepRegs.set(*SuperRegs);
239*0b57cec5SDimitry Andric       }
240*0b57cec5SDimitry Andric     }
241*0b57cec5SDimitry Andric 
242*0b57cec5SDimitry Andric     if (MO.isUse() && Special) {
243*0b57cec5SDimitry Andric       if (!KeepRegs.test(Reg)) {
244*0b57cec5SDimitry Andric         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
245*0b57cec5SDimitry Andric              SubRegs.isValid(); ++SubRegs)
246*0b57cec5SDimitry Andric           KeepRegs.set(*SubRegs);
247*0b57cec5SDimitry Andric       }
248*0b57cec5SDimitry Andric     }
249*0b57cec5SDimitry Andric   }
250*0b57cec5SDimitry Andric }
251*0b57cec5SDimitry Andric 
252*0b57cec5SDimitry Andric void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
253*0b57cec5SDimitry Andric   // Update liveness.
254*0b57cec5SDimitry Andric   // Proceeding upwards, registers that are defed but not used in this
255*0b57cec5SDimitry Andric   // instruction are now dead.
256*0b57cec5SDimitry Andric   assert(!MI.isKill() && "Attempting to scan a kill instruction");
257*0b57cec5SDimitry Andric 
258*0b57cec5SDimitry Andric   if (!TII->isPredicated(MI)) {
259*0b57cec5SDimitry Andric     // Predicated defs are modeled as read + write, i.e. similar to two
260*0b57cec5SDimitry Andric     // address updates.
261*0b57cec5SDimitry Andric     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
262*0b57cec5SDimitry Andric       MachineOperand &MO = MI.getOperand(i);
263*0b57cec5SDimitry Andric 
264*0b57cec5SDimitry Andric       if (MO.isRegMask())
265*0b57cec5SDimitry Andric         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
266*0b57cec5SDimitry Andric           if (MO.clobbersPhysReg(i)) {
267*0b57cec5SDimitry Andric             DefIndices[i] = Count;
268*0b57cec5SDimitry Andric             KillIndices[i] = ~0u;
269*0b57cec5SDimitry Andric             KeepRegs.reset(i);
270*0b57cec5SDimitry Andric             Classes[i] = nullptr;
271*0b57cec5SDimitry Andric             RegRefs.erase(i);
272*0b57cec5SDimitry Andric           }
273*0b57cec5SDimitry Andric 
274*0b57cec5SDimitry Andric       if (!MO.isReg()) continue;
275*0b57cec5SDimitry Andric       unsigned Reg = MO.getReg();
276*0b57cec5SDimitry Andric       if (Reg == 0) continue;
277*0b57cec5SDimitry Andric       if (!MO.isDef()) continue;
278*0b57cec5SDimitry Andric 
279*0b57cec5SDimitry Andric       // Ignore two-addr defs.
280*0b57cec5SDimitry Andric       if (MI.isRegTiedToUseOperand(i))
281*0b57cec5SDimitry Andric         continue;
282*0b57cec5SDimitry Andric 
283*0b57cec5SDimitry Andric       // If we've already marked this reg as unchangeable, don't remove
284*0b57cec5SDimitry Andric       // it or any of its subregs from KeepRegs.
285*0b57cec5SDimitry Andric       bool Keep = KeepRegs.test(Reg);
286*0b57cec5SDimitry Andric 
287*0b57cec5SDimitry Andric       // For the reg itself and all subregs: update the def to current;
288*0b57cec5SDimitry Andric       // reset the kill state, any restrictions, and references.
289*0b57cec5SDimitry Andric       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
290*0b57cec5SDimitry Andric         unsigned SubregReg = *SRI;
291*0b57cec5SDimitry Andric         DefIndices[SubregReg] = Count;
292*0b57cec5SDimitry Andric         KillIndices[SubregReg] = ~0u;
293*0b57cec5SDimitry Andric         Classes[SubregReg] = nullptr;
294*0b57cec5SDimitry Andric         RegRefs.erase(SubregReg);
295*0b57cec5SDimitry Andric         if (!Keep)
296*0b57cec5SDimitry Andric           KeepRegs.reset(SubregReg);
297*0b57cec5SDimitry Andric       }
298*0b57cec5SDimitry Andric       // Conservatively mark super-registers as unusable.
299*0b57cec5SDimitry Andric       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
300*0b57cec5SDimitry Andric         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
301*0b57cec5SDimitry Andric     }
302*0b57cec5SDimitry Andric   }
303*0b57cec5SDimitry Andric   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
304*0b57cec5SDimitry Andric     MachineOperand &MO = MI.getOperand(i);
305*0b57cec5SDimitry Andric     if (!MO.isReg()) continue;
306*0b57cec5SDimitry Andric     unsigned Reg = MO.getReg();
307*0b57cec5SDimitry Andric     if (Reg == 0) continue;
308*0b57cec5SDimitry Andric     if (!MO.isUse()) continue;
309*0b57cec5SDimitry Andric 
310*0b57cec5SDimitry Andric     const TargetRegisterClass *NewRC = nullptr;
311*0b57cec5SDimitry Andric     if (i < MI.getDesc().getNumOperands())
312*0b57cec5SDimitry Andric       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
313*0b57cec5SDimitry Andric 
314*0b57cec5SDimitry Andric     // For now, only allow the register to be changed if its register
315*0b57cec5SDimitry Andric     // class is consistent across all uses.
316*0b57cec5SDimitry Andric     if (!Classes[Reg] && NewRC)
317*0b57cec5SDimitry Andric       Classes[Reg] = NewRC;
318*0b57cec5SDimitry Andric     else if (!NewRC || Classes[Reg] != NewRC)
319*0b57cec5SDimitry Andric       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
320*0b57cec5SDimitry Andric 
321*0b57cec5SDimitry Andric     RegRefs.insert(std::make_pair(Reg, &MO));
322*0b57cec5SDimitry Andric 
323*0b57cec5SDimitry Andric     // It wasn't previously live but now it is, this is a kill.
324*0b57cec5SDimitry Andric     // Repeat for all aliases.
325*0b57cec5SDimitry Andric     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
326*0b57cec5SDimitry Andric       unsigned AliasReg = *AI;
327*0b57cec5SDimitry Andric       if (KillIndices[AliasReg] == ~0u) {
328*0b57cec5SDimitry Andric         KillIndices[AliasReg] = Count;
329*0b57cec5SDimitry Andric         DefIndices[AliasReg] = ~0u;
330*0b57cec5SDimitry Andric       }
331*0b57cec5SDimitry Andric     }
332*0b57cec5SDimitry Andric   }
333*0b57cec5SDimitry Andric }
334*0b57cec5SDimitry Andric 
335*0b57cec5SDimitry Andric // Check all machine operands that reference the antidependent register and must
336*0b57cec5SDimitry Andric // be replaced by NewReg. Return true if any of their parent instructions may
337*0b57cec5SDimitry Andric // clobber the new register.
338*0b57cec5SDimitry Andric //
339*0b57cec5SDimitry Andric // Note: AntiDepReg may be referenced by a two-address instruction such that
340*0b57cec5SDimitry Andric // it's use operand is tied to a def operand. We guard against the case in which
341*0b57cec5SDimitry Andric // the two-address instruction also defines NewReg, as may happen with
342*0b57cec5SDimitry Andric // pre/postincrement loads. In this case, both the use and def operands are in
343*0b57cec5SDimitry Andric // RegRefs because the def is inserted by PrescanInstruction and not erased
344*0b57cec5SDimitry Andric // during ScanInstruction. So checking for an instruction with definitions of
345*0b57cec5SDimitry Andric // both NewReg and AntiDepReg covers it.
346*0b57cec5SDimitry Andric bool
347*0b57cec5SDimitry Andric CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
348*0b57cec5SDimitry Andric                                                 RegRefIter RegRefEnd,
349*0b57cec5SDimitry Andric                                                 unsigned NewReg) {
350*0b57cec5SDimitry Andric   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
351*0b57cec5SDimitry Andric     MachineOperand *RefOper = I->second;
352*0b57cec5SDimitry Andric 
353*0b57cec5SDimitry Andric     // Don't allow the instruction defining AntiDepReg to earlyclobber its
354*0b57cec5SDimitry Andric     // operands, in case they may be assigned to NewReg. In this case antidep
355*0b57cec5SDimitry Andric     // breaking must fail, but it's too rare to bother optimizing.
356*0b57cec5SDimitry Andric     if (RefOper->isDef() && RefOper->isEarlyClobber())
357*0b57cec5SDimitry Andric       return true;
358*0b57cec5SDimitry Andric 
359*0b57cec5SDimitry Andric     // Handle cases in which this instruction defines NewReg.
360*0b57cec5SDimitry Andric     MachineInstr *MI = RefOper->getParent();
361*0b57cec5SDimitry Andric     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
362*0b57cec5SDimitry Andric       const MachineOperand &CheckOper = MI->getOperand(i);
363*0b57cec5SDimitry Andric 
364*0b57cec5SDimitry Andric       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
365*0b57cec5SDimitry Andric         return true;
366*0b57cec5SDimitry Andric 
367*0b57cec5SDimitry Andric       if (!CheckOper.isReg() || !CheckOper.isDef() ||
368*0b57cec5SDimitry Andric           CheckOper.getReg() != NewReg)
369*0b57cec5SDimitry Andric         continue;
370*0b57cec5SDimitry Andric 
371*0b57cec5SDimitry Andric       // Don't allow the instruction to define NewReg and AntiDepReg.
372*0b57cec5SDimitry Andric       // When AntiDepReg is renamed it will be an illegal op.
373*0b57cec5SDimitry Andric       if (RefOper->isDef())
374*0b57cec5SDimitry Andric         return true;
375*0b57cec5SDimitry Andric 
376*0b57cec5SDimitry Andric       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
377*0b57cec5SDimitry Andric       // NewReg.
378*0b57cec5SDimitry Andric       if (CheckOper.isEarlyClobber())
379*0b57cec5SDimitry Andric         return true;
380*0b57cec5SDimitry Andric 
381*0b57cec5SDimitry Andric       // Don't allow inline asm to define NewReg at all. Who knows what it's
382*0b57cec5SDimitry Andric       // doing with it.
383*0b57cec5SDimitry Andric       if (MI->isInlineAsm())
384*0b57cec5SDimitry Andric         return true;
385*0b57cec5SDimitry Andric     }
386*0b57cec5SDimitry Andric   }
387*0b57cec5SDimitry Andric   return false;
388*0b57cec5SDimitry Andric }
389*0b57cec5SDimitry Andric 
390*0b57cec5SDimitry Andric unsigned CriticalAntiDepBreaker::
391*0b57cec5SDimitry Andric findSuitableFreeRegister(RegRefIter RegRefBegin,
392*0b57cec5SDimitry Andric                          RegRefIter RegRefEnd,
393*0b57cec5SDimitry Andric                          unsigned AntiDepReg,
394*0b57cec5SDimitry Andric                          unsigned LastNewReg,
395*0b57cec5SDimitry Andric                          const TargetRegisterClass *RC,
396*0b57cec5SDimitry Andric                          SmallVectorImpl<unsigned> &Forbid) {
397*0b57cec5SDimitry Andric   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
398*0b57cec5SDimitry Andric   for (unsigned i = 0; i != Order.size(); ++i) {
399*0b57cec5SDimitry Andric     unsigned NewReg = Order[i];
400*0b57cec5SDimitry Andric     // Don't replace a register with itself.
401*0b57cec5SDimitry Andric     if (NewReg == AntiDepReg) continue;
402*0b57cec5SDimitry Andric     // Don't replace a register with one that was recently used to repair
403*0b57cec5SDimitry Andric     // an anti-dependence with this AntiDepReg, because that would
404*0b57cec5SDimitry Andric     // re-introduce that anti-dependence.
405*0b57cec5SDimitry Andric     if (NewReg == LastNewReg) continue;
406*0b57cec5SDimitry Andric     // If any instructions that define AntiDepReg also define the NewReg, it's
407*0b57cec5SDimitry Andric     // not suitable.  For example, Instruction with multiple definitions can
408*0b57cec5SDimitry Andric     // result in this condition.
409*0b57cec5SDimitry Andric     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
410*0b57cec5SDimitry Andric     // If NewReg is dead and NewReg's most recent def is not before
411*0b57cec5SDimitry Andric     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
412*0b57cec5SDimitry Andric     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
413*0b57cec5SDimitry Andric            && "Kill and Def maps aren't consistent for AntiDepReg!");
414*0b57cec5SDimitry Andric     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
415*0b57cec5SDimitry Andric            && "Kill and Def maps aren't consistent for NewReg!");
416*0b57cec5SDimitry Andric     if (KillIndices[NewReg] != ~0u ||
417*0b57cec5SDimitry Andric         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
418*0b57cec5SDimitry Andric         KillIndices[AntiDepReg] > DefIndices[NewReg])
419*0b57cec5SDimitry Andric       continue;
420*0b57cec5SDimitry Andric     // If NewReg overlaps any of the forbidden registers, we can't use it.
421*0b57cec5SDimitry Andric     bool Forbidden = false;
422*0b57cec5SDimitry Andric     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
423*0b57cec5SDimitry Andric            ite = Forbid.end(); it != ite; ++it)
424*0b57cec5SDimitry Andric       if (TRI->regsOverlap(NewReg, *it)) {
425*0b57cec5SDimitry Andric         Forbidden = true;
426*0b57cec5SDimitry Andric         break;
427*0b57cec5SDimitry Andric       }
428*0b57cec5SDimitry Andric     if (Forbidden) continue;
429*0b57cec5SDimitry Andric     return NewReg;
430*0b57cec5SDimitry Andric   }
431*0b57cec5SDimitry Andric 
432*0b57cec5SDimitry Andric   // No registers are free and available!
433*0b57cec5SDimitry Andric   return 0;
434*0b57cec5SDimitry Andric }
435*0b57cec5SDimitry Andric 
436*0b57cec5SDimitry Andric unsigned CriticalAntiDepBreaker::
437*0b57cec5SDimitry Andric BreakAntiDependencies(const std::vector<SUnit> &SUnits,
438*0b57cec5SDimitry Andric                       MachineBasicBlock::iterator Begin,
439*0b57cec5SDimitry Andric                       MachineBasicBlock::iterator End,
440*0b57cec5SDimitry Andric                       unsigned InsertPosIndex,
441*0b57cec5SDimitry Andric                       DbgValueVector &DbgValues) {
442*0b57cec5SDimitry Andric   // The code below assumes that there is at least one instruction,
443*0b57cec5SDimitry Andric   // so just duck out immediately if the block is empty.
444*0b57cec5SDimitry Andric   if (SUnits.empty()) return 0;
445*0b57cec5SDimitry Andric 
446*0b57cec5SDimitry Andric   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
447*0b57cec5SDimitry Andric   // This is used for updating debug information.
448*0b57cec5SDimitry Andric   //
449*0b57cec5SDimitry Andric   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
450*0b57cec5SDimitry Andric   DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
451*0b57cec5SDimitry Andric 
452*0b57cec5SDimitry Andric   // Find the node at the bottom of the critical path.
453*0b57cec5SDimitry Andric   const SUnit *Max = nullptr;
454*0b57cec5SDimitry Andric   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
455*0b57cec5SDimitry Andric     const SUnit *SU = &SUnits[i];
456*0b57cec5SDimitry Andric     MISUnitMap[SU->getInstr()] = SU;
457*0b57cec5SDimitry Andric     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
458*0b57cec5SDimitry Andric       Max = SU;
459*0b57cec5SDimitry Andric   }
460*0b57cec5SDimitry Andric 
461*0b57cec5SDimitry Andric #ifndef NDEBUG
462*0b57cec5SDimitry Andric   {
463*0b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Critical path has total latency "
464*0b57cec5SDimitry Andric                       << (Max->getDepth() + Max->Latency) << "\n");
465*0b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Available regs:");
466*0b57cec5SDimitry Andric     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
467*0b57cec5SDimitry Andric       if (KillIndices[Reg] == ~0u)
468*0b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
469*0b57cec5SDimitry Andric     }
470*0b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << '\n');
471*0b57cec5SDimitry Andric   }
472*0b57cec5SDimitry Andric #endif
473*0b57cec5SDimitry Andric 
474*0b57cec5SDimitry Andric   // Track progress along the critical path through the SUnit graph as we walk
475*0b57cec5SDimitry Andric   // the instructions.
476*0b57cec5SDimitry Andric   const SUnit *CriticalPathSU = Max;
477*0b57cec5SDimitry Andric   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
478*0b57cec5SDimitry Andric 
479*0b57cec5SDimitry Andric   // Consider this pattern:
480*0b57cec5SDimitry Andric   //   A = ...
481*0b57cec5SDimitry Andric   //   ... = A
482*0b57cec5SDimitry Andric   //   A = ...
483*0b57cec5SDimitry Andric   //   ... = A
484*0b57cec5SDimitry Andric   //   A = ...
485*0b57cec5SDimitry Andric   //   ... = A
486*0b57cec5SDimitry Andric   //   A = ...
487*0b57cec5SDimitry Andric   //   ... = A
488*0b57cec5SDimitry Andric   // There are three anti-dependencies here, and without special care,
489*0b57cec5SDimitry Andric   // we'd break all of them using the same register:
490*0b57cec5SDimitry Andric   //   A = ...
491*0b57cec5SDimitry Andric   //   ... = A
492*0b57cec5SDimitry Andric   //   B = ...
493*0b57cec5SDimitry Andric   //   ... = B
494*0b57cec5SDimitry Andric   //   B = ...
495*0b57cec5SDimitry Andric   //   ... = B
496*0b57cec5SDimitry Andric   //   B = ...
497*0b57cec5SDimitry Andric   //   ... = B
498*0b57cec5SDimitry Andric   // because at each anti-dependence, B is the first register that
499*0b57cec5SDimitry Andric   // isn't A which is free.  This re-introduces anti-dependencies
500*0b57cec5SDimitry Andric   // at all but one of the original anti-dependencies that we were
501*0b57cec5SDimitry Andric   // trying to break.  To avoid this, keep track of the most recent
502*0b57cec5SDimitry Andric   // register that each register was replaced with, avoid
503*0b57cec5SDimitry Andric   // using it to repair an anti-dependence on the same register.
504*0b57cec5SDimitry Andric   // This lets us produce this:
505*0b57cec5SDimitry Andric   //   A = ...
506*0b57cec5SDimitry Andric   //   ... = A
507*0b57cec5SDimitry Andric   //   B = ...
508*0b57cec5SDimitry Andric   //   ... = B
509*0b57cec5SDimitry Andric   //   C = ...
510*0b57cec5SDimitry Andric   //   ... = C
511*0b57cec5SDimitry Andric   //   B = ...
512*0b57cec5SDimitry Andric   //   ... = B
513*0b57cec5SDimitry Andric   // This still has an anti-dependence on B, but at least it isn't on the
514*0b57cec5SDimitry Andric   // original critical path.
515*0b57cec5SDimitry Andric   //
516*0b57cec5SDimitry Andric   // TODO: If we tracked more than one register here, we could potentially
517*0b57cec5SDimitry Andric   // fix that remaining critical edge too. This is a little more involved,
518*0b57cec5SDimitry Andric   // because unlike the most recent register, less recent registers should
519*0b57cec5SDimitry Andric   // still be considered, though only if no other registers are available.
520*0b57cec5SDimitry Andric   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
521*0b57cec5SDimitry Andric 
522*0b57cec5SDimitry Andric   // Attempt to break anti-dependence edges on the critical path. Walk the
523*0b57cec5SDimitry Andric   // instructions from the bottom up, tracking information about liveness
524*0b57cec5SDimitry Andric   // as we go to help determine which registers are available.
525*0b57cec5SDimitry Andric   unsigned Broken = 0;
526*0b57cec5SDimitry Andric   unsigned Count = InsertPosIndex - 1;
527*0b57cec5SDimitry Andric   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
528*0b57cec5SDimitry Andric     MachineInstr &MI = *--I;
529*0b57cec5SDimitry Andric     // Kill instructions can define registers but are really nops, and there
530*0b57cec5SDimitry Andric     // might be a real definition earlier that needs to be paired with uses
531*0b57cec5SDimitry Andric     // dominated by this kill.
532*0b57cec5SDimitry Andric 
533*0b57cec5SDimitry Andric     // FIXME: It may be possible to remove the isKill() restriction once PR18663
534*0b57cec5SDimitry Andric     // has been properly fixed. There can be value in processing kills as seen
535*0b57cec5SDimitry Andric     // in the AggressiveAntiDepBreaker class.
536*0b57cec5SDimitry Andric     if (MI.isDebugInstr() || MI.isKill())
537*0b57cec5SDimitry Andric       continue;
538*0b57cec5SDimitry Andric 
539*0b57cec5SDimitry Andric     // Check if this instruction has a dependence on the critical path that
540*0b57cec5SDimitry Andric     // is an anti-dependence that we may be able to break. If it is, set
541*0b57cec5SDimitry Andric     // AntiDepReg to the non-zero register associated with the anti-dependence.
542*0b57cec5SDimitry Andric     //
543*0b57cec5SDimitry Andric     // We limit our attention to the critical path as a heuristic to avoid
544*0b57cec5SDimitry Andric     // breaking anti-dependence edges that aren't going to significantly
545*0b57cec5SDimitry Andric     // impact the overall schedule. There are a limited number of registers
546*0b57cec5SDimitry Andric     // and we want to save them for the important edges.
547*0b57cec5SDimitry Andric     //
548*0b57cec5SDimitry Andric     // TODO: Instructions with multiple defs could have multiple
549*0b57cec5SDimitry Andric     // anti-dependencies. The current code here only knows how to break one
550*0b57cec5SDimitry Andric     // edge per instruction. Note that we'd have to be able to break all of
551*0b57cec5SDimitry Andric     // the anti-dependencies in an instruction in order to be effective.
552*0b57cec5SDimitry Andric     unsigned AntiDepReg = 0;
553*0b57cec5SDimitry Andric     if (&MI == CriticalPathMI) {
554*0b57cec5SDimitry Andric       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
555*0b57cec5SDimitry Andric         const SUnit *NextSU = Edge->getSUnit();
556*0b57cec5SDimitry Andric 
557*0b57cec5SDimitry Andric         // Only consider anti-dependence edges.
558*0b57cec5SDimitry Andric         if (Edge->getKind() == SDep::Anti) {
559*0b57cec5SDimitry Andric           AntiDepReg = Edge->getReg();
560*0b57cec5SDimitry Andric           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
561*0b57cec5SDimitry Andric           if (!MRI.isAllocatable(AntiDepReg))
562*0b57cec5SDimitry Andric             // Don't break anti-dependencies on non-allocatable registers.
563*0b57cec5SDimitry Andric             AntiDepReg = 0;
564*0b57cec5SDimitry Andric           else if (KeepRegs.test(AntiDepReg))
565*0b57cec5SDimitry Andric             // Don't break anti-dependencies if a use down below requires
566*0b57cec5SDimitry Andric             // this exact register.
567*0b57cec5SDimitry Andric             AntiDepReg = 0;
568*0b57cec5SDimitry Andric           else {
569*0b57cec5SDimitry Andric             // If the SUnit has other dependencies on the SUnit that it
570*0b57cec5SDimitry Andric             // anti-depends on, don't bother breaking the anti-dependency
571*0b57cec5SDimitry Andric             // since those edges would prevent such units from being
572*0b57cec5SDimitry Andric             // scheduled past each other regardless.
573*0b57cec5SDimitry Andric             //
574*0b57cec5SDimitry Andric             // Also, if there are dependencies on other SUnits with the
575*0b57cec5SDimitry Andric             // same register as the anti-dependency, don't attempt to
576*0b57cec5SDimitry Andric             // break it.
577*0b57cec5SDimitry Andric             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
578*0b57cec5SDimitry Andric                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
579*0b57cec5SDimitry Andric               if (P->getSUnit() == NextSU ?
580*0b57cec5SDimitry Andric                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
581*0b57cec5SDimitry Andric                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
582*0b57cec5SDimitry Andric                 AntiDepReg = 0;
583*0b57cec5SDimitry Andric                 break;
584*0b57cec5SDimitry Andric               }
585*0b57cec5SDimitry Andric           }
586*0b57cec5SDimitry Andric         }
587*0b57cec5SDimitry Andric         CriticalPathSU = NextSU;
588*0b57cec5SDimitry Andric         CriticalPathMI = CriticalPathSU->getInstr();
589*0b57cec5SDimitry Andric       } else {
590*0b57cec5SDimitry Andric         // We've reached the end of the critical path.
591*0b57cec5SDimitry Andric         CriticalPathSU = nullptr;
592*0b57cec5SDimitry Andric         CriticalPathMI = nullptr;
593*0b57cec5SDimitry Andric       }
594*0b57cec5SDimitry Andric     }
595*0b57cec5SDimitry Andric 
596*0b57cec5SDimitry Andric     PrescanInstruction(MI);
597*0b57cec5SDimitry Andric 
598*0b57cec5SDimitry Andric     SmallVector<unsigned, 2> ForbidRegs;
599*0b57cec5SDimitry Andric 
600*0b57cec5SDimitry Andric     // If MI's defs have a special allocation requirement, don't allow
601*0b57cec5SDimitry Andric     // any def registers to be changed. Also assume all registers
602*0b57cec5SDimitry Andric     // defined in a call must not be changed (ABI).
603*0b57cec5SDimitry Andric     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
604*0b57cec5SDimitry Andric       // If this instruction's defs have special allocation requirement, don't
605*0b57cec5SDimitry Andric       // break this anti-dependency.
606*0b57cec5SDimitry Andric       AntiDepReg = 0;
607*0b57cec5SDimitry Andric     else if (AntiDepReg) {
608*0b57cec5SDimitry Andric       // If this instruction has a use of AntiDepReg, breaking it
609*0b57cec5SDimitry Andric       // is invalid.  If the instruction defines other registers,
610*0b57cec5SDimitry Andric       // save a list of them so that we don't pick a new register
611*0b57cec5SDimitry Andric       // that overlaps any of them.
612*0b57cec5SDimitry Andric       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
613*0b57cec5SDimitry Andric         MachineOperand &MO = MI.getOperand(i);
614*0b57cec5SDimitry Andric         if (!MO.isReg()) continue;
615*0b57cec5SDimitry Andric         unsigned Reg = MO.getReg();
616*0b57cec5SDimitry Andric         if (Reg == 0) continue;
617*0b57cec5SDimitry Andric         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
618*0b57cec5SDimitry Andric           AntiDepReg = 0;
619*0b57cec5SDimitry Andric           break;
620*0b57cec5SDimitry Andric         }
621*0b57cec5SDimitry Andric         if (MO.isDef() && Reg != AntiDepReg)
622*0b57cec5SDimitry Andric           ForbidRegs.push_back(Reg);
623*0b57cec5SDimitry Andric       }
624*0b57cec5SDimitry Andric     }
625*0b57cec5SDimitry Andric 
626*0b57cec5SDimitry Andric     // Determine AntiDepReg's register class, if it is live and is
627*0b57cec5SDimitry Andric     // consistently used within a single class.
628*0b57cec5SDimitry Andric     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
629*0b57cec5SDimitry Andric                                                     : nullptr;
630*0b57cec5SDimitry Andric     assert((AntiDepReg == 0 || RC != nullptr) &&
631*0b57cec5SDimitry Andric            "Register should be live if it's causing an anti-dependence!");
632*0b57cec5SDimitry Andric     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
633*0b57cec5SDimitry Andric       AntiDepReg = 0;
634*0b57cec5SDimitry Andric 
635*0b57cec5SDimitry Andric     // Look for a suitable register to use to break the anti-dependence.
636*0b57cec5SDimitry Andric     //
637*0b57cec5SDimitry Andric     // TODO: Instead of picking the first free register, consider which might
638*0b57cec5SDimitry Andric     // be the best.
639*0b57cec5SDimitry Andric     if (AntiDepReg != 0) {
640*0b57cec5SDimitry Andric       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
641*0b57cec5SDimitry Andric                 std::multimap<unsigned, MachineOperand *>::iterator>
642*0b57cec5SDimitry Andric         Range = RegRefs.equal_range(AntiDepReg);
643*0b57cec5SDimitry Andric       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
644*0b57cec5SDimitry Andric                                                      AntiDepReg,
645*0b57cec5SDimitry Andric                                                      LastNewReg[AntiDepReg],
646*0b57cec5SDimitry Andric                                                      RC, ForbidRegs)) {
647*0b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
648*0b57cec5SDimitry Andric                           << printReg(AntiDepReg, TRI) << " with "
649*0b57cec5SDimitry Andric                           << RegRefs.count(AntiDepReg) << " references"
650*0b57cec5SDimitry Andric                           << " using " << printReg(NewReg, TRI) << "!\n");
651*0b57cec5SDimitry Andric 
652*0b57cec5SDimitry Andric         // Update the references to the old register to refer to the new
653*0b57cec5SDimitry Andric         // register.
654*0b57cec5SDimitry Andric         for (std::multimap<unsigned, MachineOperand *>::iterator
655*0b57cec5SDimitry Andric              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
656*0b57cec5SDimitry Andric           Q->second->setReg(NewReg);
657*0b57cec5SDimitry Andric           // If the SU for the instruction being updated has debug information
658*0b57cec5SDimitry Andric           // related to the anti-dependency register, make sure to update that
659*0b57cec5SDimitry Andric           // as well.
660*0b57cec5SDimitry Andric           const SUnit *SU = MISUnitMap[Q->second->getParent()];
661*0b57cec5SDimitry Andric           if (!SU) continue;
662*0b57cec5SDimitry Andric           UpdateDbgValues(DbgValues, Q->second->getParent(),
663*0b57cec5SDimitry Andric                           AntiDepReg, NewReg);
664*0b57cec5SDimitry Andric         }
665*0b57cec5SDimitry Andric 
666*0b57cec5SDimitry Andric         // We just went back in time and modified history; the
667*0b57cec5SDimitry Andric         // liveness information for the anti-dependence reg is now
668*0b57cec5SDimitry Andric         // inconsistent. Set the state as if it were dead.
669*0b57cec5SDimitry Andric         Classes[NewReg] = Classes[AntiDepReg];
670*0b57cec5SDimitry Andric         DefIndices[NewReg] = DefIndices[AntiDepReg];
671*0b57cec5SDimitry Andric         KillIndices[NewReg] = KillIndices[AntiDepReg];
672*0b57cec5SDimitry Andric         assert(((KillIndices[NewReg] == ~0u) !=
673*0b57cec5SDimitry Andric                 (DefIndices[NewReg] == ~0u)) &&
674*0b57cec5SDimitry Andric              "Kill and Def maps aren't consistent for NewReg!");
675*0b57cec5SDimitry Andric 
676*0b57cec5SDimitry Andric         Classes[AntiDepReg] = nullptr;
677*0b57cec5SDimitry Andric         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
678*0b57cec5SDimitry Andric         KillIndices[AntiDepReg] = ~0u;
679*0b57cec5SDimitry Andric         assert(((KillIndices[AntiDepReg] == ~0u) !=
680*0b57cec5SDimitry Andric                 (DefIndices[AntiDepReg] == ~0u)) &&
681*0b57cec5SDimitry Andric              "Kill and Def maps aren't consistent for AntiDepReg!");
682*0b57cec5SDimitry Andric 
683*0b57cec5SDimitry Andric         RegRefs.erase(AntiDepReg);
684*0b57cec5SDimitry Andric         LastNewReg[AntiDepReg] = NewReg;
685*0b57cec5SDimitry Andric         ++Broken;
686*0b57cec5SDimitry Andric       }
687*0b57cec5SDimitry Andric     }
688*0b57cec5SDimitry Andric 
689*0b57cec5SDimitry Andric     ScanInstruction(MI, Count);
690*0b57cec5SDimitry Andric   }
691*0b57cec5SDimitry Andric 
692*0b57cec5SDimitry Andric   return Broken;
693*0b57cec5SDimitry Andric }
694