1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/Analysis.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Argument.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <limits> 97 #include <memory> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define DEBUG_TYPE "codegenprepare" 105 106 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 110 "sunken Cmps"); 111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 112 "of sunken Casts"); 113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 114 "computations were sunk"); 115 STATISTIC(NumMemoryInstsPhiCreated, 116 "Number of phis created when address " 117 "computations were sunk to memory instructions"); 118 STATISTIC(NumMemoryInstsSelectCreated, 119 "Number of select created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 123 STATISTIC(NumAndsAdded, 124 "Number of and mask instructions added to form ext loads"); 125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 126 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 130 131 static cl::opt<bool> DisableBranchOpts( 132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 133 cl::desc("Disable branch optimizations in CodeGenPrepare")); 134 135 static cl::opt<bool> 136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable GC optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> DisableSelectToBranch( 140 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 141 cl::desc("Disable select to branch conversion.")); 142 143 static cl::opt<bool> AddrSinkUsingGEPs( 144 "addr-sink-using-gep", cl::Hidden, cl::init(true), 145 cl::desc("Address sinking in CGP using GEPs.")); 146 147 static cl::opt<bool> EnableAndCmpSinking( 148 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 149 cl::desc("Enable sinkinig and/cmp into branches.")); 150 151 static cl::opt<bool> DisableStoreExtract( 152 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 154 155 static cl::opt<bool> StressStoreExtract( 156 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> DisableExtLdPromotion( 160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 162 "CodeGenPrepare")); 163 164 static cl::opt<bool> StressExtLdPromotion( 165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 167 "optimization in CodeGenPrepare")); 168 169 static cl::opt<bool> DisablePreheaderProtect( 170 "disable-preheader-prot", cl::Hidden, cl::init(false), 171 cl::desc("Disable protection against removing loop preheaders")); 172 173 static cl::opt<bool> ProfileGuidedSectionPrefix( 174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 175 cl::desc("Use profile info to add section prefix for hot/cold functions")); 176 177 static cl::opt<unsigned> FreqRatioToSkipMerge( 178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 179 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 180 "(frequency of destination block) is greater than this ratio")); 181 182 static cl::opt<bool> ForceSplitStore( 183 "force-split-store", cl::Hidden, cl::init(false), 184 cl::desc("Force store splitting no matter what the target query says.")); 185 186 static cl::opt<bool> 187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 188 cl::desc("Enable merging of redundant sexts when one is dominating" 189 " the other."), cl::init(true)); 190 191 static cl::opt<bool> DisableComplexAddrModes( 192 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 193 cl::desc("Disables combining addressing modes with different parts " 194 "in optimizeMemoryInst.")); 195 196 static cl::opt<bool> 197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 198 cl::desc("Allow creation of Phis in Address sinking.")); 199 200 static cl::opt<bool> 201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 202 cl::desc("Allow creation of selects in Address sinking.")); 203 204 static cl::opt<bool> AddrSinkCombineBaseReg( 205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 206 cl::desc("Allow combining of BaseReg field in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseGV( 209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseGV field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseOffs( 213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineScaledReg( 217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 219 220 static cl::opt<bool> 221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 222 cl::init(true), 223 cl::desc("Enable splitting large offset of GEP.")); 224 225 namespace { 226 227 enum ExtType { 228 ZeroExtension, // Zero extension has been seen. 229 SignExtension, // Sign extension has been seen. 230 BothExtension // This extension type is used if we saw sext after 231 // ZeroExtension had been set, or if we saw zext after 232 // SignExtension had been set. It makes the type 233 // information of a promoted instruction invalid. 234 }; 235 236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 239 using SExts = SmallVector<Instruction *, 16>; 240 using ValueToSExts = DenseMap<Value *, SExts>; 241 242 class TypePromotionTransaction; 243 244 class CodeGenPrepare : public FunctionPass { 245 const TargetMachine *TM = nullptr; 246 const TargetSubtargetInfo *SubtargetInfo; 247 const TargetLowering *TLI = nullptr; 248 const TargetRegisterInfo *TRI; 249 const TargetTransformInfo *TTI = nullptr; 250 const TargetLibraryInfo *TLInfo; 251 const LoopInfo *LI; 252 std::unique_ptr<BlockFrequencyInfo> BFI; 253 std::unique_ptr<BranchProbabilityInfo> BPI; 254 255 /// As we scan instructions optimizing them, this is the next instruction 256 /// to optimize. Transforms that can invalidate this should update it. 257 BasicBlock::iterator CurInstIterator; 258 259 /// Keeps track of non-local addresses that have been sunk into a block. 260 /// This allows us to avoid inserting duplicate code for blocks with 261 /// multiple load/stores of the same address. The usage of WeakTrackingVH 262 /// enables SunkAddrs to be treated as a cache whose entries can be 263 /// invalidated if a sunken address computation has been erased. 264 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 265 266 /// Keeps track of all instructions inserted for the current function. 267 SetOfInstrs InsertedInsts; 268 269 /// Keeps track of the type of the related instruction before their 270 /// promotion for the current function. 271 InstrToOrigTy PromotedInsts; 272 273 /// Keep track of instructions removed during promotion. 274 SetOfInstrs RemovedInsts; 275 276 /// Keep track of sext chains based on their initial value. 277 DenseMap<Value *, Instruction *> SeenChainsForSExt; 278 279 /// Keep track of GEPs accessing the same data structures such as structs or 280 /// arrays that are candidates to be split later because of their large 281 /// size. 282 MapVector< 283 AssertingVH<Value>, 284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 285 LargeOffsetGEPMap; 286 287 /// Keep track of new GEP base after splitting the GEPs having large offset. 288 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 289 290 /// Map serial numbers to Large offset GEPs. 291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 292 293 /// Keep track of SExt promoted. 294 ValueToSExts ValToSExtendedUses; 295 296 /// True if optimizing for size. 297 bool OptSize; 298 299 /// DataLayout for the Function being processed. 300 const DataLayout *DL = nullptr; 301 302 /// Building the dominator tree can be expensive, so we only build it 303 /// lazily and update it when required. 304 std::unique_ptr<DominatorTree> DT; 305 306 public: 307 static char ID; // Pass identification, replacement for typeid 308 309 CodeGenPrepare() : FunctionPass(ID) { 310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 311 } 312 313 bool runOnFunction(Function &F) override; 314 315 StringRef getPassName() const override { return "CodeGen Prepare"; } 316 317 void getAnalysisUsage(AnalysisUsage &AU) const override { 318 // FIXME: When we can selectively preserve passes, preserve the domtree. 319 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 320 AU.addRequired<TargetLibraryInfoWrapperPass>(); 321 AU.addRequired<TargetTransformInfoWrapperPass>(); 322 AU.addRequired<LoopInfoWrapperPass>(); 323 } 324 325 private: 326 template <typename F> 327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 328 // Substituting can cause recursive simplifications, which can invalidate 329 // our iterator. Use a WeakTrackingVH to hold onto it in case this 330 // happens. 331 Value *CurValue = &*CurInstIterator; 332 WeakTrackingVH IterHandle(CurValue); 333 334 f(); 335 336 // If the iterator instruction was recursively deleted, start over at the 337 // start of the block. 338 if (IterHandle != CurValue) { 339 CurInstIterator = BB->begin(); 340 SunkAddrs.clear(); 341 } 342 } 343 344 // Get the DominatorTree, building if necessary. 345 DominatorTree &getDT(Function &F) { 346 if (!DT) 347 DT = llvm::make_unique<DominatorTree>(F); 348 return *DT; 349 } 350 351 bool eliminateFallThrough(Function &F); 352 bool eliminateMostlyEmptyBlocks(Function &F); 353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 355 void eliminateMostlyEmptyBlock(BasicBlock *BB); 356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 357 bool isPreheader); 358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 359 bool optimizeInst(Instruction *I, bool &ModifiedDT); 360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 361 Type *AccessTy, unsigned AddrSpace); 362 bool optimizeInlineAsmInst(CallInst *CS); 363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 364 bool optimizeExt(Instruction *&I); 365 bool optimizeExtUses(Instruction *I); 366 bool optimizeLoadExt(LoadInst *Load); 367 bool optimizeShiftInst(BinaryOperator *BO); 368 bool optimizeSelectInst(SelectInst *SI); 369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 370 bool optimizeSwitchInst(SwitchInst *SI); 371 bool optimizeExtractElementInst(Instruction *Inst); 372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 373 bool placeDbgValues(Function &F); 374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 376 bool tryToPromoteExts(TypePromotionTransaction &TPT, 377 const SmallVectorImpl<Instruction *> &Exts, 378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 379 unsigned CreatedInstsCost = 0); 380 bool mergeSExts(Function &F); 381 bool splitLargeGEPOffsets(); 382 bool performAddressTypePromotion( 383 Instruction *&Inst, 384 bool AllowPromotionWithoutCommonHeader, 385 bool HasPromoted, TypePromotionTransaction &TPT, 386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 387 bool splitBranchCondition(Function &F, bool &ModifiedDT); 388 bool simplifyOffsetableRelocate(Instruction &I); 389 390 bool tryToSinkFreeOperands(Instruction *I); 391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 392 Intrinsic::ID IID); 393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 396 }; 397 398 } // end anonymous namespace 399 400 char CodeGenPrepare::ID = 0; 401 402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 403 "Optimize for code generation", false, false) 404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 406 "Optimize for code generation", false, false) 407 408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 409 410 bool CodeGenPrepare::runOnFunction(Function &F) { 411 if (skipFunction(F)) 412 return false; 413 414 DL = &F.getParent()->getDataLayout(); 415 416 bool EverMadeChange = false; 417 // Clear per function information. 418 InsertedInsts.clear(); 419 PromotedInsts.clear(); 420 421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 422 TM = &TPC->getTM<TargetMachine>(); 423 SubtargetInfo = TM->getSubtargetImpl(F); 424 TLI = SubtargetInfo->getTargetLowering(); 425 TRI = SubtargetInfo->getRegisterInfo(); 426 } 427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 430 BPI.reset(new BranchProbabilityInfo(F, *LI)); 431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 432 OptSize = F.hasOptSize(); 433 434 ProfileSummaryInfo *PSI = 435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 436 if (ProfileGuidedSectionPrefix) { 437 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 438 F.setSectionPrefix(".hot"); 439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 440 F.setSectionPrefix(".unlikely"); 441 } 442 443 /// This optimization identifies DIV instructions that can be 444 /// profitably bypassed and carried out with a shorter, faster divide. 445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 446 TLI->isSlowDivBypassed()) { 447 const DenseMap<unsigned int, unsigned int> &BypassWidths = 448 TLI->getBypassSlowDivWidths(); 449 BasicBlock* BB = &*F.begin(); 450 while (BB != nullptr) { 451 // bypassSlowDivision may create new BBs, but we don't want to reapply the 452 // optimization to those blocks. 453 BasicBlock* Next = BB->getNextNode(); 454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 455 BB = Next; 456 } 457 } 458 459 // Eliminate blocks that contain only PHI nodes and an 460 // unconditional branch. 461 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 462 463 bool ModifiedDT = false; 464 if (!DisableBranchOpts) 465 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 466 467 // Split some critical edges where one of the sources is an indirect branch, 468 // to help generate sane code for PHIs involving such edges. 469 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 470 471 bool MadeChange = true; 472 while (MadeChange) { 473 MadeChange = false; 474 DT.reset(); 475 for (Function::iterator I = F.begin(); I != F.end(); ) { 476 BasicBlock *BB = &*I++; 477 bool ModifiedDTOnIteration = false; 478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 479 480 // Restart BB iteration if the dominator tree of the Function was changed 481 if (ModifiedDTOnIteration) 482 break; 483 } 484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 485 MadeChange |= mergeSExts(F); 486 if (!LargeOffsetGEPMap.empty()) 487 MadeChange |= splitLargeGEPOffsets(); 488 489 // Really free removed instructions during promotion. 490 for (Instruction *I : RemovedInsts) 491 I->deleteValue(); 492 493 EverMadeChange |= MadeChange; 494 SeenChainsForSExt.clear(); 495 ValToSExtendedUses.clear(); 496 RemovedInsts.clear(); 497 LargeOffsetGEPMap.clear(); 498 LargeOffsetGEPID.clear(); 499 } 500 501 SunkAddrs.clear(); 502 503 if (!DisableBranchOpts) { 504 MadeChange = false; 505 // Use a set vector to get deterministic iteration order. The order the 506 // blocks are removed may affect whether or not PHI nodes in successors 507 // are removed. 508 SmallSetVector<BasicBlock*, 8> WorkList; 509 for (BasicBlock &BB : F) { 510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 511 MadeChange |= ConstantFoldTerminator(&BB, true); 512 if (!MadeChange) continue; 513 514 for (SmallVectorImpl<BasicBlock*>::iterator 515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 516 if (pred_begin(*II) == pred_end(*II)) 517 WorkList.insert(*II); 518 } 519 520 // Delete the dead blocks and any of their dead successors. 521 MadeChange |= !WorkList.empty(); 522 while (!WorkList.empty()) { 523 BasicBlock *BB = WorkList.pop_back_val(); 524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 525 526 DeleteDeadBlock(BB); 527 528 for (SmallVectorImpl<BasicBlock*>::iterator 529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 530 if (pred_begin(*II) == pred_end(*II)) 531 WorkList.insert(*II); 532 } 533 534 // Merge pairs of basic blocks with unconditional branches, connected by 535 // a single edge. 536 if (EverMadeChange || MadeChange) 537 MadeChange |= eliminateFallThrough(F); 538 539 EverMadeChange |= MadeChange; 540 } 541 542 if (!DisableGCOpts) { 543 SmallVector<Instruction *, 2> Statepoints; 544 for (BasicBlock &BB : F) 545 for (Instruction &I : BB) 546 if (isStatepoint(I)) 547 Statepoints.push_back(&I); 548 for (auto &I : Statepoints) 549 EverMadeChange |= simplifyOffsetableRelocate(*I); 550 } 551 552 // Do this last to clean up use-before-def scenarios introduced by other 553 // preparatory transforms. 554 EverMadeChange |= placeDbgValues(F); 555 556 return EverMadeChange; 557 } 558 559 /// Merge basic blocks which are connected by a single edge, where one of the 560 /// basic blocks has a single successor pointing to the other basic block, 561 /// which has a single predecessor. 562 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 563 bool Changed = false; 564 // Scan all of the blocks in the function, except for the entry block. 565 // Use a temporary array to avoid iterator being invalidated when 566 // deleting blocks. 567 SmallVector<WeakTrackingVH, 16> Blocks; 568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 569 Blocks.push_back(&Block); 570 571 for (auto &Block : Blocks) { 572 auto *BB = cast_or_null<BasicBlock>(Block); 573 if (!BB) 574 continue; 575 // If the destination block has a single pred, then this is a trivial 576 // edge, just collapse it. 577 BasicBlock *SinglePred = BB->getSinglePredecessor(); 578 579 // Don't merge if BB's address is taken. 580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 581 582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 583 if (Term && !Term->isConditional()) { 584 Changed = true; 585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 586 587 // Merge BB into SinglePred and delete it. 588 MergeBlockIntoPredecessor(BB); 589 } 590 } 591 return Changed; 592 } 593 594 /// Find a destination block from BB if BB is mergeable empty block. 595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 596 // If this block doesn't end with an uncond branch, ignore it. 597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 598 if (!BI || !BI->isUnconditional()) 599 return nullptr; 600 601 // If the instruction before the branch (skipping debug info) isn't a phi 602 // node, then other stuff is happening here. 603 BasicBlock::iterator BBI = BI->getIterator(); 604 if (BBI != BB->begin()) { 605 --BBI; 606 while (isa<DbgInfoIntrinsic>(BBI)) { 607 if (BBI == BB->begin()) 608 break; 609 --BBI; 610 } 611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 612 return nullptr; 613 } 614 615 // Do not break infinite loops. 616 BasicBlock *DestBB = BI->getSuccessor(0); 617 if (DestBB == BB) 618 return nullptr; 619 620 if (!canMergeBlocks(BB, DestBB)) 621 DestBB = nullptr; 622 623 return DestBB; 624 } 625 626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 628 /// edges in ways that are non-optimal for isel. Start by eliminating these 629 /// blocks so we can split them the way we want them. 630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 631 SmallPtrSet<BasicBlock *, 16> Preheaders; 632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 633 while (!LoopList.empty()) { 634 Loop *L = LoopList.pop_back_val(); 635 LoopList.insert(LoopList.end(), L->begin(), L->end()); 636 if (BasicBlock *Preheader = L->getLoopPreheader()) 637 Preheaders.insert(Preheader); 638 } 639 640 bool MadeChange = false; 641 // Copy blocks into a temporary array to avoid iterator invalidation issues 642 // as we remove them. 643 // Note that this intentionally skips the entry block. 644 SmallVector<WeakTrackingVH, 16> Blocks; 645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 646 Blocks.push_back(&Block); 647 648 for (auto &Block : Blocks) { 649 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 650 if (!BB) 651 continue; 652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 653 if (!DestBB || 654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 655 continue; 656 657 eliminateMostlyEmptyBlock(BB); 658 MadeChange = true; 659 } 660 return MadeChange; 661 } 662 663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 664 BasicBlock *DestBB, 665 bool isPreheader) { 666 // Do not delete loop preheaders if doing so would create a critical edge. 667 // Loop preheaders can be good locations to spill registers. If the 668 // preheader is deleted and we create a critical edge, registers may be 669 // spilled in the loop body instead. 670 if (!DisablePreheaderProtect && isPreheader && 671 !(BB->getSinglePredecessor() && 672 BB->getSinglePredecessor()->getSingleSuccessor())) 673 return false; 674 675 // Skip merging if the block's successor is also a successor to any callbr 676 // that leads to this block. 677 // FIXME: Is this really needed? Is this a correctness issue? 678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 681 if (DestBB == CBI->getSuccessor(i)) 682 return false; 683 } 684 685 // Try to skip merging if the unique predecessor of BB is terminated by a 686 // switch or indirect branch instruction, and BB is used as an incoming block 687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 688 // add COPY instructions in the predecessor of BB instead of BB (if it is not 689 // merged). Note that the critical edge created by merging such blocks wont be 690 // split in MachineSink because the jump table is not analyzable. By keeping 691 // such empty block (BB), ISel will place COPY instructions in BB, not in the 692 // predecessor of BB. 693 BasicBlock *Pred = BB->getUniquePredecessor(); 694 if (!Pred || 695 !(isa<SwitchInst>(Pred->getTerminator()) || 696 isa<IndirectBrInst>(Pred->getTerminator()))) 697 return true; 698 699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 700 return true; 701 702 // We use a simple cost heuristic which determine skipping merging is 703 // profitable if the cost of skipping merging is less than the cost of 704 // merging : Cost(skipping merging) < Cost(merging BB), where the 705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 708 // Freq(Pred) / Freq(BB) > 2. 709 // Note that if there are multiple empty blocks sharing the same incoming 710 // value for the PHIs in the DestBB, we consider them together. In such 711 // case, Cost(merging BB) will be the sum of their frequencies. 712 713 if (!isa<PHINode>(DestBB->begin())) 714 return true; 715 716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 717 718 // Find all other incoming blocks from which incoming values of all PHIs in 719 // DestBB are the same as the ones from BB. 720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 721 ++PI) { 722 BasicBlock *DestBBPred = *PI; 723 if (DestBBPred == BB) 724 continue; 725 726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 727 return DestPN.getIncomingValueForBlock(BB) == 728 DestPN.getIncomingValueForBlock(DestBBPred); 729 })) 730 SameIncomingValueBBs.insert(DestBBPred); 731 } 732 733 // See if all BB's incoming values are same as the value from Pred. In this 734 // case, no reason to skip merging because COPYs are expected to be place in 735 // Pred already. 736 if (SameIncomingValueBBs.count(Pred)) 737 return true; 738 739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 740 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 741 742 for (auto SameValueBB : SameIncomingValueBBs) 743 if (SameValueBB->getUniquePredecessor() == Pred && 744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 745 BBFreq += BFI->getBlockFreq(SameValueBB); 746 747 return PredFreq.getFrequency() <= 748 BBFreq.getFrequency() * FreqRatioToSkipMerge; 749 } 750 751 /// Return true if we can merge BB into DestBB if there is a single 752 /// unconditional branch between them, and BB contains no other non-phi 753 /// instructions. 754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 755 const BasicBlock *DestBB) const { 756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 757 // the successor. If there are more complex condition (e.g. preheaders), 758 // don't mess around with them. 759 for (const PHINode &PN : BB->phis()) { 760 for (const User *U : PN.users()) { 761 const Instruction *UI = cast<Instruction>(U); 762 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 763 return false; 764 // If User is inside DestBB block and it is a PHINode then check 765 // incoming value. If incoming value is not from BB then this is 766 // a complex condition (e.g. preheaders) we want to avoid here. 767 if (UI->getParent() == DestBB) { 768 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 771 if (Insn && Insn->getParent() == BB && 772 Insn->getParent() != UPN->getIncomingBlock(I)) 773 return false; 774 } 775 } 776 } 777 } 778 779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 780 // and DestBB may have conflicting incoming values for the block. If so, we 781 // can't merge the block. 782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 783 if (!DestBBPN) return true; // no conflict. 784 785 // Collect the preds of BB. 786 SmallPtrSet<const BasicBlock*, 16> BBPreds; 787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 788 // It is faster to get preds from a PHI than with pred_iterator. 789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 790 BBPreds.insert(BBPN->getIncomingBlock(i)); 791 } else { 792 BBPreds.insert(pred_begin(BB), pred_end(BB)); 793 } 794 795 // Walk the preds of DestBB. 796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 798 if (BBPreds.count(Pred)) { // Common predecessor? 799 for (const PHINode &PN : DestBB->phis()) { 800 const Value *V1 = PN.getIncomingValueForBlock(Pred); 801 const Value *V2 = PN.getIncomingValueForBlock(BB); 802 803 // If V2 is a phi node in BB, look up what the mapped value will be. 804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 805 if (V2PN->getParent() == BB) 806 V2 = V2PN->getIncomingValueForBlock(Pred); 807 808 // If there is a conflict, bail out. 809 if (V1 != V2) return false; 810 } 811 } 812 } 813 814 return true; 815 } 816 817 /// Eliminate a basic block that has only phi's and an unconditional branch in 818 /// it. 819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 820 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 821 BasicBlock *DestBB = BI->getSuccessor(0); 822 823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 824 << *BB << *DestBB); 825 826 // If the destination block has a single pred, then this is a trivial edge, 827 // just collapse it. 828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 829 if (SinglePred != DestBB) { 830 assert(SinglePred == BB && 831 "Single predecessor not the same as predecessor"); 832 // Merge DestBB into SinglePred/BB and delete it. 833 MergeBlockIntoPredecessor(DestBB); 834 // Note: BB(=SinglePred) will not be deleted on this path. 835 // DestBB(=its single successor) is the one that was deleted. 836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 837 return; 838 } 839 } 840 841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 842 // to handle the new incoming edges it is about to have. 843 for (PHINode &PN : DestBB->phis()) { 844 // Remove the incoming value for BB, and remember it. 845 Value *InVal = PN.removeIncomingValue(BB, false); 846 847 // Two options: either the InVal is a phi node defined in BB or it is some 848 // value that dominates BB. 849 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 850 if (InValPhi && InValPhi->getParent() == BB) { 851 // Add all of the input values of the input PHI as inputs of this phi. 852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 853 PN.addIncoming(InValPhi->getIncomingValue(i), 854 InValPhi->getIncomingBlock(i)); 855 } else { 856 // Otherwise, add one instance of the dominating value for each edge that 857 // we will be adding. 858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 861 } else { 862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 863 PN.addIncoming(InVal, *PI); 864 } 865 } 866 } 867 868 // The PHIs are now updated, change everything that refers to BB to use 869 // DestBB and remove BB. 870 BB->replaceAllUsesWith(DestBB); 871 BB->eraseFromParent(); 872 ++NumBlocksElim; 873 874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 875 } 876 877 // Computes a map of base pointer relocation instructions to corresponding 878 // derived pointer relocation instructions given a vector of all relocate calls 879 static void computeBaseDerivedRelocateMap( 880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 882 &RelocateInstMap) { 883 // Collect information in two maps: one primarily for locating the base object 884 // while filling the second map; the second map is the final structure holding 885 // a mapping between Base and corresponding Derived relocate calls 886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 887 for (auto *ThisRelocate : AllRelocateCalls) { 888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 889 ThisRelocate->getDerivedPtrIndex()); 890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 891 } 892 for (auto &Item : RelocateIdxMap) { 893 std::pair<unsigned, unsigned> Key = Item.first; 894 if (Key.first == Key.second) 895 // Base relocation: nothing to insert 896 continue; 897 898 GCRelocateInst *I = Item.second; 899 auto BaseKey = std::make_pair(Key.first, Key.first); 900 901 // We're iterating over RelocateIdxMap so we cannot modify it. 902 auto MaybeBase = RelocateIdxMap.find(BaseKey); 903 if (MaybeBase == RelocateIdxMap.end()) 904 // TODO: We might want to insert a new base object relocate and gep off 905 // that, if there are enough derived object relocates. 906 continue; 907 908 RelocateInstMap[MaybeBase->second].push_back(I); 909 } 910 } 911 912 // Accepts a GEP and extracts the operands into a vector provided they're all 913 // small integer constants 914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 915 SmallVectorImpl<Value *> &OffsetV) { 916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 917 // Only accept small constant integer operands 918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 919 if (!Op || Op->getZExtValue() > 20) 920 return false; 921 } 922 923 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 924 OffsetV.push_back(GEP->getOperand(i)); 925 return true; 926 } 927 928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 929 // replace, computes a replacement, and affects it. 930 static bool 931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 932 const SmallVectorImpl<GCRelocateInst *> &Targets) { 933 bool MadeChange = false; 934 // We must ensure the relocation of derived pointer is defined after 935 // relocation of base pointer. If we find a relocation corresponding to base 936 // defined earlier than relocation of base then we move relocation of base 937 // right before found relocation. We consider only relocation in the same 938 // basic block as relocation of base. Relocations from other basic block will 939 // be skipped by optimization and we do not care about them. 940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 941 &*R != RelocatedBase; ++R) 942 if (auto RI = dyn_cast<GCRelocateInst>(R)) 943 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 945 RelocatedBase->moveBefore(RI); 946 break; 947 } 948 949 for (GCRelocateInst *ToReplace : Targets) { 950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 951 "Not relocating a derived object of the original base object"); 952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 953 // A duplicate relocate call. TODO: coalesce duplicates. 954 continue; 955 } 956 957 if (RelocatedBase->getParent() != ToReplace->getParent()) { 958 // Base and derived relocates are in different basic blocks. 959 // In this case transform is only valid when base dominates derived 960 // relocate. However it would be too expensive to check dominance 961 // for each such relocate, so we skip the whole transformation. 962 continue; 963 } 964 965 Value *Base = ToReplace->getBasePtr(); 966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 967 if (!Derived || Derived->getPointerOperand() != Base) 968 continue; 969 970 SmallVector<Value *, 2> OffsetV; 971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 972 continue; 973 974 // Create a Builder and replace the target callsite with a gep 975 assert(RelocatedBase->getNextNode() && 976 "Should always have one since it's not a terminator"); 977 978 // Insert after RelocatedBase 979 IRBuilder<> Builder(RelocatedBase->getNextNode()); 980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 981 982 // If gc_relocate does not match the actual type, cast it to the right type. 983 // In theory, there must be a bitcast after gc_relocate if the type does not 984 // match, and we should reuse it to get the derived pointer. But it could be 985 // cases like this: 986 // bb1: 987 // ... 988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 989 // br label %merge 990 // 991 // bb2: 992 // ... 993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 994 // br label %merge 995 // 996 // merge: 997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 999 // 1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1001 // no matter there is already one or not. In this way, we can handle all cases, and 1002 // the extra bitcast should be optimized away in later passes. 1003 Value *ActualRelocatedBase = RelocatedBase; 1004 if (RelocatedBase->getType() != Base->getType()) { 1005 ActualRelocatedBase = 1006 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1007 } 1008 Value *Replacement = Builder.CreateGEP( 1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1010 Replacement->takeName(ToReplace); 1011 // If the newly generated derived pointer's type does not match the original derived 1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1013 Value *ActualReplacement = Replacement; 1014 if (Replacement->getType() != ToReplace->getType()) { 1015 ActualReplacement = 1016 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1017 } 1018 ToReplace->replaceAllUsesWith(ActualReplacement); 1019 ToReplace->eraseFromParent(); 1020 1021 MadeChange = true; 1022 } 1023 return MadeChange; 1024 } 1025 1026 // Turns this: 1027 // 1028 // %base = ... 1029 // %ptr = gep %base + 15 1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1031 // %base' = relocate(%tok, i32 4, i32 4) 1032 // %ptr' = relocate(%tok, i32 4, i32 5) 1033 // %val = load %ptr' 1034 // 1035 // into this: 1036 // 1037 // %base = ... 1038 // %ptr = gep %base + 15 1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1040 // %base' = gc.relocate(%tok, i32 4, i32 4) 1041 // %ptr' = gep %base' + 15 1042 // %val = load %ptr' 1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1044 bool MadeChange = false; 1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1046 1047 for (auto *U : I.users()) 1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1049 // Collect all the relocate calls associated with a statepoint 1050 AllRelocateCalls.push_back(Relocate); 1051 1052 // We need atleast one base pointer relocation + one derived pointer 1053 // relocation to mangle 1054 if (AllRelocateCalls.size() < 2) 1055 return false; 1056 1057 // RelocateInstMap is a mapping from the base relocate instruction to the 1058 // corresponding derived relocate instructions 1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1061 if (RelocateInstMap.empty()) 1062 return false; 1063 1064 for (auto &Item : RelocateInstMap) 1065 // Item.first is the RelocatedBase to offset against 1066 // Item.second is the vector of Targets to replace 1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1068 return MadeChange; 1069 } 1070 1071 /// Sink the specified cast instruction into its user blocks. 1072 static bool SinkCast(CastInst *CI) { 1073 BasicBlock *DefBB = CI->getParent(); 1074 1075 /// InsertedCasts - Only insert a cast in each block once. 1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1077 1078 bool MadeChange = false; 1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1080 UI != E; ) { 1081 Use &TheUse = UI.getUse(); 1082 Instruction *User = cast<Instruction>(*UI); 1083 1084 // Figure out which BB this cast is used in. For PHI's this is the 1085 // appropriate predecessor block. 1086 BasicBlock *UserBB = User->getParent(); 1087 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1088 UserBB = PN->getIncomingBlock(TheUse); 1089 } 1090 1091 // Preincrement use iterator so we don't invalidate it. 1092 ++UI; 1093 1094 // The first insertion point of a block containing an EH pad is after the 1095 // pad. If the pad is the user, we cannot sink the cast past the pad. 1096 if (User->isEHPad()) 1097 continue; 1098 1099 // If the block selected to receive the cast is an EH pad that does not 1100 // allow non-PHI instructions before the terminator, we can't sink the 1101 // cast. 1102 if (UserBB->getTerminator()->isEHPad()) 1103 continue; 1104 1105 // If this user is in the same block as the cast, don't change the cast. 1106 if (UserBB == DefBB) continue; 1107 1108 // If we have already inserted a cast into this block, use it. 1109 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1110 1111 if (!InsertedCast) { 1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1113 assert(InsertPt != UserBB->end()); 1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1115 CI->getType(), "", &*InsertPt); 1116 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1117 } 1118 1119 // Replace a use of the cast with a use of the new cast. 1120 TheUse = InsertedCast; 1121 MadeChange = true; 1122 ++NumCastUses; 1123 } 1124 1125 // If we removed all uses, nuke the cast. 1126 if (CI->use_empty()) { 1127 salvageDebugInfo(*CI); 1128 CI->eraseFromParent(); 1129 MadeChange = true; 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1137 /// reduce the number of virtual registers that must be created and coalesced. 1138 /// 1139 /// Return true if any changes are made. 1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1141 const DataLayout &DL) { 1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1143 // than sinking only nop casts, but is helpful on some platforms. 1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1146 ASC->getDestAddressSpace())) 1147 return false; 1148 } 1149 1150 // If this is a noop copy, 1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1152 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1153 1154 // This is an fp<->int conversion? 1155 if (SrcVT.isInteger() != DstVT.isInteger()) 1156 return false; 1157 1158 // If this is an extension, it will be a zero or sign extension, which 1159 // isn't a noop. 1160 if (SrcVT.bitsLT(DstVT)) return false; 1161 1162 // If these values will be promoted, find out what they will be promoted 1163 // to. This helps us consider truncates on PPC as noop copies when they 1164 // are. 1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1166 TargetLowering::TypePromoteInteger) 1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1168 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1169 TargetLowering::TypePromoteInteger) 1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1171 1172 // If, after promotion, these are the same types, this is a noop copy. 1173 if (SrcVT != DstVT) 1174 return false; 1175 1176 return SinkCast(CI); 1177 } 1178 1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1180 CmpInst *Cmp, 1181 Intrinsic::ID IID) { 1182 if (BO->getParent() != Cmp->getParent()) { 1183 // We used to use a dominator tree here to allow multi-block optimization. 1184 // But that was problematic because: 1185 // 1. It could cause a perf regression by hoisting the math op into the 1186 // critical path. 1187 // 2. It could cause a perf regression by creating a value that was live 1188 // across multiple blocks and increasing register pressure. 1189 // 3. Use of a dominator tree could cause large compile-time regression. 1190 // This is because we recompute the DT on every change in the main CGP 1191 // run-loop. The recomputing is probably unnecessary in many cases, so if 1192 // that was fixed, using a DT here would be ok. 1193 return false; 1194 } 1195 1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1197 Value *Arg0 = BO->getOperand(0); 1198 Value *Arg1 = BO->getOperand(1); 1199 if (BO->getOpcode() == Instruction::Add && 1200 IID == Intrinsic::usub_with_overflow) { 1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1203 } 1204 1205 // Insert at the first instruction of the pair. 1206 Instruction *InsertPt = nullptr; 1207 for (Instruction &Iter : *Cmp->getParent()) { 1208 if (&Iter == BO || &Iter == Cmp) { 1209 InsertPt = &Iter; 1210 break; 1211 } 1212 } 1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1214 1215 IRBuilder<> Builder(InsertPt); 1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1219 BO->replaceAllUsesWith(Math); 1220 Cmp->replaceAllUsesWith(OV); 1221 BO->eraseFromParent(); 1222 Cmp->eraseFromParent(); 1223 return true; 1224 } 1225 1226 /// Match special-case patterns that check for unsigned add overflow. 1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1228 BinaryOperator *&Add) { 1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1232 1233 // We are not expecting non-canonical/degenerate code. Just bail out. 1234 if (isa<Constant>(A)) 1235 return false; 1236 1237 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1239 B = ConstantInt::get(B->getType(), 1); 1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1241 B = ConstantInt::get(B->getType(), -1); 1242 else 1243 return false; 1244 1245 // Check the users of the variable operand of the compare looking for an add 1246 // with the adjusted constant. 1247 for (User *U : A->users()) { 1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1249 Add = cast<BinaryOperator>(U); 1250 return true; 1251 } 1252 } 1253 return false; 1254 } 1255 1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1257 /// intrinsic. Return true if any changes were made. 1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1259 bool &ModifiedDT) { 1260 Value *A, *B; 1261 BinaryOperator *Add; 1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1264 return false; 1265 1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1267 TLI->getValueType(*DL, Add->getType()))) 1268 return false; 1269 1270 // We don't want to move around uses of condition values this late, so we 1271 // check if it is legal to create the call to the intrinsic in the basic 1272 // block containing the icmp. 1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1274 return false; 1275 1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1277 return false; 1278 1279 // Reset callers - do not crash by iterating over a dead instruction. 1280 ModifiedDT = true; 1281 return true; 1282 } 1283 1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1285 bool &ModifiedDT) { 1286 // We are not expecting non-canonical/degenerate code. Just bail out. 1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1288 if (isa<Constant>(A) && isa<Constant>(B)) 1289 return false; 1290 1291 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1292 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1293 if (Pred == ICmpInst::ICMP_UGT) { 1294 std::swap(A, B); 1295 Pred = ICmpInst::ICMP_ULT; 1296 } 1297 // Convert special-case: (A == 0) is the same as (A u< 1). 1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1299 B = ConstantInt::get(B->getType(), 1); 1300 Pred = ICmpInst::ICMP_ULT; 1301 } 1302 // Convert special-case: (A != 0) is the same as (0 u< A). 1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1304 std::swap(A, B); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 if (Pred != ICmpInst::ICMP_ULT) 1308 return false; 1309 1310 // Walk the users of a variable operand of a compare looking for a subtract or 1311 // add with that same operand. Also match the 2nd operand of the compare to 1312 // the add/sub, but that may be a negated constant operand of an add. 1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1314 BinaryOperator *Sub = nullptr; 1315 for (User *U : CmpVariableOperand->users()) { 1316 // A - B, A u< B --> usubo(A, B) 1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1318 Sub = cast<BinaryOperator>(U); 1319 break; 1320 } 1321 1322 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1323 const APInt *CmpC, *AddC; 1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1326 Sub = cast<BinaryOperator>(U); 1327 break; 1328 } 1329 } 1330 if (!Sub) 1331 return false; 1332 1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1334 TLI->getValueType(*DL, Sub->getType()))) 1335 return false; 1336 1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1338 return false; 1339 1340 // Reset callers - do not crash by iterating over a dead instruction. 1341 ModifiedDT = true; 1342 return true; 1343 } 1344 1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1346 /// registers that must be created and coalesced. This is a clear win except on 1347 /// targets with multiple condition code registers (PowerPC), where it might 1348 /// lose; some adjustment may be wanted there. 1349 /// 1350 /// Return true if any changes are made. 1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1352 if (TLI.hasMultipleConditionRegisters()) 1353 return false; 1354 1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1357 return false; 1358 1359 // Only insert a cmp in each block once. 1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1361 1362 bool MadeChange = false; 1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1364 UI != E; ) { 1365 Use &TheUse = UI.getUse(); 1366 Instruction *User = cast<Instruction>(*UI); 1367 1368 // Preincrement use iterator so we don't invalidate it. 1369 ++UI; 1370 1371 // Don't bother for PHI nodes. 1372 if (isa<PHINode>(User)) 1373 continue; 1374 1375 // Figure out which BB this cmp is used in. 1376 BasicBlock *UserBB = User->getParent(); 1377 BasicBlock *DefBB = Cmp->getParent(); 1378 1379 // If this user is in the same block as the cmp, don't change the cmp. 1380 if (UserBB == DefBB) continue; 1381 1382 // If we have already inserted a cmp into this block, use it. 1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1384 1385 if (!InsertedCmp) { 1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1387 assert(InsertPt != UserBB->end()); 1388 InsertedCmp = 1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1390 Cmp->getOperand(0), Cmp->getOperand(1), "", 1391 &*InsertPt); 1392 // Propagate the debug info. 1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1394 } 1395 1396 // Replace a use of the cmp with a use of the new cmp. 1397 TheUse = InsertedCmp; 1398 MadeChange = true; 1399 ++NumCmpUses; 1400 } 1401 1402 // If we removed all uses, nuke the cmp. 1403 if (Cmp->use_empty()) { 1404 Cmp->eraseFromParent(); 1405 MadeChange = true; 1406 } 1407 1408 return MadeChange; 1409 } 1410 1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1412 if (sinkCmpExpression(Cmp, *TLI)) 1413 return true; 1414 1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1416 return true; 1417 1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1425 /// used in a compare to allow isel to generate better code for targets where 1426 /// this operation can be combined. 1427 /// 1428 /// Return true if any changes are made. 1429 static bool sinkAndCmp0Expression(Instruction *AndI, 1430 const TargetLowering &TLI, 1431 SetOfInstrs &InsertedInsts) { 1432 // Double-check that we're not trying to optimize an instruction that was 1433 // already optimized by some other part of this pass. 1434 assert(!InsertedInsts.count(AndI) && 1435 "Attempting to optimize already optimized and instruction"); 1436 (void) InsertedInsts; 1437 1438 // Nothing to do for single use in same basic block. 1439 if (AndI->hasOneUse() && 1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1441 return false; 1442 1443 // Try to avoid cases where sinking/duplicating is likely to increase register 1444 // pressure. 1445 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1446 !isa<ConstantInt>(AndI->getOperand(1)) && 1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1448 return false; 1449 1450 for (auto *U : AndI->users()) { 1451 Instruction *User = cast<Instruction>(U); 1452 1453 // Only sink 'and' feeding icmp with 0. 1454 if (!isa<ICmpInst>(User)) 1455 return false; 1456 1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1458 if (!CmpC || !CmpC->isZero()) 1459 return false; 1460 } 1461 1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1463 return false; 1464 1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1466 LLVM_DEBUG(AndI->getParent()->dump()); 1467 1468 // Push the 'and' into the same block as the icmp 0. There should only be 1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1470 // others, so we don't need to keep track of which BBs we insert into. 1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1472 UI != E; ) { 1473 Use &TheUse = UI.getUse(); 1474 Instruction *User = cast<Instruction>(*UI); 1475 1476 // Preincrement use iterator so we don't invalidate it. 1477 ++UI; 1478 1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1480 1481 // Keep the 'and' in the same place if the use is already in the same block. 1482 Instruction *InsertPt = 1483 User->getParent() == AndI->getParent() ? AndI : User; 1484 Instruction *InsertedAnd = 1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1486 AndI->getOperand(1), "", InsertPt); 1487 // Propagate the debug info. 1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1489 1490 // Replace a use of the 'and' with a use of the new 'and'. 1491 TheUse = InsertedAnd; 1492 ++NumAndUses; 1493 LLVM_DEBUG(User->getParent()->dump()); 1494 } 1495 1496 // We removed all uses, nuke the and. 1497 AndI->eraseFromParent(); 1498 return true; 1499 } 1500 1501 /// Check if the candidates could be combined with a shift instruction, which 1502 /// includes: 1503 /// 1. Truncate instruction 1504 /// 2. And instruction and the imm is a mask of the low bits: 1505 /// imm & (imm+1) == 0 1506 static bool isExtractBitsCandidateUse(Instruction *User) { 1507 if (!isa<TruncInst>(User)) { 1508 if (User->getOpcode() != Instruction::And || 1509 !isa<ConstantInt>(User->getOperand(1))) 1510 return false; 1511 1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1513 1514 if ((Cimm & (Cimm + 1)).getBoolValue()) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 /// Sink both shift and truncate instruction to the use of truncate's BB. 1521 static bool 1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1524 const TargetLowering &TLI, const DataLayout &DL) { 1525 BasicBlock *UserBB = User->getParent(); 1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1527 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1528 bool MadeChange = false; 1529 1530 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1531 TruncE = TruncI->user_end(); 1532 TruncUI != TruncE;) { 1533 1534 Use &TruncTheUse = TruncUI.getUse(); 1535 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1536 // Preincrement use iterator so we don't invalidate it. 1537 1538 ++TruncUI; 1539 1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1541 if (!ISDOpcode) 1542 continue; 1543 1544 // If the use is actually a legal node, there will not be an 1545 // implicit truncate. 1546 // FIXME: always querying the result type is just an 1547 // approximation; some nodes' legality is determined by the 1548 // operand or other means. There's no good way to find out though. 1549 if (TLI.isOperationLegalOrCustom( 1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1551 continue; 1552 1553 // Don't bother for PHI nodes. 1554 if (isa<PHINode>(TruncUser)) 1555 continue; 1556 1557 BasicBlock *TruncUserBB = TruncUser->getParent(); 1558 1559 if (UserBB == TruncUserBB) 1560 continue; 1561 1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1564 1565 if (!InsertedShift && !InsertedTrunc) { 1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1567 assert(InsertPt != TruncUserBB->end()); 1568 // Sink the shift 1569 if (ShiftI->getOpcode() == Instruction::AShr) 1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1571 "", &*InsertPt); 1572 else 1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1574 "", &*InsertPt); 1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1576 1577 // Sink the trunc 1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1579 TruncInsertPt++; 1580 assert(TruncInsertPt != TruncUserBB->end()); 1581 1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1583 TruncI->getType(), "", &*TruncInsertPt); 1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1585 1586 MadeChange = true; 1587 1588 TruncTheUse = InsertedTrunc; 1589 } 1590 } 1591 return MadeChange; 1592 } 1593 1594 /// Sink the shift *right* instruction into user blocks if the uses could 1595 /// potentially be combined with this shift instruction and generate BitExtract 1596 /// instruction. It will only be applied if the architecture supports BitExtract 1597 /// instruction. Here is an example: 1598 /// BB1: 1599 /// %x.extract.shift = lshr i64 %arg1, 32 1600 /// BB2: 1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1602 /// ==> 1603 /// 1604 /// BB2: 1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1607 /// 1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1609 /// instruction. 1610 /// Return true if any changes are made. 1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1612 const TargetLowering &TLI, 1613 const DataLayout &DL) { 1614 BasicBlock *DefBB = ShiftI->getParent(); 1615 1616 /// Only insert instructions in each block once. 1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1618 1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1620 1621 bool MadeChange = false; 1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1623 UI != E;) { 1624 Use &TheUse = UI.getUse(); 1625 Instruction *User = cast<Instruction>(*UI); 1626 // Preincrement use iterator so we don't invalidate it. 1627 ++UI; 1628 1629 // Don't bother for PHI nodes. 1630 if (isa<PHINode>(User)) 1631 continue; 1632 1633 if (!isExtractBitsCandidateUse(User)) 1634 continue; 1635 1636 BasicBlock *UserBB = User->getParent(); 1637 1638 if (UserBB == DefBB) { 1639 // If the shift and truncate instruction are in the same BB. The use of 1640 // the truncate(TruncUse) may still introduce another truncate if not 1641 // legal. In this case, we would like to sink both shift and truncate 1642 // instruction to the BB of TruncUse. 1643 // for example: 1644 // BB1: 1645 // i64 shift.result = lshr i64 opnd, imm 1646 // trunc.result = trunc shift.result to i16 1647 // 1648 // BB2: 1649 // ----> We will have an implicit truncate here if the architecture does 1650 // not have i16 compare. 1651 // cmp i16 trunc.result, opnd2 1652 // 1653 if (isa<TruncInst>(User) && shiftIsLegal 1654 // If the type of the truncate is legal, no truncate will be 1655 // introduced in other basic blocks. 1656 && 1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1658 MadeChange = 1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1660 1661 continue; 1662 } 1663 // If we have already inserted a shift into this block, use it. 1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1665 1666 if (!InsertedShift) { 1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1668 assert(InsertPt != UserBB->end()); 1669 1670 if (ShiftI->getOpcode() == Instruction::AShr) 1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1672 "", &*InsertPt); 1673 else 1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1675 "", &*InsertPt); 1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1677 1678 MadeChange = true; 1679 } 1680 1681 // Replace a use of the shift with a use of the new shift. 1682 TheUse = InsertedShift; 1683 } 1684 1685 // If we removed all uses, or there are none, nuke the shift. 1686 if (ShiftI->use_empty()) { 1687 salvageDebugInfo(*ShiftI); 1688 ShiftI->eraseFromParent(); 1689 MadeChange = true; 1690 } 1691 1692 return MadeChange; 1693 } 1694 1695 /// If counting leading or trailing zeros is an expensive operation and a zero 1696 /// input is defined, add a check for zero to avoid calling the intrinsic. 1697 /// 1698 /// We want to transform: 1699 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1700 /// 1701 /// into: 1702 /// entry: 1703 /// %cmpz = icmp eq i64 %A, 0 1704 /// br i1 %cmpz, label %cond.end, label %cond.false 1705 /// cond.false: 1706 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1707 /// br label %cond.end 1708 /// cond.end: 1709 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1710 /// 1711 /// If the transform is performed, return true and set ModifiedDT to true. 1712 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1713 const TargetLowering *TLI, 1714 const DataLayout *DL, 1715 bool &ModifiedDT) { 1716 if (!TLI || !DL) 1717 return false; 1718 1719 // If a zero input is undefined, it doesn't make sense to despeculate that. 1720 if (match(CountZeros->getOperand(1), m_One())) 1721 return false; 1722 1723 // If it's cheap to speculate, there's nothing to do. 1724 auto IntrinsicID = CountZeros->getIntrinsicID(); 1725 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1726 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1727 return false; 1728 1729 // Only handle legal scalar cases. Anything else requires too much work. 1730 Type *Ty = CountZeros->getType(); 1731 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1732 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1733 return false; 1734 1735 // The intrinsic will be sunk behind a compare against zero and branch. 1736 BasicBlock *StartBlock = CountZeros->getParent(); 1737 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1738 1739 // Create another block after the count zero intrinsic. A PHI will be added 1740 // in this block to select the result of the intrinsic or the bit-width 1741 // constant if the input to the intrinsic is zero. 1742 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1743 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1744 1745 // Set up a builder to create a compare, conditional branch, and PHI. 1746 IRBuilder<> Builder(CountZeros->getContext()); 1747 Builder.SetInsertPoint(StartBlock->getTerminator()); 1748 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1749 1750 // Replace the unconditional branch that was created by the first split with 1751 // a compare against zero and a conditional branch. 1752 Value *Zero = Constant::getNullValue(Ty); 1753 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1754 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1755 StartBlock->getTerminator()->eraseFromParent(); 1756 1757 // Create a PHI in the end block to select either the output of the intrinsic 1758 // or the bit width of the operand. 1759 Builder.SetInsertPoint(&EndBlock->front()); 1760 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1761 CountZeros->replaceAllUsesWith(PN); 1762 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1763 PN->addIncoming(BitWidth, StartBlock); 1764 PN->addIncoming(CountZeros, CallBlock); 1765 1766 // We are explicitly handling the zero case, so we can set the intrinsic's 1767 // undefined zero argument to 'true'. This will also prevent reprocessing the 1768 // intrinsic; we only despeculate when a zero input is defined. 1769 CountZeros->setArgOperand(1, Builder.getTrue()); 1770 ModifiedDT = true; 1771 return true; 1772 } 1773 1774 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1775 BasicBlock *BB = CI->getParent(); 1776 1777 // Lower inline assembly if we can. 1778 // If we found an inline asm expession, and if the target knows how to 1779 // lower it to normal LLVM code, do so now. 1780 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1781 if (TLI->ExpandInlineAsm(CI)) { 1782 // Avoid invalidating the iterator. 1783 CurInstIterator = BB->begin(); 1784 // Avoid processing instructions out of order, which could cause 1785 // reuse before a value is defined. 1786 SunkAddrs.clear(); 1787 return true; 1788 } 1789 // Sink address computing for memory operands into the block. 1790 if (optimizeInlineAsmInst(CI)) 1791 return true; 1792 } 1793 1794 // Align the pointer arguments to this call if the target thinks it's a good 1795 // idea 1796 unsigned MinSize, PrefAlign; 1797 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1798 for (auto &Arg : CI->arg_operands()) { 1799 // We want to align both objects whose address is used directly and 1800 // objects whose address is used in casts and GEPs, though it only makes 1801 // sense for GEPs if the offset is a multiple of the desired alignment and 1802 // if size - offset meets the size threshold. 1803 if (!Arg->getType()->isPointerTy()) 1804 continue; 1805 APInt Offset(DL->getIndexSizeInBits( 1806 cast<PointerType>(Arg->getType())->getAddressSpace()), 1807 0); 1808 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1809 uint64_t Offset2 = Offset.getLimitedValue(); 1810 if ((Offset2 & (PrefAlign-1)) != 0) 1811 continue; 1812 AllocaInst *AI; 1813 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1814 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1815 AI->setAlignment(PrefAlign); 1816 // Global variables can only be aligned if they are defined in this 1817 // object (i.e. they are uniquely initialized in this object), and 1818 // over-aligning global variables that have an explicit section is 1819 // forbidden. 1820 GlobalVariable *GV; 1821 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1822 GV->getPointerAlignment(*DL) < PrefAlign && 1823 DL->getTypeAllocSize(GV->getValueType()) >= 1824 MinSize + Offset2) 1825 GV->setAlignment(PrefAlign); 1826 } 1827 // If this is a memcpy (or similar) then we may be able to improve the 1828 // alignment 1829 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1830 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1831 if (DestAlign > MI->getDestAlignment()) 1832 MI->setDestAlignment(DestAlign); 1833 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1834 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1835 if (SrcAlign > MTI->getSourceAlignment()) 1836 MTI->setSourceAlignment(SrcAlign); 1837 } 1838 } 1839 } 1840 1841 // If we have a cold call site, try to sink addressing computation into the 1842 // cold block. This interacts with our handling for loads and stores to 1843 // ensure that we can fold all uses of a potential addressing computation 1844 // into their uses. TODO: generalize this to work over profiling data 1845 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1846 for (auto &Arg : CI->arg_operands()) { 1847 if (!Arg->getType()->isPointerTy()) 1848 continue; 1849 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1850 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1851 } 1852 1853 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1854 if (II) { 1855 switch (II->getIntrinsicID()) { 1856 default: break; 1857 case Intrinsic::experimental_widenable_condition: { 1858 // Give up on future widening oppurtunties so that we can fold away dead 1859 // paths and merge blocks before going into block-local instruction 1860 // selection. 1861 if (II->use_empty()) { 1862 II->eraseFromParent(); 1863 return true; 1864 } 1865 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1866 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1867 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1868 }); 1869 return true; 1870 } 1871 case Intrinsic::objectsize: { 1872 // Lower all uses of llvm.objectsize.* 1873 Value *RetVal = 1874 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1875 1876 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1877 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1878 }); 1879 return true; 1880 } 1881 case Intrinsic::is_constant: { 1882 // If is_constant hasn't folded away yet, lower it to false now. 1883 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1884 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1885 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1886 }); 1887 return true; 1888 } 1889 case Intrinsic::aarch64_stlxr: 1890 case Intrinsic::aarch64_stxr: { 1891 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1892 if (!ExtVal || !ExtVal->hasOneUse() || 1893 ExtVal->getParent() == CI->getParent()) 1894 return false; 1895 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1896 ExtVal->moveBefore(CI); 1897 // Mark this instruction as "inserted by CGP", so that other 1898 // optimizations don't touch it. 1899 InsertedInsts.insert(ExtVal); 1900 return true; 1901 } 1902 1903 case Intrinsic::launder_invariant_group: 1904 case Intrinsic::strip_invariant_group: { 1905 Value *ArgVal = II->getArgOperand(0); 1906 auto it = LargeOffsetGEPMap.find(II); 1907 if (it != LargeOffsetGEPMap.end()) { 1908 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1909 // Make sure not to have to deal with iterator invalidation 1910 // after possibly adding ArgVal to LargeOffsetGEPMap. 1911 auto GEPs = std::move(it->second); 1912 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1913 LargeOffsetGEPMap.erase(II); 1914 } 1915 1916 II->replaceAllUsesWith(ArgVal); 1917 II->eraseFromParent(); 1918 return true; 1919 } 1920 case Intrinsic::cttz: 1921 case Intrinsic::ctlz: 1922 // If counting zeros is expensive, try to avoid it. 1923 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1924 } 1925 1926 if (TLI) { 1927 SmallVector<Value*, 2> PtrOps; 1928 Type *AccessTy; 1929 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1930 while (!PtrOps.empty()) { 1931 Value *PtrVal = PtrOps.pop_back_val(); 1932 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1933 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1934 return true; 1935 } 1936 } 1937 } 1938 1939 // From here on out we're working with named functions. 1940 if (!CI->getCalledFunction()) return false; 1941 1942 // Lower all default uses of _chk calls. This is very similar 1943 // to what InstCombineCalls does, but here we are only lowering calls 1944 // to fortified library functions (e.g. __memcpy_chk) that have the default 1945 // "don't know" as the objectsize. Anything else should be left alone. 1946 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1947 if (Value *V = Simplifier.optimizeCall(CI)) { 1948 CI->replaceAllUsesWith(V); 1949 CI->eraseFromParent(); 1950 return true; 1951 } 1952 1953 return false; 1954 } 1955 1956 /// Look for opportunities to duplicate return instructions to the predecessor 1957 /// to enable tail call optimizations. The case it is currently looking for is: 1958 /// @code 1959 /// bb0: 1960 /// %tmp0 = tail call i32 @f0() 1961 /// br label %return 1962 /// bb1: 1963 /// %tmp1 = tail call i32 @f1() 1964 /// br label %return 1965 /// bb2: 1966 /// %tmp2 = tail call i32 @f2() 1967 /// br label %return 1968 /// return: 1969 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1970 /// ret i32 %retval 1971 /// @endcode 1972 /// 1973 /// => 1974 /// 1975 /// @code 1976 /// bb0: 1977 /// %tmp0 = tail call i32 @f0() 1978 /// ret i32 %tmp0 1979 /// bb1: 1980 /// %tmp1 = tail call i32 @f1() 1981 /// ret i32 %tmp1 1982 /// bb2: 1983 /// %tmp2 = tail call i32 @f2() 1984 /// ret i32 %tmp2 1985 /// @endcode 1986 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1987 if (!TLI) 1988 return false; 1989 1990 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1991 if (!RetI) 1992 return false; 1993 1994 PHINode *PN = nullptr; 1995 BitCastInst *BCI = nullptr; 1996 Value *V = RetI->getReturnValue(); 1997 if (V) { 1998 BCI = dyn_cast<BitCastInst>(V); 1999 if (BCI) 2000 V = BCI->getOperand(0); 2001 2002 PN = dyn_cast<PHINode>(V); 2003 if (!PN) 2004 return false; 2005 } 2006 2007 if (PN && PN->getParent() != BB) 2008 return false; 2009 2010 // Make sure there are no instructions between the PHI and return, or that the 2011 // return is the first instruction in the block. 2012 if (PN) { 2013 BasicBlock::iterator BI = BB->begin(); 2014 // Skip over debug and the bitcast. 2015 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2016 if (&*BI != RetI) 2017 return false; 2018 } else { 2019 BasicBlock::iterator BI = BB->begin(); 2020 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2021 if (&*BI != RetI) 2022 return false; 2023 } 2024 2025 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2026 /// call. 2027 const Function *F = BB->getParent(); 2028 SmallVector<CallInst*, 4> TailCalls; 2029 if (PN) { 2030 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2031 // Look through bitcasts. 2032 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2033 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2034 // Make sure the phi value is indeed produced by the tail call. 2035 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2036 TLI->mayBeEmittedAsTailCall(CI) && 2037 attributesPermitTailCall(F, CI, RetI, *TLI)) 2038 TailCalls.push_back(CI); 2039 } 2040 } else { 2041 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2042 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2043 if (!VisitedBBs.insert(*PI).second) 2044 continue; 2045 2046 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2047 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2048 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2049 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2050 if (RI == RE) 2051 continue; 2052 2053 CallInst *CI = dyn_cast<CallInst>(&*RI); 2054 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2055 attributesPermitTailCall(F, CI, RetI, *TLI)) 2056 TailCalls.push_back(CI); 2057 } 2058 } 2059 2060 bool Changed = false; 2061 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2062 CallInst *CI = TailCalls[i]; 2063 CallSite CS(CI); 2064 2065 // Make sure the call instruction is followed by an unconditional branch to 2066 // the return block. 2067 BasicBlock *CallBB = CI->getParent(); 2068 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2069 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2070 continue; 2071 2072 // Duplicate the return into CallBB. 2073 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2074 ModifiedDT = Changed = true; 2075 ++NumRetsDup; 2076 } 2077 2078 // If we eliminated all predecessors of the block, delete the block now. 2079 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2080 BB->eraseFromParent(); 2081 2082 return Changed; 2083 } 2084 2085 //===----------------------------------------------------------------------===// 2086 // Memory Optimization 2087 //===----------------------------------------------------------------------===// 2088 2089 namespace { 2090 2091 /// This is an extended version of TargetLowering::AddrMode 2092 /// which holds actual Value*'s for register values. 2093 struct ExtAddrMode : public TargetLowering::AddrMode { 2094 Value *BaseReg = nullptr; 2095 Value *ScaledReg = nullptr; 2096 Value *OriginalValue = nullptr; 2097 bool InBounds = true; 2098 2099 enum FieldName { 2100 NoField = 0x00, 2101 BaseRegField = 0x01, 2102 BaseGVField = 0x02, 2103 BaseOffsField = 0x04, 2104 ScaledRegField = 0x08, 2105 ScaleField = 0x10, 2106 MultipleFields = 0xff 2107 }; 2108 2109 2110 ExtAddrMode() = default; 2111 2112 void print(raw_ostream &OS) const; 2113 void dump() const; 2114 2115 FieldName compare(const ExtAddrMode &other) { 2116 // First check that the types are the same on each field, as differing types 2117 // is something we can't cope with later on. 2118 if (BaseReg && other.BaseReg && 2119 BaseReg->getType() != other.BaseReg->getType()) 2120 return MultipleFields; 2121 if (BaseGV && other.BaseGV && 2122 BaseGV->getType() != other.BaseGV->getType()) 2123 return MultipleFields; 2124 if (ScaledReg && other.ScaledReg && 2125 ScaledReg->getType() != other.ScaledReg->getType()) 2126 return MultipleFields; 2127 2128 // Conservatively reject 'inbounds' mismatches. 2129 if (InBounds != other.InBounds) 2130 return MultipleFields; 2131 2132 // Check each field to see if it differs. 2133 unsigned Result = NoField; 2134 if (BaseReg != other.BaseReg) 2135 Result |= BaseRegField; 2136 if (BaseGV != other.BaseGV) 2137 Result |= BaseGVField; 2138 if (BaseOffs != other.BaseOffs) 2139 Result |= BaseOffsField; 2140 if (ScaledReg != other.ScaledReg) 2141 Result |= ScaledRegField; 2142 // Don't count 0 as being a different scale, because that actually means 2143 // unscaled (which will already be counted by having no ScaledReg). 2144 if (Scale && other.Scale && Scale != other.Scale) 2145 Result |= ScaleField; 2146 2147 if (countPopulation(Result) > 1) 2148 return MultipleFields; 2149 else 2150 return static_cast<FieldName>(Result); 2151 } 2152 2153 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2154 // with no offset. 2155 bool isTrivial() { 2156 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2157 // trivial if at most one of these terms is nonzero, except that BaseGV and 2158 // BaseReg both being zero actually means a null pointer value, which we 2159 // consider to be 'non-zero' here. 2160 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2161 } 2162 2163 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2164 switch (Field) { 2165 default: 2166 return nullptr; 2167 case BaseRegField: 2168 return BaseReg; 2169 case BaseGVField: 2170 return BaseGV; 2171 case ScaledRegField: 2172 return ScaledReg; 2173 case BaseOffsField: 2174 return ConstantInt::get(IntPtrTy, BaseOffs); 2175 } 2176 } 2177 2178 void SetCombinedField(FieldName Field, Value *V, 2179 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2180 switch (Field) { 2181 default: 2182 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2183 break; 2184 case ExtAddrMode::BaseRegField: 2185 BaseReg = V; 2186 break; 2187 case ExtAddrMode::BaseGVField: 2188 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2189 // in the BaseReg field. 2190 assert(BaseReg == nullptr); 2191 BaseReg = V; 2192 BaseGV = nullptr; 2193 break; 2194 case ExtAddrMode::ScaledRegField: 2195 ScaledReg = V; 2196 // If we have a mix of scaled and unscaled addrmodes then we want scale 2197 // to be the scale and not zero. 2198 if (!Scale) 2199 for (const ExtAddrMode &AM : AddrModes) 2200 if (AM.Scale) { 2201 Scale = AM.Scale; 2202 break; 2203 } 2204 break; 2205 case ExtAddrMode::BaseOffsField: 2206 // The offset is no longer a constant, so it goes in ScaledReg with a 2207 // scale of 1. 2208 assert(ScaledReg == nullptr); 2209 ScaledReg = V; 2210 Scale = 1; 2211 BaseOffs = 0; 2212 break; 2213 } 2214 } 2215 }; 2216 2217 } // end anonymous namespace 2218 2219 #ifndef NDEBUG 2220 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2221 AM.print(OS); 2222 return OS; 2223 } 2224 #endif 2225 2226 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2227 void ExtAddrMode::print(raw_ostream &OS) const { 2228 bool NeedPlus = false; 2229 OS << "["; 2230 if (InBounds) 2231 OS << "inbounds "; 2232 if (BaseGV) { 2233 OS << (NeedPlus ? " + " : "") 2234 << "GV:"; 2235 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2236 NeedPlus = true; 2237 } 2238 2239 if (BaseOffs) { 2240 OS << (NeedPlus ? " + " : "") 2241 << BaseOffs; 2242 NeedPlus = true; 2243 } 2244 2245 if (BaseReg) { 2246 OS << (NeedPlus ? " + " : "") 2247 << "Base:"; 2248 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2249 NeedPlus = true; 2250 } 2251 if (Scale) { 2252 OS << (NeedPlus ? " + " : "") 2253 << Scale << "*"; 2254 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2255 } 2256 2257 OS << ']'; 2258 } 2259 2260 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2261 print(dbgs()); 2262 dbgs() << '\n'; 2263 } 2264 #endif 2265 2266 namespace { 2267 2268 /// This class provides transaction based operation on the IR. 2269 /// Every change made through this class is recorded in the internal state and 2270 /// can be undone (rollback) until commit is called. 2271 class TypePromotionTransaction { 2272 /// This represents the common interface of the individual transaction. 2273 /// Each class implements the logic for doing one specific modification on 2274 /// the IR via the TypePromotionTransaction. 2275 class TypePromotionAction { 2276 protected: 2277 /// The Instruction modified. 2278 Instruction *Inst; 2279 2280 public: 2281 /// Constructor of the action. 2282 /// The constructor performs the related action on the IR. 2283 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2284 2285 virtual ~TypePromotionAction() = default; 2286 2287 /// Undo the modification done by this action. 2288 /// When this method is called, the IR must be in the same state as it was 2289 /// before this action was applied. 2290 /// \pre Undoing the action works if and only if the IR is in the exact same 2291 /// state as it was directly after this action was applied. 2292 virtual void undo() = 0; 2293 2294 /// Advocate every change made by this action. 2295 /// When the results on the IR of the action are to be kept, it is important 2296 /// to call this function, otherwise hidden information may be kept forever. 2297 virtual void commit() { 2298 // Nothing to be done, this action is not doing anything. 2299 } 2300 }; 2301 2302 /// Utility to remember the position of an instruction. 2303 class InsertionHandler { 2304 /// Position of an instruction. 2305 /// Either an instruction: 2306 /// - Is the first in a basic block: BB is used. 2307 /// - Has a previous instruction: PrevInst is used. 2308 union { 2309 Instruction *PrevInst; 2310 BasicBlock *BB; 2311 } Point; 2312 2313 /// Remember whether or not the instruction had a previous instruction. 2314 bool HasPrevInstruction; 2315 2316 public: 2317 /// Record the position of \p Inst. 2318 InsertionHandler(Instruction *Inst) { 2319 BasicBlock::iterator It = Inst->getIterator(); 2320 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2321 if (HasPrevInstruction) 2322 Point.PrevInst = &*--It; 2323 else 2324 Point.BB = Inst->getParent(); 2325 } 2326 2327 /// Insert \p Inst at the recorded position. 2328 void insert(Instruction *Inst) { 2329 if (HasPrevInstruction) { 2330 if (Inst->getParent()) 2331 Inst->removeFromParent(); 2332 Inst->insertAfter(Point.PrevInst); 2333 } else { 2334 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2335 if (Inst->getParent()) 2336 Inst->moveBefore(Position); 2337 else 2338 Inst->insertBefore(Position); 2339 } 2340 } 2341 }; 2342 2343 /// Move an instruction before another. 2344 class InstructionMoveBefore : public TypePromotionAction { 2345 /// Original position of the instruction. 2346 InsertionHandler Position; 2347 2348 public: 2349 /// Move \p Inst before \p Before. 2350 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2351 : TypePromotionAction(Inst), Position(Inst) { 2352 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2353 << "\n"); 2354 Inst->moveBefore(Before); 2355 } 2356 2357 /// Move the instruction back to its original position. 2358 void undo() override { 2359 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2360 Position.insert(Inst); 2361 } 2362 }; 2363 2364 /// Set the operand of an instruction with a new value. 2365 class OperandSetter : public TypePromotionAction { 2366 /// Original operand of the instruction. 2367 Value *Origin; 2368 2369 /// Index of the modified instruction. 2370 unsigned Idx; 2371 2372 public: 2373 /// Set \p Idx operand of \p Inst with \p NewVal. 2374 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2375 : TypePromotionAction(Inst), Idx(Idx) { 2376 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2377 << "for:" << *Inst << "\n" 2378 << "with:" << *NewVal << "\n"); 2379 Origin = Inst->getOperand(Idx); 2380 Inst->setOperand(Idx, NewVal); 2381 } 2382 2383 /// Restore the original value of the instruction. 2384 void undo() override { 2385 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2386 << "for: " << *Inst << "\n" 2387 << "with: " << *Origin << "\n"); 2388 Inst->setOperand(Idx, Origin); 2389 } 2390 }; 2391 2392 /// Hide the operands of an instruction. 2393 /// Do as if this instruction was not using any of its operands. 2394 class OperandsHider : public TypePromotionAction { 2395 /// The list of original operands. 2396 SmallVector<Value *, 4> OriginalValues; 2397 2398 public: 2399 /// Remove \p Inst from the uses of the operands of \p Inst. 2400 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2401 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2402 unsigned NumOpnds = Inst->getNumOperands(); 2403 OriginalValues.reserve(NumOpnds); 2404 for (unsigned It = 0; It < NumOpnds; ++It) { 2405 // Save the current operand. 2406 Value *Val = Inst->getOperand(It); 2407 OriginalValues.push_back(Val); 2408 // Set a dummy one. 2409 // We could use OperandSetter here, but that would imply an overhead 2410 // that we are not willing to pay. 2411 Inst->setOperand(It, UndefValue::get(Val->getType())); 2412 } 2413 } 2414 2415 /// Restore the original list of uses. 2416 void undo() override { 2417 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2418 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2419 Inst->setOperand(It, OriginalValues[It]); 2420 } 2421 }; 2422 2423 /// Build a truncate instruction. 2424 class TruncBuilder : public TypePromotionAction { 2425 Value *Val; 2426 2427 public: 2428 /// Build a truncate instruction of \p Opnd producing a \p Ty 2429 /// result. 2430 /// trunc Opnd to Ty. 2431 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2432 IRBuilder<> Builder(Opnd); 2433 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2434 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2435 } 2436 2437 /// Get the built value. 2438 Value *getBuiltValue() { return Val; } 2439 2440 /// Remove the built instruction. 2441 void undo() override { 2442 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2443 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2444 IVal->eraseFromParent(); 2445 } 2446 }; 2447 2448 /// Build a sign extension instruction. 2449 class SExtBuilder : public TypePromotionAction { 2450 Value *Val; 2451 2452 public: 2453 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2454 /// result. 2455 /// sext Opnd to Ty. 2456 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2457 : TypePromotionAction(InsertPt) { 2458 IRBuilder<> Builder(InsertPt); 2459 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2460 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2461 } 2462 2463 /// Get the built value. 2464 Value *getBuiltValue() { return Val; } 2465 2466 /// Remove the built instruction. 2467 void undo() override { 2468 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2469 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2470 IVal->eraseFromParent(); 2471 } 2472 }; 2473 2474 /// Build a zero extension instruction. 2475 class ZExtBuilder : public TypePromotionAction { 2476 Value *Val; 2477 2478 public: 2479 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2480 /// result. 2481 /// zext Opnd to Ty. 2482 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2483 : TypePromotionAction(InsertPt) { 2484 IRBuilder<> Builder(InsertPt); 2485 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2486 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2487 } 2488 2489 /// Get the built value. 2490 Value *getBuiltValue() { return Val; } 2491 2492 /// Remove the built instruction. 2493 void undo() override { 2494 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2495 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2496 IVal->eraseFromParent(); 2497 } 2498 }; 2499 2500 /// Mutate an instruction to another type. 2501 class TypeMutator : public TypePromotionAction { 2502 /// Record the original type. 2503 Type *OrigTy; 2504 2505 public: 2506 /// Mutate the type of \p Inst into \p NewTy. 2507 TypeMutator(Instruction *Inst, Type *NewTy) 2508 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2509 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2510 << "\n"); 2511 Inst->mutateType(NewTy); 2512 } 2513 2514 /// Mutate the instruction back to its original type. 2515 void undo() override { 2516 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2517 << "\n"); 2518 Inst->mutateType(OrigTy); 2519 } 2520 }; 2521 2522 /// Replace the uses of an instruction by another instruction. 2523 class UsesReplacer : public TypePromotionAction { 2524 /// Helper structure to keep track of the replaced uses. 2525 struct InstructionAndIdx { 2526 /// The instruction using the instruction. 2527 Instruction *Inst; 2528 2529 /// The index where this instruction is used for Inst. 2530 unsigned Idx; 2531 2532 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2533 : Inst(Inst), Idx(Idx) {} 2534 }; 2535 2536 /// Keep track of the original uses (pair Instruction, Index). 2537 SmallVector<InstructionAndIdx, 4> OriginalUses; 2538 /// Keep track of the debug users. 2539 SmallVector<DbgValueInst *, 1> DbgValues; 2540 2541 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2542 2543 public: 2544 /// Replace all the use of \p Inst by \p New. 2545 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2546 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2547 << "\n"); 2548 // Record the original uses. 2549 for (Use &U : Inst->uses()) { 2550 Instruction *UserI = cast<Instruction>(U.getUser()); 2551 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2552 } 2553 // Record the debug uses separately. They are not in the instruction's 2554 // use list, but they are replaced by RAUW. 2555 findDbgValues(DbgValues, Inst); 2556 2557 // Now, we can replace the uses. 2558 Inst->replaceAllUsesWith(New); 2559 } 2560 2561 /// Reassign the original uses of Inst to Inst. 2562 void undo() override { 2563 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2564 for (use_iterator UseIt = OriginalUses.begin(), 2565 EndIt = OriginalUses.end(); 2566 UseIt != EndIt; ++UseIt) { 2567 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2568 } 2569 // RAUW has replaced all original uses with references to the new value, 2570 // including the debug uses. Since we are undoing the replacements, 2571 // the original debug uses must also be reinstated to maintain the 2572 // correctness and utility of debug value instructions. 2573 for (auto *DVI: DbgValues) { 2574 LLVMContext &Ctx = Inst->getType()->getContext(); 2575 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2576 DVI->setOperand(0, MV); 2577 } 2578 } 2579 }; 2580 2581 /// Remove an instruction from the IR. 2582 class InstructionRemover : public TypePromotionAction { 2583 /// Original position of the instruction. 2584 InsertionHandler Inserter; 2585 2586 /// Helper structure to hide all the link to the instruction. In other 2587 /// words, this helps to do as if the instruction was removed. 2588 OperandsHider Hider; 2589 2590 /// Keep track of the uses replaced, if any. 2591 UsesReplacer *Replacer = nullptr; 2592 2593 /// Keep track of instructions removed. 2594 SetOfInstrs &RemovedInsts; 2595 2596 public: 2597 /// Remove all reference of \p Inst and optionally replace all its 2598 /// uses with New. 2599 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2600 /// \pre If !Inst->use_empty(), then New != nullptr 2601 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2602 Value *New = nullptr) 2603 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2604 RemovedInsts(RemovedInsts) { 2605 if (New) 2606 Replacer = new UsesReplacer(Inst, New); 2607 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2608 RemovedInsts.insert(Inst); 2609 /// The instructions removed here will be freed after completing 2610 /// optimizeBlock() for all blocks as we need to keep track of the 2611 /// removed instructions during promotion. 2612 Inst->removeFromParent(); 2613 } 2614 2615 ~InstructionRemover() override { delete Replacer; } 2616 2617 /// Resurrect the instruction and reassign it to the proper uses if 2618 /// new value was provided when build this action. 2619 void undo() override { 2620 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2621 Inserter.insert(Inst); 2622 if (Replacer) 2623 Replacer->undo(); 2624 Hider.undo(); 2625 RemovedInsts.erase(Inst); 2626 } 2627 }; 2628 2629 public: 2630 /// Restoration point. 2631 /// The restoration point is a pointer to an action instead of an iterator 2632 /// because the iterator may be invalidated but not the pointer. 2633 using ConstRestorationPt = const TypePromotionAction *; 2634 2635 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2636 : RemovedInsts(RemovedInsts) {} 2637 2638 /// Advocate every changes made in that transaction. 2639 void commit(); 2640 2641 /// Undo all the changes made after the given point. 2642 void rollback(ConstRestorationPt Point); 2643 2644 /// Get the current restoration point. 2645 ConstRestorationPt getRestorationPoint() const; 2646 2647 /// \name API for IR modification with state keeping to support rollback. 2648 /// @{ 2649 /// Same as Instruction::setOperand. 2650 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2651 2652 /// Same as Instruction::eraseFromParent. 2653 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2654 2655 /// Same as Value::replaceAllUsesWith. 2656 void replaceAllUsesWith(Instruction *Inst, Value *New); 2657 2658 /// Same as Value::mutateType. 2659 void mutateType(Instruction *Inst, Type *NewTy); 2660 2661 /// Same as IRBuilder::createTrunc. 2662 Value *createTrunc(Instruction *Opnd, Type *Ty); 2663 2664 /// Same as IRBuilder::createSExt. 2665 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2666 2667 /// Same as IRBuilder::createZExt. 2668 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2669 2670 /// Same as Instruction::moveBefore. 2671 void moveBefore(Instruction *Inst, Instruction *Before); 2672 /// @} 2673 2674 private: 2675 /// The ordered list of actions made so far. 2676 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2677 2678 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2679 2680 SetOfInstrs &RemovedInsts; 2681 }; 2682 2683 } // end anonymous namespace 2684 2685 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2686 Value *NewVal) { 2687 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2688 Inst, Idx, NewVal)); 2689 } 2690 2691 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2692 Value *NewVal) { 2693 Actions.push_back( 2694 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2695 Inst, RemovedInsts, NewVal)); 2696 } 2697 2698 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2699 Value *New) { 2700 Actions.push_back( 2701 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2702 } 2703 2704 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2705 Actions.push_back( 2706 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2707 } 2708 2709 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2710 Type *Ty) { 2711 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2712 Value *Val = Ptr->getBuiltValue(); 2713 Actions.push_back(std::move(Ptr)); 2714 return Val; 2715 } 2716 2717 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2718 Value *Opnd, Type *Ty) { 2719 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2720 Value *Val = Ptr->getBuiltValue(); 2721 Actions.push_back(std::move(Ptr)); 2722 return Val; 2723 } 2724 2725 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2726 Value *Opnd, Type *Ty) { 2727 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2728 Value *Val = Ptr->getBuiltValue(); 2729 Actions.push_back(std::move(Ptr)); 2730 return Val; 2731 } 2732 2733 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2734 Instruction *Before) { 2735 Actions.push_back( 2736 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2737 Inst, Before)); 2738 } 2739 2740 TypePromotionTransaction::ConstRestorationPt 2741 TypePromotionTransaction::getRestorationPoint() const { 2742 return !Actions.empty() ? Actions.back().get() : nullptr; 2743 } 2744 2745 void TypePromotionTransaction::commit() { 2746 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2747 ++It) 2748 (*It)->commit(); 2749 Actions.clear(); 2750 } 2751 2752 void TypePromotionTransaction::rollback( 2753 TypePromotionTransaction::ConstRestorationPt Point) { 2754 while (!Actions.empty() && Point != Actions.back().get()) { 2755 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2756 Curr->undo(); 2757 } 2758 } 2759 2760 namespace { 2761 2762 /// A helper class for matching addressing modes. 2763 /// 2764 /// This encapsulates the logic for matching the target-legal addressing modes. 2765 class AddressingModeMatcher { 2766 SmallVectorImpl<Instruction*> &AddrModeInsts; 2767 const TargetLowering &TLI; 2768 const TargetRegisterInfo &TRI; 2769 const DataLayout &DL; 2770 2771 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2772 /// the memory instruction that we're computing this address for. 2773 Type *AccessTy; 2774 unsigned AddrSpace; 2775 Instruction *MemoryInst; 2776 2777 /// This is the addressing mode that we're building up. This is 2778 /// part of the return value of this addressing mode matching stuff. 2779 ExtAddrMode &AddrMode; 2780 2781 /// The instructions inserted by other CodeGenPrepare optimizations. 2782 const SetOfInstrs &InsertedInsts; 2783 2784 /// A map from the instructions to their type before promotion. 2785 InstrToOrigTy &PromotedInsts; 2786 2787 /// The ongoing transaction where every action should be registered. 2788 TypePromotionTransaction &TPT; 2789 2790 // A GEP which has too large offset to be folded into the addressing mode. 2791 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2792 2793 /// This is set to true when we should not do profitability checks. 2794 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2795 bool IgnoreProfitability; 2796 2797 AddressingModeMatcher( 2798 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2799 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2800 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2801 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2802 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2803 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2804 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2805 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2806 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2807 IgnoreProfitability = false; 2808 } 2809 2810 public: 2811 /// Find the maximal addressing mode that a load/store of V can fold, 2812 /// give an access type of AccessTy. This returns a list of involved 2813 /// instructions in AddrModeInsts. 2814 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2815 /// optimizations. 2816 /// \p PromotedInsts maps the instructions to their type before promotion. 2817 /// \p The ongoing transaction where every action should be registered. 2818 static ExtAddrMode 2819 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2820 SmallVectorImpl<Instruction *> &AddrModeInsts, 2821 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2822 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2823 TypePromotionTransaction &TPT, 2824 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2825 ExtAddrMode Result; 2826 2827 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2828 MemoryInst, Result, InsertedInsts, 2829 PromotedInsts, TPT, LargeOffsetGEP) 2830 .matchAddr(V, 0); 2831 (void)Success; assert(Success && "Couldn't select *anything*?"); 2832 return Result; 2833 } 2834 2835 private: 2836 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2837 bool matchAddr(Value *Addr, unsigned Depth); 2838 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2839 bool *MovedAway = nullptr); 2840 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2841 ExtAddrMode &AMBefore, 2842 ExtAddrMode &AMAfter); 2843 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2844 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2845 Value *PromotedOperand) const; 2846 }; 2847 2848 class PhiNodeSet; 2849 2850 /// An iterator for PhiNodeSet. 2851 class PhiNodeSetIterator { 2852 PhiNodeSet * const Set; 2853 size_t CurrentIndex = 0; 2854 2855 public: 2856 /// The constructor. Start should point to either a valid element, or be equal 2857 /// to the size of the underlying SmallVector of the PhiNodeSet. 2858 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2859 PHINode * operator*() const; 2860 PhiNodeSetIterator& operator++(); 2861 bool operator==(const PhiNodeSetIterator &RHS) const; 2862 bool operator!=(const PhiNodeSetIterator &RHS) const; 2863 }; 2864 2865 /// Keeps a set of PHINodes. 2866 /// 2867 /// This is a minimal set implementation for a specific use case: 2868 /// It is very fast when there are very few elements, but also provides good 2869 /// performance when there are many. It is similar to SmallPtrSet, but also 2870 /// provides iteration by insertion order, which is deterministic and stable 2871 /// across runs. It is also similar to SmallSetVector, but provides removing 2872 /// elements in O(1) time. This is achieved by not actually removing the element 2873 /// from the underlying vector, so comes at the cost of using more memory, but 2874 /// that is fine, since PhiNodeSets are used as short lived objects. 2875 class PhiNodeSet { 2876 friend class PhiNodeSetIterator; 2877 2878 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2879 using iterator = PhiNodeSetIterator; 2880 2881 /// Keeps the elements in the order of their insertion in the underlying 2882 /// vector. To achieve constant time removal, it never deletes any element. 2883 SmallVector<PHINode *, 32> NodeList; 2884 2885 /// Keeps the elements in the underlying set implementation. This (and not the 2886 /// NodeList defined above) is the source of truth on whether an element 2887 /// is actually in the collection. 2888 MapType NodeMap; 2889 2890 /// Points to the first valid (not deleted) element when the set is not empty 2891 /// and the value is not zero. Equals to the size of the underlying vector 2892 /// when the set is empty. When the value is 0, as in the beginning, the 2893 /// first element may or may not be valid. 2894 size_t FirstValidElement = 0; 2895 2896 public: 2897 /// Inserts a new element to the collection. 2898 /// \returns true if the element is actually added, i.e. was not in the 2899 /// collection before the operation. 2900 bool insert(PHINode *Ptr) { 2901 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2902 NodeList.push_back(Ptr); 2903 return true; 2904 } 2905 return false; 2906 } 2907 2908 /// Removes the element from the collection. 2909 /// \returns whether the element is actually removed, i.e. was in the 2910 /// collection before the operation. 2911 bool erase(PHINode *Ptr) { 2912 auto it = NodeMap.find(Ptr); 2913 if (it != NodeMap.end()) { 2914 NodeMap.erase(Ptr); 2915 SkipRemovedElements(FirstValidElement); 2916 return true; 2917 } 2918 return false; 2919 } 2920 2921 /// Removes all elements and clears the collection. 2922 void clear() { 2923 NodeMap.clear(); 2924 NodeList.clear(); 2925 FirstValidElement = 0; 2926 } 2927 2928 /// \returns an iterator that will iterate the elements in the order of 2929 /// insertion. 2930 iterator begin() { 2931 if (FirstValidElement == 0) 2932 SkipRemovedElements(FirstValidElement); 2933 return PhiNodeSetIterator(this, FirstValidElement); 2934 } 2935 2936 /// \returns an iterator that points to the end of the collection. 2937 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2938 2939 /// Returns the number of elements in the collection. 2940 size_t size() const { 2941 return NodeMap.size(); 2942 } 2943 2944 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2945 size_t count(PHINode *Ptr) const { 2946 return NodeMap.count(Ptr); 2947 } 2948 2949 private: 2950 /// Updates the CurrentIndex so that it will point to a valid element. 2951 /// 2952 /// If the element of NodeList at CurrentIndex is valid, it does not 2953 /// change it. If there are no more valid elements, it updates CurrentIndex 2954 /// to point to the end of the NodeList. 2955 void SkipRemovedElements(size_t &CurrentIndex) { 2956 while (CurrentIndex < NodeList.size()) { 2957 auto it = NodeMap.find(NodeList[CurrentIndex]); 2958 // If the element has been deleted and added again later, NodeMap will 2959 // point to a different index, so CurrentIndex will still be invalid. 2960 if (it != NodeMap.end() && it->second == CurrentIndex) 2961 break; 2962 ++CurrentIndex; 2963 } 2964 } 2965 }; 2966 2967 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2968 : Set(Set), CurrentIndex(Start) {} 2969 2970 PHINode * PhiNodeSetIterator::operator*() const { 2971 assert(CurrentIndex < Set->NodeList.size() && 2972 "PhiNodeSet access out of range"); 2973 return Set->NodeList[CurrentIndex]; 2974 } 2975 2976 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2977 assert(CurrentIndex < Set->NodeList.size() && 2978 "PhiNodeSet access out of range"); 2979 ++CurrentIndex; 2980 Set->SkipRemovedElements(CurrentIndex); 2981 return *this; 2982 } 2983 2984 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2985 return CurrentIndex == RHS.CurrentIndex; 2986 } 2987 2988 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2989 return !((*this) == RHS); 2990 } 2991 2992 /// Keep track of simplification of Phi nodes. 2993 /// Accept the set of all phi nodes and erase phi node from this set 2994 /// if it is simplified. 2995 class SimplificationTracker { 2996 DenseMap<Value *, Value *> Storage; 2997 const SimplifyQuery &SQ; 2998 // Tracks newly created Phi nodes. The elements are iterated by insertion 2999 // order. 3000 PhiNodeSet AllPhiNodes; 3001 // Tracks newly created Select nodes. 3002 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3003 3004 public: 3005 SimplificationTracker(const SimplifyQuery &sq) 3006 : SQ(sq) {} 3007 3008 Value *Get(Value *V) { 3009 do { 3010 auto SV = Storage.find(V); 3011 if (SV == Storage.end()) 3012 return V; 3013 V = SV->second; 3014 } while (true); 3015 } 3016 3017 Value *Simplify(Value *Val) { 3018 SmallVector<Value *, 32> WorkList; 3019 SmallPtrSet<Value *, 32> Visited; 3020 WorkList.push_back(Val); 3021 while (!WorkList.empty()) { 3022 auto P = WorkList.pop_back_val(); 3023 if (!Visited.insert(P).second) 3024 continue; 3025 if (auto *PI = dyn_cast<Instruction>(P)) 3026 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3027 for (auto *U : PI->users()) 3028 WorkList.push_back(cast<Value>(U)); 3029 Put(PI, V); 3030 PI->replaceAllUsesWith(V); 3031 if (auto *PHI = dyn_cast<PHINode>(PI)) 3032 AllPhiNodes.erase(PHI); 3033 if (auto *Select = dyn_cast<SelectInst>(PI)) 3034 AllSelectNodes.erase(Select); 3035 PI->eraseFromParent(); 3036 } 3037 } 3038 return Get(Val); 3039 } 3040 3041 void Put(Value *From, Value *To) { 3042 Storage.insert({ From, To }); 3043 } 3044 3045 void ReplacePhi(PHINode *From, PHINode *To) { 3046 Value* OldReplacement = Get(From); 3047 while (OldReplacement != From) { 3048 From = To; 3049 To = dyn_cast<PHINode>(OldReplacement); 3050 OldReplacement = Get(From); 3051 } 3052 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3053 Put(From, To); 3054 From->replaceAllUsesWith(To); 3055 AllPhiNodes.erase(From); 3056 From->eraseFromParent(); 3057 } 3058 3059 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3060 3061 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3062 3063 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3064 3065 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3066 3067 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3068 3069 void destroyNewNodes(Type *CommonType) { 3070 // For safe erasing, replace the uses with dummy value first. 3071 auto Dummy = UndefValue::get(CommonType); 3072 for (auto I : AllPhiNodes) { 3073 I->replaceAllUsesWith(Dummy); 3074 I->eraseFromParent(); 3075 } 3076 AllPhiNodes.clear(); 3077 for (auto I : AllSelectNodes) { 3078 I->replaceAllUsesWith(Dummy); 3079 I->eraseFromParent(); 3080 } 3081 AllSelectNodes.clear(); 3082 } 3083 }; 3084 3085 /// A helper class for combining addressing modes. 3086 class AddressingModeCombiner { 3087 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3088 typedef std::pair<PHINode *, PHINode *> PHIPair; 3089 3090 private: 3091 /// The addressing modes we've collected. 3092 SmallVector<ExtAddrMode, 16> AddrModes; 3093 3094 /// The field in which the AddrModes differ, when we have more than one. 3095 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3096 3097 /// Are the AddrModes that we have all just equal to their original values? 3098 bool AllAddrModesTrivial = true; 3099 3100 /// Common Type for all different fields in addressing modes. 3101 Type *CommonType; 3102 3103 /// SimplifyQuery for simplifyInstruction utility. 3104 const SimplifyQuery &SQ; 3105 3106 /// Original Address. 3107 Value *Original; 3108 3109 public: 3110 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3111 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3112 3113 /// Get the combined AddrMode 3114 const ExtAddrMode &getAddrMode() const { 3115 return AddrModes[0]; 3116 } 3117 3118 /// Add a new AddrMode if it's compatible with the AddrModes we already 3119 /// have. 3120 /// \return True iff we succeeded in doing so. 3121 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3122 // Take note of if we have any non-trivial AddrModes, as we need to detect 3123 // when all AddrModes are trivial as then we would introduce a phi or select 3124 // which just duplicates what's already there. 3125 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3126 3127 // If this is the first addrmode then everything is fine. 3128 if (AddrModes.empty()) { 3129 AddrModes.emplace_back(NewAddrMode); 3130 return true; 3131 } 3132 3133 // Figure out how different this is from the other address modes, which we 3134 // can do just by comparing against the first one given that we only care 3135 // about the cumulative difference. 3136 ExtAddrMode::FieldName ThisDifferentField = 3137 AddrModes[0].compare(NewAddrMode); 3138 if (DifferentField == ExtAddrMode::NoField) 3139 DifferentField = ThisDifferentField; 3140 else if (DifferentField != ThisDifferentField) 3141 DifferentField = ExtAddrMode::MultipleFields; 3142 3143 // If NewAddrMode differs in more than one dimension we cannot handle it. 3144 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3145 3146 // If Scale Field is different then we reject. 3147 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3148 3149 // We also must reject the case when base offset is different and 3150 // scale reg is not null, we cannot handle this case due to merge of 3151 // different offsets will be used as ScaleReg. 3152 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3153 !NewAddrMode.ScaledReg); 3154 3155 // We also must reject the case when GV is different and BaseReg installed 3156 // due to we want to use base reg as a merge of GV values. 3157 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3158 !NewAddrMode.HasBaseReg); 3159 3160 // Even if NewAddMode is the same we still need to collect it due to 3161 // original value is different. And later we will need all original values 3162 // as anchors during finding the common Phi node. 3163 if (CanHandle) 3164 AddrModes.emplace_back(NewAddrMode); 3165 else 3166 AddrModes.clear(); 3167 3168 return CanHandle; 3169 } 3170 3171 /// Combine the addressing modes we've collected into a single 3172 /// addressing mode. 3173 /// \return True iff we successfully combined them or we only had one so 3174 /// didn't need to combine them anyway. 3175 bool combineAddrModes() { 3176 // If we have no AddrModes then they can't be combined. 3177 if (AddrModes.size() == 0) 3178 return false; 3179 3180 // A single AddrMode can trivially be combined. 3181 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3182 return true; 3183 3184 // If the AddrModes we collected are all just equal to the value they are 3185 // derived from then combining them wouldn't do anything useful. 3186 if (AllAddrModesTrivial) 3187 return false; 3188 3189 if (!addrModeCombiningAllowed()) 3190 return false; 3191 3192 // Build a map between <original value, basic block where we saw it> to 3193 // value of base register. 3194 // Bail out if there is no common type. 3195 FoldAddrToValueMapping Map; 3196 if (!initializeMap(Map)) 3197 return false; 3198 3199 Value *CommonValue = findCommon(Map); 3200 if (CommonValue) 3201 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3202 return CommonValue != nullptr; 3203 } 3204 3205 private: 3206 /// Initialize Map with anchor values. For address seen 3207 /// we set the value of different field saw in this address. 3208 /// At the same time we find a common type for different field we will 3209 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3210 /// Return false if there is no common type found. 3211 bool initializeMap(FoldAddrToValueMapping &Map) { 3212 // Keep track of keys where the value is null. We will need to replace it 3213 // with constant null when we know the common type. 3214 SmallVector<Value *, 2> NullValue; 3215 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3216 for (auto &AM : AddrModes) { 3217 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3218 if (DV) { 3219 auto *Type = DV->getType(); 3220 if (CommonType && CommonType != Type) 3221 return false; 3222 CommonType = Type; 3223 Map[AM.OriginalValue] = DV; 3224 } else { 3225 NullValue.push_back(AM.OriginalValue); 3226 } 3227 } 3228 assert(CommonType && "At least one non-null value must be!"); 3229 for (auto *V : NullValue) 3230 Map[V] = Constant::getNullValue(CommonType); 3231 return true; 3232 } 3233 3234 /// We have mapping between value A and other value B where B was a field in 3235 /// addressing mode represented by A. Also we have an original value C 3236 /// representing an address we start with. Traversing from C through phi and 3237 /// selects we ended up with A's in a map. This utility function tries to find 3238 /// a value V which is a field in addressing mode C and traversing through phi 3239 /// nodes and selects we will end up in corresponded values B in a map. 3240 /// The utility will create a new Phi/Selects if needed. 3241 // The simple example looks as follows: 3242 // BB1: 3243 // p1 = b1 + 40 3244 // br cond BB2, BB3 3245 // BB2: 3246 // p2 = b2 + 40 3247 // br BB3 3248 // BB3: 3249 // p = phi [p1, BB1], [p2, BB2] 3250 // v = load p 3251 // Map is 3252 // p1 -> b1 3253 // p2 -> b2 3254 // Request is 3255 // p -> ? 3256 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3257 Value *findCommon(FoldAddrToValueMapping &Map) { 3258 // Tracks the simplification of newly created phi nodes. The reason we use 3259 // this mapping is because we will add new created Phi nodes in AddrToBase. 3260 // Simplification of Phi nodes is recursive, so some Phi node may 3261 // be simplified after we added it to AddrToBase. In reality this 3262 // simplification is possible only if original phi/selects were not 3263 // simplified yet. 3264 // Using this mapping we can find the current value in AddrToBase. 3265 SimplificationTracker ST(SQ); 3266 3267 // First step, DFS to create PHI nodes for all intermediate blocks. 3268 // Also fill traverse order for the second step. 3269 SmallVector<Value *, 32> TraverseOrder; 3270 InsertPlaceholders(Map, TraverseOrder, ST); 3271 3272 // Second Step, fill new nodes by merged values and simplify if possible. 3273 FillPlaceholders(Map, TraverseOrder, ST); 3274 3275 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3276 ST.destroyNewNodes(CommonType); 3277 return nullptr; 3278 } 3279 3280 // Now we'd like to match New Phi nodes to existed ones. 3281 unsigned PhiNotMatchedCount = 0; 3282 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3283 ST.destroyNewNodes(CommonType); 3284 return nullptr; 3285 } 3286 3287 auto *Result = ST.Get(Map.find(Original)->second); 3288 if (Result) { 3289 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3290 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3291 } 3292 return Result; 3293 } 3294 3295 /// Try to match PHI node to Candidate. 3296 /// Matcher tracks the matched Phi nodes. 3297 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3298 SmallSetVector<PHIPair, 8> &Matcher, 3299 PhiNodeSet &PhiNodesToMatch) { 3300 SmallVector<PHIPair, 8> WorkList; 3301 Matcher.insert({ PHI, Candidate }); 3302 SmallSet<PHINode *, 8> MatchedPHIs; 3303 MatchedPHIs.insert(PHI); 3304 WorkList.push_back({ PHI, Candidate }); 3305 SmallSet<PHIPair, 8> Visited; 3306 while (!WorkList.empty()) { 3307 auto Item = WorkList.pop_back_val(); 3308 if (!Visited.insert(Item).second) 3309 continue; 3310 // We iterate over all incoming values to Phi to compare them. 3311 // If values are different and both of them Phi and the first one is a 3312 // Phi we added (subject to match) and both of them is in the same basic 3313 // block then we can match our pair if values match. So we state that 3314 // these values match and add it to work list to verify that. 3315 for (auto B : Item.first->blocks()) { 3316 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3317 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3318 if (FirstValue == SecondValue) 3319 continue; 3320 3321 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3322 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3323 3324 // One of them is not Phi or 3325 // The first one is not Phi node from the set we'd like to match or 3326 // Phi nodes from different basic blocks then 3327 // we will not be able to match. 3328 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3329 FirstPhi->getParent() != SecondPhi->getParent()) 3330 return false; 3331 3332 // If we already matched them then continue. 3333 if (Matcher.count({ FirstPhi, SecondPhi })) 3334 continue; 3335 // So the values are different and does not match. So we need them to 3336 // match. (But we register no more than one match per PHI node, so that 3337 // we won't later try to replace them twice.) 3338 if (!MatchedPHIs.insert(FirstPhi).second) 3339 Matcher.insert({ FirstPhi, SecondPhi }); 3340 // But me must check it. 3341 WorkList.push_back({ FirstPhi, SecondPhi }); 3342 } 3343 } 3344 return true; 3345 } 3346 3347 /// For the given set of PHI nodes (in the SimplificationTracker) try 3348 /// to find their equivalents. 3349 /// Returns false if this matching fails and creation of new Phi is disabled. 3350 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3351 unsigned &PhiNotMatchedCount) { 3352 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3353 // order, so the replacements (ReplacePhi) are also done in a deterministic 3354 // order. 3355 SmallSetVector<PHIPair, 8> Matched; 3356 SmallPtrSet<PHINode *, 8> WillNotMatch; 3357 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3358 while (PhiNodesToMatch.size()) { 3359 PHINode *PHI = *PhiNodesToMatch.begin(); 3360 3361 // Add us, if no Phi nodes in the basic block we do not match. 3362 WillNotMatch.clear(); 3363 WillNotMatch.insert(PHI); 3364 3365 // Traverse all Phis until we found equivalent or fail to do that. 3366 bool IsMatched = false; 3367 for (auto &P : PHI->getParent()->phis()) { 3368 if (&P == PHI) 3369 continue; 3370 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3371 break; 3372 // If it does not match, collect all Phi nodes from matcher. 3373 // if we end up with no match, them all these Phi nodes will not match 3374 // later. 3375 for (auto M : Matched) 3376 WillNotMatch.insert(M.first); 3377 Matched.clear(); 3378 } 3379 if (IsMatched) { 3380 // Replace all matched values and erase them. 3381 for (auto MV : Matched) 3382 ST.ReplacePhi(MV.first, MV.second); 3383 Matched.clear(); 3384 continue; 3385 } 3386 // If we are not allowed to create new nodes then bail out. 3387 if (!AllowNewPhiNodes) 3388 return false; 3389 // Just remove all seen values in matcher. They will not match anything. 3390 PhiNotMatchedCount += WillNotMatch.size(); 3391 for (auto *P : WillNotMatch) 3392 PhiNodesToMatch.erase(P); 3393 } 3394 return true; 3395 } 3396 /// Fill the placeholders with values from predecessors and simplify them. 3397 void FillPlaceholders(FoldAddrToValueMapping &Map, 3398 SmallVectorImpl<Value *> &TraverseOrder, 3399 SimplificationTracker &ST) { 3400 while (!TraverseOrder.empty()) { 3401 Value *Current = TraverseOrder.pop_back_val(); 3402 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3403 Value *V = Map[Current]; 3404 3405 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3406 // CurrentValue also must be Select. 3407 auto *CurrentSelect = cast<SelectInst>(Current); 3408 auto *TrueValue = CurrentSelect->getTrueValue(); 3409 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3410 Select->setTrueValue(ST.Get(Map[TrueValue])); 3411 auto *FalseValue = CurrentSelect->getFalseValue(); 3412 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3413 Select->setFalseValue(ST.Get(Map[FalseValue])); 3414 } else { 3415 // Must be a Phi node then. 3416 PHINode *PHI = cast<PHINode>(V); 3417 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3418 // Fill the Phi node with values from predecessors. 3419 for (auto B : predecessors(PHI->getParent())) { 3420 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3421 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3422 PHI->addIncoming(ST.Get(Map[PV]), B); 3423 } 3424 } 3425 Map[Current] = ST.Simplify(V); 3426 } 3427 } 3428 3429 /// Starting from original value recursively iterates over def-use chain up to 3430 /// known ending values represented in a map. For each traversed phi/select 3431 /// inserts a placeholder Phi or Select. 3432 /// Reports all new created Phi/Select nodes by adding them to set. 3433 /// Also reports and order in what values have been traversed. 3434 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3435 SmallVectorImpl<Value *> &TraverseOrder, 3436 SimplificationTracker &ST) { 3437 SmallVector<Value *, 32> Worklist; 3438 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3439 "Address must be a Phi or Select node"); 3440 auto *Dummy = UndefValue::get(CommonType); 3441 Worklist.push_back(Original); 3442 while (!Worklist.empty()) { 3443 Value *Current = Worklist.pop_back_val(); 3444 // if it is already visited or it is an ending value then skip it. 3445 if (Map.find(Current) != Map.end()) 3446 continue; 3447 TraverseOrder.push_back(Current); 3448 3449 // CurrentValue must be a Phi node or select. All others must be covered 3450 // by anchors. 3451 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3452 // Is it OK to get metadata from OrigSelect?! 3453 // Create a Select placeholder with dummy value. 3454 SelectInst *Select = SelectInst::Create( 3455 CurrentSelect->getCondition(), Dummy, Dummy, 3456 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3457 Map[Current] = Select; 3458 ST.insertNewSelect(Select); 3459 // We are interested in True and False values. 3460 Worklist.push_back(CurrentSelect->getTrueValue()); 3461 Worklist.push_back(CurrentSelect->getFalseValue()); 3462 } else { 3463 // It must be a Phi node then. 3464 PHINode *CurrentPhi = cast<PHINode>(Current); 3465 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3466 PHINode *PHI = 3467 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3468 Map[Current] = PHI; 3469 ST.insertNewPhi(PHI); 3470 for (Value *P : CurrentPhi->incoming_values()) 3471 Worklist.push_back(P); 3472 } 3473 } 3474 } 3475 3476 bool addrModeCombiningAllowed() { 3477 if (DisableComplexAddrModes) 3478 return false; 3479 switch (DifferentField) { 3480 default: 3481 return false; 3482 case ExtAddrMode::BaseRegField: 3483 return AddrSinkCombineBaseReg; 3484 case ExtAddrMode::BaseGVField: 3485 return AddrSinkCombineBaseGV; 3486 case ExtAddrMode::BaseOffsField: 3487 return AddrSinkCombineBaseOffs; 3488 case ExtAddrMode::ScaledRegField: 3489 return AddrSinkCombineScaledReg; 3490 } 3491 } 3492 }; 3493 } // end anonymous namespace 3494 3495 /// Try adding ScaleReg*Scale to the current addressing mode. 3496 /// Return true and update AddrMode if this addr mode is legal for the target, 3497 /// false if not. 3498 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3499 unsigned Depth) { 3500 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3501 // mode. Just process that directly. 3502 if (Scale == 1) 3503 return matchAddr(ScaleReg, Depth); 3504 3505 // If the scale is 0, it takes nothing to add this. 3506 if (Scale == 0) 3507 return true; 3508 3509 // If we already have a scale of this value, we can add to it, otherwise, we 3510 // need an available scale field. 3511 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3512 return false; 3513 3514 ExtAddrMode TestAddrMode = AddrMode; 3515 3516 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3517 // [A+B + A*7] -> [B+A*8]. 3518 TestAddrMode.Scale += Scale; 3519 TestAddrMode.ScaledReg = ScaleReg; 3520 3521 // If the new address isn't legal, bail out. 3522 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3523 return false; 3524 3525 // It was legal, so commit it. 3526 AddrMode = TestAddrMode; 3527 3528 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3529 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3530 // X*Scale + C*Scale to addr mode. 3531 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3532 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3533 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3534 TestAddrMode.InBounds = false; 3535 TestAddrMode.ScaledReg = AddLHS; 3536 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3537 3538 // If this addressing mode is legal, commit it and remember that we folded 3539 // this instruction. 3540 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3541 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3542 AddrMode = TestAddrMode; 3543 return true; 3544 } 3545 } 3546 3547 // Otherwise, not (x+c)*scale, just return what we have. 3548 return true; 3549 } 3550 3551 /// This is a little filter, which returns true if an addressing computation 3552 /// involving I might be folded into a load/store accessing it. 3553 /// This doesn't need to be perfect, but needs to accept at least 3554 /// the set of instructions that MatchOperationAddr can. 3555 static bool MightBeFoldableInst(Instruction *I) { 3556 switch (I->getOpcode()) { 3557 case Instruction::BitCast: 3558 case Instruction::AddrSpaceCast: 3559 // Don't touch identity bitcasts. 3560 if (I->getType() == I->getOperand(0)->getType()) 3561 return false; 3562 return I->getType()->isIntOrPtrTy(); 3563 case Instruction::PtrToInt: 3564 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3565 return true; 3566 case Instruction::IntToPtr: 3567 // We know the input is intptr_t, so this is foldable. 3568 return true; 3569 case Instruction::Add: 3570 return true; 3571 case Instruction::Mul: 3572 case Instruction::Shl: 3573 // Can only handle X*C and X << C. 3574 return isa<ConstantInt>(I->getOperand(1)); 3575 case Instruction::GetElementPtr: 3576 return true; 3577 default: 3578 return false; 3579 } 3580 } 3581 3582 /// Check whether or not \p Val is a legal instruction for \p TLI. 3583 /// \note \p Val is assumed to be the product of some type promotion. 3584 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3585 /// to be legal, as the non-promoted value would have had the same state. 3586 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3587 const DataLayout &DL, Value *Val) { 3588 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3589 if (!PromotedInst) 3590 return false; 3591 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3592 // If the ISDOpcode is undefined, it was undefined before the promotion. 3593 if (!ISDOpcode) 3594 return true; 3595 // Otherwise, check if the promoted instruction is legal or not. 3596 return TLI.isOperationLegalOrCustom( 3597 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3598 } 3599 3600 namespace { 3601 3602 /// Hepler class to perform type promotion. 3603 class TypePromotionHelper { 3604 /// Utility function to add a promoted instruction \p ExtOpnd to 3605 /// \p PromotedInsts and record the type of extension we have seen. 3606 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3607 Instruction *ExtOpnd, 3608 bool IsSExt) { 3609 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3610 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3611 if (It != PromotedInsts.end()) { 3612 // If the new extension is same as original, the information in 3613 // PromotedInsts[ExtOpnd] is still correct. 3614 if (It->second.getInt() == ExtTy) 3615 return; 3616 3617 // Now the new extension is different from old extension, we make 3618 // the type information invalid by setting extension type to 3619 // BothExtension. 3620 ExtTy = BothExtension; 3621 } 3622 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3623 } 3624 3625 /// Utility function to query the original type of instruction \p Opnd 3626 /// with a matched extension type. If the extension doesn't match, we 3627 /// cannot use the information we had on the original type. 3628 /// BothExtension doesn't match any extension type. 3629 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3630 Instruction *Opnd, 3631 bool IsSExt) { 3632 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3633 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3634 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3635 return It->second.getPointer(); 3636 return nullptr; 3637 } 3638 3639 /// Utility function to check whether or not a sign or zero extension 3640 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3641 /// either using the operands of \p Inst or promoting \p Inst. 3642 /// The type of the extension is defined by \p IsSExt. 3643 /// In other words, check if: 3644 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3645 /// #1 Promotion applies: 3646 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3647 /// #2 Operand reuses: 3648 /// ext opnd1 to ConsideredExtType. 3649 /// \p PromotedInsts maps the instructions to their type before promotion. 3650 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3651 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3652 3653 /// Utility function to determine if \p OpIdx should be promoted when 3654 /// promoting \p Inst. 3655 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3656 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3657 } 3658 3659 /// Utility function to promote the operand of \p Ext when this 3660 /// operand is a promotable trunc or sext or zext. 3661 /// \p PromotedInsts maps the instructions to their type before promotion. 3662 /// \p CreatedInstsCost[out] contains the cost of all instructions 3663 /// created to promote the operand of Ext. 3664 /// Newly added extensions are inserted in \p Exts. 3665 /// Newly added truncates are inserted in \p Truncs. 3666 /// Should never be called directly. 3667 /// \return The promoted value which is used instead of Ext. 3668 static Value *promoteOperandForTruncAndAnyExt( 3669 Instruction *Ext, TypePromotionTransaction &TPT, 3670 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3671 SmallVectorImpl<Instruction *> *Exts, 3672 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3673 3674 /// Utility function to promote the operand of \p Ext when this 3675 /// operand is promotable and is not a supported trunc or sext. 3676 /// \p PromotedInsts maps the instructions to their type before promotion. 3677 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3678 /// created to promote the operand of Ext. 3679 /// Newly added extensions are inserted in \p Exts. 3680 /// Newly added truncates are inserted in \p Truncs. 3681 /// Should never be called directly. 3682 /// \return The promoted value which is used instead of Ext. 3683 static Value *promoteOperandForOther(Instruction *Ext, 3684 TypePromotionTransaction &TPT, 3685 InstrToOrigTy &PromotedInsts, 3686 unsigned &CreatedInstsCost, 3687 SmallVectorImpl<Instruction *> *Exts, 3688 SmallVectorImpl<Instruction *> *Truncs, 3689 const TargetLowering &TLI, bool IsSExt); 3690 3691 /// \see promoteOperandForOther. 3692 static Value *signExtendOperandForOther( 3693 Instruction *Ext, TypePromotionTransaction &TPT, 3694 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3695 SmallVectorImpl<Instruction *> *Exts, 3696 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3697 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3698 Exts, Truncs, TLI, true); 3699 } 3700 3701 /// \see promoteOperandForOther. 3702 static Value *zeroExtendOperandForOther( 3703 Instruction *Ext, TypePromotionTransaction &TPT, 3704 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3705 SmallVectorImpl<Instruction *> *Exts, 3706 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3707 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3708 Exts, Truncs, TLI, false); 3709 } 3710 3711 public: 3712 /// Type for the utility function that promotes the operand of Ext. 3713 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3714 InstrToOrigTy &PromotedInsts, 3715 unsigned &CreatedInstsCost, 3716 SmallVectorImpl<Instruction *> *Exts, 3717 SmallVectorImpl<Instruction *> *Truncs, 3718 const TargetLowering &TLI); 3719 3720 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3721 /// action to promote the operand of \p Ext instead of using Ext. 3722 /// \return NULL if no promotable action is possible with the current 3723 /// sign extension. 3724 /// \p InsertedInsts keeps track of all the instructions inserted by the 3725 /// other CodeGenPrepare optimizations. This information is important 3726 /// because we do not want to promote these instructions as CodeGenPrepare 3727 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3728 /// \p PromotedInsts maps the instructions to their type before promotion. 3729 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3730 const TargetLowering &TLI, 3731 const InstrToOrigTy &PromotedInsts); 3732 }; 3733 3734 } // end anonymous namespace 3735 3736 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3737 Type *ConsideredExtType, 3738 const InstrToOrigTy &PromotedInsts, 3739 bool IsSExt) { 3740 // The promotion helper does not know how to deal with vector types yet. 3741 // To be able to fix that, we would need to fix the places where we 3742 // statically extend, e.g., constants and such. 3743 if (Inst->getType()->isVectorTy()) 3744 return false; 3745 3746 // We can always get through zext. 3747 if (isa<ZExtInst>(Inst)) 3748 return true; 3749 3750 // sext(sext) is ok too. 3751 if (IsSExt && isa<SExtInst>(Inst)) 3752 return true; 3753 3754 // We can get through binary operator, if it is legal. In other words, the 3755 // binary operator must have a nuw or nsw flag. 3756 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3757 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3758 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3759 (IsSExt && BinOp->hasNoSignedWrap()))) 3760 return true; 3761 3762 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3763 if ((Inst->getOpcode() == Instruction::And || 3764 Inst->getOpcode() == Instruction::Or)) 3765 return true; 3766 3767 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3768 if (Inst->getOpcode() == Instruction::Xor) { 3769 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3770 // Make sure it is not a NOT. 3771 if (Cst && !Cst->getValue().isAllOnesValue()) 3772 return true; 3773 } 3774 3775 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3776 // It may change a poisoned value into a regular value, like 3777 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3778 // poisoned value regular value 3779 // It should be OK since undef covers valid value. 3780 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3781 return true; 3782 3783 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3784 // It may change a poisoned value into a regular value, like 3785 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3786 // poisoned value regular value 3787 // It should be OK since undef covers valid value. 3788 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3789 const Instruction *ExtInst = 3790 dyn_cast<const Instruction>(*Inst->user_begin()); 3791 if (ExtInst->hasOneUse()) { 3792 const Instruction *AndInst = 3793 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3794 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3795 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3796 if (Cst && 3797 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3798 return true; 3799 } 3800 } 3801 } 3802 3803 // Check if we can do the following simplification. 3804 // ext(trunc(opnd)) --> ext(opnd) 3805 if (!isa<TruncInst>(Inst)) 3806 return false; 3807 3808 Value *OpndVal = Inst->getOperand(0); 3809 // Check if we can use this operand in the extension. 3810 // If the type is larger than the result type of the extension, we cannot. 3811 if (!OpndVal->getType()->isIntegerTy() || 3812 OpndVal->getType()->getIntegerBitWidth() > 3813 ConsideredExtType->getIntegerBitWidth()) 3814 return false; 3815 3816 // If the operand of the truncate is not an instruction, we will not have 3817 // any information on the dropped bits. 3818 // (Actually we could for constant but it is not worth the extra logic). 3819 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3820 if (!Opnd) 3821 return false; 3822 3823 // Check if the source of the type is narrow enough. 3824 // I.e., check that trunc just drops extended bits of the same kind of 3825 // the extension. 3826 // #1 get the type of the operand and check the kind of the extended bits. 3827 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3828 if (OpndType) 3829 ; 3830 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3831 OpndType = Opnd->getOperand(0)->getType(); 3832 else 3833 return false; 3834 3835 // #2 check that the truncate just drops extended bits. 3836 return Inst->getType()->getIntegerBitWidth() >= 3837 OpndType->getIntegerBitWidth(); 3838 } 3839 3840 TypePromotionHelper::Action TypePromotionHelper::getAction( 3841 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3842 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3843 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3844 "Unexpected instruction type"); 3845 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3846 Type *ExtTy = Ext->getType(); 3847 bool IsSExt = isa<SExtInst>(Ext); 3848 // If the operand of the extension is not an instruction, we cannot 3849 // get through. 3850 // If it, check we can get through. 3851 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3852 return nullptr; 3853 3854 // Do not promote if the operand has been added by codegenprepare. 3855 // Otherwise, it means we are undoing an optimization that is likely to be 3856 // redone, thus causing potential infinite loop. 3857 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3858 return nullptr; 3859 3860 // SExt or Trunc instructions. 3861 // Return the related handler. 3862 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3863 isa<ZExtInst>(ExtOpnd)) 3864 return promoteOperandForTruncAndAnyExt; 3865 3866 // Regular instruction. 3867 // Abort early if we will have to insert non-free instructions. 3868 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3869 return nullptr; 3870 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3871 } 3872 3873 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3874 Instruction *SExt, TypePromotionTransaction &TPT, 3875 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3876 SmallVectorImpl<Instruction *> *Exts, 3877 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3878 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3879 // get through it and this method should not be called. 3880 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3881 Value *ExtVal = SExt; 3882 bool HasMergedNonFreeExt = false; 3883 if (isa<ZExtInst>(SExtOpnd)) { 3884 // Replace s|zext(zext(opnd)) 3885 // => zext(opnd). 3886 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3887 Value *ZExt = 3888 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3889 TPT.replaceAllUsesWith(SExt, ZExt); 3890 TPT.eraseInstruction(SExt); 3891 ExtVal = ZExt; 3892 } else { 3893 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3894 // => z|sext(opnd). 3895 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3896 } 3897 CreatedInstsCost = 0; 3898 3899 // Remove dead code. 3900 if (SExtOpnd->use_empty()) 3901 TPT.eraseInstruction(SExtOpnd); 3902 3903 // Check if the extension is still needed. 3904 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3905 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3906 if (ExtInst) { 3907 if (Exts) 3908 Exts->push_back(ExtInst); 3909 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3910 } 3911 return ExtVal; 3912 } 3913 3914 // At this point we have: ext ty opnd to ty. 3915 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3916 Value *NextVal = ExtInst->getOperand(0); 3917 TPT.eraseInstruction(ExtInst, NextVal); 3918 return NextVal; 3919 } 3920 3921 Value *TypePromotionHelper::promoteOperandForOther( 3922 Instruction *Ext, TypePromotionTransaction &TPT, 3923 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3924 SmallVectorImpl<Instruction *> *Exts, 3925 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3926 bool IsSExt) { 3927 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3928 // get through it and this method should not be called. 3929 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3930 CreatedInstsCost = 0; 3931 if (!ExtOpnd->hasOneUse()) { 3932 // ExtOpnd will be promoted. 3933 // All its uses, but Ext, will need to use a truncated value of the 3934 // promoted version. 3935 // Create the truncate now. 3936 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3937 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3938 // Insert it just after the definition. 3939 ITrunc->moveAfter(ExtOpnd); 3940 if (Truncs) 3941 Truncs->push_back(ITrunc); 3942 } 3943 3944 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3945 // Restore the operand of Ext (which has been replaced by the previous call 3946 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3947 TPT.setOperand(Ext, 0, ExtOpnd); 3948 } 3949 3950 // Get through the Instruction: 3951 // 1. Update its type. 3952 // 2. Replace the uses of Ext by Inst. 3953 // 3. Extend each operand that needs to be extended. 3954 3955 // Remember the original type of the instruction before promotion. 3956 // This is useful to know that the high bits are sign extended bits. 3957 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3958 // Step #1. 3959 TPT.mutateType(ExtOpnd, Ext->getType()); 3960 // Step #2. 3961 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3962 // Step #3. 3963 Instruction *ExtForOpnd = Ext; 3964 3965 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3966 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3967 ++OpIdx) { 3968 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3969 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3970 !shouldExtOperand(ExtOpnd, OpIdx)) { 3971 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3972 continue; 3973 } 3974 // Check if we can statically extend the operand. 3975 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3976 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3977 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3978 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3979 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3980 : Cst->getValue().zext(BitWidth); 3981 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3982 continue; 3983 } 3984 // UndefValue are typed, so we have to statically sign extend them. 3985 if (isa<UndefValue>(Opnd)) { 3986 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3987 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3988 continue; 3989 } 3990 3991 // Otherwise we have to explicitly sign extend the operand. 3992 // Check if Ext was reused to extend an operand. 3993 if (!ExtForOpnd) { 3994 // If yes, create a new one. 3995 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3996 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3997 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3998 if (!isa<Instruction>(ValForExtOpnd)) { 3999 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4000 continue; 4001 } 4002 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4003 } 4004 if (Exts) 4005 Exts->push_back(ExtForOpnd); 4006 TPT.setOperand(ExtForOpnd, 0, Opnd); 4007 4008 // Move the sign extension before the insertion point. 4009 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4010 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4011 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4012 // If more sext are required, new instructions will have to be created. 4013 ExtForOpnd = nullptr; 4014 } 4015 if (ExtForOpnd == Ext) { 4016 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4017 TPT.eraseInstruction(Ext); 4018 } 4019 return ExtOpnd; 4020 } 4021 4022 /// Check whether or not promoting an instruction to a wider type is profitable. 4023 /// \p NewCost gives the cost of extension instructions created by the 4024 /// promotion. 4025 /// \p OldCost gives the cost of extension instructions before the promotion 4026 /// plus the number of instructions that have been 4027 /// matched in the addressing mode the promotion. 4028 /// \p PromotedOperand is the value that has been promoted. 4029 /// \return True if the promotion is profitable, false otherwise. 4030 bool AddressingModeMatcher::isPromotionProfitable( 4031 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4032 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4033 << '\n'); 4034 // The cost of the new extensions is greater than the cost of the 4035 // old extension plus what we folded. 4036 // This is not profitable. 4037 if (NewCost > OldCost) 4038 return false; 4039 if (NewCost < OldCost) 4040 return true; 4041 // The promotion is neutral but it may help folding the sign extension in 4042 // loads for instance. 4043 // Check that we did not create an illegal instruction. 4044 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4045 } 4046 4047 /// Given an instruction or constant expr, see if we can fold the operation 4048 /// into the addressing mode. If so, update the addressing mode and return 4049 /// true, otherwise return false without modifying AddrMode. 4050 /// If \p MovedAway is not NULL, it contains the information of whether or 4051 /// not AddrInst has to be folded into the addressing mode on success. 4052 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4053 /// because it has been moved away. 4054 /// Thus AddrInst must not be added in the matched instructions. 4055 /// This state can happen when AddrInst is a sext, since it may be moved away. 4056 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4057 /// not be referenced anymore. 4058 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4059 unsigned Depth, 4060 bool *MovedAway) { 4061 // Avoid exponential behavior on extremely deep expression trees. 4062 if (Depth >= 5) return false; 4063 4064 // By default, all matched instructions stay in place. 4065 if (MovedAway) 4066 *MovedAway = false; 4067 4068 switch (Opcode) { 4069 case Instruction::PtrToInt: 4070 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4071 return matchAddr(AddrInst->getOperand(0), Depth); 4072 case Instruction::IntToPtr: { 4073 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4074 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4075 // This inttoptr is a no-op if the integer type is pointer sized. 4076 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4077 return matchAddr(AddrInst->getOperand(0), Depth); 4078 return false; 4079 } 4080 case Instruction::BitCast: 4081 // BitCast is always a noop, and we can handle it as long as it is 4082 // int->int or pointer->pointer (we don't want int<->fp or something). 4083 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4084 // Don't touch identity bitcasts. These were probably put here by LSR, 4085 // and we don't want to mess around with them. Assume it knows what it 4086 // is doing. 4087 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4088 return matchAddr(AddrInst->getOperand(0), Depth); 4089 return false; 4090 case Instruction::AddrSpaceCast: { 4091 unsigned SrcAS 4092 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4093 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4094 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4095 return matchAddr(AddrInst->getOperand(0), Depth); 4096 return false; 4097 } 4098 case Instruction::Add: { 4099 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4100 ExtAddrMode BackupAddrMode = AddrMode; 4101 unsigned OldSize = AddrModeInsts.size(); 4102 // Start a transaction at this point. 4103 // The LHS may match but not the RHS. 4104 // Therefore, we need a higher level restoration point to undo partially 4105 // matched operation. 4106 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4107 TPT.getRestorationPoint(); 4108 4109 AddrMode.InBounds = false; 4110 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4111 matchAddr(AddrInst->getOperand(0), Depth+1)) 4112 return true; 4113 4114 // Restore the old addr mode info. 4115 AddrMode = BackupAddrMode; 4116 AddrModeInsts.resize(OldSize); 4117 TPT.rollback(LastKnownGood); 4118 4119 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4120 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4121 matchAddr(AddrInst->getOperand(1), Depth+1)) 4122 return true; 4123 4124 // Otherwise we definitely can't merge the ADD in. 4125 AddrMode = BackupAddrMode; 4126 AddrModeInsts.resize(OldSize); 4127 TPT.rollback(LastKnownGood); 4128 break; 4129 } 4130 //case Instruction::Or: 4131 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4132 //break; 4133 case Instruction::Mul: 4134 case Instruction::Shl: { 4135 // Can only handle X*C and X << C. 4136 AddrMode.InBounds = false; 4137 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4138 if (!RHS || RHS->getBitWidth() > 64) 4139 return false; 4140 int64_t Scale = RHS->getSExtValue(); 4141 if (Opcode == Instruction::Shl) 4142 Scale = 1LL << Scale; 4143 4144 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4145 } 4146 case Instruction::GetElementPtr: { 4147 // Scan the GEP. We check it if it contains constant offsets and at most 4148 // one variable offset. 4149 int VariableOperand = -1; 4150 unsigned VariableScale = 0; 4151 4152 int64_t ConstantOffset = 0; 4153 gep_type_iterator GTI = gep_type_begin(AddrInst); 4154 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4155 if (StructType *STy = GTI.getStructTypeOrNull()) { 4156 const StructLayout *SL = DL.getStructLayout(STy); 4157 unsigned Idx = 4158 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4159 ConstantOffset += SL->getElementOffset(Idx); 4160 } else { 4161 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4162 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4163 const APInt &CVal = CI->getValue(); 4164 if (CVal.getMinSignedBits() <= 64) { 4165 ConstantOffset += CVal.getSExtValue() * TypeSize; 4166 continue; 4167 } 4168 } 4169 if (TypeSize) { // Scales of zero don't do anything. 4170 // We only allow one variable index at the moment. 4171 if (VariableOperand != -1) 4172 return false; 4173 4174 // Remember the variable index. 4175 VariableOperand = i; 4176 VariableScale = TypeSize; 4177 } 4178 } 4179 } 4180 4181 // A common case is for the GEP to only do a constant offset. In this case, 4182 // just add it to the disp field and check validity. 4183 if (VariableOperand == -1) { 4184 AddrMode.BaseOffs += ConstantOffset; 4185 if (ConstantOffset == 0 || 4186 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4187 // Check to see if we can fold the base pointer in too. 4188 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4189 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4190 AddrMode.InBounds = false; 4191 return true; 4192 } 4193 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4194 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4195 ConstantOffset > 0) { 4196 // Record GEPs with non-zero offsets as candidates for splitting in the 4197 // event that the offset cannot fit into the r+i addressing mode. 4198 // Simple and common case that only one GEP is used in calculating the 4199 // address for the memory access. 4200 Value *Base = AddrInst->getOperand(0); 4201 auto *BaseI = dyn_cast<Instruction>(Base); 4202 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4203 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4204 (BaseI && !isa<CastInst>(BaseI) && 4205 !isa<GetElementPtrInst>(BaseI))) { 4206 // Make sure the parent block allows inserting non-PHI instructions 4207 // before the terminator. 4208 BasicBlock *Parent = 4209 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4210 if (!Parent->getTerminator()->isEHPad()) 4211 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4212 } 4213 } 4214 AddrMode.BaseOffs -= ConstantOffset; 4215 return false; 4216 } 4217 4218 // Save the valid addressing mode in case we can't match. 4219 ExtAddrMode BackupAddrMode = AddrMode; 4220 unsigned OldSize = AddrModeInsts.size(); 4221 4222 // See if the scale and offset amount is valid for this target. 4223 AddrMode.BaseOffs += ConstantOffset; 4224 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4225 AddrMode.InBounds = false; 4226 4227 // Match the base operand of the GEP. 4228 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4229 // If it couldn't be matched, just stuff the value in a register. 4230 if (AddrMode.HasBaseReg) { 4231 AddrMode = BackupAddrMode; 4232 AddrModeInsts.resize(OldSize); 4233 return false; 4234 } 4235 AddrMode.HasBaseReg = true; 4236 AddrMode.BaseReg = AddrInst->getOperand(0); 4237 } 4238 4239 // Match the remaining variable portion of the GEP. 4240 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4241 Depth)) { 4242 // If it couldn't be matched, try stuffing the base into a register 4243 // instead of matching it, and retrying the match of the scale. 4244 AddrMode = BackupAddrMode; 4245 AddrModeInsts.resize(OldSize); 4246 if (AddrMode.HasBaseReg) 4247 return false; 4248 AddrMode.HasBaseReg = true; 4249 AddrMode.BaseReg = AddrInst->getOperand(0); 4250 AddrMode.BaseOffs += ConstantOffset; 4251 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4252 VariableScale, Depth)) { 4253 // If even that didn't work, bail. 4254 AddrMode = BackupAddrMode; 4255 AddrModeInsts.resize(OldSize); 4256 return false; 4257 } 4258 } 4259 4260 return true; 4261 } 4262 case Instruction::SExt: 4263 case Instruction::ZExt: { 4264 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4265 if (!Ext) 4266 return false; 4267 4268 // Try to move this ext out of the way of the addressing mode. 4269 // Ask for a method for doing so. 4270 TypePromotionHelper::Action TPH = 4271 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4272 if (!TPH) 4273 return false; 4274 4275 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4276 TPT.getRestorationPoint(); 4277 unsigned CreatedInstsCost = 0; 4278 unsigned ExtCost = !TLI.isExtFree(Ext); 4279 Value *PromotedOperand = 4280 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4281 // SExt has been moved away. 4282 // Thus either it will be rematched later in the recursive calls or it is 4283 // gone. Anyway, we must not fold it into the addressing mode at this point. 4284 // E.g., 4285 // op = add opnd, 1 4286 // idx = ext op 4287 // addr = gep base, idx 4288 // is now: 4289 // promotedOpnd = ext opnd <- no match here 4290 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4291 // addr = gep base, op <- match 4292 if (MovedAway) 4293 *MovedAway = true; 4294 4295 assert(PromotedOperand && 4296 "TypePromotionHelper should have filtered out those cases"); 4297 4298 ExtAddrMode BackupAddrMode = AddrMode; 4299 unsigned OldSize = AddrModeInsts.size(); 4300 4301 if (!matchAddr(PromotedOperand, Depth) || 4302 // The total of the new cost is equal to the cost of the created 4303 // instructions. 4304 // The total of the old cost is equal to the cost of the extension plus 4305 // what we have saved in the addressing mode. 4306 !isPromotionProfitable(CreatedInstsCost, 4307 ExtCost + (AddrModeInsts.size() - OldSize), 4308 PromotedOperand)) { 4309 AddrMode = BackupAddrMode; 4310 AddrModeInsts.resize(OldSize); 4311 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4312 TPT.rollback(LastKnownGood); 4313 return false; 4314 } 4315 return true; 4316 } 4317 } 4318 return false; 4319 } 4320 4321 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4322 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4323 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4324 /// for the target. 4325 /// 4326 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4327 // Start a transaction at this point that we will rollback if the matching 4328 // fails. 4329 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4330 TPT.getRestorationPoint(); 4331 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4332 // Fold in immediates if legal for the target. 4333 AddrMode.BaseOffs += CI->getSExtValue(); 4334 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4335 return true; 4336 AddrMode.BaseOffs -= CI->getSExtValue(); 4337 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4338 // If this is a global variable, try to fold it into the addressing mode. 4339 if (!AddrMode.BaseGV) { 4340 AddrMode.BaseGV = GV; 4341 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4342 return true; 4343 AddrMode.BaseGV = nullptr; 4344 } 4345 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4346 ExtAddrMode BackupAddrMode = AddrMode; 4347 unsigned OldSize = AddrModeInsts.size(); 4348 4349 // Check to see if it is possible to fold this operation. 4350 bool MovedAway = false; 4351 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4352 // This instruction may have been moved away. If so, there is nothing 4353 // to check here. 4354 if (MovedAway) 4355 return true; 4356 // Okay, it's possible to fold this. Check to see if it is actually 4357 // *profitable* to do so. We use a simple cost model to avoid increasing 4358 // register pressure too much. 4359 if (I->hasOneUse() || 4360 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4361 AddrModeInsts.push_back(I); 4362 return true; 4363 } 4364 4365 // It isn't profitable to do this, roll back. 4366 //cerr << "NOT FOLDING: " << *I; 4367 AddrMode = BackupAddrMode; 4368 AddrModeInsts.resize(OldSize); 4369 TPT.rollback(LastKnownGood); 4370 } 4371 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4372 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4373 return true; 4374 TPT.rollback(LastKnownGood); 4375 } else if (isa<ConstantPointerNull>(Addr)) { 4376 // Null pointer gets folded without affecting the addressing mode. 4377 return true; 4378 } 4379 4380 // Worse case, the target should support [reg] addressing modes. :) 4381 if (!AddrMode.HasBaseReg) { 4382 AddrMode.HasBaseReg = true; 4383 AddrMode.BaseReg = Addr; 4384 // Still check for legality in case the target supports [imm] but not [i+r]. 4385 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4386 return true; 4387 AddrMode.HasBaseReg = false; 4388 AddrMode.BaseReg = nullptr; 4389 } 4390 4391 // If the base register is already taken, see if we can do [r+r]. 4392 if (AddrMode.Scale == 0) { 4393 AddrMode.Scale = 1; 4394 AddrMode.ScaledReg = Addr; 4395 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4396 return true; 4397 AddrMode.Scale = 0; 4398 AddrMode.ScaledReg = nullptr; 4399 } 4400 // Couldn't match. 4401 TPT.rollback(LastKnownGood); 4402 return false; 4403 } 4404 4405 /// Check to see if all uses of OpVal by the specified inline asm call are due 4406 /// to memory operands. If so, return true, otherwise return false. 4407 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4408 const TargetLowering &TLI, 4409 const TargetRegisterInfo &TRI) { 4410 const Function *F = CI->getFunction(); 4411 TargetLowering::AsmOperandInfoVector TargetConstraints = 4412 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4413 ImmutableCallSite(CI)); 4414 4415 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4416 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4417 4418 // Compute the constraint code and ConstraintType to use. 4419 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4420 4421 // If this asm operand is our Value*, and if it isn't an indirect memory 4422 // operand, we can't fold it! 4423 if (OpInfo.CallOperandVal == OpVal && 4424 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4425 !OpInfo.isIndirect)) 4426 return false; 4427 } 4428 4429 return true; 4430 } 4431 4432 // Max number of memory uses to look at before aborting the search to conserve 4433 // compile time. 4434 static constexpr int MaxMemoryUsesToScan = 20; 4435 4436 /// Recursively walk all the uses of I until we find a memory use. 4437 /// If we find an obviously non-foldable instruction, return true. 4438 /// Add the ultimately found memory instructions to MemoryUses. 4439 static bool FindAllMemoryUses( 4440 Instruction *I, 4441 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4442 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4443 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4444 // If we already considered this instruction, we're done. 4445 if (!ConsideredInsts.insert(I).second) 4446 return false; 4447 4448 // If this is an obviously unfoldable instruction, bail out. 4449 if (!MightBeFoldableInst(I)) 4450 return true; 4451 4452 const bool OptSize = I->getFunction()->hasOptSize(); 4453 4454 // Loop over all the uses, recursively processing them. 4455 for (Use &U : I->uses()) { 4456 // Conservatively return true if we're seeing a large number or a deep chain 4457 // of users. This avoids excessive compilation times in pathological cases. 4458 if (SeenInsts++ >= MaxMemoryUsesToScan) 4459 return true; 4460 4461 Instruction *UserI = cast<Instruction>(U.getUser()); 4462 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4463 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4464 continue; 4465 } 4466 4467 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4468 unsigned opNo = U.getOperandNo(); 4469 if (opNo != StoreInst::getPointerOperandIndex()) 4470 return true; // Storing addr, not into addr. 4471 MemoryUses.push_back(std::make_pair(SI, opNo)); 4472 continue; 4473 } 4474 4475 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4476 unsigned opNo = U.getOperandNo(); 4477 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4478 return true; // Storing addr, not into addr. 4479 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4480 continue; 4481 } 4482 4483 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4484 unsigned opNo = U.getOperandNo(); 4485 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4486 return true; // Storing addr, not into addr. 4487 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4488 continue; 4489 } 4490 4491 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4492 // If this is a cold call, we can sink the addressing calculation into 4493 // the cold path. See optimizeCallInst 4494 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4495 continue; 4496 4497 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4498 if (!IA) return true; 4499 4500 // If this is a memory operand, we're cool, otherwise bail out. 4501 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4502 return true; 4503 continue; 4504 } 4505 4506 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4507 SeenInsts)) 4508 return true; 4509 } 4510 4511 return false; 4512 } 4513 4514 /// Return true if Val is already known to be live at the use site that we're 4515 /// folding it into. If so, there is no cost to include it in the addressing 4516 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4517 /// instruction already. 4518 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4519 Value *KnownLive2) { 4520 // If Val is either of the known-live values, we know it is live! 4521 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4522 return true; 4523 4524 // All values other than instructions and arguments (e.g. constants) are live. 4525 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4526 4527 // If Val is a constant sized alloca in the entry block, it is live, this is 4528 // true because it is just a reference to the stack/frame pointer, which is 4529 // live for the whole function. 4530 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4531 if (AI->isStaticAlloca()) 4532 return true; 4533 4534 // Check to see if this value is already used in the memory instruction's 4535 // block. If so, it's already live into the block at the very least, so we 4536 // can reasonably fold it. 4537 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4538 } 4539 4540 /// It is possible for the addressing mode of the machine to fold the specified 4541 /// instruction into a load or store that ultimately uses it. 4542 /// However, the specified instruction has multiple uses. 4543 /// Given this, it may actually increase register pressure to fold it 4544 /// into the load. For example, consider this code: 4545 /// 4546 /// X = ... 4547 /// Y = X+1 4548 /// use(Y) -> nonload/store 4549 /// Z = Y+1 4550 /// load Z 4551 /// 4552 /// In this case, Y has multiple uses, and can be folded into the load of Z 4553 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4554 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4555 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4556 /// number of computations either. 4557 /// 4558 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4559 /// X was live across 'load Z' for other reasons, we actually *would* want to 4560 /// fold the addressing mode in the Z case. This would make Y die earlier. 4561 bool AddressingModeMatcher:: 4562 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4563 ExtAddrMode &AMAfter) { 4564 if (IgnoreProfitability) return true; 4565 4566 // AMBefore is the addressing mode before this instruction was folded into it, 4567 // and AMAfter is the addressing mode after the instruction was folded. Get 4568 // the set of registers referenced by AMAfter and subtract out those 4569 // referenced by AMBefore: this is the set of values which folding in this 4570 // address extends the lifetime of. 4571 // 4572 // Note that there are only two potential values being referenced here, 4573 // BaseReg and ScaleReg (global addresses are always available, as are any 4574 // folded immediates). 4575 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4576 4577 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4578 // lifetime wasn't extended by adding this instruction. 4579 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4580 BaseReg = nullptr; 4581 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4582 ScaledReg = nullptr; 4583 4584 // If folding this instruction (and it's subexprs) didn't extend any live 4585 // ranges, we're ok with it. 4586 if (!BaseReg && !ScaledReg) 4587 return true; 4588 4589 // If all uses of this instruction can have the address mode sunk into them, 4590 // we can remove the addressing mode and effectively trade one live register 4591 // for another (at worst.) In this context, folding an addressing mode into 4592 // the use is just a particularly nice way of sinking it. 4593 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4594 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4595 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4596 return false; // Has a non-memory, non-foldable use! 4597 4598 // Now that we know that all uses of this instruction are part of a chain of 4599 // computation involving only operations that could theoretically be folded 4600 // into a memory use, loop over each of these memory operation uses and see 4601 // if they could *actually* fold the instruction. The assumption is that 4602 // addressing modes are cheap and that duplicating the computation involved 4603 // many times is worthwhile, even on a fastpath. For sinking candidates 4604 // (i.e. cold call sites), this serves as a way to prevent excessive code 4605 // growth since most architectures have some reasonable small and fast way to 4606 // compute an effective address. (i.e LEA on x86) 4607 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4608 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4609 Instruction *User = MemoryUses[i].first; 4610 unsigned OpNo = MemoryUses[i].second; 4611 4612 // Get the access type of this use. If the use isn't a pointer, we don't 4613 // know what it accesses. 4614 Value *Address = User->getOperand(OpNo); 4615 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4616 if (!AddrTy) 4617 return false; 4618 Type *AddressAccessTy = AddrTy->getElementType(); 4619 unsigned AS = AddrTy->getAddressSpace(); 4620 4621 // Do a match against the root of this address, ignoring profitability. This 4622 // will tell us if the addressing mode for the memory operation will 4623 // *actually* cover the shared instruction. 4624 ExtAddrMode Result; 4625 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4626 0); 4627 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4628 TPT.getRestorationPoint(); 4629 AddressingModeMatcher Matcher( 4630 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4631 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4632 Matcher.IgnoreProfitability = true; 4633 bool Success = Matcher.matchAddr(Address, 0); 4634 (void)Success; assert(Success && "Couldn't select *anything*?"); 4635 4636 // The match was to check the profitability, the changes made are not 4637 // part of the original matcher. Therefore, they should be dropped 4638 // otherwise the original matcher will not present the right state. 4639 TPT.rollback(LastKnownGood); 4640 4641 // If the match didn't cover I, then it won't be shared by it. 4642 if (!is_contained(MatchedAddrModeInsts, I)) 4643 return false; 4644 4645 MatchedAddrModeInsts.clear(); 4646 } 4647 4648 return true; 4649 } 4650 4651 /// Return true if the specified values are defined in a 4652 /// different basic block than BB. 4653 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4654 if (Instruction *I = dyn_cast<Instruction>(V)) 4655 return I->getParent() != BB; 4656 return false; 4657 } 4658 4659 /// Sink addressing mode computation immediate before MemoryInst if doing so 4660 /// can be done without increasing register pressure. The need for the 4661 /// register pressure constraint means this can end up being an all or nothing 4662 /// decision for all uses of the same addressing computation. 4663 /// 4664 /// Load and Store Instructions often have addressing modes that can do 4665 /// significant amounts of computation. As such, instruction selection will try 4666 /// to get the load or store to do as much computation as possible for the 4667 /// program. The problem is that isel can only see within a single block. As 4668 /// such, we sink as much legal addressing mode work into the block as possible. 4669 /// 4670 /// This method is used to optimize both load/store and inline asms with memory 4671 /// operands. It's also used to sink addressing computations feeding into cold 4672 /// call sites into their (cold) basic block. 4673 /// 4674 /// The motivation for handling sinking into cold blocks is that doing so can 4675 /// both enable other address mode sinking (by satisfying the register pressure 4676 /// constraint above), and reduce register pressure globally (by removing the 4677 /// addressing mode computation from the fast path entirely.). 4678 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4679 Type *AccessTy, unsigned AddrSpace) { 4680 Value *Repl = Addr; 4681 4682 // Try to collapse single-value PHI nodes. This is necessary to undo 4683 // unprofitable PRE transformations. 4684 SmallVector<Value*, 8> worklist; 4685 SmallPtrSet<Value*, 16> Visited; 4686 worklist.push_back(Addr); 4687 4688 // Use a worklist to iteratively look through PHI and select nodes, and 4689 // ensure that the addressing mode obtained from the non-PHI/select roots of 4690 // the graph are compatible. 4691 bool PhiOrSelectSeen = false; 4692 SmallVector<Instruction*, 16> AddrModeInsts; 4693 const SimplifyQuery SQ(*DL, TLInfo); 4694 AddressingModeCombiner AddrModes(SQ, Addr); 4695 TypePromotionTransaction TPT(RemovedInsts); 4696 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4697 TPT.getRestorationPoint(); 4698 while (!worklist.empty()) { 4699 Value *V = worklist.back(); 4700 worklist.pop_back(); 4701 4702 // We allow traversing cyclic Phi nodes. 4703 // In case of success after this loop we ensure that traversing through 4704 // Phi nodes ends up with all cases to compute address of the form 4705 // BaseGV + Base + Scale * Index + Offset 4706 // where Scale and Offset are constans and BaseGV, Base and Index 4707 // are exactly the same Values in all cases. 4708 // It means that BaseGV, Scale and Offset dominate our memory instruction 4709 // and have the same value as they had in address computation represented 4710 // as Phi. So we can safely sink address computation to memory instruction. 4711 if (!Visited.insert(V).second) 4712 continue; 4713 4714 // For a PHI node, push all of its incoming values. 4715 if (PHINode *P = dyn_cast<PHINode>(V)) { 4716 for (Value *IncValue : P->incoming_values()) 4717 worklist.push_back(IncValue); 4718 PhiOrSelectSeen = true; 4719 continue; 4720 } 4721 // Similar for select. 4722 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4723 worklist.push_back(SI->getFalseValue()); 4724 worklist.push_back(SI->getTrueValue()); 4725 PhiOrSelectSeen = true; 4726 continue; 4727 } 4728 4729 // For non-PHIs, determine the addressing mode being computed. Note that 4730 // the result may differ depending on what other uses our candidate 4731 // addressing instructions might have. 4732 AddrModeInsts.clear(); 4733 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4734 0); 4735 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4736 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4737 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4738 4739 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4740 if (GEP && !NewGEPBases.count(GEP)) { 4741 // If splitting the underlying data structure can reduce the offset of a 4742 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4743 // previously split data structures. 4744 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4745 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4746 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4747 } 4748 4749 NewAddrMode.OriginalValue = V; 4750 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4751 break; 4752 } 4753 4754 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4755 // or we have multiple but either couldn't combine them or combining them 4756 // wouldn't do anything useful, bail out now. 4757 if (!AddrModes.combineAddrModes()) { 4758 TPT.rollback(LastKnownGood); 4759 return false; 4760 } 4761 TPT.commit(); 4762 4763 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4764 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4765 4766 // If all the instructions matched are already in this BB, don't do anything. 4767 // If we saw a Phi node then it is not local definitely, and if we saw a select 4768 // then we want to push the address calculation past it even if it's already 4769 // in this BB. 4770 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4771 return IsNonLocalValue(V, MemoryInst->getParent()); 4772 })) { 4773 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4774 << "\n"); 4775 return false; 4776 } 4777 4778 // Insert this computation right after this user. Since our caller is 4779 // scanning from the top of the BB to the bottom, reuse of the expr are 4780 // guaranteed to happen later. 4781 IRBuilder<> Builder(MemoryInst); 4782 4783 // Now that we determined the addressing expression we want to use and know 4784 // that we have to sink it into this block. Check to see if we have already 4785 // done this for some other load/store instr in this block. If so, reuse 4786 // the computation. Before attempting reuse, check if the address is valid 4787 // as it may have been erased. 4788 4789 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4790 4791 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4792 if (SunkAddr) { 4793 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4794 << " for " << *MemoryInst << "\n"); 4795 if (SunkAddr->getType() != Addr->getType()) 4796 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4797 } else if (AddrSinkUsingGEPs || 4798 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4799 // By default, we use the GEP-based method when AA is used later. This 4800 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4801 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4802 << " for " << *MemoryInst << "\n"); 4803 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4804 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4805 4806 // First, find the pointer. 4807 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4808 ResultPtr = AddrMode.BaseReg; 4809 AddrMode.BaseReg = nullptr; 4810 } 4811 4812 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4813 // We can't add more than one pointer together, nor can we scale a 4814 // pointer (both of which seem meaningless). 4815 if (ResultPtr || AddrMode.Scale != 1) 4816 return false; 4817 4818 ResultPtr = AddrMode.ScaledReg; 4819 AddrMode.Scale = 0; 4820 } 4821 4822 // It is only safe to sign extend the BaseReg if we know that the math 4823 // required to create it did not overflow before we extend it. Since 4824 // the original IR value was tossed in favor of a constant back when 4825 // the AddrMode was created we need to bail out gracefully if widths 4826 // do not match instead of extending it. 4827 // 4828 // (See below for code to add the scale.) 4829 if (AddrMode.Scale) { 4830 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4831 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4832 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4833 return false; 4834 } 4835 4836 if (AddrMode.BaseGV) { 4837 if (ResultPtr) 4838 return false; 4839 4840 ResultPtr = AddrMode.BaseGV; 4841 } 4842 4843 // If the real base value actually came from an inttoptr, then the matcher 4844 // will look through it and provide only the integer value. In that case, 4845 // use it here. 4846 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4847 if (!ResultPtr && AddrMode.BaseReg) { 4848 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4849 "sunkaddr"); 4850 AddrMode.BaseReg = nullptr; 4851 } else if (!ResultPtr && AddrMode.Scale == 1) { 4852 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4853 "sunkaddr"); 4854 AddrMode.Scale = 0; 4855 } 4856 } 4857 4858 if (!ResultPtr && 4859 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4860 SunkAddr = Constant::getNullValue(Addr->getType()); 4861 } else if (!ResultPtr) { 4862 return false; 4863 } else { 4864 Type *I8PtrTy = 4865 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4866 Type *I8Ty = Builder.getInt8Ty(); 4867 4868 // Start with the base register. Do this first so that subsequent address 4869 // matching finds it last, which will prevent it from trying to match it 4870 // as the scaled value in case it happens to be a mul. That would be 4871 // problematic if we've sunk a different mul for the scale, because then 4872 // we'd end up sinking both muls. 4873 if (AddrMode.BaseReg) { 4874 Value *V = AddrMode.BaseReg; 4875 if (V->getType() != IntPtrTy) 4876 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4877 4878 ResultIndex = V; 4879 } 4880 4881 // Add the scale value. 4882 if (AddrMode.Scale) { 4883 Value *V = AddrMode.ScaledReg; 4884 if (V->getType() == IntPtrTy) { 4885 // done. 4886 } else { 4887 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4888 cast<IntegerType>(V->getType())->getBitWidth() && 4889 "We can't transform if ScaledReg is too narrow"); 4890 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4891 } 4892 4893 if (AddrMode.Scale != 1) 4894 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4895 "sunkaddr"); 4896 if (ResultIndex) 4897 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4898 else 4899 ResultIndex = V; 4900 } 4901 4902 // Add in the Base Offset if present. 4903 if (AddrMode.BaseOffs) { 4904 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4905 if (ResultIndex) { 4906 // We need to add this separately from the scale above to help with 4907 // SDAG consecutive load/store merging. 4908 if (ResultPtr->getType() != I8PtrTy) 4909 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4910 ResultPtr = 4911 AddrMode.InBounds 4912 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4913 "sunkaddr") 4914 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4915 } 4916 4917 ResultIndex = V; 4918 } 4919 4920 if (!ResultIndex) { 4921 SunkAddr = ResultPtr; 4922 } else { 4923 if (ResultPtr->getType() != I8PtrTy) 4924 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4925 SunkAddr = 4926 AddrMode.InBounds 4927 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4928 "sunkaddr") 4929 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4930 } 4931 4932 if (SunkAddr->getType() != Addr->getType()) 4933 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4934 } 4935 } else { 4936 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4937 // non-integral pointers, so in that case bail out now. 4938 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4939 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4940 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4941 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4942 if (DL->isNonIntegralPointerType(Addr->getType()) || 4943 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4944 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4945 (AddrMode.BaseGV && 4946 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4947 return false; 4948 4949 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4950 << " for " << *MemoryInst << "\n"); 4951 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4952 Value *Result = nullptr; 4953 4954 // Start with the base register. Do this first so that subsequent address 4955 // matching finds it last, which will prevent it from trying to match it 4956 // as the scaled value in case it happens to be a mul. That would be 4957 // problematic if we've sunk a different mul for the scale, because then 4958 // we'd end up sinking both muls. 4959 if (AddrMode.BaseReg) { 4960 Value *V = AddrMode.BaseReg; 4961 if (V->getType()->isPointerTy()) 4962 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4963 if (V->getType() != IntPtrTy) 4964 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4965 Result = V; 4966 } 4967 4968 // Add the scale value. 4969 if (AddrMode.Scale) { 4970 Value *V = AddrMode.ScaledReg; 4971 if (V->getType() == IntPtrTy) { 4972 // done. 4973 } else if (V->getType()->isPointerTy()) { 4974 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4975 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4976 cast<IntegerType>(V->getType())->getBitWidth()) { 4977 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4978 } else { 4979 // It is only safe to sign extend the BaseReg if we know that the math 4980 // required to create it did not overflow before we extend it. Since 4981 // the original IR value was tossed in favor of a constant back when 4982 // the AddrMode was created we need to bail out gracefully if widths 4983 // do not match instead of extending it. 4984 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4985 if (I && (Result != AddrMode.BaseReg)) 4986 I->eraseFromParent(); 4987 return false; 4988 } 4989 if (AddrMode.Scale != 1) 4990 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4991 "sunkaddr"); 4992 if (Result) 4993 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4994 else 4995 Result = V; 4996 } 4997 4998 // Add in the BaseGV if present. 4999 if (AddrMode.BaseGV) { 5000 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5001 if (Result) 5002 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5003 else 5004 Result = V; 5005 } 5006 5007 // Add in the Base Offset if present. 5008 if (AddrMode.BaseOffs) { 5009 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5010 if (Result) 5011 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5012 else 5013 Result = V; 5014 } 5015 5016 if (!Result) 5017 SunkAddr = Constant::getNullValue(Addr->getType()); 5018 else 5019 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5020 } 5021 5022 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5023 // Store the newly computed address into the cache. In the case we reused a 5024 // value, this should be idempotent. 5025 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5026 5027 // If we have no uses, recursively delete the value and all dead instructions 5028 // using it. 5029 if (Repl->use_empty()) { 5030 // This can cause recursive deletion, which can invalidate our iterator. 5031 // Use a WeakTrackingVH to hold onto it in case this happens. 5032 Value *CurValue = &*CurInstIterator; 5033 WeakTrackingVH IterHandle(CurValue); 5034 BasicBlock *BB = CurInstIterator->getParent(); 5035 5036 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5037 5038 if (IterHandle != CurValue) { 5039 // If the iterator instruction was recursively deleted, start over at the 5040 // start of the block. 5041 CurInstIterator = BB->begin(); 5042 SunkAddrs.clear(); 5043 } 5044 } 5045 ++NumMemoryInsts; 5046 return true; 5047 } 5048 5049 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5050 /// address computing into the block when possible / profitable. 5051 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5052 bool MadeChange = false; 5053 5054 const TargetRegisterInfo *TRI = 5055 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5056 TargetLowering::AsmOperandInfoVector TargetConstraints = 5057 TLI->ParseConstraints(*DL, TRI, CS); 5058 unsigned ArgNo = 0; 5059 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5060 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5061 5062 // Compute the constraint code and ConstraintType to use. 5063 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5064 5065 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5066 OpInfo.isIndirect) { 5067 Value *OpVal = CS->getArgOperand(ArgNo++); 5068 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5069 } else if (OpInfo.Type == InlineAsm::isInput) 5070 ArgNo++; 5071 } 5072 5073 return MadeChange; 5074 } 5075 5076 /// Check if all the uses of \p Val are equivalent (or free) zero or 5077 /// sign extensions. 5078 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5079 assert(!Val->use_empty() && "Input must have at least one use"); 5080 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5081 bool IsSExt = isa<SExtInst>(FirstUser); 5082 Type *ExtTy = FirstUser->getType(); 5083 for (const User *U : Val->users()) { 5084 const Instruction *UI = cast<Instruction>(U); 5085 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5086 return false; 5087 Type *CurTy = UI->getType(); 5088 // Same input and output types: Same instruction after CSE. 5089 if (CurTy == ExtTy) 5090 continue; 5091 5092 // If IsSExt is true, we are in this situation: 5093 // a = Val 5094 // b = sext ty1 a to ty2 5095 // c = sext ty1 a to ty3 5096 // Assuming ty2 is shorter than ty3, this could be turned into: 5097 // a = Val 5098 // b = sext ty1 a to ty2 5099 // c = sext ty2 b to ty3 5100 // However, the last sext is not free. 5101 if (IsSExt) 5102 return false; 5103 5104 // This is a ZExt, maybe this is free to extend from one type to another. 5105 // In that case, we would not account for a different use. 5106 Type *NarrowTy; 5107 Type *LargeTy; 5108 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5109 CurTy->getScalarType()->getIntegerBitWidth()) { 5110 NarrowTy = CurTy; 5111 LargeTy = ExtTy; 5112 } else { 5113 NarrowTy = ExtTy; 5114 LargeTy = CurTy; 5115 } 5116 5117 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5118 return false; 5119 } 5120 // All uses are the same or can be derived from one another for free. 5121 return true; 5122 } 5123 5124 /// Try to speculatively promote extensions in \p Exts and continue 5125 /// promoting through newly promoted operands recursively as far as doing so is 5126 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5127 /// When some promotion happened, \p TPT contains the proper state to revert 5128 /// them. 5129 /// 5130 /// \return true if some promotion happened, false otherwise. 5131 bool CodeGenPrepare::tryToPromoteExts( 5132 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5133 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5134 unsigned CreatedInstsCost) { 5135 bool Promoted = false; 5136 5137 // Iterate over all the extensions to try to promote them. 5138 for (auto I : Exts) { 5139 // Early check if we directly have ext(load). 5140 if (isa<LoadInst>(I->getOperand(0))) { 5141 ProfitablyMovedExts.push_back(I); 5142 continue; 5143 } 5144 5145 // Check whether or not we want to do any promotion. The reason we have 5146 // this check inside the for loop is to catch the case where an extension 5147 // is directly fed by a load because in such case the extension can be moved 5148 // up without any promotion on its operands. 5149 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5150 return false; 5151 5152 // Get the action to perform the promotion. 5153 TypePromotionHelper::Action TPH = 5154 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5155 // Check if we can promote. 5156 if (!TPH) { 5157 // Save the current extension as we cannot move up through its operand. 5158 ProfitablyMovedExts.push_back(I); 5159 continue; 5160 } 5161 5162 // Save the current state. 5163 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5164 TPT.getRestorationPoint(); 5165 SmallVector<Instruction *, 4> NewExts; 5166 unsigned NewCreatedInstsCost = 0; 5167 unsigned ExtCost = !TLI->isExtFree(I); 5168 // Promote. 5169 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5170 &NewExts, nullptr, *TLI); 5171 assert(PromotedVal && 5172 "TypePromotionHelper should have filtered out those cases"); 5173 5174 // We would be able to merge only one extension in a load. 5175 // Therefore, if we have more than 1 new extension we heuristically 5176 // cut this search path, because it means we degrade the code quality. 5177 // With exactly 2, the transformation is neutral, because we will merge 5178 // one extension but leave one. However, we optimistically keep going, 5179 // because the new extension may be removed too. 5180 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5181 // FIXME: It would be possible to propagate a negative value instead of 5182 // conservatively ceiling it to 0. 5183 TotalCreatedInstsCost = 5184 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5185 if (!StressExtLdPromotion && 5186 (TotalCreatedInstsCost > 1 || 5187 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5188 // This promotion is not profitable, rollback to the previous state, and 5189 // save the current extension in ProfitablyMovedExts as the latest 5190 // speculative promotion turned out to be unprofitable. 5191 TPT.rollback(LastKnownGood); 5192 ProfitablyMovedExts.push_back(I); 5193 continue; 5194 } 5195 // Continue promoting NewExts as far as doing so is profitable. 5196 SmallVector<Instruction *, 2> NewlyMovedExts; 5197 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5198 bool NewPromoted = false; 5199 for (auto ExtInst : NewlyMovedExts) { 5200 Instruction *MovedExt = cast<Instruction>(ExtInst); 5201 Value *ExtOperand = MovedExt->getOperand(0); 5202 // If we have reached to a load, we need this extra profitability check 5203 // as it could potentially be merged into an ext(load). 5204 if (isa<LoadInst>(ExtOperand) && 5205 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5206 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5207 continue; 5208 5209 ProfitablyMovedExts.push_back(MovedExt); 5210 NewPromoted = true; 5211 } 5212 5213 // If none of speculative promotions for NewExts is profitable, rollback 5214 // and save the current extension (I) as the last profitable extension. 5215 if (!NewPromoted) { 5216 TPT.rollback(LastKnownGood); 5217 ProfitablyMovedExts.push_back(I); 5218 continue; 5219 } 5220 // The promotion is profitable. 5221 Promoted = true; 5222 } 5223 return Promoted; 5224 } 5225 5226 /// Merging redundant sexts when one is dominating the other. 5227 bool CodeGenPrepare::mergeSExts(Function &F) { 5228 bool Changed = false; 5229 for (auto &Entry : ValToSExtendedUses) { 5230 SExts &Insts = Entry.second; 5231 SExts CurPts; 5232 for (Instruction *Inst : Insts) { 5233 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5234 Inst->getOperand(0) != Entry.first) 5235 continue; 5236 bool inserted = false; 5237 for (auto &Pt : CurPts) { 5238 if (getDT(F).dominates(Inst, Pt)) { 5239 Pt->replaceAllUsesWith(Inst); 5240 RemovedInsts.insert(Pt); 5241 Pt->removeFromParent(); 5242 Pt = Inst; 5243 inserted = true; 5244 Changed = true; 5245 break; 5246 } 5247 if (!getDT(F).dominates(Pt, Inst)) 5248 // Give up if we need to merge in a common dominator as the 5249 // experiments show it is not profitable. 5250 continue; 5251 Inst->replaceAllUsesWith(Pt); 5252 RemovedInsts.insert(Inst); 5253 Inst->removeFromParent(); 5254 inserted = true; 5255 Changed = true; 5256 break; 5257 } 5258 if (!inserted) 5259 CurPts.push_back(Inst); 5260 } 5261 } 5262 return Changed; 5263 } 5264 5265 // Spliting large data structures so that the GEPs accessing them can have 5266 // smaller offsets so that they can be sunk to the same blocks as their users. 5267 // For example, a large struct starting from %base is splitted into two parts 5268 // where the second part starts from %new_base. 5269 // 5270 // Before: 5271 // BB0: 5272 // %base = 5273 // 5274 // BB1: 5275 // %gep0 = gep %base, off0 5276 // %gep1 = gep %base, off1 5277 // %gep2 = gep %base, off2 5278 // 5279 // BB2: 5280 // %load1 = load %gep0 5281 // %load2 = load %gep1 5282 // %load3 = load %gep2 5283 // 5284 // After: 5285 // BB0: 5286 // %base = 5287 // %new_base = gep %base, off0 5288 // 5289 // BB1: 5290 // %new_gep0 = %new_base 5291 // %new_gep1 = gep %new_base, off1 - off0 5292 // %new_gep2 = gep %new_base, off2 - off0 5293 // 5294 // BB2: 5295 // %load1 = load i32, i32* %new_gep0 5296 // %load2 = load i32, i32* %new_gep1 5297 // %load3 = load i32, i32* %new_gep2 5298 // 5299 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5300 // their offsets are smaller enough to fit into the addressing mode. 5301 bool CodeGenPrepare::splitLargeGEPOffsets() { 5302 bool Changed = false; 5303 for (auto &Entry : LargeOffsetGEPMap) { 5304 Value *OldBase = Entry.first; 5305 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5306 &LargeOffsetGEPs = Entry.second; 5307 auto compareGEPOffset = 5308 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5309 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5310 if (LHS.first == RHS.first) 5311 return false; 5312 if (LHS.second != RHS.second) 5313 return LHS.second < RHS.second; 5314 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5315 }; 5316 // Sorting all the GEPs of the same data structures based on the offsets. 5317 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5318 LargeOffsetGEPs.erase( 5319 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5320 LargeOffsetGEPs.end()); 5321 // Skip if all the GEPs have the same offsets. 5322 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5323 continue; 5324 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5325 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5326 Value *NewBaseGEP = nullptr; 5327 5328 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5329 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5330 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5331 int64_t Offset = LargeOffsetGEP->second; 5332 if (Offset != BaseOffset) { 5333 TargetLowering::AddrMode AddrMode; 5334 AddrMode.BaseOffs = Offset - BaseOffset; 5335 // The result type of the GEP might not be the type of the memory 5336 // access. 5337 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5338 GEP->getResultElementType(), 5339 GEP->getAddressSpace())) { 5340 // We need to create a new base if the offset to the current base is 5341 // too large to fit into the addressing mode. So, a very large struct 5342 // may be splitted into several parts. 5343 BaseGEP = GEP; 5344 BaseOffset = Offset; 5345 NewBaseGEP = nullptr; 5346 } 5347 } 5348 5349 // Generate a new GEP to replace the current one. 5350 LLVMContext &Ctx = GEP->getContext(); 5351 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5352 Type *I8PtrTy = 5353 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5354 Type *I8Ty = Type::getInt8Ty(Ctx); 5355 5356 if (!NewBaseGEP) { 5357 // Create a new base if we don't have one yet. Find the insertion 5358 // pointer for the new base first. 5359 BasicBlock::iterator NewBaseInsertPt; 5360 BasicBlock *NewBaseInsertBB; 5361 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5362 // If the base of the struct is an instruction, the new base will be 5363 // inserted close to it. 5364 NewBaseInsertBB = BaseI->getParent(); 5365 if (isa<PHINode>(BaseI)) 5366 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5367 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5368 NewBaseInsertBB = 5369 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5370 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5371 } else 5372 NewBaseInsertPt = std::next(BaseI->getIterator()); 5373 } else { 5374 // If the current base is an argument or global value, the new base 5375 // will be inserted to the entry block. 5376 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5377 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5378 } 5379 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5380 // Create a new base. 5381 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5382 NewBaseGEP = OldBase; 5383 if (NewBaseGEP->getType() != I8PtrTy) 5384 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5385 NewBaseGEP = 5386 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5387 NewGEPBases.insert(NewBaseGEP); 5388 } 5389 5390 IRBuilder<> Builder(GEP); 5391 Value *NewGEP = NewBaseGEP; 5392 if (Offset == BaseOffset) { 5393 if (GEP->getType() != I8PtrTy) 5394 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5395 } else { 5396 // Calculate the new offset for the new GEP. 5397 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5398 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5399 5400 if (GEP->getType() != I8PtrTy) 5401 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5402 } 5403 GEP->replaceAllUsesWith(NewGEP); 5404 LargeOffsetGEPID.erase(GEP); 5405 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5406 GEP->eraseFromParent(); 5407 Changed = true; 5408 } 5409 } 5410 return Changed; 5411 } 5412 5413 /// Return true, if an ext(load) can be formed from an extension in 5414 /// \p MovedExts. 5415 bool CodeGenPrepare::canFormExtLd( 5416 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5417 Instruction *&Inst, bool HasPromoted) { 5418 for (auto *MovedExtInst : MovedExts) { 5419 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5420 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5421 Inst = MovedExtInst; 5422 break; 5423 } 5424 } 5425 if (!LI) 5426 return false; 5427 5428 // If they're already in the same block, there's nothing to do. 5429 // Make the cheap checks first if we did not promote. 5430 // If we promoted, we need to check if it is indeed profitable. 5431 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5432 return false; 5433 5434 return TLI->isExtLoad(LI, Inst, *DL); 5435 } 5436 5437 /// Move a zext or sext fed by a load into the same basic block as the load, 5438 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5439 /// extend into the load. 5440 /// 5441 /// E.g., 5442 /// \code 5443 /// %ld = load i32* %addr 5444 /// %add = add nuw i32 %ld, 4 5445 /// %zext = zext i32 %add to i64 5446 // \endcode 5447 /// => 5448 /// \code 5449 /// %ld = load i32* %addr 5450 /// %zext = zext i32 %ld to i64 5451 /// %add = add nuw i64 %zext, 4 5452 /// \encode 5453 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5454 /// allow us to match zext(load i32*) to i64. 5455 /// 5456 /// Also, try to promote the computations used to obtain a sign extended 5457 /// value used into memory accesses. 5458 /// E.g., 5459 /// \code 5460 /// a = add nsw i32 b, 3 5461 /// d = sext i32 a to i64 5462 /// e = getelementptr ..., i64 d 5463 /// \endcode 5464 /// => 5465 /// \code 5466 /// f = sext i32 b to i64 5467 /// a = add nsw i64 f, 3 5468 /// e = getelementptr ..., i64 a 5469 /// \endcode 5470 /// 5471 /// \p Inst[in/out] the extension may be modified during the process if some 5472 /// promotions apply. 5473 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5474 // ExtLoad formation and address type promotion infrastructure requires TLI to 5475 // be effective. 5476 if (!TLI) 5477 return false; 5478 5479 bool AllowPromotionWithoutCommonHeader = false; 5480 /// See if it is an interesting sext operations for the address type 5481 /// promotion before trying to promote it, e.g., the ones with the right 5482 /// type and used in memory accesses. 5483 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5484 *Inst, AllowPromotionWithoutCommonHeader); 5485 TypePromotionTransaction TPT(RemovedInsts); 5486 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5487 TPT.getRestorationPoint(); 5488 SmallVector<Instruction *, 1> Exts; 5489 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5490 Exts.push_back(Inst); 5491 5492 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5493 5494 // Look for a load being extended. 5495 LoadInst *LI = nullptr; 5496 Instruction *ExtFedByLoad; 5497 5498 // Try to promote a chain of computation if it allows to form an extended 5499 // load. 5500 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5501 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5502 TPT.commit(); 5503 // Move the extend into the same block as the load 5504 ExtFedByLoad->moveAfter(LI); 5505 // CGP does not check if the zext would be speculatively executed when moved 5506 // to the same basic block as the load. Preserving its original location 5507 // would pessimize the debugging experience, as well as negatively impact 5508 // the quality of sample pgo. We don't want to use "line 0" as that has a 5509 // size cost in the line-table section and logically the zext can be seen as 5510 // part of the load. Therefore we conservatively reuse the same debug 5511 // location for the load and the zext. 5512 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5513 ++NumExtsMoved; 5514 Inst = ExtFedByLoad; 5515 return true; 5516 } 5517 5518 // Continue promoting SExts if known as considerable depending on targets. 5519 if (ATPConsiderable && 5520 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5521 HasPromoted, TPT, SpeculativelyMovedExts)) 5522 return true; 5523 5524 TPT.rollback(LastKnownGood); 5525 return false; 5526 } 5527 5528 // Perform address type promotion if doing so is profitable. 5529 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5530 // instructions that sign extended the same initial value. However, if 5531 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5532 // extension is just profitable. 5533 bool CodeGenPrepare::performAddressTypePromotion( 5534 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5535 bool HasPromoted, TypePromotionTransaction &TPT, 5536 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5537 bool Promoted = false; 5538 SmallPtrSet<Instruction *, 1> UnhandledExts; 5539 bool AllSeenFirst = true; 5540 for (auto I : SpeculativelyMovedExts) { 5541 Value *HeadOfChain = I->getOperand(0); 5542 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5543 SeenChainsForSExt.find(HeadOfChain); 5544 // If there is an unhandled SExt which has the same header, try to promote 5545 // it as well. 5546 if (AlreadySeen != SeenChainsForSExt.end()) { 5547 if (AlreadySeen->second != nullptr) 5548 UnhandledExts.insert(AlreadySeen->second); 5549 AllSeenFirst = false; 5550 } 5551 } 5552 5553 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5554 SpeculativelyMovedExts.size() == 1)) { 5555 TPT.commit(); 5556 if (HasPromoted) 5557 Promoted = true; 5558 for (auto I : SpeculativelyMovedExts) { 5559 Value *HeadOfChain = I->getOperand(0); 5560 SeenChainsForSExt[HeadOfChain] = nullptr; 5561 ValToSExtendedUses[HeadOfChain].push_back(I); 5562 } 5563 // Update Inst as promotion happen. 5564 Inst = SpeculativelyMovedExts.pop_back_val(); 5565 } else { 5566 // This is the first chain visited from the header, keep the current chain 5567 // as unhandled. Defer to promote this until we encounter another SExt 5568 // chain derived from the same header. 5569 for (auto I : SpeculativelyMovedExts) { 5570 Value *HeadOfChain = I->getOperand(0); 5571 SeenChainsForSExt[HeadOfChain] = Inst; 5572 } 5573 return false; 5574 } 5575 5576 if (!AllSeenFirst && !UnhandledExts.empty()) 5577 for (auto VisitedSExt : UnhandledExts) { 5578 if (RemovedInsts.count(VisitedSExt)) 5579 continue; 5580 TypePromotionTransaction TPT(RemovedInsts); 5581 SmallVector<Instruction *, 1> Exts; 5582 SmallVector<Instruction *, 2> Chains; 5583 Exts.push_back(VisitedSExt); 5584 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5585 TPT.commit(); 5586 if (HasPromoted) 5587 Promoted = true; 5588 for (auto I : Chains) { 5589 Value *HeadOfChain = I->getOperand(0); 5590 // Mark this as handled. 5591 SeenChainsForSExt[HeadOfChain] = nullptr; 5592 ValToSExtendedUses[HeadOfChain].push_back(I); 5593 } 5594 } 5595 return Promoted; 5596 } 5597 5598 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5599 BasicBlock *DefBB = I->getParent(); 5600 5601 // If the result of a {s|z}ext and its source are both live out, rewrite all 5602 // other uses of the source with result of extension. 5603 Value *Src = I->getOperand(0); 5604 if (Src->hasOneUse()) 5605 return false; 5606 5607 // Only do this xform if truncating is free. 5608 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5609 return false; 5610 5611 // Only safe to perform the optimization if the source is also defined in 5612 // this block. 5613 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5614 return false; 5615 5616 bool DefIsLiveOut = false; 5617 for (User *U : I->users()) { 5618 Instruction *UI = cast<Instruction>(U); 5619 5620 // Figure out which BB this ext is used in. 5621 BasicBlock *UserBB = UI->getParent(); 5622 if (UserBB == DefBB) continue; 5623 DefIsLiveOut = true; 5624 break; 5625 } 5626 if (!DefIsLiveOut) 5627 return false; 5628 5629 // Make sure none of the uses are PHI nodes. 5630 for (User *U : Src->users()) { 5631 Instruction *UI = cast<Instruction>(U); 5632 BasicBlock *UserBB = UI->getParent(); 5633 if (UserBB == DefBB) continue; 5634 // Be conservative. We don't want this xform to end up introducing 5635 // reloads just before load / store instructions. 5636 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5637 return false; 5638 } 5639 5640 // InsertedTruncs - Only insert one trunc in each block once. 5641 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5642 5643 bool MadeChange = false; 5644 for (Use &U : Src->uses()) { 5645 Instruction *User = cast<Instruction>(U.getUser()); 5646 5647 // Figure out which BB this ext is used in. 5648 BasicBlock *UserBB = User->getParent(); 5649 if (UserBB == DefBB) continue; 5650 5651 // Both src and def are live in this block. Rewrite the use. 5652 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5653 5654 if (!InsertedTrunc) { 5655 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5656 assert(InsertPt != UserBB->end()); 5657 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5658 InsertedInsts.insert(InsertedTrunc); 5659 } 5660 5661 // Replace a use of the {s|z}ext source with a use of the result. 5662 U = InsertedTrunc; 5663 ++NumExtUses; 5664 MadeChange = true; 5665 } 5666 5667 return MadeChange; 5668 } 5669 5670 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5671 // just after the load if the target can fold this into one extload instruction, 5672 // with the hope of eliminating some of the other later "and" instructions using 5673 // the loaded value. "and"s that are made trivially redundant by the insertion 5674 // of the new "and" are removed by this function, while others (e.g. those whose 5675 // path from the load goes through a phi) are left for isel to potentially 5676 // remove. 5677 // 5678 // For example: 5679 // 5680 // b0: 5681 // x = load i32 5682 // ... 5683 // b1: 5684 // y = and x, 0xff 5685 // z = use y 5686 // 5687 // becomes: 5688 // 5689 // b0: 5690 // x = load i32 5691 // x' = and x, 0xff 5692 // ... 5693 // b1: 5694 // z = use x' 5695 // 5696 // whereas: 5697 // 5698 // b0: 5699 // x1 = load i32 5700 // ... 5701 // b1: 5702 // x2 = load i32 5703 // ... 5704 // b2: 5705 // x = phi x1, x2 5706 // y = and x, 0xff 5707 // 5708 // becomes (after a call to optimizeLoadExt for each load): 5709 // 5710 // b0: 5711 // x1 = load i32 5712 // x1' = and x1, 0xff 5713 // ... 5714 // b1: 5715 // x2 = load i32 5716 // x2' = and x2, 0xff 5717 // ... 5718 // b2: 5719 // x = phi x1', x2' 5720 // y = and x, 0xff 5721 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5722 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5723 return false; 5724 5725 // Skip loads we've already transformed. 5726 if (Load->hasOneUse() && 5727 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5728 return false; 5729 5730 // Look at all uses of Load, looking through phis, to determine how many bits 5731 // of the loaded value are needed. 5732 SmallVector<Instruction *, 8> WorkList; 5733 SmallPtrSet<Instruction *, 16> Visited; 5734 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5735 for (auto *U : Load->users()) 5736 WorkList.push_back(cast<Instruction>(U)); 5737 5738 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5739 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5740 APInt DemandBits(BitWidth, 0); 5741 APInt WidestAndBits(BitWidth, 0); 5742 5743 while (!WorkList.empty()) { 5744 Instruction *I = WorkList.back(); 5745 WorkList.pop_back(); 5746 5747 // Break use-def graph loops. 5748 if (!Visited.insert(I).second) 5749 continue; 5750 5751 // For a PHI node, push all of its users. 5752 if (auto *Phi = dyn_cast<PHINode>(I)) { 5753 for (auto *U : Phi->users()) 5754 WorkList.push_back(cast<Instruction>(U)); 5755 continue; 5756 } 5757 5758 switch (I->getOpcode()) { 5759 case Instruction::And: { 5760 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5761 if (!AndC) 5762 return false; 5763 APInt AndBits = AndC->getValue(); 5764 DemandBits |= AndBits; 5765 // Keep track of the widest and mask we see. 5766 if (AndBits.ugt(WidestAndBits)) 5767 WidestAndBits = AndBits; 5768 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5769 AndsToMaybeRemove.push_back(I); 5770 break; 5771 } 5772 5773 case Instruction::Shl: { 5774 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5775 if (!ShlC) 5776 return false; 5777 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5778 DemandBits.setLowBits(BitWidth - ShiftAmt); 5779 break; 5780 } 5781 5782 case Instruction::Trunc: { 5783 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5784 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5785 DemandBits.setLowBits(TruncBitWidth); 5786 break; 5787 } 5788 5789 default: 5790 return false; 5791 } 5792 } 5793 5794 uint32_t ActiveBits = DemandBits.getActiveBits(); 5795 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5796 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5797 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5798 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5799 // followed by an AND. 5800 // TODO: Look into removing this restriction by fixing backends to either 5801 // return false for isLoadExtLegal for i1 or have them select this pattern to 5802 // a single instruction. 5803 // 5804 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5805 // mask, since these are the only ands that will be removed by isel. 5806 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5807 WidestAndBits != DemandBits) 5808 return false; 5809 5810 LLVMContext &Ctx = Load->getType()->getContext(); 5811 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5812 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5813 5814 // Reject cases that won't be matched as extloads. 5815 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5816 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5817 return false; 5818 5819 IRBuilder<> Builder(Load->getNextNode()); 5820 auto *NewAnd = dyn_cast<Instruction>( 5821 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5822 // Mark this instruction as "inserted by CGP", so that other 5823 // optimizations don't touch it. 5824 InsertedInsts.insert(NewAnd); 5825 5826 // Replace all uses of load with new and (except for the use of load in the 5827 // new and itself). 5828 Load->replaceAllUsesWith(NewAnd); 5829 NewAnd->setOperand(0, Load); 5830 5831 // Remove any and instructions that are now redundant. 5832 for (auto *And : AndsToMaybeRemove) 5833 // Check that the and mask is the same as the one we decided to put on the 5834 // new and. 5835 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5836 And->replaceAllUsesWith(NewAnd); 5837 if (&*CurInstIterator == And) 5838 CurInstIterator = std::next(And->getIterator()); 5839 And->eraseFromParent(); 5840 ++NumAndUses; 5841 } 5842 5843 ++NumAndsAdded; 5844 return true; 5845 } 5846 5847 /// Check if V (an operand of a select instruction) is an expensive instruction 5848 /// that is only used once. 5849 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5850 auto *I = dyn_cast<Instruction>(V); 5851 // If it's safe to speculatively execute, then it should not have side 5852 // effects; therefore, it's safe to sink and possibly *not* execute. 5853 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5854 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5855 } 5856 5857 /// Returns true if a SelectInst should be turned into an explicit branch. 5858 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5859 const TargetLowering *TLI, 5860 SelectInst *SI) { 5861 // If even a predictable select is cheap, then a branch can't be cheaper. 5862 if (!TLI->isPredictableSelectExpensive()) 5863 return false; 5864 5865 // FIXME: This should use the same heuristics as IfConversion to determine 5866 // whether a select is better represented as a branch. 5867 5868 // If metadata tells us that the select condition is obviously predictable, 5869 // then we want to replace the select with a branch. 5870 uint64_t TrueWeight, FalseWeight; 5871 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5872 uint64_t Max = std::max(TrueWeight, FalseWeight); 5873 uint64_t Sum = TrueWeight + FalseWeight; 5874 if (Sum != 0) { 5875 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5876 if (Probability > TLI->getPredictableBranchThreshold()) 5877 return true; 5878 } 5879 } 5880 5881 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5882 5883 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5884 // comparison condition. If the compare has more than one use, there's 5885 // probably another cmov or setcc around, so it's not worth emitting a branch. 5886 if (!Cmp || !Cmp->hasOneUse()) 5887 return false; 5888 5889 // If either operand of the select is expensive and only needed on one side 5890 // of the select, we should form a branch. 5891 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5892 sinkSelectOperand(TTI, SI->getFalseValue())) 5893 return true; 5894 5895 return false; 5896 } 5897 5898 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5899 /// false value of \p SI. If the true/false value of \p SI is defined by any 5900 /// select instructions in \p Selects, look through the defining select 5901 /// instruction until the true/false value is not defined in \p Selects. 5902 static Value *getTrueOrFalseValue( 5903 SelectInst *SI, bool isTrue, 5904 const SmallPtrSet<const Instruction *, 2> &Selects) { 5905 Value *V = nullptr; 5906 5907 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5908 DefSI = dyn_cast<SelectInst>(V)) { 5909 assert(DefSI->getCondition() == SI->getCondition() && 5910 "The condition of DefSI does not match with SI"); 5911 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5912 } 5913 5914 assert(V && "Failed to get select true/false value"); 5915 return V; 5916 } 5917 5918 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 5919 assert(Shift->isShift() && "Expected a shift"); 5920 5921 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 5922 // general vector shifts, and (3) the shift amount is a select-of-splatted 5923 // values, hoist the shifts before the select: 5924 // shift Op0, (select Cond, TVal, FVal) --> 5925 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 5926 // 5927 // This is inverting a generic IR transform when we know that the cost of a 5928 // general vector shift is more than the cost of 2 shift-by-scalars. 5929 // We can't do this effectively in SDAG because we may not be able to 5930 // determine if the select operands are splats from within a basic block. 5931 Type *Ty = Shift->getType(); 5932 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 5933 return false; 5934 Value *Cond, *TVal, *FVal; 5935 if (!match(Shift->getOperand(1), 5936 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 5937 return false; 5938 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 5939 return false; 5940 5941 IRBuilder<> Builder(Shift); 5942 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 5943 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 5944 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 5945 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 5946 Shift->replaceAllUsesWith(NewSel); 5947 Shift->eraseFromParent(); 5948 return true; 5949 } 5950 5951 /// If we have a SelectInst that will likely profit from branch prediction, 5952 /// turn it into a branch. 5953 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5954 // If branch conversion isn't desirable, exit early. 5955 if (DisableSelectToBranch || OptSize || !TLI) 5956 return false; 5957 5958 // Find all consecutive select instructions that share the same condition. 5959 SmallVector<SelectInst *, 2> ASI; 5960 ASI.push_back(SI); 5961 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5962 It != SI->getParent()->end(); ++It) { 5963 SelectInst *I = dyn_cast<SelectInst>(&*It); 5964 if (I && SI->getCondition() == I->getCondition()) { 5965 ASI.push_back(I); 5966 } else { 5967 break; 5968 } 5969 } 5970 5971 SelectInst *LastSI = ASI.back(); 5972 // Increment the current iterator to skip all the rest of select instructions 5973 // because they will be either "not lowered" or "all lowered" to branch. 5974 CurInstIterator = std::next(LastSI->getIterator()); 5975 5976 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5977 5978 // Can we convert the 'select' to CF ? 5979 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5980 return false; 5981 5982 TargetLowering::SelectSupportKind SelectKind; 5983 if (VectorCond) 5984 SelectKind = TargetLowering::VectorMaskSelect; 5985 else if (SI->getType()->isVectorTy()) 5986 SelectKind = TargetLowering::ScalarCondVectorVal; 5987 else 5988 SelectKind = TargetLowering::ScalarValSelect; 5989 5990 if (TLI->isSelectSupported(SelectKind) && 5991 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5992 return false; 5993 5994 // The DominatorTree needs to be rebuilt by any consumers after this 5995 // transformation. We simply reset here rather than setting the ModifiedDT 5996 // flag to avoid restarting the function walk in runOnFunction for each 5997 // select optimized. 5998 DT.reset(); 5999 6000 // Transform a sequence like this: 6001 // start: 6002 // %cmp = cmp uge i32 %a, %b 6003 // %sel = select i1 %cmp, i32 %c, i32 %d 6004 // 6005 // Into: 6006 // start: 6007 // %cmp = cmp uge i32 %a, %b 6008 // br i1 %cmp, label %select.true, label %select.false 6009 // select.true: 6010 // br label %select.end 6011 // select.false: 6012 // br label %select.end 6013 // select.end: 6014 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6015 // 6016 // In addition, we may sink instructions that produce %c or %d from 6017 // the entry block into the destination(s) of the new branch. 6018 // If the true or false blocks do not contain a sunken instruction, that 6019 // block and its branch may be optimized away. In that case, one side of the 6020 // first branch will point directly to select.end, and the corresponding PHI 6021 // predecessor block will be the start block. 6022 6023 // First, we split the block containing the select into 2 blocks. 6024 BasicBlock *StartBlock = SI->getParent(); 6025 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6026 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6027 6028 // Delete the unconditional branch that was just created by the split. 6029 StartBlock->getTerminator()->eraseFromParent(); 6030 6031 // These are the new basic blocks for the conditional branch. 6032 // At least one will become an actual new basic block. 6033 BasicBlock *TrueBlock = nullptr; 6034 BasicBlock *FalseBlock = nullptr; 6035 BranchInst *TrueBranch = nullptr; 6036 BranchInst *FalseBranch = nullptr; 6037 6038 // Sink expensive instructions into the conditional blocks to avoid executing 6039 // them speculatively. 6040 for (SelectInst *SI : ASI) { 6041 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6042 if (TrueBlock == nullptr) { 6043 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6044 EndBlock->getParent(), EndBlock); 6045 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6046 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6047 } 6048 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6049 TrueInst->moveBefore(TrueBranch); 6050 } 6051 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6052 if (FalseBlock == nullptr) { 6053 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6054 EndBlock->getParent(), EndBlock); 6055 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6056 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6057 } 6058 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6059 FalseInst->moveBefore(FalseBranch); 6060 } 6061 } 6062 6063 // If there was nothing to sink, then arbitrarily choose the 'false' side 6064 // for a new input value to the PHI. 6065 if (TrueBlock == FalseBlock) { 6066 assert(TrueBlock == nullptr && 6067 "Unexpected basic block transform while optimizing select"); 6068 6069 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6070 EndBlock->getParent(), EndBlock); 6071 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6072 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6073 } 6074 6075 // Insert the real conditional branch based on the original condition. 6076 // If we did not create a new block for one of the 'true' or 'false' paths 6077 // of the condition, it means that side of the branch goes to the end block 6078 // directly and the path originates from the start block from the point of 6079 // view of the new PHI. 6080 BasicBlock *TT, *FT; 6081 if (TrueBlock == nullptr) { 6082 TT = EndBlock; 6083 FT = FalseBlock; 6084 TrueBlock = StartBlock; 6085 } else if (FalseBlock == nullptr) { 6086 TT = TrueBlock; 6087 FT = EndBlock; 6088 FalseBlock = StartBlock; 6089 } else { 6090 TT = TrueBlock; 6091 FT = FalseBlock; 6092 } 6093 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6094 6095 SmallPtrSet<const Instruction *, 2> INS; 6096 INS.insert(ASI.begin(), ASI.end()); 6097 // Use reverse iterator because later select may use the value of the 6098 // earlier select, and we need to propagate value through earlier select 6099 // to get the PHI operand. 6100 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6101 SelectInst *SI = *It; 6102 // The select itself is replaced with a PHI Node. 6103 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6104 PN->takeName(SI); 6105 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6106 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6107 PN->setDebugLoc(SI->getDebugLoc()); 6108 6109 SI->replaceAllUsesWith(PN); 6110 SI->eraseFromParent(); 6111 INS.erase(SI); 6112 ++NumSelectsExpanded; 6113 } 6114 6115 // Instruct OptimizeBlock to skip to the next block. 6116 CurInstIterator = StartBlock->end(); 6117 return true; 6118 } 6119 6120 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6121 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6122 int SplatElem = -1; 6123 for (unsigned i = 0; i < Mask.size(); ++i) { 6124 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6125 return false; 6126 SplatElem = Mask[i]; 6127 } 6128 6129 return true; 6130 } 6131 6132 /// Some targets have expensive vector shifts if the lanes aren't all the same 6133 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6134 /// it's often worth sinking a shufflevector splat down to its use so that 6135 /// codegen can spot all lanes are identical. 6136 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6137 BasicBlock *DefBB = SVI->getParent(); 6138 6139 // Only do this xform if variable vector shifts are particularly expensive. 6140 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6141 return false; 6142 6143 // We only expect better codegen by sinking a shuffle if we can recognise a 6144 // constant splat. 6145 if (!isBroadcastShuffle(SVI)) 6146 return false; 6147 6148 // InsertedShuffles - Only insert a shuffle in each block once. 6149 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6150 6151 bool MadeChange = false; 6152 for (User *U : SVI->users()) { 6153 Instruction *UI = cast<Instruction>(U); 6154 6155 // Figure out which BB this ext is used in. 6156 BasicBlock *UserBB = UI->getParent(); 6157 if (UserBB == DefBB) continue; 6158 6159 // For now only apply this when the splat is used by a shift instruction. 6160 if (!UI->isShift()) continue; 6161 6162 // Everything checks out, sink the shuffle if the user's block doesn't 6163 // already have a copy. 6164 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6165 6166 if (!InsertedShuffle) { 6167 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6168 assert(InsertPt != UserBB->end()); 6169 InsertedShuffle = 6170 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6171 SVI->getOperand(2), "", &*InsertPt); 6172 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6173 } 6174 6175 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6176 MadeChange = true; 6177 } 6178 6179 // If we removed all uses, nuke the shuffle. 6180 if (SVI->use_empty()) { 6181 SVI->eraseFromParent(); 6182 MadeChange = true; 6183 } 6184 6185 return MadeChange; 6186 } 6187 6188 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6189 // If the operands of I can be folded into a target instruction together with 6190 // I, duplicate and sink them. 6191 SmallVector<Use *, 4> OpsToSink; 6192 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6193 return false; 6194 6195 // OpsToSink can contain multiple uses in a use chain (e.g. 6196 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6197 // uses must come first, which means they are sunk first, temporarily creating 6198 // invalid IR. This will be fixed once their dominated users are sunk and 6199 // updated. 6200 BasicBlock *TargetBB = I->getParent(); 6201 bool Changed = false; 6202 SmallVector<Use *, 4> ToReplace; 6203 for (Use *U : OpsToSink) { 6204 auto *UI = cast<Instruction>(U->get()); 6205 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6206 continue; 6207 ToReplace.push_back(U); 6208 } 6209 6210 SmallPtrSet<Instruction *, 4> MaybeDead; 6211 for (Use *U : ToReplace) { 6212 auto *UI = cast<Instruction>(U->get()); 6213 Instruction *NI = UI->clone(); 6214 MaybeDead.insert(UI); 6215 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6216 NI->insertBefore(I); 6217 InsertedInsts.insert(NI); 6218 U->set(NI); 6219 Changed = true; 6220 } 6221 6222 // Remove instructions that are dead after sinking. 6223 for (auto *I : MaybeDead) 6224 if (!I->hasNUsesOrMore(1)) 6225 I->eraseFromParent(); 6226 6227 return Changed; 6228 } 6229 6230 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6231 if (!TLI || !DL) 6232 return false; 6233 6234 Value *Cond = SI->getCondition(); 6235 Type *OldType = Cond->getType(); 6236 LLVMContext &Context = Cond->getContext(); 6237 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6238 unsigned RegWidth = RegType.getSizeInBits(); 6239 6240 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6241 return false; 6242 6243 // If the register width is greater than the type width, expand the condition 6244 // of the switch instruction and each case constant to the width of the 6245 // register. By widening the type of the switch condition, subsequent 6246 // comparisons (for case comparisons) will not need to be extended to the 6247 // preferred register width, so we will potentially eliminate N-1 extends, 6248 // where N is the number of cases in the switch. 6249 auto *NewType = Type::getIntNTy(Context, RegWidth); 6250 6251 // Zero-extend the switch condition and case constants unless the switch 6252 // condition is a function argument that is already being sign-extended. 6253 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6254 // everything instead. 6255 Instruction::CastOps ExtType = Instruction::ZExt; 6256 if (auto *Arg = dyn_cast<Argument>(Cond)) 6257 if (Arg->hasSExtAttr()) 6258 ExtType = Instruction::SExt; 6259 6260 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6261 ExtInst->insertBefore(SI); 6262 ExtInst->setDebugLoc(SI->getDebugLoc()); 6263 SI->setCondition(ExtInst); 6264 for (auto Case : SI->cases()) { 6265 APInt NarrowConst = Case.getCaseValue()->getValue(); 6266 APInt WideConst = (ExtType == Instruction::ZExt) ? 6267 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6268 Case.setValue(ConstantInt::get(Context, WideConst)); 6269 } 6270 6271 return true; 6272 } 6273 6274 6275 namespace { 6276 6277 /// Helper class to promote a scalar operation to a vector one. 6278 /// This class is used to move downward extractelement transition. 6279 /// E.g., 6280 /// a = vector_op <2 x i32> 6281 /// b = extractelement <2 x i32> a, i32 0 6282 /// c = scalar_op b 6283 /// store c 6284 /// 6285 /// => 6286 /// a = vector_op <2 x i32> 6287 /// c = vector_op a (equivalent to scalar_op on the related lane) 6288 /// * d = extractelement <2 x i32> c, i32 0 6289 /// * store d 6290 /// Assuming both extractelement and store can be combine, we get rid of the 6291 /// transition. 6292 class VectorPromoteHelper { 6293 /// DataLayout associated with the current module. 6294 const DataLayout &DL; 6295 6296 /// Used to perform some checks on the legality of vector operations. 6297 const TargetLowering &TLI; 6298 6299 /// Used to estimated the cost of the promoted chain. 6300 const TargetTransformInfo &TTI; 6301 6302 /// The transition being moved downwards. 6303 Instruction *Transition; 6304 6305 /// The sequence of instructions to be promoted. 6306 SmallVector<Instruction *, 4> InstsToBePromoted; 6307 6308 /// Cost of combining a store and an extract. 6309 unsigned StoreExtractCombineCost; 6310 6311 /// Instruction that will be combined with the transition. 6312 Instruction *CombineInst = nullptr; 6313 6314 /// The instruction that represents the current end of the transition. 6315 /// Since we are faking the promotion until we reach the end of the chain 6316 /// of computation, we need a way to get the current end of the transition. 6317 Instruction *getEndOfTransition() const { 6318 if (InstsToBePromoted.empty()) 6319 return Transition; 6320 return InstsToBePromoted.back(); 6321 } 6322 6323 /// Return the index of the original value in the transition. 6324 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6325 /// c, is at index 0. 6326 unsigned getTransitionOriginalValueIdx() const { 6327 assert(isa<ExtractElementInst>(Transition) && 6328 "Other kind of transitions are not supported yet"); 6329 return 0; 6330 } 6331 6332 /// Return the index of the index in the transition. 6333 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6334 /// is at index 1. 6335 unsigned getTransitionIdx() const { 6336 assert(isa<ExtractElementInst>(Transition) && 6337 "Other kind of transitions are not supported yet"); 6338 return 1; 6339 } 6340 6341 /// Get the type of the transition. 6342 /// This is the type of the original value. 6343 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6344 /// transition is <2 x i32>. 6345 Type *getTransitionType() const { 6346 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6347 } 6348 6349 /// Promote \p ToBePromoted by moving \p Def downward through. 6350 /// I.e., we have the following sequence: 6351 /// Def = Transition <ty1> a to <ty2> 6352 /// b = ToBePromoted <ty2> Def, ... 6353 /// => 6354 /// b = ToBePromoted <ty1> a, ... 6355 /// Def = Transition <ty1> ToBePromoted to <ty2> 6356 void promoteImpl(Instruction *ToBePromoted); 6357 6358 /// Check whether or not it is profitable to promote all the 6359 /// instructions enqueued to be promoted. 6360 bool isProfitableToPromote() { 6361 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6362 unsigned Index = isa<ConstantInt>(ValIdx) 6363 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6364 : -1; 6365 Type *PromotedType = getTransitionType(); 6366 6367 StoreInst *ST = cast<StoreInst>(CombineInst); 6368 unsigned AS = ST->getPointerAddressSpace(); 6369 unsigned Align = ST->getAlignment(); 6370 // Check if this store is supported. 6371 if (!TLI.allowsMisalignedMemoryAccesses( 6372 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6373 Align)) { 6374 // If this is not supported, there is no way we can combine 6375 // the extract with the store. 6376 return false; 6377 } 6378 6379 // The scalar chain of computation has to pay for the transition 6380 // scalar to vector. 6381 // The vector chain has to account for the combining cost. 6382 uint64_t ScalarCost = 6383 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6384 uint64_t VectorCost = StoreExtractCombineCost; 6385 for (const auto &Inst : InstsToBePromoted) { 6386 // Compute the cost. 6387 // By construction, all instructions being promoted are arithmetic ones. 6388 // Moreover, one argument is a constant that can be viewed as a splat 6389 // constant. 6390 Value *Arg0 = Inst->getOperand(0); 6391 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6392 isa<ConstantFP>(Arg0); 6393 TargetTransformInfo::OperandValueKind Arg0OVK = 6394 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6395 : TargetTransformInfo::OK_AnyValue; 6396 TargetTransformInfo::OperandValueKind Arg1OVK = 6397 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6398 : TargetTransformInfo::OK_AnyValue; 6399 ScalarCost += TTI.getArithmeticInstrCost( 6400 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6401 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6402 Arg0OVK, Arg1OVK); 6403 } 6404 LLVM_DEBUG( 6405 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6406 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6407 return ScalarCost > VectorCost; 6408 } 6409 6410 /// Generate a constant vector with \p Val with the same 6411 /// number of elements as the transition. 6412 /// \p UseSplat defines whether or not \p Val should be replicated 6413 /// across the whole vector. 6414 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6415 /// otherwise we generate a vector with as many undef as possible: 6416 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6417 /// used at the index of the extract. 6418 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6419 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6420 if (!UseSplat) { 6421 // If we cannot determine where the constant must be, we have to 6422 // use a splat constant. 6423 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6424 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6425 ExtractIdx = CstVal->getSExtValue(); 6426 else 6427 UseSplat = true; 6428 } 6429 6430 unsigned End = getTransitionType()->getVectorNumElements(); 6431 if (UseSplat) 6432 return ConstantVector::getSplat(End, Val); 6433 6434 SmallVector<Constant *, 4> ConstVec; 6435 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6436 for (unsigned Idx = 0; Idx != End; ++Idx) { 6437 if (Idx == ExtractIdx) 6438 ConstVec.push_back(Val); 6439 else 6440 ConstVec.push_back(UndefVal); 6441 } 6442 return ConstantVector::get(ConstVec); 6443 } 6444 6445 /// Check if promoting to a vector type an operand at \p OperandIdx 6446 /// in \p Use can trigger undefined behavior. 6447 static bool canCauseUndefinedBehavior(const Instruction *Use, 6448 unsigned OperandIdx) { 6449 // This is not safe to introduce undef when the operand is on 6450 // the right hand side of a division-like instruction. 6451 if (OperandIdx != 1) 6452 return false; 6453 switch (Use->getOpcode()) { 6454 default: 6455 return false; 6456 case Instruction::SDiv: 6457 case Instruction::UDiv: 6458 case Instruction::SRem: 6459 case Instruction::URem: 6460 return true; 6461 case Instruction::FDiv: 6462 case Instruction::FRem: 6463 return !Use->hasNoNaNs(); 6464 } 6465 llvm_unreachable(nullptr); 6466 } 6467 6468 public: 6469 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6470 const TargetTransformInfo &TTI, Instruction *Transition, 6471 unsigned CombineCost) 6472 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6473 StoreExtractCombineCost(CombineCost) { 6474 assert(Transition && "Do not know how to promote null"); 6475 } 6476 6477 /// Check if we can promote \p ToBePromoted to \p Type. 6478 bool canPromote(const Instruction *ToBePromoted) const { 6479 // We could support CastInst too. 6480 return isa<BinaryOperator>(ToBePromoted); 6481 } 6482 6483 /// Check if it is profitable to promote \p ToBePromoted 6484 /// by moving downward the transition through. 6485 bool shouldPromote(const Instruction *ToBePromoted) const { 6486 // Promote only if all the operands can be statically expanded. 6487 // Indeed, we do not want to introduce any new kind of transitions. 6488 for (const Use &U : ToBePromoted->operands()) { 6489 const Value *Val = U.get(); 6490 if (Val == getEndOfTransition()) { 6491 // If the use is a division and the transition is on the rhs, 6492 // we cannot promote the operation, otherwise we may create a 6493 // division by zero. 6494 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6495 return false; 6496 continue; 6497 } 6498 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6499 !isa<ConstantFP>(Val)) 6500 return false; 6501 } 6502 // Check that the resulting operation is legal. 6503 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6504 if (!ISDOpcode) 6505 return false; 6506 return StressStoreExtract || 6507 TLI.isOperationLegalOrCustom( 6508 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6509 } 6510 6511 /// Check whether or not \p Use can be combined 6512 /// with the transition. 6513 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6514 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6515 6516 /// Record \p ToBePromoted as part of the chain to be promoted. 6517 void enqueueForPromotion(Instruction *ToBePromoted) { 6518 InstsToBePromoted.push_back(ToBePromoted); 6519 } 6520 6521 /// Set the instruction that will be combined with the transition. 6522 void recordCombineInstruction(Instruction *ToBeCombined) { 6523 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6524 CombineInst = ToBeCombined; 6525 } 6526 6527 /// Promote all the instructions enqueued for promotion if it is 6528 /// is profitable. 6529 /// \return True if the promotion happened, false otherwise. 6530 bool promote() { 6531 // Check if there is something to promote. 6532 // Right now, if we do not have anything to combine with, 6533 // we assume the promotion is not profitable. 6534 if (InstsToBePromoted.empty() || !CombineInst) 6535 return false; 6536 6537 // Check cost. 6538 if (!StressStoreExtract && !isProfitableToPromote()) 6539 return false; 6540 6541 // Promote. 6542 for (auto &ToBePromoted : InstsToBePromoted) 6543 promoteImpl(ToBePromoted); 6544 InstsToBePromoted.clear(); 6545 return true; 6546 } 6547 }; 6548 6549 } // end anonymous namespace 6550 6551 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6552 // At this point, we know that all the operands of ToBePromoted but Def 6553 // can be statically promoted. 6554 // For Def, we need to use its parameter in ToBePromoted: 6555 // b = ToBePromoted ty1 a 6556 // Def = Transition ty1 b to ty2 6557 // Move the transition down. 6558 // 1. Replace all uses of the promoted operation by the transition. 6559 // = ... b => = ... Def. 6560 assert(ToBePromoted->getType() == Transition->getType() && 6561 "The type of the result of the transition does not match " 6562 "the final type"); 6563 ToBePromoted->replaceAllUsesWith(Transition); 6564 // 2. Update the type of the uses. 6565 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6566 Type *TransitionTy = getTransitionType(); 6567 ToBePromoted->mutateType(TransitionTy); 6568 // 3. Update all the operands of the promoted operation with promoted 6569 // operands. 6570 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6571 for (Use &U : ToBePromoted->operands()) { 6572 Value *Val = U.get(); 6573 Value *NewVal = nullptr; 6574 if (Val == Transition) 6575 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6576 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6577 isa<ConstantFP>(Val)) { 6578 // Use a splat constant if it is not safe to use undef. 6579 NewVal = getConstantVector( 6580 cast<Constant>(Val), 6581 isa<UndefValue>(Val) || 6582 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6583 } else 6584 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6585 "this?"); 6586 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6587 } 6588 Transition->moveAfter(ToBePromoted); 6589 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6590 } 6591 6592 /// Some targets can do store(extractelement) with one instruction. 6593 /// Try to push the extractelement towards the stores when the target 6594 /// has this feature and this is profitable. 6595 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6596 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6597 if (DisableStoreExtract || !TLI || 6598 (!StressStoreExtract && 6599 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6600 Inst->getOperand(1), CombineCost))) 6601 return false; 6602 6603 // At this point we know that Inst is a vector to scalar transition. 6604 // Try to move it down the def-use chain, until: 6605 // - We can combine the transition with its single use 6606 // => we got rid of the transition. 6607 // - We escape the current basic block 6608 // => we would need to check that we are moving it at a cheaper place and 6609 // we do not do that for now. 6610 BasicBlock *Parent = Inst->getParent(); 6611 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6612 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6613 // If the transition has more than one use, assume this is not going to be 6614 // beneficial. 6615 while (Inst->hasOneUse()) { 6616 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6617 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6618 6619 if (ToBePromoted->getParent() != Parent) { 6620 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6621 << ToBePromoted->getParent()->getName() 6622 << ") than the transition (" << Parent->getName() 6623 << ").\n"); 6624 return false; 6625 } 6626 6627 if (VPH.canCombine(ToBePromoted)) { 6628 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6629 << "will be combined with: " << *ToBePromoted << '\n'); 6630 VPH.recordCombineInstruction(ToBePromoted); 6631 bool Changed = VPH.promote(); 6632 NumStoreExtractExposed += Changed; 6633 return Changed; 6634 } 6635 6636 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6637 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6638 return false; 6639 6640 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6641 6642 VPH.enqueueForPromotion(ToBePromoted); 6643 Inst = ToBePromoted; 6644 } 6645 return false; 6646 } 6647 6648 /// For the instruction sequence of store below, F and I values 6649 /// are bundled together as an i64 value before being stored into memory. 6650 /// Sometimes it is more efficient to generate separate stores for F and I, 6651 /// which can remove the bitwise instructions or sink them to colder places. 6652 /// 6653 /// (store (or (zext (bitcast F to i32) to i64), 6654 /// (shl (zext I to i64), 32)), addr) --> 6655 /// (store F, addr) and (store I, addr+4) 6656 /// 6657 /// Similarly, splitting for other merged store can also be beneficial, like: 6658 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6659 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6660 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6661 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6662 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6663 /// 6664 /// We allow each target to determine specifically which kind of splitting is 6665 /// supported. 6666 /// 6667 /// The store patterns are commonly seen from the simple code snippet below 6668 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6669 /// void goo(const std::pair<int, float> &); 6670 /// hoo() { 6671 /// ... 6672 /// goo(std::make_pair(tmp, ftmp)); 6673 /// ... 6674 /// } 6675 /// 6676 /// Although we already have similar splitting in DAG Combine, we duplicate 6677 /// it in CodeGenPrepare to catch the case in which pattern is across 6678 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6679 /// during code expansion. 6680 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6681 const TargetLowering &TLI) { 6682 // Handle simple but common cases only. 6683 Type *StoreType = SI.getValueOperand()->getType(); 6684 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6685 DL.getTypeSizeInBits(StoreType) == 0) 6686 return false; 6687 6688 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6689 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6690 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6691 return false; 6692 6693 // Don't split the store if it is volatile. 6694 if (SI.isVolatile()) 6695 return false; 6696 6697 // Match the following patterns: 6698 // (store (or (zext LValue to i64), 6699 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6700 // or 6701 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6702 // (zext LValue to i64), 6703 // Expect both operands of OR and the first operand of SHL have only 6704 // one use. 6705 Value *LValue, *HValue; 6706 if (!match(SI.getValueOperand(), 6707 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6708 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6709 m_SpecificInt(HalfValBitSize)))))) 6710 return false; 6711 6712 // Check LValue and HValue are int with size less or equal than 32. 6713 if (!LValue->getType()->isIntegerTy() || 6714 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6715 !HValue->getType()->isIntegerTy() || 6716 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6717 return false; 6718 6719 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6720 // as the input of target query. 6721 auto *LBC = dyn_cast<BitCastInst>(LValue); 6722 auto *HBC = dyn_cast<BitCastInst>(HValue); 6723 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6724 : EVT::getEVT(LValue->getType()); 6725 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6726 : EVT::getEVT(HValue->getType()); 6727 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6728 return false; 6729 6730 // Start to split store. 6731 IRBuilder<> Builder(SI.getContext()); 6732 Builder.SetInsertPoint(&SI); 6733 6734 // If LValue/HValue is a bitcast in another BB, create a new one in current 6735 // BB so it may be merged with the splitted stores by dag combiner. 6736 if (LBC && LBC->getParent() != SI.getParent()) 6737 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6738 if (HBC && HBC->getParent() != SI.getParent()) 6739 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6740 6741 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6742 auto CreateSplitStore = [&](Value *V, bool Upper) { 6743 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6744 Value *Addr = Builder.CreateBitCast( 6745 SI.getOperand(1), 6746 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6747 if ((IsLE && Upper) || (!IsLE && !Upper)) 6748 Addr = Builder.CreateGEP( 6749 SplitStoreType, Addr, 6750 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6751 Builder.CreateAlignedStore( 6752 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6753 }; 6754 6755 CreateSplitStore(LValue, false); 6756 CreateSplitStore(HValue, true); 6757 6758 // Delete the old store. 6759 SI.eraseFromParent(); 6760 return true; 6761 } 6762 6763 // Return true if the GEP has two operands, the first operand is of a sequential 6764 // type, and the second operand is a constant. 6765 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6766 gep_type_iterator I = gep_type_begin(*GEP); 6767 return GEP->getNumOperands() == 2 && 6768 I.isSequential() && 6769 isa<ConstantInt>(GEP->getOperand(1)); 6770 } 6771 6772 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6773 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6774 // reducing liveness interference across those edges benefits global register 6775 // allocation. Currently handles only certain cases. 6776 // 6777 // For example, unmerge %GEPI and %UGEPI as below. 6778 // 6779 // ---------- BEFORE ---------- 6780 // SrcBlock: 6781 // ... 6782 // %GEPIOp = ... 6783 // ... 6784 // %GEPI = gep %GEPIOp, Idx 6785 // ... 6786 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6787 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6788 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6789 // %UGEPI) 6790 // 6791 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6792 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6793 // ... 6794 // 6795 // DstBi: 6796 // ... 6797 // %UGEPI = gep %GEPIOp, UIdx 6798 // ... 6799 // --------------------------- 6800 // 6801 // ---------- AFTER ---------- 6802 // SrcBlock: 6803 // ... (same as above) 6804 // (* %GEPI is still alive on the indirectbr edges) 6805 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6806 // unmerging) 6807 // ... 6808 // 6809 // DstBi: 6810 // ... 6811 // %UGEPI = gep %GEPI, (UIdx-Idx) 6812 // ... 6813 // --------------------------- 6814 // 6815 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6816 // no longer alive on them. 6817 // 6818 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6819 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6820 // not to disable further simplications and optimizations as a result of GEP 6821 // merging. 6822 // 6823 // Note this unmerging may increase the length of the data flow critical path 6824 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6825 // between the register pressure and the length of data-flow critical 6826 // path. Restricting this to the uncommon IndirectBr case would minimize the 6827 // impact of potentially longer critical path, if any, and the impact on compile 6828 // time. 6829 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6830 const TargetTransformInfo *TTI) { 6831 BasicBlock *SrcBlock = GEPI->getParent(); 6832 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6833 // (non-IndirectBr) cases exit early here. 6834 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6835 return false; 6836 // Check that GEPI is a simple gep with a single constant index. 6837 if (!GEPSequentialConstIndexed(GEPI)) 6838 return false; 6839 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6840 // Check that GEPI is a cheap one. 6841 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6842 > TargetTransformInfo::TCC_Basic) 6843 return false; 6844 Value *GEPIOp = GEPI->getOperand(0); 6845 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6846 if (!isa<Instruction>(GEPIOp)) 6847 return false; 6848 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6849 if (GEPIOpI->getParent() != SrcBlock) 6850 return false; 6851 // Check that GEP is used outside the block, meaning it's alive on the 6852 // IndirectBr edge(s). 6853 if (find_if(GEPI->users(), [&](User *Usr) { 6854 if (auto *I = dyn_cast<Instruction>(Usr)) { 6855 if (I->getParent() != SrcBlock) { 6856 return true; 6857 } 6858 } 6859 return false; 6860 }) == GEPI->users().end()) 6861 return false; 6862 // The second elements of the GEP chains to be unmerged. 6863 std::vector<GetElementPtrInst *> UGEPIs; 6864 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6865 // on IndirectBr edges. 6866 for (User *Usr : GEPIOp->users()) { 6867 if (Usr == GEPI) continue; 6868 // Check if Usr is an Instruction. If not, give up. 6869 if (!isa<Instruction>(Usr)) 6870 return false; 6871 auto *UI = cast<Instruction>(Usr); 6872 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6873 if (UI->getParent() == SrcBlock) 6874 continue; 6875 // Check if Usr is a GEP. If not, give up. 6876 if (!isa<GetElementPtrInst>(Usr)) 6877 return false; 6878 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6879 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6880 // the pointer operand to it. If so, record it in the vector. If not, give 6881 // up. 6882 if (!GEPSequentialConstIndexed(UGEPI)) 6883 return false; 6884 if (UGEPI->getOperand(0) != GEPIOp) 6885 return false; 6886 if (GEPIIdx->getType() != 6887 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6888 return false; 6889 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6890 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6891 > TargetTransformInfo::TCC_Basic) 6892 return false; 6893 UGEPIs.push_back(UGEPI); 6894 } 6895 if (UGEPIs.size() == 0) 6896 return false; 6897 // Check the materializing cost of (Uidx-Idx). 6898 for (GetElementPtrInst *UGEPI : UGEPIs) { 6899 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6900 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6901 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6902 if (ImmCost > TargetTransformInfo::TCC_Basic) 6903 return false; 6904 } 6905 // Now unmerge between GEPI and UGEPIs. 6906 for (GetElementPtrInst *UGEPI : UGEPIs) { 6907 UGEPI->setOperand(0, GEPI); 6908 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6909 Constant *NewUGEPIIdx = 6910 ConstantInt::get(GEPIIdx->getType(), 6911 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6912 UGEPI->setOperand(1, NewUGEPIIdx); 6913 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6914 // inbounds to avoid UB. 6915 if (!GEPI->isInBounds()) { 6916 UGEPI->setIsInBounds(false); 6917 } 6918 } 6919 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6920 // alive on IndirectBr edges). 6921 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6922 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6923 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6924 return true; 6925 } 6926 6927 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6928 // Bail out if we inserted the instruction to prevent optimizations from 6929 // stepping on each other's toes. 6930 if (InsertedInsts.count(I)) 6931 return false; 6932 6933 // TODO: Move into the switch on opcode below here. 6934 if (PHINode *P = dyn_cast<PHINode>(I)) { 6935 // It is possible for very late stage optimizations (such as SimplifyCFG) 6936 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6937 // trivial PHI, go ahead and zap it here. 6938 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6939 LargeOffsetGEPMap.erase(P); 6940 P->replaceAllUsesWith(V); 6941 P->eraseFromParent(); 6942 ++NumPHIsElim; 6943 return true; 6944 } 6945 return false; 6946 } 6947 6948 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6949 // If the source of the cast is a constant, then this should have 6950 // already been constant folded. The only reason NOT to constant fold 6951 // it is if something (e.g. LSR) was careful to place the constant 6952 // evaluation in a block other than then one that uses it (e.g. to hoist 6953 // the address of globals out of a loop). If this is the case, we don't 6954 // want to forward-subst the cast. 6955 if (isa<Constant>(CI->getOperand(0))) 6956 return false; 6957 6958 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6959 return true; 6960 6961 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6962 /// Sink a zext or sext into its user blocks if the target type doesn't 6963 /// fit in one register 6964 if (TLI && 6965 TLI->getTypeAction(CI->getContext(), 6966 TLI->getValueType(*DL, CI->getType())) == 6967 TargetLowering::TypeExpandInteger) { 6968 return SinkCast(CI); 6969 } else { 6970 bool MadeChange = optimizeExt(I); 6971 return MadeChange | optimizeExtUses(I); 6972 } 6973 } 6974 return false; 6975 } 6976 6977 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6978 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 6979 return true; 6980 6981 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6982 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6983 if (TLI) { 6984 bool Modified = optimizeLoadExt(LI); 6985 unsigned AS = LI->getPointerAddressSpace(); 6986 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6987 return Modified; 6988 } 6989 return false; 6990 } 6991 6992 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6993 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6994 return true; 6995 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6996 if (TLI) { 6997 unsigned AS = SI->getPointerAddressSpace(); 6998 return optimizeMemoryInst(I, SI->getOperand(1), 6999 SI->getOperand(0)->getType(), AS); 7000 } 7001 return false; 7002 } 7003 7004 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7005 unsigned AS = RMW->getPointerAddressSpace(); 7006 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7007 RMW->getType(), AS); 7008 } 7009 7010 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7011 unsigned AS = CmpX->getPointerAddressSpace(); 7012 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7013 CmpX->getCompareOperand()->getType(), AS); 7014 } 7015 7016 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7017 7018 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7019 EnableAndCmpSinking && TLI) 7020 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7021 7022 // TODO: Move this into the switch on opcode - it handles shifts already. 7023 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7024 BinOp->getOpcode() == Instruction::LShr)) { 7025 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7026 if (TLI && CI && TLI->hasExtractBitsInsn()) 7027 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7028 return true; 7029 } 7030 7031 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7032 if (GEPI->hasAllZeroIndices()) { 7033 /// The GEP operand must be a pointer, so must its result -> BitCast 7034 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7035 GEPI->getName(), GEPI); 7036 NC->setDebugLoc(GEPI->getDebugLoc()); 7037 GEPI->replaceAllUsesWith(NC); 7038 GEPI->eraseFromParent(); 7039 ++NumGEPsElim; 7040 optimizeInst(NC, ModifiedDT); 7041 return true; 7042 } 7043 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7044 return true; 7045 } 7046 return false; 7047 } 7048 7049 if (tryToSinkFreeOperands(I)) 7050 return true; 7051 7052 switch (I->getOpcode()) { 7053 case Instruction::Shl: 7054 case Instruction::LShr: 7055 case Instruction::AShr: 7056 return optimizeShiftInst(cast<BinaryOperator>(I)); 7057 case Instruction::Call: 7058 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7059 case Instruction::Select: 7060 return optimizeSelectInst(cast<SelectInst>(I)); 7061 case Instruction::ShuffleVector: 7062 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7063 case Instruction::Switch: 7064 return optimizeSwitchInst(cast<SwitchInst>(I)); 7065 case Instruction::ExtractElement: 7066 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7067 } 7068 7069 return false; 7070 } 7071 7072 /// Given an OR instruction, check to see if this is a bitreverse 7073 /// idiom. If so, insert the new intrinsic and return true. 7074 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7075 const TargetLowering &TLI) { 7076 if (!I.getType()->isIntegerTy() || 7077 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7078 TLI.getValueType(DL, I.getType(), true))) 7079 return false; 7080 7081 SmallVector<Instruction*, 4> Insts; 7082 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7083 return false; 7084 Instruction *LastInst = Insts.back(); 7085 I.replaceAllUsesWith(LastInst); 7086 RecursivelyDeleteTriviallyDeadInstructions(&I); 7087 return true; 7088 } 7089 7090 // In this pass we look for GEP and cast instructions that are used 7091 // across basic blocks and rewrite them to improve basic-block-at-a-time 7092 // selection. 7093 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7094 SunkAddrs.clear(); 7095 bool MadeChange = false; 7096 7097 CurInstIterator = BB.begin(); 7098 while (CurInstIterator != BB.end()) { 7099 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7100 if (ModifiedDT) 7101 return true; 7102 } 7103 7104 bool MadeBitReverse = true; 7105 while (TLI && MadeBitReverse) { 7106 MadeBitReverse = false; 7107 for (auto &I : reverse(BB)) { 7108 if (makeBitReverse(I, *DL, *TLI)) { 7109 MadeBitReverse = MadeChange = true; 7110 ModifiedDT = true; 7111 break; 7112 } 7113 } 7114 } 7115 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7116 7117 return MadeChange; 7118 } 7119 7120 // llvm.dbg.value is far away from the value then iSel may not be able 7121 // handle it properly. iSel will drop llvm.dbg.value if it can not 7122 // find a node corresponding to the value. 7123 bool CodeGenPrepare::placeDbgValues(Function &F) { 7124 bool MadeChange = false; 7125 for (BasicBlock &BB : F) { 7126 Instruction *PrevNonDbgInst = nullptr; 7127 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7128 Instruction *Insn = &*BI++; 7129 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7130 // Leave dbg.values that refer to an alloca alone. These 7131 // intrinsics describe the address of a variable (= the alloca) 7132 // being taken. They should not be moved next to the alloca 7133 // (and to the beginning of the scope), but rather stay close to 7134 // where said address is used. 7135 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7136 PrevNonDbgInst = Insn; 7137 continue; 7138 } 7139 7140 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7141 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7142 // If VI is a phi in a block with an EHPad terminator, we can't insert 7143 // after it. 7144 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7145 continue; 7146 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7147 << *DVI << ' ' << *VI); 7148 DVI->removeFromParent(); 7149 if (isa<PHINode>(VI)) 7150 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7151 else 7152 DVI->insertAfter(VI); 7153 MadeChange = true; 7154 ++NumDbgValueMoved; 7155 } 7156 } 7157 } 7158 return MadeChange; 7159 } 7160 7161 /// Scale down both weights to fit into uint32_t. 7162 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7163 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7164 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7165 NewTrue = NewTrue / Scale; 7166 NewFalse = NewFalse / Scale; 7167 } 7168 7169 /// Some targets prefer to split a conditional branch like: 7170 /// \code 7171 /// %0 = icmp ne i32 %a, 0 7172 /// %1 = icmp ne i32 %b, 0 7173 /// %or.cond = or i1 %0, %1 7174 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7175 /// \endcode 7176 /// into multiple branch instructions like: 7177 /// \code 7178 /// bb1: 7179 /// %0 = icmp ne i32 %a, 0 7180 /// br i1 %0, label %TrueBB, label %bb2 7181 /// bb2: 7182 /// %1 = icmp ne i32 %b, 0 7183 /// br i1 %1, label %TrueBB, label %FalseBB 7184 /// \endcode 7185 /// This usually allows instruction selection to do even further optimizations 7186 /// and combine the compare with the branch instruction. Currently this is 7187 /// applied for targets which have "cheap" jump instructions. 7188 /// 7189 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7190 /// 7191 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7192 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7193 return false; 7194 7195 bool MadeChange = false; 7196 for (auto &BB : F) { 7197 // Does this BB end with the following? 7198 // %cond1 = icmp|fcmp|binary instruction ... 7199 // %cond2 = icmp|fcmp|binary instruction ... 7200 // %cond.or = or|and i1 %cond1, cond2 7201 // br i1 %cond.or label %dest1, label %dest2" 7202 BinaryOperator *LogicOp; 7203 BasicBlock *TBB, *FBB; 7204 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7205 continue; 7206 7207 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7208 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7209 continue; 7210 7211 unsigned Opc; 7212 Value *Cond1, *Cond2; 7213 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7214 m_OneUse(m_Value(Cond2))))) 7215 Opc = Instruction::And; 7216 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7217 m_OneUse(m_Value(Cond2))))) 7218 Opc = Instruction::Or; 7219 else 7220 continue; 7221 7222 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7223 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7224 continue; 7225 7226 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7227 7228 // Create a new BB. 7229 auto TmpBB = 7230 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7231 BB.getParent(), BB.getNextNode()); 7232 7233 // Update original basic block by using the first condition directly by the 7234 // branch instruction and removing the no longer needed and/or instruction. 7235 Br1->setCondition(Cond1); 7236 LogicOp->eraseFromParent(); 7237 7238 // Depending on the condition we have to either replace the true or the 7239 // false successor of the original branch instruction. 7240 if (Opc == Instruction::And) 7241 Br1->setSuccessor(0, TmpBB); 7242 else 7243 Br1->setSuccessor(1, TmpBB); 7244 7245 // Fill in the new basic block. 7246 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7247 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7248 I->removeFromParent(); 7249 I->insertBefore(Br2); 7250 } 7251 7252 // Update PHI nodes in both successors. The original BB needs to be 7253 // replaced in one successor's PHI nodes, because the branch comes now from 7254 // the newly generated BB (NewBB). In the other successor we need to add one 7255 // incoming edge to the PHI nodes, because both branch instructions target 7256 // now the same successor. Depending on the original branch condition 7257 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7258 // we perform the correct update for the PHI nodes. 7259 // This doesn't change the successor order of the just created branch 7260 // instruction (or any other instruction). 7261 if (Opc == Instruction::Or) 7262 std::swap(TBB, FBB); 7263 7264 // Replace the old BB with the new BB. 7265 TBB->replacePhiUsesWith(&BB, TmpBB); 7266 7267 // Add another incoming edge form the new BB. 7268 for (PHINode &PN : FBB->phis()) { 7269 auto *Val = PN.getIncomingValueForBlock(&BB); 7270 PN.addIncoming(Val, TmpBB); 7271 } 7272 7273 // Update the branch weights (from SelectionDAGBuilder:: 7274 // FindMergedConditions). 7275 if (Opc == Instruction::Or) { 7276 // Codegen X | Y as: 7277 // BB1: 7278 // jmp_if_X TBB 7279 // jmp TmpBB 7280 // TmpBB: 7281 // jmp_if_Y TBB 7282 // jmp FBB 7283 // 7284 7285 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7286 // The requirement is that 7287 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7288 // = TrueProb for original BB. 7289 // Assuming the original weights are A and B, one choice is to set BB1's 7290 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7291 // assumes that 7292 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7293 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7294 // TmpBB, but the math is more complicated. 7295 uint64_t TrueWeight, FalseWeight; 7296 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7297 uint64_t NewTrueWeight = TrueWeight; 7298 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7299 scaleWeights(NewTrueWeight, NewFalseWeight); 7300 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7301 .createBranchWeights(TrueWeight, FalseWeight)); 7302 7303 NewTrueWeight = TrueWeight; 7304 NewFalseWeight = 2 * FalseWeight; 7305 scaleWeights(NewTrueWeight, NewFalseWeight); 7306 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7307 .createBranchWeights(TrueWeight, FalseWeight)); 7308 } 7309 } else { 7310 // Codegen X & Y as: 7311 // BB1: 7312 // jmp_if_X TmpBB 7313 // jmp FBB 7314 // TmpBB: 7315 // jmp_if_Y TBB 7316 // jmp FBB 7317 // 7318 // This requires creation of TmpBB after CurBB. 7319 7320 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7321 // The requirement is that 7322 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7323 // = FalseProb for original BB. 7324 // Assuming the original weights are A and B, one choice is to set BB1's 7325 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7326 // assumes that 7327 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7328 uint64_t TrueWeight, FalseWeight; 7329 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7330 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7331 uint64_t NewFalseWeight = FalseWeight; 7332 scaleWeights(NewTrueWeight, NewFalseWeight); 7333 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7334 .createBranchWeights(TrueWeight, FalseWeight)); 7335 7336 NewTrueWeight = 2 * TrueWeight; 7337 NewFalseWeight = FalseWeight; 7338 scaleWeights(NewTrueWeight, NewFalseWeight); 7339 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7340 .createBranchWeights(TrueWeight, FalseWeight)); 7341 } 7342 } 7343 7344 ModifiedDT = true; 7345 MadeChange = true; 7346 7347 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7348 TmpBB->dump()); 7349 } 7350 return MadeChange; 7351 } 7352