1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfo.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/ProfDataUtils.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <optional> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> 144 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 145 cl::init(false), 146 cl::desc("Disable select to branch conversion.")); 147 148 static cl::opt<bool> 149 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 150 cl::desc("Address sinking in CGP using GEPs.")); 151 152 static cl::opt<bool> 153 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 154 cl::desc("Enable sinkinig and/cmp into branches.")); 155 156 static cl::opt<bool> DisableStoreExtract( 157 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> StressStoreExtract( 161 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 162 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 163 164 static cl::opt<bool> DisableExtLdPromotion( 165 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 167 "CodeGenPrepare")); 168 169 static cl::opt<bool> StressExtLdPromotion( 170 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 171 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 172 "optimization in CodeGenPrepare")); 173 174 static cl::opt<bool> DisablePreheaderProtect( 175 "disable-preheader-prot", cl::Hidden, cl::init(false), 176 cl::desc("Disable protection against removing loop preheaders")); 177 178 static cl::opt<bool> ProfileGuidedSectionPrefix( 179 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 180 cl::desc("Use profile info to add section prefix for hot/cold functions")); 181 182 static cl::opt<bool> ProfileUnknownInSpecialSection( 183 "profile-unknown-in-special-section", cl::Hidden, 184 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 185 "profile, we cannot tell the function is cold for sure because " 186 "it may be a function newly added without ever being sampled. " 187 "With the flag enabled, compiler can put such profile unknown " 188 "functions into a special section, so runtime system can choose " 189 "to handle it in a different way than .text section, to save " 190 "RAM for example. ")); 191 192 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 193 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 194 cl::desc("Use the basic-block-sections profile to determine the text " 195 "section prefix for hot functions. Functions with " 196 "basic-block-sections profile will be placed in `.text.hot` " 197 "regardless of their FDO profile info. Other functions won't be " 198 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 199 "profiles.")); 200 201 static cl::opt<unsigned> FreqRatioToSkipMerge( 202 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 203 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 204 "(frequency of destination block) is greater than this ratio")); 205 206 static cl::opt<bool> ForceSplitStore( 207 "force-split-store", cl::Hidden, cl::init(false), 208 cl::desc("Force store splitting no matter what the target query says.")); 209 210 static cl::opt<bool> EnableTypePromotionMerge( 211 "cgp-type-promotion-merge", cl::Hidden, 212 cl::desc("Enable merging of redundant sexts when one is dominating" 213 " the other."), 214 cl::init(true)); 215 216 static cl::opt<bool> DisableComplexAddrModes( 217 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 218 cl::desc("Disables combining addressing modes with different parts " 219 "in optimizeMemoryInst.")); 220 221 static cl::opt<bool> 222 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 223 cl::desc("Allow creation of Phis in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkNewSelects( 226 "addr-sink-new-select", cl::Hidden, cl::init(true), 227 cl::desc("Allow creation of selects in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineBaseReg( 230 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of BaseReg field in Address sinking.")); 232 233 static cl::opt<bool> AddrSinkCombineBaseGV( 234 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 235 cl::desc("Allow combining of BaseGV field in Address sinking.")); 236 237 static cl::opt<bool> AddrSinkCombineBaseOffs( 238 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 239 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 240 241 static cl::opt<bool> AddrSinkCombineScaledReg( 242 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 243 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 244 245 static cl::opt<bool> 246 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 247 cl::init(true), 248 cl::desc("Enable splitting large offset of GEP.")); 249 250 static cl::opt<bool> EnableICMP_EQToICMP_ST( 251 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 252 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 253 254 static cl::opt<bool> 255 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 256 cl::desc("Enable BFI update verification for " 257 "CodeGenPrepare.")); 258 259 static cl::opt<bool> 260 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 261 cl::desc("Enable converting phi types in CodeGenPrepare")); 262 263 static cl::opt<unsigned> 264 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 265 cl::desc("Least BB number of huge function.")); 266 267 static cl::opt<unsigned> 268 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 269 cl::Hidden, 270 cl::desc("Max number of address users to look at")); 271 namespace { 272 273 enum ExtType { 274 ZeroExtension, // Zero extension has been seen. 275 SignExtension, // Sign extension has been seen. 276 BothExtension // This extension type is used if we saw sext after 277 // ZeroExtension had been set, or if we saw zext after 278 // SignExtension had been set. It makes the type 279 // information of a promoted instruction invalid. 280 }; 281 282 enum ModifyDT { 283 NotModifyDT, // Not Modify any DT. 284 ModifyBBDT, // Modify the Basic Block Dominator Tree. 285 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 286 // This usually means we move/delete/insert instruction 287 // in a Basic Block. So we should re-iterate instructions 288 // in such Basic Block. 289 }; 290 291 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 292 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 293 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 294 using SExts = SmallVector<Instruction *, 16>; 295 using ValueToSExts = MapVector<Value *, SExts>; 296 297 class TypePromotionTransaction; 298 299 class CodeGenPrepare : public FunctionPass { 300 const TargetMachine *TM = nullptr; 301 const TargetSubtargetInfo *SubtargetInfo = nullptr; 302 const TargetLowering *TLI = nullptr; 303 const TargetRegisterInfo *TRI = nullptr; 304 const TargetTransformInfo *TTI = nullptr; 305 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 306 const TargetLibraryInfo *TLInfo = nullptr; 307 LoopInfo *LI = nullptr; 308 std::unique_ptr<BlockFrequencyInfo> BFI; 309 std::unique_ptr<BranchProbabilityInfo> BPI; 310 ProfileSummaryInfo *PSI = nullptr; 311 312 /// As we scan instructions optimizing them, this is the next instruction 313 /// to optimize. Transforms that can invalidate this should update it. 314 BasicBlock::iterator CurInstIterator; 315 316 /// Keeps track of non-local addresses that have been sunk into a block. 317 /// This allows us to avoid inserting duplicate code for blocks with 318 /// multiple load/stores of the same address. The usage of WeakTrackingVH 319 /// enables SunkAddrs to be treated as a cache whose entries can be 320 /// invalidated if a sunken address computation has been erased. 321 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 322 323 /// Keeps track of all instructions inserted for the current function. 324 SetOfInstrs InsertedInsts; 325 326 /// Keeps track of the type of the related instruction before their 327 /// promotion for the current function. 328 InstrToOrigTy PromotedInsts; 329 330 /// Keep track of instructions removed during promotion. 331 SetOfInstrs RemovedInsts; 332 333 /// Keep track of sext chains based on their initial value. 334 DenseMap<Value *, Instruction *> SeenChainsForSExt; 335 336 /// Keep track of GEPs accessing the same data structures such as structs or 337 /// arrays that are candidates to be split later because of their large 338 /// size. 339 MapVector<AssertingVH<Value>, 340 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 341 LargeOffsetGEPMap; 342 343 /// Keep track of new GEP base after splitting the GEPs having large offset. 344 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 345 346 /// Map serial numbers to Large offset GEPs. 347 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 348 349 /// Keep track of SExt promoted. 350 ValueToSExts ValToSExtendedUses; 351 352 /// True if the function has the OptSize attribute. 353 bool OptSize; 354 355 /// DataLayout for the Function being processed. 356 const DataLayout *DL = nullptr; 357 358 /// Building the dominator tree can be expensive, so we only build it 359 /// lazily and update it when required. 360 std::unique_ptr<DominatorTree> DT; 361 362 public: 363 /// If encounter huge function, we need to limit the build time. 364 bool IsHugeFunc = false; 365 366 /// FreshBBs is like worklist, it collected the updated BBs which need 367 /// to be optimized again. 368 /// Note: Consider building time in this pass, when a BB updated, we need 369 /// to insert such BB into FreshBBs for huge function. 370 SmallSet<BasicBlock *, 32> FreshBBs; 371 372 static char ID; // Pass identification, replacement for typeid 373 374 CodeGenPrepare() : FunctionPass(ID) { 375 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 376 } 377 378 bool runOnFunction(Function &F) override; 379 380 void releaseMemory() override { 381 // Clear per function information. 382 InsertedInsts.clear(); 383 PromotedInsts.clear(); 384 FreshBBs.clear(); 385 BPI.reset(); 386 BFI.reset(); 387 } 388 389 StringRef getPassName() const override { return "CodeGen Prepare"; } 390 391 void getAnalysisUsage(AnalysisUsage &AU) const override { 392 // FIXME: When we can selectively preserve passes, preserve the domtree. 393 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 394 AU.addRequired<TargetLibraryInfoWrapperPass>(); 395 AU.addRequired<TargetPassConfig>(); 396 AU.addRequired<TargetTransformInfoWrapperPass>(); 397 AU.addRequired<LoopInfoWrapperPass>(); 398 AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); 399 } 400 401 private: 402 template <typename F> 403 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 404 // Substituting can cause recursive simplifications, which can invalidate 405 // our iterator. Use a WeakTrackingVH to hold onto it in case this 406 // happens. 407 Value *CurValue = &*CurInstIterator; 408 WeakTrackingVH IterHandle(CurValue); 409 410 f(); 411 412 // If the iterator instruction was recursively deleted, start over at the 413 // start of the block. 414 if (IterHandle != CurValue) { 415 CurInstIterator = BB->begin(); 416 SunkAddrs.clear(); 417 } 418 } 419 420 // Get the DominatorTree, building if necessary. 421 DominatorTree &getDT(Function &F) { 422 if (!DT) 423 DT = std::make_unique<DominatorTree>(F); 424 return *DT; 425 } 426 427 void removeAllAssertingVHReferences(Value *V); 428 bool eliminateAssumptions(Function &F); 429 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 430 bool eliminateMostlyEmptyBlocks(Function &F); 431 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 432 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 433 void eliminateMostlyEmptyBlock(BasicBlock *BB); 434 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 435 bool isPreheader); 436 bool makeBitReverse(Instruction &I); 437 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 438 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 439 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 440 unsigned AddrSpace); 441 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 442 bool optimizeInlineAsmInst(CallInst *CS); 443 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 444 bool optimizeExt(Instruction *&I); 445 bool optimizeExtUses(Instruction *I); 446 bool optimizeLoadExt(LoadInst *Load); 447 bool optimizeShiftInst(BinaryOperator *BO); 448 bool optimizeFunnelShift(IntrinsicInst *Fsh); 449 bool optimizeSelectInst(SelectInst *SI); 450 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 451 bool optimizeSwitchType(SwitchInst *SI); 452 bool optimizeSwitchPhiConstants(SwitchInst *SI); 453 bool optimizeSwitchInst(SwitchInst *SI); 454 bool optimizeExtractElementInst(Instruction *Inst); 455 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 456 bool fixupDbgValue(Instruction *I); 457 bool placeDbgValues(Function &F); 458 bool placePseudoProbes(Function &F); 459 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 460 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 461 bool tryToPromoteExts(TypePromotionTransaction &TPT, 462 const SmallVectorImpl<Instruction *> &Exts, 463 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 464 unsigned CreatedInstsCost = 0); 465 bool mergeSExts(Function &F); 466 bool splitLargeGEPOffsets(); 467 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 468 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 469 bool optimizePhiTypes(Function &F); 470 bool performAddressTypePromotion( 471 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 472 bool HasPromoted, TypePromotionTransaction &TPT, 473 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 474 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 475 bool simplifyOffsetableRelocate(GCStatepointInst &I); 476 477 bool tryToSinkFreeOperands(Instruction *I); 478 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 479 CmpInst *Cmp, Intrinsic::ID IID); 480 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 481 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 482 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 483 void verifyBFIUpdates(Function &F); 484 }; 485 486 } // end anonymous namespace 487 488 char CodeGenPrepare::ID = 0; 489 490 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 491 "Optimize for code generation", false, false) 492 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader) 493 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 494 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 495 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 496 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 497 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 498 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation", 499 false, false) 500 501 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 502 503 bool CodeGenPrepare::runOnFunction(Function &F) { 504 if (skipFunction(F)) 505 return false; 506 507 DL = &F.getParent()->getDataLayout(); 508 509 bool EverMadeChange = false; 510 511 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 512 SubtargetInfo = TM->getSubtargetImpl(F); 513 TLI = SubtargetInfo->getTargetLowering(); 514 TRI = SubtargetInfo->getRegisterInfo(); 515 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 516 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 517 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 518 BPI.reset(new BranchProbabilityInfo(F, *LI)); 519 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 520 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 521 BBSectionsProfileReader = 522 getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); 523 OptSize = F.hasOptSize(); 524 // Use the basic-block-sections profile to promote hot functions to .text.hot 525 // if requested. 526 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 527 BBSectionsProfileReader->isFunctionHot(F.getName())) { 528 F.setSectionPrefix("hot"); 529 } else if (ProfileGuidedSectionPrefix) { 530 // The hot attribute overwrites profile count based hotness while profile 531 // counts based hotness overwrite the cold attribute. 532 // This is a conservative behabvior. 533 if (F.hasFnAttribute(Attribute::Hot) || 534 PSI->isFunctionHotInCallGraph(&F, *BFI)) 535 F.setSectionPrefix("hot"); 536 // If PSI shows this function is not hot, we will placed the function 537 // into unlikely section if (1) PSI shows this is a cold function, or 538 // (2) the function has a attribute of cold. 539 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 540 F.hasFnAttribute(Attribute::Cold)) 541 F.setSectionPrefix("unlikely"); 542 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 543 PSI->isFunctionHotnessUnknown(F)) 544 F.setSectionPrefix("unknown"); 545 } 546 547 /// This optimization identifies DIV instructions that can be 548 /// profitably bypassed and carried out with a shorter, faster divide. 549 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 550 const DenseMap<unsigned int, unsigned int> &BypassWidths = 551 TLI->getBypassSlowDivWidths(); 552 BasicBlock *BB = &*F.begin(); 553 while (BB != nullptr) { 554 // bypassSlowDivision may create new BBs, but we don't want to reapply the 555 // optimization to those blocks. 556 BasicBlock *Next = BB->getNextNode(); 557 // F.hasOptSize is already checked in the outer if statement. 558 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 559 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 560 BB = Next; 561 } 562 } 563 564 // Get rid of @llvm.assume builtins before attempting to eliminate empty 565 // blocks, since there might be blocks that only contain @llvm.assume calls 566 // (plus arguments that we can get rid of). 567 EverMadeChange |= eliminateAssumptions(F); 568 569 // Eliminate blocks that contain only PHI nodes and an 570 // unconditional branch. 571 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 572 573 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 574 if (!DisableBranchOpts) 575 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 576 577 // Split some critical edges where one of the sources is an indirect branch, 578 // to help generate sane code for PHIs involving such edges. 579 EverMadeChange |= 580 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 581 582 // If we are optimzing huge function, we need to consider the build time. 583 // Because the basic algorithm's complex is near O(N!). 584 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 585 586 // Transformations above may invalidate dominator tree and/or loop info. 587 DT.reset(); 588 LI->releaseMemory(); 589 LI->analyze(getDT(F)); 590 591 bool MadeChange = true; 592 bool FuncIterated = false; 593 while (MadeChange) { 594 MadeChange = false; 595 596 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 597 if (FuncIterated && !FreshBBs.contains(&BB)) 598 continue; 599 600 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 601 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 602 603 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 604 DT.reset(); 605 606 MadeChange |= Changed; 607 if (IsHugeFunc) { 608 // If the BB is updated, it may still has chance to be optimized. 609 // This usually happen at sink optimization. 610 // For example: 611 // 612 // bb0: 613 // %and = and i32 %a, 4 614 // %cmp = icmp eq i32 %and, 0 615 // 616 // If the %cmp sink to other BB, the %and will has chance to sink. 617 if (Changed) 618 FreshBBs.insert(&BB); 619 else if (FuncIterated) 620 FreshBBs.erase(&BB); 621 } else { 622 // For small/normal functions, we restart BB iteration if the dominator 623 // tree of the Function was changed. 624 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 625 break; 626 } 627 } 628 // We have iterated all the BB in the (only work for huge) function. 629 FuncIterated = IsHugeFunc; 630 631 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 632 MadeChange |= mergeSExts(F); 633 if (!LargeOffsetGEPMap.empty()) 634 MadeChange |= splitLargeGEPOffsets(); 635 MadeChange |= optimizePhiTypes(F); 636 637 if (MadeChange) 638 eliminateFallThrough(F, DT.get()); 639 640 #ifndef NDEBUG 641 if (MadeChange && VerifyLoopInfo) 642 LI->verify(getDT(F)); 643 #endif 644 645 // Really free removed instructions during promotion. 646 for (Instruction *I : RemovedInsts) 647 I->deleteValue(); 648 649 EverMadeChange |= MadeChange; 650 SeenChainsForSExt.clear(); 651 ValToSExtendedUses.clear(); 652 RemovedInsts.clear(); 653 LargeOffsetGEPMap.clear(); 654 LargeOffsetGEPID.clear(); 655 } 656 657 NewGEPBases.clear(); 658 SunkAddrs.clear(); 659 660 if (!DisableBranchOpts) { 661 MadeChange = false; 662 // Use a set vector to get deterministic iteration order. The order the 663 // blocks are removed may affect whether or not PHI nodes in successors 664 // are removed. 665 SmallSetVector<BasicBlock *, 8> WorkList; 666 for (BasicBlock &BB : F) { 667 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 668 MadeChange |= ConstantFoldTerminator(&BB, true); 669 if (!MadeChange) 670 continue; 671 672 for (BasicBlock *Succ : Successors) 673 if (pred_empty(Succ)) 674 WorkList.insert(Succ); 675 } 676 677 // Delete the dead blocks and any of their dead successors. 678 MadeChange |= !WorkList.empty(); 679 while (!WorkList.empty()) { 680 BasicBlock *BB = WorkList.pop_back_val(); 681 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 682 683 DeleteDeadBlock(BB); 684 685 for (BasicBlock *Succ : Successors) 686 if (pred_empty(Succ)) 687 WorkList.insert(Succ); 688 } 689 690 // Merge pairs of basic blocks with unconditional branches, connected by 691 // a single edge. 692 if (EverMadeChange || MadeChange) 693 MadeChange |= eliminateFallThrough(F); 694 695 EverMadeChange |= MadeChange; 696 } 697 698 if (!DisableGCOpts) { 699 SmallVector<GCStatepointInst *, 2> Statepoints; 700 for (BasicBlock &BB : F) 701 for (Instruction &I : BB) 702 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 703 Statepoints.push_back(SP); 704 for (auto &I : Statepoints) 705 EverMadeChange |= simplifyOffsetableRelocate(*I); 706 } 707 708 // Do this last to clean up use-before-def scenarios introduced by other 709 // preparatory transforms. 710 EverMadeChange |= placeDbgValues(F); 711 EverMadeChange |= placePseudoProbes(F); 712 713 #ifndef NDEBUG 714 if (VerifyBFIUpdates) 715 verifyBFIUpdates(F); 716 #endif 717 718 return EverMadeChange; 719 } 720 721 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 722 bool MadeChange = false; 723 for (BasicBlock &BB : F) { 724 CurInstIterator = BB.begin(); 725 while (CurInstIterator != BB.end()) { 726 Instruction *I = &*(CurInstIterator++); 727 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 728 MadeChange = true; 729 Value *Operand = Assume->getOperand(0); 730 Assume->eraseFromParent(); 731 732 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 733 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 734 }); 735 } 736 } 737 } 738 return MadeChange; 739 } 740 741 /// An instruction is about to be deleted, so remove all references to it in our 742 /// GEP-tracking data strcutures. 743 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 744 LargeOffsetGEPMap.erase(V); 745 NewGEPBases.erase(V); 746 747 auto GEP = dyn_cast<GetElementPtrInst>(V); 748 if (!GEP) 749 return; 750 751 LargeOffsetGEPID.erase(GEP); 752 753 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 754 if (VecI == LargeOffsetGEPMap.end()) 755 return; 756 757 auto &GEPVector = VecI->second; 758 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 759 760 if (GEPVector.empty()) 761 LargeOffsetGEPMap.erase(VecI); 762 } 763 764 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 765 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 766 DominatorTree NewDT(F); 767 LoopInfo NewLI(NewDT); 768 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 769 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 770 NewBFI.verifyMatch(*BFI); 771 } 772 773 /// Merge basic blocks which are connected by a single edge, where one of the 774 /// basic blocks has a single successor pointing to the other basic block, 775 /// which has a single predecessor. 776 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 777 bool Changed = false; 778 // Scan all of the blocks in the function, except for the entry block. 779 // Use a temporary array to avoid iterator being invalidated when 780 // deleting blocks. 781 SmallVector<WeakTrackingVH, 16> Blocks; 782 for (auto &Block : llvm::drop_begin(F)) 783 Blocks.push_back(&Block); 784 785 SmallSet<WeakTrackingVH, 16> Preds; 786 for (auto &Block : Blocks) { 787 auto *BB = cast_or_null<BasicBlock>(Block); 788 if (!BB) 789 continue; 790 // If the destination block has a single pred, then this is a trivial 791 // edge, just collapse it. 792 BasicBlock *SinglePred = BB->getSinglePredecessor(); 793 794 // Don't merge if BB's address is taken. 795 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 796 continue; 797 798 // Make an effort to skip unreachable blocks. 799 if (DT && !DT->isReachableFromEntry(BB)) 800 continue; 801 802 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 803 if (Term && !Term->isConditional()) { 804 Changed = true; 805 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 806 807 // Merge BB into SinglePred and delete it. 808 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 809 /* MemDep */ nullptr, 810 /* PredecessorWithTwoSuccessors */ false, DT); 811 Preds.insert(SinglePred); 812 813 if (IsHugeFunc) { 814 // Update FreshBBs to optimize the merged BB. 815 FreshBBs.insert(SinglePred); 816 FreshBBs.erase(BB); 817 } 818 } 819 } 820 821 // (Repeatedly) merging blocks into their predecessors can create redundant 822 // debug intrinsics. 823 for (const auto &Pred : Preds) 824 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 825 RemoveRedundantDbgInstrs(BB); 826 827 return Changed; 828 } 829 830 /// Find a destination block from BB if BB is mergeable empty block. 831 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 832 // If this block doesn't end with an uncond branch, ignore it. 833 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 834 if (!BI || !BI->isUnconditional()) 835 return nullptr; 836 837 // If the instruction before the branch (skipping debug info) isn't a phi 838 // node, then other stuff is happening here. 839 BasicBlock::iterator BBI = BI->getIterator(); 840 if (BBI != BB->begin()) { 841 --BBI; 842 while (isa<DbgInfoIntrinsic>(BBI)) { 843 if (BBI == BB->begin()) 844 break; 845 --BBI; 846 } 847 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 848 return nullptr; 849 } 850 851 // Do not break infinite loops. 852 BasicBlock *DestBB = BI->getSuccessor(0); 853 if (DestBB == BB) 854 return nullptr; 855 856 if (!canMergeBlocks(BB, DestBB)) 857 DestBB = nullptr; 858 859 return DestBB; 860 } 861 862 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 863 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 864 /// edges in ways that are non-optimal for isel. Start by eliminating these 865 /// blocks so we can split them the way we want them. 866 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 867 SmallPtrSet<BasicBlock *, 16> Preheaders; 868 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 869 while (!LoopList.empty()) { 870 Loop *L = LoopList.pop_back_val(); 871 llvm::append_range(LoopList, *L); 872 if (BasicBlock *Preheader = L->getLoopPreheader()) 873 Preheaders.insert(Preheader); 874 } 875 876 bool MadeChange = false; 877 // Copy blocks into a temporary array to avoid iterator invalidation issues 878 // as we remove them. 879 // Note that this intentionally skips the entry block. 880 SmallVector<WeakTrackingVH, 16> Blocks; 881 for (auto &Block : llvm::drop_begin(F)) 882 Blocks.push_back(&Block); 883 884 for (auto &Block : Blocks) { 885 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 886 if (!BB) 887 continue; 888 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 889 if (!DestBB || 890 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 891 continue; 892 893 eliminateMostlyEmptyBlock(BB); 894 MadeChange = true; 895 } 896 return MadeChange; 897 } 898 899 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 900 BasicBlock *DestBB, 901 bool isPreheader) { 902 // Do not delete loop preheaders if doing so would create a critical edge. 903 // Loop preheaders can be good locations to spill registers. If the 904 // preheader is deleted and we create a critical edge, registers may be 905 // spilled in the loop body instead. 906 if (!DisablePreheaderProtect && isPreheader && 907 !(BB->getSinglePredecessor() && 908 BB->getSinglePredecessor()->getSingleSuccessor())) 909 return false; 910 911 // Skip merging if the block's successor is also a successor to any callbr 912 // that leads to this block. 913 // FIXME: Is this really needed? Is this a correctness issue? 914 for (BasicBlock *Pred : predecessors(BB)) { 915 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 916 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 917 if (DestBB == CBI->getSuccessor(i)) 918 return false; 919 } 920 921 // Try to skip merging if the unique predecessor of BB is terminated by a 922 // switch or indirect branch instruction, and BB is used as an incoming block 923 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 924 // add COPY instructions in the predecessor of BB instead of BB (if it is not 925 // merged). Note that the critical edge created by merging such blocks wont be 926 // split in MachineSink because the jump table is not analyzable. By keeping 927 // such empty block (BB), ISel will place COPY instructions in BB, not in the 928 // predecessor of BB. 929 BasicBlock *Pred = BB->getUniquePredecessor(); 930 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 931 isa<IndirectBrInst>(Pred->getTerminator()))) 932 return true; 933 934 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 935 return true; 936 937 // We use a simple cost heuristic which determine skipping merging is 938 // profitable if the cost of skipping merging is less than the cost of 939 // merging : Cost(skipping merging) < Cost(merging BB), where the 940 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 941 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 942 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 943 // Freq(Pred) / Freq(BB) > 2. 944 // Note that if there are multiple empty blocks sharing the same incoming 945 // value for the PHIs in the DestBB, we consider them together. In such 946 // case, Cost(merging BB) will be the sum of their frequencies. 947 948 if (!isa<PHINode>(DestBB->begin())) 949 return true; 950 951 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 952 953 // Find all other incoming blocks from which incoming values of all PHIs in 954 // DestBB are the same as the ones from BB. 955 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 956 if (DestBBPred == BB) 957 continue; 958 959 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 960 return DestPN.getIncomingValueForBlock(BB) == 961 DestPN.getIncomingValueForBlock(DestBBPred); 962 })) 963 SameIncomingValueBBs.insert(DestBBPred); 964 } 965 966 // See if all BB's incoming values are same as the value from Pred. In this 967 // case, no reason to skip merging because COPYs are expected to be place in 968 // Pred already. 969 if (SameIncomingValueBBs.count(Pred)) 970 return true; 971 972 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 973 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 974 975 for (auto *SameValueBB : SameIncomingValueBBs) 976 if (SameValueBB->getUniquePredecessor() == Pred && 977 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 978 BBFreq += BFI->getBlockFreq(SameValueBB); 979 980 return PredFreq.getFrequency() <= 981 BBFreq.getFrequency() * FreqRatioToSkipMerge; 982 } 983 984 /// Return true if we can merge BB into DestBB if there is a single 985 /// unconditional branch between them, and BB contains no other non-phi 986 /// instructions. 987 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 988 const BasicBlock *DestBB) const { 989 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 990 // the successor. If there are more complex condition (e.g. preheaders), 991 // don't mess around with them. 992 for (const PHINode &PN : BB->phis()) { 993 for (const User *U : PN.users()) { 994 const Instruction *UI = cast<Instruction>(U); 995 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 996 return false; 997 // If User is inside DestBB block and it is a PHINode then check 998 // incoming value. If incoming value is not from BB then this is 999 // a complex condition (e.g. preheaders) we want to avoid here. 1000 if (UI->getParent() == DestBB) { 1001 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1002 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1003 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1004 if (Insn && Insn->getParent() == BB && 1005 Insn->getParent() != UPN->getIncomingBlock(I)) 1006 return false; 1007 } 1008 } 1009 } 1010 } 1011 1012 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1013 // and DestBB may have conflicting incoming values for the block. If so, we 1014 // can't merge the block. 1015 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1016 if (!DestBBPN) 1017 return true; // no conflict. 1018 1019 // Collect the preds of BB. 1020 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1021 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1022 // It is faster to get preds from a PHI than with pred_iterator. 1023 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1024 BBPreds.insert(BBPN->getIncomingBlock(i)); 1025 } else { 1026 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1027 } 1028 1029 // Walk the preds of DestBB. 1030 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1031 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1032 if (BBPreds.count(Pred)) { // Common predecessor? 1033 for (const PHINode &PN : DestBB->phis()) { 1034 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1035 const Value *V2 = PN.getIncomingValueForBlock(BB); 1036 1037 // If V2 is a phi node in BB, look up what the mapped value will be. 1038 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1039 if (V2PN->getParent() == BB) 1040 V2 = V2PN->getIncomingValueForBlock(Pred); 1041 1042 // If there is a conflict, bail out. 1043 if (V1 != V2) 1044 return false; 1045 } 1046 } 1047 } 1048 1049 return true; 1050 } 1051 1052 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1053 static void replaceAllUsesWith(Value *Old, Value *New, 1054 SmallSet<BasicBlock *, 32> &FreshBBs, 1055 bool IsHuge) { 1056 auto *OldI = dyn_cast<Instruction>(Old); 1057 if (OldI) { 1058 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1059 UI != E; ++UI) { 1060 Instruction *User = cast<Instruction>(*UI); 1061 if (IsHuge) 1062 FreshBBs.insert(User->getParent()); 1063 } 1064 } 1065 Old->replaceAllUsesWith(New); 1066 } 1067 1068 /// Eliminate a basic block that has only phi's and an unconditional branch in 1069 /// it. 1070 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1071 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1072 BasicBlock *DestBB = BI->getSuccessor(0); 1073 1074 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1075 << *BB << *DestBB); 1076 1077 // If the destination block has a single pred, then this is a trivial edge, 1078 // just collapse it. 1079 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1080 if (SinglePred != DestBB) { 1081 assert(SinglePred == BB && 1082 "Single predecessor not the same as predecessor"); 1083 // Merge DestBB into SinglePred/BB and delete it. 1084 MergeBlockIntoPredecessor(DestBB); 1085 // Note: BB(=SinglePred) will not be deleted on this path. 1086 // DestBB(=its single successor) is the one that was deleted. 1087 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1088 1089 if (IsHugeFunc) { 1090 // Update FreshBBs to optimize the merged BB. 1091 FreshBBs.insert(SinglePred); 1092 FreshBBs.erase(DestBB); 1093 } 1094 return; 1095 } 1096 } 1097 1098 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1099 // to handle the new incoming edges it is about to have. 1100 for (PHINode &PN : DestBB->phis()) { 1101 // Remove the incoming value for BB, and remember it. 1102 Value *InVal = PN.removeIncomingValue(BB, false); 1103 1104 // Two options: either the InVal is a phi node defined in BB or it is some 1105 // value that dominates BB. 1106 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1107 if (InValPhi && InValPhi->getParent() == BB) { 1108 // Add all of the input values of the input PHI as inputs of this phi. 1109 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1110 PN.addIncoming(InValPhi->getIncomingValue(i), 1111 InValPhi->getIncomingBlock(i)); 1112 } else { 1113 // Otherwise, add one instance of the dominating value for each edge that 1114 // we will be adding. 1115 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1116 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1117 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1118 } else { 1119 for (BasicBlock *Pred : predecessors(BB)) 1120 PN.addIncoming(InVal, Pred); 1121 } 1122 } 1123 } 1124 1125 // The PHIs are now updated, change everything that refers to BB to use 1126 // DestBB and remove BB. 1127 BB->replaceAllUsesWith(DestBB); 1128 BB->eraseFromParent(); 1129 ++NumBlocksElim; 1130 1131 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1132 } 1133 1134 // Computes a map of base pointer relocation instructions to corresponding 1135 // derived pointer relocation instructions given a vector of all relocate calls 1136 static void computeBaseDerivedRelocateMap( 1137 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1138 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1139 &RelocateInstMap) { 1140 // Collect information in two maps: one primarily for locating the base object 1141 // while filling the second map; the second map is the final structure holding 1142 // a mapping between Base and corresponding Derived relocate calls 1143 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1144 for (auto *ThisRelocate : AllRelocateCalls) { 1145 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1146 ThisRelocate->getDerivedPtrIndex()); 1147 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1148 } 1149 for (auto &Item : RelocateIdxMap) { 1150 std::pair<unsigned, unsigned> Key = Item.first; 1151 if (Key.first == Key.second) 1152 // Base relocation: nothing to insert 1153 continue; 1154 1155 GCRelocateInst *I = Item.second; 1156 auto BaseKey = std::make_pair(Key.first, Key.first); 1157 1158 // We're iterating over RelocateIdxMap so we cannot modify it. 1159 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1160 if (MaybeBase == RelocateIdxMap.end()) 1161 // TODO: We might want to insert a new base object relocate and gep off 1162 // that, if there are enough derived object relocates. 1163 continue; 1164 1165 RelocateInstMap[MaybeBase->second].push_back(I); 1166 } 1167 } 1168 1169 // Accepts a GEP and extracts the operands into a vector provided they're all 1170 // small integer constants 1171 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1172 SmallVectorImpl<Value *> &OffsetV) { 1173 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1174 // Only accept small constant integer operands 1175 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1176 if (!Op || Op->getZExtValue() > 20) 1177 return false; 1178 } 1179 1180 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1181 OffsetV.push_back(GEP->getOperand(i)); 1182 return true; 1183 } 1184 1185 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1186 // replace, computes a replacement, and affects it. 1187 static bool 1188 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1189 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1190 bool MadeChange = false; 1191 // We must ensure the relocation of derived pointer is defined after 1192 // relocation of base pointer. If we find a relocation corresponding to base 1193 // defined earlier than relocation of base then we move relocation of base 1194 // right before found relocation. We consider only relocation in the same 1195 // basic block as relocation of base. Relocations from other basic block will 1196 // be skipped by optimization and we do not care about them. 1197 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1198 &*R != RelocatedBase; ++R) 1199 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1200 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1201 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1202 RelocatedBase->moveBefore(RI); 1203 break; 1204 } 1205 1206 for (GCRelocateInst *ToReplace : Targets) { 1207 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1208 "Not relocating a derived object of the original base object"); 1209 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1210 // A duplicate relocate call. TODO: coalesce duplicates. 1211 continue; 1212 } 1213 1214 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1215 // Base and derived relocates are in different basic blocks. 1216 // In this case transform is only valid when base dominates derived 1217 // relocate. However it would be too expensive to check dominance 1218 // for each such relocate, so we skip the whole transformation. 1219 continue; 1220 } 1221 1222 Value *Base = ToReplace->getBasePtr(); 1223 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1224 if (!Derived || Derived->getPointerOperand() != Base) 1225 continue; 1226 1227 SmallVector<Value *, 2> OffsetV; 1228 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1229 continue; 1230 1231 // Create a Builder and replace the target callsite with a gep 1232 assert(RelocatedBase->getNextNode() && 1233 "Should always have one since it's not a terminator"); 1234 1235 // Insert after RelocatedBase 1236 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1237 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1238 1239 // If gc_relocate does not match the actual type, cast it to the right type. 1240 // In theory, there must be a bitcast after gc_relocate if the type does not 1241 // match, and we should reuse it to get the derived pointer. But it could be 1242 // cases like this: 1243 // bb1: 1244 // ... 1245 // %g1 = call coldcc i8 addrspace(1)* 1246 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1247 // 1248 // bb2: 1249 // ... 1250 // %g2 = call coldcc i8 addrspace(1)* 1251 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1252 // 1253 // merge: 1254 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1255 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1256 // 1257 // In this case, we can not find the bitcast any more. So we insert a new 1258 // bitcast no matter there is already one or not. In this way, we can handle 1259 // all cases, and the extra bitcast should be optimized away in later 1260 // passes. 1261 Value *ActualRelocatedBase = RelocatedBase; 1262 if (RelocatedBase->getType() != Base->getType()) { 1263 ActualRelocatedBase = 1264 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1265 } 1266 Value *Replacement = 1267 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1268 ArrayRef(OffsetV)); 1269 Replacement->takeName(ToReplace); 1270 // If the newly generated derived pointer's type does not match the original 1271 // derived pointer's type, cast the new derived pointer to match it. Same 1272 // reasoning as above. 1273 Value *ActualReplacement = Replacement; 1274 if (Replacement->getType() != ToReplace->getType()) { 1275 ActualReplacement = 1276 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1277 } 1278 ToReplace->replaceAllUsesWith(ActualReplacement); 1279 ToReplace->eraseFromParent(); 1280 1281 MadeChange = true; 1282 } 1283 return MadeChange; 1284 } 1285 1286 // Turns this: 1287 // 1288 // %base = ... 1289 // %ptr = gep %base + 15 1290 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1291 // %base' = relocate(%tok, i32 4, i32 4) 1292 // %ptr' = relocate(%tok, i32 4, i32 5) 1293 // %val = load %ptr' 1294 // 1295 // into this: 1296 // 1297 // %base = ... 1298 // %ptr = gep %base + 15 1299 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1300 // %base' = gc.relocate(%tok, i32 4, i32 4) 1301 // %ptr' = gep %base' + 15 1302 // %val = load %ptr' 1303 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1304 bool MadeChange = false; 1305 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1306 for (auto *U : I.users()) 1307 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1308 // Collect all the relocate calls associated with a statepoint 1309 AllRelocateCalls.push_back(Relocate); 1310 1311 // We need at least one base pointer relocation + one derived pointer 1312 // relocation to mangle 1313 if (AllRelocateCalls.size() < 2) 1314 return false; 1315 1316 // RelocateInstMap is a mapping from the base relocate instruction to the 1317 // corresponding derived relocate instructions 1318 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1319 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1320 if (RelocateInstMap.empty()) 1321 return false; 1322 1323 for (auto &Item : RelocateInstMap) 1324 // Item.first is the RelocatedBase to offset against 1325 // Item.second is the vector of Targets to replace 1326 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1327 return MadeChange; 1328 } 1329 1330 /// Sink the specified cast instruction into its user blocks. 1331 static bool SinkCast(CastInst *CI) { 1332 BasicBlock *DefBB = CI->getParent(); 1333 1334 /// InsertedCasts - Only insert a cast in each block once. 1335 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1336 1337 bool MadeChange = false; 1338 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1339 UI != E;) { 1340 Use &TheUse = UI.getUse(); 1341 Instruction *User = cast<Instruction>(*UI); 1342 1343 // Figure out which BB this cast is used in. For PHI's this is the 1344 // appropriate predecessor block. 1345 BasicBlock *UserBB = User->getParent(); 1346 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1347 UserBB = PN->getIncomingBlock(TheUse); 1348 } 1349 1350 // Preincrement use iterator so we don't invalidate it. 1351 ++UI; 1352 1353 // The first insertion point of a block containing an EH pad is after the 1354 // pad. If the pad is the user, we cannot sink the cast past the pad. 1355 if (User->isEHPad()) 1356 continue; 1357 1358 // If the block selected to receive the cast is an EH pad that does not 1359 // allow non-PHI instructions before the terminator, we can't sink the 1360 // cast. 1361 if (UserBB->getTerminator()->isEHPad()) 1362 continue; 1363 1364 // If this user is in the same block as the cast, don't change the cast. 1365 if (UserBB == DefBB) 1366 continue; 1367 1368 // If we have already inserted a cast into this block, use it. 1369 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1370 1371 if (!InsertedCast) { 1372 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1373 assert(InsertPt != UserBB->end()); 1374 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1375 CI->getType(), "", &*InsertPt); 1376 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1377 } 1378 1379 // Replace a use of the cast with a use of the new cast. 1380 TheUse = InsertedCast; 1381 MadeChange = true; 1382 ++NumCastUses; 1383 } 1384 1385 // If we removed all uses, nuke the cast. 1386 if (CI->use_empty()) { 1387 salvageDebugInfo(*CI); 1388 CI->eraseFromParent(); 1389 MadeChange = true; 1390 } 1391 1392 return MadeChange; 1393 } 1394 1395 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1396 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1397 /// reduce the number of virtual registers that must be created and coalesced. 1398 /// 1399 /// Return true if any changes are made. 1400 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1401 const DataLayout &DL) { 1402 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1403 // than sinking only nop casts, but is helpful on some platforms. 1404 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1405 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1406 ASC->getDestAddressSpace())) 1407 return false; 1408 } 1409 1410 // If this is a noop copy, 1411 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1412 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1413 1414 // This is an fp<->int conversion? 1415 if (SrcVT.isInteger() != DstVT.isInteger()) 1416 return false; 1417 1418 // If this is an extension, it will be a zero or sign extension, which 1419 // isn't a noop. 1420 if (SrcVT.bitsLT(DstVT)) 1421 return false; 1422 1423 // If these values will be promoted, find out what they will be promoted 1424 // to. This helps us consider truncates on PPC as noop copies when they 1425 // are. 1426 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1427 TargetLowering::TypePromoteInteger) 1428 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1429 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1430 TargetLowering::TypePromoteInteger) 1431 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1432 1433 // If, after promotion, these are the same types, this is a noop copy. 1434 if (SrcVT != DstVT) 1435 return false; 1436 1437 return SinkCast(CI); 1438 } 1439 1440 // Match a simple increment by constant operation. Note that if a sub is 1441 // matched, the step is negated (as if the step had been canonicalized to 1442 // an add, even though we leave the instruction alone.) 1443 bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1444 Constant *&Step) { 1445 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1446 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1447 m_Instruction(LHS), m_Constant(Step))))) 1448 return true; 1449 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1450 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1451 m_Instruction(LHS), m_Constant(Step))))) { 1452 Step = ConstantExpr::getNeg(Step); 1453 return true; 1454 } 1455 return false; 1456 } 1457 1458 /// If given \p PN is an inductive variable with value IVInc coming from the 1459 /// backedge, and on each iteration it gets increased by Step, return pair 1460 /// <IVInc, Step>. Otherwise, return std::nullopt. 1461 static std::optional<std::pair<Instruction *, Constant *>> 1462 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1463 const Loop *L = LI->getLoopFor(PN->getParent()); 1464 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1465 return std::nullopt; 1466 auto *IVInc = 1467 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1468 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1469 return std::nullopt; 1470 Instruction *LHS = nullptr; 1471 Constant *Step = nullptr; 1472 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1473 return std::make_pair(IVInc, Step); 1474 return std::nullopt; 1475 } 1476 1477 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1478 auto *I = dyn_cast<Instruction>(V); 1479 if (!I) 1480 return false; 1481 Instruction *LHS = nullptr; 1482 Constant *Step = nullptr; 1483 if (!matchIncrement(I, LHS, Step)) 1484 return false; 1485 if (auto *PN = dyn_cast<PHINode>(LHS)) 1486 if (auto IVInc = getIVIncrement(PN, LI)) 1487 return IVInc->first == I; 1488 return false; 1489 } 1490 1491 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1492 Value *Arg0, Value *Arg1, 1493 CmpInst *Cmp, 1494 Intrinsic::ID IID) { 1495 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1496 if (!isIVIncrement(BO, LI)) 1497 return false; 1498 const Loop *L = LI->getLoopFor(BO->getParent()); 1499 assert(L && "L should not be null after isIVIncrement()"); 1500 // Do not risk on moving increment into a child loop. 1501 if (LI->getLoopFor(Cmp->getParent()) != L) 1502 return false; 1503 1504 // Finally, we need to ensure that the insert point will dominate all 1505 // existing uses of the increment. 1506 1507 auto &DT = getDT(*BO->getParent()->getParent()); 1508 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1509 // If we're moving up the dom tree, all uses are trivially dominated. 1510 // (This is the common case for code produced by LSR.) 1511 return true; 1512 1513 // Otherwise, special case the single use in the phi recurrence. 1514 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1515 }; 1516 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1517 // We used to use a dominator tree here to allow multi-block optimization. 1518 // But that was problematic because: 1519 // 1. It could cause a perf regression by hoisting the math op into the 1520 // critical path. 1521 // 2. It could cause a perf regression by creating a value that was live 1522 // across multiple blocks and increasing register pressure. 1523 // 3. Use of a dominator tree could cause large compile-time regression. 1524 // This is because we recompute the DT on every change in the main CGP 1525 // run-loop. The recomputing is probably unnecessary in many cases, so if 1526 // that was fixed, using a DT here would be ok. 1527 // 1528 // There is one important particular case we still want to handle: if BO is 1529 // the IV increment. Important properties that make it profitable: 1530 // - We can speculate IV increment anywhere in the loop (as long as the 1531 // indvar Phi is its only user); 1532 // - Upon computing Cmp, we effectively compute something equivalent to the 1533 // IV increment (despite it loops differently in the IR). So moving it up 1534 // to the cmp point does not really increase register pressure. 1535 return false; 1536 } 1537 1538 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1539 if (BO->getOpcode() == Instruction::Add && 1540 IID == Intrinsic::usub_with_overflow) { 1541 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1542 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1543 } 1544 1545 // Insert at the first instruction of the pair. 1546 Instruction *InsertPt = nullptr; 1547 for (Instruction &Iter : *Cmp->getParent()) { 1548 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1549 // the overflow intrinsic are defined. 1550 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1551 InsertPt = &Iter; 1552 break; 1553 } 1554 } 1555 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1556 1557 IRBuilder<> Builder(InsertPt); 1558 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1559 if (BO->getOpcode() != Instruction::Xor) { 1560 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1561 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1562 } else 1563 assert(BO->hasOneUse() && 1564 "Patterns with XOr should use the BO only in the compare"); 1565 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1566 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1567 Cmp->eraseFromParent(); 1568 BO->eraseFromParent(); 1569 return true; 1570 } 1571 1572 /// Match special-case patterns that check for unsigned add overflow. 1573 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1574 BinaryOperator *&Add) { 1575 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1576 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1577 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1578 1579 // We are not expecting non-canonical/degenerate code. Just bail out. 1580 if (isa<Constant>(A)) 1581 return false; 1582 1583 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1584 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1585 B = ConstantInt::get(B->getType(), 1); 1586 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1587 B = ConstantInt::get(B->getType(), -1); 1588 else 1589 return false; 1590 1591 // Check the users of the variable operand of the compare looking for an add 1592 // with the adjusted constant. 1593 for (User *U : A->users()) { 1594 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1595 Add = cast<BinaryOperator>(U); 1596 return true; 1597 } 1598 } 1599 return false; 1600 } 1601 1602 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1603 /// intrinsic. Return true if any changes were made. 1604 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1605 ModifyDT &ModifiedDT) { 1606 bool EdgeCase = false; 1607 Value *A, *B; 1608 BinaryOperator *Add; 1609 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1610 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1611 return false; 1612 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1613 A = Add->getOperand(0); 1614 B = Add->getOperand(1); 1615 EdgeCase = true; 1616 } 1617 1618 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1619 TLI->getValueType(*DL, Add->getType()), 1620 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1621 return false; 1622 1623 // We don't want to move around uses of condition values this late, so we 1624 // check if it is legal to create the call to the intrinsic in the basic 1625 // block containing the icmp. 1626 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1627 return false; 1628 1629 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1630 Intrinsic::uadd_with_overflow)) 1631 return false; 1632 1633 // Reset callers - do not crash by iterating over a dead instruction. 1634 ModifiedDT = ModifyDT::ModifyInstDT; 1635 return true; 1636 } 1637 1638 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1639 ModifyDT &ModifiedDT) { 1640 // We are not expecting non-canonical/degenerate code. Just bail out. 1641 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1642 if (isa<Constant>(A) && isa<Constant>(B)) 1643 return false; 1644 1645 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1646 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1647 if (Pred == ICmpInst::ICMP_UGT) { 1648 std::swap(A, B); 1649 Pred = ICmpInst::ICMP_ULT; 1650 } 1651 // Convert special-case: (A == 0) is the same as (A u< 1). 1652 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1653 B = ConstantInt::get(B->getType(), 1); 1654 Pred = ICmpInst::ICMP_ULT; 1655 } 1656 // Convert special-case: (A != 0) is the same as (0 u< A). 1657 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1658 std::swap(A, B); 1659 Pred = ICmpInst::ICMP_ULT; 1660 } 1661 if (Pred != ICmpInst::ICMP_ULT) 1662 return false; 1663 1664 // Walk the users of a variable operand of a compare looking for a subtract or 1665 // add with that same operand. Also match the 2nd operand of the compare to 1666 // the add/sub, but that may be a negated constant operand of an add. 1667 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1668 BinaryOperator *Sub = nullptr; 1669 for (User *U : CmpVariableOperand->users()) { 1670 // A - B, A u< B --> usubo(A, B) 1671 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1672 Sub = cast<BinaryOperator>(U); 1673 break; 1674 } 1675 1676 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1677 const APInt *CmpC, *AddC; 1678 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1679 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1680 Sub = cast<BinaryOperator>(U); 1681 break; 1682 } 1683 } 1684 if (!Sub) 1685 return false; 1686 1687 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1688 TLI->getValueType(*DL, Sub->getType()), 1689 Sub->hasNUsesOrMore(1))) 1690 return false; 1691 1692 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1693 Cmp, Intrinsic::usub_with_overflow)) 1694 return false; 1695 1696 // Reset callers - do not crash by iterating over a dead instruction. 1697 ModifiedDT = ModifyDT::ModifyInstDT; 1698 return true; 1699 } 1700 1701 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1702 /// registers that must be created and coalesced. This is a clear win except on 1703 /// targets with multiple condition code registers (PowerPC), where it might 1704 /// lose; some adjustment may be wanted there. 1705 /// 1706 /// Return true if any changes are made. 1707 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1708 if (TLI.hasMultipleConditionRegisters()) 1709 return false; 1710 1711 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1712 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1713 return false; 1714 1715 // Only insert a cmp in each block once. 1716 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1717 1718 bool MadeChange = false; 1719 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1720 UI != E;) { 1721 Use &TheUse = UI.getUse(); 1722 Instruction *User = cast<Instruction>(*UI); 1723 1724 // Preincrement use iterator so we don't invalidate it. 1725 ++UI; 1726 1727 // Don't bother for PHI nodes. 1728 if (isa<PHINode>(User)) 1729 continue; 1730 1731 // Figure out which BB this cmp is used in. 1732 BasicBlock *UserBB = User->getParent(); 1733 BasicBlock *DefBB = Cmp->getParent(); 1734 1735 // If this user is in the same block as the cmp, don't change the cmp. 1736 if (UserBB == DefBB) 1737 continue; 1738 1739 // If we have already inserted a cmp into this block, use it. 1740 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1741 1742 if (!InsertedCmp) { 1743 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1744 assert(InsertPt != UserBB->end()); 1745 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1746 Cmp->getOperand(0), Cmp->getOperand(1), "", 1747 &*InsertPt); 1748 // Propagate the debug info. 1749 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1750 } 1751 1752 // Replace a use of the cmp with a use of the new cmp. 1753 TheUse = InsertedCmp; 1754 MadeChange = true; 1755 ++NumCmpUses; 1756 } 1757 1758 // If we removed all uses, nuke the cmp. 1759 if (Cmp->use_empty()) { 1760 Cmp->eraseFromParent(); 1761 MadeChange = true; 1762 } 1763 1764 return MadeChange; 1765 } 1766 1767 /// For pattern like: 1768 /// 1769 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1770 /// ... 1771 /// DomBB: 1772 /// ... 1773 /// br DomCond, TrueBB, CmpBB 1774 /// CmpBB: (with DomBB being the single predecessor) 1775 /// ... 1776 /// Cmp = icmp eq CmpOp0, CmpOp1 1777 /// ... 1778 /// 1779 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1780 /// different from lowering of icmp eq (PowerPC). This function try to convert 1781 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1782 /// After that, DomCond and Cmp can use the same comparison so reduce one 1783 /// comparison. 1784 /// 1785 /// Return true if any changes are made. 1786 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1787 const TargetLowering &TLI) { 1788 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1789 return false; 1790 1791 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1792 if (Pred != ICmpInst::ICMP_EQ) 1793 return false; 1794 1795 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1796 // icmp slt/sgt would introduce more redundant LLVM IR. 1797 for (User *U : Cmp->users()) { 1798 if (isa<BranchInst>(U)) 1799 continue; 1800 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1801 continue; 1802 return false; 1803 } 1804 1805 // This is a cheap/incomplete check for dominance - just match a single 1806 // predecessor with a conditional branch. 1807 BasicBlock *CmpBB = Cmp->getParent(); 1808 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1809 if (!DomBB) 1810 return false; 1811 1812 // We want to ensure that the only way control gets to the comparison of 1813 // interest is that a less/greater than comparison on the same operands is 1814 // false. 1815 Value *DomCond; 1816 BasicBlock *TrueBB, *FalseBB; 1817 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1818 return false; 1819 if (CmpBB != FalseBB) 1820 return false; 1821 1822 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1823 ICmpInst::Predicate DomPred; 1824 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1825 return false; 1826 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1827 return false; 1828 1829 // Convert the equality comparison to the opposite of the dominating 1830 // comparison and swap the direction for all branch/select users. 1831 // We have conceptually converted: 1832 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1833 // to 1834 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1835 // And similarly for branches. 1836 for (User *U : Cmp->users()) { 1837 if (auto *BI = dyn_cast<BranchInst>(U)) { 1838 assert(BI->isConditional() && "Must be conditional"); 1839 BI->swapSuccessors(); 1840 continue; 1841 } 1842 if (auto *SI = dyn_cast<SelectInst>(U)) { 1843 // Swap operands 1844 SI->swapValues(); 1845 SI->swapProfMetadata(); 1846 continue; 1847 } 1848 llvm_unreachable("Must be a branch or a select"); 1849 } 1850 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1851 return true; 1852 } 1853 1854 /// Many architectures use the same instruction for both subtract and cmp. Try 1855 /// to swap cmp operands to match subtract operations to allow for CSE. 1856 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1857 Value *Op0 = Cmp->getOperand(0); 1858 Value *Op1 = Cmp->getOperand(1); 1859 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1860 isa<Constant>(Op1) || Op0 == Op1) 1861 return false; 1862 1863 // If a subtract already has the same operands as a compare, swapping would be 1864 // bad. If a subtract has the same operands as a compare but in reverse order, 1865 // then swapping is good. 1866 int GoodToSwap = 0; 1867 unsigned NumInspected = 0; 1868 for (const User *U : Op0->users()) { 1869 // Avoid walking many users. 1870 if (++NumInspected > 128) 1871 return false; 1872 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1873 GoodToSwap++; 1874 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1875 GoodToSwap--; 1876 } 1877 1878 if (GoodToSwap > 0) { 1879 Cmp->swapOperands(); 1880 return true; 1881 } 1882 return false; 1883 } 1884 1885 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 1886 if (sinkCmpExpression(Cmp, *TLI)) 1887 return true; 1888 1889 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1890 return true; 1891 1892 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1893 return true; 1894 1895 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1896 return true; 1897 1898 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 1899 return true; 1900 1901 return false; 1902 } 1903 1904 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1905 /// used in a compare to allow isel to generate better code for targets where 1906 /// this operation can be combined. 1907 /// 1908 /// Return true if any changes are made. 1909 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 1910 SetOfInstrs &InsertedInsts) { 1911 // Double-check that we're not trying to optimize an instruction that was 1912 // already optimized by some other part of this pass. 1913 assert(!InsertedInsts.count(AndI) && 1914 "Attempting to optimize already optimized and instruction"); 1915 (void)InsertedInsts; 1916 1917 // Nothing to do for single use in same basic block. 1918 if (AndI->hasOneUse() && 1919 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1920 return false; 1921 1922 // Try to avoid cases where sinking/duplicating is likely to increase register 1923 // pressure. 1924 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1925 !isa<ConstantInt>(AndI->getOperand(1)) && 1926 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1927 return false; 1928 1929 for (auto *U : AndI->users()) { 1930 Instruction *User = cast<Instruction>(U); 1931 1932 // Only sink 'and' feeding icmp with 0. 1933 if (!isa<ICmpInst>(User)) 1934 return false; 1935 1936 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1937 if (!CmpC || !CmpC->isZero()) 1938 return false; 1939 } 1940 1941 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1942 return false; 1943 1944 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1945 LLVM_DEBUG(AndI->getParent()->dump()); 1946 1947 // Push the 'and' into the same block as the icmp 0. There should only be 1948 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1949 // others, so we don't need to keep track of which BBs we insert into. 1950 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1951 UI != E;) { 1952 Use &TheUse = UI.getUse(); 1953 Instruction *User = cast<Instruction>(*UI); 1954 1955 // Preincrement use iterator so we don't invalidate it. 1956 ++UI; 1957 1958 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1959 1960 // Keep the 'and' in the same place if the use is already in the same block. 1961 Instruction *InsertPt = 1962 User->getParent() == AndI->getParent() ? AndI : User; 1963 Instruction *InsertedAnd = 1964 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1965 AndI->getOperand(1), "", InsertPt); 1966 // Propagate the debug info. 1967 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1968 1969 // Replace a use of the 'and' with a use of the new 'and'. 1970 TheUse = InsertedAnd; 1971 ++NumAndUses; 1972 LLVM_DEBUG(User->getParent()->dump()); 1973 } 1974 1975 // We removed all uses, nuke the and. 1976 AndI->eraseFromParent(); 1977 return true; 1978 } 1979 1980 /// Check if the candidates could be combined with a shift instruction, which 1981 /// includes: 1982 /// 1. Truncate instruction 1983 /// 2. And instruction and the imm is a mask of the low bits: 1984 /// imm & (imm+1) == 0 1985 static bool isExtractBitsCandidateUse(Instruction *User) { 1986 if (!isa<TruncInst>(User)) { 1987 if (User->getOpcode() != Instruction::And || 1988 !isa<ConstantInt>(User->getOperand(1))) 1989 return false; 1990 1991 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1992 1993 if ((Cimm & (Cimm + 1)).getBoolValue()) 1994 return false; 1995 } 1996 return true; 1997 } 1998 1999 /// Sink both shift and truncate instruction to the use of truncate's BB. 2000 static bool 2001 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2002 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2003 const TargetLowering &TLI, const DataLayout &DL) { 2004 BasicBlock *UserBB = User->getParent(); 2005 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2006 auto *TruncI = cast<TruncInst>(User); 2007 bool MadeChange = false; 2008 2009 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2010 TruncE = TruncI->user_end(); 2011 TruncUI != TruncE;) { 2012 2013 Use &TruncTheUse = TruncUI.getUse(); 2014 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2015 // Preincrement use iterator so we don't invalidate it. 2016 2017 ++TruncUI; 2018 2019 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2020 if (!ISDOpcode) 2021 continue; 2022 2023 // If the use is actually a legal node, there will not be an 2024 // implicit truncate. 2025 // FIXME: always querying the result type is just an 2026 // approximation; some nodes' legality is determined by the 2027 // operand or other means. There's no good way to find out though. 2028 if (TLI.isOperationLegalOrCustom( 2029 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2030 continue; 2031 2032 // Don't bother for PHI nodes. 2033 if (isa<PHINode>(TruncUser)) 2034 continue; 2035 2036 BasicBlock *TruncUserBB = TruncUser->getParent(); 2037 2038 if (UserBB == TruncUserBB) 2039 continue; 2040 2041 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2042 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2043 2044 if (!InsertedShift && !InsertedTrunc) { 2045 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2046 assert(InsertPt != TruncUserBB->end()); 2047 // Sink the shift 2048 if (ShiftI->getOpcode() == Instruction::AShr) 2049 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 2050 "", &*InsertPt); 2051 else 2052 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 2053 "", &*InsertPt); 2054 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2055 2056 // Sink the trunc 2057 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2058 TruncInsertPt++; 2059 assert(TruncInsertPt != TruncUserBB->end()); 2060 2061 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2062 TruncI->getType(), "", &*TruncInsertPt); 2063 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2064 2065 MadeChange = true; 2066 2067 TruncTheUse = InsertedTrunc; 2068 } 2069 } 2070 return MadeChange; 2071 } 2072 2073 /// Sink the shift *right* instruction into user blocks if the uses could 2074 /// potentially be combined with this shift instruction and generate BitExtract 2075 /// instruction. It will only be applied if the architecture supports BitExtract 2076 /// instruction. Here is an example: 2077 /// BB1: 2078 /// %x.extract.shift = lshr i64 %arg1, 32 2079 /// BB2: 2080 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2081 /// ==> 2082 /// 2083 /// BB2: 2084 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2085 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2086 /// 2087 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2088 /// instruction. 2089 /// Return true if any changes are made. 2090 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2091 const TargetLowering &TLI, 2092 const DataLayout &DL) { 2093 BasicBlock *DefBB = ShiftI->getParent(); 2094 2095 /// Only insert instructions in each block once. 2096 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2097 2098 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2099 2100 bool MadeChange = false; 2101 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2102 UI != E;) { 2103 Use &TheUse = UI.getUse(); 2104 Instruction *User = cast<Instruction>(*UI); 2105 // Preincrement use iterator so we don't invalidate it. 2106 ++UI; 2107 2108 // Don't bother for PHI nodes. 2109 if (isa<PHINode>(User)) 2110 continue; 2111 2112 if (!isExtractBitsCandidateUse(User)) 2113 continue; 2114 2115 BasicBlock *UserBB = User->getParent(); 2116 2117 if (UserBB == DefBB) { 2118 // If the shift and truncate instruction are in the same BB. The use of 2119 // the truncate(TruncUse) may still introduce another truncate if not 2120 // legal. In this case, we would like to sink both shift and truncate 2121 // instruction to the BB of TruncUse. 2122 // for example: 2123 // BB1: 2124 // i64 shift.result = lshr i64 opnd, imm 2125 // trunc.result = trunc shift.result to i16 2126 // 2127 // BB2: 2128 // ----> We will have an implicit truncate here if the architecture does 2129 // not have i16 compare. 2130 // cmp i16 trunc.result, opnd2 2131 // 2132 if (isa<TruncInst>(User) && 2133 shiftIsLegal 2134 // If the type of the truncate is legal, no truncate will be 2135 // introduced in other basic blocks. 2136 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2137 MadeChange = 2138 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2139 2140 continue; 2141 } 2142 // If we have already inserted a shift into this block, use it. 2143 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2144 2145 if (!InsertedShift) { 2146 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2147 assert(InsertPt != UserBB->end()); 2148 2149 if (ShiftI->getOpcode() == Instruction::AShr) 2150 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 2151 "", &*InsertPt); 2152 else 2153 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 2154 "", &*InsertPt); 2155 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2156 2157 MadeChange = true; 2158 } 2159 2160 // Replace a use of the shift with a use of the new shift. 2161 TheUse = InsertedShift; 2162 } 2163 2164 // If we removed all uses, or there are none, nuke the shift. 2165 if (ShiftI->use_empty()) { 2166 salvageDebugInfo(*ShiftI); 2167 ShiftI->eraseFromParent(); 2168 MadeChange = true; 2169 } 2170 2171 return MadeChange; 2172 } 2173 2174 /// If counting leading or trailing zeros is an expensive operation and a zero 2175 /// input is defined, add a check for zero to avoid calling the intrinsic. 2176 /// 2177 /// We want to transform: 2178 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2179 /// 2180 /// into: 2181 /// entry: 2182 /// %cmpz = icmp eq i64 %A, 0 2183 /// br i1 %cmpz, label %cond.end, label %cond.false 2184 /// cond.false: 2185 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2186 /// br label %cond.end 2187 /// cond.end: 2188 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2189 /// 2190 /// If the transform is performed, return true and set ModifiedDT to true. 2191 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2192 LoopInfo &LI, 2193 const TargetLowering *TLI, 2194 const DataLayout *DL, ModifyDT &ModifiedDT, 2195 SmallSet<BasicBlock *, 32> &FreshBBs, 2196 bool IsHugeFunc) { 2197 // If a zero input is undefined, it doesn't make sense to despeculate that. 2198 if (match(CountZeros->getOperand(1), m_One())) 2199 return false; 2200 2201 // If it's cheap to speculate, there's nothing to do. 2202 Type *Ty = CountZeros->getType(); 2203 auto IntrinsicID = CountZeros->getIntrinsicID(); 2204 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2205 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2206 return false; 2207 2208 // Only handle legal scalar cases. Anything else requires too much work. 2209 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2210 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2211 return false; 2212 2213 // Bail if the value is never zero. 2214 Use &Op = CountZeros->getOperandUse(0); 2215 if (isKnownNonZero(Op, *DL)) 2216 return false; 2217 2218 // The intrinsic will be sunk behind a compare against zero and branch. 2219 BasicBlock *StartBlock = CountZeros->getParent(); 2220 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2221 if (IsHugeFunc) 2222 FreshBBs.insert(CallBlock); 2223 2224 // Create another block after the count zero intrinsic. A PHI will be added 2225 // in this block to select the result of the intrinsic or the bit-width 2226 // constant if the input to the intrinsic is zero. 2227 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2228 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2229 if (IsHugeFunc) 2230 FreshBBs.insert(EndBlock); 2231 2232 // Update the LoopInfo. The new blocks are in the same loop as the start 2233 // block. 2234 if (Loop *L = LI.getLoopFor(StartBlock)) { 2235 L->addBasicBlockToLoop(CallBlock, LI); 2236 L->addBasicBlockToLoop(EndBlock, LI); 2237 } 2238 2239 // Set up a builder to create a compare, conditional branch, and PHI. 2240 IRBuilder<> Builder(CountZeros->getContext()); 2241 Builder.SetInsertPoint(StartBlock->getTerminator()); 2242 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2243 2244 // Replace the unconditional branch that was created by the first split with 2245 // a compare against zero and a conditional branch. 2246 Value *Zero = Constant::getNullValue(Ty); 2247 // Avoid introducing branch on poison. This also replaces the ctz operand. 2248 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2249 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2250 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2251 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2252 StartBlock->getTerminator()->eraseFromParent(); 2253 2254 // Create a PHI in the end block to select either the output of the intrinsic 2255 // or the bit width of the operand. 2256 Builder.SetInsertPoint(&EndBlock->front()); 2257 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2258 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2259 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2260 PN->addIncoming(BitWidth, StartBlock); 2261 PN->addIncoming(CountZeros, CallBlock); 2262 2263 // We are explicitly handling the zero case, so we can set the intrinsic's 2264 // undefined zero argument to 'true'. This will also prevent reprocessing the 2265 // intrinsic; we only despeculate when a zero input is defined. 2266 CountZeros->setArgOperand(1, Builder.getTrue()); 2267 ModifiedDT = ModifyDT::ModifyBBDT; 2268 return true; 2269 } 2270 2271 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2272 BasicBlock *BB = CI->getParent(); 2273 2274 // Lower inline assembly if we can. 2275 // If we found an inline asm expession, and if the target knows how to 2276 // lower it to normal LLVM code, do so now. 2277 if (CI->isInlineAsm()) { 2278 if (TLI->ExpandInlineAsm(CI)) { 2279 // Avoid invalidating the iterator. 2280 CurInstIterator = BB->begin(); 2281 // Avoid processing instructions out of order, which could cause 2282 // reuse before a value is defined. 2283 SunkAddrs.clear(); 2284 return true; 2285 } 2286 // Sink address computing for memory operands into the block. 2287 if (optimizeInlineAsmInst(CI)) 2288 return true; 2289 } 2290 2291 // Align the pointer arguments to this call if the target thinks it's a good 2292 // idea 2293 unsigned MinSize; 2294 Align PrefAlign; 2295 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2296 for (auto &Arg : CI->args()) { 2297 // We want to align both objects whose address is used directly and 2298 // objects whose address is used in casts and GEPs, though it only makes 2299 // sense for GEPs if the offset is a multiple of the desired alignment and 2300 // if size - offset meets the size threshold. 2301 if (!Arg->getType()->isPointerTy()) 2302 continue; 2303 APInt Offset(DL->getIndexSizeInBits( 2304 cast<PointerType>(Arg->getType())->getAddressSpace()), 2305 0); 2306 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2307 uint64_t Offset2 = Offset.getLimitedValue(); 2308 if (!isAligned(PrefAlign, Offset2)) 2309 continue; 2310 AllocaInst *AI; 2311 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2312 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2313 AI->setAlignment(PrefAlign); 2314 // Global variables can only be aligned if they are defined in this 2315 // object (i.e. they are uniquely initialized in this object), and 2316 // over-aligning global variables that have an explicit section is 2317 // forbidden. 2318 GlobalVariable *GV; 2319 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2320 GV->getPointerAlignment(*DL) < PrefAlign && 2321 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2322 GV->setAlignment(PrefAlign); 2323 } 2324 } 2325 // If this is a memcpy (or similar) then we may be able to improve the 2326 // alignment. 2327 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2328 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2329 MaybeAlign MIDestAlign = MI->getDestAlign(); 2330 if (!MIDestAlign || DestAlign > *MIDestAlign) 2331 MI->setDestAlignment(DestAlign); 2332 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2333 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2334 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2335 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2336 MTI->setSourceAlignment(SrcAlign); 2337 } 2338 } 2339 2340 // If we have a cold call site, try to sink addressing computation into the 2341 // cold block. This interacts with our handling for loads and stores to 2342 // ensure that we can fold all uses of a potential addressing computation 2343 // into their uses. TODO: generalize this to work over profiling data 2344 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2345 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2346 for (auto &Arg : CI->args()) { 2347 if (!Arg->getType()->isPointerTy()) 2348 continue; 2349 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2350 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2351 return true; 2352 } 2353 2354 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2355 if (II) { 2356 switch (II->getIntrinsicID()) { 2357 default: 2358 break; 2359 case Intrinsic::assume: 2360 llvm_unreachable("llvm.assume should have been removed already"); 2361 case Intrinsic::experimental_widenable_condition: { 2362 // Give up on future widening oppurtunties so that we can fold away dead 2363 // paths and merge blocks before going into block-local instruction 2364 // selection. 2365 if (II->use_empty()) { 2366 II->eraseFromParent(); 2367 return true; 2368 } 2369 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2370 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2371 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2372 }); 2373 return true; 2374 } 2375 case Intrinsic::objectsize: 2376 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2377 case Intrinsic::is_constant: 2378 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2379 case Intrinsic::aarch64_stlxr: 2380 case Intrinsic::aarch64_stxr: { 2381 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2382 if (!ExtVal || !ExtVal->hasOneUse() || 2383 ExtVal->getParent() == CI->getParent()) 2384 return false; 2385 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2386 ExtVal->moveBefore(CI); 2387 // Mark this instruction as "inserted by CGP", so that other 2388 // optimizations don't touch it. 2389 InsertedInsts.insert(ExtVal); 2390 return true; 2391 } 2392 2393 case Intrinsic::launder_invariant_group: 2394 case Intrinsic::strip_invariant_group: { 2395 Value *ArgVal = II->getArgOperand(0); 2396 auto it = LargeOffsetGEPMap.find(II); 2397 if (it != LargeOffsetGEPMap.end()) { 2398 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2399 // Make sure not to have to deal with iterator invalidation 2400 // after possibly adding ArgVal to LargeOffsetGEPMap. 2401 auto GEPs = std::move(it->second); 2402 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2403 LargeOffsetGEPMap.erase(II); 2404 } 2405 2406 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2407 II->eraseFromParent(); 2408 return true; 2409 } 2410 case Intrinsic::cttz: 2411 case Intrinsic::ctlz: 2412 // If counting zeros is expensive, try to avoid it. 2413 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2414 IsHugeFunc); 2415 case Intrinsic::fshl: 2416 case Intrinsic::fshr: 2417 return optimizeFunnelShift(II); 2418 case Intrinsic::dbg_assign: 2419 case Intrinsic::dbg_value: 2420 return fixupDbgValue(II); 2421 case Intrinsic::masked_gather: 2422 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2423 case Intrinsic::masked_scatter: 2424 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2425 } 2426 2427 SmallVector<Value *, 2> PtrOps; 2428 Type *AccessTy; 2429 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2430 while (!PtrOps.empty()) { 2431 Value *PtrVal = PtrOps.pop_back_val(); 2432 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2433 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2434 return true; 2435 } 2436 } 2437 2438 // From here on out we're working with named functions. 2439 if (!CI->getCalledFunction()) 2440 return false; 2441 2442 // Lower all default uses of _chk calls. This is very similar 2443 // to what InstCombineCalls does, but here we are only lowering calls 2444 // to fortified library functions (e.g. __memcpy_chk) that have the default 2445 // "don't know" as the objectsize. Anything else should be left alone. 2446 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2447 IRBuilder<> Builder(CI); 2448 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2449 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2450 CI->eraseFromParent(); 2451 return true; 2452 } 2453 2454 return false; 2455 } 2456 2457 /// Look for opportunities to duplicate return instructions to the predecessor 2458 /// to enable tail call optimizations. The case it is currently looking for is: 2459 /// @code 2460 /// bb0: 2461 /// %tmp0 = tail call i32 @f0() 2462 /// br label %return 2463 /// bb1: 2464 /// %tmp1 = tail call i32 @f1() 2465 /// br label %return 2466 /// bb2: 2467 /// %tmp2 = tail call i32 @f2() 2468 /// br label %return 2469 /// return: 2470 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2471 /// ret i32 %retval 2472 /// @endcode 2473 /// 2474 /// => 2475 /// 2476 /// @code 2477 /// bb0: 2478 /// %tmp0 = tail call i32 @f0() 2479 /// ret i32 %tmp0 2480 /// bb1: 2481 /// %tmp1 = tail call i32 @f1() 2482 /// ret i32 %tmp1 2483 /// bb2: 2484 /// %tmp2 = tail call i32 @f2() 2485 /// ret i32 %tmp2 2486 /// @endcode 2487 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2488 ModifyDT &ModifiedDT) { 2489 if (!BB->getTerminator()) 2490 return false; 2491 2492 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2493 if (!RetI) 2494 return false; 2495 2496 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2497 2498 PHINode *PN = nullptr; 2499 ExtractValueInst *EVI = nullptr; 2500 BitCastInst *BCI = nullptr; 2501 Value *V = RetI->getReturnValue(); 2502 if (V) { 2503 BCI = dyn_cast<BitCastInst>(V); 2504 if (BCI) 2505 V = BCI->getOperand(0); 2506 2507 EVI = dyn_cast<ExtractValueInst>(V); 2508 if (EVI) { 2509 V = EVI->getOperand(0); 2510 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2511 return false; 2512 } 2513 2514 PN = dyn_cast<PHINode>(V); 2515 if (!PN) 2516 return false; 2517 } 2518 2519 if (PN && PN->getParent() != BB) 2520 return false; 2521 2522 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2523 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2524 if (BC && BC->hasOneUse()) 2525 Inst = BC->user_back(); 2526 2527 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2528 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2529 return false; 2530 }; 2531 2532 // Make sure there are no instructions between the first instruction 2533 // and return. 2534 const Instruction *BI = BB->getFirstNonPHI(); 2535 // Skip over debug and the bitcast. 2536 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2537 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2538 BI = BI->getNextNode(); 2539 if (BI != RetI) 2540 return false; 2541 2542 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2543 /// call. 2544 const Function *F = BB->getParent(); 2545 SmallVector<BasicBlock *, 4> TailCallBBs; 2546 if (PN) { 2547 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2548 // Look through bitcasts. 2549 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2550 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2551 BasicBlock *PredBB = PN->getIncomingBlock(I); 2552 // Make sure the phi value is indeed produced by the tail call. 2553 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2554 TLI->mayBeEmittedAsTailCall(CI) && 2555 attributesPermitTailCall(F, CI, RetI, *TLI)) 2556 TailCallBBs.push_back(PredBB); 2557 } 2558 } else { 2559 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2560 for (BasicBlock *Pred : predecessors(BB)) { 2561 if (!VisitedBBs.insert(Pred).second) 2562 continue; 2563 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2564 CallInst *CI = dyn_cast<CallInst>(I); 2565 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2566 attributesPermitTailCall(F, CI, RetI, *TLI)) 2567 TailCallBBs.push_back(Pred); 2568 } 2569 } 2570 } 2571 2572 bool Changed = false; 2573 for (auto const &TailCallBB : TailCallBBs) { 2574 // Make sure the call instruction is followed by an unconditional branch to 2575 // the return block. 2576 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2577 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2578 continue; 2579 2580 // Duplicate the return into TailCallBB. 2581 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2582 assert(!VerifyBFIUpdates || 2583 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2584 BFI->setBlockFreq( 2585 BB, 2586 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2587 ModifiedDT = ModifyDT::ModifyBBDT; 2588 Changed = true; 2589 ++NumRetsDup; 2590 } 2591 2592 // If we eliminated all predecessors of the block, delete the block now. 2593 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2594 BB->eraseFromParent(); 2595 2596 return Changed; 2597 } 2598 2599 //===----------------------------------------------------------------------===// 2600 // Memory Optimization 2601 //===----------------------------------------------------------------------===// 2602 2603 namespace { 2604 2605 /// This is an extended version of TargetLowering::AddrMode 2606 /// which holds actual Value*'s for register values. 2607 struct ExtAddrMode : public TargetLowering::AddrMode { 2608 Value *BaseReg = nullptr; 2609 Value *ScaledReg = nullptr; 2610 Value *OriginalValue = nullptr; 2611 bool InBounds = true; 2612 2613 enum FieldName { 2614 NoField = 0x00, 2615 BaseRegField = 0x01, 2616 BaseGVField = 0x02, 2617 BaseOffsField = 0x04, 2618 ScaledRegField = 0x08, 2619 ScaleField = 0x10, 2620 MultipleFields = 0xff 2621 }; 2622 2623 ExtAddrMode() = default; 2624 2625 void print(raw_ostream &OS) const; 2626 void dump() const; 2627 2628 FieldName compare(const ExtAddrMode &other) { 2629 // First check that the types are the same on each field, as differing types 2630 // is something we can't cope with later on. 2631 if (BaseReg && other.BaseReg && 2632 BaseReg->getType() != other.BaseReg->getType()) 2633 return MultipleFields; 2634 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2635 return MultipleFields; 2636 if (ScaledReg && other.ScaledReg && 2637 ScaledReg->getType() != other.ScaledReg->getType()) 2638 return MultipleFields; 2639 2640 // Conservatively reject 'inbounds' mismatches. 2641 if (InBounds != other.InBounds) 2642 return MultipleFields; 2643 2644 // Check each field to see if it differs. 2645 unsigned Result = NoField; 2646 if (BaseReg != other.BaseReg) 2647 Result |= BaseRegField; 2648 if (BaseGV != other.BaseGV) 2649 Result |= BaseGVField; 2650 if (BaseOffs != other.BaseOffs) 2651 Result |= BaseOffsField; 2652 if (ScaledReg != other.ScaledReg) 2653 Result |= ScaledRegField; 2654 // Don't count 0 as being a different scale, because that actually means 2655 // unscaled (which will already be counted by having no ScaledReg). 2656 if (Scale && other.Scale && Scale != other.Scale) 2657 Result |= ScaleField; 2658 2659 if (llvm::popcount(Result) > 1) 2660 return MultipleFields; 2661 else 2662 return static_cast<FieldName>(Result); 2663 } 2664 2665 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2666 // with no offset. 2667 bool isTrivial() { 2668 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2669 // trivial if at most one of these terms is nonzero, except that BaseGV and 2670 // BaseReg both being zero actually means a null pointer value, which we 2671 // consider to be 'non-zero' here. 2672 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2673 } 2674 2675 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2676 switch (Field) { 2677 default: 2678 return nullptr; 2679 case BaseRegField: 2680 return BaseReg; 2681 case BaseGVField: 2682 return BaseGV; 2683 case ScaledRegField: 2684 return ScaledReg; 2685 case BaseOffsField: 2686 return ConstantInt::get(IntPtrTy, BaseOffs); 2687 } 2688 } 2689 2690 void SetCombinedField(FieldName Field, Value *V, 2691 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2692 switch (Field) { 2693 default: 2694 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2695 break; 2696 case ExtAddrMode::BaseRegField: 2697 BaseReg = V; 2698 break; 2699 case ExtAddrMode::BaseGVField: 2700 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2701 // in the BaseReg field. 2702 assert(BaseReg == nullptr); 2703 BaseReg = V; 2704 BaseGV = nullptr; 2705 break; 2706 case ExtAddrMode::ScaledRegField: 2707 ScaledReg = V; 2708 // If we have a mix of scaled and unscaled addrmodes then we want scale 2709 // to be the scale and not zero. 2710 if (!Scale) 2711 for (const ExtAddrMode &AM : AddrModes) 2712 if (AM.Scale) { 2713 Scale = AM.Scale; 2714 break; 2715 } 2716 break; 2717 case ExtAddrMode::BaseOffsField: 2718 // The offset is no longer a constant, so it goes in ScaledReg with a 2719 // scale of 1. 2720 assert(ScaledReg == nullptr); 2721 ScaledReg = V; 2722 Scale = 1; 2723 BaseOffs = 0; 2724 break; 2725 } 2726 } 2727 }; 2728 2729 #ifndef NDEBUG 2730 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2731 AM.print(OS); 2732 return OS; 2733 } 2734 #endif 2735 2736 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2737 void ExtAddrMode::print(raw_ostream &OS) const { 2738 bool NeedPlus = false; 2739 OS << "["; 2740 if (InBounds) 2741 OS << "inbounds "; 2742 if (BaseGV) { 2743 OS << "GV:"; 2744 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2745 NeedPlus = true; 2746 } 2747 2748 if (BaseOffs) { 2749 OS << (NeedPlus ? " + " : "") << BaseOffs; 2750 NeedPlus = true; 2751 } 2752 2753 if (BaseReg) { 2754 OS << (NeedPlus ? " + " : "") << "Base:"; 2755 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2756 NeedPlus = true; 2757 } 2758 if (Scale) { 2759 OS << (NeedPlus ? " + " : "") << Scale << "*"; 2760 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2761 } 2762 2763 OS << ']'; 2764 } 2765 2766 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2767 print(dbgs()); 2768 dbgs() << '\n'; 2769 } 2770 #endif 2771 2772 } // end anonymous namespace 2773 2774 namespace { 2775 2776 /// This class provides transaction based operation on the IR. 2777 /// Every change made through this class is recorded in the internal state and 2778 /// can be undone (rollback) until commit is called. 2779 /// CGP does not check if instructions could be speculatively executed when 2780 /// moved. Preserving the original location would pessimize the debugging 2781 /// experience, as well as negatively impact the quality of sample PGO. 2782 class TypePromotionTransaction { 2783 /// This represents the common interface of the individual transaction. 2784 /// Each class implements the logic for doing one specific modification on 2785 /// the IR via the TypePromotionTransaction. 2786 class TypePromotionAction { 2787 protected: 2788 /// The Instruction modified. 2789 Instruction *Inst; 2790 2791 public: 2792 /// Constructor of the action. 2793 /// The constructor performs the related action on the IR. 2794 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2795 2796 virtual ~TypePromotionAction() = default; 2797 2798 /// Undo the modification done by this action. 2799 /// When this method is called, the IR must be in the same state as it was 2800 /// before this action was applied. 2801 /// \pre Undoing the action works if and only if the IR is in the exact same 2802 /// state as it was directly after this action was applied. 2803 virtual void undo() = 0; 2804 2805 /// Advocate every change made by this action. 2806 /// When the results on the IR of the action are to be kept, it is important 2807 /// to call this function, otherwise hidden information may be kept forever. 2808 virtual void commit() { 2809 // Nothing to be done, this action is not doing anything. 2810 } 2811 }; 2812 2813 /// Utility to remember the position of an instruction. 2814 class InsertionHandler { 2815 /// Position of an instruction. 2816 /// Either an instruction: 2817 /// - Is the first in a basic block: BB is used. 2818 /// - Has a previous instruction: PrevInst is used. 2819 union { 2820 Instruction *PrevInst; 2821 BasicBlock *BB; 2822 } Point; 2823 2824 /// Remember whether or not the instruction had a previous instruction. 2825 bool HasPrevInstruction; 2826 2827 public: 2828 /// Record the position of \p Inst. 2829 InsertionHandler(Instruction *Inst) { 2830 BasicBlock::iterator It = Inst->getIterator(); 2831 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2832 if (HasPrevInstruction) 2833 Point.PrevInst = &*--It; 2834 else 2835 Point.BB = Inst->getParent(); 2836 } 2837 2838 /// Insert \p Inst at the recorded position. 2839 void insert(Instruction *Inst) { 2840 if (HasPrevInstruction) { 2841 if (Inst->getParent()) 2842 Inst->removeFromParent(); 2843 Inst->insertAfter(Point.PrevInst); 2844 } else { 2845 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2846 if (Inst->getParent()) 2847 Inst->moveBefore(Position); 2848 else 2849 Inst->insertBefore(Position); 2850 } 2851 } 2852 }; 2853 2854 /// Move an instruction before another. 2855 class InstructionMoveBefore : public TypePromotionAction { 2856 /// Original position of the instruction. 2857 InsertionHandler Position; 2858 2859 public: 2860 /// Move \p Inst before \p Before. 2861 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2862 : TypePromotionAction(Inst), Position(Inst) { 2863 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2864 << "\n"); 2865 Inst->moveBefore(Before); 2866 } 2867 2868 /// Move the instruction back to its original position. 2869 void undo() override { 2870 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2871 Position.insert(Inst); 2872 } 2873 }; 2874 2875 /// Set the operand of an instruction with a new value. 2876 class OperandSetter : public TypePromotionAction { 2877 /// Original operand of the instruction. 2878 Value *Origin; 2879 2880 /// Index of the modified instruction. 2881 unsigned Idx; 2882 2883 public: 2884 /// Set \p Idx operand of \p Inst with \p NewVal. 2885 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2886 : TypePromotionAction(Inst), Idx(Idx) { 2887 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2888 << "for:" << *Inst << "\n" 2889 << "with:" << *NewVal << "\n"); 2890 Origin = Inst->getOperand(Idx); 2891 Inst->setOperand(Idx, NewVal); 2892 } 2893 2894 /// Restore the original value of the instruction. 2895 void undo() override { 2896 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2897 << "for: " << *Inst << "\n" 2898 << "with: " << *Origin << "\n"); 2899 Inst->setOperand(Idx, Origin); 2900 } 2901 }; 2902 2903 /// Hide the operands of an instruction. 2904 /// Do as if this instruction was not using any of its operands. 2905 class OperandsHider : public TypePromotionAction { 2906 /// The list of original operands. 2907 SmallVector<Value *, 4> OriginalValues; 2908 2909 public: 2910 /// Remove \p Inst from the uses of the operands of \p Inst. 2911 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2912 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2913 unsigned NumOpnds = Inst->getNumOperands(); 2914 OriginalValues.reserve(NumOpnds); 2915 for (unsigned It = 0; It < NumOpnds; ++It) { 2916 // Save the current operand. 2917 Value *Val = Inst->getOperand(It); 2918 OriginalValues.push_back(Val); 2919 // Set a dummy one. 2920 // We could use OperandSetter here, but that would imply an overhead 2921 // that we are not willing to pay. 2922 Inst->setOperand(It, UndefValue::get(Val->getType())); 2923 } 2924 } 2925 2926 /// Restore the original list of uses. 2927 void undo() override { 2928 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2929 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2930 Inst->setOperand(It, OriginalValues[It]); 2931 } 2932 }; 2933 2934 /// Build a truncate instruction. 2935 class TruncBuilder : public TypePromotionAction { 2936 Value *Val; 2937 2938 public: 2939 /// Build a truncate instruction of \p Opnd producing a \p Ty 2940 /// result. 2941 /// trunc Opnd to Ty. 2942 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2943 IRBuilder<> Builder(Opnd); 2944 Builder.SetCurrentDebugLocation(DebugLoc()); 2945 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2946 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2947 } 2948 2949 /// Get the built value. 2950 Value *getBuiltValue() { return Val; } 2951 2952 /// Remove the built instruction. 2953 void undo() override { 2954 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2955 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2956 IVal->eraseFromParent(); 2957 } 2958 }; 2959 2960 /// Build a sign extension instruction. 2961 class SExtBuilder : public TypePromotionAction { 2962 Value *Val; 2963 2964 public: 2965 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2966 /// result. 2967 /// sext Opnd to Ty. 2968 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2969 : TypePromotionAction(InsertPt) { 2970 IRBuilder<> Builder(InsertPt); 2971 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2972 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2973 } 2974 2975 /// Get the built value. 2976 Value *getBuiltValue() { return Val; } 2977 2978 /// Remove the built instruction. 2979 void undo() override { 2980 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2981 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2982 IVal->eraseFromParent(); 2983 } 2984 }; 2985 2986 /// Build a zero extension instruction. 2987 class ZExtBuilder : public TypePromotionAction { 2988 Value *Val; 2989 2990 public: 2991 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2992 /// result. 2993 /// zext Opnd to Ty. 2994 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2995 : TypePromotionAction(InsertPt) { 2996 IRBuilder<> Builder(InsertPt); 2997 Builder.SetCurrentDebugLocation(DebugLoc()); 2998 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2999 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3000 } 3001 3002 /// Get the built value. 3003 Value *getBuiltValue() { return Val; } 3004 3005 /// Remove the built instruction. 3006 void undo() override { 3007 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3008 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3009 IVal->eraseFromParent(); 3010 } 3011 }; 3012 3013 /// Mutate an instruction to another type. 3014 class TypeMutator : public TypePromotionAction { 3015 /// Record the original type. 3016 Type *OrigTy; 3017 3018 public: 3019 /// Mutate the type of \p Inst into \p NewTy. 3020 TypeMutator(Instruction *Inst, Type *NewTy) 3021 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3022 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3023 << "\n"); 3024 Inst->mutateType(NewTy); 3025 } 3026 3027 /// Mutate the instruction back to its original type. 3028 void undo() override { 3029 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3030 << "\n"); 3031 Inst->mutateType(OrigTy); 3032 } 3033 }; 3034 3035 /// Replace the uses of an instruction by another instruction. 3036 class UsesReplacer : public TypePromotionAction { 3037 /// Helper structure to keep track of the replaced uses. 3038 struct InstructionAndIdx { 3039 /// The instruction using the instruction. 3040 Instruction *Inst; 3041 3042 /// The index where this instruction is used for Inst. 3043 unsigned Idx; 3044 3045 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3046 : Inst(Inst), Idx(Idx) {} 3047 }; 3048 3049 /// Keep track of the original uses (pair Instruction, Index). 3050 SmallVector<InstructionAndIdx, 4> OriginalUses; 3051 /// Keep track of the debug users. 3052 SmallVector<DbgValueInst *, 1> DbgValues; 3053 3054 /// Keep track of the new value so that we can undo it by replacing 3055 /// instances of the new value with the original value. 3056 Value *New; 3057 3058 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3059 3060 public: 3061 /// Replace all the use of \p Inst by \p New. 3062 UsesReplacer(Instruction *Inst, Value *New) 3063 : TypePromotionAction(Inst), New(New) { 3064 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3065 << "\n"); 3066 // Record the original uses. 3067 for (Use &U : Inst->uses()) { 3068 Instruction *UserI = cast<Instruction>(U.getUser()); 3069 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3070 } 3071 // Record the debug uses separately. They are not in the instruction's 3072 // use list, but they are replaced by RAUW. 3073 findDbgValues(DbgValues, Inst); 3074 3075 // Now, we can replace the uses. 3076 Inst->replaceAllUsesWith(New); 3077 } 3078 3079 /// Reassign the original uses of Inst to Inst. 3080 void undo() override { 3081 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3082 for (InstructionAndIdx &Use : OriginalUses) 3083 Use.Inst->setOperand(Use.Idx, Inst); 3084 // RAUW has replaced all original uses with references to the new value, 3085 // including the debug uses. Since we are undoing the replacements, 3086 // the original debug uses must also be reinstated to maintain the 3087 // correctness and utility of debug value instructions. 3088 for (auto *DVI : DbgValues) 3089 DVI->replaceVariableLocationOp(New, Inst); 3090 } 3091 }; 3092 3093 /// Remove an instruction from the IR. 3094 class InstructionRemover : public TypePromotionAction { 3095 /// Original position of the instruction. 3096 InsertionHandler Inserter; 3097 3098 /// Helper structure to hide all the link to the instruction. In other 3099 /// words, this helps to do as if the instruction was removed. 3100 OperandsHider Hider; 3101 3102 /// Keep track of the uses replaced, if any. 3103 UsesReplacer *Replacer = nullptr; 3104 3105 /// Keep track of instructions removed. 3106 SetOfInstrs &RemovedInsts; 3107 3108 public: 3109 /// Remove all reference of \p Inst and optionally replace all its 3110 /// uses with New. 3111 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3112 /// \pre If !Inst->use_empty(), then New != nullptr 3113 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3114 Value *New = nullptr) 3115 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3116 RemovedInsts(RemovedInsts) { 3117 if (New) 3118 Replacer = new UsesReplacer(Inst, New); 3119 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3120 RemovedInsts.insert(Inst); 3121 /// The instructions removed here will be freed after completing 3122 /// optimizeBlock() for all blocks as we need to keep track of the 3123 /// removed instructions during promotion. 3124 Inst->removeFromParent(); 3125 } 3126 3127 ~InstructionRemover() override { delete Replacer; } 3128 3129 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3130 InstructionRemover(const InstructionRemover &other) = delete; 3131 3132 /// Resurrect the instruction and reassign it to the proper uses if 3133 /// new value was provided when build this action. 3134 void undo() override { 3135 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3136 Inserter.insert(Inst); 3137 if (Replacer) 3138 Replacer->undo(); 3139 Hider.undo(); 3140 RemovedInsts.erase(Inst); 3141 } 3142 }; 3143 3144 public: 3145 /// Restoration point. 3146 /// The restoration point is a pointer to an action instead of an iterator 3147 /// because the iterator may be invalidated but not the pointer. 3148 using ConstRestorationPt = const TypePromotionAction *; 3149 3150 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3151 : RemovedInsts(RemovedInsts) {} 3152 3153 /// Advocate every changes made in that transaction. Return true if any change 3154 /// happen. 3155 bool commit(); 3156 3157 /// Undo all the changes made after the given point. 3158 void rollback(ConstRestorationPt Point); 3159 3160 /// Get the current restoration point. 3161 ConstRestorationPt getRestorationPoint() const; 3162 3163 /// \name API for IR modification with state keeping to support rollback. 3164 /// @{ 3165 /// Same as Instruction::setOperand. 3166 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3167 3168 /// Same as Instruction::eraseFromParent. 3169 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3170 3171 /// Same as Value::replaceAllUsesWith. 3172 void replaceAllUsesWith(Instruction *Inst, Value *New); 3173 3174 /// Same as Value::mutateType. 3175 void mutateType(Instruction *Inst, Type *NewTy); 3176 3177 /// Same as IRBuilder::createTrunc. 3178 Value *createTrunc(Instruction *Opnd, Type *Ty); 3179 3180 /// Same as IRBuilder::createSExt. 3181 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3182 3183 /// Same as IRBuilder::createZExt. 3184 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3185 3186 /// Same as Instruction::moveBefore. 3187 void moveBefore(Instruction *Inst, Instruction *Before); 3188 /// @} 3189 3190 private: 3191 /// The ordered list of actions made so far. 3192 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3193 3194 using CommitPt = 3195 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3196 3197 SetOfInstrs &RemovedInsts; 3198 }; 3199 3200 } // end anonymous namespace 3201 3202 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3203 Value *NewVal) { 3204 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3205 Inst, Idx, NewVal)); 3206 } 3207 3208 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3209 Value *NewVal) { 3210 Actions.push_back( 3211 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3212 Inst, RemovedInsts, NewVal)); 3213 } 3214 3215 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3216 Value *New) { 3217 Actions.push_back( 3218 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3219 } 3220 3221 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3222 Actions.push_back( 3223 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3224 } 3225 3226 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3227 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3228 Value *Val = Ptr->getBuiltValue(); 3229 Actions.push_back(std::move(Ptr)); 3230 return Val; 3231 } 3232 3233 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3234 Type *Ty) { 3235 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3236 Value *Val = Ptr->getBuiltValue(); 3237 Actions.push_back(std::move(Ptr)); 3238 return Val; 3239 } 3240 3241 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3242 Type *Ty) { 3243 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3244 Value *Val = Ptr->getBuiltValue(); 3245 Actions.push_back(std::move(Ptr)); 3246 return Val; 3247 } 3248 3249 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3250 Instruction *Before) { 3251 Actions.push_back( 3252 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3253 Inst, Before)); 3254 } 3255 3256 TypePromotionTransaction::ConstRestorationPt 3257 TypePromotionTransaction::getRestorationPoint() const { 3258 return !Actions.empty() ? Actions.back().get() : nullptr; 3259 } 3260 3261 bool TypePromotionTransaction::commit() { 3262 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3263 Action->commit(); 3264 bool Modified = !Actions.empty(); 3265 Actions.clear(); 3266 return Modified; 3267 } 3268 3269 void TypePromotionTransaction::rollback( 3270 TypePromotionTransaction::ConstRestorationPt Point) { 3271 while (!Actions.empty() && Point != Actions.back().get()) { 3272 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3273 Curr->undo(); 3274 } 3275 } 3276 3277 namespace { 3278 3279 /// A helper class for matching addressing modes. 3280 /// 3281 /// This encapsulates the logic for matching the target-legal addressing modes. 3282 class AddressingModeMatcher { 3283 SmallVectorImpl<Instruction *> &AddrModeInsts; 3284 const TargetLowering &TLI; 3285 const TargetRegisterInfo &TRI; 3286 const DataLayout &DL; 3287 const LoopInfo &LI; 3288 const std::function<const DominatorTree &()> getDTFn; 3289 3290 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3291 /// the memory instruction that we're computing this address for. 3292 Type *AccessTy; 3293 unsigned AddrSpace; 3294 Instruction *MemoryInst; 3295 3296 /// This is the addressing mode that we're building up. This is 3297 /// part of the return value of this addressing mode matching stuff. 3298 ExtAddrMode &AddrMode; 3299 3300 /// The instructions inserted by other CodeGenPrepare optimizations. 3301 const SetOfInstrs &InsertedInsts; 3302 3303 /// A map from the instructions to their type before promotion. 3304 InstrToOrigTy &PromotedInsts; 3305 3306 /// The ongoing transaction where every action should be registered. 3307 TypePromotionTransaction &TPT; 3308 3309 // A GEP which has too large offset to be folded into the addressing mode. 3310 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3311 3312 /// This is set to true when we should not do profitability checks. 3313 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3314 bool IgnoreProfitability; 3315 3316 /// True if we are optimizing for size. 3317 bool OptSize = false; 3318 3319 ProfileSummaryInfo *PSI; 3320 BlockFrequencyInfo *BFI; 3321 3322 AddressingModeMatcher( 3323 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3324 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3325 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3326 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3327 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3328 TypePromotionTransaction &TPT, 3329 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3330 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3331 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3332 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3333 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3334 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3335 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3336 IgnoreProfitability = false; 3337 } 3338 3339 public: 3340 /// Find the maximal addressing mode that a load/store of V can fold, 3341 /// give an access type of AccessTy. This returns a list of involved 3342 /// instructions in AddrModeInsts. 3343 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3344 /// optimizations. 3345 /// \p PromotedInsts maps the instructions to their type before promotion. 3346 /// \p The ongoing transaction where every action should be registered. 3347 static ExtAddrMode 3348 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3349 SmallVectorImpl<Instruction *> &AddrModeInsts, 3350 const TargetLowering &TLI, const LoopInfo &LI, 3351 const std::function<const DominatorTree &()> getDTFn, 3352 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3353 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3354 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3355 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3356 ExtAddrMode Result; 3357 3358 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3359 AccessTy, AS, MemoryInst, Result, 3360 InsertedInsts, PromotedInsts, TPT, 3361 LargeOffsetGEP, OptSize, PSI, BFI) 3362 .matchAddr(V, 0); 3363 (void)Success; 3364 assert(Success && "Couldn't select *anything*?"); 3365 return Result; 3366 } 3367 3368 private: 3369 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3370 bool matchAddr(Value *Addr, unsigned Depth); 3371 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3372 bool *MovedAway = nullptr); 3373 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3374 ExtAddrMode &AMBefore, 3375 ExtAddrMode &AMAfter); 3376 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3377 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3378 Value *PromotedOperand) const; 3379 }; 3380 3381 class PhiNodeSet; 3382 3383 /// An iterator for PhiNodeSet. 3384 class PhiNodeSetIterator { 3385 PhiNodeSet *const Set; 3386 size_t CurrentIndex = 0; 3387 3388 public: 3389 /// The constructor. Start should point to either a valid element, or be equal 3390 /// to the size of the underlying SmallVector of the PhiNodeSet. 3391 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3392 PHINode *operator*() const; 3393 PhiNodeSetIterator &operator++(); 3394 bool operator==(const PhiNodeSetIterator &RHS) const; 3395 bool operator!=(const PhiNodeSetIterator &RHS) const; 3396 }; 3397 3398 /// Keeps a set of PHINodes. 3399 /// 3400 /// This is a minimal set implementation for a specific use case: 3401 /// It is very fast when there are very few elements, but also provides good 3402 /// performance when there are many. It is similar to SmallPtrSet, but also 3403 /// provides iteration by insertion order, which is deterministic and stable 3404 /// across runs. It is also similar to SmallSetVector, but provides removing 3405 /// elements in O(1) time. This is achieved by not actually removing the element 3406 /// from the underlying vector, so comes at the cost of using more memory, but 3407 /// that is fine, since PhiNodeSets are used as short lived objects. 3408 class PhiNodeSet { 3409 friend class PhiNodeSetIterator; 3410 3411 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3412 using iterator = PhiNodeSetIterator; 3413 3414 /// Keeps the elements in the order of their insertion in the underlying 3415 /// vector. To achieve constant time removal, it never deletes any element. 3416 SmallVector<PHINode *, 32> NodeList; 3417 3418 /// Keeps the elements in the underlying set implementation. This (and not the 3419 /// NodeList defined above) is the source of truth on whether an element 3420 /// is actually in the collection. 3421 MapType NodeMap; 3422 3423 /// Points to the first valid (not deleted) element when the set is not empty 3424 /// and the value is not zero. Equals to the size of the underlying vector 3425 /// when the set is empty. When the value is 0, as in the beginning, the 3426 /// first element may or may not be valid. 3427 size_t FirstValidElement = 0; 3428 3429 public: 3430 /// Inserts a new element to the collection. 3431 /// \returns true if the element is actually added, i.e. was not in the 3432 /// collection before the operation. 3433 bool insert(PHINode *Ptr) { 3434 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3435 NodeList.push_back(Ptr); 3436 return true; 3437 } 3438 return false; 3439 } 3440 3441 /// Removes the element from the collection. 3442 /// \returns whether the element is actually removed, i.e. was in the 3443 /// collection before the operation. 3444 bool erase(PHINode *Ptr) { 3445 if (NodeMap.erase(Ptr)) { 3446 SkipRemovedElements(FirstValidElement); 3447 return true; 3448 } 3449 return false; 3450 } 3451 3452 /// Removes all elements and clears the collection. 3453 void clear() { 3454 NodeMap.clear(); 3455 NodeList.clear(); 3456 FirstValidElement = 0; 3457 } 3458 3459 /// \returns an iterator that will iterate the elements in the order of 3460 /// insertion. 3461 iterator begin() { 3462 if (FirstValidElement == 0) 3463 SkipRemovedElements(FirstValidElement); 3464 return PhiNodeSetIterator(this, FirstValidElement); 3465 } 3466 3467 /// \returns an iterator that points to the end of the collection. 3468 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3469 3470 /// Returns the number of elements in the collection. 3471 size_t size() const { return NodeMap.size(); } 3472 3473 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3474 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3475 3476 private: 3477 /// Updates the CurrentIndex so that it will point to a valid element. 3478 /// 3479 /// If the element of NodeList at CurrentIndex is valid, it does not 3480 /// change it. If there are no more valid elements, it updates CurrentIndex 3481 /// to point to the end of the NodeList. 3482 void SkipRemovedElements(size_t &CurrentIndex) { 3483 while (CurrentIndex < NodeList.size()) { 3484 auto it = NodeMap.find(NodeList[CurrentIndex]); 3485 // If the element has been deleted and added again later, NodeMap will 3486 // point to a different index, so CurrentIndex will still be invalid. 3487 if (it != NodeMap.end() && it->second == CurrentIndex) 3488 break; 3489 ++CurrentIndex; 3490 } 3491 } 3492 }; 3493 3494 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3495 : Set(Set), CurrentIndex(Start) {} 3496 3497 PHINode *PhiNodeSetIterator::operator*() const { 3498 assert(CurrentIndex < Set->NodeList.size() && 3499 "PhiNodeSet access out of range"); 3500 return Set->NodeList[CurrentIndex]; 3501 } 3502 3503 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3504 assert(CurrentIndex < Set->NodeList.size() && 3505 "PhiNodeSet access out of range"); 3506 ++CurrentIndex; 3507 Set->SkipRemovedElements(CurrentIndex); 3508 return *this; 3509 } 3510 3511 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3512 return CurrentIndex == RHS.CurrentIndex; 3513 } 3514 3515 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3516 return !((*this) == RHS); 3517 } 3518 3519 /// Keep track of simplification of Phi nodes. 3520 /// Accept the set of all phi nodes and erase phi node from this set 3521 /// if it is simplified. 3522 class SimplificationTracker { 3523 DenseMap<Value *, Value *> Storage; 3524 const SimplifyQuery &SQ; 3525 // Tracks newly created Phi nodes. The elements are iterated by insertion 3526 // order. 3527 PhiNodeSet AllPhiNodes; 3528 // Tracks newly created Select nodes. 3529 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3530 3531 public: 3532 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3533 3534 Value *Get(Value *V) { 3535 do { 3536 auto SV = Storage.find(V); 3537 if (SV == Storage.end()) 3538 return V; 3539 V = SV->second; 3540 } while (true); 3541 } 3542 3543 Value *Simplify(Value *Val) { 3544 SmallVector<Value *, 32> WorkList; 3545 SmallPtrSet<Value *, 32> Visited; 3546 WorkList.push_back(Val); 3547 while (!WorkList.empty()) { 3548 auto *P = WorkList.pop_back_val(); 3549 if (!Visited.insert(P).second) 3550 continue; 3551 if (auto *PI = dyn_cast<Instruction>(P)) 3552 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3553 for (auto *U : PI->users()) 3554 WorkList.push_back(cast<Value>(U)); 3555 Put(PI, V); 3556 PI->replaceAllUsesWith(V); 3557 if (auto *PHI = dyn_cast<PHINode>(PI)) 3558 AllPhiNodes.erase(PHI); 3559 if (auto *Select = dyn_cast<SelectInst>(PI)) 3560 AllSelectNodes.erase(Select); 3561 PI->eraseFromParent(); 3562 } 3563 } 3564 return Get(Val); 3565 } 3566 3567 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3568 3569 void ReplacePhi(PHINode *From, PHINode *To) { 3570 Value *OldReplacement = Get(From); 3571 while (OldReplacement != From) { 3572 From = To; 3573 To = dyn_cast<PHINode>(OldReplacement); 3574 OldReplacement = Get(From); 3575 } 3576 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3577 Put(From, To); 3578 From->replaceAllUsesWith(To); 3579 AllPhiNodes.erase(From); 3580 From->eraseFromParent(); 3581 } 3582 3583 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3584 3585 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3586 3587 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3588 3589 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3590 3591 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3592 3593 void destroyNewNodes(Type *CommonType) { 3594 // For safe erasing, replace the uses with dummy value first. 3595 auto *Dummy = PoisonValue::get(CommonType); 3596 for (auto *I : AllPhiNodes) { 3597 I->replaceAllUsesWith(Dummy); 3598 I->eraseFromParent(); 3599 } 3600 AllPhiNodes.clear(); 3601 for (auto *I : AllSelectNodes) { 3602 I->replaceAllUsesWith(Dummy); 3603 I->eraseFromParent(); 3604 } 3605 AllSelectNodes.clear(); 3606 } 3607 }; 3608 3609 /// A helper class for combining addressing modes. 3610 class AddressingModeCombiner { 3611 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3612 typedef std::pair<PHINode *, PHINode *> PHIPair; 3613 3614 private: 3615 /// The addressing modes we've collected. 3616 SmallVector<ExtAddrMode, 16> AddrModes; 3617 3618 /// The field in which the AddrModes differ, when we have more than one. 3619 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3620 3621 /// Are the AddrModes that we have all just equal to their original values? 3622 bool AllAddrModesTrivial = true; 3623 3624 /// Common Type for all different fields in addressing modes. 3625 Type *CommonType = nullptr; 3626 3627 /// SimplifyQuery for simplifyInstruction utility. 3628 const SimplifyQuery &SQ; 3629 3630 /// Original Address. 3631 Value *Original; 3632 3633 /// Common value among addresses 3634 Value *CommonValue = nullptr; 3635 3636 public: 3637 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3638 : SQ(_SQ), Original(OriginalValue) {} 3639 3640 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 3641 3642 /// Get the combined AddrMode 3643 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3644 3645 /// Add a new AddrMode if it's compatible with the AddrModes we already 3646 /// have. 3647 /// \return True iff we succeeded in doing so. 3648 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3649 // Take note of if we have any non-trivial AddrModes, as we need to detect 3650 // when all AddrModes are trivial as then we would introduce a phi or select 3651 // which just duplicates what's already there. 3652 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3653 3654 // If this is the first addrmode then everything is fine. 3655 if (AddrModes.empty()) { 3656 AddrModes.emplace_back(NewAddrMode); 3657 return true; 3658 } 3659 3660 // Figure out how different this is from the other address modes, which we 3661 // can do just by comparing against the first one given that we only care 3662 // about the cumulative difference. 3663 ExtAddrMode::FieldName ThisDifferentField = 3664 AddrModes[0].compare(NewAddrMode); 3665 if (DifferentField == ExtAddrMode::NoField) 3666 DifferentField = ThisDifferentField; 3667 else if (DifferentField != ThisDifferentField) 3668 DifferentField = ExtAddrMode::MultipleFields; 3669 3670 // If NewAddrMode differs in more than one dimension we cannot handle it. 3671 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3672 3673 // If Scale Field is different then we reject. 3674 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3675 3676 // We also must reject the case when base offset is different and 3677 // scale reg is not null, we cannot handle this case due to merge of 3678 // different offsets will be used as ScaleReg. 3679 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3680 !NewAddrMode.ScaledReg); 3681 3682 // We also must reject the case when GV is different and BaseReg installed 3683 // due to we want to use base reg as a merge of GV values. 3684 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3685 !NewAddrMode.HasBaseReg); 3686 3687 // Even if NewAddMode is the same we still need to collect it due to 3688 // original value is different. And later we will need all original values 3689 // as anchors during finding the common Phi node. 3690 if (CanHandle) 3691 AddrModes.emplace_back(NewAddrMode); 3692 else 3693 AddrModes.clear(); 3694 3695 return CanHandle; 3696 } 3697 3698 /// Combine the addressing modes we've collected into a single 3699 /// addressing mode. 3700 /// \return True iff we successfully combined them or we only had one so 3701 /// didn't need to combine them anyway. 3702 bool combineAddrModes() { 3703 // If we have no AddrModes then they can't be combined. 3704 if (AddrModes.size() == 0) 3705 return false; 3706 3707 // A single AddrMode can trivially be combined. 3708 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3709 return true; 3710 3711 // If the AddrModes we collected are all just equal to the value they are 3712 // derived from then combining them wouldn't do anything useful. 3713 if (AllAddrModesTrivial) 3714 return false; 3715 3716 if (!addrModeCombiningAllowed()) 3717 return false; 3718 3719 // Build a map between <original value, basic block where we saw it> to 3720 // value of base register. 3721 // Bail out if there is no common type. 3722 FoldAddrToValueMapping Map; 3723 if (!initializeMap(Map)) 3724 return false; 3725 3726 CommonValue = findCommon(Map); 3727 if (CommonValue) 3728 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3729 return CommonValue != nullptr; 3730 } 3731 3732 private: 3733 /// `CommonValue` may be a placeholder inserted by us. 3734 /// If the placeholder is not used, we should remove this dead instruction. 3735 void eraseCommonValueIfDead() { 3736 if (CommonValue && CommonValue->getNumUses() == 0) 3737 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 3738 CommonInst->eraseFromParent(); 3739 } 3740 3741 /// Initialize Map with anchor values. For address seen 3742 /// we set the value of different field saw in this address. 3743 /// At the same time we find a common type for different field we will 3744 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3745 /// Return false if there is no common type found. 3746 bool initializeMap(FoldAddrToValueMapping &Map) { 3747 // Keep track of keys where the value is null. We will need to replace it 3748 // with constant null when we know the common type. 3749 SmallVector<Value *, 2> NullValue; 3750 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3751 for (auto &AM : AddrModes) { 3752 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3753 if (DV) { 3754 auto *Type = DV->getType(); 3755 if (CommonType && CommonType != Type) 3756 return false; 3757 CommonType = Type; 3758 Map[AM.OriginalValue] = DV; 3759 } else { 3760 NullValue.push_back(AM.OriginalValue); 3761 } 3762 } 3763 assert(CommonType && "At least one non-null value must be!"); 3764 for (auto *V : NullValue) 3765 Map[V] = Constant::getNullValue(CommonType); 3766 return true; 3767 } 3768 3769 /// We have mapping between value A and other value B where B was a field in 3770 /// addressing mode represented by A. Also we have an original value C 3771 /// representing an address we start with. Traversing from C through phi and 3772 /// selects we ended up with A's in a map. This utility function tries to find 3773 /// a value V which is a field in addressing mode C and traversing through phi 3774 /// nodes and selects we will end up in corresponded values B in a map. 3775 /// The utility will create a new Phi/Selects if needed. 3776 // The simple example looks as follows: 3777 // BB1: 3778 // p1 = b1 + 40 3779 // br cond BB2, BB3 3780 // BB2: 3781 // p2 = b2 + 40 3782 // br BB3 3783 // BB3: 3784 // p = phi [p1, BB1], [p2, BB2] 3785 // v = load p 3786 // Map is 3787 // p1 -> b1 3788 // p2 -> b2 3789 // Request is 3790 // p -> ? 3791 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3792 Value *findCommon(FoldAddrToValueMapping &Map) { 3793 // Tracks the simplification of newly created phi nodes. The reason we use 3794 // this mapping is because we will add new created Phi nodes in AddrToBase. 3795 // Simplification of Phi nodes is recursive, so some Phi node may 3796 // be simplified after we added it to AddrToBase. In reality this 3797 // simplification is possible only if original phi/selects were not 3798 // simplified yet. 3799 // Using this mapping we can find the current value in AddrToBase. 3800 SimplificationTracker ST(SQ); 3801 3802 // First step, DFS to create PHI nodes for all intermediate blocks. 3803 // Also fill traverse order for the second step. 3804 SmallVector<Value *, 32> TraverseOrder; 3805 InsertPlaceholders(Map, TraverseOrder, ST); 3806 3807 // Second Step, fill new nodes by merged values and simplify if possible. 3808 FillPlaceholders(Map, TraverseOrder, ST); 3809 3810 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3811 ST.destroyNewNodes(CommonType); 3812 return nullptr; 3813 } 3814 3815 // Now we'd like to match New Phi nodes to existed ones. 3816 unsigned PhiNotMatchedCount = 0; 3817 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3818 ST.destroyNewNodes(CommonType); 3819 return nullptr; 3820 } 3821 3822 auto *Result = ST.Get(Map.find(Original)->second); 3823 if (Result) { 3824 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3825 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3826 } 3827 return Result; 3828 } 3829 3830 /// Try to match PHI node to Candidate. 3831 /// Matcher tracks the matched Phi nodes. 3832 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3833 SmallSetVector<PHIPair, 8> &Matcher, 3834 PhiNodeSet &PhiNodesToMatch) { 3835 SmallVector<PHIPair, 8> WorkList; 3836 Matcher.insert({PHI, Candidate}); 3837 SmallSet<PHINode *, 8> MatchedPHIs; 3838 MatchedPHIs.insert(PHI); 3839 WorkList.push_back({PHI, Candidate}); 3840 SmallSet<PHIPair, 8> Visited; 3841 while (!WorkList.empty()) { 3842 auto Item = WorkList.pop_back_val(); 3843 if (!Visited.insert(Item).second) 3844 continue; 3845 // We iterate over all incoming values to Phi to compare them. 3846 // If values are different and both of them Phi and the first one is a 3847 // Phi we added (subject to match) and both of them is in the same basic 3848 // block then we can match our pair if values match. So we state that 3849 // these values match and add it to work list to verify that. 3850 for (auto *B : Item.first->blocks()) { 3851 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3852 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3853 if (FirstValue == SecondValue) 3854 continue; 3855 3856 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3857 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3858 3859 // One of them is not Phi or 3860 // The first one is not Phi node from the set we'd like to match or 3861 // Phi nodes from different basic blocks then 3862 // we will not be able to match. 3863 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3864 FirstPhi->getParent() != SecondPhi->getParent()) 3865 return false; 3866 3867 // If we already matched them then continue. 3868 if (Matcher.count({FirstPhi, SecondPhi})) 3869 continue; 3870 // So the values are different and does not match. So we need them to 3871 // match. (But we register no more than one match per PHI node, so that 3872 // we won't later try to replace them twice.) 3873 if (MatchedPHIs.insert(FirstPhi).second) 3874 Matcher.insert({FirstPhi, SecondPhi}); 3875 // But me must check it. 3876 WorkList.push_back({FirstPhi, SecondPhi}); 3877 } 3878 } 3879 return true; 3880 } 3881 3882 /// For the given set of PHI nodes (in the SimplificationTracker) try 3883 /// to find their equivalents. 3884 /// Returns false if this matching fails and creation of new Phi is disabled. 3885 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3886 unsigned &PhiNotMatchedCount) { 3887 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3888 // order, so the replacements (ReplacePhi) are also done in a deterministic 3889 // order. 3890 SmallSetVector<PHIPair, 8> Matched; 3891 SmallPtrSet<PHINode *, 8> WillNotMatch; 3892 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3893 while (PhiNodesToMatch.size()) { 3894 PHINode *PHI = *PhiNodesToMatch.begin(); 3895 3896 // Add us, if no Phi nodes in the basic block we do not match. 3897 WillNotMatch.clear(); 3898 WillNotMatch.insert(PHI); 3899 3900 // Traverse all Phis until we found equivalent or fail to do that. 3901 bool IsMatched = false; 3902 for (auto &P : PHI->getParent()->phis()) { 3903 // Skip new Phi nodes. 3904 if (PhiNodesToMatch.count(&P)) 3905 continue; 3906 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3907 break; 3908 // If it does not match, collect all Phi nodes from matcher. 3909 // if we end up with no match, them all these Phi nodes will not match 3910 // later. 3911 for (auto M : Matched) 3912 WillNotMatch.insert(M.first); 3913 Matched.clear(); 3914 } 3915 if (IsMatched) { 3916 // Replace all matched values and erase them. 3917 for (auto MV : Matched) 3918 ST.ReplacePhi(MV.first, MV.second); 3919 Matched.clear(); 3920 continue; 3921 } 3922 // If we are not allowed to create new nodes then bail out. 3923 if (!AllowNewPhiNodes) 3924 return false; 3925 // Just remove all seen values in matcher. They will not match anything. 3926 PhiNotMatchedCount += WillNotMatch.size(); 3927 for (auto *P : WillNotMatch) 3928 PhiNodesToMatch.erase(P); 3929 } 3930 return true; 3931 } 3932 /// Fill the placeholders with values from predecessors and simplify them. 3933 void FillPlaceholders(FoldAddrToValueMapping &Map, 3934 SmallVectorImpl<Value *> &TraverseOrder, 3935 SimplificationTracker &ST) { 3936 while (!TraverseOrder.empty()) { 3937 Value *Current = TraverseOrder.pop_back_val(); 3938 assert(Map.contains(Current) && "No node to fill!!!"); 3939 Value *V = Map[Current]; 3940 3941 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3942 // CurrentValue also must be Select. 3943 auto *CurrentSelect = cast<SelectInst>(Current); 3944 auto *TrueValue = CurrentSelect->getTrueValue(); 3945 assert(Map.contains(TrueValue) && "No True Value!"); 3946 Select->setTrueValue(ST.Get(Map[TrueValue])); 3947 auto *FalseValue = CurrentSelect->getFalseValue(); 3948 assert(Map.contains(FalseValue) && "No False Value!"); 3949 Select->setFalseValue(ST.Get(Map[FalseValue])); 3950 } else { 3951 // Must be a Phi node then. 3952 auto *PHI = cast<PHINode>(V); 3953 // Fill the Phi node with values from predecessors. 3954 for (auto *B : predecessors(PHI->getParent())) { 3955 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3956 assert(Map.contains(PV) && "No predecessor Value!"); 3957 PHI->addIncoming(ST.Get(Map[PV]), B); 3958 } 3959 } 3960 Map[Current] = ST.Simplify(V); 3961 } 3962 } 3963 3964 /// Starting from original value recursively iterates over def-use chain up to 3965 /// known ending values represented in a map. For each traversed phi/select 3966 /// inserts a placeholder Phi or Select. 3967 /// Reports all new created Phi/Select nodes by adding them to set. 3968 /// Also reports and order in what values have been traversed. 3969 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3970 SmallVectorImpl<Value *> &TraverseOrder, 3971 SimplificationTracker &ST) { 3972 SmallVector<Value *, 32> Worklist; 3973 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3974 "Address must be a Phi or Select node"); 3975 auto *Dummy = PoisonValue::get(CommonType); 3976 Worklist.push_back(Original); 3977 while (!Worklist.empty()) { 3978 Value *Current = Worklist.pop_back_val(); 3979 // if it is already visited or it is an ending value then skip it. 3980 if (Map.contains(Current)) 3981 continue; 3982 TraverseOrder.push_back(Current); 3983 3984 // CurrentValue must be a Phi node or select. All others must be covered 3985 // by anchors. 3986 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3987 // Is it OK to get metadata from OrigSelect?! 3988 // Create a Select placeholder with dummy value. 3989 SelectInst *Select = SelectInst::Create( 3990 CurrentSelect->getCondition(), Dummy, Dummy, 3991 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3992 Map[Current] = Select; 3993 ST.insertNewSelect(Select); 3994 // We are interested in True and False values. 3995 Worklist.push_back(CurrentSelect->getTrueValue()); 3996 Worklist.push_back(CurrentSelect->getFalseValue()); 3997 } else { 3998 // It must be a Phi node then. 3999 PHINode *CurrentPhi = cast<PHINode>(Current); 4000 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4001 PHINode *PHI = 4002 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 4003 Map[Current] = PHI; 4004 ST.insertNewPhi(PHI); 4005 append_range(Worklist, CurrentPhi->incoming_values()); 4006 } 4007 } 4008 } 4009 4010 bool addrModeCombiningAllowed() { 4011 if (DisableComplexAddrModes) 4012 return false; 4013 switch (DifferentField) { 4014 default: 4015 return false; 4016 case ExtAddrMode::BaseRegField: 4017 return AddrSinkCombineBaseReg; 4018 case ExtAddrMode::BaseGVField: 4019 return AddrSinkCombineBaseGV; 4020 case ExtAddrMode::BaseOffsField: 4021 return AddrSinkCombineBaseOffs; 4022 case ExtAddrMode::ScaledRegField: 4023 return AddrSinkCombineScaledReg; 4024 } 4025 } 4026 }; 4027 } // end anonymous namespace 4028 4029 /// Try adding ScaleReg*Scale to the current addressing mode. 4030 /// Return true and update AddrMode if this addr mode is legal for the target, 4031 /// false if not. 4032 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4033 unsigned Depth) { 4034 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4035 // mode. Just process that directly. 4036 if (Scale == 1) 4037 return matchAddr(ScaleReg, Depth); 4038 4039 // If the scale is 0, it takes nothing to add this. 4040 if (Scale == 0) 4041 return true; 4042 4043 // If we already have a scale of this value, we can add to it, otherwise, we 4044 // need an available scale field. 4045 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4046 return false; 4047 4048 ExtAddrMode TestAddrMode = AddrMode; 4049 4050 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4051 // [A+B + A*7] -> [B+A*8]. 4052 TestAddrMode.Scale += Scale; 4053 TestAddrMode.ScaledReg = ScaleReg; 4054 4055 // If the new address isn't legal, bail out. 4056 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4057 return false; 4058 4059 // It was legal, so commit it. 4060 AddrMode = TestAddrMode; 4061 4062 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4063 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4064 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4065 // go any further: we can reuse it and cannot eliminate it. 4066 ConstantInt *CI = nullptr; 4067 Value *AddLHS = nullptr; 4068 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4069 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4070 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4071 TestAddrMode.InBounds = false; 4072 TestAddrMode.ScaledReg = AddLHS; 4073 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4074 4075 // If this addressing mode is legal, commit it and remember that we folded 4076 // this instruction. 4077 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4078 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4079 AddrMode = TestAddrMode; 4080 return true; 4081 } 4082 // Restore status quo. 4083 TestAddrMode = AddrMode; 4084 } 4085 4086 // If this is an add recurrence with a constant step, return the increment 4087 // instruction and the canonicalized step. 4088 auto GetConstantStep = 4089 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4090 auto *PN = dyn_cast<PHINode>(V); 4091 if (!PN) 4092 return std::nullopt; 4093 auto IVInc = getIVIncrement(PN, &LI); 4094 if (!IVInc) 4095 return std::nullopt; 4096 // TODO: The result of the intrinsics above is two-complement. However when 4097 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4098 // If it has nuw or nsw flags, we need to make sure that these flags are 4099 // inferrable at the point of memory instruction. Otherwise we are replacing 4100 // well-defined two-complement computation with poison. Currently, to avoid 4101 // potentially complex analysis needed to prove this, we reject such cases. 4102 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4103 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4104 return std::nullopt; 4105 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4106 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4107 return std::nullopt; 4108 }; 4109 4110 // Try to account for the following special case: 4111 // 1. ScaleReg is an inductive variable; 4112 // 2. We use it with non-zero offset; 4113 // 3. IV's increment is available at the point of memory instruction. 4114 // 4115 // In this case, we may reuse the IV increment instead of the IV Phi to 4116 // achieve the following advantages: 4117 // 1. If IV step matches the offset, we will have no need in the offset; 4118 // 2. Even if they don't match, we will reduce the overlap of living IV 4119 // and IV increment, that will potentially lead to better register 4120 // assignment. 4121 if (AddrMode.BaseOffs) { 4122 if (auto IVStep = GetConstantStep(ScaleReg)) { 4123 Instruction *IVInc = IVStep->first; 4124 // The following assert is important to ensure a lack of infinite loops. 4125 // This transforms is (intentionally) the inverse of the one just above. 4126 // If they don't agree on the definition of an increment, we'd alternate 4127 // back and forth indefinitely. 4128 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4129 APInt Step = IVStep->second; 4130 APInt Offset = Step * AddrMode.Scale; 4131 if (Offset.isSignedIntN(64)) { 4132 TestAddrMode.InBounds = false; 4133 TestAddrMode.ScaledReg = IVInc; 4134 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4135 // If this addressing mode is legal, commit it.. 4136 // (Note that we defer the (expensive) domtree base legality check 4137 // to the very last possible point.) 4138 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4139 getDTFn().dominates(IVInc, MemoryInst)) { 4140 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4141 AddrMode = TestAddrMode; 4142 return true; 4143 } 4144 // Restore status quo. 4145 TestAddrMode = AddrMode; 4146 } 4147 } 4148 } 4149 4150 // Otherwise, just return what we have. 4151 return true; 4152 } 4153 4154 /// This is a little filter, which returns true if an addressing computation 4155 /// involving I might be folded into a load/store accessing it. 4156 /// This doesn't need to be perfect, but needs to accept at least 4157 /// the set of instructions that MatchOperationAddr can. 4158 static bool MightBeFoldableInst(Instruction *I) { 4159 switch (I->getOpcode()) { 4160 case Instruction::BitCast: 4161 case Instruction::AddrSpaceCast: 4162 // Don't touch identity bitcasts. 4163 if (I->getType() == I->getOperand(0)->getType()) 4164 return false; 4165 return I->getType()->isIntOrPtrTy(); 4166 case Instruction::PtrToInt: 4167 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4168 return true; 4169 case Instruction::IntToPtr: 4170 // We know the input is intptr_t, so this is foldable. 4171 return true; 4172 case Instruction::Add: 4173 return true; 4174 case Instruction::Mul: 4175 case Instruction::Shl: 4176 // Can only handle X*C and X << C. 4177 return isa<ConstantInt>(I->getOperand(1)); 4178 case Instruction::GetElementPtr: 4179 return true; 4180 default: 4181 return false; 4182 } 4183 } 4184 4185 /// Check whether or not \p Val is a legal instruction for \p TLI. 4186 /// \note \p Val is assumed to be the product of some type promotion. 4187 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4188 /// to be legal, as the non-promoted value would have had the same state. 4189 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4190 const DataLayout &DL, Value *Val) { 4191 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4192 if (!PromotedInst) 4193 return false; 4194 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4195 // If the ISDOpcode is undefined, it was undefined before the promotion. 4196 if (!ISDOpcode) 4197 return true; 4198 // Otherwise, check if the promoted instruction is legal or not. 4199 return TLI.isOperationLegalOrCustom( 4200 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4201 } 4202 4203 namespace { 4204 4205 /// Hepler class to perform type promotion. 4206 class TypePromotionHelper { 4207 /// Utility function to add a promoted instruction \p ExtOpnd to 4208 /// \p PromotedInsts and record the type of extension we have seen. 4209 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4210 Instruction *ExtOpnd, bool IsSExt) { 4211 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4212 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4213 if (It != PromotedInsts.end()) { 4214 // If the new extension is same as original, the information in 4215 // PromotedInsts[ExtOpnd] is still correct. 4216 if (It->second.getInt() == ExtTy) 4217 return; 4218 4219 // Now the new extension is different from old extension, we make 4220 // the type information invalid by setting extension type to 4221 // BothExtension. 4222 ExtTy = BothExtension; 4223 } 4224 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4225 } 4226 4227 /// Utility function to query the original type of instruction \p Opnd 4228 /// with a matched extension type. If the extension doesn't match, we 4229 /// cannot use the information we had on the original type. 4230 /// BothExtension doesn't match any extension type. 4231 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4232 Instruction *Opnd, bool IsSExt) { 4233 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4234 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4235 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4236 return It->second.getPointer(); 4237 return nullptr; 4238 } 4239 4240 /// Utility function to check whether or not a sign or zero extension 4241 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4242 /// either using the operands of \p Inst or promoting \p Inst. 4243 /// The type of the extension is defined by \p IsSExt. 4244 /// In other words, check if: 4245 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4246 /// #1 Promotion applies: 4247 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4248 /// #2 Operand reuses: 4249 /// ext opnd1 to ConsideredExtType. 4250 /// \p PromotedInsts maps the instructions to their type before promotion. 4251 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4252 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4253 4254 /// Utility function to determine if \p OpIdx should be promoted when 4255 /// promoting \p Inst. 4256 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4257 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4258 } 4259 4260 /// Utility function to promote the operand of \p Ext when this 4261 /// operand is a promotable trunc or sext or zext. 4262 /// \p PromotedInsts maps the instructions to their type before promotion. 4263 /// \p CreatedInstsCost[out] contains the cost of all instructions 4264 /// created to promote the operand of Ext. 4265 /// Newly added extensions are inserted in \p Exts. 4266 /// Newly added truncates are inserted in \p Truncs. 4267 /// Should never be called directly. 4268 /// \return The promoted value which is used instead of Ext. 4269 static Value *promoteOperandForTruncAndAnyExt( 4270 Instruction *Ext, TypePromotionTransaction &TPT, 4271 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4272 SmallVectorImpl<Instruction *> *Exts, 4273 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4274 4275 /// Utility function to promote the operand of \p Ext when this 4276 /// operand is promotable and is not a supported trunc or sext. 4277 /// \p PromotedInsts maps the instructions to their type before promotion. 4278 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4279 /// created to promote the operand of Ext. 4280 /// Newly added extensions are inserted in \p Exts. 4281 /// Newly added truncates are inserted in \p Truncs. 4282 /// Should never be called directly. 4283 /// \return The promoted value which is used instead of Ext. 4284 static Value *promoteOperandForOther(Instruction *Ext, 4285 TypePromotionTransaction &TPT, 4286 InstrToOrigTy &PromotedInsts, 4287 unsigned &CreatedInstsCost, 4288 SmallVectorImpl<Instruction *> *Exts, 4289 SmallVectorImpl<Instruction *> *Truncs, 4290 const TargetLowering &TLI, bool IsSExt); 4291 4292 /// \see promoteOperandForOther. 4293 static Value *signExtendOperandForOther( 4294 Instruction *Ext, TypePromotionTransaction &TPT, 4295 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4296 SmallVectorImpl<Instruction *> *Exts, 4297 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4298 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4299 Exts, Truncs, TLI, true); 4300 } 4301 4302 /// \see promoteOperandForOther. 4303 static Value *zeroExtendOperandForOther( 4304 Instruction *Ext, TypePromotionTransaction &TPT, 4305 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4306 SmallVectorImpl<Instruction *> *Exts, 4307 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4308 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4309 Exts, Truncs, TLI, false); 4310 } 4311 4312 public: 4313 /// Type for the utility function that promotes the operand of Ext. 4314 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4315 InstrToOrigTy &PromotedInsts, 4316 unsigned &CreatedInstsCost, 4317 SmallVectorImpl<Instruction *> *Exts, 4318 SmallVectorImpl<Instruction *> *Truncs, 4319 const TargetLowering &TLI); 4320 4321 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4322 /// action to promote the operand of \p Ext instead of using Ext. 4323 /// \return NULL if no promotable action is possible with the current 4324 /// sign extension. 4325 /// \p InsertedInsts keeps track of all the instructions inserted by the 4326 /// other CodeGenPrepare optimizations. This information is important 4327 /// because we do not want to promote these instructions as CodeGenPrepare 4328 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4329 /// \p PromotedInsts maps the instructions to their type before promotion. 4330 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4331 const TargetLowering &TLI, 4332 const InstrToOrigTy &PromotedInsts); 4333 }; 4334 4335 } // end anonymous namespace 4336 4337 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4338 Type *ConsideredExtType, 4339 const InstrToOrigTy &PromotedInsts, 4340 bool IsSExt) { 4341 // The promotion helper does not know how to deal with vector types yet. 4342 // To be able to fix that, we would need to fix the places where we 4343 // statically extend, e.g., constants and such. 4344 if (Inst->getType()->isVectorTy()) 4345 return false; 4346 4347 // We can always get through zext. 4348 if (isa<ZExtInst>(Inst)) 4349 return true; 4350 4351 // sext(sext) is ok too. 4352 if (IsSExt && isa<SExtInst>(Inst)) 4353 return true; 4354 4355 // We can get through binary operator, if it is legal. In other words, the 4356 // binary operator must have a nuw or nsw flag. 4357 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4358 if (isa<OverflowingBinaryOperator>(BinOp) && 4359 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4360 (IsSExt && BinOp->hasNoSignedWrap()))) 4361 return true; 4362 4363 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4364 if ((Inst->getOpcode() == Instruction::And || 4365 Inst->getOpcode() == Instruction::Or)) 4366 return true; 4367 4368 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4369 if (Inst->getOpcode() == Instruction::Xor) { 4370 // Make sure it is not a NOT. 4371 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4372 if (!Cst->getValue().isAllOnes()) 4373 return true; 4374 } 4375 4376 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4377 // It may change a poisoned value into a regular value, like 4378 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4379 // poisoned value regular value 4380 // It should be OK since undef covers valid value. 4381 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4382 return true; 4383 4384 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4385 // It may change a poisoned value into a regular value, like 4386 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4387 // poisoned value regular value 4388 // It should be OK since undef covers valid value. 4389 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4390 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4391 if (ExtInst->hasOneUse()) { 4392 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4393 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4394 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4395 if (Cst && 4396 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4397 return true; 4398 } 4399 } 4400 } 4401 4402 // Check if we can do the following simplification. 4403 // ext(trunc(opnd)) --> ext(opnd) 4404 if (!isa<TruncInst>(Inst)) 4405 return false; 4406 4407 Value *OpndVal = Inst->getOperand(0); 4408 // Check if we can use this operand in the extension. 4409 // If the type is larger than the result type of the extension, we cannot. 4410 if (!OpndVal->getType()->isIntegerTy() || 4411 OpndVal->getType()->getIntegerBitWidth() > 4412 ConsideredExtType->getIntegerBitWidth()) 4413 return false; 4414 4415 // If the operand of the truncate is not an instruction, we will not have 4416 // any information on the dropped bits. 4417 // (Actually we could for constant but it is not worth the extra logic). 4418 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4419 if (!Opnd) 4420 return false; 4421 4422 // Check if the source of the type is narrow enough. 4423 // I.e., check that trunc just drops extended bits of the same kind of 4424 // the extension. 4425 // #1 get the type of the operand and check the kind of the extended bits. 4426 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4427 if (OpndType) 4428 ; 4429 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4430 OpndType = Opnd->getOperand(0)->getType(); 4431 else 4432 return false; 4433 4434 // #2 check that the truncate just drops extended bits. 4435 return Inst->getType()->getIntegerBitWidth() >= 4436 OpndType->getIntegerBitWidth(); 4437 } 4438 4439 TypePromotionHelper::Action TypePromotionHelper::getAction( 4440 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4441 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4442 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4443 "Unexpected instruction type"); 4444 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4445 Type *ExtTy = Ext->getType(); 4446 bool IsSExt = isa<SExtInst>(Ext); 4447 // If the operand of the extension is not an instruction, we cannot 4448 // get through. 4449 // If it, check we can get through. 4450 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4451 return nullptr; 4452 4453 // Do not promote if the operand has been added by codegenprepare. 4454 // Otherwise, it means we are undoing an optimization that is likely to be 4455 // redone, thus causing potential infinite loop. 4456 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4457 return nullptr; 4458 4459 // SExt or Trunc instructions. 4460 // Return the related handler. 4461 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4462 isa<ZExtInst>(ExtOpnd)) 4463 return promoteOperandForTruncAndAnyExt; 4464 4465 // Regular instruction. 4466 // Abort early if we will have to insert non-free instructions. 4467 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4468 return nullptr; 4469 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4470 } 4471 4472 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4473 Instruction *SExt, TypePromotionTransaction &TPT, 4474 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4475 SmallVectorImpl<Instruction *> *Exts, 4476 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4477 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4478 // get through it and this method should not be called. 4479 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4480 Value *ExtVal = SExt; 4481 bool HasMergedNonFreeExt = false; 4482 if (isa<ZExtInst>(SExtOpnd)) { 4483 // Replace s|zext(zext(opnd)) 4484 // => zext(opnd). 4485 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4486 Value *ZExt = 4487 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4488 TPT.replaceAllUsesWith(SExt, ZExt); 4489 TPT.eraseInstruction(SExt); 4490 ExtVal = ZExt; 4491 } else { 4492 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4493 // => z|sext(opnd). 4494 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4495 } 4496 CreatedInstsCost = 0; 4497 4498 // Remove dead code. 4499 if (SExtOpnd->use_empty()) 4500 TPT.eraseInstruction(SExtOpnd); 4501 4502 // Check if the extension is still needed. 4503 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4504 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4505 if (ExtInst) { 4506 if (Exts) 4507 Exts->push_back(ExtInst); 4508 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4509 } 4510 return ExtVal; 4511 } 4512 4513 // At this point we have: ext ty opnd to ty. 4514 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4515 Value *NextVal = ExtInst->getOperand(0); 4516 TPT.eraseInstruction(ExtInst, NextVal); 4517 return NextVal; 4518 } 4519 4520 Value *TypePromotionHelper::promoteOperandForOther( 4521 Instruction *Ext, TypePromotionTransaction &TPT, 4522 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4523 SmallVectorImpl<Instruction *> *Exts, 4524 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4525 bool IsSExt) { 4526 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4527 // get through it and this method should not be called. 4528 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4529 CreatedInstsCost = 0; 4530 if (!ExtOpnd->hasOneUse()) { 4531 // ExtOpnd will be promoted. 4532 // All its uses, but Ext, will need to use a truncated value of the 4533 // promoted version. 4534 // Create the truncate now. 4535 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4536 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4537 // Insert it just after the definition. 4538 ITrunc->moveAfter(ExtOpnd); 4539 if (Truncs) 4540 Truncs->push_back(ITrunc); 4541 } 4542 4543 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4544 // Restore the operand of Ext (which has been replaced by the previous call 4545 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4546 TPT.setOperand(Ext, 0, ExtOpnd); 4547 } 4548 4549 // Get through the Instruction: 4550 // 1. Update its type. 4551 // 2. Replace the uses of Ext by Inst. 4552 // 3. Extend each operand that needs to be extended. 4553 4554 // Remember the original type of the instruction before promotion. 4555 // This is useful to know that the high bits are sign extended bits. 4556 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4557 // Step #1. 4558 TPT.mutateType(ExtOpnd, Ext->getType()); 4559 // Step #2. 4560 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4561 // Step #3. 4562 Instruction *ExtForOpnd = Ext; 4563 4564 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4565 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4566 ++OpIdx) { 4567 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4568 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4569 !shouldExtOperand(ExtOpnd, OpIdx)) { 4570 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4571 continue; 4572 } 4573 // Check if we can statically extend the operand. 4574 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4575 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4576 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4577 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4578 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4579 : Cst->getValue().zext(BitWidth); 4580 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4581 continue; 4582 } 4583 // UndefValue are typed, so we have to statically sign extend them. 4584 if (isa<UndefValue>(Opnd)) { 4585 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4586 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4587 continue; 4588 } 4589 4590 // Otherwise we have to explicitly sign extend the operand. 4591 // Check if Ext was reused to extend an operand. 4592 if (!ExtForOpnd) { 4593 // If yes, create a new one. 4594 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4595 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4596 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4597 if (!isa<Instruction>(ValForExtOpnd)) { 4598 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4599 continue; 4600 } 4601 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4602 } 4603 if (Exts) 4604 Exts->push_back(ExtForOpnd); 4605 TPT.setOperand(ExtForOpnd, 0, Opnd); 4606 4607 // Move the sign extension before the insertion point. 4608 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4609 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4610 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4611 // If more sext are required, new instructions will have to be created. 4612 ExtForOpnd = nullptr; 4613 } 4614 if (ExtForOpnd == Ext) { 4615 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4616 TPT.eraseInstruction(Ext); 4617 } 4618 return ExtOpnd; 4619 } 4620 4621 /// Check whether or not promoting an instruction to a wider type is profitable. 4622 /// \p NewCost gives the cost of extension instructions created by the 4623 /// promotion. 4624 /// \p OldCost gives the cost of extension instructions before the promotion 4625 /// plus the number of instructions that have been 4626 /// matched in the addressing mode the promotion. 4627 /// \p PromotedOperand is the value that has been promoted. 4628 /// \return True if the promotion is profitable, false otherwise. 4629 bool AddressingModeMatcher::isPromotionProfitable( 4630 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4631 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4632 << '\n'); 4633 // The cost of the new extensions is greater than the cost of the 4634 // old extension plus what we folded. 4635 // This is not profitable. 4636 if (NewCost > OldCost) 4637 return false; 4638 if (NewCost < OldCost) 4639 return true; 4640 // The promotion is neutral but it may help folding the sign extension in 4641 // loads for instance. 4642 // Check that we did not create an illegal instruction. 4643 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4644 } 4645 4646 /// Given an instruction or constant expr, see if we can fold the operation 4647 /// into the addressing mode. If so, update the addressing mode and return 4648 /// true, otherwise return false without modifying AddrMode. 4649 /// If \p MovedAway is not NULL, it contains the information of whether or 4650 /// not AddrInst has to be folded into the addressing mode on success. 4651 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4652 /// because it has been moved away. 4653 /// Thus AddrInst must not be added in the matched instructions. 4654 /// This state can happen when AddrInst is a sext, since it may be moved away. 4655 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4656 /// not be referenced anymore. 4657 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4658 unsigned Depth, 4659 bool *MovedAway) { 4660 // Avoid exponential behavior on extremely deep expression trees. 4661 if (Depth >= 5) 4662 return false; 4663 4664 // By default, all matched instructions stay in place. 4665 if (MovedAway) 4666 *MovedAway = false; 4667 4668 switch (Opcode) { 4669 case Instruction::PtrToInt: 4670 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4671 return matchAddr(AddrInst->getOperand(0), Depth); 4672 case Instruction::IntToPtr: { 4673 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4674 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4675 // This inttoptr is a no-op if the integer type is pointer sized. 4676 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4677 return matchAddr(AddrInst->getOperand(0), Depth); 4678 return false; 4679 } 4680 case Instruction::BitCast: 4681 // BitCast is always a noop, and we can handle it as long as it is 4682 // int->int or pointer->pointer (we don't want int<->fp or something). 4683 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4684 // Don't touch identity bitcasts. These were probably put here by LSR, 4685 // and we don't want to mess around with them. Assume it knows what it 4686 // is doing. 4687 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4688 return matchAddr(AddrInst->getOperand(0), Depth); 4689 return false; 4690 case Instruction::AddrSpaceCast: { 4691 unsigned SrcAS = 4692 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4693 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4694 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4695 return matchAddr(AddrInst->getOperand(0), Depth); 4696 return false; 4697 } 4698 case Instruction::Add: { 4699 // Check to see if we can merge in one operand, then the other. If so, we 4700 // win. 4701 ExtAddrMode BackupAddrMode = AddrMode; 4702 unsigned OldSize = AddrModeInsts.size(); 4703 // Start a transaction at this point. 4704 // The LHS may match but not the RHS. 4705 // Therefore, we need a higher level restoration point to undo partially 4706 // matched operation. 4707 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4708 TPT.getRestorationPoint(); 4709 4710 // Try to match an integer constant second to increase its chance of ending 4711 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 4712 int First = 0, Second = 1; 4713 if (isa<ConstantInt>(AddrInst->getOperand(First)) 4714 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 4715 std::swap(First, Second); 4716 AddrMode.InBounds = false; 4717 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 4718 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 4719 return true; 4720 4721 // Restore the old addr mode info. 4722 AddrMode = BackupAddrMode; 4723 AddrModeInsts.resize(OldSize); 4724 TPT.rollback(LastKnownGood); 4725 4726 // Otherwise this was over-aggressive. Try merging operands in the opposite 4727 // order. 4728 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 4729 matchAddr(AddrInst->getOperand(First), Depth + 1)) 4730 return true; 4731 4732 // Otherwise we definitely can't merge the ADD in. 4733 AddrMode = BackupAddrMode; 4734 AddrModeInsts.resize(OldSize); 4735 TPT.rollback(LastKnownGood); 4736 break; 4737 } 4738 // case Instruction::Or: 4739 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4740 // break; 4741 case Instruction::Mul: 4742 case Instruction::Shl: { 4743 // Can only handle X*C and X << C. 4744 AddrMode.InBounds = false; 4745 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4746 if (!RHS || RHS->getBitWidth() > 64) 4747 return false; 4748 int64_t Scale = Opcode == Instruction::Shl 4749 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4750 : RHS->getSExtValue(); 4751 4752 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4753 } 4754 case Instruction::GetElementPtr: { 4755 // Scan the GEP. We check it if it contains constant offsets and at most 4756 // one variable offset. 4757 int VariableOperand = -1; 4758 unsigned VariableScale = 0; 4759 4760 int64_t ConstantOffset = 0; 4761 gep_type_iterator GTI = gep_type_begin(AddrInst); 4762 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4763 if (StructType *STy = GTI.getStructTypeOrNull()) { 4764 const StructLayout *SL = DL.getStructLayout(STy); 4765 unsigned Idx = 4766 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4767 ConstantOffset += SL->getElementOffset(Idx); 4768 } else { 4769 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4770 if (TS.isNonZero()) { 4771 // The optimisations below currently only work for fixed offsets. 4772 if (TS.isScalable()) 4773 return false; 4774 int64_t TypeSize = TS.getFixedValue(); 4775 if (ConstantInt *CI = 4776 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4777 const APInt &CVal = CI->getValue(); 4778 if (CVal.getSignificantBits() <= 64) { 4779 ConstantOffset += CVal.getSExtValue() * TypeSize; 4780 continue; 4781 } 4782 } 4783 // We only allow one variable index at the moment. 4784 if (VariableOperand != -1) 4785 return false; 4786 4787 // Remember the variable index. 4788 VariableOperand = i; 4789 VariableScale = TypeSize; 4790 } 4791 } 4792 } 4793 4794 // A common case is for the GEP to only do a constant offset. In this case, 4795 // just add it to the disp field and check validity. 4796 if (VariableOperand == -1) { 4797 AddrMode.BaseOffs += ConstantOffset; 4798 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4799 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4800 AddrMode.InBounds = false; 4801 return true; 4802 } 4803 AddrMode.BaseOffs -= ConstantOffset; 4804 4805 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4806 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4807 ConstantOffset > 0) { 4808 // Record GEPs with non-zero offsets as candidates for splitting in 4809 // the event that the offset cannot fit into the r+i addressing mode. 4810 // Simple and common case that only one GEP is used in calculating the 4811 // address for the memory access. 4812 Value *Base = AddrInst->getOperand(0); 4813 auto *BaseI = dyn_cast<Instruction>(Base); 4814 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4815 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4816 (BaseI && !isa<CastInst>(BaseI) && 4817 !isa<GetElementPtrInst>(BaseI))) { 4818 // Make sure the parent block allows inserting non-PHI instructions 4819 // before the terminator. 4820 BasicBlock *Parent = BaseI ? BaseI->getParent() 4821 : &GEP->getFunction()->getEntryBlock(); 4822 if (!Parent->getTerminator()->isEHPad()) 4823 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4824 } 4825 } 4826 4827 return false; 4828 } 4829 4830 // Save the valid addressing mode in case we can't match. 4831 ExtAddrMode BackupAddrMode = AddrMode; 4832 unsigned OldSize = AddrModeInsts.size(); 4833 4834 // See if the scale and offset amount is valid for this target. 4835 AddrMode.BaseOffs += ConstantOffset; 4836 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4837 AddrMode.InBounds = false; 4838 4839 // Match the base operand of the GEP. 4840 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4841 // If it couldn't be matched, just stuff the value in a register. 4842 if (AddrMode.HasBaseReg) { 4843 AddrMode = BackupAddrMode; 4844 AddrModeInsts.resize(OldSize); 4845 return false; 4846 } 4847 AddrMode.HasBaseReg = true; 4848 AddrMode.BaseReg = AddrInst->getOperand(0); 4849 } 4850 4851 // Match the remaining variable portion of the GEP. 4852 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4853 Depth)) { 4854 // If it couldn't be matched, try stuffing the base into a register 4855 // instead of matching it, and retrying the match of the scale. 4856 AddrMode = BackupAddrMode; 4857 AddrModeInsts.resize(OldSize); 4858 if (AddrMode.HasBaseReg) 4859 return false; 4860 AddrMode.HasBaseReg = true; 4861 AddrMode.BaseReg = AddrInst->getOperand(0); 4862 AddrMode.BaseOffs += ConstantOffset; 4863 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4864 VariableScale, Depth)) { 4865 // If even that didn't work, bail. 4866 AddrMode = BackupAddrMode; 4867 AddrModeInsts.resize(OldSize); 4868 return false; 4869 } 4870 } 4871 4872 return true; 4873 } 4874 case Instruction::SExt: 4875 case Instruction::ZExt: { 4876 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4877 if (!Ext) 4878 return false; 4879 4880 // Try to move this ext out of the way of the addressing mode. 4881 // Ask for a method for doing so. 4882 TypePromotionHelper::Action TPH = 4883 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4884 if (!TPH) 4885 return false; 4886 4887 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4888 TPT.getRestorationPoint(); 4889 unsigned CreatedInstsCost = 0; 4890 unsigned ExtCost = !TLI.isExtFree(Ext); 4891 Value *PromotedOperand = 4892 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4893 // SExt has been moved away. 4894 // Thus either it will be rematched later in the recursive calls or it is 4895 // gone. Anyway, we must not fold it into the addressing mode at this point. 4896 // E.g., 4897 // op = add opnd, 1 4898 // idx = ext op 4899 // addr = gep base, idx 4900 // is now: 4901 // promotedOpnd = ext opnd <- no match here 4902 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4903 // addr = gep base, op <- match 4904 if (MovedAway) 4905 *MovedAway = true; 4906 4907 assert(PromotedOperand && 4908 "TypePromotionHelper should have filtered out those cases"); 4909 4910 ExtAddrMode BackupAddrMode = AddrMode; 4911 unsigned OldSize = AddrModeInsts.size(); 4912 4913 if (!matchAddr(PromotedOperand, Depth) || 4914 // The total of the new cost is equal to the cost of the created 4915 // instructions. 4916 // The total of the old cost is equal to the cost of the extension plus 4917 // what we have saved in the addressing mode. 4918 !isPromotionProfitable(CreatedInstsCost, 4919 ExtCost + (AddrModeInsts.size() - OldSize), 4920 PromotedOperand)) { 4921 AddrMode = BackupAddrMode; 4922 AddrModeInsts.resize(OldSize); 4923 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4924 TPT.rollback(LastKnownGood); 4925 return false; 4926 } 4927 return true; 4928 } 4929 } 4930 return false; 4931 } 4932 4933 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4934 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4935 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4936 /// for the target. 4937 /// 4938 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4939 // Start a transaction at this point that we will rollback if the matching 4940 // fails. 4941 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4942 TPT.getRestorationPoint(); 4943 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4944 if (CI->getValue().isSignedIntN(64)) { 4945 // Fold in immediates if legal for the target. 4946 AddrMode.BaseOffs += CI->getSExtValue(); 4947 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4948 return true; 4949 AddrMode.BaseOffs -= CI->getSExtValue(); 4950 } 4951 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4952 // If this is a global variable, try to fold it into the addressing mode. 4953 if (!AddrMode.BaseGV) { 4954 AddrMode.BaseGV = GV; 4955 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4956 return true; 4957 AddrMode.BaseGV = nullptr; 4958 } 4959 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4960 ExtAddrMode BackupAddrMode = AddrMode; 4961 unsigned OldSize = AddrModeInsts.size(); 4962 4963 // Check to see if it is possible to fold this operation. 4964 bool MovedAway = false; 4965 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4966 // This instruction may have been moved away. If so, there is nothing 4967 // to check here. 4968 if (MovedAway) 4969 return true; 4970 // Okay, it's possible to fold this. Check to see if it is actually 4971 // *profitable* to do so. We use a simple cost model to avoid increasing 4972 // register pressure too much. 4973 if (I->hasOneUse() || 4974 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4975 AddrModeInsts.push_back(I); 4976 return true; 4977 } 4978 4979 // It isn't profitable to do this, roll back. 4980 AddrMode = BackupAddrMode; 4981 AddrModeInsts.resize(OldSize); 4982 TPT.rollback(LastKnownGood); 4983 } 4984 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4985 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4986 return true; 4987 TPT.rollback(LastKnownGood); 4988 } else if (isa<ConstantPointerNull>(Addr)) { 4989 // Null pointer gets folded without affecting the addressing mode. 4990 return true; 4991 } 4992 4993 // Worse case, the target should support [reg] addressing modes. :) 4994 if (!AddrMode.HasBaseReg) { 4995 AddrMode.HasBaseReg = true; 4996 AddrMode.BaseReg = Addr; 4997 // Still check for legality in case the target supports [imm] but not [i+r]. 4998 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4999 return true; 5000 AddrMode.HasBaseReg = false; 5001 AddrMode.BaseReg = nullptr; 5002 } 5003 5004 // If the base register is already taken, see if we can do [r+r]. 5005 if (AddrMode.Scale == 0) { 5006 AddrMode.Scale = 1; 5007 AddrMode.ScaledReg = Addr; 5008 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5009 return true; 5010 AddrMode.Scale = 0; 5011 AddrMode.ScaledReg = nullptr; 5012 } 5013 // Couldn't match. 5014 TPT.rollback(LastKnownGood); 5015 return false; 5016 } 5017 5018 /// Check to see if all uses of OpVal by the specified inline asm call are due 5019 /// to memory operands. If so, return true, otherwise return false. 5020 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5021 const TargetLowering &TLI, 5022 const TargetRegisterInfo &TRI) { 5023 const Function *F = CI->getFunction(); 5024 TargetLowering::AsmOperandInfoVector TargetConstraints = 5025 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 5026 5027 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5028 // Compute the constraint code and ConstraintType to use. 5029 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5030 5031 // If this asm operand is our Value*, and if it isn't an indirect memory 5032 // operand, we can't fold it! TODO: Also handle C_Address? 5033 if (OpInfo.CallOperandVal == OpVal && 5034 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5035 !OpInfo.isIndirect)) 5036 return false; 5037 } 5038 5039 return true; 5040 } 5041 5042 /// Recursively walk all the uses of I until we find a memory use. 5043 /// If we find an obviously non-foldable instruction, return true. 5044 /// Add accessed addresses and types to MemoryUses. 5045 static bool FindAllMemoryUses( 5046 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5047 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5048 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5049 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5050 // If we already considered this instruction, we're done. 5051 if (!ConsideredInsts.insert(I).second) 5052 return false; 5053 5054 // If this is an obviously unfoldable instruction, bail out. 5055 if (!MightBeFoldableInst(I)) 5056 return true; 5057 5058 // Loop over all the uses, recursively processing them. 5059 for (Use &U : I->uses()) { 5060 // Conservatively return true if we're seeing a large number or a deep chain 5061 // of users. This avoids excessive compilation times in pathological cases. 5062 if (SeenInsts++ >= MaxAddressUsersToScan) 5063 return true; 5064 5065 Instruction *UserI = cast<Instruction>(U.getUser()); 5066 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5067 MemoryUses.push_back({&U, LI->getType()}); 5068 continue; 5069 } 5070 5071 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5072 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5073 return true; // Storing addr, not into addr. 5074 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5075 continue; 5076 } 5077 5078 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5079 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5080 return true; // Storing addr, not into addr. 5081 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5082 continue; 5083 } 5084 5085 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5086 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5087 return true; // Storing addr, not into addr. 5088 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5089 continue; 5090 } 5091 5092 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5093 if (CI->hasFnAttr(Attribute::Cold)) { 5094 // If this is a cold call, we can sink the addressing calculation into 5095 // the cold path. See optimizeCallInst 5096 bool OptForSize = 5097 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5098 if (!OptForSize) 5099 continue; 5100 } 5101 5102 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5103 if (!IA) 5104 return true; 5105 5106 // If this is a memory operand, we're cool, otherwise bail out. 5107 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5108 return true; 5109 continue; 5110 } 5111 5112 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5113 PSI, BFI, SeenInsts)) 5114 return true; 5115 } 5116 5117 return false; 5118 } 5119 5120 static bool FindAllMemoryUses( 5121 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5122 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5123 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5124 unsigned SeenInsts = 0; 5125 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5126 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5127 PSI, BFI, SeenInsts); 5128 } 5129 5130 5131 /// Return true if Val is already known to be live at the use site that we're 5132 /// folding it into. If so, there is no cost to include it in the addressing 5133 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5134 /// instruction already. 5135 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5136 Value *KnownLive1, 5137 Value *KnownLive2) { 5138 // If Val is either of the known-live values, we know it is live! 5139 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5140 return true; 5141 5142 // All values other than instructions and arguments (e.g. constants) are live. 5143 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5144 return true; 5145 5146 // If Val is a constant sized alloca in the entry block, it is live, this is 5147 // true because it is just a reference to the stack/frame pointer, which is 5148 // live for the whole function. 5149 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5150 if (AI->isStaticAlloca()) 5151 return true; 5152 5153 // Check to see if this value is already used in the memory instruction's 5154 // block. If so, it's already live into the block at the very least, so we 5155 // can reasonably fold it. 5156 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5157 } 5158 5159 /// It is possible for the addressing mode of the machine to fold the specified 5160 /// instruction into a load or store that ultimately uses it. 5161 /// However, the specified instruction has multiple uses. 5162 /// Given this, it may actually increase register pressure to fold it 5163 /// into the load. For example, consider this code: 5164 /// 5165 /// X = ... 5166 /// Y = X+1 5167 /// use(Y) -> nonload/store 5168 /// Z = Y+1 5169 /// load Z 5170 /// 5171 /// In this case, Y has multiple uses, and can be folded into the load of Z 5172 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5173 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5174 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5175 /// number of computations either. 5176 /// 5177 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5178 /// X was live across 'load Z' for other reasons, we actually *would* want to 5179 /// fold the addressing mode in the Z case. This would make Y die earlier. 5180 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5181 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5182 if (IgnoreProfitability) 5183 return true; 5184 5185 // AMBefore is the addressing mode before this instruction was folded into it, 5186 // and AMAfter is the addressing mode after the instruction was folded. Get 5187 // the set of registers referenced by AMAfter and subtract out those 5188 // referenced by AMBefore: this is the set of values which folding in this 5189 // address extends the lifetime of. 5190 // 5191 // Note that there are only two potential values being referenced here, 5192 // BaseReg and ScaleReg (global addresses are always available, as are any 5193 // folded immediates). 5194 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5195 5196 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5197 // lifetime wasn't extended by adding this instruction. 5198 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5199 BaseReg = nullptr; 5200 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5201 ScaledReg = nullptr; 5202 5203 // If folding this instruction (and it's subexprs) didn't extend any live 5204 // ranges, we're ok with it. 5205 if (!BaseReg && !ScaledReg) 5206 return true; 5207 5208 // If all uses of this instruction can have the address mode sunk into them, 5209 // we can remove the addressing mode and effectively trade one live register 5210 // for another (at worst.) In this context, folding an addressing mode into 5211 // the use is just a particularly nice way of sinking it. 5212 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5213 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5214 return false; // Has a non-memory, non-foldable use! 5215 5216 // Now that we know that all uses of this instruction are part of a chain of 5217 // computation involving only operations that could theoretically be folded 5218 // into a memory use, loop over each of these memory operation uses and see 5219 // if they could *actually* fold the instruction. The assumption is that 5220 // addressing modes are cheap and that duplicating the computation involved 5221 // many times is worthwhile, even on a fastpath. For sinking candidates 5222 // (i.e. cold call sites), this serves as a way to prevent excessive code 5223 // growth since most architectures have some reasonable small and fast way to 5224 // compute an effective address. (i.e LEA on x86) 5225 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5226 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5227 Value *Address = Pair.first->get(); 5228 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5229 Type *AddressAccessTy = Pair.second; 5230 unsigned AS = Address->getType()->getPointerAddressSpace(); 5231 5232 // Do a match against the root of this address, ignoring profitability. This 5233 // will tell us if the addressing mode for the memory operation will 5234 // *actually* cover the shared instruction. 5235 ExtAddrMode Result; 5236 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5237 0); 5238 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5239 TPT.getRestorationPoint(); 5240 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5241 AddressAccessTy, AS, UserI, Result, 5242 InsertedInsts, PromotedInsts, TPT, 5243 LargeOffsetGEP, OptSize, PSI, BFI); 5244 Matcher.IgnoreProfitability = true; 5245 bool Success = Matcher.matchAddr(Address, 0); 5246 (void)Success; 5247 assert(Success && "Couldn't select *anything*?"); 5248 5249 // The match was to check the profitability, the changes made are not 5250 // part of the original matcher. Therefore, they should be dropped 5251 // otherwise the original matcher will not present the right state. 5252 TPT.rollback(LastKnownGood); 5253 5254 // If the match didn't cover I, then it won't be shared by it. 5255 if (!is_contained(MatchedAddrModeInsts, I)) 5256 return false; 5257 5258 MatchedAddrModeInsts.clear(); 5259 } 5260 5261 return true; 5262 } 5263 5264 /// Return true if the specified values are defined in a 5265 /// different basic block than BB. 5266 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5267 if (Instruction *I = dyn_cast<Instruction>(V)) 5268 return I->getParent() != BB; 5269 return false; 5270 } 5271 5272 /// Sink addressing mode computation immediate before MemoryInst if doing so 5273 /// can be done without increasing register pressure. The need for the 5274 /// register pressure constraint means this can end up being an all or nothing 5275 /// decision for all uses of the same addressing computation. 5276 /// 5277 /// Load and Store Instructions often have addressing modes that can do 5278 /// significant amounts of computation. As such, instruction selection will try 5279 /// to get the load or store to do as much computation as possible for the 5280 /// program. The problem is that isel can only see within a single block. As 5281 /// such, we sink as much legal addressing mode work into the block as possible. 5282 /// 5283 /// This method is used to optimize both load/store and inline asms with memory 5284 /// operands. It's also used to sink addressing computations feeding into cold 5285 /// call sites into their (cold) basic block. 5286 /// 5287 /// The motivation for handling sinking into cold blocks is that doing so can 5288 /// both enable other address mode sinking (by satisfying the register pressure 5289 /// constraint above), and reduce register pressure globally (by removing the 5290 /// addressing mode computation from the fast path entirely.). 5291 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5292 Type *AccessTy, unsigned AddrSpace) { 5293 Value *Repl = Addr; 5294 5295 // Try to collapse single-value PHI nodes. This is necessary to undo 5296 // unprofitable PRE transformations. 5297 SmallVector<Value *, 8> worklist; 5298 SmallPtrSet<Value *, 16> Visited; 5299 worklist.push_back(Addr); 5300 5301 // Use a worklist to iteratively look through PHI and select nodes, and 5302 // ensure that the addressing mode obtained from the non-PHI/select roots of 5303 // the graph are compatible. 5304 bool PhiOrSelectSeen = false; 5305 SmallVector<Instruction *, 16> AddrModeInsts; 5306 const SimplifyQuery SQ(*DL, TLInfo); 5307 AddressingModeCombiner AddrModes(SQ, Addr); 5308 TypePromotionTransaction TPT(RemovedInsts); 5309 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5310 TPT.getRestorationPoint(); 5311 while (!worklist.empty()) { 5312 Value *V = worklist.pop_back_val(); 5313 5314 // We allow traversing cyclic Phi nodes. 5315 // In case of success after this loop we ensure that traversing through 5316 // Phi nodes ends up with all cases to compute address of the form 5317 // BaseGV + Base + Scale * Index + Offset 5318 // where Scale and Offset are constans and BaseGV, Base and Index 5319 // are exactly the same Values in all cases. 5320 // It means that BaseGV, Scale and Offset dominate our memory instruction 5321 // and have the same value as they had in address computation represented 5322 // as Phi. So we can safely sink address computation to memory instruction. 5323 if (!Visited.insert(V).second) 5324 continue; 5325 5326 // For a PHI node, push all of its incoming values. 5327 if (PHINode *P = dyn_cast<PHINode>(V)) { 5328 append_range(worklist, P->incoming_values()); 5329 PhiOrSelectSeen = true; 5330 continue; 5331 } 5332 // Similar for select. 5333 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5334 worklist.push_back(SI->getFalseValue()); 5335 worklist.push_back(SI->getTrueValue()); 5336 PhiOrSelectSeen = true; 5337 continue; 5338 } 5339 5340 // For non-PHIs, determine the addressing mode being computed. Note that 5341 // the result may differ depending on what other uses our candidate 5342 // addressing instructions might have. 5343 AddrModeInsts.clear(); 5344 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5345 0); 5346 // Defer the query (and possible computation of) the dom tree to point of 5347 // actual use. It's expected that most address matches don't actually need 5348 // the domtree. 5349 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5350 Function *F = MemoryInst->getParent()->getParent(); 5351 return this->getDT(*F); 5352 }; 5353 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5354 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5355 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5356 BFI.get()); 5357 5358 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5359 if (GEP && !NewGEPBases.count(GEP)) { 5360 // If splitting the underlying data structure can reduce the offset of a 5361 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5362 // previously split data structures. 5363 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5364 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5365 } 5366 5367 NewAddrMode.OriginalValue = V; 5368 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5369 break; 5370 } 5371 5372 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5373 // or we have multiple but either couldn't combine them or combining them 5374 // wouldn't do anything useful, bail out now. 5375 if (!AddrModes.combineAddrModes()) { 5376 TPT.rollback(LastKnownGood); 5377 return false; 5378 } 5379 bool Modified = TPT.commit(); 5380 5381 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5382 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5383 5384 // If all the instructions matched are already in this BB, don't do anything. 5385 // If we saw a Phi node then it is not local definitely, and if we saw a 5386 // select then we want to push the address calculation past it even if it's 5387 // already in this BB. 5388 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5389 return IsNonLocalValue(V, MemoryInst->getParent()); 5390 })) { 5391 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5392 << "\n"); 5393 return Modified; 5394 } 5395 5396 // Insert this computation right after this user. Since our caller is 5397 // scanning from the top of the BB to the bottom, reuse of the expr are 5398 // guaranteed to happen later. 5399 IRBuilder<> Builder(MemoryInst); 5400 5401 // Now that we determined the addressing expression we want to use and know 5402 // that we have to sink it into this block. Check to see if we have already 5403 // done this for some other load/store instr in this block. If so, reuse 5404 // the computation. Before attempting reuse, check if the address is valid 5405 // as it may have been erased. 5406 5407 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5408 5409 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5410 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5411 if (SunkAddr) { 5412 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5413 << " for " << *MemoryInst << "\n"); 5414 if (SunkAddr->getType() != Addr->getType()) { 5415 if (SunkAddr->getType()->getPointerAddressSpace() != 5416 Addr->getType()->getPointerAddressSpace() && 5417 !DL->isNonIntegralPointerType(Addr->getType())) { 5418 // There are two reasons the address spaces might not match: a no-op 5419 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5420 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5421 // TODO: allow bitcast between different address space pointers with the 5422 // same size. 5423 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5424 SunkAddr = 5425 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5426 } else 5427 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5428 } 5429 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5430 SubtargetInfo->addrSinkUsingGEPs())) { 5431 // By default, we use the GEP-based method when AA is used later. This 5432 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5433 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5434 << " for " << *MemoryInst << "\n"); 5435 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5436 5437 // First, find the pointer. 5438 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5439 ResultPtr = AddrMode.BaseReg; 5440 AddrMode.BaseReg = nullptr; 5441 } 5442 5443 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5444 // We can't add more than one pointer together, nor can we scale a 5445 // pointer (both of which seem meaningless). 5446 if (ResultPtr || AddrMode.Scale != 1) 5447 return Modified; 5448 5449 ResultPtr = AddrMode.ScaledReg; 5450 AddrMode.Scale = 0; 5451 } 5452 5453 // It is only safe to sign extend the BaseReg if we know that the math 5454 // required to create it did not overflow before we extend it. Since 5455 // the original IR value was tossed in favor of a constant back when 5456 // the AddrMode was created we need to bail out gracefully if widths 5457 // do not match instead of extending it. 5458 // 5459 // (See below for code to add the scale.) 5460 if (AddrMode.Scale) { 5461 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5462 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5463 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5464 return Modified; 5465 } 5466 5467 if (AddrMode.BaseGV) { 5468 if (ResultPtr) 5469 return Modified; 5470 5471 ResultPtr = AddrMode.BaseGV; 5472 } 5473 5474 // If the real base value actually came from an inttoptr, then the matcher 5475 // will look through it and provide only the integer value. In that case, 5476 // use it here. 5477 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5478 if (!ResultPtr && AddrMode.BaseReg) { 5479 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5480 "sunkaddr"); 5481 AddrMode.BaseReg = nullptr; 5482 } else if (!ResultPtr && AddrMode.Scale == 1) { 5483 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5484 "sunkaddr"); 5485 AddrMode.Scale = 0; 5486 } 5487 } 5488 5489 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5490 !AddrMode.BaseOffs) { 5491 SunkAddr = Constant::getNullValue(Addr->getType()); 5492 } else if (!ResultPtr) { 5493 return Modified; 5494 } else { 5495 Type *I8PtrTy = 5496 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5497 Type *I8Ty = Builder.getInt8Ty(); 5498 5499 // Start with the base register. Do this first so that subsequent address 5500 // matching finds it last, which will prevent it from trying to match it 5501 // as the scaled value in case it happens to be a mul. That would be 5502 // problematic if we've sunk a different mul for the scale, because then 5503 // we'd end up sinking both muls. 5504 if (AddrMode.BaseReg) { 5505 Value *V = AddrMode.BaseReg; 5506 if (V->getType() != IntPtrTy) 5507 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5508 5509 ResultIndex = V; 5510 } 5511 5512 // Add the scale value. 5513 if (AddrMode.Scale) { 5514 Value *V = AddrMode.ScaledReg; 5515 if (V->getType() == IntPtrTy) { 5516 // done. 5517 } else { 5518 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5519 cast<IntegerType>(V->getType())->getBitWidth() && 5520 "We can't transform if ScaledReg is too narrow"); 5521 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5522 } 5523 5524 if (AddrMode.Scale != 1) 5525 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5526 "sunkaddr"); 5527 if (ResultIndex) 5528 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5529 else 5530 ResultIndex = V; 5531 } 5532 5533 // Add in the Base Offset if present. 5534 if (AddrMode.BaseOffs) { 5535 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5536 if (ResultIndex) { 5537 // We need to add this separately from the scale above to help with 5538 // SDAG consecutive load/store merging. 5539 if (ResultPtr->getType() != I8PtrTy) 5540 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5541 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, 5542 "sunkaddr", AddrMode.InBounds); 5543 } 5544 5545 ResultIndex = V; 5546 } 5547 5548 if (!ResultIndex) { 5549 SunkAddr = ResultPtr; 5550 } else { 5551 if (ResultPtr->getType() != I8PtrTy) 5552 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5553 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", 5554 AddrMode.InBounds); 5555 } 5556 5557 if (SunkAddr->getType() != Addr->getType()) { 5558 if (SunkAddr->getType()->getPointerAddressSpace() != 5559 Addr->getType()->getPointerAddressSpace() && 5560 !DL->isNonIntegralPointerType(Addr->getType())) { 5561 // There are two reasons the address spaces might not match: a no-op 5562 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5563 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5564 // TODO: allow bitcast between different address space pointers with 5565 // the same size. 5566 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5567 SunkAddr = 5568 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5569 } else 5570 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5571 } 5572 } 5573 } else { 5574 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5575 // non-integral pointers, so in that case bail out now. 5576 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5577 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5578 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5579 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5580 if (DL->isNonIntegralPointerType(Addr->getType()) || 5581 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5582 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5583 (AddrMode.BaseGV && 5584 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5585 return Modified; 5586 5587 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5588 << " for " << *MemoryInst << "\n"); 5589 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5590 Value *Result = nullptr; 5591 5592 // Start with the base register. Do this first so that subsequent address 5593 // matching finds it last, which will prevent it from trying to match it 5594 // as the scaled value in case it happens to be a mul. That would be 5595 // problematic if we've sunk a different mul for the scale, because then 5596 // we'd end up sinking both muls. 5597 if (AddrMode.BaseReg) { 5598 Value *V = AddrMode.BaseReg; 5599 if (V->getType()->isPointerTy()) 5600 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5601 if (V->getType() != IntPtrTy) 5602 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5603 Result = V; 5604 } 5605 5606 // Add the scale value. 5607 if (AddrMode.Scale) { 5608 Value *V = AddrMode.ScaledReg; 5609 if (V->getType() == IntPtrTy) { 5610 // done. 5611 } else if (V->getType()->isPointerTy()) { 5612 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5613 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5614 cast<IntegerType>(V->getType())->getBitWidth()) { 5615 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5616 } else { 5617 // It is only safe to sign extend the BaseReg if we know that the math 5618 // required to create it did not overflow before we extend it. Since 5619 // the original IR value was tossed in favor of a constant back when 5620 // the AddrMode was created we need to bail out gracefully if widths 5621 // do not match instead of extending it. 5622 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5623 if (I && (Result != AddrMode.BaseReg)) 5624 I->eraseFromParent(); 5625 return Modified; 5626 } 5627 if (AddrMode.Scale != 1) 5628 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5629 "sunkaddr"); 5630 if (Result) 5631 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5632 else 5633 Result = V; 5634 } 5635 5636 // Add in the BaseGV if present. 5637 if (AddrMode.BaseGV) { 5638 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5639 if (Result) 5640 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5641 else 5642 Result = V; 5643 } 5644 5645 // Add in the Base Offset if present. 5646 if (AddrMode.BaseOffs) { 5647 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5648 if (Result) 5649 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5650 else 5651 Result = V; 5652 } 5653 5654 if (!Result) 5655 SunkAddr = Constant::getNullValue(Addr->getType()); 5656 else 5657 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5658 } 5659 5660 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5661 // Store the newly computed address into the cache. In the case we reused a 5662 // value, this should be idempotent. 5663 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5664 5665 // If we have no uses, recursively delete the value and all dead instructions 5666 // using it. 5667 if (Repl->use_empty()) { 5668 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5669 RecursivelyDeleteTriviallyDeadInstructions( 5670 Repl, TLInfo, nullptr, 5671 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5672 }); 5673 } 5674 ++NumMemoryInsts; 5675 return true; 5676 } 5677 5678 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5679 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5680 /// only handle a 2 operand GEP in the same basic block or a splat constant 5681 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5682 /// index. 5683 /// 5684 /// If the existing GEP has a vector base pointer that is splat, we can look 5685 /// through the splat to find the scalar pointer. If we can't find a scalar 5686 /// pointer there's nothing we can do. 5687 /// 5688 /// If we have a GEP with more than 2 indices where the middle indices are all 5689 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5690 /// 5691 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5692 /// followed by a GEP with an all zeroes vector index. This will enable 5693 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5694 /// zero index. 5695 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5696 Value *Ptr) { 5697 Value *NewAddr; 5698 5699 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5700 // Don't optimize GEPs that don't have indices. 5701 if (!GEP->hasIndices()) 5702 return false; 5703 5704 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5705 // FIXME: We should support this by sinking the GEP. 5706 if (MemoryInst->getParent() != GEP->getParent()) 5707 return false; 5708 5709 SmallVector<Value *, 2> Ops(GEP->operands()); 5710 5711 bool RewriteGEP = false; 5712 5713 if (Ops[0]->getType()->isVectorTy()) { 5714 Ops[0] = getSplatValue(Ops[0]); 5715 if (!Ops[0]) 5716 return false; 5717 RewriteGEP = true; 5718 } 5719 5720 unsigned FinalIndex = Ops.size() - 1; 5721 5722 // Ensure all but the last index is 0. 5723 // FIXME: This isn't strictly required. All that's required is that they are 5724 // all scalars or splats. 5725 for (unsigned i = 1; i < FinalIndex; ++i) { 5726 auto *C = dyn_cast<Constant>(Ops[i]); 5727 if (!C) 5728 return false; 5729 if (isa<VectorType>(C->getType())) 5730 C = C->getSplatValue(); 5731 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5732 if (!CI || !CI->isZero()) 5733 return false; 5734 // Scalarize the index if needed. 5735 Ops[i] = CI; 5736 } 5737 5738 // Try to scalarize the final index. 5739 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5740 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5741 auto *C = dyn_cast<ConstantInt>(V); 5742 // Don't scalarize all zeros vector. 5743 if (!C || !C->isZero()) { 5744 Ops[FinalIndex] = V; 5745 RewriteGEP = true; 5746 } 5747 } 5748 } 5749 5750 // If we made any changes or the we have extra operands, we need to generate 5751 // new instructions. 5752 if (!RewriteGEP && Ops.size() == 2) 5753 return false; 5754 5755 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5756 5757 IRBuilder<> Builder(MemoryInst); 5758 5759 Type *SourceTy = GEP->getSourceElementType(); 5760 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5761 5762 // If the final index isn't a vector, emit a scalar GEP containing all ops 5763 // and a vector GEP with all zeroes final index. 5764 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5765 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 5766 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5767 auto *SecondTy = GetElementPtrInst::getIndexedType( 5768 SourceTy, ArrayRef(Ops).drop_front()); 5769 NewAddr = 5770 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5771 } else { 5772 Value *Base = Ops[0]; 5773 Value *Index = Ops[FinalIndex]; 5774 5775 // Create a scalar GEP if there are more than 2 operands. 5776 if (Ops.size() != 2) { 5777 // Replace the last index with 0. 5778 Ops[FinalIndex] = 5779 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 5780 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 5781 SourceTy = GetElementPtrInst::getIndexedType( 5782 SourceTy, ArrayRef(Ops).drop_front()); 5783 } 5784 5785 // Now create the GEP with scalar pointer and vector index. 5786 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5787 } 5788 } else if (!isa<Constant>(Ptr)) { 5789 // Not a GEP, maybe its a splat and we can create a GEP to enable 5790 // SelectionDAGBuilder to use it as a uniform base. 5791 Value *V = getSplatValue(Ptr); 5792 if (!V) 5793 return false; 5794 5795 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5796 5797 IRBuilder<> Builder(MemoryInst); 5798 5799 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5800 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5801 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5802 Type *ScalarTy; 5803 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5804 Intrinsic::masked_gather) { 5805 ScalarTy = MemoryInst->getType()->getScalarType(); 5806 } else { 5807 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5808 Intrinsic::masked_scatter); 5809 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5810 } 5811 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5812 } else { 5813 // Constant, SelectionDAGBuilder knows to check if its a splat. 5814 return false; 5815 } 5816 5817 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5818 5819 // If we have no uses, recursively delete the value and all dead instructions 5820 // using it. 5821 if (Ptr->use_empty()) 5822 RecursivelyDeleteTriviallyDeadInstructions( 5823 Ptr, TLInfo, nullptr, 5824 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5825 5826 return true; 5827 } 5828 5829 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5830 /// address computing into the block when possible / profitable. 5831 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5832 bool MadeChange = false; 5833 5834 const TargetRegisterInfo *TRI = 5835 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5836 TargetLowering::AsmOperandInfoVector TargetConstraints = 5837 TLI->ParseConstraints(*DL, TRI, *CS); 5838 unsigned ArgNo = 0; 5839 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5840 // Compute the constraint code and ConstraintType to use. 5841 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5842 5843 // TODO: Also handle C_Address? 5844 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5845 OpInfo.isIndirect) { 5846 Value *OpVal = CS->getArgOperand(ArgNo++); 5847 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5848 } else if (OpInfo.Type == InlineAsm::isInput) 5849 ArgNo++; 5850 } 5851 5852 return MadeChange; 5853 } 5854 5855 /// Check if all the uses of \p Val are equivalent (or free) zero or 5856 /// sign extensions. 5857 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5858 assert(!Val->use_empty() && "Input must have at least one use"); 5859 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5860 bool IsSExt = isa<SExtInst>(FirstUser); 5861 Type *ExtTy = FirstUser->getType(); 5862 for (const User *U : Val->users()) { 5863 const Instruction *UI = cast<Instruction>(U); 5864 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5865 return false; 5866 Type *CurTy = UI->getType(); 5867 // Same input and output types: Same instruction after CSE. 5868 if (CurTy == ExtTy) 5869 continue; 5870 5871 // If IsSExt is true, we are in this situation: 5872 // a = Val 5873 // b = sext ty1 a to ty2 5874 // c = sext ty1 a to ty3 5875 // Assuming ty2 is shorter than ty3, this could be turned into: 5876 // a = Val 5877 // b = sext ty1 a to ty2 5878 // c = sext ty2 b to ty3 5879 // However, the last sext is not free. 5880 if (IsSExt) 5881 return false; 5882 5883 // This is a ZExt, maybe this is free to extend from one type to another. 5884 // In that case, we would not account for a different use. 5885 Type *NarrowTy; 5886 Type *LargeTy; 5887 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5888 CurTy->getScalarType()->getIntegerBitWidth()) { 5889 NarrowTy = CurTy; 5890 LargeTy = ExtTy; 5891 } else { 5892 NarrowTy = ExtTy; 5893 LargeTy = CurTy; 5894 } 5895 5896 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5897 return false; 5898 } 5899 // All uses are the same or can be derived from one another for free. 5900 return true; 5901 } 5902 5903 /// Try to speculatively promote extensions in \p Exts and continue 5904 /// promoting through newly promoted operands recursively as far as doing so is 5905 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5906 /// When some promotion happened, \p TPT contains the proper state to revert 5907 /// them. 5908 /// 5909 /// \return true if some promotion happened, false otherwise. 5910 bool CodeGenPrepare::tryToPromoteExts( 5911 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5912 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5913 unsigned CreatedInstsCost) { 5914 bool Promoted = false; 5915 5916 // Iterate over all the extensions to try to promote them. 5917 for (auto *I : Exts) { 5918 // Early check if we directly have ext(load). 5919 if (isa<LoadInst>(I->getOperand(0))) { 5920 ProfitablyMovedExts.push_back(I); 5921 continue; 5922 } 5923 5924 // Check whether or not we want to do any promotion. The reason we have 5925 // this check inside the for loop is to catch the case where an extension 5926 // is directly fed by a load because in such case the extension can be moved 5927 // up without any promotion on its operands. 5928 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5929 return false; 5930 5931 // Get the action to perform the promotion. 5932 TypePromotionHelper::Action TPH = 5933 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5934 // Check if we can promote. 5935 if (!TPH) { 5936 // Save the current extension as we cannot move up through its operand. 5937 ProfitablyMovedExts.push_back(I); 5938 continue; 5939 } 5940 5941 // Save the current state. 5942 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5943 TPT.getRestorationPoint(); 5944 SmallVector<Instruction *, 4> NewExts; 5945 unsigned NewCreatedInstsCost = 0; 5946 unsigned ExtCost = !TLI->isExtFree(I); 5947 // Promote. 5948 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5949 &NewExts, nullptr, *TLI); 5950 assert(PromotedVal && 5951 "TypePromotionHelper should have filtered out those cases"); 5952 5953 // We would be able to merge only one extension in a load. 5954 // Therefore, if we have more than 1 new extension we heuristically 5955 // cut this search path, because it means we degrade the code quality. 5956 // With exactly 2, the transformation is neutral, because we will merge 5957 // one extension but leave one. However, we optimistically keep going, 5958 // because the new extension may be removed too. 5959 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5960 // FIXME: It would be possible to propagate a negative value instead of 5961 // conservatively ceiling it to 0. 5962 TotalCreatedInstsCost = 5963 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5964 if (!StressExtLdPromotion && 5965 (TotalCreatedInstsCost > 1 || 5966 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5967 // This promotion is not profitable, rollback to the previous state, and 5968 // save the current extension in ProfitablyMovedExts as the latest 5969 // speculative promotion turned out to be unprofitable. 5970 TPT.rollback(LastKnownGood); 5971 ProfitablyMovedExts.push_back(I); 5972 continue; 5973 } 5974 // Continue promoting NewExts as far as doing so is profitable. 5975 SmallVector<Instruction *, 2> NewlyMovedExts; 5976 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5977 bool NewPromoted = false; 5978 for (auto *ExtInst : NewlyMovedExts) { 5979 Instruction *MovedExt = cast<Instruction>(ExtInst); 5980 Value *ExtOperand = MovedExt->getOperand(0); 5981 // If we have reached to a load, we need this extra profitability check 5982 // as it could potentially be merged into an ext(load). 5983 if (isa<LoadInst>(ExtOperand) && 5984 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5985 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5986 continue; 5987 5988 ProfitablyMovedExts.push_back(MovedExt); 5989 NewPromoted = true; 5990 } 5991 5992 // If none of speculative promotions for NewExts is profitable, rollback 5993 // and save the current extension (I) as the last profitable extension. 5994 if (!NewPromoted) { 5995 TPT.rollback(LastKnownGood); 5996 ProfitablyMovedExts.push_back(I); 5997 continue; 5998 } 5999 // The promotion is profitable. 6000 Promoted = true; 6001 } 6002 return Promoted; 6003 } 6004 6005 /// Merging redundant sexts when one is dominating the other. 6006 bool CodeGenPrepare::mergeSExts(Function &F) { 6007 bool Changed = false; 6008 for (auto &Entry : ValToSExtendedUses) { 6009 SExts &Insts = Entry.second; 6010 SExts CurPts; 6011 for (Instruction *Inst : Insts) { 6012 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6013 Inst->getOperand(0) != Entry.first) 6014 continue; 6015 bool inserted = false; 6016 for (auto &Pt : CurPts) { 6017 if (getDT(F).dominates(Inst, Pt)) { 6018 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6019 RemovedInsts.insert(Pt); 6020 Pt->removeFromParent(); 6021 Pt = Inst; 6022 inserted = true; 6023 Changed = true; 6024 break; 6025 } 6026 if (!getDT(F).dominates(Pt, Inst)) 6027 // Give up if we need to merge in a common dominator as the 6028 // experiments show it is not profitable. 6029 continue; 6030 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6031 RemovedInsts.insert(Inst); 6032 Inst->removeFromParent(); 6033 inserted = true; 6034 Changed = true; 6035 break; 6036 } 6037 if (!inserted) 6038 CurPts.push_back(Inst); 6039 } 6040 } 6041 return Changed; 6042 } 6043 6044 // Splitting large data structures so that the GEPs accessing them can have 6045 // smaller offsets so that they can be sunk to the same blocks as their users. 6046 // For example, a large struct starting from %base is split into two parts 6047 // where the second part starts from %new_base. 6048 // 6049 // Before: 6050 // BB0: 6051 // %base = 6052 // 6053 // BB1: 6054 // %gep0 = gep %base, off0 6055 // %gep1 = gep %base, off1 6056 // %gep2 = gep %base, off2 6057 // 6058 // BB2: 6059 // %load1 = load %gep0 6060 // %load2 = load %gep1 6061 // %load3 = load %gep2 6062 // 6063 // After: 6064 // BB0: 6065 // %base = 6066 // %new_base = gep %base, off0 6067 // 6068 // BB1: 6069 // %new_gep0 = %new_base 6070 // %new_gep1 = gep %new_base, off1 - off0 6071 // %new_gep2 = gep %new_base, off2 - off0 6072 // 6073 // BB2: 6074 // %load1 = load i32, i32* %new_gep0 6075 // %load2 = load i32, i32* %new_gep1 6076 // %load3 = load i32, i32* %new_gep2 6077 // 6078 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6079 // their offsets are smaller enough to fit into the addressing mode. 6080 bool CodeGenPrepare::splitLargeGEPOffsets() { 6081 bool Changed = false; 6082 for (auto &Entry : LargeOffsetGEPMap) { 6083 Value *OldBase = Entry.first; 6084 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6085 &LargeOffsetGEPs = Entry.second; 6086 auto compareGEPOffset = 6087 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6088 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6089 if (LHS.first == RHS.first) 6090 return false; 6091 if (LHS.second != RHS.second) 6092 return LHS.second < RHS.second; 6093 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6094 }; 6095 // Sorting all the GEPs of the same data structures based on the offsets. 6096 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6097 LargeOffsetGEPs.erase( 6098 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 6099 LargeOffsetGEPs.end()); 6100 // Skip if all the GEPs have the same offsets. 6101 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6102 continue; 6103 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6104 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6105 Value *NewBaseGEP = nullptr; 6106 6107 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6108 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6109 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6110 int64_t Offset = LargeOffsetGEP->second; 6111 if (Offset != BaseOffset) { 6112 TargetLowering::AddrMode AddrMode; 6113 AddrMode.HasBaseReg = true; 6114 AddrMode.BaseOffs = Offset - BaseOffset; 6115 // The result type of the GEP might not be the type of the memory 6116 // access. 6117 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6118 GEP->getResultElementType(), 6119 GEP->getAddressSpace())) { 6120 // We need to create a new base if the offset to the current base is 6121 // too large to fit into the addressing mode. So, a very large struct 6122 // may be split into several parts. 6123 BaseGEP = GEP; 6124 BaseOffset = Offset; 6125 NewBaseGEP = nullptr; 6126 } 6127 } 6128 6129 // Generate a new GEP to replace the current one. 6130 LLVMContext &Ctx = GEP->getContext(); 6131 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6132 Type *I8PtrTy = 6133 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 6134 Type *I8Ty = Type::getInt8Ty(Ctx); 6135 6136 if (!NewBaseGEP) { 6137 // Create a new base if we don't have one yet. Find the insertion 6138 // pointer for the new base first. 6139 BasicBlock::iterator NewBaseInsertPt; 6140 BasicBlock *NewBaseInsertBB; 6141 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6142 // If the base of the struct is an instruction, the new base will be 6143 // inserted close to it. 6144 NewBaseInsertBB = BaseI->getParent(); 6145 if (isa<PHINode>(BaseI)) 6146 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6147 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6148 NewBaseInsertBB = 6149 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6150 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6151 } else 6152 NewBaseInsertPt = std::next(BaseI->getIterator()); 6153 } else { 6154 // If the current base is an argument or global value, the new base 6155 // will be inserted to the entry block. 6156 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6157 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6158 } 6159 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6160 // Create a new base. 6161 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6162 NewBaseGEP = OldBase; 6163 if (NewBaseGEP->getType() != I8PtrTy) 6164 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6165 NewBaseGEP = 6166 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 6167 NewGEPBases.insert(NewBaseGEP); 6168 } 6169 6170 IRBuilder<> Builder(GEP); 6171 Value *NewGEP = NewBaseGEP; 6172 if (Offset == BaseOffset) { 6173 if (GEP->getType() != I8PtrTy) 6174 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 6175 } else { 6176 // Calculate the new offset for the new GEP. 6177 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6178 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 6179 6180 if (GEP->getType() != I8PtrTy) 6181 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 6182 } 6183 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6184 LargeOffsetGEPID.erase(GEP); 6185 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6186 GEP->eraseFromParent(); 6187 Changed = true; 6188 } 6189 } 6190 return Changed; 6191 } 6192 6193 bool CodeGenPrepare::optimizePhiType( 6194 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6195 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6196 // We are looking for a collection on interconnected phi nodes that together 6197 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6198 // are of the same type. Convert the whole set of nodes to the type of the 6199 // bitcast. 6200 Type *PhiTy = I->getType(); 6201 Type *ConvertTy = nullptr; 6202 if (Visited.count(I) || 6203 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6204 return false; 6205 6206 SmallVector<Instruction *, 4> Worklist; 6207 Worklist.push_back(cast<Instruction>(I)); 6208 SmallPtrSet<PHINode *, 4> PhiNodes; 6209 SmallPtrSet<ConstantData *, 4> Constants; 6210 PhiNodes.insert(I); 6211 Visited.insert(I); 6212 SmallPtrSet<Instruction *, 4> Defs; 6213 SmallPtrSet<Instruction *, 4> Uses; 6214 // This works by adding extra bitcasts between load/stores and removing 6215 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6216 // we can get in the situation where we remove a bitcast in one iteration 6217 // just to add it again in the next. We need to ensure that at least one 6218 // bitcast we remove are anchored to something that will not change back. 6219 bool AnyAnchored = false; 6220 6221 while (!Worklist.empty()) { 6222 Instruction *II = Worklist.pop_back_val(); 6223 6224 if (auto *Phi = dyn_cast<PHINode>(II)) { 6225 // Handle Defs, which might also be PHI's 6226 for (Value *V : Phi->incoming_values()) { 6227 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6228 if (!PhiNodes.count(OpPhi)) { 6229 if (!Visited.insert(OpPhi).second) 6230 return false; 6231 PhiNodes.insert(OpPhi); 6232 Worklist.push_back(OpPhi); 6233 } 6234 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6235 if (!OpLoad->isSimple()) 6236 return false; 6237 if (Defs.insert(OpLoad).second) 6238 Worklist.push_back(OpLoad); 6239 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6240 if (Defs.insert(OpEx).second) 6241 Worklist.push_back(OpEx); 6242 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6243 if (!ConvertTy) 6244 ConvertTy = OpBC->getOperand(0)->getType(); 6245 if (OpBC->getOperand(0)->getType() != ConvertTy) 6246 return false; 6247 if (Defs.insert(OpBC).second) { 6248 Worklist.push_back(OpBC); 6249 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6250 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6251 } 6252 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6253 Constants.insert(OpC); 6254 else 6255 return false; 6256 } 6257 } 6258 6259 // Handle uses which might also be phi's 6260 for (User *V : II->users()) { 6261 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6262 if (!PhiNodes.count(OpPhi)) { 6263 if (Visited.count(OpPhi)) 6264 return false; 6265 PhiNodes.insert(OpPhi); 6266 Visited.insert(OpPhi); 6267 Worklist.push_back(OpPhi); 6268 } 6269 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6270 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6271 return false; 6272 Uses.insert(OpStore); 6273 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6274 if (!ConvertTy) 6275 ConvertTy = OpBC->getType(); 6276 if (OpBC->getType() != ConvertTy) 6277 return false; 6278 Uses.insert(OpBC); 6279 AnyAnchored |= 6280 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6281 } else { 6282 return false; 6283 } 6284 } 6285 } 6286 6287 if (!ConvertTy || !AnyAnchored || 6288 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6289 return false; 6290 6291 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6292 << *ConvertTy << "\n"); 6293 6294 // Create all the new phi nodes of the new type, and bitcast any loads to the 6295 // correct type. 6296 ValueToValueMap ValMap; 6297 for (ConstantData *C : Constants) 6298 ValMap[C] = ConstantExpr::getCast(Instruction::BitCast, C, ConvertTy); 6299 for (Instruction *D : Defs) { 6300 if (isa<BitCastInst>(D)) { 6301 ValMap[D] = D->getOperand(0); 6302 DeletedInstrs.insert(D); 6303 } else { 6304 ValMap[D] = 6305 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6306 } 6307 } 6308 for (PHINode *Phi : PhiNodes) 6309 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6310 Phi->getName() + ".tc", Phi); 6311 // Pipe together all the PhiNodes. 6312 for (PHINode *Phi : PhiNodes) { 6313 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6314 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6315 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6316 Phi->getIncomingBlock(i)); 6317 Visited.insert(NewPhi); 6318 } 6319 // And finally pipe up the stores and bitcasts 6320 for (Instruction *U : Uses) { 6321 if (isa<BitCastInst>(U)) { 6322 DeletedInstrs.insert(U); 6323 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6324 } else { 6325 U->setOperand(0, 6326 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6327 } 6328 } 6329 6330 // Save the removed phis to be deleted later. 6331 for (PHINode *Phi : PhiNodes) 6332 DeletedInstrs.insert(Phi); 6333 return true; 6334 } 6335 6336 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6337 if (!OptimizePhiTypes) 6338 return false; 6339 6340 bool Changed = false; 6341 SmallPtrSet<PHINode *, 4> Visited; 6342 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6343 6344 // Attempt to optimize all the phis in the functions to the correct type. 6345 for (auto &BB : F) 6346 for (auto &Phi : BB.phis()) 6347 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6348 6349 // Remove any old phi's that have been converted. 6350 for (auto *I : DeletedInstrs) { 6351 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6352 I->eraseFromParent(); 6353 } 6354 6355 return Changed; 6356 } 6357 6358 /// Return true, if an ext(load) can be formed from an extension in 6359 /// \p MovedExts. 6360 bool CodeGenPrepare::canFormExtLd( 6361 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6362 Instruction *&Inst, bool HasPromoted) { 6363 for (auto *MovedExtInst : MovedExts) { 6364 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6365 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6366 Inst = MovedExtInst; 6367 break; 6368 } 6369 } 6370 if (!LI) 6371 return false; 6372 6373 // If they're already in the same block, there's nothing to do. 6374 // Make the cheap checks first if we did not promote. 6375 // If we promoted, we need to check if it is indeed profitable. 6376 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6377 return false; 6378 6379 return TLI->isExtLoad(LI, Inst, *DL); 6380 } 6381 6382 /// Move a zext or sext fed by a load into the same basic block as the load, 6383 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6384 /// extend into the load. 6385 /// 6386 /// E.g., 6387 /// \code 6388 /// %ld = load i32* %addr 6389 /// %add = add nuw i32 %ld, 4 6390 /// %zext = zext i32 %add to i64 6391 // \endcode 6392 /// => 6393 /// \code 6394 /// %ld = load i32* %addr 6395 /// %zext = zext i32 %ld to i64 6396 /// %add = add nuw i64 %zext, 4 6397 /// \encode 6398 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6399 /// allow us to match zext(load i32*) to i64. 6400 /// 6401 /// Also, try to promote the computations used to obtain a sign extended 6402 /// value used into memory accesses. 6403 /// E.g., 6404 /// \code 6405 /// a = add nsw i32 b, 3 6406 /// d = sext i32 a to i64 6407 /// e = getelementptr ..., i64 d 6408 /// \endcode 6409 /// => 6410 /// \code 6411 /// f = sext i32 b to i64 6412 /// a = add nsw i64 f, 3 6413 /// e = getelementptr ..., i64 a 6414 /// \endcode 6415 /// 6416 /// \p Inst[in/out] the extension may be modified during the process if some 6417 /// promotions apply. 6418 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6419 bool AllowPromotionWithoutCommonHeader = false; 6420 /// See if it is an interesting sext operations for the address type 6421 /// promotion before trying to promote it, e.g., the ones with the right 6422 /// type and used in memory accesses. 6423 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6424 *Inst, AllowPromotionWithoutCommonHeader); 6425 TypePromotionTransaction TPT(RemovedInsts); 6426 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6427 TPT.getRestorationPoint(); 6428 SmallVector<Instruction *, 1> Exts; 6429 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6430 Exts.push_back(Inst); 6431 6432 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6433 6434 // Look for a load being extended. 6435 LoadInst *LI = nullptr; 6436 Instruction *ExtFedByLoad; 6437 6438 // Try to promote a chain of computation if it allows to form an extended 6439 // load. 6440 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6441 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6442 TPT.commit(); 6443 // Move the extend into the same block as the load. 6444 ExtFedByLoad->moveAfter(LI); 6445 ++NumExtsMoved; 6446 Inst = ExtFedByLoad; 6447 return true; 6448 } 6449 6450 // Continue promoting SExts if known as considerable depending on targets. 6451 if (ATPConsiderable && 6452 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6453 HasPromoted, TPT, SpeculativelyMovedExts)) 6454 return true; 6455 6456 TPT.rollback(LastKnownGood); 6457 return false; 6458 } 6459 6460 // Perform address type promotion if doing so is profitable. 6461 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6462 // instructions that sign extended the same initial value. However, if 6463 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6464 // extension is just profitable. 6465 bool CodeGenPrepare::performAddressTypePromotion( 6466 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6467 bool HasPromoted, TypePromotionTransaction &TPT, 6468 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6469 bool Promoted = false; 6470 SmallPtrSet<Instruction *, 1> UnhandledExts; 6471 bool AllSeenFirst = true; 6472 for (auto *I : SpeculativelyMovedExts) { 6473 Value *HeadOfChain = I->getOperand(0); 6474 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6475 SeenChainsForSExt.find(HeadOfChain); 6476 // If there is an unhandled SExt which has the same header, try to promote 6477 // it as well. 6478 if (AlreadySeen != SeenChainsForSExt.end()) { 6479 if (AlreadySeen->second != nullptr) 6480 UnhandledExts.insert(AlreadySeen->second); 6481 AllSeenFirst = false; 6482 } 6483 } 6484 6485 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6486 SpeculativelyMovedExts.size() == 1)) { 6487 TPT.commit(); 6488 if (HasPromoted) 6489 Promoted = true; 6490 for (auto *I : SpeculativelyMovedExts) { 6491 Value *HeadOfChain = I->getOperand(0); 6492 SeenChainsForSExt[HeadOfChain] = nullptr; 6493 ValToSExtendedUses[HeadOfChain].push_back(I); 6494 } 6495 // Update Inst as promotion happen. 6496 Inst = SpeculativelyMovedExts.pop_back_val(); 6497 } else { 6498 // This is the first chain visited from the header, keep the current chain 6499 // as unhandled. Defer to promote this until we encounter another SExt 6500 // chain derived from the same header. 6501 for (auto *I : SpeculativelyMovedExts) { 6502 Value *HeadOfChain = I->getOperand(0); 6503 SeenChainsForSExt[HeadOfChain] = Inst; 6504 } 6505 return false; 6506 } 6507 6508 if (!AllSeenFirst && !UnhandledExts.empty()) 6509 for (auto *VisitedSExt : UnhandledExts) { 6510 if (RemovedInsts.count(VisitedSExt)) 6511 continue; 6512 TypePromotionTransaction TPT(RemovedInsts); 6513 SmallVector<Instruction *, 1> Exts; 6514 SmallVector<Instruction *, 2> Chains; 6515 Exts.push_back(VisitedSExt); 6516 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6517 TPT.commit(); 6518 if (HasPromoted) 6519 Promoted = true; 6520 for (auto *I : Chains) { 6521 Value *HeadOfChain = I->getOperand(0); 6522 // Mark this as handled. 6523 SeenChainsForSExt[HeadOfChain] = nullptr; 6524 ValToSExtendedUses[HeadOfChain].push_back(I); 6525 } 6526 } 6527 return Promoted; 6528 } 6529 6530 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6531 BasicBlock *DefBB = I->getParent(); 6532 6533 // If the result of a {s|z}ext and its source are both live out, rewrite all 6534 // other uses of the source with result of extension. 6535 Value *Src = I->getOperand(0); 6536 if (Src->hasOneUse()) 6537 return false; 6538 6539 // Only do this xform if truncating is free. 6540 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6541 return false; 6542 6543 // Only safe to perform the optimization if the source is also defined in 6544 // this block. 6545 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6546 return false; 6547 6548 bool DefIsLiveOut = false; 6549 for (User *U : I->users()) { 6550 Instruction *UI = cast<Instruction>(U); 6551 6552 // Figure out which BB this ext is used in. 6553 BasicBlock *UserBB = UI->getParent(); 6554 if (UserBB == DefBB) 6555 continue; 6556 DefIsLiveOut = true; 6557 break; 6558 } 6559 if (!DefIsLiveOut) 6560 return false; 6561 6562 // Make sure none of the uses are PHI nodes. 6563 for (User *U : Src->users()) { 6564 Instruction *UI = cast<Instruction>(U); 6565 BasicBlock *UserBB = UI->getParent(); 6566 if (UserBB == DefBB) 6567 continue; 6568 // Be conservative. We don't want this xform to end up introducing 6569 // reloads just before load / store instructions. 6570 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6571 return false; 6572 } 6573 6574 // InsertedTruncs - Only insert one trunc in each block once. 6575 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6576 6577 bool MadeChange = false; 6578 for (Use &U : Src->uses()) { 6579 Instruction *User = cast<Instruction>(U.getUser()); 6580 6581 // Figure out which BB this ext is used in. 6582 BasicBlock *UserBB = User->getParent(); 6583 if (UserBB == DefBB) 6584 continue; 6585 6586 // Both src and def are live in this block. Rewrite the use. 6587 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6588 6589 if (!InsertedTrunc) { 6590 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6591 assert(InsertPt != UserBB->end()); 6592 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6593 InsertedInsts.insert(InsertedTrunc); 6594 } 6595 6596 // Replace a use of the {s|z}ext source with a use of the result. 6597 U = InsertedTrunc; 6598 ++NumExtUses; 6599 MadeChange = true; 6600 } 6601 6602 return MadeChange; 6603 } 6604 6605 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6606 // just after the load if the target can fold this into one extload instruction, 6607 // with the hope of eliminating some of the other later "and" instructions using 6608 // the loaded value. "and"s that are made trivially redundant by the insertion 6609 // of the new "and" are removed by this function, while others (e.g. those whose 6610 // path from the load goes through a phi) are left for isel to potentially 6611 // remove. 6612 // 6613 // For example: 6614 // 6615 // b0: 6616 // x = load i32 6617 // ... 6618 // b1: 6619 // y = and x, 0xff 6620 // z = use y 6621 // 6622 // becomes: 6623 // 6624 // b0: 6625 // x = load i32 6626 // x' = and x, 0xff 6627 // ... 6628 // b1: 6629 // z = use x' 6630 // 6631 // whereas: 6632 // 6633 // b0: 6634 // x1 = load i32 6635 // ... 6636 // b1: 6637 // x2 = load i32 6638 // ... 6639 // b2: 6640 // x = phi x1, x2 6641 // y = and x, 0xff 6642 // 6643 // becomes (after a call to optimizeLoadExt for each load): 6644 // 6645 // b0: 6646 // x1 = load i32 6647 // x1' = and x1, 0xff 6648 // ... 6649 // b1: 6650 // x2 = load i32 6651 // x2' = and x2, 0xff 6652 // ... 6653 // b2: 6654 // x = phi x1', x2' 6655 // y = and x, 0xff 6656 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6657 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6658 return false; 6659 6660 // Skip loads we've already transformed. 6661 if (Load->hasOneUse() && 6662 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6663 return false; 6664 6665 // Look at all uses of Load, looking through phis, to determine how many bits 6666 // of the loaded value are needed. 6667 SmallVector<Instruction *, 8> WorkList; 6668 SmallPtrSet<Instruction *, 16> Visited; 6669 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6670 for (auto *U : Load->users()) 6671 WorkList.push_back(cast<Instruction>(U)); 6672 6673 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6674 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6675 // If the BitWidth is 0, do not try to optimize the type 6676 if (BitWidth == 0) 6677 return false; 6678 6679 APInt DemandBits(BitWidth, 0); 6680 APInt WidestAndBits(BitWidth, 0); 6681 6682 while (!WorkList.empty()) { 6683 Instruction *I = WorkList.pop_back_val(); 6684 6685 // Break use-def graph loops. 6686 if (!Visited.insert(I).second) 6687 continue; 6688 6689 // For a PHI node, push all of its users. 6690 if (auto *Phi = dyn_cast<PHINode>(I)) { 6691 for (auto *U : Phi->users()) 6692 WorkList.push_back(cast<Instruction>(U)); 6693 continue; 6694 } 6695 6696 switch (I->getOpcode()) { 6697 case Instruction::And: { 6698 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6699 if (!AndC) 6700 return false; 6701 APInt AndBits = AndC->getValue(); 6702 DemandBits |= AndBits; 6703 // Keep track of the widest and mask we see. 6704 if (AndBits.ugt(WidestAndBits)) 6705 WidestAndBits = AndBits; 6706 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6707 AndsToMaybeRemove.push_back(I); 6708 break; 6709 } 6710 6711 case Instruction::Shl: { 6712 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6713 if (!ShlC) 6714 return false; 6715 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6716 DemandBits.setLowBits(BitWidth - ShiftAmt); 6717 break; 6718 } 6719 6720 case Instruction::Trunc: { 6721 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6722 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6723 DemandBits.setLowBits(TruncBitWidth); 6724 break; 6725 } 6726 6727 default: 6728 return false; 6729 } 6730 } 6731 6732 uint32_t ActiveBits = DemandBits.getActiveBits(); 6733 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6734 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6735 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6736 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6737 // followed by an AND. 6738 // TODO: Look into removing this restriction by fixing backends to either 6739 // return false for isLoadExtLegal for i1 or have them select this pattern to 6740 // a single instruction. 6741 // 6742 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6743 // mask, since these are the only ands that will be removed by isel. 6744 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6745 WidestAndBits != DemandBits) 6746 return false; 6747 6748 LLVMContext &Ctx = Load->getType()->getContext(); 6749 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6750 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6751 6752 // Reject cases that won't be matched as extloads. 6753 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6754 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6755 return false; 6756 6757 IRBuilder<> Builder(Load->getNextNode()); 6758 auto *NewAnd = cast<Instruction>( 6759 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6760 // Mark this instruction as "inserted by CGP", so that other 6761 // optimizations don't touch it. 6762 InsertedInsts.insert(NewAnd); 6763 6764 // Replace all uses of load with new and (except for the use of load in the 6765 // new and itself). 6766 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 6767 NewAnd->setOperand(0, Load); 6768 6769 // Remove any and instructions that are now redundant. 6770 for (auto *And : AndsToMaybeRemove) 6771 // Check that the and mask is the same as the one we decided to put on the 6772 // new and. 6773 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6774 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 6775 if (&*CurInstIterator == And) 6776 CurInstIterator = std::next(And->getIterator()); 6777 And->eraseFromParent(); 6778 ++NumAndUses; 6779 } 6780 6781 ++NumAndsAdded; 6782 return true; 6783 } 6784 6785 /// Check if V (an operand of a select instruction) is an expensive instruction 6786 /// that is only used once. 6787 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6788 auto *I = dyn_cast<Instruction>(V); 6789 // If it's safe to speculatively execute, then it should not have side 6790 // effects; therefore, it's safe to sink and possibly *not* execute. 6791 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6792 TTI->isExpensiveToSpeculativelyExecute(I); 6793 } 6794 6795 /// Returns true if a SelectInst should be turned into an explicit branch. 6796 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6797 const TargetLowering *TLI, 6798 SelectInst *SI) { 6799 // If even a predictable select is cheap, then a branch can't be cheaper. 6800 if (!TLI->isPredictableSelectExpensive()) 6801 return false; 6802 6803 // FIXME: This should use the same heuristics as IfConversion to determine 6804 // whether a select is better represented as a branch. 6805 6806 // If metadata tells us that the select condition is obviously predictable, 6807 // then we want to replace the select with a branch. 6808 uint64_t TrueWeight, FalseWeight; 6809 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 6810 uint64_t Max = std::max(TrueWeight, FalseWeight); 6811 uint64_t Sum = TrueWeight + FalseWeight; 6812 if (Sum != 0) { 6813 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6814 if (Probability > TTI->getPredictableBranchThreshold()) 6815 return true; 6816 } 6817 } 6818 6819 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6820 6821 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6822 // comparison condition. If the compare has more than one use, there's 6823 // probably another cmov or setcc around, so it's not worth emitting a branch. 6824 if (!Cmp || !Cmp->hasOneUse()) 6825 return false; 6826 6827 // If either operand of the select is expensive and only needed on one side 6828 // of the select, we should form a branch. 6829 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6830 sinkSelectOperand(TTI, SI->getFalseValue())) 6831 return true; 6832 6833 return false; 6834 } 6835 6836 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6837 /// false value of \p SI. If the true/false value of \p SI is defined by any 6838 /// select instructions in \p Selects, look through the defining select 6839 /// instruction until the true/false value is not defined in \p Selects. 6840 static Value * 6841 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 6842 const SmallPtrSet<const Instruction *, 2> &Selects) { 6843 Value *V = nullptr; 6844 6845 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6846 DefSI = dyn_cast<SelectInst>(V)) { 6847 assert(DefSI->getCondition() == SI->getCondition() && 6848 "The condition of DefSI does not match with SI"); 6849 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6850 } 6851 6852 assert(V && "Failed to get select true/false value"); 6853 return V; 6854 } 6855 6856 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6857 assert(Shift->isShift() && "Expected a shift"); 6858 6859 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6860 // general vector shifts, and (3) the shift amount is a select-of-splatted 6861 // values, hoist the shifts before the select: 6862 // shift Op0, (select Cond, TVal, FVal) --> 6863 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6864 // 6865 // This is inverting a generic IR transform when we know that the cost of a 6866 // general vector shift is more than the cost of 2 shift-by-scalars. 6867 // We can't do this effectively in SDAG because we may not be able to 6868 // determine if the select operands are splats from within a basic block. 6869 Type *Ty = Shift->getType(); 6870 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6871 return false; 6872 Value *Cond, *TVal, *FVal; 6873 if (!match(Shift->getOperand(1), 6874 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6875 return false; 6876 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6877 return false; 6878 6879 IRBuilder<> Builder(Shift); 6880 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6881 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6882 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6883 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6884 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 6885 Shift->eraseFromParent(); 6886 return true; 6887 } 6888 6889 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6890 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6891 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6892 "Expected a funnel shift"); 6893 6894 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6895 // than general vector shifts, and (3) the shift amount is select-of-splatted 6896 // values, hoist the funnel shifts before the select: 6897 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6898 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6899 // 6900 // This is inverting a generic IR transform when we know that the cost of a 6901 // general vector shift is more than the cost of 2 shift-by-scalars. 6902 // We can't do this effectively in SDAG because we may not be able to 6903 // determine if the select operands are splats from within a basic block. 6904 Type *Ty = Fsh->getType(); 6905 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6906 return false; 6907 Value *Cond, *TVal, *FVal; 6908 if (!match(Fsh->getOperand(2), 6909 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6910 return false; 6911 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6912 return false; 6913 6914 IRBuilder<> Builder(Fsh); 6915 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6916 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 6917 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 6918 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6919 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 6920 Fsh->eraseFromParent(); 6921 return true; 6922 } 6923 6924 /// If we have a SelectInst that will likely profit from branch prediction, 6925 /// turn it into a branch. 6926 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6927 if (DisableSelectToBranch) 6928 return false; 6929 6930 // If the SelectOptimize pass is enabled, selects have already been optimized. 6931 if (!getCGPassBuilderOption().DisableSelectOptimize) 6932 return false; 6933 6934 // Find all consecutive select instructions that share the same condition. 6935 SmallVector<SelectInst *, 2> ASI; 6936 ASI.push_back(SI); 6937 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6938 It != SI->getParent()->end(); ++It) { 6939 SelectInst *I = dyn_cast<SelectInst>(&*It); 6940 if (I && SI->getCondition() == I->getCondition()) { 6941 ASI.push_back(I); 6942 } else { 6943 break; 6944 } 6945 } 6946 6947 SelectInst *LastSI = ASI.back(); 6948 // Increment the current iterator to skip all the rest of select instructions 6949 // because they will be either "not lowered" or "all lowered" to branch. 6950 CurInstIterator = std::next(LastSI->getIterator()); 6951 6952 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6953 6954 // Can we convert the 'select' to CF ? 6955 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6956 return false; 6957 6958 TargetLowering::SelectSupportKind SelectKind; 6959 if (SI->getType()->isVectorTy()) 6960 SelectKind = TargetLowering::ScalarCondVectorVal; 6961 else 6962 SelectKind = TargetLowering::ScalarValSelect; 6963 6964 if (TLI->isSelectSupported(SelectKind) && 6965 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6966 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6967 return false; 6968 6969 // The DominatorTree needs to be rebuilt by any consumers after this 6970 // transformation. We simply reset here rather than setting the ModifiedDT 6971 // flag to avoid restarting the function walk in runOnFunction for each 6972 // select optimized. 6973 DT.reset(); 6974 6975 // Transform a sequence like this: 6976 // start: 6977 // %cmp = cmp uge i32 %a, %b 6978 // %sel = select i1 %cmp, i32 %c, i32 %d 6979 // 6980 // Into: 6981 // start: 6982 // %cmp = cmp uge i32 %a, %b 6983 // %cmp.frozen = freeze %cmp 6984 // br i1 %cmp.frozen, label %select.true, label %select.false 6985 // select.true: 6986 // br label %select.end 6987 // select.false: 6988 // br label %select.end 6989 // select.end: 6990 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6991 // 6992 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6993 // In addition, we may sink instructions that produce %c or %d from 6994 // the entry block into the destination(s) of the new branch. 6995 // If the true or false blocks do not contain a sunken instruction, that 6996 // block and its branch may be optimized away. In that case, one side of the 6997 // first branch will point directly to select.end, and the corresponding PHI 6998 // predecessor block will be the start block. 6999 7000 // Collect values that go on the true side and the values that go on the false 7001 // side. 7002 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7003 for (SelectInst *SI : ASI) { 7004 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7005 TrueInstrs.push_back(cast<Instruction>(V)); 7006 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7007 FalseInstrs.push_back(cast<Instruction>(V)); 7008 } 7009 7010 // Split the select block, according to how many (if any) values go on each 7011 // side. 7012 BasicBlock *StartBlock = SI->getParent(); 7013 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 7014 7015 IRBuilder<> IB(SI); 7016 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7017 7018 BasicBlock *TrueBlock = nullptr; 7019 BasicBlock *FalseBlock = nullptr; 7020 BasicBlock *EndBlock = nullptr; 7021 BranchInst *TrueBranch = nullptr; 7022 BranchInst *FalseBranch = nullptr; 7023 if (TrueInstrs.size() == 0) { 7024 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7025 CondFr, &*SplitPt, false, nullptr, nullptr, LI)); 7026 FalseBlock = FalseBranch->getParent(); 7027 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7028 } else if (FalseInstrs.size() == 0) { 7029 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7030 CondFr, &*SplitPt, false, nullptr, nullptr, LI)); 7031 TrueBlock = TrueBranch->getParent(); 7032 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7033 } else { 7034 Instruction *ThenTerm = nullptr; 7035 Instruction *ElseTerm = nullptr; 7036 SplitBlockAndInsertIfThenElse(CondFr, &*SplitPt, &ThenTerm, &ElseTerm, 7037 nullptr, nullptr, LI); 7038 TrueBranch = cast<BranchInst>(ThenTerm); 7039 FalseBranch = cast<BranchInst>(ElseTerm); 7040 TrueBlock = TrueBranch->getParent(); 7041 FalseBlock = FalseBranch->getParent(); 7042 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7043 } 7044 7045 EndBlock->setName("select.end"); 7046 if (TrueBlock) 7047 TrueBlock->setName("select.true.sink"); 7048 if (FalseBlock) 7049 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7050 : "select.false.sink"); 7051 7052 if (IsHugeFunc) { 7053 if (TrueBlock) 7054 FreshBBs.insert(TrueBlock); 7055 if (FalseBlock) 7056 FreshBBs.insert(FalseBlock); 7057 FreshBBs.insert(EndBlock); 7058 } 7059 7060 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 7061 7062 static const unsigned MD[] = { 7063 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7064 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7065 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7066 7067 // Sink expensive instructions into the conditional blocks to avoid executing 7068 // them speculatively. 7069 for (Instruction *I : TrueInstrs) 7070 I->moveBefore(TrueBranch); 7071 for (Instruction *I : FalseInstrs) 7072 I->moveBefore(FalseBranch); 7073 7074 // If we did not create a new block for one of the 'true' or 'false' paths 7075 // of the condition, it means that side of the branch goes to the end block 7076 // directly and the path originates from the start block from the point of 7077 // view of the new PHI. 7078 if (TrueBlock == nullptr) 7079 TrueBlock = StartBlock; 7080 else if (FalseBlock == nullptr) 7081 FalseBlock = StartBlock; 7082 7083 SmallPtrSet<const Instruction *, 2> INS; 7084 INS.insert(ASI.begin(), ASI.end()); 7085 // Use reverse iterator because later select may use the value of the 7086 // earlier select, and we need to propagate value through earlier select 7087 // to get the PHI operand. 7088 for (SelectInst *SI : llvm::reverse(ASI)) { 7089 // The select itself is replaced with a PHI Node. 7090 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 7091 PN->takeName(SI); 7092 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7093 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7094 PN->setDebugLoc(SI->getDebugLoc()); 7095 7096 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7097 SI->eraseFromParent(); 7098 INS.erase(SI); 7099 ++NumSelectsExpanded; 7100 } 7101 7102 // Instruct OptimizeBlock to skip to the next block. 7103 CurInstIterator = StartBlock->end(); 7104 return true; 7105 } 7106 7107 /// Some targets only accept certain types for splat inputs. For example a VDUP 7108 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7109 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7110 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7111 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7112 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7113 m_Undef(), m_ZeroMask()))) 7114 return false; 7115 Type *NewType = TLI->shouldConvertSplatType(SVI); 7116 if (!NewType) 7117 return false; 7118 7119 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7120 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7121 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7122 "Expected a type of the same size!"); 7123 auto *NewVecType = 7124 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7125 7126 // Create a bitcast (shuffle (insert (bitcast(..)))) 7127 IRBuilder<> Builder(SVI->getContext()); 7128 Builder.SetInsertPoint(SVI); 7129 Value *BC1 = Builder.CreateBitCast( 7130 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7131 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7132 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7133 7134 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7135 RecursivelyDeleteTriviallyDeadInstructions( 7136 SVI, TLInfo, nullptr, 7137 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7138 7139 // Also hoist the bitcast up to its operand if it they are not in the same 7140 // block. 7141 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7142 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7143 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7144 !Op->isTerminator() && !Op->isEHPad()) 7145 BCI->moveAfter(Op); 7146 7147 return true; 7148 } 7149 7150 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7151 // If the operands of I can be folded into a target instruction together with 7152 // I, duplicate and sink them. 7153 SmallVector<Use *, 4> OpsToSink; 7154 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7155 return false; 7156 7157 // OpsToSink can contain multiple uses in a use chain (e.g. 7158 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7159 // uses must come first, so we process the ops in reverse order so as to not 7160 // create invalid IR. 7161 BasicBlock *TargetBB = I->getParent(); 7162 bool Changed = false; 7163 SmallVector<Use *, 4> ToReplace; 7164 Instruction *InsertPoint = I; 7165 DenseMap<const Instruction *, unsigned long> InstOrdering; 7166 unsigned long InstNumber = 0; 7167 for (const auto &I : *TargetBB) 7168 InstOrdering[&I] = InstNumber++; 7169 7170 for (Use *U : reverse(OpsToSink)) { 7171 auto *UI = cast<Instruction>(U->get()); 7172 if (isa<PHINode>(UI)) 7173 continue; 7174 if (UI->getParent() == TargetBB) { 7175 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7176 InsertPoint = UI; 7177 continue; 7178 } 7179 ToReplace.push_back(U); 7180 } 7181 7182 SetVector<Instruction *> MaybeDead; 7183 DenseMap<Instruction *, Instruction *> NewInstructions; 7184 for (Use *U : ToReplace) { 7185 auto *UI = cast<Instruction>(U->get()); 7186 Instruction *NI = UI->clone(); 7187 7188 if (IsHugeFunc) { 7189 // Now we clone an instruction, its operands' defs may sink to this BB 7190 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7191 for (unsigned I = 0; I < NI->getNumOperands(); ++I) { 7192 auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I)); 7193 if (!OpDef) 7194 continue; 7195 FreshBBs.insert(OpDef->getParent()); 7196 } 7197 } 7198 7199 NewInstructions[UI] = NI; 7200 MaybeDead.insert(UI); 7201 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7202 NI->insertBefore(InsertPoint); 7203 InsertPoint = NI; 7204 InsertedInsts.insert(NI); 7205 7206 // Update the use for the new instruction, making sure that we update the 7207 // sunk instruction uses, if it is part of a chain that has already been 7208 // sunk. 7209 Instruction *OldI = cast<Instruction>(U->getUser()); 7210 if (NewInstructions.count(OldI)) 7211 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7212 else 7213 U->set(NI); 7214 Changed = true; 7215 } 7216 7217 // Remove instructions that are dead after sinking. 7218 for (auto *I : MaybeDead) { 7219 if (!I->hasNUsesOrMore(1)) { 7220 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7221 I->eraseFromParent(); 7222 } 7223 } 7224 7225 return Changed; 7226 } 7227 7228 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7229 Value *Cond = SI->getCondition(); 7230 Type *OldType = Cond->getType(); 7231 LLVMContext &Context = Cond->getContext(); 7232 EVT OldVT = TLI->getValueType(*DL, OldType); 7233 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7234 unsigned RegWidth = RegType.getSizeInBits(); 7235 7236 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7237 return false; 7238 7239 // If the register width is greater than the type width, expand the condition 7240 // of the switch instruction and each case constant to the width of the 7241 // register. By widening the type of the switch condition, subsequent 7242 // comparisons (for case comparisons) will not need to be extended to the 7243 // preferred register width, so we will potentially eliminate N-1 extends, 7244 // where N is the number of cases in the switch. 7245 auto *NewType = Type::getIntNTy(Context, RegWidth); 7246 7247 // Extend the switch condition and case constants using the target preferred 7248 // extend unless the switch condition is a function argument with an extend 7249 // attribute. In that case, we can avoid an unnecessary mask/extension by 7250 // matching the argument extension instead. 7251 Instruction::CastOps ExtType = Instruction::ZExt; 7252 // Some targets prefer SExt over ZExt. 7253 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7254 ExtType = Instruction::SExt; 7255 7256 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7257 if (Arg->hasSExtAttr()) 7258 ExtType = Instruction::SExt; 7259 if (Arg->hasZExtAttr()) 7260 ExtType = Instruction::ZExt; 7261 } 7262 7263 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7264 ExtInst->insertBefore(SI); 7265 ExtInst->setDebugLoc(SI->getDebugLoc()); 7266 SI->setCondition(ExtInst); 7267 for (auto Case : SI->cases()) { 7268 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7269 APInt WideConst = (ExtType == Instruction::ZExt) 7270 ? NarrowConst.zext(RegWidth) 7271 : NarrowConst.sext(RegWidth); 7272 Case.setValue(ConstantInt::get(Context, WideConst)); 7273 } 7274 7275 return true; 7276 } 7277 7278 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7279 // The SCCP optimization tends to produce code like this: 7280 // switch(x) { case 42: phi(42, ...) } 7281 // Materializing the constant for the phi-argument needs instructions; So we 7282 // change the code to: 7283 // switch(x) { case 42: phi(x, ...) } 7284 7285 Value *Condition = SI->getCondition(); 7286 // Avoid endless loop in degenerate case. 7287 if (isa<ConstantInt>(*Condition)) 7288 return false; 7289 7290 bool Changed = false; 7291 BasicBlock *SwitchBB = SI->getParent(); 7292 Type *ConditionType = Condition->getType(); 7293 7294 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7295 ConstantInt *CaseValue = Case.getCaseValue(); 7296 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7297 // Set to true if we previously checked that `CaseBB` is only reached by 7298 // a single case from this switch. 7299 bool CheckedForSinglePred = false; 7300 for (PHINode &PHI : CaseBB->phis()) { 7301 Type *PHIType = PHI.getType(); 7302 // If ZExt is free then we can also catch patterns like this: 7303 // switch((i32)x) { case 42: phi((i64)42, ...); } 7304 // and replace `(i64)42` with `zext i32 %x to i64`. 7305 bool TryZExt = 7306 PHIType->isIntegerTy() && 7307 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7308 TLI->isZExtFree(ConditionType, PHIType); 7309 if (PHIType == ConditionType || TryZExt) { 7310 // Set to true to skip this case because of multiple preds. 7311 bool SkipCase = false; 7312 Value *Replacement = nullptr; 7313 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7314 Value *PHIValue = PHI.getIncomingValue(I); 7315 if (PHIValue != CaseValue) { 7316 if (!TryZExt) 7317 continue; 7318 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7319 if (!PHIValueInt || 7320 PHIValueInt->getValue() != 7321 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7322 continue; 7323 } 7324 if (PHI.getIncomingBlock(I) != SwitchBB) 7325 continue; 7326 // We cannot optimize if there are multiple case labels jumping to 7327 // this block. This check may get expensive when there are many 7328 // case labels so we test for it last. 7329 if (!CheckedForSinglePred) { 7330 CheckedForSinglePred = true; 7331 if (SI->findCaseDest(CaseBB) == nullptr) { 7332 SkipCase = true; 7333 break; 7334 } 7335 } 7336 7337 if (Replacement == nullptr) { 7338 if (PHIValue == CaseValue) { 7339 Replacement = Condition; 7340 } else { 7341 IRBuilder<> Builder(SI); 7342 Replacement = Builder.CreateZExt(Condition, PHIType); 7343 } 7344 } 7345 PHI.setIncomingValue(I, Replacement); 7346 Changed = true; 7347 } 7348 if (SkipCase) 7349 break; 7350 } 7351 } 7352 } 7353 return Changed; 7354 } 7355 7356 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7357 bool Changed = optimizeSwitchType(SI); 7358 Changed |= optimizeSwitchPhiConstants(SI); 7359 return Changed; 7360 } 7361 7362 namespace { 7363 7364 /// Helper class to promote a scalar operation to a vector one. 7365 /// This class is used to move downward extractelement transition. 7366 /// E.g., 7367 /// a = vector_op <2 x i32> 7368 /// b = extractelement <2 x i32> a, i32 0 7369 /// c = scalar_op b 7370 /// store c 7371 /// 7372 /// => 7373 /// a = vector_op <2 x i32> 7374 /// c = vector_op a (equivalent to scalar_op on the related lane) 7375 /// * d = extractelement <2 x i32> c, i32 0 7376 /// * store d 7377 /// Assuming both extractelement and store can be combine, we get rid of the 7378 /// transition. 7379 class VectorPromoteHelper { 7380 /// DataLayout associated with the current module. 7381 const DataLayout &DL; 7382 7383 /// Used to perform some checks on the legality of vector operations. 7384 const TargetLowering &TLI; 7385 7386 /// Used to estimated the cost of the promoted chain. 7387 const TargetTransformInfo &TTI; 7388 7389 /// The transition being moved downwards. 7390 Instruction *Transition; 7391 7392 /// The sequence of instructions to be promoted. 7393 SmallVector<Instruction *, 4> InstsToBePromoted; 7394 7395 /// Cost of combining a store and an extract. 7396 unsigned StoreExtractCombineCost; 7397 7398 /// Instruction that will be combined with the transition. 7399 Instruction *CombineInst = nullptr; 7400 7401 /// The instruction that represents the current end of the transition. 7402 /// Since we are faking the promotion until we reach the end of the chain 7403 /// of computation, we need a way to get the current end of the transition. 7404 Instruction *getEndOfTransition() const { 7405 if (InstsToBePromoted.empty()) 7406 return Transition; 7407 return InstsToBePromoted.back(); 7408 } 7409 7410 /// Return the index of the original value in the transition. 7411 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7412 /// c, is at index 0. 7413 unsigned getTransitionOriginalValueIdx() const { 7414 assert(isa<ExtractElementInst>(Transition) && 7415 "Other kind of transitions are not supported yet"); 7416 return 0; 7417 } 7418 7419 /// Return the index of the index in the transition. 7420 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7421 /// is at index 1. 7422 unsigned getTransitionIdx() const { 7423 assert(isa<ExtractElementInst>(Transition) && 7424 "Other kind of transitions are not supported yet"); 7425 return 1; 7426 } 7427 7428 /// Get the type of the transition. 7429 /// This is the type of the original value. 7430 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7431 /// transition is <2 x i32>. 7432 Type *getTransitionType() const { 7433 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7434 } 7435 7436 /// Promote \p ToBePromoted by moving \p Def downward through. 7437 /// I.e., we have the following sequence: 7438 /// Def = Transition <ty1> a to <ty2> 7439 /// b = ToBePromoted <ty2> Def, ... 7440 /// => 7441 /// b = ToBePromoted <ty1> a, ... 7442 /// Def = Transition <ty1> ToBePromoted to <ty2> 7443 void promoteImpl(Instruction *ToBePromoted); 7444 7445 /// Check whether or not it is profitable to promote all the 7446 /// instructions enqueued to be promoted. 7447 bool isProfitableToPromote() { 7448 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7449 unsigned Index = isa<ConstantInt>(ValIdx) 7450 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7451 : -1; 7452 Type *PromotedType = getTransitionType(); 7453 7454 StoreInst *ST = cast<StoreInst>(CombineInst); 7455 unsigned AS = ST->getPointerAddressSpace(); 7456 // Check if this store is supported. 7457 if (!TLI.allowsMisalignedMemoryAccesses( 7458 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7459 ST->getAlign())) { 7460 // If this is not supported, there is no way we can combine 7461 // the extract with the store. 7462 return false; 7463 } 7464 7465 // The scalar chain of computation has to pay for the transition 7466 // scalar to vector. 7467 // The vector chain has to account for the combining cost. 7468 enum TargetTransformInfo::TargetCostKind CostKind = 7469 TargetTransformInfo::TCK_RecipThroughput; 7470 InstructionCost ScalarCost = 7471 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7472 InstructionCost VectorCost = StoreExtractCombineCost; 7473 for (const auto &Inst : InstsToBePromoted) { 7474 // Compute the cost. 7475 // By construction, all instructions being promoted are arithmetic ones. 7476 // Moreover, one argument is a constant that can be viewed as a splat 7477 // constant. 7478 Value *Arg0 = Inst->getOperand(0); 7479 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7480 isa<ConstantFP>(Arg0); 7481 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7482 if (IsArg0Constant) 7483 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7484 else 7485 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7486 7487 ScalarCost += TTI.getArithmeticInstrCost( 7488 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7489 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7490 CostKind, Arg0Info, Arg1Info); 7491 } 7492 LLVM_DEBUG( 7493 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7494 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7495 return ScalarCost > VectorCost; 7496 } 7497 7498 /// Generate a constant vector with \p Val with the same 7499 /// number of elements as the transition. 7500 /// \p UseSplat defines whether or not \p Val should be replicated 7501 /// across the whole vector. 7502 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7503 /// otherwise we generate a vector with as many undef as possible: 7504 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7505 /// used at the index of the extract. 7506 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7507 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7508 if (!UseSplat) { 7509 // If we cannot determine where the constant must be, we have to 7510 // use a splat constant. 7511 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7512 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7513 ExtractIdx = CstVal->getSExtValue(); 7514 else 7515 UseSplat = true; 7516 } 7517 7518 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7519 if (UseSplat) 7520 return ConstantVector::getSplat(EC, Val); 7521 7522 if (!EC.isScalable()) { 7523 SmallVector<Constant *, 4> ConstVec; 7524 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7525 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7526 if (Idx == ExtractIdx) 7527 ConstVec.push_back(Val); 7528 else 7529 ConstVec.push_back(UndefVal); 7530 } 7531 return ConstantVector::get(ConstVec); 7532 } else 7533 llvm_unreachable( 7534 "Generate scalable vector for non-splat is unimplemented"); 7535 } 7536 7537 /// Check if promoting to a vector type an operand at \p OperandIdx 7538 /// in \p Use can trigger undefined behavior. 7539 static bool canCauseUndefinedBehavior(const Instruction *Use, 7540 unsigned OperandIdx) { 7541 // This is not safe to introduce undef when the operand is on 7542 // the right hand side of a division-like instruction. 7543 if (OperandIdx != 1) 7544 return false; 7545 switch (Use->getOpcode()) { 7546 default: 7547 return false; 7548 case Instruction::SDiv: 7549 case Instruction::UDiv: 7550 case Instruction::SRem: 7551 case Instruction::URem: 7552 return true; 7553 case Instruction::FDiv: 7554 case Instruction::FRem: 7555 return !Use->hasNoNaNs(); 7556 } 7557 llvm_unreachable(nullptr); 7558 } 7559 7560 public: 7561 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7562 const TargetTransformInfo &TTI, Instruction *Transition, 7563 unsigned CombineCost) 7564 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7565 StoreExtractCombineCost(CombineCost) { 7566 assert(Transition && "Do not know how to promote null"); 7567 } 7568 7569 /// Check if we can promote \p ToBePromoted to \p Type. 7570 bool canPromote(const Instruction *ToBePromoted) const { 7571 // We could support CastInst too. 7572 return isa<BinaryOperator>(ToBePromoted); 7573 } 7574 7575 /// Check if it is profitable to promote \p ToBePromoted 7576 /// by moving downward the transition through. 7577 bool shouldPromote(const Instruction *ToBePromoted) const { 7578 // Promote only if all the operands can be statically expanded. 7579 // Indeed, we do not want to introduce any new kind of transitions. 7580 for (const Use &U : ToBePromoted->operands()) { 7581 const Value *Val = U.get(); 7582 if (Val == getEndOfTransition()) { 7583 // If the use is a division and the transition is on the rhs, 7584 // we cannot promote the operation, otherwise we may create a 7585 // division by zero. 7586 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7587 return false; 7588 continue; 7589 } 7590 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7591 !isa<ConstantFP>(Val)) 7592 return false; 7593 } 7594 // Check that the resulting operation is legal. 7595 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7596 if (!ISDOpcode) 7597 return false; 7598 return StressStoreExtract || 7599 TLI.isOperationLegalOrCustom( 7600 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7601 } 7602 7603 /// Check whether or not \p Use can be combined 7604 /// with the transition. 7605 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7606 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7607 7608 /// Record \p ToBePromoted as part of the chain to be promoted. 7609 void enqueueForPromotion(Instruction *ToBePromoted) { 7610 InstsToBePromoted.push_back(ToBePromoted); 7611 } 7612 7613 /// Set the instruction that will be combined with the transition. 7614 void recordCombineInstruction(Instruction *ToBeCombined) { 7615 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7616 CombineInst = ToBeCombined; 7617 } 7618 7619 /// Promote all the instructions enqueued for promotion if it is 7620 /// is profitable. 7621 /// \return True if the promotion happened, false otherwise. 7622 bool promote() { 7623 // Check if there is something to promote. 7624 // Right now, if we do not have anything to combine with, 7625 // we assume the promotion is not profitable. 7626 if (InstsToBePromoted.empty() || !CombineInst) 7627 return false; 7628 7629 // Check cost. 7630 if (!StressStoreExtract && !isProfitableToPromote()) 7631 return false; 7632 7633 // Promote. 7634 for (auto &ToBePromoted : InstsToBePromoted) 7635 promoteImpl(ToBePromoted); 7636 InstsToBePromoted.clear(); 7637 return true; 7638 } 7639 }; 7640 7641 } // end anonymous namespace 7642 7643 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7644 // At this point, we know that all the operands of ToBePromoted but Def 7645 // can be statically promoted. 7646 // For Def, we need to use its parameter in ToBePromoted: 7647 // b = ToBePromoted ty1 a 7648 // Def = Transition ty1 b to ty2 7649 // Move the transition down. 7650 // 1. Replace all uses of the promoted operation by the transition. 7651 // = ... b => = ... Def. 7652 assert(ToBePromoted->getType() == Transition->getType() && 7653 "The type of the result of the transition does not match " 7654 "the final type"); 7655 ToBePromoted->replaceAllUsesWith(Transition); 7656 // 2. Update the type of the uses. 7657 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7658 Type *TransitionTy = getTransitionType(); 7659 ToBePromoted->mutateType(TransitionTy); 7660 // 3. Update all the operands of the promoted operation with promoted 7661 // operands. 7662 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7663 for (Use &U : ToBePromoted->operands()) { 7664 Value *Val = U.get(); 7665 Value *NewVal = nullptr; 7666 if (Val == Transition) 7667 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7668 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7669 isa<ConstantFP>(Val)) { 7670 // Use a splat constant if it is not safe to use undef. 7671 NewVal = getConstantVector( 7672 cast<Constant>(Val), 7673 isa<UndefValue>(Val) || 7674 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7675 } else 7676 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7677 "this?"); 7678 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7679 } 7680 Transition->moveAfter(ToBePromoted); 7681 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7682 } 7683 7684 /// Some targets can do store(extractelement) with one instruction. 7685 /// Try to push the extractelement towards the stores when the target 7686 /// has this feature and this is profitable. 7687 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7688 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7689 if (DisableStoreExtract || 7690 (!StressStoreExtract && 7691 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7692 Inst->getOperand(1), CombineCost))) 7693 return false; 7694 7695 // At this point we know that Inst is a vector to scalar transition. 7696 // Try to move it down the def-use chain, until: 7697 // - We can combine the transition with its single use 7698 // => we got rid of the transition. 7699 // - We escape the current basic block 7700 // => we would need to check that we are moving it at a cheaper place and 7701 // we do not do that for now. 7702 BasicBlock *Parent = Inst->getParent(); 7703 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7704 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7705 // If the transition has more than one use, assume this is not going to be 7706 // beneficial. 7707 while (Inst->hasOneUse()) { 7708 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7709 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7710 7711 if (ToBePromoted->getParent() != Parent) { 7712 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7713 << ToBePromoted->getParent()->getName() 7714 << ") than the transition (" << Parent->getName() 7715 << ").\n"); 7716 return false; 7717 } 7718 7719 if (VPH.canCombine(ToBePromoted)) { 7720 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7721 << "will be combined with: " << *ToBePromoted << '\n'); 7722 VPH.recordCombineInstruction(ToBePromoted); 7723 bool Changed = VPH.promote(); 7724 NumStoreExtractExposed += Changed; 7725 return Changed; 7726 } 7727 7728 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7729 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7730 return false; 7731 7732 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7733 7734 VPH.enqueueForPromotion(ToBePromoted); 7735 Inst = ToBePromoted; 7736 } 7737 return false; 7738 } 7739 7740 /// For the instruction sequence of store below, F and I values 7741 /// are bundled together as an i64 value before being stored into memory. 7742 /// Sometimes it is more efficient to generate separate stores for F and I, 7743 /// which can remove the bitwise instructions or sink them to colder places. 7744 /// 7745 /// (store (or (zext (bitcast F to i32) to i64), 7746 /// (shl (zext I to i64), 32)), addr) --> 7747 /// (store F, addr) and (store I, addr+4) 7748 /// 7749 /// Similarly, splitting for other merged store can also be beneficial, like: 7750 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7751 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7752 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7753 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7754 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7755 /// 7756 /// We allow each target to determine specifically which kind of splitting is 7757 /// supported. 7758 /// 7759 /// The store patterns are commonly seen from the simple code snippet below 7760 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7761 /// void goo(const std::pair<int, float> &); 7762 /// hoo() { 7763 /// ... 7764 /// goo(std::make_pair(tmp, ftmp)); 7765 /// ... 7766 /// } 7767 /// 7768 /// Although we already have similar splitting in DAG Combine, we duplicate 7769 /// it in CodeGenPrepare to catch the case in which pattern is across 7770 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7771 /// during code expansion. 7772 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7773 const TargetLowering &TLI) { 7774 // Handle simple but common cases only. 7775 Type *StoreType = SI.getValueOperand()->getType(); 7776 7777 // The code below assumes shifting a value by <number of bits>, 7778 // whereas scalable vectors would have to be shifted by 7779 // <2log(vscale) + number of bits> in order to store the 7780 // low/high parts. Bailing out for now. 7781 if (StoreType->isScalableTy()) 7782 return false; 7783 7784 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7785 DL.getTypeSizeInBits(StoreType) == 0) 7786 return false; 7787 7788 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7789 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7790 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7791 return false; 7792 7793 // Don't split the store if it is volatile. 7794 if (SI.isVolatile()) 7795 return false; 7796 7797 // Match the following patterns: 7798 // (store (or (zext LValue to i64), 7799 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7800 // or 7801 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7802 // (zext LValue to i64), 7803 // Expect both operands of OR and the first operand of SHL have only 7804 // one use. 7805 Value *LValue, *HValue; 7806 if (!match(SI.getValueOperand(), 7807 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7808 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7809 m_SpecificInt(HalfValBitSize)))))) 7810 return false; 7811 7812 // Check LValue and HValue are int with size less or equal than 32. 7813 if (!LValue->getType()->isIntegerTy() || 7814 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7815 !HValue->getType()->isIntegerTy() || 7816 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7817 return false; 7818 7819 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7820 // as the input of target query. 7821 auto *LBC = dyn_cast<BitCastInst>(LValue); 7822 auto *HBC = dyn_cast<BitCastInst>(HValue); 7823 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7824 : EVT::getEVT(LValue->getType()); 7825 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7826 : EVT::getEVT(HValue->getType()); 7827 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7828 return false; 7829 7830 // Start to split store. 7831 IRBuilder<> Builder(SI.getContext()); 7832 Builder.SetInsertPoint(&SI); 7833 7834 // If LValue/HValue is a bitcast in another BB, create a new one in current 7835 // BB so it may be merged with the splitted stores by dag combiner. 7836 if (LBC && LBC->getParent() != SI.getParent()) 7837 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7838 if (HBC && HBC->getParent() != SI.getParent()) 7839 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7840 7841 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7842 auto CreateSplitStore = [&](Value *V, bool Upper) { 7843 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7844 Value *Addr = Builder.CreateBitCast( 7845 SI.getOperand(1), 7846 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7847 Align Alignment = SI.getAlign(); 7848 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7849 if (IsOffsetStore) { 7850 Addr = Builder.CreateGEP( 7851 SplitStoreType, Addr, 7852 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7853 7854 // When splitting the store in half, naturally one half will retain the 7855 // alignment of the original wider store, regardless of whether it was 7856 // over-aligned or not, while the other will require adjustment. 7857 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7858 } 7859 Builder.CreateAlignedStore(V, Addr, Alignment); 7860 }; 7861 7862 CreateSplitStore(LValue, false); 7863 CreateSplitStore(HValue, true); 7864 7865 // Delete the old store. 7866 SI.eraseFromParent(); 7867 return true; 7868 } 7869 7870 // Return true if the GEP has two operands, the first operand is of a sequential 7871 // type, and the second operand is a constant. 7872 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7873 gep_type_iterator I = gep_type_begin(*GEP); 7874 return GEP->getNumOperands() == 2 && I.isSequential() && 7875 isa<ConstantInt>(GEP->getOperand(1)); 7876 } 7877 7878 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7879 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7880 // reducing liveness interference across those edges benefits global register 7881 // allocation. Currently handles only certain cases. 7882 // 7883 // For example, unmerge %GEPI and %UGEPI as below. 7884 // 7885 // ---------- BEFORE ---------- 7886 // SrcBlock: 7887 // ... 7888 // %GEPIOp = ... 7889 // ... 7890 // %GEPI = gep %GEPIOp, Idx 7891 // ... 7892 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7893 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7894 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7895 // %UGEPI) 7896 // 7897 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7898 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7899 // ... 7900 // 7901 // DstBi: 7902 // ... 7903 // %UGEPI = gep %GEPIOp, UIdx 7904 // ... 7905 // --------------------------- 7906 // 7907 // ---------- AFTER ---------- 7908 // SrcBlock: 7909 // ... (same as above) 7910 // (* %GEPI is still alive on the indirectbr edges) 7911 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7912 // unmerging) 7913 // ... 7914 // 7915 // DstBi: 7916 // ... 7917 // %UGEPI = gep %GEPI, (UIdx-Idx) 7918 // ... 7919 // --------------------------- 7920 // 7921 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7922 // no longer alive on them. 7923 // 7924 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7925 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7926 // not to disable further simplications and optimizations as a result of GEP 7927 // merging. 7928 // 7929 // Note this unmerging may increase the length of the data flow critical path 7930 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7931 // between the register pressure and the length of data-flow critical 7932 // path. Restricting this to the uncommon IndirectBr case would minimize the 7933 // impact of potentially longer critical path, if any, and the impact on compile 7934 // time. 7935 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7936 const TargetTransformInfo *TTI) { 7937 BasicBlock *SrcBlock = GEPI->getParent(); 7938 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7939 // (non-IndirectBr) cases exit early here. 7940 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7941 return false; 7942 // Check that GEPI is a simple gep with a single constant index. 7943 if (!GEPSequentialConstIndexed(GEPI)) 7944 return false; 7945 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7946 // Check that GEPI is a cheap one. 7947 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7948 TargetTransformInfo::TCK_SizeAndLatency) > 7949 TargetTransformInfo::TCC_Basic) 7950 return false; 7951 Value *GEPIOp = GEPI->getOperand(0); 7952 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7953 if (!isa<Instruction>(GEPIOp)) 7954 return false; 7955 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7956 if (GEPIOpI->getParent() != SrcBlock) 7957 return false; 7958 // Check that GEP is used outside the block, meaning it's alive on the 7959 // IndirectBr edge(s). 7960 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 7961 if (auto *I = dyn_cast<Instruction>(Usr)) { 7962 if (I->getParent() != SrcBlock) { 7963 return true; 7964 } 7965 } 7966 return false; 7967 })) 7968 return false; 7969 // The second elements of the GEP chains to be unmerged. 7970 std::vector<GetElementPtrInst *> UGEPIs; 7971 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7972 // on IndirectBr edges. 7973 for (User *Usr : GEPIOp->users()) { 7974 if (Usr == GEPI) 7975 continue; 7976 // Check if Usr is an Instruction. If not, give up. 7977 if (!isa<Instruction>(Usr)) 7978 return false; 7979 auto *UI = cast<Instruction>(Usr); 7980 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7981 if (UI->getParent() == SrcBlock) 7982 continue; 7983 // Check if Usr is a GEP. If not, give up. 7984 if (!isa<GetElementPtrInst>(Usr)) 7985 return false; 7986 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7987 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7988 // the pointer operand to it. If so, record it in the vector. If not, give 7989 // up. 7990 if (!GEPSequentialConstIndexed(UGEPI)) 7991 return false; 7992 if (UGEPI->getOperand(0) != GEPIOp) 7993 return false; 7994 if (GEPIIdx->getType() != 7995 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7996 return false; 7997 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7998 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7999 TargetTransformInfo::TCK_SizeAndLatency) > 8000 TargetTransformInfo::TCC_Basic) 8001 return false; 8002 UGEPIs.push_back(UGEPI); 8003 } 8004 if (UGEPIs.size() == 0) 8005 return false; 8006 // Check the materializing cost of (Uidx-Idx). 8007 for (GetElementPtrInst *UGEPI : UGEPIs) { 8008 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8009 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8010 InstructionCost ImmCost = TTI->getIntImmCost( 8011 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8012 if (ImmCost > TargetTransformInfo::TCC_Basic) 8013 return false; 8014 } 8015 // Now unmerge between GEPI and UGEPIs. 8016 for (GetElementPtrInst *UGEPI : UGEPIs) { 8017 UGEPI->setOperand(0, GEPI); 8018 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8019 Constant *NewUGEPIIdx = ConstantInt::get( 8020 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8021 UGEPI->setOperand(1, NewUGEPIIdx); 8022 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8023 // inbounds to avoid UB. 8024 if (!GEPI->isInBounds()) { 8025 UGEPI->setIsInBounds(false); 8026 } 8027 } 8028 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8029 // alive on IndirectBr edges). 8030 assert(llvm::none_of(GEPIOp->users(), 8031 [&](User *Usr) { 8032 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8033 }) && 8034 "GEPIOp is used outside SrcBlock"); 8035 return true; 8036 } 8037 8038 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8039 SmallSet<BasicBlock *, 32> &FreshBBs, 8040 bool IsHugeFunc) { 8041 // Try and convert 8042 // %c = icmp ult %x, 8 8043 // br %c, bla, blb 8044 // %tc = lshr %x, 3 8045 // to 8046 // %tc = lshr %x, 3 8047 // %c = icmp eq %tc, 0 8048 // br %c, bla, blb 8049 // Creating the cmp to zero can be better for the backend, especially if the 8050 // lshr produces flags that can be used automatically. 8051 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8052 return false; 8053 8054 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8055 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8056 return false; 8057 8058 Value *X = Cmp->getOperand(0); 8059 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8060 8061 for (auto *U : X->users()) { 8062 Instruction *UI = dyn_cast<Instruction>(U); 8063 // A quick dominance check 8064 if (!UI || 8065 (UI->getParent() != Branch->getParent() && 8066 UI->getParent() != Branch->getSuccessor(0) && 8067 UI->getParent() != Branch->getSuccessor(1)) || 8068 (UI->getParent() != Branch->getParent() && 8069 !UI->getParent()->getSinglePredecessor())) 8070 continue; 8071 8072 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8073 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8074 IRBuilder<> Builder(Branch); 8075 if (UI->getParent() != Branch->getParent()) 8076 UI->moveBefore(Branch); 8077 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8078 ConstantInt::get(UI->getType(), 0)); 8079 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8080 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8081 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8082 return true; 8083 } 8084 if (Cmp->isEquality() && 8085 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8086 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8087 IRBuilder<> Builder(Branch); 8088 if (UI->getParent() != Branch->getParent()) 8089 UI->moveBefore(Branch); 8090 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8091 ConstantInt::get(UI->getType(), 0)); 8092 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8093 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8094 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8095 return true; 8096 } 8097 } 8098 return false; 8099 } 8100 8101 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8102 // Bail out if we inserted the instruction to prevent optimizations from 8103 // stepping on each other's toes. 8104 if (InsertedInsts.count(I)) 8105 return false; 8106 8107 // TODO: Move into the switch on opcode below here. 8108 if (PHINode *P = dyn_cast<PHINode>(I)) { 8109 // It is possible for very late stage optimizations (such as SimplifyCFG) 8110 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8111 // trivial PHI, go ahead and zap it here. 8112 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8113 LargeOffsetGEPMap.erase(P); 8114 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8115 P->eraseFromParent(); 8116 ++NumPHIsElim; 8117 return true; 8118 } 8119 return false; 8120 } 8121 8122 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8123 // If the source of the cast is a constant, then this should have 8124 // already been constant folded. The only reason NOT to constant fold 8125 // it is if something (e.g. LSR) was careful to place the constant 8126 // evaluation in a block other than then one that uses it (e.g. to hoist 8127 // the address of globals out of a loop). If this is the case, we don't 8128 // want to forward-subst the cast. 8129 if (isa<Constant>(CI->getOperand(0))) 8130 return false; 8131 8132 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8133 return true; 8134 8135 if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) && 8136 TLI->optimizeExtendOrTruncateConversion( 8137 I, LI->getLoopFor(I->getParent()), *TTI)) 8138 return true; 8139 8140 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8141 /// Sink a zext or sext into its user blocks if the target type doesn't 8142 /// fit in one register 8143 if (TLI->getTypeAction(CI->getContext(), 8144 TLI->getValueType(*DL, CI->getType())) == 8145 TargetLowering::TypeExpandInteger) { 8146 return SinkCast(CI); 8147 } else { 8148 if (TLI->optimizeExtendOrTruncateConversion( 8149 I, LI->getLoopFor(I->getParent()), *TTI)) 8150 return true; 8151 8152 bool MadeChange = optimizeExt(I); 8153 return MadeChange | optimizeExtUses(I); 8154 } 8155 } 8156 return false; 8157 } 8158 8159 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8160 if (optimizeCmp(Cmp, ModifiedDT)) 8161 return true; 8162 8163 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8164 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8165 bool Modified = optimizeLoadExt(LI); 8166 unsigned AS = LI->getPointerAddressSpace(); 8167 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8168 return Modified; 8169 } 8170 8171 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8172 if (splitMergedValStore(*SI, *DL, *TLI)) 8173 return true; 8174 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8175 unsigned AS = SI->getPointerAddressSpace(); 8176 return optimizeMemoryInst(I, SI->getOperand(1), 8177 SI->getOperand(0)->getType(), AS); 8178 } 8179 8180 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8181 unsigned AS = RMW->getPointerAddressSpace(); 8182 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8183 } 8184 8185 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8186 unsigned AS = CmpX->getPointerAddressSpace(); 8187 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8188 CmpX->getCompareOperand()->getType(), AS); 8189 } 8190 8191 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8192 8193 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8194 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8195 return true; 8196 8197 // TODO: Move this into the switch on opcode - it handles shifts already. 8198 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8199 BinOp->getOpcode() == Instruction::LShr)) { 8200 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8201 if (CI && TLI->hasExtractBitsInsn()) 8202 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8203 return true; 8204 } 8205 8206 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8207 if (GEPI->hasAllZeroIndices()) { 8208 /// The GEP operand must be a pointer, so must its result -> BitCast 8209 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8210 GEPI->getName(), GEPI); 8211 NC->setDebugLoc(GEPI->getDebugLoc()); 8212 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8213 RecursivelyDeleteTriviallyDeadInstructions( 8214 GEPI, TLInfo, nullptr, 8215 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8216 ++NumGEPsElim; 8217 optimizeInst(NC, ModifiedDT); 8218 return true; 8219 } 8220 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8221 return true; 8222 } 8223 return false; 8224 } 8225 8226 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8227 // freeze(icmp a, const)) -> icmp (freeze a), const 8228 // This helps generate efficient conditional jumps. 8229 Instruction *CmpI = nullptr; 8230 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8231 CmpI = II; 8232 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8233 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8234 8235 if (CmpI && CmpI->hasOneUse()) { 8236 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8237 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8238 isa<ConstantPointerNull>(Op0); 8239 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8240 isa<ConstantPointerNull>(Op1); 8241 if (Const0 || Const1) { 8242 if (!Const0 || !Const1) { 8243 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 8244 F->takeName(FI); 8245 CmpI->setOperand(Const0 ? 1 : 0, F); 8246 } 8247 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8248 FI->eraseFromParent(); 8249 return true; 8250 } 8251 } 8252 return false; 8253 } 8254 8255 if (tryToSinkFreeOperands(I)) 8256 return true; 8257 8258 switch (I->getOpcode()) { 8259 case Instruction::Shl: 8260 case Instruction::LShr: 8261 case Instruction::AShr: 8262 return optimizeShiftInst(cast<BinaryOperator>(I)); 8263 case Instruction::Call: 8264 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8265 case Instruction::Select: 8266 return optimizeSelectInst(cast<SelectInst>(I)); 8267 case Instruction::ShuffleVector: 8268 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8269 case Instruction::Switch: 8270 return optimizeSwitchInst(cast<SwitchInst>(I)); 8271 case Instruction::ExtractElement: 8272 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8273 case Instruction::Br: 8274 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8275 } 8276 8277 return false; 8278 } 8279 8280 /// Given an OR instruction, check to see if this is a bitreverse 8281 /// idiom. If so, insert the new intrinsic and return true. 8282 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8283 if (!I.getType()->isIntegerTy() || 8284 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8285 TLI->getValueType(*DL, I.getType(), true))) 8286 return false; 8287 8288 SmallVector<Instruction *, 4> Insts; 8289 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8290 return false; 8291 Instruction *LastInst = Insts.back(); 8292 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8293 RecursivelyDeleteTriviallyDeadInstructions( 8294 &I, TLInfo, nullptr, 8295 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8296 return true; 8297 } 8298 8299 // In this pass we look for GEP and cast instructions that are used 8300 // across basic blocks and rewrite them to improve basic-block-at-a-time 8301 // selection. 8302 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8303 SunkAddrs.clear(); 8304 bool MadeChange = false; 8305 8306 do { 8307 CurInstIterator = BB.begin(); 8308 ModifiedDT = ModifyDT::NotModifyDT; 8309 while (CurInstIterator != BB.end()) { 8310 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8311 if (ModifiedDT != ModifyDT::NotModifyDT) { 8312 // For huge function we tend to quickly go though the inner optmization 8313 // opportunities in the BB. So we go back to the BB head to re-optimize 8314 // each instruction instead of go back to the function head. 8315 if (IsHugeFunc) { 8316 DT.reset(); 8317 getDT(*BB.getParent()); 8318 break; 8319 } else { 8320 return true; 8321 } 8322 } 8323 } 8324 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8325 8326 bool MadeBitReverse = true; 8327 while (MadeBitReverse) { 8328 MadeBitReverse = false; 8329 for (auto &I : reverse(BB)) { 8330 if (makeBitReverse(I)) { 8331 MadeBitReverse = MadeChange = true; 8332 break; 8333 } 8334 } 8335 } 8336 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8337 8338 return MadeChange; 8339 } 8340 8341 // Some CGP optimizations may move or alter what's computed in a block. Check 8342 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8343 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8344 assert(isa<DbgValueInst>(I)); 8345 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8346 8347 // Does this dbg.value refer to a sunk address calculation? 8348 bool AnyChange = false; 8349 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8350 DVI.location_ops().end()); 8351 for (Value *Location : LocationOps) { 8352 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8353 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8354 if (SunkAddr) { 8355 // Point dbg.value at locally computed address, which should give the best 8356 // opportunity to be accurately lowered. This update may change the type 8357 // of pointer being referred to; however this makes no difference to 8358 // debugging information, and we can't generate bitcasts that may affect 8359 // codegen. 8360 DVI.replaceVariableLocationOp(Location, SunkAddr); 8361 AnyChange = true; 8362 } 8363 } 8364 return AnyChange; 8365 } 8366 8367 // A llvm.dbg.value may be using a value before its definition, due to 8368 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8369 // them by moving the dbg.value to immediately after the value definition. 8370 // FIXME: Ideally this should never be necessary, and this has the potential 8371 // to re-order dbg.value intrinsics. 8372 bool CodeGenPrepare::placeDbgValues(Function &F) { 8373 bool MadeChange = false; 8374 DominatorTree DT(F); 8375 8376 for (BasicBlock &BB : F) { 8377 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8378 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8379 if (!DVI) 8380 continue; 8381 8382 SmallVector<Instruction *, 4> VIs; 8383 for (Value *V : DVI->getValues()) 8384 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8385 VIs.push_back(VI); 8386 8387 // This DVI may depend on multiple instructions, complicating any 8388 // potential sink. This block takes the defensive approach, opting to 8389 // "undef" the DVI if it has more than one instruction and any of them do 8390 // not dominate DVI. 8391 for (Instruction *VI : VIs) { 8392 if (VI->isTerminator()) 8393 continue; 8394 8395 // If VI is a phi in a block with an EHPad terminator, we can't insert 8396 // after it. 8397 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8398 continue; 8399 8400 // If the defining instruction dominates the dbg.value, we do not need 8401 // to move the dbg.value. 8402 if (DT.dominates(VI, DVI)) 8403 continue; 8404 8405 // If we depend on multiple instructions and any of them doesn't 8406 // dominate this DVI, we probably can't salvage it: moving it to 8407 // after any of the instructions could cause us to lose the others. 8408 if (VIs.size() > 1) { 8409 LLVM_DEBUG( 8410 dbgs() 8411 << "Unable to find valid location for Debug Value, undefing:\n" 8412 << *DVI); 8413 DVI->setKillLocation(); 8414 break; 8415 } 8416 8417 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8418 << *DVI << ' ' << *VI); 8419 DVI->removeFromParent(); 8420 if (isa<PHINode>(VI)) 8421 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8422 else 8423 DVI->insertAfter(VI); 8424 MadeChange = true; 8425 ++NumDbgValueMoved; 8426 } 8427 } 8428 } 8429 return MadeChange; 8430 } 8431 8432 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8433 // probes can be chained dependencies of other regular DAG nodes and block DAG 8434 // combine optimizations. 8435 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8436 bool MadeChange = false; 8437 for (auto &Block : F) { 8438 // Move the rest probes to the beginning of the block. 8439 auto FirstInst = Block.getFirstInsertionPt(); 8440 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8441 ++FirstInst; 8442 BasicBlock::iterator I(FirstInst); 8443 I++; 8444 while (I != Block.end()) { 8445 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8446 II->moveBefore(&*FirstInst); 8447 MadeChange = true; 8448 } 8449 } 8450 } 8451 return MadeChange; 8452 } 8453 8454 /// Scale down both weights to fit into uint32_t. 8455 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8456 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8457 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8458 NewTrue = NewTrue / Scale; 8459 NewFalse = NewFalse / Scale; 8460 } 8461 8462 /// Some targets prefer to split a conditional branch like: 8463 /// \code 8464 /// %0 = icmp ne i32 %a, 0 8465 /// %1 = icmp ne i32 %b, 0 8466 /// %or.cond = or i1 %0, %1 8467 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8468 /// \endcode 8469 /// into multiple branch instructions like: 8470 /// \code 8471 /// bb1: 8472 /// %0 = icmp ne i32 %a, 0 8473 /// br i1 %0, label %TrueBB, label %bb2 8474 /// bb2: 8475 /// %1 = icmp ne i32 %b, 0 8476 /// br i1 %1, label %TrueBB, label %FalseBB 8477 /// \endcode 8478 /// This usually allows instruction selection to do even further optimizations 8479 /// and combine the compare with the branch instruction. Currently this is 8480 /// applied for targets which have "cheap" jump instructions. 8481 /// 8482 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8483 /// 8484 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8485 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8486 return false; 8487 8488 bool MadeChange = false; 8489 for (auto &BB : F) { 8490 // Does this BB end with the following? 8491 // %cond1 = icmp|fcmp|binary instruction ... 8492 // %cond2 = icmp|fcmp|binary instruction ... 8493 // %cond.or = or|and i1 %cond1, cond2 8494 // br i1 %cond.or label %dest1, label %dest2" 8495 Instruction *LogicOp; 8496 BasicBlock *TBB, *FBB; 8497 if (!match(BB.getTerminator(), 8498 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8499 continue; 8500 8501 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8502 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8503 continue; 8504 8505 // The merging of mostly empty BB can cause a degenerate branch. 8506 if (TBB == FBB) 8507 continue; 8508 8509 unsigned Opc; 8510 Value *Cond1, *Cond2; 8511 if (match(LogicOp, 8512 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8513 Opc = Instruction::And; 8514 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8515 m_OneUse(m_Value(Cond2))))) 8516 Opc = Instruction::Or; 8517 else 8518 continue; 8519 8520 auto IsGoodCond = [](Value *Cond) { 8521 return match( 8522 Cond, 8523 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8524 m_LogicalOr(m_Value(), m_Value())))); 8525 }; 8526 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8527 continue; 8528 8529 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8530 8531 // Create a new BB. 8532 auto *TmpBB = 8533 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8534 BB.getParent(), BB.getNextNode()); 8535 if (IsHugeFunc) 8536 FreshBBs.insert(TmpBB); 8537 8538 // Update original basic block by using the first condition directly by the 8539 // branch instruction and removing the no longer needed and/or instruction. 8540 Br1->setCondition(Cond1); 8541 LogicOp->eraseFromParent(); 8542 8543 // Depending on the condition we have to either replace the true or the 8544 // false successor of the original branch instruction. 8545 if (Opc == Instruction::And) 8546 Br1->setSuccessor(0, TmpBB); 8547 else 8548 Br1->setSuccessor(1, TmpBB); 8549 8550 // Fill in the new basic block. 8551 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8552 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8553 I->removeFromParent(); 8554 I->insertBefore(Br2); 8555 } 8556 8557 // Update PHI nodes in both successors. The original BB needs to be 8558 // replaced in one successor's PHI nodes, because the branch comes now from 8559 // the newly generated BB (NewBB). In the other successor we need to add one 8560 // incoming edge to the PHI nodes, because both branch instructions target 8561 // now the same successor. Depending on the original branch condition 8562 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8563 // we perform the correct update for the PHI nodes. 8564 // This doesn't change the successor order of the just created branch 8565 // instruction (or any other instruction). 8566 if (Opc == Instruction::Or) 8567 std::swap(TBB, FBB); 8568 8569 // Replace the old BB with the new BB. 8570 TBB->replacePhiUsesWith(&BB, TmpBB); 8571 8572 // Add another incoming edge from the new BB. 8573 for (PHINode &PN : FBB->phis()) { 8574 auto *Val = PN.getIncomingValueForBlock(&BB); 8575 PN.addIncoming(Val, TmpBB); 8576 } 8577 8578 // Update the branch weights (from SelectionDAGBuilder:: 8579 // FindMergedConditions). 8580 if (Opc == Instruction::Or) { 8581 // Codegen X | Y as: 8582 // BB1: 8583 // jmp_if_X TBB 8584 // jmp TmpBB 8585 // TmpBB: 8586 // jmp_if_Y TBB 8587 // jmp FBB 8588 // 8589 8590 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8591 // The requirement is that 8592 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8593 // = TrueProb for original BB. 8594 // Assuming the original weights are A and B, one choice is to set BB1's 8595 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8596 // assumes that 8597 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8598 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8599 // TmpBB, but the math is more complicated. 8600 uint64_t TrueWeight, FalseWeight; 8601 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8602 uint64_t NewTrueWeight = TrueWeight; 8603 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8604 scaleWeights(NewTrueWeight, NewFalseWeight); 8605 Br1->setMetadata(LLVMContext::MD_prof, 8606 MDBuilder(Br1->getContext()) 8607 .createBranchWeights(TrueWeight, FalseWeight)); 8608 8609 NewTrueWeight = TrueWeight; 8610 NewFalseWeight = 2 * FalseWeight; 8611 scaleWeights(NewTrueWeight, NewFalseWeight); 8612 Br2->setMetadata(LLVMContext::MD_prof, 8613 MDBuilder(Br2->getContext()) 8614 .createBranchWeights(TrueWeight, FalseWeight)); 8615 } 8616 } else { 8617 // Codegen X & Y as: 8618 // BB1: 8619 // jmp_if_X TmpBB 8620 // jmp FBB 8621 // TmpBB: 8622 // jmp_if_Y TBB 8623 // jmp FBB 8624 // 8625 // This requires creation of TmpBB after CurBB. 8626 8627 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8628 // The requirement is that 8629 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8630 // = FalseProb for original BB. 8631 // Assuming the original weights are A and B, one choice is to set BB1's 8632 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8633 // assumes that 8634 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8635 uint64_t TrueWeight, FalseWeight; 8636 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8637 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8638 uint64_t NewFalseWeight = FalseWeight; 8639 scaleWeights(NewTrueWeight, NewFalseWeight); 8640 Br1->setMetadata(LLVMContext::MD_prof, 8641 MDBuilder(Br1->getContext()) 8642 .createBranchWeights(TrueWeight, FalseWeight)); 8643 8644 NewTrueWeight = 2 * TrueWeight; 8645 NewFalseWeight = FalseWeight; 8646 scaleWeights(NewTrueWeight, NewFalseWeight); 8647 Br2->setMetadata(LLVMContext::MD_prof, 8648 MDBuilder(Br2->getContext()) 8649 .createBranchWeights(TrueWeight, FalseWeight)); 8650 } 8651 } 8652 8653 ModifiedDT = ModifyDT::ModifyBBDT; 8654 MadeChange = true; 8655 8656 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8657 TmpBB->dump()); 8658 } 8659 return MadeChange; 8660 } 8661