xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision f126890ac5386406dadf7c4cfa9566cbb56537c5)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/MachineValueType.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/ProfDataUtils.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/ValueHandle.h"
76 #include "llvm/IR/ValueMap.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BlockFrequency.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
94 #include "llvm/Transforms/Utils/SizeOpts.h"
95 #include <algorithm>
96 #include <cassert>
97 #include <cstdint>
98 #include <iterator>
99 #include <limits>
100 #include <memory>
101 #include <optional>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 using namespace llvm::PatternMatch;
107 
108 #define DEBUG_TYPE "codegenprepare"
109 
110 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
114                       "sunken Cmps");
115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
116                        "of sunken Casts");
117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
118                           "computations were sunk");
119 STATISTIC(NumMemoryInstsPhiCreated,
120           "Number of phis created when address "
121           "computations were sunk to memory instructions");
122 STATISTIC(NumMemoryInstsSelectCreated,
123           "Number of select created when address "
124           "computations were sunk to memory instructions");
125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
127 STATISTIC(NumAndsAdded,
128           "Number of and mask instructions added to form ext loads");
129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
130 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
134 
135 static cl::opt<bool> DisableBranchOpts(
136     "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
137     cl::desc("Disable branch optimizations in CodeGenPrepare"));
138 
139 static cl::opt<bool>
140     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
141                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
142 
143 static cl::opt<bool>
144     DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
145                           cl::init(false),
146                           cl::desc("Disable select to branch conversion."));
147 
148 static cl::opt<bool>
149     AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
150                       cl::desc("Address sinking in CGP using GEPs."));
151 
152 static cl::opt<bool>
153     EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
154                         cl::desc("Enable sinkinig and/cmp into branches."));
155 
156 static cl::opt<bool> DisableStoreExtract(
157     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
158     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
159 
160 static cl::opt<bool> StressStoreExtract(
161     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
162     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
163 
164 static cl::opt<bool> DisableExtLdPromotion(
165     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
166     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
167              "CodeGenPrepare"));
168 
169 static cl::opt<bool> StressExtLdPromotion(
170     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
171     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
172              "optimization in CodeGenPrepare"));
173 
174 static cl::opt<bool> DisablePreheaderProtect(
175     "disable-preheader-prot", cl::Hidden, cl::init(false),
176     cl::desc("Disable protection against removing loop preheaders"));
177 
178 static cl::opt<bool> ProfileGuidedSectionPrefix(
179     "profile-guided-section-prefix", cl::Hidden, cl::init(true),
180     cl::desc("Use profile info to add section prefix for hot/cold functions"));
181 
182 static cl::opt<bool> ProfileUnknownInSpecialSection(
183     "profile-unknown-in-special-section", cl::Hidden,
184     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
185              "profile, we cannot tell the function is cold for sure because "
186              "it may be a function newly added without ever being sampled. "
187              "With the flag enabled, compiler can put such profile unknown "
188              "functions into a special section, so runtime system can choose "
189              "to handle it in a different way than .text section, to save "
190              "RAM for example. "));
191 
192 static cl::opt<bool> BBSectionsGuidedSectionPrefix(
193     "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
194     cl::desc("Use the basic-block-sections profile to determine the text "
195              "section prefix for hot functions. Functions with "
196              "basic-block-sections profile will be placed in `.text.hot` "
197              "regardless of their FDO profile info. Other functions won't be "
198              "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
199              "profiles."));
200 
201 static cl::opt<unsigned> FreqRatioToSkipMerge(
202     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
203     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
204              "(frequency of destination block) is greater than this ratio"));
205 
206 static cl::opt<bool> ForceSplitStore(
207     "force-split-store", cl::Hidden, cl::init(false),
208     cl::desc("Force store splitting no matter what the target query says."));
209 
210 static cl::opt<bool> EnableTypePromotionMerge(
211     "cgp-type-promotion-merge", cl::Hidden,
212     cl::desc("Enable merging of redundant sexts when one is dominating"
213              " the other."),
214     cl::init(true));
215 
216 static cl::opt<bool> DisableComplexAddrModes(
217     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
218     cl::desc("Disables combining addressing modes with different parts "
219              "in optimizeMemoryInst."));
220 
221 static cl::opt<bool>
222     AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
223                     cl::desc("Allow creation of Phis in Address sinking."));
224 
225 static cl::opt<bool> AddrSinkNewSelects(
226     "addr-sink-new-select", cl::Hidden, cl::init(true),
227     cl::desc("Allow creation of selects in Address sinking."));
228 
229 static cl::opt<bool> AddrSinkCombineBaseReg(
230     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
231     cl::desc("Allow combining of BaseReg field in Address sinking."));
232 
233 static cl::opt<bool> AddrSinkCombineBaseGV(
234     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
235     cl::desc("Allow combining of BaseGV field in Address sinking."));
236 
237 static cl::opt<bool> AddrSinkCombineBaseOffs(
238     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
239     cl::desc("Allow combining of BaseOffs field in Address sinking."));
240 
241 static cl::opt<bool> AddrSinkCombineScaledReg(
242     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
243     cl::desc("Allow combining of ScaledReg field in Address sinking."));
244 
245 static cl::opt<bool>
246     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
247                          cl::init(true),
248                          cl::desc("Enable splitting large offset of GEP."));
249 
250 static cl::opt<bool> EnableICMP_EQToICMP_ST(
251     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
252     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
253 
254 static cl::opt<bool>
255     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
256                      cl::desc("Enable BFI update verification for "
257                               "CodeGenPrepare."));
258 
259 static cl::opt<bool>
260     OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
261                      cl::desc("Enable converting phi types in CodeGenPrepare"));
262 
263 static cl::opt<unsigned>
264     HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
265                             cl::desc("Least BB number of huge function."));
266 
267 static cl::opt<unsigned>
268     MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
269                           cl::Hidden,
270                           cl::desc("Max number of address users to look at"));
271 namespace {
272 
273 enum ExtType {
274   ZeroExtension, // Zero extension has been seen.
275   SignExtension, // Sign extension has been seen.
276   BothExtension  // This extension type is used if we saw sext after
277                  // ZeroExtension had been set, or if we saw zext after
278                  // SignExtension had been set. It makes the type
279                  // information of a promoted instruction invalid.
280 };
281 
282 enum ModifyDT {
283   NotModifyDT, // Not Modify any DT.
284   ModifyBBDT,  // Modify the Basic Block Dominator Tree.
285   ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
286                // This usually means we move/delete/insert instruction
287                // in a Basic Block. So we should re-iterate instructions
288                // in such Basic Block.
289 };
290 
291 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
292 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
293 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
294 using SExts = SmallVector<Instruction *, 16>;
295 using ValueToSExts = MapVector<Value *, SExts>;
296 
297 class TypePromotionTransaction;
298 
299 class CodeGenPrepare : public FunctionPass {
300   const TargetMachine *TM = nullptr;
301   const TargetSubtargetInfo *SubtargetInfo = nullptr;
302   const TargetLowering *TLI = nullptr;
303   const TargetRegisterInfo *TRI = nullptr;
304   const TargetTransformInfo *TTI = nullptr;
305   const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
306   const TargetLibraryInfo *TLInfo = nullptr;
307   LoopInfo *LI = nullptr;
308   std::unique_ptr<BlockFrequencyInfo> BFI;
309   std::unique_ptr<BranchProbabilityInfo> BPI;
310   ProfileSummaryInfo *PSI = nullptr;
311 
312   /// As we scan instructions optimizing them, this is the next instruction
313   /// to optimize. Transforms that can invalidate this should update it.
314   BasicBlock::iterator CurInstIterator;
315 
316   /// Keeps track of non-local addresses that have been sunk into a block.
317   /// This allows us to avoid inserting duplicate code for blocks with
318   /// multiple load/stores of the same address. The usage of WeakTrackingVH
319   /// enables SunkAddrs to be treated as a cache whose entries can be
320   /// invalidated if a sunken address computation has been erased.
321   ValueMap<Value *, WeakTrackingVH> SunkAddrs;
322 
323   /// Keeps track of all instructions inserted for the current function.
324   SetOfInstrs InsertedInsts;
325 
326   /// Keeps track of the type of the related instruction before their
327   /// promotion for the current function.
328   InstrToOrigTy PromotedInsts;
329 
330   /// Keep track of instructions removed during promotion.
331   SetOfInstrs RemovedInsts;
332 
333   /// Keep track of sext chains based on their initial value.
334   DenseMap<Value *, Instruction *> SeenChainsForSExt;
335 
336   /// Keep track of GEPs accessing the same data structures such as structs or
337   /// arrays that are candidates to be split later because of their large
338   /// size.
339   MapVector<AssertingVH<Value>,
340             SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
341       LargeOffsetGEPMap;
342 
343   /// Keep track of new GEP base after splitting the GEPs having large offset.
344   SmallSet<AssertingVH<Value>, 2> NewGEPBases;
345 
346   /// Map serial numbers to Large offset GEPs.
347   DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
348 
349   /// Keep track of SExt promoted.
350   ValueToSExts ValToSExtendedUses;
351 
352   /// True if the function has the OptSize attribute.
353   bool OptSize;
354 
355   /// DataLayout for the Function being processed.
356   const DataLayout *DL = nullptr;
357 
358   /// Building the dominator tree can be expensive, so we only build it
359   /// lazily and update it when required.
360   std::unique_ptr<DominatorTree> DT;
361 
362 public:
363   /// If encounter huge function, we need to limit the build time.
364   bool IsHugeFunc = false;
365 
366   /// FreshBBs is like worklist, it collected the updated BBs which need
367   /// to be optimized again.
368   /// Note: Consider building time in this pass, when a BB updated, we need
369   /// to insert such BB into FreshBBs for huge function.
370   SmallSet<BasicBlock *, 32> FreshBBs;
371 
372   static char ID; // Pass identification, replacement for typeid
373 
374   CodeGenPrepare() : FunctionPass(ID) {
375     initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
376   }
377 
378   bool runOnFunction(Function &F) override;
379 
380   void releaseMemory() override {
381     // Clear per function information.
382     InsertedInsts.clear();
383     PromotedInsts.clear();
384     FreshBBs.clear();
385     BPI.reset();
386     BFI.reset();
387   }
388 
389   StringRef getPassName() const override { return "CodeGen Prepare"; }
390 
391   void getAnalysisUsage(AnalysisUsage &AU) const override {
392     // FIXME: When we can selectively preserve passes, preserve the domtree.
393     AU.addRequired<ProfileSummaryInfoWrapperPass>();
394     AU.addRequired<TargetLibraryInfoWrapperPass>();
395     AU.addRequired<TargetPassConfig>();
396     AU.addRequired<TargetTransformInfoWrapperPass>();
397     AU.addRequired<LoopInfoWrapperPass>();
398     AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>();
399   }
400 
401 private:
402   template <typename F>
403   void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
404     // Substituting can cause recursive simplifications, which can invalidate
405     // our iterator.  Use a WeakTrackingVH to hold onto it in case this
406     // happens.
407     Value *CurValue = &*CurInstIterator;
408     WeakTrackingVH IterHandle(CurValue);
409 
410     f();
411 
412     // If the iterator instruction was recursively deleted, start over at the
413     // start of the block.
414     if (IterHandle != CurValue) {
415       CurInstIterator = BB->begin();
416       SunkAddrs.clear();
417     }
418   }
419 
420   // Get the DominatorTree, building if necessary.
421   DominatorTree &getDT(Function &F) {
422     if (!DT)
423       DT = std::make_unique<DominatorTree>(F);
424     return *DT;
425   }
426 
427   void removeAllAssertingVHReferences(Value *V);
428   bool eliminateAssumptions(Function &F);
429   bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
430   bool eliminateMostlyEmptyBlocks(Function &F);
431   BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
432   bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
433   void eliminateMostlyEmptyBlock(BasicBlock *BB);
434   bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
435                                      bool isPreheader);
436   bool makeBitReverse(Instruction &I);
437   bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
438   bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
439   bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
440                           unsigned AddrSpace);
441   bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
442   bool optimizeInlineAsmInst(CallInst *CS);
443   bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
444   bool optimizeExt(Instruction *&I);
445   bool optimizeExtUses(Instruction *I);
446   bool optimizeLoadExt(LoadInst *Load);
447   bool optimizeShiftInst(BinaryOperator *BO);
448   bool optimizeFunnelShift(IntrinsicInst *Fsh);
449   bool optimizeSelectInst(SelectInst *SI);
450   bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
451   bool optimizeSwitchType(SwitchInst *SI);
452   bool optimizeSwitchPhiConstants(SwitchInst *SI);
453   bool optimizeSwitchInst(SwitchInst *SI);
454   bool optimizeExtractElementInst(Instruction *Inst);
455   bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
456   bool fixupDbgValue(Instruction *I);
457   bool placeDbgValues(Function &F);
458   bool placePseudoProbes(Function &F);
459   bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
460                     LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
461   bool tryToPromoteExts(TypePromotionTransaction &TPT,
462                         const SmallVectorImpl<Instruction *> &Exts,
463                         SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
464                         unsigned CreatedInstsCost = 0);
465   bool mergeSExts(Function &F);
466   bool splitLargeGEPOffsets();
467   bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
468                        SmallPtrSetImpl<Instruction *> &DeletedInstrs);
469   bool optimizePhiTypes(Function &F);
470   bool performAddressTypePromotion(
471       Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
472       bool HasPromoted, TypePromotionTransaction &TPT,
473       SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
474   bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
475   bool simplifyOffsetableRelocate(GCStatepointInst &I);
476 
477   bool tryToSinkFreeOperands(Instruction *I);
478   bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
479                                    CmpInst *Cmp, Intrinsic::ID IID);
480   bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
481   bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
482   bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
483   void verifyBFIUpdates(Function &F);
484 };
485 
486 } // end anonymous namespace
487 
488 char CodeGenPrepare::ID = 0;
489 
490 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
491                       "Optimize for code generation", false, false)
492 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader)
493 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
494 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
495 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
496 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
497 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
498 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation",
499                     false, false)
500 
501 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
502 
503 bool CodeGenPrepare::runOnFunction(Function &F) {
504   if (skipFunction(F))
505     return false;
506 
507   DL = &F.getParent()->getDataLayout();
508 
509   bool EverMadeChange = false;
510 
511   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
512   SubtargetInfo = TM->getSubtargetImpl(F);
513   TLI = SubtargetInfo->getTargetLowering();
514   TRI = SubtargetInfo->getRegisterInfo();
515   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
516   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
517   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
518   BPI.reset(new BranchProbabilityInfo(F, *LI));
519   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
520   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
521   BBSectionsProfileReader =
522       getAnalysisIfAvailable<BasicBlockSectionsProfileReader>();
523   OptSize = F.hasOptSize();
524   // Use the basic-block-sections profile to promote hot functions to .text.hot
525   // if requested.
526   if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
527       BBSectionsProfileReader->isFunctionHot(F.getName())) {
528     F.setSectionPrefix("hot");
529   } else if (ProfileGuidedSectionPrefix) {
530     // The hot attribute overwrites profile count based hotness while profile
531     // counts based hotness overwrite the cold attribute.
532     // This is a conservative behabvior.
533     if (F.hasFnAttribute(Attribute::Hot) ||
534         PSI->isFunctionHotInCallGraph(&F, *BFI))
535       F.setSectionPrefix("hot");
536     // If PSI shows this function is not hot, we will placed the function
537     // into unlikely section if (1) PSI shows this is a cold function, or
538     // (2) the function has a attribute of cold.
539     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
540              F.hasFnAttribute(Attribute::Cold))
541       F.setSectionPrefix("unlikely");
542     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
543              PSI->isFunctionHotnessUnknown(F))
544       F.setSectionPrefix("unknown");
545   }
546 
547   /// This optimization identifies DIV instructions that can be
548   /// profitably bypassed and carried out with a shorter, faster divide.
549   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
550     const DenseMap<unsigned int, unsigned int> &BypassWidths =
551         TLI->getBypassSlowDivWidths();
552     BasicBlock *BB = &*F.begin();
553     while (BB != nullptr) {
554       // bypassSlowDivision may create new BBs, but we don't want to reapply the
555       // optimization to those blocks.
556       BasicBlock *Next = BB->getNextNode();
557       // F.hasOptSize is already checked in the outer if statement.
558       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
559         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
560       BB = Next;
561     }
562   }
563 
564   // Get rid of @llvm.assume builtins before attempting to eliminate empty
565   // blocks, since there might be blocks that only contain @llvm.assume calls
566   // (plus arguments that we can get rid of).
567   EverMadeChange |= eliminateAssumptions(F);
568 
569   // Eliminate blocks that contain only PHI nodes and an
570   // unconditional branch.
571   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
572 
573   ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
574   if (!DisableBranchOpts)
575     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
576 
577   // Split some critical edges where one of the sources is an indirect branch,
578   // to help generate sane code for PHIs involving such edges.
579   EverMadeChange |=
580       SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
581 
582   // If we are optimzing huge function, we need to consider the build time.
583   // Because the basic algorithm's complex is near O(N!).
584   IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
585 
586   // Transformations above may invalidate dominator tree and/or loop info.
587   DT.reset();
588   LI->releaseMemory();
589   LI->analyze(getDT(F));
590 
591   bool MadeChange = true;
592   bool FuncIterated = false;
593   while (MadeChange) {
594     MadeChange = false;
595 
596     for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
597       if (FuncIterated && !FreshBBs.contains(&BB))
598         continue;
599 
600       ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
601       bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
602 
603       if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
604         DT.reset();
605 
606       MadeChange |= Changed;
607       if (IsHugeFunc) {
608         // If the BB is updated, it may still has chance to be optimized.
609         // This usually happen at sink optimization.
610         // For example:
611         //
612         // bb0:
613         // %and = and i32 %a, 4
614         // %cmp = icmp eq i32 %and, 0
615         //
616         // If the %cmp sink to other BB, the %and will has chance to sink.
617         if (Changed)
618           FreshBBs.insert(&BB);
619         else if (FuncIterated)
620           FreshBBs.erase(&BB);
621       } else {
622         // For small/normal functions, we restart BB iteration if the dominator
623         // tree of the Function was changed.
624         if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
625           break;
626       }
627     }
628     // We have iterated all the BB in the (only work for huge) function.
629     FuncIterated = IsHugeFunc;
630 
631     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
632       MadeChange |= mergeSExts(F);
633     if (!LargeOffsetGEPMap.empty())
634       MadeChange |= splitLargeGEPOffsets();
635     MadeChange |= optimizePhiTypes(F);
636 
637     if (MadeChange)
638       eliminateFallThrough(F, DT.get());
639 
640 #ifndef NDEBUG
641     if (MadeChange && VerifyLoopInfo)
642       LI->verify(getDT(F));
643 #endif
644 
645     // Really free removed instructions during promotion.
646     for (Instruction *I : RemovedInsts)
647       I->deleteValue();
648 
649     EverMadeChange |= MadeChange;
650     SeenChainsForSExt.clear();
651     ValToSExtendedUses.clear();
652     RemovedInsts.clear();
653     LargeOffsetGEPMap.clear();
654     LargeOffsetGEPID.clear();
655   }
656 
657   NewGEPBases.clear();
658   SunkAddrs.clear();
659 
660   if (!DisableBranchOpts) {
661     MadeChange = false;
662     // Use a set vector to get deterministic iteration order. The order the
663     // blocks are removed may affect whether or not PHI nodes in successors
664     // are removed.
665     SmallSetVector<BasicBlock *, 8> WorkList;
666     for (BasicBlock &BB : F) {
667       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
668       MadeChange |= ConstantFoldTerminator(&BB, true);
669       if (!MadeChange)
670         continue;
671 
672       for (BasicBlock *Succ : Successors)
673         if (pred_empty(Succ))
674           WorkList.insert(Succ);
675     }
676 
677     // Delete the dead blocks and any of their dead successors.
678     MadeChange |= !WorkList.empty();
679     while (!WorkList.empty()) {
680       BasicBlock *BB = WorkList.pop_back_val();
681       SmallVector<BasicBlock *, 2> Successors(successors(BB));
682 
683       DeleteDeadBlock(BB);
684 
685       for (BasicBlock *Succ : Successors)
686         if (pred_empty(Succ))
687           WorkList.insert(Succ);
688     }
689 
690     // Merge pairs of basic blocks with unconditional branches, connected by
691     // a single edge.
692     if (EverMadeChange || MadeChange)
693       MadeChange |= eliminateFallThrough(F);
694 
695     EverMadeChange |= MadeChange;
696   }
697 
698   if (!DisableGCOpts) {
699     SmallVector<GCStatepointInst *, 2> Statepoints;
700     for (BasicBlock &BB : F)
701       for (Instruction &I : BB)
702         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
703           Statepoints.push_back(SP);
704     for (auto &I : Statepoints)
705       EverMadeChange |= simplifyOffsetableRelocate(*I);
706   }
707 
708   // Do this last to clean up use-before-def scenarios introduced by other
709   // preparatory transforms.
710   EverMadeChange |= placeDbgValues(F);
711   EverMadeChange |= placePseudoProbes(F);
712 
713 #ifndef NDEBUG
714   if (VerifyBFIUpdates)
715     verifyBFIUpdates(F);
716 #endif
717 
718   return EverMadeChange;
719 }
720 
721 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
722   bool MadeChange = false;
723   for (BasicBlock &BB : F) {
724     CurInstIterator = BB.begin();
725     while (CurInstIterator != BB.end()) {
726       Instruction *I = &*(CurInstIterator++);
727       if (auto *Assume = dyn_cast<AssumeInst>(I)) {
728         MadeChange = true;
729         Value *Operand = Assume->getOperand(0);
730         Assume->eraseFromParent();
731 
732         resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
733           RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
734         });
735       }
736     }
737   }
738   return MadeChange;
739 }
740 
741 /// An instruction is about to be deleted, so remove all references to it in our
742 /// GEP-tracking data strcutures.
743 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
744   LargeOffsetGEPMap.erase(V);
745   NewGEPBases.erase(V);
746 
747   auto GEP = dyn_cast<GetElementPtrInst>(V);
748   if (!GEP)
749     return;
750 
751   LargeOffsetGEPID.erase(GEP);
752 
753   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
754   if (VecI == LargeOffsetGEPMap.end())
755     return;
756 
757   auto &GEPVector = VecI->second;
758   llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
759 
760   if (GEPVector.empty())
761     LargeOffsetGEPMap.erase(VecI);
762 }
763 
764 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
765 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
766   DominatorTree NewDT(F);
767   LoopInfo NewLI(NewDT);
768   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
769   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
770   NewBFI.verifyMatch(*BFI);
771 }
772 
773 /// Merge basic blocks which are connected by a single edge, where one of the
774 /// basic blocks has a single successor pointing to the other basic block,
775 /// which has a single predecessor.
776 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
777   bool Changed = false;
778   // Scan all of the blocks in the function, except for the entry block.
779   // Use a temporary array to avoid iterator being invalidated when
780   // deleting blocks.
781   SmallVector<WeakTrackingVH, 16> Blocks;
782   for (auto &Block : llvm::drop_begin(F))
783     Blocks.push_back(&Block);
784 
785   SmallSet<WeakTrackingVH, 16> Preds;
786   for (auto &Block : Blocks) {
787     auto *BB = cast_or_null<BasicBlock>(Block);
788     if (!BB)
789       continue;
790     // If the destination block has a single pred, then this is a trivial
791     // edge, just collapse it.
792     BasicBlock *SinglePred = BB->getSinglePredecessor();
793 
794     // Don't merge if BB's address is taken.
795     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
796       continue;
797 
798     // Make an effort to skip unreachable blocks.
799     if (DT && !DT->isReachableFromEntry(BB))
800       continue;
801 
802     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
803     if (Term && !Term->isConditional()) {
804       Changed = true;
805       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
806 
807       // Merge BB into SinglePred and delete it.
808       MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
809                                 /* MemDep */ nullptr,
810                                 /* PredecessorWithTwoSuccessors */ false, DT);
811       Preds.insert(SinglePred);
812 
813       if (IsHugeFunc) {
814         // Update FreshBBs to optimize the merged BB.
815         FreshBBs.insert(SinglePred);
816         FreshBBs.erase(BB);
817       }
818     }
819   }
820 
821   // (Repeatedly) merging blocks into their predecessors can create redundant
822   // debug intrinsics.
823   for (const auto &Pred : Preds)
824     if (auto *BB = cast_or_null<BasicBlock>(Pred))
825       RemoveRedundantDbgInstrs(BB);
826 
827   return Changed;
828 }
829 
830 /// Find a destination block from BB if BB is mergeable empty block.
831 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
832   // If this block doesn't end with an uncond branch, ignore it.
833   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
834   if (!BI || !BI->isUnconditional())
835     return nullptr;
836 
837   // If the instruction before the branch (skipping debug info) isn't a phi
838   // node, then other stuff is happening here.
839   BasicBlock::iterator BBI = BI->getIterator();
840   if (BBI != BB->begin()) {
841     --BBI;
842     while (isa<DbgInfoIntrinsic>(BBI)) {
843       if (BBI == BB->begin())
844         break;
845       --BBI;
846     }
847     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
848       return nullptr;
849   }
850 
851   // Do not break infinite loops.
852   BasicBlock *DestBB = BI->getSuccessor(0);
853   if (DestBB == BB)
854     return nullptr;
855 
856   if (!canMergeBlocks(BB, DestBB))
857     DestBB = nullptr;
858 
859   return DestBB;
860 }
861 
862 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
863 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
864 /// edges in ways that are non-optimal for isel. Start by eliminating these
865 /// blocks so we can split them the way we want them.
866 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
867   SmallPtrSet<BasicBlock *, 16> Preheaders;
868   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
869   while (!LoopList.empty()) {
870     Loop *L = LoopList.pop_back_val();
871     llvm::append_range(LoopList, *L);
872     if (BasicBlock *Preheader = L->getLoopPreheader())
873       Preheaders.insert(Preheader);
874   }
875 
876   bool MadeChange = false;
877   // Copy blocks into a temporary array to avoid iterator invalidation issues
878   // as we remove them.
879   // Note that this intentionally skips the entry block.
880   SmallVector<WeakTrackingVH, 16> Blocks;
881   for (auto &Block : llvm::drop_begin(F))
882     Blocks.push_back(&Block);
883 
884   for (auto &Block : Blocks) {
885     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
886     if (!BB)
887       continue;
888     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
889     if (!DestBB ||
890         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
891       continue;
892 
893     eliminateMostlyEmptyBlock(BB);
894     MadeChange = true;
895   }
896   return MadeChange;
897 }
898 
899 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
900                                                    BasicBlock *DestBB,
901                                                    bool isPreheader) {
902   // Do not delete loop preheaders if doing so would create a critical edge.
903   // Loop preheaders can be good locations to spill registers. If the
904   // preheader is deleted and we create a critical edge, registers may be
905   // spilled in the loop body instead.
906   if (!DisablePreheaderProtect && isPreheader &&
907       !(BB->getSinglePredecessor() &&
908         BB->getSinglePredecessor()->getSingleSuccessor()))
909     return false;
910 
911   // Skip merging if the block's successor is also a successor to any callbr
912   // that leads to this block.
913   // FIXME: Is this really needed? Is this a correctness issue?
914   for (BasicBlock *Pred : predecessors(BB)) {
915     if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
916       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
917         if (DestBB == CBI->getSuccessor(i))
918           return false;
919   }
920 
921   // Try to skip merging if the unique predecessor of BB is terminated by a
922   // switch or indirect branch instruction, and BB is used as an incoming block
923   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
924   // add COPY instructions in the predecessor of BB instead of BB (if it is not
925   // merged). Note that the critical edge created by merging such blocks wont be
926   // split in MachineSink because the jump table is not analyzable. By keeping
927   // such empty block (BB), ISel will place COPY instructions in BB, not in the
928   // predecessor of BB.
929   BasicBlock *Pred = BB->getUniquePredecessor();
930   if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
931                  isa<IndirectBrInst>(Pred->getTerminator())))
932     return true;
933 
934   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
935     return true;
936 
937   // We use a simple cost heuristic which determine skipping merging is
938   // profitable if the cost of skipping merging is less than the cost of
939   // merging : Cost(skipping merging) < Cost(merging BB), where the
940   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
941   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
942   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
943   //   Freq(Pred) / Freq(BB) > 2.
944   // Note that if there are multiple empty blocks sharing the same incoming
945   // value for the PHIs in the DestBB, we consider them together. In such
946   // case, Cost(merging BB) will be the sum of their frequencies.
947 
948   if (!isa<PHINode>(DestBB->begin()))
949     return true;
950 
951   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
952 
953   // Find all other incoming blocks from which incoming values of all PHIs in
954   // DestBB are the same as the ones from BB.
955   for (BasicBlock *DestBBPred : predecessors(DestBB)) {
956     if (DestBBPred == BB)
957       continue;
958 
959     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
960           return DestPN.getIncomingValueForBlock(BB) ==
961                  DestPN.getIncomingValueForBlock(DestBBPred);
962         }))
963       SameIncomingValueBBs.insert(DestBBPred);
964   }
965 
966   // See if all BB's incoming values are same as the value from Pred. In this
967   // case, no reason to skip merging because COPYs are expected to be place in
968   // Pred already.
969   if (SameIncomingValueBBs.count(Pred))
970     return true;
971 
972   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
973   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
974 
975   for (auto *SameValueBB : SameIncomingValueBBs)
976     if (SameValueBB->getUniquePredecessor() == Pred &&
977         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
978       BBFreq += BFI->getBlockFreq(SameValueBB);
979 
980   return PredFreq.getFrequency() <=
981          BBFreq.getFrequency() * FreqRatioToSkipMerge;
982 }
983 
984 /// Return true if we can merge BB into DestBB if there is a single
985 /// unconditional branch between them, and BB contains no other non-phi
986 /// instructions.
987 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
988                                     const BasicBlock *DestBB) const {
989   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
990   // the successor.  If there are more complex condition (e.g. preheaders),
991   // don't mess around with them.
992   for (const PHINode &PN : BB->phis()) {
993     for (const User *U : PN.users()) {
994       const Instruction *UI = cast<Instruction>(U);
995       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
996         return false;
997       // If User is inside DestBB block and it is a PHINode then check
998       // incoming value. If incoming value is not from BB then this is
999       // a complex condition (e.g. preheaders) we want to avoid here.
1000       if (UI->getParent() == DestBB) {
1001         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1002           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1003             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1004             if (Insn && Insn->getParent() == BB &&
1005                 Insn->getParent() != UPN->getIncomingBlock(I))
1006               return false;
1007           }
1008       }
1009     }
1010   }
1011 
1012   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1013   // and DestBB may have conflicting incoming values for the block.  If so, we
1014   // can't merge the block.
1015   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1016   if (!DestBBPN)
1017     return true; // no conflict.
1018 
1019   // Collect the preds of BB.
1020   SmallPtrSet<const BasicBlock *, 16> BBPreds;
1021   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1022     // It is faster to get preds from a PHI than with pred_iterator.
1023     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1024       BBPreds.insert(BBPN->getIncomingBlock(i));
1025   } else {
1026     BBPreds.insert(pred_begin(BB), pred_end(BB));
1027   }
1028 
1029   // Walk the preds of DestBB.
1030   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1031     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1032     if (BBPreds.count(Pred)) { // Common predecessor?
1033       for (const PHINode &PN : DestBB->phis()) {
1034         const Value *V1 = PN.getIncomingValueForBlock(Pred);
1035         const Value *V2 = PN.getIncomingValueForBlock(BB);
1036 
1037         // If V2 is a phi node in BB, look up what the mapped value will be.
1038         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1039           if (V2PN->getParent() == BB)
1040             V2 = V2PN->getIncomingValueForBlock(Pred);
1041 
1042         // If there is a conflict, bail out.
1043         if (V1 != V2)
1044           return false;
1045       }
1046     }
1047   }
1048 
1049   return true;
1050 }
1051 
1052 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1053 static void replaceAllUsesWith(Value *Old, Value *New,
1054                                SmallSet<BasicBlock *, 32> &FreshBBs,
1055                                bool IsHuge) {
1056   auto *OldI = dyn_cast<Instruction>(Old);
1057   if (OldI) {
1058     for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1059          UI != E; ++UI) {
1060       Instruction *User = cast<Instruction>(*UI);
1061       if (IsHuge)
1062         FreshBBs.insert(User->getParent());
1063     }
1064   }
1065   Old->replaceAllUsesWith(New);
1066 }
1067 
1068 /// Eliminate a basic block that has only phi's and an unconditional branch in
1069 /// it.
1070 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1071   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1072   BasicBlock *DestBB = BI->getSuccessor(0);
1073 
1074   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1075                     << *BB << *DestBB);
1076 
1077   // If the destination block has a single pred, then this is a trivial edge,
1078   // just collapse it.
1079   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1080     if (SinglePred != DestBB) {
1081       assert(SinglePred == BB &&
1082              "Single predecessor not the same as predecessor");
1083       // Merge DestBB into SinglePred/BB and delete it.
1084       MergeBlockIntoPredecessor(DestBB);
1085       // Note: BB(=SinglePred) will not be deleted on this path.
1086       // DestBB(=its single successor) is the one that was deleted.
1087       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1088 
1089       if (IsHugeFunc) {
1090         // Update FreshBBs to optimize the merged BB.
1091         FreshBBs.insert(SinglePred);
1092         FreshBBs.erase(DestBB);
1093       }
1094       return;
1095     }
1096   }
1097 
1098   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
1099   // to handle the new incoming edges it is about to have.
1100   for (PHINode &PN : DestBB->phis()) {
1101     // Remove the incoming value for BB, and remember it.
1102     Value *InVal = PN.removeIncomingValue(BB, false);
1103 
1104     // Two options: either the InVal is a phi node defined in BB or it is some
1105     // value that dominates BB.
1106     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1107     if (InValPhi && InValPhi->getParent() == BB) {
1108       // Add all of the input values of the input PHI as inputs of this phi.
1109       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1110         PN.addIncoming(InValPhi->getIncomingValue(i),
1111                        InValPhi->getIncomingBlock(i));
1112     } else {
1113       // Otherwise, add one instance of the dominating value for each edge that
1114       // we will be adding.
1115       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1116         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1117           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1118       } else {
1119         for (BasicBlock *Pred : predecessors(BB))
1120           PN.addIncoming(InVal, Pred);
1121       }
1122     }
1123   }
1124 
1125   // The PHIs are now updated, change everything that refers to BB to use
1126   // DestBB and remove BB.
1127   BB->replaceAllUsesWith(DestBB);
1128   BB->eraseFromParent();
1129   ++NumBlocksElim;
1130 
1131   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1132 }
1133 
1134 // Computes a map of base pointer relocation instructions to corresponding
1135 // derived pointer relocation instructions given a vector of all relocate calls
1136 static void computeBaseDerivedRelocateMap(
1137     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1138     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1139         &RelocateInstMap) {
1140   // Collect information in two maps: one primarily for locating the base object
1141   // while filling the second map; the second map is the final structure holding
1142   // a mapping between Base and corresponding Derived relocate calls
1143   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1144   for (auto *ThisRelocate : AllRelocateCalls) {
1145     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1146                             ThisRelocate->getDerivedPtrIndex());
1147     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1148   }
1149   for (auto &Item : RelocateIdxMap) {
1150     std::pair<unsigned, unsigned> Key = Item.first;
1151     if (Key.first == Key.second)
1152       // Base relocation: nothing to insert
1153       continue;
1154 
1155     GCRelocateInst *I = Item.second;
1156     auto BaseKey = std::make_pair(Key.first, Key.first);
1157 
1158     // We're iterating over RelocateIdxMap so we cannot modify it.
1159     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1160     if (MaybeBase == RelocateIdxMap.end())
1161       // TODO: We might want to insert a new base object relocate and gep off
1162       // that, if there are enough derived object relocates.
1163       continue;
1164 
1165     RelocateInstMap[MaybeBase->second].push_back(I);
1166   }
1167 }
1168 
1169 // Accepts a GEP and extracts the operands into a vector provided they're all
1170 // small integer constants
1171 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1172                                           SmallVectorImpl<Value *> &OffsetV) {
1173   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1174     // Only accept small constant integer operands
1175     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1176     if (!Op || Op->getZExtValue() > 20)
1177       return false;
1178   }
1179 
1180   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1181     OffsetV.push_back(GEP->getOperand(i));
1182   return true;
1183 }
1184 
1185 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1186 // replace, computes a replacement, and affects it.
1187 static bool
1188 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1189                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1190   bool MadeChange = false;
1191   // We must ensure the relocation of derived pointer is defined after
1192   // relocation of base pointer. If we find a relocation corresponding to base
1193   // defined earlier than relocation of base then we move relocation of base
1194   // right before found relocation. We consider only relocation in the same
1195   // basic block as relocation of base. Relocations from other basic block will
1196   // be skipped by optimization and we do not care about them.
1197   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1198        &*R != RelocatedBase; ++R)
1199     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1200       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1201         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1202           RelocatedBase->moveBefore(RI);
1203           break;
1204         }
1205 
1206   for (GCRelocateInst *ToReplace : Targets) {
1207     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1208            "Not relocating a derived object of the original base object");
1209     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1210       // A duplicate relocate call. TODO: coalesce duplicates.
1211       continue;
1212     }
1213 
1214     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1215       // Base and derived relocates are in different basic blocks.
1216       // In this case transform is only valid when base dominates derived
1217       // relocate. However it would be too expensive to check dominance
1218       // for each such relocate, so we skip the whole transformation.
1219       continue;
1220     }
1221 
1222     Value *Base = ToReplace->getBasePtr();
1223     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1224     if (!Derived || Derived->getPointerOperand() != Base)
1225       continue;
1226 
1227     SmallVector<Value *, 2> OffsetV;
1228     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1229       continue;
1230 
1231     // Create a Builder and replace the target callsite with a gep
1232     assert(RelocatedBase->getNextNode() &&
1233            "Should always have one since it's not a terminator");
1234 
1235     // Insert after RelocatedBase
1236     IRBuilder<> Builder(RelocatedBase->getNextNode());
1237     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1238 
1239     // If gc_relocate does not match the actual type, cast it to the right type.
1240     // In theory, there must be a bitcast after gc_relocate if the type does not
1241     // match, and we should reuse it to get the derived pointer. But it could be
1242     // cases like this:
1243     // bb1:
1244     //  ...
1245     //  %g1 = call coldcc i8 addrspace(1)*
1246     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1247     //
1248     // bb2:
1249     //  ...
1250     //  %g2 = call coldcc i8 addrspace(1)*
1251     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1252     //
1253     // merge:
1254     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1255     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1256     //
1257     // In this case, we can not find the bitcast any more. So we insert a new
1258     // bitcast no matter there is already one or not. In this way, we can handle
1259     // all cases, and the extra bitcast should be optimized away in later
1260     // passes.
1261     Value *ActualRelocatedBase = RelocatedBase;
1262     if (RelocatedBase->getType() != Base->getType()) {
1263       ActualRelocatedBase =
1264           Builder.CreateBitCast(RelocatedBase, Base->getType());
1265     }
1266     Value *Replacement =
1267         Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1268                           ArrayRef(OffsetV));
1269     Replacement->takeName(ToReplace);
1270     // If the newly generated derived pointer's type does not match the original
1271     // derived pointer's type, cast the new derived pointer to match it. Same
1272     // reasoning as above.
1273     Value *ActualReplacement = Replacement;
1274     if (Replacement->getType() != ToReplace->getType()) {
1275       ActualReplacement =
1276           Builder.CreateBitCast(Replacement, ToReplace->getType());
1277     }
1278     ToReplace->replaceAllUsesWith(ActualReplacement);
1279     ToReplace->eraseFromParent();
1280 
1281     MadeChange = true;
1282   }
1283   return MadeChange;
1284 }
1285 
1286 // Turns this:
1287 //
1288 // %base = ...
1289 // %ptr = gep %base + 15
1290 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1291 // %base' = relocate(%tok, i32 4, i32 4)
1292 // %ptr' = relocate(%tok, i32 4, i32 5)
1293 // %val = load %ptr'
1294 //
1295 // into this:
1296 //
1297 // %base = ...
1298 // %ptr = gep %base + 15
1299 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1300 // %base' = gc.relocate(%tok, i32 4, i32 4)
1301 // %ptr' = gep %base' + 15
1302 // %val = load %ptr'
1303 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1304   bool MadeChange = false;
1305   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1306   for (auto *U : I.users())
1307     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1308       // Collect all the relocate calls associated with a statepoint
1309       AllRelocateCalls.push_back(Relocate);
1310 
1311   // We need at least one base pointer relocation + one derived pointer
1312   // relocation to mangle
1313   if (AllRelocateCalls.size() < 2)
1314     return false;
1315 
1316   // RelocateInstMap is a mapping from the base relocate instruction to the
1317   // corresponding derived relocate instructions
1318   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1319   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1320   if (RelocateInstMap.empty())
1321     return false;
1322 
1323   for (auto &Item : RelocateInstMap)
1324     // Item.first is the RelocatedBase to offset against
1325     // Item.second is the vector of Targets to replace
1326     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1327   return MadeChange;
1328 }
1329 
1330 /// Sink the specified cast instruction into its user blocks.
1331 static bool SinkCast(CastInst *CI) {
1332   BasicBlock *DefBB = CI->getParent();
1333 
1334   /// InsertedCasts - Only insert a cast in each block once.
1335   DenseMap<BasicBlock *, CastInst *> InsertedCasts;
1336 
1337   bool MadeChange = false;
1338   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1339        UI != E;) {
1340     Use &TheUse = UI.getUse();
1341     Instruction *User = cast<Instruction>(*UI);
1342 
1343     // Figure out which BB this cast is used in.  For PHI's this is the
1344     // appropriate predecessor block.
1345     BasicBlock *UserBB = User->getParent();
1346     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1347       UserBB = PN->getIncomingBlock(TheUse);
1348     }
1349 
1350     // Preincrement use iterator so we don't invalidate it.
1351     ++UI;
1352 
1353     // The first insertion point of a block containing an EH pad is after the
1354     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1355     if (User->isEHPad())
1356       continue;
1357 
1358     // If the block selected to receive the cast is an EH pad that does not
1359     // allow non-PHI instructions before the terminator, we can't sink the
1360     // cast.
1361     if (UserBB->getTerminator()->isEHPad())
1362       continue;
1363 
1364     // If this user is in the same block as the cast, don't change the cast.
1365     if (UserBB == DefBB)
1366       continue;
1367 
1368     // If we have already inserted a cast into this block, use it.
1369     CastInst *&InsertedCast = InsertedCasts[UserBB];
1370 
1371     if (!InsertedCast) {
1372       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1373       assert(InsertPt != UserBB->end());
1374       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1375                                       CI->getType(), "", &*InsertPt);
1376       InsertedCast->setDebugLoc(CI->getDebugLoc());
1377     }
1378 
1379     // Replace a use of the cast with a use of the new cast.
1380     TheUse = InsertedCast;
1381     MadeChange = true;
1382     ++NumCastUses;
1383   }
1384 
1385   // If we removed all uses, nuke the cast.
1386   if (CI->use_empty()) {
1387     salvageDebugInfo(*CI);
1388     CI->eraseFromParent();
1389     MadeChange = true;
1390   }
1391 
1392   return MadeChange;
1393 }
1394 
1395 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1396 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1397 /// reduce the number of virtual registers that must be created and coalesced.
1398 ///
1399 /// Return true if any changes are made.
1400 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1401                                        const DataLayout &DL) {
1402   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1403   // than sinking only nop casts, but is helpful on some platforms.
1404   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1405     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1406                                  ASC->getDestAddressSpace()))
1407       return false;
1408   }
1409 
1410   // If this is a noop copy,
1411   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1412   EVT DstVT = TLI.getValueType(DL, CI->getType());
1413 
1414   // This is an fp<->int conversion?
1415   if (SrcVT.isInteger() != DstVT.isInteger())
1416     return false;
1417 
1418   // If this is an extension, it will be a zero or sign extension, which
1419   // isn't a noop.
1420   if (SrcVT.bitsLT(DstVT))
1421     return false;
1422 
1423   // If these values will be promoted, find out what they will be promoted
1424   // to.  This helps us consider truncates on PPC as noop copies when they
1425   // are.
1426   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1427       TargetLowering::TypePromoteInteger)
1428     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1429   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1430       TargetLowering::TypePromoteInteger)
1431     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1432 
1433   // If, after promotion, these are the same types, this is a noop copy.
1434   if (SrcVT != DstVT)
1435     return false;
1436 
1437   return SinkCast(CI);
1438 }
1439 
1440 // Match a simple increment by constant operation.  Note that if a sub is
1441 // matched, the step is negated (as if the step had been canonicalized to
1442 // an add, even though we leave the instruction alone.)
1443 bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1444                     Constant *&Step) {
1445   if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1446       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1447                        m_Instruction(LHS), m_Constant(Step)))))
1448     return true;
1449   if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1450       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1451                        m_Instruction(LHS), m_Constant(Step))))) {
1452     Step = ConstantExpr::getNeg(Step);
1453     return true;
1454   }
1455   return false;
1456 }
1457 
1458 /// If given \p PN is an inductive variable with value IVInc coming from the
1459 /// backedge, and on each iteration it gets increased by Step, return pair
1460 /// <IVInc, Step>. Otherwise, return std::nullopt.
1461 static std::optional<std::pair<Instruction *, Constant *>>
1462 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1463   const Loop *L = LI->getLoopFor(PN->getParent());
1464   if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1465     return std::nullopt;
1466   auto *IVInc =
1467       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1468   if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1469     return std::nullopt;
1470   Instruction *LHS = nullptr;
1471   Constant *Step = nullptr;
1472   if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1473     return std::make_pair(IVInc, Step);
1474   return std::nullopt;
1475 }
1476 
1477 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1478   auto *I = dyn_cast<Instruction>(V);
1479   if (!I)
1480     return false;
1481   Instruction *LHS = nullptr;
1482   Constant *Step = nullptr;
1483   if (!matchIncrement(I, LHS, Step))
1484     return false;
1485   if (auto *PN = dyn_cast<PHINode>(LHS))
1486     if (auto IVInc = getIVIncrement(PN, LI))
1487       return IVInc->first == I;
1488   return false;
1489 }
1490 
1491 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1492                                                  Value *Arg0, Value *Arg1,
1493                                                  CmpInst *Cmp,
1494                                                  Intrinsic::ID IID) {
1495   auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1496     if (!isIVIncrement(BO, LI))
1497       return false;
1498     const Loop *L = LI->getLoopFor(BO->getParent());
1499     assert(L && "L should not be null after isIVIncrement()");
1500     // Do not risk on moving increment into a child loop.
1501     if (LI->getLoopFor(Cmp->getParent()) != L)
1502       return false;
1503 
1504     // Finally, we need to ensure that the insert point will dominate all
1505     // existing uses of the increment.
1506 
1507     auto &DT = getDT(*BO->getParent()->getParent());
1508     if (DT.dominates(Cmp->getParent(), BO->getParent()))
1509       // If we're moving up the dom tree, all uses are trivially dominated.
1510       // (This is the common case for code produced by LSR.)
1511       return true;
1512 
1513     // Otherwise, special case the single use in the phi recurrence.
1514     return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1515   };
1516   if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1517     // We used to use a dominator tree here to allow multi-block optimization.
1518     // But that was problematic because:
1519     // 1. It could cause a perf regression by hoisting the math op into the
1520     //    critical path.
1521     // 2. It could cause a perf regression by creating a value that was live
1522     //    across multiple blocks and increasing register pressure.
1523     // 3. Use of a dominator tree could cause large compile-time regression.
1524     //    This is because we recompute the DT on every change in the main CGP
1525     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1526     //    that was fixed, using a DT here would be ok.
1527     //
1528     // There is one important particular case we still want to handle: if BO is
1529     // the IV increment. Important properties that make it profitable:
1530     // - We can speculate IV increment anywhere in the loop (as long as the
1531     //   indvar Phi is its only user);
1532     // - Upon computing Cmp, we effectively compute something equivalent to the
1533     //   IV increment (despite it loops differently in the IR). So moving it up
1534     //   to the cmp point does not really increase register pressure.
1535     return false;
1536   }
1537 
1538   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1539   if (BO->getOpcode() == Instruction::Add &&
1540       IID == Intrinsic::usub_with_overflow) {
1541     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1542     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1543   }
1544 
1545   // Insert at the first instruction of the pair.
1546   Instruction *InsertPt = nullptr;
1547   for (Instruction &Iter : *Cmp->getParent()) {
1548     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1549     // the overflow intrinsic are defined.
1550     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1551       InsertPt = &Iter;
1552       break;
1553     }
1554   }
1555   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1556 
1557   IRBuilder<> Builder(InsertPt);
1558   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1559   if (BO->getOpcode() != Instruction::Xor) {
1560     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1561     replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1562   } else
1563     assert(BO->hasOneUse() &&
1564            "Patterns with XOr should use the BO only in the compare");
1565   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1566   replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1567   Cmp->eraseFromParent();
1568   BO->eraseFromParent();
1569   return true;
1570 }
1571 
1572 /// Match special-case patterns that check for unsigned add overflow.
1573 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1574                                                    BinaryOperator *&Add) {
1575   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1576   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1577   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1578 
1579   // We are not expecting non-canonical/degenerate code. Just bail out.
1580   if (isa<Constant>(A))
1581     return false;
1582 
1583   ICmpInst::Predicate Pred = Cmp->getPredicate();
1584   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1585     B = ConstantInt::get(B->getType(), 1);
1586   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1587     B = ConstantInt::get(B->getType(), -1);
1588   else
1589     return false;
1590 
1591   // Check the users of the variable operand of the compare looking for an add
1592   // with the adjusted constant.
1593   for (User *U : A->users()) {
1594     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1595       Add = cast<BinaryOperator>(U);
1596       return true;
1597     }
1598   }
1599   return false;
1600 }
1601 
1602 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1603 /// intrinsic. Return true if any changes were made.
1604 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1605                                                ModifyDT &ModifiedDT) {
1606   bool EdgeCase = false;
1607   Value *A, *B;
1608   BinaryOperator *Add;
1609   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1610     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1611       return false;
1612     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1613     A = Add->getOperand(0);
1614     B = Add->getOperand(1);
1615     EdgeCase = true;
1616   }
1617 
1618   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1619                                  TLI->getValueType(*DL, Add->getType()),
1620                                  Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1621     return false;
1622 
1623   // We don't want to move around uses of condition values this late, so we
1624   // check if it is legal to create the call to the intrinsic in the basic
1625   // block containing the icmp.
1626   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1627     return false;
1628 
1629   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1630                                    Intrinsic::uadd_with_overflow))
1631     return false;
1632 
1633   // Reset callers - do not crash by iterating over a dead instruction.
1634   ModifiedDT = ModifyDT::ModifyInstDT;
1635   return true;
1636 }
1637 
1638 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1639                                                ModifyDT &ModifiedDT) {
1640   // We are not expecting non-canonical/degenerate code. Just bail out.
1641   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1642   if (isa<Constant>(A) && isa<Constant>(B))
1643     return false;
1644 
1645   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1646   ICmpInst::Predicate Pred = Cmp->getPredicate();
1647   if (Pred == ICmpInst::ICMP_UGT) {
1648     std::swap(A, B);
1649     Pred = ICmpInst::ICMP_ULT;
1650   }
1651   // Convert special-case: (A == 0) is the same as (A u< 1).
1652   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1653     B = ConstantInt::get(B->getType(), 1);
1654     Pred = ICmpInst::ICMP_ULT;
1655   }
1656   // Convert special-case: (A != 0) is the same as (0 u< A).
1657   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1658     std::swap(A, B);
1659     Pred = ICmpInst::ICMP_ULT;
1660   }
1661   if (Pred != ICmpInst::ICMP_ULT)
1662     return false;
1663 
1664   // Walk the users of a variable operand of a compare looking for a subtract or
1665   // add with that same operand. Also match the 2nd operand of the compare to
1666   // the add/sub, but that may be a negated constant operand of an add.
1667   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1668   BinaryOperator *Sub = nullptr;
1669   for (User *U : CmpVariableOperand->users()) {
1670     // A - B, A u< B --> usubo(A, B)
1671     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1672       Sub = cast<BinaryOperator>(U);
1673       break;
1674     }
1675 
1676     // A + (-C), A u< C (canonicalized form of (sub A, C))
1677     const APInt *CmpC, *AddC;
1678     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1679         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1680       Sub = cast<BinaryOperator>(U);
1681       break;
1682     }
1683   }
1684   if (!Sub)
1685     return false;
1686 
1687   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1688                                  TLI->getValueType(*DL, Sub->getType()),
1689                                  Sub->hasNUsesOrMore(1)))
1690     return false;
1691 
1692   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1693                                    Cmp, Intrinsic::usub_with_overflow))
1694     return false;
1695 
1696   // Reset callers - do not crash by iterating over a dead instruction.
1697   ModifiedDT = ModifyDT::ModifyInstDT;
1698   return true;
1699 }
1700 
1701 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1702 /// registers that must be created and coalesced. This is a clear win except on
1703 /// targets with multiple condition code registers (PowerPC), where it might
1704 /// lose; some adjustment may be wanted there.
1705 ///
1706 /// Return true if any changes are made.
1707 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1708   if (TLI.hasMultipleConditionRegisters())
1709     return false;
1710 
1711   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1712   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1713     return false;
1714 
1715   // Only insert a cmp in each block once.
1716   DenseMap<BasicBlock *, CmpInst *> InsertedCmps;
1717 
1718   bool MadeChange = false;
1719   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1720        UI != E;) {
1721     Use &TheUse = UI.getUse();
1722     Instruction *User = cast<Instruction>(*UI);
1723 
1724     // Preincrement use iterator so we don't invalidate it.
1725     ++UI;
1726 
1727     // Don't bother for PHI nodes.
1728     if (isa<PHINode>(User))
1729       continue;
1730 
1731     // Figure out which BB this cmp is used in.
1732     BasicBlock *UserBB = User->getParent();
1733     BasicBlock *DefBB = Cmp->getParent();
1734 
1735     // If this user is in the same block as the cmp, don't change the cmp.
1736     if (UserBB == DefBB)
1737       continue;
1738 
1739     // If we have already inserted a cmp into this block, use it.
1740     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1741 
1742     if (!InsertedCmp) {
1743       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1744       assert(InsertPt != UserBB->end());
1745       InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1746                                     Cmp->getOperand(0), Cmp->getOperand(1), "",
1747                                     &*InsertPt);
1748       // Propagate the debug info.
1749       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1750     }
1751 
1752     // Replace a use of the cmp with a use of the new cmp.
1753     TheUse = InsertedCmp;
1754     MadeChange = true;
1755     ++NumCmpUses;
1756   }
1757 
1758   // If we removed all uses, nuke the cmp.
1759   if (Cmp->use_empty()) {
1760     Cmp->eraseFromParent();
1761     MadeChange = true;
1762   }
1763 
1764   return MadeChange;
1765 }
1766 
1767 /// For pattern like:
1768 ///
1769 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1770 ///   ...
1771 /// DomBB:
1772 ///   ...
1773 ///   br DomCond, TrueBB, CmpBB
1774 /// CmpBB: (with DomBB being the single predecessor)
1775 ///   ...
1776 ///   Cmp = icmp eq CmpOp0, CmpOp1
1777 ///   ...
1778 ///
1779 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1780 /// different from lowering of icmp eq (PowerPC). This function try to convert
1781 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1782 /// After that, DomCond and Cmp can use the same comparison so reduce one
1783 /// comparison.
1784 ///
1785 /// Return true if any changes are made.
1786 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1787                                        const TargetLowering &TLI) {
1788   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1789     return false;
1790 
1791   ICmpInst::Predicate Pred = Cmp->getPredicate();
1792   if (Pred != ICmpInst::ICMP_EQ)
1793     return false;
1794 
1795   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1796   // icmp slt/sgt would introduce more redundant LLVM IR.
1797   for (User *U : Cmp->users()) {
1798     if (isa<BranchInst>(U))
1799       continue;
1800     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1801       continue;
1802     return false;
1803   }
1804 
1805   // This is a cheap/incomplete check for dominance - just match a single
1806   // predecessor with a conditional branch.
1807   BasicBlock *CmpBB = Cmp->getParent();
1808   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1809   if (!DomBB)
1810     return false;
1811 
1812   // We want to ensure that the only way control gets to the comparison of
1813   // interest is that a less/greater than comparison on the same operands is
1814   // false.
1815   Value *DomCond;
1816   BasicBlock *TrueBB, *FalseBB;
1817   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1818     return false;
1819   if (CmpBB != FalseBB)
1820     return false;
1821 
1822   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1823   ICmpInst::Predicate DomPred;
1824   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1825     return false;
1826   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1827     return false;
1828 
1829   // Convert the equality comparison to the opposite of the dominating
1830   // comparison and swap the direction for all branch/select users.
1831   // We have conceptually converted:
1832   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1833   // to
1834   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1835   // And similarly for branches.
1836   for (User *U : Cmp->users()) {
1837     if (auto *BI = dyn_cast<BranchInst>(U)) {
1838       assert(BI->isConditional() && "Must be conditional");
1839       BI->swapSuccessors();
1840       continue;
1841     }
1842     if (auto *SI = dyn_cast<SelectInst>(U)) {
1843       // Swap operands
1844       SI->swapValues();
1845       SI->swapProfMetadata();
1846       continue;
1847     }
1848     llvm_unreachable("Must be a branch or a select");
1849   }
1850   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1851   return true;
1852 }
1853 
1854 /// Many architectures use the same instruction for both subtract and cmp. Try
1855 /// to swap cmp operands to match subtract operations to allow for CSE.
1856 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) {
1857   Value *Op0 = Cmp->getOperand(0);
1858   Value *Op1 = Cmp->getOperand(1);
1859   if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
1860       isa<Constant>(Op1) || Op0 == Op1)
1861     return false;
1862 
1863   // If a subtract already has the same operands as a compare, swapping would be
1864   // bad. If a subtract has the same operands as a compare but in reverse order,
1865   // then swapping is good.
1866   int GoodToSwap = 0;
1867   unsigned NumInspected = 0;
1868   for (const User *U : Op0->users()) {
1869     // Avoid walking many users.
1870     if (++NumInspected > 128)
1871       return false;
1872     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
1873       GoodToSwap++;
1874     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
1875       GoodToSwap--;
1876   }
1877 
1878   if (GoodToSwap > 0) {
1879     Cmp->swapOperands();
1880     return true;
1881   }
1882   return false;
1883 }
1884 
1885 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
1886   if (sinkCmpExpression(Cmp, *TLI))
1887     return true;
1888 
1889   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1890     return true;
1891 
1892   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1893     return true;
1894 
1895   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1896     return true;
1897 
1898   if (swapICmpOperandsToExposeCSEOpportunities(Cmp))
1899     return true;
1900 
1901   return false;
1902 }
1903 
1904 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1905 /// used in a compare to allow isel to generate better code for targets where
1906 /// this operation can be combined.
1907 ///
1908 /// Return true if any changes are made.
1909 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI,
1910                                   SetOfInstrs &InsertedInsts) {
1911   // Double-check that we're not trying to optimize an instruction that was
1912   // already optimized by some other part of this pass.
1913   assert(!InsertedInsts.count(AndI) &&
1914          "Attempting to optimize already optimized and instruction");
1915   (void)InsertedInsts;
1916 
1917   // Nothing to do for single use in same basic block.
1918   if (AndI->hasOneUse() &&
1919       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1920     return false;
1921 
1922   // Try to avoid cases where sinking/duplicating is likely to increase register
1923   // pressure.
1924   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1925       !isa<ConstantInt>(AndI->getOperand(1)) &&
1926       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1927     return false;
1928 
1929   for (auto *U : AndI->users()) {
1930     Instruction *User = cast<Instruction>(U);
1931 
1932     // Only sink 'and' feeding icmp with 0.
1933     if (!isa<ICmpInst>(User))
1934       return false;
1935 
1936     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1937     if (!CmpC || !CmpC->isZero())
1938       return false;
1939   }
1940 
1941   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1942     return false;
1943 
1944   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1945   LLVM_DEBUG(AndI->getParent()->dump());
1946 
1947   // Push the 'and' into the same block as the icmp 0.  There should only be
1948   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1949   // others, so we don't need to keep track of which BBs we insert into.
1950   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1951        UI != E;) {
1952     Use &TheUse = UI.getUse();
1953     Instruction *User = cast<Instruction>(*UI);
1954 
1955     // Preincrement use iterator so we don't invalidate it.
1956     ++UI;
1957 
1958     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1959 
1960     // Keep the 'and' in the same place if the use is already in the same block.
1961     Instruction *InsertPt =
1962         User->getParent() == AndI->getParent() ? AndI : User;
1963     Instruction *InsertedAnd =
1964         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1965                                AndI->getOperand(1), "", InsertPt);
1966     // Propagate the debug info.
1967     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1968 
1969     // Replace a use of the 'and' with a use of the new 'and'.
1970     TheUse = InsertedAnd;
1971     ++NumAndUses;
1972     LLVM_DEBUG(User->getParent()->dump());
1973   }
1974 
1975   // We removed all uses, nuke the and.
1976   AndI->eraseFromParent();
1977   return true;
1978 }
1979 
1980 /// Check if the candidates could be combined with a shift instruction, which
1981 /// includes:
1982 /// 1. Truncate instruction
1983 /// 2. And instruction and the imm is a mask of the low bits:
1984 /// imm & (imm+1) == 0
1985 static bool isExtractBitsCandidateUse(Instruction *User) {
1986   if (!isa<TruncInst>(User)) {
1987     if (User->getOpcode() != Instruction::And ||
1988         !isa<ConstantInt>(User->getOperand(1)))
1989       return false;
1990 
1991     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1992 
1993     if ((Cimm & (Cimm + 1)).getBoolValue())
1994       return false;
1995   }
1996   return true;
1997 }
1998 
1999 /// Sink both shift and truncate instruction to the use of truncate's BB.
2000 static bool
2001 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
2002                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
2003                      const TargetLowering &TLI, const DataLayout &DL) {
2004   BasicBlock *UserBB = User->getParent();
2005   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
2006   auto *TruncI = cast<TruncInst>(User);
2007   bool MadeChange = false;
2008 
2009   for (Value::user_iterator TruncUI = TruncI->user_begin(),
2010                             TruncE = TruncI->user_end();
2011        TruncUI != TruncE;) {
2012 
2013     Use &TruncTheUse = TruncUI.getUse();
2014     Instruction *TruncUser = cast<Instruction>(*TruncUI);
2015     // Preincrement use iterator so we don't invalidate it.
2016 
2017     ++TruncUI;
2018 
2019     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2020     if (!ISDOpcode)
2021       continue;
2022 
2023     // If the use is actually a legal node, there will not be an
2024     // implicit truncate.
2025     // FIXME: always querying the result type is just an
2026     // approximation; some nodes' legality is determined by the
2027     // operand or other means. There's no good way to find out though.
2028     if (TLI.isOperationLegalOrCustom(
2029             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2030       continue;
2031 
2032     // Don't bother for PHI nodes.
2033     if (isa<PHINode>(TruncUser))
2034       continue;
2035 
2036     BasicBlock *TruncUserBB = TruncUser->getParent();
2037 
2038     if (UserBB == TruncUserBB)
2039       continue;
2040 
2041     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2042     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2043 
2044     if (!InsertedShift && !InsertedTrunc) {
2045       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2046       assert(InsertPt != TruncUserBB->end());
2047       // Sink the shift
2048       if (ShiftI->getOpcode() == Instruction::AShr)
2049         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
2050                                                    "", &*InsertPt);
2051       else
2052         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
2053                                                    "", &*InsertPt);
2054       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2055 
2056       // Sink the trunc
2057       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2058       TruncInsertPt++;
2059       assert(TruncInsertPt != TruncUserBB->end());
2060 
2061       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2062                                        TruncI->getType(), "", &*TruncInsertPt);
2063       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2064 
2065       MadeChange = true;
2066 
2067       TruncTheUse = InsertedTrunc;
2068     }
2069   }
2070   return MadeChange;
2071 }
2072 
2073 /// Sink the shift *right* instruction into user blocks if the uses could
2074 /// potentially be combined with this shift instruction and generate BitExtract
2075 /// instruction. It will only be applied if the architecture supports BitExtract
2076 /// instruction. Here is an example:
2077 /// BB1:
2078 ///   %x.extract.shift = lshr i64 %arg1, 32
2079 /// BB2:
2080 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
2081 /// ==>
2082 ///
2083 /// BB2:
2084 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
2085 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2086 ///
2087 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2088 /// instruction.
2089 /// Return true if any changes are made.
2090 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
2091                                 const TargetLowering &TLI,
2092                                 const DataLayout &DL) {
2093   BasicBlock *DefBB = ShiftI->getParent();
2094 
2095   /// Only insert instructions in each block once.
2096   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
2097 
2098   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2099 
2100   bool MadeChange = false;
2101   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2102        UI != E;) {
2103     Use &TheUse = UI.getUse();
2104     Instruction *User = cast<Instruction>(*UI);
2105     // Preincrement use iterator so we don't invalidate it.
2106     ++UI;
2107 
2108     // Don't bother for PHI nodes.
2109     if (isa<PHINode>(User))
2110       continue;
2111 
2112     if (!isExtractBitsCandidateUse(User))
2113       continue;
2114 
2115     BasicBlock *UserBB = User->getParent();
2116 
2117     if (UserBB == DefBB) {
2118       // If the shift and truncate instruction are in the same BB. The use of
2119       // the truncate(TruncUse) may still introduce another truncate if not
2120       // legal. In this case, we would like to sink both shift and truncate
2121       // instruction to the BB of TruncUse.
2122       // for example:
2123       // BB1:
2124       // i64 shift.result = lshr i64 opnd, imm
2125       // trunc.result = trunc shift.result to i16
2126       //
2127       // BB2:
2128       //   ----> We will have an implicit truncate here if the architecture does
2129       //   not have i16 compare.
2130       // cmp i16 trunc.result, opnd2
2131       //
2132       if (isa<TruncInst>(User) &&
2133           shiftIsLegal
2134           // If the type of the truncate is legal, no truncate will be
2135           // introduced in other basic blocks.
2136           && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2137         MadeChange =
2138             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2139 
2140       continue;
2141     }
2142     // If we have already inserted a shift into this block, use it.
2143     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2144 
2145     if (!InsertedShift) {
2146       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2147       assert(InsertPt != UserBB->end());
2148 
2149       if (ShiftI->getOpcode() == Instruction::AShr)
2150         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
2151                                                    "", &*InsertPt);
2152       else
2153         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
2154                                                    "", &*InsertPt);
2155       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2156 
2157       MadeChange = true;
2158     }
2159 
2160     // Replace a use of the shift with a use of the new shift.
2161     TheUse = InsertedShift;
2162   }
2163 
2164   // If we removed all uses, or there are none, nuke the shift.
2165   if (ShiftI->use_empty()) {
2166     salvageDebugInfo(*ShiftI);
2167     ShiftI->eraseFromParent();
2168     MadeChange = true;
2169   }
2170 
2171   return MadeChange;
2172 }
2173 
2174 /// If counting leading or trailing zeros is an expensive operation and a zero
2175 /// input is defined, add a check for zero to avoid calling the intrinsic.
2176 ///
2177 /// We want to transform:
2178 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2179 ///
2180 /// into:
2181 ///   entry:
2182 ///     %cmpz = icmp eq i64 %A, 0
2183 ///     br i1 %cmpz, label %cond.end, label %cond.false
2184 ///   cond.false:
2185 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2186 ///     br label %cond.end
2187 ///   cond.end:
2188 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2189 ///
2190 /// If the transform is performed, return true and set ModifiedDT to true.
2191 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2192                                   LoopInfo &LI,
2193                                   const TargetLowering *TLI,
2194                                   const DataLayout *DL, ModifyDT &ModifiedDT,
2195                                   SmallSet<BasicBlock *, 32> &FreshBBs,
2196                                   bool IsHugeFunc) {
2197   // If a zero input is undefined, it doesn't make sense to despeculate that.
2198   if (match(CountZeros->getOperand(1), m_One()))
2199     return false;
2200 
2201   // If it's cheap to speculate, there's nothing to do.
2202   Type *Ty = CountZeros->getType();
2203   auto IntrinsicID = CountZeros->getIntrinsicID();
2204   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2205       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2206     return false;
2207 
2208   // Only handle legal scalar cases. Anything else requires too much work.
2209   unsigned SizeInBits = Ty->getScalarSizeInBits();
2210   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2211     return false;
2212 
2213   // Bail if the value is never zero.
2214   Use &Op = CountZeros->getOperandUse(0);
2215   if (isKnownNonZero(Op, *DL))
2216     return false;
2217 
2218   // The intrinsic will be sunk behind a compare against zero and branch.
2219   BasicBlock *StartBlock = CountZeros->getParent();
2220   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2221   if (IsHugeFunc)
2222     FreshBBs.insert(CallBlock);
2223 
2224   // Create another block after the count zero intrinsic. A PHI will be added
2225   // in this block to select the result of the intrinsic or the bit-width
2226   // constant if the input to the intrinsic is zero.
2227   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
2228   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2229   if (IsHugeFunc)
2230     FreshBBs.insert(EndBlock);
2231 
2232   // Update the LoopInfo. The new blocks are in the same loop as the start
2233   // block.
2234   if (Loop *L = LI.getLoopFor(StartBlock)) {
2235     L->addBasicBlockToLoop(CallBlock, LI);
2236     L->addBasicBlockToLoop(EndBlock, LI);
2237   }
2238 
2239   // Set up a builder to create a compare, conditional branch, and PHI.
2240   IRBuilder<> Builder(CountZeros->getContext());
2241   Builder.SetInsertPoint(StartBlock->getTerminator());
2242   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2243 
2244   // Replace the unconditional branch that was created by the first split with
2245   // a compare against zero and a conditional branch.
2246   Value *Zero = Constant::getNullValue(Ty);
2247   // Avoid introducing branch on poison. This also replaces the ctz operand.
2248   if (!isGuaranteedNotToBeUndefOrPoison(Op))
2249     Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2250   Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2251   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2252   StartBlock->getTerminator()->eraseFromParent();
2253 
2254   // Create a PHI in the end block to select either the output of the intrinsic
2255   // or the bit width of the operand.
2256   Builder.SetInsertPoint(&EndBlock->front());
2257   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2258   replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2259   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2260   PN->addIncoming(BitWidth, StartBlock);
2261   PN->addIncoming(CountZeros, CallBlock);
2262 
2263   // We are explicitly handling the zero case, so we can set the intrinsic's
2264   // undefined zero argument to 'true'. This will also prevent reprocessing the
2265   // intrinsic; we only despeculate when a zero input is defined.
2266   CountZeros->setArgOperand(1, Builder.getTrue());
2267   ModifiedDT = ModifyDT::ModifyBBDT;
2268   return true;
2269 }
2270 
2271 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2272   BasicBlock *BB = CI->getParent();
2273 
2274   // Lower inline assembly if we can.
2275   // If we found an inline asm expession, and if the target knows how to
2276   // lower it to normal LLVM code, do so now.
2277   if (CI->isInlineAsm()) {
2278     if (TLI->ExpandInlineAsm(CI)) {
2279       // Avoid invalidating the iterator.
2280       CurInstIterator = BB->begin();
2281       // Avoid processing instructions out of order, which could cause
2282       // reuse before a value is defined.
2283       SunkAddrs.clear();
2284       return true;
2285     }
2286     // Sink address computing for memory operands into the block.
2287     if (optimizeInlineAsmInst(CI))
2288       return true;
2289   }
2290 
2291   // Align the pointer arguments to this call if the target thinks it's a good
2292   // idea
2293   unsigned MinSize;
2294   Align PrefAlign;
2295   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2296     for (auto &Arg : CI->args()) {
2297       // We want to align both objects whose address is used directly and
2298       // objects whose address is used in casts and GEPs, though it only makes
2299       // sense for GEPs if the offset is a multiple of the desired alignment and
2300       // if size - offset meets the size threshold.
2301       if (!Arg->getType()->isPointerTy())
2302         continue;
2303       APInt Offset(DL->getIndexSizeInBits(
2304                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2305                    0);
2306       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2307       uint64_t Offset2 = Offset.getLimitedValue();
2308       if (!isAligned(PrefAlign, Offset2))
2309         continue;
2310       AllocaInst *AI;
2311       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2312           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2313         AI->setAlignment(PrefAlign);
2314       // Global variables can only be aligned if they are defined in this
2315       // object (i.e. they are uniquely initialized in this object), and
2316       // over-aligning global variables that have an explicit section is
2317       // forbidden.
2318       GlobalVariable *GV;
2319       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2320           GV->getPointerAlignment(*DL) < PrefAlign &&
2321           DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2322         GV->setAlignment(PrefAlign);
2323     }
2324   }
2325   // If this is a memcpy (or similar) then we may be able to improve the
2326   // alignment.
2327   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2328     Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2329     MaybeAlign MIDestAlign = MI->getDestAlign();
2330     if (!MIDestAlign || DestAlign > *MIDestAlign)
2331       MI->setDestAlignment(DestAlign);
2332     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2333       MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2334       Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2335       if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2336         MTI->setSourceAlignment(SrcAlign);
2337     }
2338   }
2339 
2340   // If we have a cold call site, try to sink addressing computation into the
2341   // cold block.  This interacts with our handling for loads and stores to
2342   // ensure that we can fold all uses of a potential addressing computation
2343   // into their uses.  TODO: generalize this to work over profiling data
2344   if (CI->hasFnAttr(Attribute::Cold) && !OptSize &&
2345       !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2346     for (auto &Arg : CI->args()) {
2347       if (!Arg->getType()->isPointerTy())
2348         continue;
2349       unsigned AS = Arg->getType()->getPointerAddressSpace();
2350       if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2351         return true;
2352     }
2353 
2354   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2355   if (II) {
2356     switch (II->getIntrinsicID()) {
2357     default:
2358       break;
2359     case Intrinsic::assume:
2360       llvm_unreachable("llvm.assume should have been removed already");
2361     case Intrinsic::experimental_widenable_condition: {
2362       // Give up on future widening oppurtunties so that we can fold away dead
2363       // paths and merge blocks before going into block-local instruction
2364       // selection.
2365       if (II->use_empty()) {
2366         II->eraseFromParent();
2367         return true;
2368       }
2369       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2370       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2371         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2372       });
2373       return true;
2374     }
2375     case Intrinsic::objectsize:
2376       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2377     case Intrinsic::is_constant:
2378       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2379     case Intrinsic::aarch64_stlxr:
2380     case Intrinsic::aarch64_stxr: {
2381       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2382       if (!ExtVal || !ExtVal->hasOneUse() ||
2383           ExtVal->getParent() == CI->getParent())
2384         return false;
2385       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2386       ExtVal->moveBefore(CI);
2387       // Mark this instruction as "inserted by CGP", so that other
2388       // optimizations don't touch it.
2389       InsertedInsts.insert(ExtVal);
2390       return true;
2391     }
2392 
2393     case Intrinsic::launder_invariant_group:
2394     case Intrinsic::strip_invariant_group: {
2395       Value *ArgVal = II->getArgOperand(0);
2396       auto it = LargeOffsetGEPMap.find(II);
2397       if (it != LargeOffsetGEPMap.end()) {
2398         // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2399         // Make sure not to have to deal with iterator invalidation
2400         // after possibly adding ArgVal to LargeOffsetGEPMap.
2401         auto GEPs = std::move(it->second);
2402         LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2403         LargeOffsetGEPMap.erase(II);
2404       }
2405 
2406       replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2407       II->eraseFromParent();
2408       return true;
2409     }
2410     case Intrinsic::cttz:
2411     case Intrinsic::ctlz:
2412       // If counting zeros is expensive, try to avoid it.
2413       return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2414                                    IsHugeFunc);
2415     case Intrinsic::fshl:
2416     case Intrinsic::fshr:
2417       return optimizeFunnelShift(II);
2418     case Intrinsic::dbg_assign:
2419     case Intrinsic::dbg_value:
2420       return fixupDbgValue(II);
2421     case Intrinsic::masked_gather:
2422       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2423     case Intrinsic::masked_scatter:
2424       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2425     }
2426 
2427     SmallVector<Value *, 2> PtrOps;
2428     Type *AccessTy;
2429     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2430       while (!PtrOps.empty()) {
2431         Value *PtrVal = PtrOps.pop_back_val();
2432         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2433         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2434           return true;
2435       }
2436   }
2437 
2438   // From here on out we're working with named functions.
2439   if (!CI->getCalledFunction())
2440     return false;
2441 
2442   // Lower all default uses of _chk calls.  This is very similar
2443   // to what InstCombineCalls does, but here we are only lowering calls
2444   // to fortified library functions (e.g. __memcpy_chk) that have the default
2445   // "don't know" as the objectsize.  Anything else should be left alone.
2446   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2447   IRBuilder<> Builder(CI);
2448   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2449     replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2450     CI->eraseFromParent();
2451     return true;
2452   }
2453 
2454   return false;
2455 }
2456 
2457 /// Look for opportunities to duplicate return instructions to the predecessor
2458 /// to enable tail call optimizations. The case it is currently looking for is:
2459 /// @code
2460 /// bb0:
2461 ///   %tmp0 = tail call i32 @f0()
2462 ///   br label %return
2463 /// bb1:
2464 ///   %tmp1 = tail call i32 @f1()
2465 ///   br label %return
2466 /// bb2:
2467 ///   %tmp2 = tail call i32 @f2()
2468 ///   br label %return
2469 /// return:
2470 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2471 ///   ret i32 %retval
2472 /// @endcode
2473 ///
2474 /// =>
2475 ///
2476 /// @code
2477 /// bb0:
2478 ///   %tmp0 = tail call i32 @f0()
2479 ///   ret i32 %tmp0
2480 /// bb1:
2481 ///   %tmp1 = tail call i32 @f1()
2482 ///   ret i32 %tmp1
2483 /// bb2:
2484 ///   %tmp2 = tail call i32 @f2()
2485 ///   ret i32 %tmp2
2486 /// @endcode
2487 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2488                                                 ModifyDT &ModifiedDT) {
2489   if (!BB->getTerminator())
2490     return false;
2491 
2492   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2493   if (!RetI)
2494     return false;
2495 
2496   assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2497 
2498   PHINode *PN = nullptr;
2499   ExtractValueInst *EVI = nullptr;
2500   BitCastInst *BCI = nullptr;
2501   Value *V = RetI->getReturnValue();
2502   if (V) {
2503     BCI = dyn_cast<BitCastInst>(V);
2504     if (BCI)
2505       V = BCI->getOperand(0);
2506 
2507     EVI = dyn_cast<ExtractValueInst>(V);
2508     if (EVI) {
2509       V = EVI->getOperand(0);
2510       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2511         return false;
2512     }
2513 
2514     PN = dyn_cast<PHINode>(V);
2515     if (!PN)
2516       return false;
2517   }
2518 
2519   if (PN && PN->getParent() != BB)
2520     return false;
2521 
2522   auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2523     const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2524     if (BC && BC->hasOneUse())
2525       Inst = BC->user_back();
2526 
2527     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2528       return II->getIntrinsicID() == Intrinsic::lifetime_end;
2529     return false;
2530   };
2531 
2532   // Make sure there are no instructions between the first instruction
2533   // and return.
2534   const Instruction *BI = BB->getFirstNonPHI();
2535   // Skip over debug and the bitcast.
2536   while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2537          isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2538     BI = BI->getNextNode();
2539   if (BI != RetI)
2540     return false;
2541 
2542   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2543   /// call.
2544   const Function *F = BB->getParent();
2545   SmallVector<BasicBlock *, 4> TailCallBBs;
2546   if (PN) {
2547     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2548       // Look through bitcasts.
2549       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2550       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2551       BasicBlock *PredBB = PN->getIncomingBlock(I);
2552       // Make sure the phi value is indeed produced by the tail call.
2553       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2554           TLI->mayBeEmittedAsTailCall(CI) &&
2555           attributesPermitTailCall(F, CI, RetI, *TLI))
2556         TailCallBBs.push_back(PredBB);
2557     }
2558   } else {
2559     SmallPtrSet<BasicBlock *, 4> VisitedBBs;
2560     for (BasicBlock *Pred : predecessors(BB)) {
2561       if (!VisitedBBs.insert(Pred).second)
2562         continue;
2563       if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2564         CallInst *CI = dyn_cast<CallInst>(I);
2565         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2566             attributesPermitTailCall(F, CI, RetI, *TLI))
2567           TailCallBBs.push_back(Pred);
2568       }
2569     }
2570   }
2571 
2572   bool Changed = false;
2573   for (auto const &TailCallBB : TailCallBBs) {
2574     // Make sure the call instruction is followed by an unconditional branch to
2575     // the return block.
2576     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2577     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2578       continue;
2579 
2580     // Duplicate the return into TailCallBB.
2581     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2582     assert(!VerifyBFIUpdates ||
2583            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2584     BFI->setBlockFreq(
2585         BB,
2586         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2587     ModifiedDT = ModifyDT::ModifyBBDT;
2588     Changed = true;
2589     ++NumRetsDup;
2590   }
2591 
2592   // If we eliminated all predecessors of the block, delete the block now.
2593   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2594     BB->eraseFromParent();
2595 
2596   return Changed;
2597 }
2598 
2599 //===----------------------------------------------------------------------===//
2600 // Memory Optimization
2601 //===----------------------------------------------------------------------===//
2602 
2603 namespace {
2604 
2605 /// This is an extended version of TargetLowering::AddrMode
2606 /// which holds actual Value*'s for register values.
2607 struct ExtAddrMode : public TargetLowering::AddrMode {
2608   Value *BaseReg = nullptr;
2609   Value *ScaledReg = nullptr;
2610   Value *OriginalValue = nullptr;
2611   bool InBounds = true;
2612 
2613   enum FieldName {
2614     NoField = 0x00,
2615     BaseRegField = 0x01,
2616     BaseGVField = 0x02,
2617     BaseOffsField = 0x04,
2618     ScaledRegField = 0x08,
2619     ScaleField = 0x10,
2620     MultipleFields = 0xff
2621   };
2622 
2623   ExtAddrMode() = default;
2624 
2625   void print(raw_ostream &OS) const;
2626   void dump() const;
2627 
2628   FieldName compare(const ExtAddrMode &other) {
2629     // First check that the types are the same on each field, as differing types
2630     // is something we can't cope with later on.
2631     if (BaseReg && other.BaseReg &&
2632         BaseReg->getType() != other.BaseReg->getType())
2633       return MultipleFields;
2634     if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
2635       return MultipleFields;
2636     if (ScaledReg && other.ScaledReg &&
2637         ScaledReg->getType() != other.ScaledReg->getType())
2638       return MultipleFields;
2639 
2640     // Conservatively reject 'inbounds' mismatches.
2641     if (InBounds != other.InBounds)
2642       return MultipleFields;
2643 
2644     // Check each field to see if it differs.
2645     unsigned Result = NoField;
2646     if (BaseReg != other.BaseReg)
2647       Result |= BaseRegField;
2648     if (BaseGV != other.BaseGV)
2649       Result |= BaseGVField;
2650     if (BaseOffs != other.BaseOffs)
2651       Result |= BaseOffsField;
2652     if (ScaledReg != other.ScaledReg)
2653       Result |= ScaledRegField;
2654     // Don't count 0 as being a different scale, because that actually means
2655     // unscaled (which will already be counted by having no ScaledReg).
2656     if (Scale && other.Scale && Scale != other.Scale)
2657       Result |= ScaleField;
2658 
2659     if (llvm::popcount(Result) > 1)
2660       return MultipleFields;
2661     else
2662       return static_cast<FieldName>(Result);
2663   }
2664 
2665   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2666   // with no offset.
2667   bool isTrivial() {
2668     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2669     // trivial if at most one of these terms is nonzero, except that BaseGV and
2670     // BaseReg both being zero actually means a null pointer value, which we
2671     // consider to be 'non-zero' here.
2672     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2673   }
2674 
2675   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2676     switch (Field) {
2677     default:
2678       return nullptr;
2679     case BaseRegField:
2680       return BaseReg;
2681     case BaseGVField:
2682       return BaseGV;
2683     case ScaledRegField:
2684       return ScaledReg;
2685     case BaseOffsField:
2686       return ConstantInt::get(IntPtrTy, BaseOffs);
2687     }
2688   }
2689 
2690   void SetCombinedField(FieldName Field, Value *V,
2691                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2692     switch (Field) {
2693     default:
2694       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2695       break;
2696     case ExtAddrMode::BaseRegField:
2697       BaseReg = V;
2698       break;
2699     case ExtAddrMode::BaseGVField:
2700       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2701       // in the BaseReg field.
2702       assert(BaseReg == nullptr);
2703       BaseReg = V;
2704       BaseGV = nullptr;
2705       break;
2706     case ExtAddrMode::ScaledRegField:
2707       ScaledReg = V;
2708       // If we have a mix of scaled and unscaled addrmodes then we want scale
2709       // to be the scale and not zero.
2710       if (!Scale)
2711         for (const ExtAddrMode &AM : AddrModes)
2712           if (AM.Scale) {
2713             Scale = AM.Scale;
2714             break;
2715           }
2716       break;
2717     case ExtAddrMode::BaseOffsField:
2718       // The offset is no longer a constant, so it goes in ScaledReg with a
2719       // scale of 1.
2720       assert(ScaledReg == nullptr);
2721       ScaledReg = V;
2722       Scale = 1;
2723       BaseOffs = 0;
2724       break;
2725     }
2726   }
2727 };
2728 
2729 #ifndef NDEBUG
2730 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2731   AM.print(OS);
2732   return OS;
2733 }
2734 #endif
2735 
2736 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2737 void ExtAddrMode::print(raw_ostream &OS) const {
2738   bool NeedPlus = false;
2739   OS << "[";
2740   if (InBounds)
2741     OS << "inbounds ";
2742   if (BaseGV) {
2743     OS << "GV:";
2744     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2745     NeedPlus = true;
2746   }
2747 
2748   if (BaseOffs) {
2749     OS << (NeedPlus ? " + " : "") << BaseOffs;
2750     NeedPlus = true;
2751   }
2752 
2753   if (BaseReg) {
2754     OS << (NeedPlus ? " + " : "") << "Base:";
2755     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2756     NeedPlus = true;
2757   }
2758   if (Scale) {
2759     OS << (NeedPlus ? " + " : "") << Scale << "*";
2760     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2761   }
2762 
2763   OS << ']';
2764 }
2765 
2766 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2767   print(dbgs());
2768   dbgs() << '\n';
2769 }
2770 #endif
2771 
2772 } // end anonymous namespace
2773 
2774 namespace {
2775 
2776 /// This class provides transaction based operation on the IR.
2777 /// Every change made through this class is recorded in the internal state and
2778 /// can be undone (rollback) until commit is called.
2779 /// CGP does not check if instructions could be speculatively executed when
2780 /// moved. Preserving the original location would pessimize the debugging
2781 /// experience, as well as negatively impact the quality of sample PGO.
2782 class TypePromotionTransaction {
2783   /// This represents the common interface of the individual transaction.
2784   /// Each class implements the logic for doing one specific modification on
2785   /// the IR via the TypePromotionTransaction.
2786   class TypePromotionAction {
2787   protected:
2788     /// The Instruction modified.
2789     Instruction *Inst;
2790 
2791   public:
2792     /// Constructor of the action.
2793     /// The constructor performs the related action on the IR.
2794     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2795 
2796     virtual ~TypePromotionAction() = default;
2797 
2798     /// Undo the modification done by this action.
2799     /// When this method is called, the IR must be in the same state as it was
2800     /// before this action was applied.
2801     /// \pre Undoing the action works if and only if the IR is in the exact same
2802     /// state as it was directly after this action was applied.
2803     virtual void undo() = 0;
2804 
2805     /// Advocate every change made by this action.
2806     /// When the results on the IR of the action are to be kept, it is important
2807     /// to call this function, otherwise hidden information may be kept forever.
2808     virtual void commit() {
2809       // Nothing to be done, this action is not doing anything.
2810     }
2811   };
2812 
2813   /// Utility to remember the position of an instruction.
2814   class InsertionHandler {
2815     /// Position of an instruction.
2816     /// Either an instruction:
2817     /// - Is the first in a basic block: BB is used.
2818     /// - Has a previous instruction: PrevInst is used.
2819     union {
2820       Instruction *PrevInst;
2821       BasicBlock *BB;
2822     } Point;
2823 
2824     /// Remember whether or not the instruction had a previous instruction.
2825     bool HasPrevInstruction;
2826 
2827   public:
2828     /// Record the position of \p Inst.
2829     InsertionHandler(Instruction *Inst) {
2830       BasicBlock::iterator It = Inst->getIterator();
2831       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2832       if (HasPrevInstruction)
2833         Point.PrevInst = &*--It;
2834       else
2835         Point.BB = Inst->getParent();
2836     }
2837 
2838     /// Insert \p Inst at the recorded position.
2839     void insert(Instruction *Inst) {
2840       if (HasPrevInstruction) {
2841         if (Inst->getParent())
2842           Inst->removeFromParent();
2843         Inst->insertAfter(Point.PrevInst);
2844       } else {
2845         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2846         if (Inst->getParent())
2847           Inst->moveBefore(Position);
2848         else
2849           Inst->insertBefore(Position);
2850       }
2851     }
2852   };
2853 
2854   /// Move an instruction before another.
2855   class InstructionMoveBefore : public TypePromotionAction {
2856     /// Original position of the instruction.
2857     InsertionHandler Position;
2858 
2859   public:
2860     /// Move \p Inst before \p Before.
2861     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2862         : TypePromotionAction(Inst), Position(Inst) {
2863       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2864                         << "\n");
2865       Inst->moveBefore(Before);
2866     }
2867 
2868     /// Move the instruction back to its original position.
2869     void undo() override {
2870       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2871       Position.insert(Inst);
2872     }
2873   };
2874 
2875   /// Set the operand of an instruction with a new value.
2876   class OperandSetter : public TypePromotionAction {
2877     /// Original operand of the instruction.
2878     Value *Origin;
2879 
2880     /// Index of the modified instruction.
2881     unsigned Idx;
2882 
2883   public:
2884     /// Set \p Idx operand of \p Inst with \p NewVal.
2885     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2886         : TypePromotionAction(Inst), Idx(Idx) {
2887       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2888                         << "for:" << *Inst << "\n"
2889                         << "with:" << *NewVal << "\n");
2890       Origin = Inst->getOperand(Idx);
2891       Inst->setOperand(Idx, NewVal);
2892     }
2893 
2894     /// Restore the original value of the instruction.
2895     void undo() override {
2896       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2897                         << "for: " << *Inst << "\n"
2898                         << "with: " << *Origin << "\n");
2899       Inst->setOperand(Idx, Origin);
2900     }
2901   };
2902 
2903   /// Hide the operands of an instruction.
2904   /// Do as if this instruction was not using any of its operands.
2905   class OperandsHider : public TypePromotionAction {
2906     /// The list of original operands.
2907     SmallVector<Value *, 4> OriginalValues;
2908 
2909   public:
2910     /// Remove \p Inst from the uses of the operands of \p Inst.
2911     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2912       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2913       unsigned NumOpnds = Inst->getNumOperands();
2914       OriginalValues.reserve(NumOpnds);
2915       for (unsigned It = 0; It < NumOpnds; ++It) {
2916         // Save the current operand.
2917         Value *Val = Inst->getOperand(It);
2918         OriginalValues.push_back(Val);
2919         // Set a dummy one.
2920         // We could use OperandSetter here, but that would imply an overhead
2921         // that we are not willing to pay.
2922         Inst->setOperand(It, UndefValue::get(Val->getType()));
2923       }
2924     }
2925 
2926     /// Restore the original list of uses.
2927     void undo() override {
2928       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2929       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2930         Inst->setOperand(It, OriginalValues[It]);
2931     }
2932   };
2933 
2934   /// Build a truncate instruction.
2935   class TruncBuilder : public TypePromotionAction {
2936     Value *Val;
2937 
2938   public:
2939     /// Build a truncate instruction of \p Opnd producing a \p Ty
2940     /// result.
2941     /// trunc Opnd to Ty.
2942     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2943       IRBuilder<> Builder(Opnd);
2944       Builder.SetCurrentDebugLocation(DebugLoc());
2945       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2946       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2947     }
2948 
2949     /// Get the built value.
2950     Value *getBuiltValue() { return Val; }
2951 
2952     /// Remove the built instruction.
2953     void undo() override {
2954       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2955       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2956         IVal->eraseFromParent();
2957     }
2958   };
2959 
2960   /// Build a sign extension instruction.
2961   class SExtBuilder : public TypePromotionAction {
2962     Value *Val;
2963 
2964   public:
2965     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2966     /// result.
2967     /// sext Opnd to Ty.
2968     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2969         : TypePromotionAction(InsertPt) {
2970       IRBuilder<> Builder(InsertPt);
2971       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2972       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2973     }
2974 
2975     /// Get the built value.
2976     Value *getBuiltValue() { return Val; }
2977 
2978     /// Remove the built instruction.
2979     void undo() override {
2980       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2981       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2982         IVal->eraseFromParent();
2983     }
2984   };
2985 
2986   /// Build a zero extension instruction.
2987   class ZExtBuilder : public TypePromotionAction {
2988     Value *Val;
2989 
2990   public:
2991     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2992     /// result.
2993     /// zext Opnd to Ty.
2994     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2995         : TypePromotionAction(InsertPt) {
2996       IRBuilder<> Builder(InsertPt);
2997       Builder.SetCurrentDebugLocation(DebugLoc());
2998       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2999       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3000     }
3001 
3002     /// Get the built value.
3003     Value *getBuiltValue() { return Val; }
3004 
3005     /// Remove the built instruction.
3006     void undo() override {
3007       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3008       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3009         IVal->eraseFromParent();
3010     }
3011   };
3012 
3013   /// Mutate an instruction to another type.
3014   class TypeMutator : public TypePromotionAction {
3015     /// Record the original type.
3016     Type *OrigTy;
3017 
3018   public:
3019     /// Mutate the type of \p Inst into \p NewTy.
3020     TypeMutator(Instruction *Inst, Type *NewTy)
3021         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3022       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3023                         << "\n");
3024       Inst->mutateType(NewTy);
3025     }
3026 
3027     /// Mutate the instruction back to its original type.
3028     void undo() override {
3029       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3030                         << "\n");
3031       Inst->mutateType(OrigTy);
3032     }
3033   };
3034 
3035   /// Replace the uses of an instruction by another instruction.
3036   class UsesReplacer : public TypePromotionAction {
3037     /// Helper structure to keep track of the replaced uses.
3038     struct InstructionAndIdx {
3039       /// The instruction using the instruction.
3040       Instruction *Inst;
3041 
3042       /// The index where this instruction is used for Inst.
3043       unsigned Idx;
3044 
3045       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3046           : Inst(Inst), Idx(Idx) {}
3047     };
3048 
3049     /// Keep track of the original uses (pair Instruction, Index).
3050     SmallVector<InstructionAndIdx, 4> OriginalUses;
3051     /// Keep track of the debug users.
3052     SmallVector<DbgValueInst *, 1> DbgValues;
3053 
3054     /// Keep track of the new value so that we can undo it by replacing
3055     /// instances of the new value with the original value.
3056     Value *New;
3057 
3058     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3059 
3060   public:
3061     /// Replace all the use of \p Inst by \p New.
3062     UsesReplacer(Instruction *Inst, Value *New)
3063         : TypePromotionAction(Inst), New(New) {
3064       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3065                         << "\n");
3066       // Record the original uses.
3067       for (Use &U : Inst->uses()) {
3068         Instruction *UserI = cast<Instruction>(U.getUser());
3069         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3070       }
3071       // Record the debug uses separately. They are not in the instruction's
3072       // use list, but they are replaced by RAUW.
3073       findDbgValues(DbgValues, Inst);
3074 
3075       // Now, we can replace the uses.
3076       Inst->replaceAllUsesWith(New);
3077     }
3078 
3079     /// Reassign the original uses of Inst to Inst.
3080     void undo() override {
3081       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3082       for (InstructionAndIdx &Use : OriginalUses)
3083         Use.Inst->setOperand(Use.Idx, Inst);
3084       // RAUW has replaced all original uses with references to the new value,
3085       // including the debug uses. Since we are undoing the replacements,
3086       // the original debug uses must also be reinstated to maintain the
3087       // correctness and utility of debug value instructions.
3088       for (auto *DVI : DbgValues)
3089         DVI->replaceVariableLocationOp(New, Inst);
3090     }
3091   };
3092 
3093   /// Remove an instruction from the IR.
3094   class InstructionRemover : public TypePromotionAction {
3095     /// Original position of the instruction.
3096     InsertionHandler Inserter;
3097 
3098     /// Helper structure to hide all the link to the instruction. In other
3099     /// words, this helps to do as if the instruction was removed.
3100     OperandsHider Hider;
3101 
3102     /// Keep track of the uses replaced, if any.
3103     UsesReplacer *Replacer = nullptr;
3104 
3105     /// Keep track of instructions removed.
3106     SetOfInstrs &RemovedInsts;
3107 
3108   public:
3109     /// Remove all reference of \p Inst and optionally replace all its
3110     /// uses with New.
3111     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3112     /// \pre If !Inst->use_empty(), then New != nullptr
3113     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3114                        Value *New = nullptr)
3115         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3116           RemovedInsts(RemovedInsts) {
3117       if (New)
3118         Replacer = new UsesReplacer(Inst, New);
3119       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3120       RemovedInsts.insert(Inst);
3121       /// The instructions removed here will be freed after completing
3122       /// optimizeBlock() for all blocks as we need to keep track of the
3123       /// removed instructions during promotion.
3124       Inst->removeFromParent();
3125     }
3126 
3127     ~InstructionRemover() override { delete Replacer; }
3128 
3129     InstructionRemover &operator=(const InstructionRemover &other) = delete;
3130     InstructionRemover(const InstructionRemover &other) = delete;
3131 
3132     /// Resurrect the instruction and reassign it to the proper uses if
3133     /// new value was provided when build this action.
3134     void undo() override {
3135       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3136       Inserter.insert(Inst);
3137       if (Replacer)
3138         Replacer->undo();
3139       Hider.undo();
3140       RemovedInsts.erase(Inst);
3141     }
3142   };
3143 
3144 public:
3145   /// Restoration point.
3146   /// The restoration point is a pointer to an action instead of an iterator
3147   /// because the iterator may be invalidated but not the pointer.
3148   using ConstRestorationPt = const TypePromotionAction *;
3149 
3150   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3151       : RemovedInsts(RemovedInsts) {}
3152 
3153   /// Advocate every changes made in that transaction. Return true if any change
3154   /// happen.
3155   bool commit();
3156 
3157   /// Undo all the changes made after the given point.
3158   void rollback(ConstRestorationPt Point);
3159 
3160   /// Get the current restoration point.
3161   ConstRestorationPt getRestorationPoint() const;
3162 
3163   /// \name API for IR modification with state keeping to support rollback.
3164   /// @{
3165   /// Same as Instruction::setOperand.
3166   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3167 
3168   /// Same as Instruction::eraseFromParent.
3169   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3170 
3171   /// Same as Value::replaceAllUsesWith.
3172   void replaceAllUsesWith(Instruction *Inst, Value *New);
3173 
3174   /// Same as Value::mutateType.
3175   void mutateType(Instruction *Inst, Type *NewTy);
3176 
3177   /// Same as IRBuilder::createTrunc.
3178   Value *createTrunc(Instruction *Opnd, Type *Ty);
3179 
3180   /// Same as IRBuilder::createSExt.
3181   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3182 
3183   /// Same as IRBuilder::createZExt.
3184   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3185 
3186   /// Same as Instruction::moveBefore.
3187   void moveBefore(Instruction *Inst, Instruction *Before);
3188   /// @}
3189 
3190 private:
3191   /// The ordered list of actions made so far.
3192   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3193 
3194   using CommitPt =
3195       SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3196 
3197   SetOfInstrs &RemovedInsts;
3198 };
3199 
3200 } // end anonymous namespace
3201 
3202 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3203                                           Value *NewVal) {
3204   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3205       Inst, Idx, NewVal));
3206 }
3207 
3208 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3209                                                 Value *NewVal) {
3210   Actions.push_back(
3211       std::make_unique<TypePromotionTransaction::InstructionRemover>(
3212           Inst, RemovedInsts, NewVal));
3213 }
3214 
3215 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3216                                                   Value *New) {
3217   Actions.push_back(
3218       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3219 }
3220 
3221 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3222   Actions.push_back(
3223       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3224 }
3225 
3226 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3227   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3228   Value *Val = Ptr->getBuiltValue();
3229   Actions.push_back(std::move(Ptr));
3230   return Val;
3231 }
3232 
3233 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3234                                             Type *Ty) {
3235   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3236   Value *Val = Ptr->getBuiltValue();
3237   Actions.push_back(std::move(Ptr));
3238   return Val;
3239 }
3240 
3241 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3242                                             Type *Ty) {
3243   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3244   Value *Val = Ptr->getBuiltValue();
3245   Actions.push_back(std::move(Ptr));
3246   return Val;
3247 }
3248 
3249 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3250                                           Instruction *Before) {
3251   Actions.push_back(
3252       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3253           Inst, Before));
3254 }
3255 
3256 TypePromotionTransaction::ConstRestorationPt
3257 TypePromotionTransaction::getRestorationPoint() const {
3258   return !Actions.empty() ? Actions.back().get() : nullptr;
3259 }
3260 
3261 bool TypePromotionTransaction::commit() {
3262   for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3263     Action->commit();
3264   bool Modified = !Actions.empty();
3265   Actions.clear();
3266   return Modified;
3267 }
3268 
3269 void TypePromotionTransaction::rollback(
3270     TypePromotionTransaction::ConstRestorationPt Point) {
3271   while (!Actions.empty() && Point != Actions.back().get()) {
3272     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3273     Curr->undo();
3274   }
3275 }
3276 
3277 namespace {
3278 
3279 /// A helper class for matching addressing modes.
3280 ///
3281 /// This encapsulates the logic for matching the target-legal addressing modes.
3282 class AddressingModeMatcher {
3283   SmallVectorImpl<Instruction *> &AddrModeInsts;
3284   const TargetLowering &TLI;
3285   const TargetRegisterInfo &TRI;
3286   const DataLayout &DL;
3287   const LoopInfo &LI;
3288   const std::function<const DominatorTree &()> getDTFn;
3289 
3290   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3291   /// the memory instruction that we're computing this address for.
3292   Type *AccessTy;
3293   unsigned AddrSpace;
3294   Instruction *MemoryInst;
3295 
3296   /// This is the addressing mode that we're building up. This is
3297   /// part of the return value of this addressing mode matching stuff.
3298   ExtAddrMode &AddrMode;
3299 
3300   /// The instructions inserted by other CodeGenPrepare optimizations.
3301   const SetOfInstrs &InsertedInsts;
3302 
3303   /// A map from the instructions to their type before promotion.
3304   InstrToOrigTy &PromotedInsts;
3305 
3306   /// The ongoing transaction where every action should be registered.
3307   TypePromotionTransaction &TPT;
3308 
3309   // A GEP which has too large offset to be folded into the addressing mode.
3310   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3311 
3312   /// This is set to true when we should not do profitability checks.
3313   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3314   bool IgnoreProfitability;
3315 
3316   /// True if we are optimizing for size.
3317   bool OptSize = false;
3318 
3319   ProfileSummaryInfo *PSI;
3320   BlockFrequencyInfo *BFI;
3321 
3322   AddressingModeMatcher(
3323       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3324       const TargetRegisterInfo &TRI, const LoopInfo &LI,
3325       const std::function<const DominatorTree &()> getDTFn, Type *AT,
3326       unsigned AS, Instruction *MI, ExtAddrMode &AM,
3327       const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3328       TypePromotionTransaction &TPT,
3329       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3330       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3331       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3332         DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3333         AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3334         InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3335         LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3336     IgnoreProfitability = false;
3337   }
3338 
3339 public:
3340   /// Find the maximal addressing mode that a load/store of V can fold,
3341   /// give an access type of AccessTy.  This returns a list of involved
3342   /// instructions in AddrModeInsts.
3343   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3344   /// optimizations.
3345   /// \p PromotedInsts maps the instructions to their type before promotion.
3346   /// \p The ongoing transaction where every action should be registered.
3347   static ExtAddrMode
3348   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3349         SmallVectorImpl<Instruction *> &AddrModeInsts,
3350         const TargetLowering &TLI, const LoopInfo &LI,
3351         const std::function<const DominatorTree &()> getDTFn,
3352         const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3353         InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3354         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3355         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3356     ExtAddrMode Result;
3357 
3358     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3359                                          AccessTy, AS, MemoryInst, Result,
3360                                          InsertedInsts, PromotedInsts, TPT,
3361                                          LargeOffsetGEP, OptSize, PSI, BFI)
3362                        .matchAddr(V, 0);
3363     (void)Success;
3364     assert(Success && "Couldn't select *anything*?");
3365     return Result;
3366   }
3367 
3368 private:
3369   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3370   bool matchAddr(Value *Addr, unsigned Depth);
3371   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3372                           bool *MovedAway = nullptr);
3373   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3374                                             ExtAddrMode &AMBefore,
3375                                             ExtAddrMode &AMAfter);
3376   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3377   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3378                              Value *PromotedOperand) const;
3379 };
3380 
3381 class PhiNodeSet;
3382 
3383 /// An iterator for PhiNodeSet.
3384 class PhiNodeSetIterator {
3385   PhiNodeSet *const Set;
3386   size_t CurrentIndex = 0;
3387 
3388 public:
3389   /// The constructor. Start should point to either a valid element, or be equal
3390   /// to the size of the underlying SmallVector of the PhiNodeSet.
3391   PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3392   PHINode *operator*() const;
3393   PhiNodeSetIterator &operator++();
3394   bool operator==(const PhiNodeSetIterator &RHS) const;
3395   bool operator!=(const PhiNodeSetIterator &RHS) const;
3396 };
3397 
3398 /// Keeps a set of PHINodes.
3399 ///
3400 /// This is a minimal set implementation for a specific use case:
3401 /// It is very fast when there are very few elements, but also provides good
3402 /// performance when there are many. It is similar to SmallPtrSet, but also
3403 /// provides iteration by insertion order, which is deterministic and stable
3404 /// across runs. It is also similar to SmallSetVector, but provides removing
3405 /// elements in O(1) time. This is achieved by not actually removing the element
3406 /// from the underlying vector, so comes at the cost of using more memory, but
3407 /// that is fine, since PhiNodeSets are used as short lived objects.
3408 class PhiNodeSet {
3409   friend class PhiNodeSetIterator;
3410 
3411   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3412   using iterator = PhiNodeSetIterator;
3413 
3414   /// Keeps the elements in the order of their insertion in the underlying
3415   /// vector. To achieve constant time removal, it never deletes any element.
3416   SmallVector<PHINode *, 32> NodeList;
3417 
3418   /// Keeps the elements in the underlying set implementation. This (and not the
3419   /// NodeList defined above) is the source of truth on whether an element
3420   /// is actually in the collection.
3421   MapType NodeMap;
3422 
3423   /// Points to the first valid (not deleted) element when the set is not empty
3424   /// and the value is not zero. Equals to the size of the underlying vector
3425   /// when the set is empty. When the value is 0, as in the beginning, the
3426   /// first element may or may not be valid.
3427   size_t FirstValidElement = 0;
3428 
3429 public:
3430   /// Inserts a new element to the collection.
3431   /// \returns true if the element is actually added, i.e. was not in the
3432   /// collection before the operation.
3433   bool insert(PHINode *Ptr) {
3434     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3435       NodeList.push_back(Ptr);
3436       return true;
3437     }
3438     return false;
3439   }
3440 
3441   /// Removes the element from the collection.
3442   /// \returns whether the element is actually removed, i.e. was in the
3443   /// collection before the operation.
3444   bool erase(PHINode *Ptr) {
3445     if (NodeMap.erase(Ptr)) {
3446       SkipRemovedElements(FirstValidElement);
3447       return true;
3448     }
3449     return false;
3450   }
3451 
3452   /// Removes all elements and clears the collection.
3453   void clear() {
3454     NodeMap.clear();
3455     NodeList.clear();
3456     FirstValidElement = 0;
3457   }
3458 
3459   /// \returns an iterator that will iterate the elements in the order of
3460   /// insertion.
3461   iterator begin() {
3462     if (FirstValidElement == 0)
3463       SkipRemovedElements(FirstValidElement);
3464     return PhiNodeSetIterator(this, FirstValidElement);
3465   }
3466 
3467   /// \returns an iterator that points to the end of the collection.
3468   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3469 
3470   /// Returns the number of elements in the collection.
3471   size_t size() const { return NodeMap.size(); }
3472 
3473   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3474   size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
3475 
3476 private:
3477   /// Updates the CurrentIndex so that it will point to a valid element.
3478   ///
3479   /// If the element of NodeList at CurrentIndex is valid, it does not
3480   /// change it. If there are no more valid elements, it updates CurrentIndex
3481   /// to point to the end of the NodeList.
3482   void SkipRemovedElements(size_t &CurrentIndex) {
3483     while (CurrentIndex < NodeList.size()) {
3484       auto it = NodeMap.find(NodeList[CurrentIndex]);
3485       // If the element has been deleted and added again later, NodeMap will
3486       // point to a different index, so CurrentIndex will still be invalid.
3487       if (it != NodeMap.end() && it->second == CurrentIndex)
3488         break;
3489       ++CurrentIndex;
3490     }
3491   }
3492 };
3493 
3494 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3495     : Set(Set), CurrentIndex(Start) {}
3496 
3497 PHINode *PhiNodeSetIterator::operator*() const {
3498   assert(CurrentIndex < Set->NodeList.size() &&
3499          "PhiNodeSet access out of range");
3500   return Set->NodeList[CurrentIndex];
3501 }
3502 
3503 PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
3504   assert(CurrentIndex < Set->NodeList.size() &&
3505          "PhiNodeSet access out of range");
3506   ++CurrentIndex;
3507   Set->SkipRemovedElements(CurrentIndex);
3508   return *this;
3509 }
3510 
3511 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3512   return CurrentIndex == RHS.CurrentIndex;
3513 }
3514 
3515 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3516   return !((*this) == RHS);
3517 }
3518 
3519 /// Keep track of simplification of Phi nodes.
3520 /// Accept the set of all phi nodes and erase phi node from this set
3521 /// if it is simplified.
3522 class SimplificationTracker {
3523   DenseMap<Value *, Value *> Storage;
3524   const SimplifyQuery &SQ;
3525   // Tracks newly created Phi nodes. The elements are iterated by insertion
3526   // order.
3527   PhiNodeSet AllPhiNodes;
3528   // Tracks newly created Select nodes.
3529   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3530 
3531 public:
3532   SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {}
3533 
3534   Value *Get(Value *V) {
3535     do {
3536       auto SV = Storage.find(V);
3537       if (SV == Storage.end())
3538         return V;
3539       V = SV->second;
3540     } while (true);
3541   }
3542 
3543   Value *Simplify(Value *Val) {
3544     SmallVector<Value *, 32> WorkList;
3545     SmallPtrSet<Value *, 32> Visited;
3546     WorkList.push_back(Val);
3547     while (!WorkList.empty()) {
3548       auto *P = WorkList.pop_back_val();
3549       if (!Visited.insert(P).second)
3550         continue;
3551       if (auto *PI = dyn_cast<Instruction>(P))
3552         if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
3553           for (auto *U : PI->users())
3554             WorkList.push_back(cast<Value>(U));
3555           Put(PI, V);
3556           PI->replaceAllUsesWith(V);
3557           if (auto *PHI = dyn_cast<PHINode>(PI))
3558             AllPhiNodes.erase(PHI);
3559           if (auto *Select = dyn_cast<SelectInst>(PI))
3560             AllSelectNodes.erase(Select);
3561           PI->eraseFromParent();
3562         }
3563     }
3564     return Get(Val);
3565   }
3566 
3567   void Put(Value *From, Value *To) { Storage.insert({From, To}); }
3568 
3569   void ReplacePhi(PHINode *From, PHINode *To) {
3570     Value *OldReplacement = Get(From);
3571     while (OldReplacement != From) {
3572       From = To;
3573       To = dyn_cast<PHINode>(OldReplacement);
3574       OldReplacement = Get(From);
3575     }
3576     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3577     Put(From, To);
3578     From->replaceAllUsesWith(To);
3579     AllPhiNodes.erase(From);
3580     From->eraseFromParent();
3581   }
3582 
3583   PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
3584 
3585   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3586 
3587   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3588 
3589   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3590 
3591   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3592 
3593   void destroyNewNodes(Type *CommonType) {
3594     // For safe erasing, replace the uses with dummy value first.
3595     auto *Dummy = PoisonValue::get(CommonType);
3596     for (auto *I : AllPhiNodes) {
3597       I->replaceAllUsesWith(Dummy);
3598       I->eraseFromParent();
3599     }
3600     AllPhiNodes.clear();
3601     for (auto *I : AllSelectNodes) {
3602       I->replaceAllUsesWith(Dummy);
3603       I->eraseFromParent();
3604     }
3605     AllSelectNodes.clear();
3606   }
3607 };
3608 
3609 /// A helper class for combining addressing modes.
3610 class AddressingModeCombiner {
3611   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3612   typedef std::pair<PHINode *, PHINode *> PHIPair;
3613 
3614 private:
3615   /// The addressing modes we've collected.
3616   SmallVector<ExtAddrMode, 16> AddrModes;
3617 
3618   /// The field in which the AddrModes differ, when we have more than one.
3619   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3620 
3621   /// Are the AddrModes that we have all just equal to their original values?
3622   bool AllAddrModesTrivial = true;
3623 
3624   /// Common Type for all different fields in addressing modes.
3625   Type *CommonType = nullptr;
3626 
3627   /// SimplifyQuery for simplifyInstruction utility.
3628   const SimplifyQuery &SQ;
3629 
3630   /// Original Address.
3631   Value *Original;
3632 
3633   /// Common value among addresses
3634   Value *CommonValue = nullptr;
3635 
3636 public:
3637   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3638       : SQ(_SQ), Original(OriginalValue) {}
3639 
3640   ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3641 
3642   /// Get the combined AddrMode
3643   const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
3644 
3645   /// Add a new AddrMode if it's compatible with the AddrModes we already
3646   /// have.
3647   /// \return True iff we succeeded in doing so.
3648   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3649     // Take note of if we have any non-trivial AddrModes, as we need to detect
3650     // when all AddrModes are trivial as then we would introduce a phi or select
3651     // which just duplicates what's already there.
3652     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3653 
3654     // If this is the first addrmode then everything is fine.
3655     if (AddrModes.empty()) {
3656       AddrModes.emplace_back(NewAddrMode);
3657       return true;
3658     }
3659 
3660     // Figure out how different this is from the other address modes, which we
3661     // can do just by comparing against the first one given that we only care
3662     // about the cumulative difference.
3663     ExtAddrMode::FieldName ThisDifferentField =
3664         AddrModes[0].compare(NewAddrMode);
3665     if (DifferentField == ExtAddrMode::NoField)
3666       DifferentField = ThisDifferentField;
3667     else if (DifferentField != ThisDifferentField)
3668       DifferentField = ExtAddrMode::MultipleFields;
3669 
3670     // If NewAddrMode differs in more than one dimension we cannot handle it.
3671     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3672 
3673     // If Scale Field is different then we reject.
3674     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3675 
3676     // We also must reject the case when base offset is different and
3677     // scale reg is not null, we cannot handle this case due to merge of
3678     // different offsets will be used as ScaleReg.
3679     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3680                               !NewAddrMode.ScaledReg);
3681 
3682     // We also must reject the case when GV is different and BaseReg installed
3683     // due to we want to use base reg as a merge of GV values.
3684     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3685                               !NewAddrMode.HasBaseReg);
3686 
3687     // Even if NewAddMode is the same we still need to collect it due to
3688     // original value is different. And later we will need all original values
3689     // as anchors during finding the common Phi node.
3690     if (CanHandle)
3691       AddrModes.emplace_back(NewAddrMode);
3692     else
3693       AddrModes.clear();
3694 
3695     return CanHandle;
3696   }
3697 
3698   /// Combine the addressing modes we've collected into a single
3699   /// addressing mode.
3700   /// \return True iff we successfully combined them or we only had one so
3701   /// didn't need to combine them anyway.
3702   bool combineAddrModes() {
3703     // If we have no AddrModes then they can't be combined.
3704     if (AddrModes.size() == 0)
3705       return false;
3706 
3707     // A single AddrMode can trivially be combined.
3708     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3709       return true;
3710 
3711     // If the AddrModes we collected are all just equal to the value they are
3712     // derived from then combining them wouldn't do anything useful.
3713     if (AllAddrModesTrivial)
3714       return false;
3715 
3716     if (!addrModeCombiningAllowed())
3717       return false;
3718 
3719     // Build a map between <original value, basic block where we saw it> to
3720     // value of base register.
3721     // Bail out if there is no common type.
3722     FoldAddrToValueMapping Map;
3723     if (!initializeMap(Map))
3724       return false;
3725 
3726     CommonValue = findCommon(Map);
3727     if (CommonValue)
3728       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3729     return CommonValue != nullptr;
3730   }
3731 
3732 private:
3733   /// `CommonValue` may be a placeholder inserted by us.
3734   /// If the placeholder is not used, we should remove this dead instruction.
3735   void eraseCommonValueIfDead() {
3736     if (CommonValue && CommonValue->getNumUses() == 0)
3737       if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
3738         CommonInst->eraseFromParent();
3739   }
3740 
3741   /// Initialize Map with anchor values. For address seen
3742   /// we set the value of different field saw in this address.
3743   /// At the same time we find a common type for different field we will
3744   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3745   /// Return false if there is no common type found.
3746   bool initializeMap(FoldAddrToValueMapping &Map) {
3747     // Keep track of keys where the value is null. We will need to replace it
3748     // with constant null when we know the common type.
3749     SmallVector<Value *, 2> NullValue;
3750     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3751     for (auto &AM : AddrModes) {
3752       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3753       if (DV) {
3754         auto *Type = DV->getType();
3755         if (CommonType && CommonType != Type)
3756           return false;
3757         CommonType = Type;
3758         Map[AM.OriginalValue] = DV;
3759       } else {
3760         NullValue.push_back(AM.OriginalValue);
3761       }
3762     }
3763     assert(CommonType && "At least one non-null value must be!");
3764     for (auto *V : NullValue)
3765       Map[V] = Constant::getNullValue(CommonType);
3766     return true;
3767   }
3768 
3769   /// We have mapping between value A and other value B where B was a field in
3770   /// addressing mode represented by A. Also we have an original value C
3771   /// representing an address we start with. Traversing from C through phi and
3772   /// selects we ended up with A's in a map. This utility function tries to find
3773   /// a value V which is a field in addressing mode C and traversing through phi
3774   /// nodes and selects we will end up in corresponded values B in a map.
3775   /// The utility will create a new Phi/Selects if needed.
3776   // The simple example looks as follows:
3777   // BB1:
3778   //   p1 = b1 + 40
3779   //   br cond BB2, BB3
3780   // BB2:
3781   //   p2 = b2 + 40
3782   //   br BB3
3783   // BB3:
3784   //   p = phi [p1, BB1], [p2, BB2]
3785   //   v = load p
3786   // Map is
3787   //   p1 -> b1
3788   //   p2 -> b2
3789   // Request is
3790   //   p -> ?
3791   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3792   Value *findCommon(FoldAddrToValueMapping &Map) {
3793     // Tracks the simplification of newly created phi nodes. The reason we use
3794     // this mapping is because we will add new created Phi nodes in AddrToBase.
3795     // Simplification of Phi nodes is recursive, so some Phi node may
3796     // be simplified after we added it to AddrToBase. In reality this
3797     // simplification is possible only if original phi/selects were not
3798     // simplified yet.
3799     // Using this mapping we can find the current value in AddrToBase.
3800     SimplificationTracker ST(SQ);
3801 
3802     // First step, DFS to create PHI nodes for all intermediate blocks.
3803     // Also fill traverse order for the second step.
3804     SmallVector<Value *, 32> TraverseOrder;
3805     InsertPlaceholders(Map, TraverseOrder, ST);
3806 
3807     // Second Step, fill new nodes by merged values and simplify if possible.
3808     FillPlaceholders(Map, TraverseOrder, ST);
3809 
3810     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3811       ST.destroyNewNodes(CommonType);
3812       return nullptr;
3813     }
3814 
3815     // Now we'd like to match New Phi nodes to existed ones.
3816     unsigned PhiNotMatchedCount = 0;
3817     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3818       ST.destroyNewNodes(CommonType);
3819       return nullptr;
3820     }
3821 
3822     auto *Result = ST.Get(Map.find(Original)->second);
3823     if (Result) {
3824       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3825       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3826     }
3827     return Result;
3828   }
3829 
3830   /// Try to match PHI node to Candidate.
3831   /// Matcher tracks the matched Phi nodes.
3832   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3833                     SmallSetVector<PHIPair, 8> &Matcher,
3834                     PhiNodeSet &PhiNodesToMatch) {
3835     SmallVector<PHIPair, 8> WorkList;
3836     Matcher.insert({PHI, Candidate});
3837     SmallSet<PHINode *, 8> MatchedPHIs;
3838     MatchedPHIs.insert(PHI);
3839     WorkList.push_back({PHI, Candidate});
3840     SmallSet<PHIPair, 8> Visited;
3841     while (!WorkList.empty()) {
3842       auto Item = WorkList.pop_back_val();
3843       if (!Visited.insert(Item).second)
3844         continue;
3845       // We iterate over all incoming values to Phi to compare them.
3846       // If values are different and both of them Phi and the first one is a
3847       // Phi we added (subject to match) and both of them is in the same basic
3848       // block then we can match our pair if values match. So we state that
3849       // these values match and add it to work list to verify that.
3850       for (auto *B : Item.first->blocks()) {
3851         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3852         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3853         if (FirstValue == SecondValue)
3854           continue;
3855 
3856         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3857         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3858 
3859         // One of them is not Phi or
3860         // The first one is not Phi node from the set we'd like to match or
3861         // Phi nodes from different basic blocks then
3862         // we will not be able to match.
3863         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3864             FirstPhi->getParent() != SecondPhi->getParent())
3865           return false;
3866 
3867         // If we already matched them then continue.
3868         if (Matcher.count({FirstPhi, SecondPhi}))
3869           continue;
3870         // So the values are different and does not match. So we need them to
3871         // match. (But we register no more than one match per PHI node, so that
3872         // we won't later try to replace them twice.)
3873         if (MatchedPHIs.insert(FirstPhi).second)
3874           Matcher.insert({FirstPhi, SecondPhi});
3875         // But me must check it.
3876         WorkList.push_back({FirstPhi, SecondPhi});
3877       }
3878     }
3879     return true;
3880   }
3881 
3882   /// For the given set of PHI nodes (in the SimplificationTracker) try
3883   /// to find their equivalents.
3884   /// Returns false if this matching fails and creation of new Phi is disabled.
3885   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3886                    unsigned &PhiNotMatchedCount) {
3887     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3888     // order, so the replacements (ReplacePhi) are also done in a deterministic
3889     // order.
3890     SmallSetVector<PHIPair, 8> Matched;
3891     SmallPtrSet<PHINode *, 8> WillNotMatch;
3892     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3893     while (PhiNodesToMatch.size()) {
3894       PHINode *PHI = *PhiNodesToMatch.begin();
3895 
3896       // Add us, if no Phi nodes in the basic block we do not match.
3897       WillNotMatch.clear();
3898       WillNotMatch.insert(PHI);
3899 
3900       // Traverse all Phis until we found equivalent or fail to do that.
3901       bool IsMatched = false;
3902       for (auto &P : PHI->getParent()->phis()) {
3903         // Skip new Phi nodes.
3904         if (PhiNodesToMatch.count(&P))
3905           continue;
3906         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3907           break;
3908         // If it does not match, collect all Phi nodes from matcher.
3909         // if we end up with no match, them all these Phi nodes will not match
3910         // later.
3911         for (auto M : Matched)
3912           WillNotMatch.insert(M.first);
3913         Matched.clear();
3914       }
3915       if (IsMatched) {
3916         // Replace all matched values and erase them.
3917         for (auto MV : Matched)
3918           ST.ReplacePhi(MV.first, MV.second);
3919         Matched.clear();
3920         continue;
3921       }
3922       // If we are not allowed to create new nodes then bail out.
3923       if (!AllowNewPhiNodes)
3924         return false;
3925       // Just remove all seen values in matcher. They will not match anything.
3926       PhiNotMatchedCount += WillNotMatch.size();
3927       for (auto *P : WillNotMatch)
3928         PhiNodesToMatch.erase(P);
3929     }
3930     return true;
3931   }
3932   /// Fill the placeholders with values from predecessors and simplify them.
3933   void FillPlaceholders(FoldAddrToValueMapping &Map,
3934                         SmallVectorImpl<Value *> &TraverseOrder,
3935                         SimplificationTracker &ST) {
3936     while (!TraverseOrder.empty()) {
3937       Value *Current = TraverseOrder.pop_back_val();
3938       assert(Map.contains(Current) && "No node to fill!!!");
3939       Value *V = Map[Current];
3940 
3941       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3942         // CurrentValue also must be Select.
3943         auto *CurrentSelect = cast<SelectInst>(Current);
3944         auto *TrueValue = CurrentSelect->getTrueValue();
3945         assert(Map.contains(TrueValue) && "No True Value!");
3946         Select->setTrueValue(ST.Get(Map[TrueValue]));
3947         auto *FalseValue = CurrentSelect->getFalseValue();
3948         assert(Map.contains(FalseValue) && "No False Value!");
3949         Select->setFalseValue(ST.Get(Map[FalseValue]));
3950       } else {
3951         // Must be a Phi node then.
3952         auto *PHI = cast<PHINode>(V);
3953         // Fill the Phi node with values from predecessors.
3954         for (auto *B : predecessors(PHI->getParent())) {
3955           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3956           assert(Map.contains(PV) && "No predecessor Value!");
3957           PHI->addIncoming(ST.Get(Map[PV]), B);
3958         }
3959       }
3960       Map[Current] = ST.Simplify(V);
3961     }
3962   }
3963 
3964   /// Starting from original value recursively iterates over def-use chain up to
3965   /// known ending values represented in a map. For each traversed phi/select
3966   /// inserts a placeholder Phi or Select.
3967   /// Reports all new created Phi/Select nodes by adding them to set.
3968   /// Also reports and order in what values have been traversed.
3969   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3970                           SmallVectorImpl<Value *> &TraverseOrder,
3971                           SimplificationTracker &ST) {
3972     SmallVector<Value *, 32> Worklist;
3973     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3974            "Address must be a Phi or Select node");
3975     auto *Dummy = PoisonValue::get(CommonType);
3976     Worklist.push_back(Original);
3977     while (!Worklist.empty()) {
3978       Value *Current = Worklist.pop_back_val();
3979       // if it is already visited or it is an ending value then skip it.
3980       if (Map.contains(Current))
3981         continue;
3982       TraverseOrder.push_back(Current);
3983 
3984       // CurrentValue must be a Phi node or select. All others must be covered
3985       // by anchors.
3986       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3987         // Is it OK to get metadata from OrigSelect?!
3988         // Create a Select placeholder with dummy value.
3989         SelectInst *Select = SelectInst::Create(
3990             CurrentSelect->getCondition(), Dummy, Dummy,
3991             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3992         Map[Current] = Select;
3993         ST.insertNewSelect(Select);
3994         // We are interested in True and False values.
3995         Worklist.push_back(CurrentSelect->getTrueValue());
3996         Worklist.push_back(CurrentSelect->getFalseValue());
3997       } else {
3998         // It must be a Phi node then.
3999         PHINode *CurrentPhi = cast<PHINode>(Current);
4000         unsigned PredCount = CurrentPhi->getNumIncomingValues();
4001         PHINode *PHI =
4002             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
4003         Map[Current] = PHI;
4004         ST.insertNewPhi(PHI);
4005         append_range(Worklist, CurrentPhi->incoming_values());
4006       }
4007     }
4008   }
4009 
4010   bool addrModeCombiningAllowed() {
4011     if (DisableComplexAddrModes)
4012       return false;
4013     switch (DifferentField) {
4014     default:
4015       return false;
4016     case ExtAddrMode::BaseRegField:
4017       return AddrSinkCombineBaseReg;
4018     case ExtAddrMode::BaseGVField:
4019       return AddrSinkCombineBaseGV;
4020     case ExtAddrMode::BaseOffsField:
4021       return AddrSinkCombineBaseOffs;
4022     case ExtAddrMode::ScaledRegField:
4023       return AddrSinkCombineScaledReg;
4024     }
4025   }
4026 };
4027 } // end anonymous namespace
4028 
4029 /// Try adding ScaleReg*Scale to the current addressing mode.
4030 /// Return true and update AddrMode if this addr mode is legal for the target,
4031 /// false if not.
4032 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4033                                              unsigned Depth) {
4034   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4035   // mode.  Just process that directly.
4036   if (Scale == 1)
4037     return matchAddr(ScaleReg, Depth);
4038 
4039   // If the scale is 0, it takes nothing to add this.
4040   if (Scale == 0)
4041     return true;
4042 
4043   // If we already have a scale of this value, we can add to it, otherwise, we
4044   // need an available scale field.
4045   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4046     return false;
4047 
4048   ExtAddrMode TestAddrMode = AddrMode;
4049 
4050   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
4051   // [A+B + A*7] -> [B+A*8].
4052   TestAddrMode.Scale += Scale;
4053   TestAddrMode.ScaledReg = ScaleReg;
4054 
4055   // If the new address isn't legal, bail out.
4056   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4057     return false;
4058 
4059   // It was legal, so commit it.
4060   AddrMode = TestAddrMode;
4061 
4062   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
4063   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
4064   // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4065   // go any further: we can reuse it and cannot eliminate it.
4066   ConstantInt *CI = nullptr;
4067   Value *AddLHS = nullptr;
4068   if (isa<Instruction>(ScaleReg) && // not a constant expr.
4069       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4070       !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4071     TestAddrMode.InBounds = false;
4072     TestAddrMode.ScaledReg = AddLHS;
4073     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4074 
4075     // If this addressing mode is legal, commit it and remember that we folded
4076     // this instruction.
4077     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4078       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4079       AddrMode = TestAddrMode;
4080       return true;
4081     }
4082     // Restore status quo.
4083     TestAddrMode = AddrMode;
4084   }
4085 
4086   // If this is an add recurrence with a constant step, return the increment
4087   // instruction and the canonicalized step.
4088   auto GetConstantStep =
4089       [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4090     auto *PN = dyn_cast<PHINode>(V);
4091     if (!PN)
4092       return std::nullopt;
4093     auto IVInc = getIVIncrement(PN, &LI);
4094     if (!IVInc)
4095       return std::nullopt;
4096     // TODO: The result of the intrinsics above is two-complement. However when
4097     // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4098     // If it has nuw or nsw flags, we need to make sure that these flags are
4099     // inferrable at the point of memory instruction. Otherwise we are replacing
4100     // well-defined two-complement computation with poison. Currently, to avoid
4101     // potentially complex analysis needed to prove this, we reject such cases.
4102     if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4103       if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4104         return std::nullopt;
4105     if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4106       return std::make_pair(IVInc->first, ConstantStep->getValue());
4107     return std::nullopt;
4108   };
4109 
4110   // Try to account for the following special case:
4111   // 1. ScaleReg is an inductive variable;
4112   // 2. We use it with non-zero offset;
4113   // 3. IV's increment is available at the point of memory instruction.
4114   //
4115   // In this case, we may reuse the IV increment instead of the IV Phi to
4116   // achieve the following advantages:
4117   // 1. If IV step matches the offset, we will have no need in the offset;
4118   // 2. Even if they don't match, we will reduce the overlap of living IV
4119   //    and IV increment, that will potentially lead to better register
4120   //    assignment.
4121   if (AddrMode.BaseOffs) {
4122     if (auto IVStep = GetConstantStep(ScaleReg)) {
4123       Instruction *IVInc = IVStep->first;
4124       // The following assert is important to ensure a lack of infinite loops.
4125       // This transforms is (intentionally) the inverse of the one just above.
4126       // If they don't agree on the definition of an increment, we'd alternate
4127       // back and forth indefinitely.
4128       assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4129       APInt Step = IVStep->second;
4130       APInt Offset = Step * AddrMode.Scale;
4131       if (Offset.isSignedIntN(64)) {
4132         TestAddrMode.InBounds = false;
4133         TestAddrMode.ScaledReg = IVInc;
4134         TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4135         // If this addressing mode is legal, commit it..
4136         // (Note that we defer the (expensive) domtree base legality check
4137         // to the very last possible point.)
4138         if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4139             getDTFn().dominates(IVInc, MemoryInst)) {
4140           AddrModeInsts.push_back(cast<Instruction>(IVInc));
4141           AddrMode = TestAddrMode;
4142           return true;
4143         }
4144         // Restore status quo.
4145         TestAddrMode = AddrMode;
4146       }
4147     }
4148   }
4149 
4150   // Otherwise, just return what we have.
4151   return true;
4152 }
4153 
4154 /// This is a little filter, which returns true if an addressing computation
4155 /// involving I might be folded into a load/store accessing it.
4156 /// This doesn't need to be perfect, but needs to accept at least
4157 /// the set of instructions that MatchOperationAddr can.
4158 static bool MightBeFoldableInst(Instruction *I) {
4159   switch (I->getOpcode()) {
4160   case Instruction::BitCast:
4161   case Instruction::AddrSpaceCast:
4162     // Don't touch identity bitcasts.
4163     if (I->getType() == I->getOperand(0)->getType())
4164       return false;
4165     return I->getType()->isIntOrPtrTy();
4166   case Instruction::PtrToInt:
4167     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4168     return true;
4169   case Instruction::IntToPtr:
4170     // We know the input is intptr_t, so this is foldable.
4171     return true;
4172   case Instruction::Add:
4173     return true;
4174   case Instruction::Mul:
4175   case Instruction::Shl:
4176     // Can only handle X*C and X << C.
4177     return isa<ConstantInt>(I->getOperand(1));
4178   case Instruction::GetElementPtr:
4179     return true;
4180   default:
4181     return false;
4182   }
4183 }
4184 
4185 /// Check whether or not \p Val is a legal instruction for \p TLI.
4186 /// \note \p Val is assumed to be the product of some type promotion.
4187 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4188 /// to be legal, as the non-promoted value would have had the same state.
4189 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4190                                        const DataLayout &DL, Value *Val) {
4191   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4192   if (!PromotedInst)
4193     return false;
4194   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4195   // If the ISDOpcode is undefined, it was undefined before the promotion.
4196   if (!ISDOpcode)
4197     return true;
4198   // Otherwise, check if the promoted instruction is legal or not.
4199   return TLI.isOperationLegalOrCustom(
4200       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4201 }
4202 
4203 namespace {
4204 
4205 /// Hepler class to perform type promotion.
4206 class TypePromotionHelper {
4207   /// Utility function to add a promoted instruction \p ExtOpnd to
4208   /// \p PromotedInsts and record the type of extension we have seen.
4209   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4210                               Instruction *ExtOpnd, bool IsSExt) {
4211     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4212     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4213     if (It != PromotedInsts.end()) {
4214       // If the new extension is same as original, the information in
4215       // PromotedInsts[ExtOpnd] is still correct.
4216       if (It->second.getInt() == ExtTy)
4217         return;
4218 
4219       // Now the new extension is different from old extension, we make
4220       // the type information invalid by setting extension type to
4221       // BothExtension.
4222       ExtTy = BothExtension;
4223     }
4224     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4225   }
4226 
4227   /// Utility function to query the original type of instruction \p Opnd
4228   /// with a matched extension type. If the extension doesn't match, we
4229   /// cannot use the information we had on the original type.
4230   /// BothExtension doesn't match any extension type.
4231   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4232                                  Instruction *Opnd, bool IsSExt) {
4233     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4234     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4235     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4236       return It->second.getPointer();
4237     return nullptr;
4238   }
4239 
4240   /// Utility function to check whether or not a sign or zero extension
4241   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4242   /// either using the operands of \p Inst or promoting \p Inst.
4243   /// The type of the extension is defined by \p IsSExt.
4244   /// In other words, check if:
4245   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4246   /// #1 Promotion applies:
4247   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4248   /// #2 Operand reuses:
4249   /// ext opnd1 to ConsideredExtType.
4250   /// \p PromotedInsts maps the instructions to their type before promotion.
4251   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4252                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
4253 
4254   /// Utility function to determine if \p OpIdx should be promoted when
4255   /// promoting \p Inst.
4256   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4257     return !(isa<SelectInst>(Inst) && OpIdx == 0);
4258   }
4259 
4260   /// Utility function to promote the operand of \p Ext when this
4261   /// operand is a promotable trunc or sext or zext.
4262   /// \p PromotedInsts maps the instructions to their type before promotion.
4263   /// \p CreatedInstsCost[out] contains the cost of all instructions
4264   /// created to promote the operand of Ext.
4265   /// Newly added extensions are inserted in \p Exts.
4266   /// Newly added truncates are inserted in \p Truncs.
4267   /// Should never be called directly.
4268   /// \return The promoted value which is used instead of Ext.
4269   static Value *promoteOperandForTruncAndAnyExt(
4270       Instruction *Ext, TypePromotionTransaction &TPT,
4271       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4272       SmallVectorImpl<Instruction *> *Exts,
4273       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4274 
4275   /// Utility function to promote the operand of \p Ext when this
4276   /// operand is promotable and is not a supported trunc or sext.
4277   /// \p PromotedInsts maps the instructions to their type before promotion.
4278   /// \p CreatedInstsCost[out] contains the cost of all the instructions
4279   /// created to promote the operand of Ext.
4280   /// Newly added extensions are inserted in \p Exts.
4281   /// Newly added truncates are inserted in \p Truncs.
4282   /// Should never be called directly.
4283   /// \return The promoted value which is used instead of Ext.
4284   static Value *promoteOperandForOther(Instruction *Ext,
4285                                        TypePromotionTransaction &TPT,
4286                                        InstrToOrigTy &PromotedInsts,
4287                                        unsigned &CreatedInstsCost,
4288                                        SmallVectorImpl<Instruction *> *Exts,
4289                                        SmallVectorImpl<Instruction *> *Truncs,
4290                                        const TargetLowering &TLI, bool IsSExt);
4291 
4292   /// \see promoteOperandForOther.
4293   static Value *signExtendOperandForOther(
4294       Instruction *Ext, TypePromotionTransaction &TPT,
4295       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4296       SmallVectorImpl<Instruction *> *Exts,
4297       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4298     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4299                                   Exts, Truncs, TLI, true);
4300   }
4301 
4302   /// \see promoteOperandForOther.
4303   static Value *zeroExtendOperandForOther(
4304       Instruction *Ext, TypePromotionTransaction &TPT,
4305       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4306       SmallVectorImpl<Instruction *> *Exts,
4307       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4308     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4309                                   Exts, Truncs, TLI, false);
4310   }
4311 
4312 public:
4313   /// Type for the utility function that promotes the operand of Ext.
4314   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4315                             InstrToOrigTy &PromotedInsts,
4316                             unsigned &CreatedInstsCost,
4317                             SmallVectorImpl<Instruction *> *Exts,
4318                             SmallVectorImpl<Instruction *> *Truncs,
4319                             const TargetLowering &TLI);
4320 
4321   /// Given a sign/zero extend instruction \p Ext, return the appropriate
4322   /// action to promote the operand of \p Ext instead of using Ext.
4323   /// \return NULL if no promotable action is possible with the current
4324   /// sign extension.
4325   /// \p InsertedInsts keeps track of all the instructions inserted by the
4326   /// other CodeGenPrepare optimizations. This information is important
4327   /// because we do not want to promote these instructions as CodeGenPrepare
4328   /// will reinsert them later. Thus creating an infinite loop: create/remove.
4329   /// \p PromotedInsts maps the instructions to their type before promotion.
4330   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4331                           const TargetLowering &TLI,
4332                           const InstrToOrigTy &PromotedInsts);
4333 };
4334 
4335 } // end anonymous namespace
4336 
4337 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4338                                         Type *ConsideredExtType,
4339                                         const InstrToOrigTy &PromotedInsts,
4340                                         bool IsSExt) {
4341   // The promotion helper does not know how to deal with vector types yet.
4342   // To be able to fix that, we would need to fix the places where we
4343   // statically extend, e.g., constants and such.
4344   if (Inst->getType()->isVectorTy())
4345     return false;
4346 
4347   // We can always get through zext.
4348   if (isa<ZExtInst>(Inst))
4349     return true;
4350 
4351   // sext(sext) is ok too.
4352   if (IsSExt && isa<SExtInst>(Inst))
4353     return true;
4354 
4355   // We can get through binary operator, if it is legal. In other words, the
4356   // binary operator must have a nuw or nsw flag.
4357   if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4358     if (isa<OverflowingBinaryOperator>(BinOp) &&
4359         ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4360          (IsSExt && BinOp->hasNoSignedWrap())))
4361       return true;
4362 
4363   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4364   if ((Inst->getOpcode() == Instruction::And ||
4365        Inst->getOpcode() == Instruction::Or))
4366     return true;
4367 
4368   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4369   if (Inst->getOpcode() == Instruction::Xor) {
4370     // Make sure it is not a NOT.
4371     if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4372       if (!Cst->getValue().isAllOnes())
4373         return true;
4374   }
4375 
4376   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4377   // It may change a poisoned value into a regular value, like
4378   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4379   //          poisoned value                    regular value
4380   // It should be OK since undef covers valid value.
4381   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4382     return true;
4383 
4384   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4385   // It may change a poisoned value into a regular value, like
4386   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4387   //          poisoned value                    regular value
4388   // It should be OK since undef covers valid value.
4389   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4390     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4391     if (ExtInst->hasOneUse()) {
4392       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4393       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4394         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4395         if (Cst &&
4396             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4397           return true;
4398       }
4399     }
4400   }
4401 
4402   // Check if we can do the following simplification.
4403   // ext(trunc(opnd)) --> ext(opnd)
4404   if (!isa<TruncInst>(Inst))
4405     return false;
4406 
4407   Value *OpndVal = Inst->getOperand(0);
4408   // Check if we can use this operand in the extension.
4409   // If the type is larger than the result type of the extension, we cannot.
4410   if (!OpndVal->getType()->isIntegerTy() ||
4411       OpndVal->getType()->getIntegerBitWidth() >
4412           ConsideredExtType->getIntegerBitWidth())
4413     return false;
4414 
4415   // If the operand of the truncate is not an instruction, we will not have
4416   // any information on the dropped bits.
4417   // (Actually we could for constant but it is not worth the extra logic).
4418   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4419   if (!Opnd)
4420     return false;
4421 
4422   // Check if the source of the type is narrow enough.
4423   // I.e., check that trunc just drops extended bits of the same kind of
4424   // the extension.
4425   // #1 get the type of the operand and check the kind of the extended bits.
4426   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4427   if (OpndType)
4428     ;
4429   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4430     OpndType = Opnd->getOperand(0)->getType();
4431   else
4432     return false;
4433 
4434   // #2 check that the truncate just drops extended bits.
4435   return Inst->getType()->getIntegerBitWidth() >=
4436          OpndType->getIntegerBitWidth();
4437 }
4438 
4439 TypePromotionHelper::Action TypePromotionHelper::getAction(
4440     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4441     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4442   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4443          "Unexpected instruction type");
4444   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4445   Type *ExtTy = Ext->getType();
4446   bool IsSExt = isa<SExtInst>(Ext);
4447   // If the operand of the extension is not an instruction, we cannot
4448   // get through.
4449   // If it, check we can get through.
4450   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4451     return nullptr;
4452 
4453   // Do not promote if the operand has been added by codegenprepare.
4454   // Otherwise, it means we are undoing an optimization that is likely to be
4455   // redone, thus causing potential infinite loop.
4456   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4457     return nullptr;
4458 
4459   // SExt or Trunc instructions.
4460   // Return the related handler.
4461   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4462       isa<ZExtInst>(ExtOpnd))
4463     return promoteOperandForTruncAndAnyExt;
4464 
4465   // Regular instruction.
4466   // Abort early if we will have to insert non-free instructions.
4467   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4468     return nullptr;
4469   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4470 }
4471 
4472 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4473     Instruction *SExt, TypePromotionTransaction &TPT,
4474     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4475     SmallVectorImpl<Instruction *> *Exts,
4476     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4477   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4478   // get through it and this method should not be called.
4479   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4480   Value *ExtVal = SExt;
4481   bool HasMergedNonFreeExt = false;
4482   if (isa<ZExtInst>(SExtOpnd)) {
4483     // Replace s|zext(zext(opnd))
4484     // => zext(opnd).
4485     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4486     Value *ZExt =
4487         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4488     TPT.replaceAllUsesWith(SExt, ZExt);
4489     TPT.eraseInstruction(SExt);
4490     ExtVal = ZExt;
4491   } else {
4492     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4493     // => z|sext(opnd).
4494     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4495   }
4496   CreatedInstsCost = 0;
4497 
4498   // Remove dead code.
4499   if (SExtOpnd->use_empty())
4500     TPT.eraseInstruction(SExtOpnd);
4501 
4502   // Check if the extension is still needed.
4503   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4504   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4505     if (ExtInst) {
4506       if (Exts)
4507         Exts->push_back(ExtInst);
4508       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4509     }
4510     return ExtVal;
4511   }
4512 
4513   // At this point we have: ext ty opnd to ty.
4514   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4515   Value *NextVal = ExtInst->getOperand(0);
4516   TPT.eraseInstruction(ExtInst, NextVal);
4517   return NextVal;
4518 }
4519 
4520 Value *TypePromotionHelper::promoteOperandForOther(
4521     Instruction *Ext, TypePromotionTransaction &TPT,
4522     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4523     SmallVectorImpl<Instruction *> *Exts,
4524     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4525     bool IsSExt) {
4526   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4527   // get through it and this method should not be called.
4528   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4529   CreatedInstsCost = 0;
4530   if (!ExtOpnd->hasOneUse()) {
4531     // ExtOpnd will be promoted.
4532     // All its uses, but Ext, will need to use a truncated value of the
4533     // promoted version.
4534     // Create the truncate now.
4535     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4536     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4537       // Insert it just after the definition.
4538       ITrunc->moveAfter(ExtOpnd);
4539       if (Truncs)
4540         Truncs->push_back(ITrunc);
4541     }
4542 
4543     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4544     // Restore the operand of Ext (which has been replaced by the previous call
4545     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4546     TPT.setOperand(Ext, 0, ExtOpnd);
4547   }
4548 
4549   // Get through the Instruction:
4550   // 1. Update its type.
4551   // 2. Replace the uses of Ext by Inst.
4552   // 3. Extend each operand that needs to be extended.
4553 
4554   // Remember the original type of the instruction before promotion.
4555   // This is useful to know that the high bits are sign extended bits.
4556   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4557   // Step #1.
4558   TPT.mutateType(ExtOpnd, Ext->getType());
4559   // Step #2.
4560   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4561   // Step #3.
4562   Instruction *ExtForOpnd = Ext;
4563 
4564   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4565   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4566        ++OpIdx) {
4567     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4568     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4569         !shouldExtOperand(ExtOpnd, OpIdx)) {
4570       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4571       continue;
4572     }
4573     // Check if we can statically extend the operand.
4574     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4575     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4576       LLVM_DEBUG(dbgs() << "Statically extend\n");
4577       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4578       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4579                             : Cst->getValue().zext(BitWidth);
4580       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4581       continue;
4582     }
4583     // UndefValue are typed, so we have to statically sign extend them.
4584     if (isa<UndefValue>(Opnd)) {
4585       LLVM_DEBUG(dbgs() << "Statically extend\n");
4586       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4587       continue;
4588     }
4589 
4590     // Otherwise we have to explicitly sign extend the operand.
4591     // Check if Ext was reused to extend an operand.
4592     if (!ExtForOpnd) {
4593       // If yes, create a new one.
4594       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4595       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4596                                     : TPT.createZExt(Ext, Opnd, Ext->getType());
4597       if (!isa<Instruction>(ValForExtOpnd)) {
4598         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4599         continue;
4600       }
4601       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4602     }
4603     if (Exts)
4604       Exts->push_back(ExtForOpnd);
4605     TPT.setOperand(ExtForOpnd, 0, Opnd);
4606 
4607     // Move the sign extension before the insertion point.
4608     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4609     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4610     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4611     // If more sext are required, new instructions will have to be created.
4612     ExtForOpnd = nullptr;
4613   }
4614   if (ExtForOpnd == Ext) {
4615     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4616     TPT.eraseInstruction(Ext);
4617   }
4618   return ExtOpnd;
4619 }
4620 
4621 /// Check whether or not promoting an instruction to a wider type is profitable.
4622 /// \p NewCost gives the cost of extension instructions created by the
4623 /// promotion.
4624 /// \p OldCost gives the cost of extension instructions before the promotion
4625 /// plus the number of instructions that have been
4626 /// matched in the addressing mode the promotion.
4627 /// \p PromotedOperand is the value that has been promoted.
4628 /// \return True if the promotion is profitable, false otherwise.
4629 bool AddressingModeMatcher::isPromotionProfitable(
4630     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4631   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4632                     << '\n');
4633   // The cost of the new extensions is greater than the cost of the
4634   // old extension plus what we folded.
4635   // This is not profitable.
4636   if (NewCost > OldCost)
4637     return false;
4638   if (NewCost < OldCost)
4639     return true;
4640   // The promotion is neutral but it may help folding the sign extension in
4641   // loads for instance.
4642   // Check that we did not create an illegal instruction.
4643   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4644 }
4645 
4646 /// Given an instruction or constant expr, see if we can fold the operation
4647 /// into the addressing mode. If so, update the addressing mode and return
4648 /// true, otherwise return false without modifying AddrMode.
4649 /// If \p MovedAway is not NULL, it contains the information of whether or
4650 /// not AddrInst has to be folded into the addressing mode on success.
4651 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4652 /// because it has been moved away.
4653 /// Thus AddrInst must not be added in the matched instructions.
4654 /// This state can happen when AddrInst is a sext, since it may be moved away.
4655 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4656 /// not be referenced anymore.
4657 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4658                                                unsigned Depth,
4659                                                bool *MovedAway) {
4660   // Avoid exponential behavior on extremely deep expression trees.
4661   if (Depth >= 5)
4662     return false;
4663 
4664   // By default, all matched instructions stay in place.
4665   if (MovedAway)
4666     *MovedAway = false;
4667 
4668   switch (Opcode) {
4669   case Instruction::PtrToInt:
4670     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4671     return matchAddr(AddrInst->getOperand(0), Depth);
4672   case Instruction::IntToPtr: {
4673     auto AS = AddrInst->getType()->getPointerAddressSpace();
4674     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4675     // This inttoptr is a no-op if the integer type is pointer sized.
4676     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4677       return matchAddr(AddrInst->getOperand(0), Depth);
4678     return false;
4679   }
4680   case Instruction::BitCast:
4681     // BitCast is always a noop, and we can handle it as long as it is
4682     // int->int or pointer->pointer (we don't want int<->fp or something).
4683     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4684         // Don't touch identity bitcasts.  These were probably put here by LSR,
4685         // and we don't want to mess around with them.  Assume it knows what it
4686         // is doing.
4687         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4688       return matchAddr(AddrInst->getOperand(0), Depth);
4689     return false;
4690   case Instruction::AddrSpaceCast: {
4691     unsigned SrcAS =
4692         AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4693     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4694     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4695       return matchAddr(AddrInst->getOperand(0), Depth);
4696     return false;
4697   }
4698   case Instruction::Add: {
4699     // Check to see if we can merge in one operand, then the other.  If so, we
4700     // win.
4701     ExtAddrMode BackupAddrMode = AddrMode;
4702     unsigned OldSize = AddrModeInsts.size();
4703     // Start a transaction at this point.
4704     // The LHS may match but not the RHS.
4705     // Therefore, we need a higher level restoration point to undo partially
4706     // matched operation.
4707     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4708         TPT.getRestorationPoint();
4709 
4710     // Try to match an integer constant second to increase its chance of ending
4711     // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4712     int First = 0, Second = 1;
4713     if (isa<ConstantInt>(AddrInst->getOperand(First))
4714       && !isa<ConstantInt>(AddrInst->getOperand(Second)))
4715         std::swap(First, Second);
4716     AddrMode.InBounds = false;
4717     if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
4718         matchAddr(AddrInst->getOperand(Second), Depth + 1))
4719       return true;
4720 
4721     // Restore the old addr mode info.
4722     AddrMode = BackupAddrMode;
4723     AddrModeInsts.resize(OldSize);
4724     TPT.rollback(LastKnownGood);
4725 
4726     // Otherwise this was over-aggressive.  Try merging operands in the opposite
4727     // order.
4728     if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
4729         matchAddr(AddrInst->getOperand(First), Depth + 1))
4730       return true;
4731 
4732     // Otherwise we definitely can't merge the ADD in.
4733     AddrMode = BackupAddrMode;
4734     AddrModeInsts.resize(OldSize);
4735     TPT.rollback(LastKnownGood);
4736     break;
4737   }
4738   // case Instruction::Or:
4739   //  TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4740   // break;
4741   case Instruction::Mul:
4742   case Instruction::Shl: {
4743     // Can only handle X*C and X << C.
4744     AddrMode.InBounds = false;
4745     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4746     if (!RHS || RHS->getBitWidth() > 64)
4747       return false;
4748     int64_t Scale = Opcode == Instruction::Shl
4749                         ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
4750                         : RHS->getSExtValue();
4751 
4752     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4753   }
4754   case Instruction::GetElementPtr: {
4755     // Scan the GEP.  We check it if it contains constant offsets and at most
4756     // one variable offset.
4757     int VariableOperand = -1;
4758     unsigned VariableScale = 0;
4759 
4760     int64_t ConstantOffset = 0;
4761     gep_type_iterator GTI = gep_type_begin(AddrInst);
4762     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4763       if (StructType *STy = GTI.getStructTypeOrNull()) {
4764         const StructLayout *SL = DL.getStructLayout(STy);
4765         unsigned Idx =
4766             cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4767         ConstantOffset += SL->getElementOffset(Idx);
4768       } else {
4769         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4770         if (TS.isNonZero()) {
4771           // The optimisations below currently only work for fixed offsets.
4772           if (TS.isScalable())
4773             return false;
4774           int64_t TypeSize = TS.getFixedValue();
4775           if (ConstantInt *CI =
4776                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4777             const APInt &CVal = CI->getValue();
4778             if (CVal.getSignificantBits() <= 64) {
4779               ConstantOffset += CVal.getSExtValue() * TypeSize;
4780               continue;
4781             }
4782           }
4783           // We only allow one variable index at the moment.
4784           if (VariableOperand != -1)
4785             return false;
4786 
4787           // Remember the variable index.
4788           VariableOperand = i;
4789           VariableScale = TypeSize;
4790         }
4791       }
4792     }
4793 
4794     // A common case is for the GEP to only do a constant offset.  In this case,
4795     // just add it to the disp field and check validity.
4796     if (VariableOperand == -1) {
4797       AddrMode.BaseOffs += ConstantOffset;
4798       if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4799           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4800             AddrMode.InBounds = false;
4801           return true;
4802       }
4803       AddrMode.BaseOffs -= ConstantOffset;
4804 
4805       if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4806           TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4807           ConstantOffset > 0) {
4808           // Record GEPs with non-zero offsets as candidates for splitting in
4809           // the event that the offset cannot fit into the r+i addressing mode.
4810           // Simple and common case that only one GEP is used in calculating the
4811           // address for the memory access.
4812           Value *Base = AddrInst->getOperand(0);
4813           auto *BaseI = dyn_cast<Instruction>(Base);
4814           auto *GEP = cast<GetElementPtrInst>(AddrInst);
4815           if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4816               (BaseI && !isa<CastInst>(BaseI) &&
4817                !isa<GetElementPtrInst>(BaseI))) {
4818             // Make sure the parent block allows inserting non-PHI instructions
4819             // before the terminator.
4820             BasicBlock *Parent = BaseI ? BaseI->getParent()
4821                                        : &GEP->getFunction()->getEntryBlock();
4822             if (!Parent->getTerminator()->isEHPad())
4823             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4824           }
4825       }
4826 
4827       return false;
4828     }
4829 
4830     // Save the valid addressing mode in case we can't match.
4831     ExtAddrMode BackupAddrMode = AddrMode;
4832     unsigned OldSize = AddrModeInsts.size();
4833 
4834     // See if the scale and offset amount is valid for this target.
4835     AddrMode.BaseOffs += ConstantOffset;
4836     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4837       AddrMode.InBounds = false;
4838 
4839     // Match the base operand of the GEP.
4840     if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4841       // If it couldn't be matched, just stuff the value in a register.
4842       if (AddrMode.HasBaseReg) {
4843         AddrMode = BackupAddrMode;
4844         AddrModeInsts.resize(OldSize);
4845         return false;
4846       }
4847       AddrMode.HasBaseReg = true;
4848       AddrMode.BaseReg = AddrInst->getOperand(0);
4849     }
4850 
4851     // Match the remaining variable portion of the GEP.
4852     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4853                           Depth)) {
4854       // If it couldn't be matched, try stuffing the base into a register
4855       // instead of matching it, and retrying the match of the scale.
4856       AddrMode = BackupAddrMode;
4857       AddrModeInsts.resize(OldSize);
4858       if (AddrMode.HasBaseReg)
4859         return false;
4860       AddrMode.HasBaseReg = true;
4861       AddrMode.BaseReg = AddrInst->getOperand(0);
4862       AddrMode.BaseOffs += ConstantOffset;
4863       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4864                             VariableScale, Depth)) {
4865         // If even that didn't work, bail.
4866         AddrMode = BackupAddrMode;
4867         AddrModeInsts.resize(OldSize);
4868         return false;
4869       }
4870     }
4871 
4872     return true;
4873   }
4874   case Instruction::SExt:
4875   case Instruction::ZExt: {
4876     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4877     if (!Ext)
4878       return false;
4879 
4880     // Try to move this ext out of the way of the addressing mode.
4881     // Ask for a method for doing so.
4882     TypePromotionHelper::Action TPH =
4883         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4884     if (!TPH)
4885       return false;
4886 
4887     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4888         TPT.getRestorationPoint();
4889     unsigned CreatedInstsCost = 0;
4890     unsigned ExtCost = !TLI.isExtFree(Ext);
4891     Value *PromotedOperand =
4892         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4893     // SExt has been moved away.
4894     // Thus either it will be rematched later in the recursive calls or it is
4895     // gone. Anyway, we must not fold it into the addressing mode at this point.
4896     // E.g.,
4897     // op = add opnd, 1
4898     // idx = ext op
4899     // addr = gep base, idx
4900     // is now:
4901     // promotedOpnd = ext opnd            <- no match here
4902     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4903     // addr = gep base, op                <- match
4904     if (MovedAway)
4905       *MovedAway = true;
4906 
4907     assert(PromotedOperand &&
4908            "TypePromotionHelper should have filtered out those cases");
4909 
4910     ExtAddrMode BackupAddrMode = AddrMode;
4911     unsigned OldSize = AddrModeInsts.size();
4912 
4913     if (!matchAddr(PromotedOperand, Depth) ||
4914         // The total of the new cost is equal to the cost of the created
4915         // instructions.
4916         // The total of the old cost is equal to the cost of the extension plus
4917         // what we have saved in the addressing mode.
4918         !isPromotionProfitable(CreatedInstsCost,
4919                                ExtCost + (AddrModeInsts.size() - OldSize),
4920                                PromotedOperand)) {
4921       AddrMode = BackupAddrMode;
4922       AddrModeInsts.resize(OldSize);
4923       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4924       TPT.rollback(LastKnownGood);
4925       return false;
4926     }
4927     return true;
4928   }
4929   }
4930   return false;
4931 }
4932 
4933 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4934 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4935 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4936 /// for the target.
4937 ///
4938 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4939   // Start a transaction at this point that we will rollback if the matching
4940   // fails.
4941   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4942       TPT.getRestorationPoint();
4943   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4944     if (CI->getValue().isSignedIntN(64)) {
4945       // Fold in immediates if legal for the target.
4946       AddrMode.BaseOffs += CI->getSExtValue();
4947       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4948         return true;
4949       AddrMode.BaseOffs -= CI->getSExtValue();
4950     }
4951   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4952     // If this is a global variable, try to fold it into the addressing mode.
4953     if (!AddrMode.BaseGV) {
4954       AddrMode.BaseGV = GV;
4955       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4956         return true;
4957       AddrMode.BaseGV = nullptr;
4958     }
4959   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4960     ExtAddrMode BackupAddrMode = AddrMode;
4961     unsigned OldSize = AddrModeInsts.size();
4962 
4963     // Check to see if it is possible to fold this operation.
4964     bool MovedAway = false;
4965     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4966       // This instruction may have been moved away. If so, there is nothing
4967       // to check here.
4968       if (MovedAway)
4969         return true;
4970       // Okay, it's possible to fold this.  Check to see if it is actually
4971       // *profitable* to do so.  We use a simple cost model to avoid increasing
4972       // register pressure too much.
4973       if (I->hasOneUse() ||
4974           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4975         AddrModeInsts.push_back(I);
4976         return true;
4977       }
4978 
4979       // It isn't profitable to do this, roll back.
4980       AddrMode = BackupAddrMode;
4981       AddrModeInsts.resize(OldSize);
4982       TPT.rollback(LastKnownGood);
4983     }
4984   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4985     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4986       return true;
4987     TPT.rollback(LastKnownGood);
4988   } else if (isa<ConstantPointerNull>(Addr)) {
4989     // Null pointer gets folded without affecting the addressing mode.
4990     return true;
4991   }
4992 
4993   // Worse case, the target should support [reg] addressing modes. :)
4994   if (!AddrMode.HasBaseReg) {
4995     AddrMode.HasBaseReg = true;
4996     AddrMode.BaseReg = Addr;
4997     // Still check for legality in case the target supports [imm] but not [i+r].
4998     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4999       return true;
5000     AddrMode.HasBaseReg = false;
5001     AddrMode.BaseReg = nullptr;
5002   }
5003 
5004   // If the base register is already taken, see if we can do [r+r].
5005   if (AddrMode.Scale == 0) {
5006     AddrMode.Scale = 1;
5007     AddrMode.ScaledReg = Addr;
5008     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5009       return true;
5010     AddrMode.Scale = 0;
5011     AddrMode.ScaledReg = nullptr;
5012   }
5013   // Couldn't match.
5014   TPT.rollback(LastKnownGood);
5015   return false;
5016 }
5017 
5018 /// Check to see if all uses of OpVal by the specified inline asm call are due
5019 /// to memory operands. If so, return true, otherwise return false.
5020 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
5021                                     const TargetLowering &TLI,
5022                                     const TargetRegisterInfo &TRI) {
5023   const Function *F = CI->getFunction();
5024   TargetLowering::AsmOperandInfoVector TargetConstraints =
5025       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
5026 
5027   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5028     // Compute the constraint code and ConstraintType to use.
5029     TLI.ComputeConstraintToUse(OpInfo, SDValue());
5030 
5031     // If this asm operand is our Value*, and if it isn't an indirect memory
5032     // operand, we can't fold it!  TODO: Also handle C_Address?
5033     if (OpInfo.CallOperandVal == OpVal &&
5034         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
5035          !OpInfo.isIndirect))
5036       return false;
5037   }
5038 
5039   return true;
5040 }
5041 
5042 /// Recursively walk all the uses of I until we find a memory use.
5043 /// If we find an obviously non-foldable instruction, return true.
5044 /// Add accessed addresses and types to MemoryUses.
5045 static bool FindAllMemoryUses(
5046     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5047     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5048     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5049     BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5050   // If we already considered this instruction, we're done.
5051   if (!ConsideredInsts.insert(I).second)
5052     return false;
5053 
5054   // If this is an obviously unfoldable instruction, bail out.
5055   if (!MightBeFoldableInst(I))
5056     return true;
5057 
5058   // Loop over all the uses, recursively processing them.
5059   for (Use &U : I->uses()) {
5060     // Conservatively return true if we're seeing a large number or a deep chain
5061     // of users. This avoids excessive compilation times in pathological cases.
5062     if (SeenInsts++ >= MaxAddressUsersToScan)
5063       return true;
5064 
5065     Instruction *UserI = cast<Instruction>(U.getUser());
5066     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5067       MemoryUses.push_back({&U, LI->getType()});
5068       continue;
5069     }
5070 
5071     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5072       if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5073         return true; // Storing addr, not into addr.
5074       MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5075       continue;
5076     }
5077 
5078     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5079       if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5080         return true; // Storing addr, not into addr.
5081       MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5082       continue;
5083     }
5084 
5085     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
5086       if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5087         return true; // Storing addr, not into addr.
5088       MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5089       continue;
5090     }
5091 
5092     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5093       if (CI->hasFnAttr(Attribute::Cold)) {
5094         // If this is a cold call, we can sink the addressing calculation into
5095         // the cold path.  See optimizeCallInst
5096         bool OptForSize =
5097             OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
5098         if (!OptForSize)
5099           continue;
5100       }
5101 
5102       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5103       if (!IA)
5104         return true;
5105 
5106       // If this is a memory operand, we're cool, otherwise bail out.
5107       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5108         return true;
5109       continue;
5110     }
5111 
5112     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5113                           PSI, BFI, SeenInsts))
5114       return true;
5115   }
5116 
5117   return false;
5118 }
5119 
5120 static bool FindAllMemoryUses(
5121     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5122     const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5123     ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
5124   unsigned SeenInsts = 0;
5125   SmallPtrSet<Instruction *, 16> ConsideredInsts;
5126   return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5127                            PSI, BFI, SeenInsts);
5128 }
5129 
5130 
5131 /// Return true if Val is already known to be live at the use site that we're
5132 /// folding it into. If so, there is no cost to include it in the addressing
5133 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5134 /// instruction already.
5135 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5136                                                    Value *KnownLive1,
5137                                                    Value *KnownLive2) {
5138   // If Val is either of the known-live values, we know it is live!
5139   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5140     return true;
5141 
5142   // All values other than instructions and arguments (e.g. constants) are live.
5143   if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5144     return true;
5145 
5146   // If Val is a constant sized alloca in the entry block, it is live, this is
5147   // true because it is just a reference to the stack/frame pointer, which is
5148   // live for the whole function.
5149   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5150     if (AI->isStaticAlloca())
5151       return true;
5152 
5153   // Check to see if this value is already used in the memory instruction's
5154   // block.  If so, it's already live into the block at the very least, so we
5155   // can reasonably fold it.
5156   return Val->isUsedInBasicBlock(MemoryInst->getParent());
5157 }
5158 
5159 /// It is possible for the addressing mode of the machine to fold the specified
5160 /// instruction into a load or store that ultimately uses it.
5161 /// However, the specified instruction has multiple uses.
5162 /// Given this, it may actually increase register pressure to fold it
5163 /// into the load. For example, consider this code:
5164 ///
5165 ///     X = ...
5166 ///     Y = X+1
5167 ///     use(Y)   -> nonload/store
5168 ///     Z = Y+1
5169 ///     load Z
5170 ///
5171 /// In this case, Y has multiple uses, and can be folded into the load of Z
5172 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
5173 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
5174 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
5175 /// number of computations either.
5176 ///
5177 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
5178 /// X was live across 'load Z' for other reasons, we actually *would* want to
5179 /// fold the addressing mode in the Z case.  This would make Y die earlier.
5180 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5181     Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5182   if (IgnoreProfitability)
5183     return true;
5184 
5185   // AMBefore is the addressing mode before this instruction was folded into it,
5186   // and AMAfter is the addressing mode after the instruction was folded.  Get
5187   // the set of registers referenced by AMAfter and subtract out those
5188   // referenced by AMBefore: this is the set of values which folding in this
5189   // address extends the lifetime of.
5190   //
5191   // Note that there are only two potential values being referenced here,
5192   // BaseReg and ScaleReg (global addresses are always available, as are any
5193   // folded immediates).
5194   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5195 
5196   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5197   // lifetime wasn't extended by adding this instruction.
5198   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5199     BaseReg = nullptr;
5200   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5201     ScaledReg = nullptr;
5202 
5203   // If folding this instruction (and it's subexprs) didn't extend any live
5204   // ranges, we're ok with it.
5205   if (!BaseReg && !ScaledReg)
5206     return true;
5207 
5208   // If all uses of this instruction can have the address mode sunk into them,
5209   // we can remove the addressing mode and effectively trade one live register
5210   // for another (at worst.)  In this context, folding an addressing mode into
5211   // the use is just a particularly nice way of sinking it.
5212   SmallVector<std::pair<Use *, Type *>, 16> MemoryUses;
5213   if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5214     return false; // Has a non-memory, non-foldable use!
5215 
5216   // Now that we know that all uses of this instruction are part of a chain of
5217   // computation involving only operations that could theoretically be folded
5218   // into a memory use, loop over each of these memory operation uses and see
5219   // if they could  *actually* fold the instruction.  The assumption is that
5220   // addressing modes are cheap and that duplicating the computation involved
5221   // many times is worthwhile, even on a fastpath. For sinking candidates
5222   // (i.e. cold call sites), this serves as a way to prevent excessive code
5223   // growth since most architectures have some reasonable small and fast way to
5224   // compute an effective address.  (i.e LEA on x86)
5225   SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5226   for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5227     Value *Address = Pair.first->get();
5228     Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5229     Type *AddressAccessTy = Pair.second;
5230     unsigned AS = Address->getType()->getPointerAddressSpace();
5231 
5232     // Do a match against the root of this address, ignoring profitability. This
5233     // will tell us if the addressing mode for the memory operation will
5234     // *actually* cover the shared instruction.
5235     ExtAddrMode Result;
5236     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5237                                                                       0);
5238     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5239         TPT.getRestorationPoint();
5240     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5241                                   AddressAccessTy, AS, UserI, Result,
5242                                   InsertedInsts, PromotedInsts, TPT,
5243                                   LargeOffsetGEP, OptSize, PSI, BFI);
5244     Matcher.IgnoreProfitability = true;
5245     bool Success = Matcher.matchAddr(Address, 0);
5246     (void)Success;
5247     assert(Success && "Couldn't select *anything*?");
5248 
5249     // The match was to check the profitability, the changes made are not
5250     // part of the original matcher. Therefore, they should be dropped
5251     // otherwise the original matcher will not present the right state.
5252     TPT.rollback(LastKnownGood);
5253 
5254     // If the match didn't cover I, then it won't be shared by it.
5255     if (!is_contained(MatchedAddrModeInsts, I))
5256       return false;
5257 
5258     MatchedAddrModeInsts.clear();
5259   }
5260 
5261   return true;
5262 }
5263 
5264 /// Return true if the specified values are defined in a
5265 /// different basic block than BB.
5266 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5267   if (Instruction *I = dyn_cast<Instruction>(V))
5268     return I->getParent() != BB;
5269   return false;
5270 }
5271 
5272 /// Sink addressing mode computation immediate before MemoryInst if doing so
5273 /// can be done without increasing register pressure.  The need for the
5274 /// register pressure constraint means this can end up being an all or nothing
5275 /// decision for all uses of the same addressing computation.
5276 ///
5277 /// Load and Store Instructions often have addressing modes that can do
5278 /// significant amounts of computation. As such, instruction selection will try
5279 /// to get the load or store to do as much computation as possible for the
5280 /// program. The problem is that isel can only see within a single block. As
5281 /// such, we sink as much legal addressing mode work into the block as possible.
5282 ///
5283 /// This method is used to optimize both load/store and inline asms with memory
5284 /// operands.  It's also used to sink addressing computations feeding into cold
5285 /// call sites into their (cold) basic block.
5286 ///
5287 /// The motivation for handling sinking into cold blocks is that doing so can
5288 /// both enable other address mode sinking (by satisfying the register pressure
5289 /// constraint above), and reduce register pressure globally (by removing the
5290 /// addressing mode computation from the fast path entirely.).
5291 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5292                                         Type *AccessTy, unsigned AddrSpace) {
5293   Value *Repl = Addr;
5294 
5295   // Try to collapse single-value PHI nodes.  This is necessary to undo
5296   // unprofitable PRE transformations.
5297   SmallVector<Value *, 8> worklist;
5298   SmallPtrSet<Value *, 16> Visited;
5299   worklist.push_back(Addr);
5300 
5301   // Use a worklist to iteratively look through PHI and select nodes, and
5302   // ensure that the addressing mode obtained from the non-PHI/select roots of
5303   // the graph are compatible.
5304   bool PhiOrSelectSeen = false;
5305   SmallVector<Instruction *, 16> AddrModeInsts;
5306   const SimplifyQuery SQ(*DL, TLInfo);
5307   AddressingModeCombiner AddrModes(SQ, Addr);
5308   TypePromotionTransaction TPT(RemovedInsts);
5309   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5310       TPT.getRestorationPoint();
5311   while (!worklist.empty()) {
5312     Value *V = worklist.pop_back_val();
5313 
5314     // We allow traversing cyclic Phi nodes.
5315     // In case of success after this loop we ensure that traversing through
5316     // Phi nodes ends up with all cases to compute address of the form
5317     //    BaseGV + Base + Scale * Index + Offset
5318     // where Scale and Offset are constans and BaseGV, Base and Index
5319     // are exactly the same Values in all cases.
5320     // It means that BaseGV, Scale and Offset dominate our memory instruction
5321     // and have the same value as they had in address computation represented
5322     // as Phi. So we can safely sink address computation to memory instruction.
5323     if (!Visited.insert(V).second)
5324       continue;
5325 
5326     // For a PHI node, push all of its incoming values.
5327     if (PHINode *P = dyn_cast<PHINode>(V)) {
5328       append_range(worklist, P->incoming_values());
5329       PhiOrSelectSeen = true;
5330       continue;
5331     }
5332     // Similar for select.
5333     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5334       worklist.push_back(SI->getFalseValue());
5335       worklist.push_back(SI->getTrueValue());
5336       PhiOrSelectSeen = true;
5337       continue;
5338     }
5339 
5340     // For non-PHIs, determine the addressing mode being computed.  Note that
5341     // the result may differ depending on what other uses our candidate
5342     // addressing instructions might have.
5343     AddrModeInsts.clear();
5344     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5345                                                                       0);
5346     // Defer the query (and possible computation of) the dom tree to point of
5347     // actual use.  It's expected that most address matches don't actually need
5348     // the domtree.
5349     auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5350       Function *F = MemoryInst->getParent()->getParent();
5351       return this->getDT(*F);
5352     };
5353     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5354         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5355         *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5356         BFI.get());
5357 
5358     GetElementPtrInst *GEP = LargeOffsetGEP.first;
5359     if (GEP && !NewGEPBases.count(GEP)) {
5360       // If splitting the underlying data structure can reduce the offset of a
5361       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5362       // previously split data structures.
5363       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5364       LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5365     }
5366 
5367     NewAddrMode.OriginalValue = V;
5368     if (!AddrModes.addNewAddrMode(NewAddrMode))
5369       break;
5370   }
5371 
5372   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5373   // or we have multiple but either couldn't combine them or combining them
5374   // wouldn't do anything useful, bail out now.
5375   if (!AddrModes.combineAddrModes()) {
5376     TPT.rollback(LastKnownGood);
5377     return false;
5378   }
5379   bool Modified = TPT.commit();
5380 
5381   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5382   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5383 
5384   // If all the instructions matched are already in this BB, don't do anything.
5385   // If we saw a Phi node then it is not local definitely, and if we saw a
5386   // select then we want to push the address calculation past it even if it's
5387   // already in this BB.
5388   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5389         return IsNonLocalValue(V, MemoryInst->getParent());
5390       })) {
5391     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5392                       << "\n");
5393     return Modified;
5394   }
5395 
5396   // Insert this computation right after this user.  Since our caller is
5397   // scanning from the top of the BB to the bottom, reuse of the expr are
5398   // guaranteed to happen later.
5399   IRBuilder<> Builder(MemoryInst);
5400 
5401   // Now that we determined the addressing expression we want to use and know
5402   // that we have to sink it into this block.  Check to see if we have already
5403   // done this for some other load/store instr in this block.  If so, reuse
5404   // the computation.  Before attempting reuse, check if the address is valid
5405   // as it may have been erased.
5406 
5407   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5408 
5409   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5410   Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5411   if (SunkAddr) {
5412     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5413                       << " for " << *MemoryInst << "\n");
5414     if (SunkAddr->getType() != Addr->getType()) {
5415       if (SunkAddr->getType()->getPointerAddressSpace() !=
5416               Addr->getType()->getPointerAddressSpace() &&
5417           !DL->isNonIntegralPointerType(Addr->getType())) {
5418         // There are two reasons the address spaces might not match: a no-op
5419         // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5420         // ptrtoint/inttoptr pair to ensure we match the original semantics.
5421         // TODO: allow bitcast between different address space pointers with the
5422         // same size.
5423         SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5424         SunkAddr =
5425             Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5426       } else
5427         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5428     }
5429   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5430                                    SubtargetInfo->addrSinkUsingGEPs())) {
5431     // By default, we use the GEP-based method when AA is used later. This
5432     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5433     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5434                       << " for " << *MemoryInst << "\n");
5435     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5436 
5437     // First, find the pointer.
5438     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5439       ResultPtr = AddrMode.BaseReg;
5440       AddrMode.BaseReg = nullptr;
5441     }
5442 
5443     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5444       // We can't add more than one pointer together, nor can we scale a
5445       // pointer (both of which seem meaningless).
5446       if (ResultPtr || AddrMode.Scale != 1)
5447         return Modified;
5448 
5449       ResultPtr = AddrMode.ScaledReg;
5450       AddrMode.Scale = 0;
5451     }
5452 
5453     // It is only safe to sign extend the BaseReg if we know that the math
5454     // required to create it did not overflow before we extend it. Since
5455     // the original IR value was tossed in favor of a constant back when
5456     // the AddrMode was created we need to bail out gracefully if widths
5457     // do not match instead of extending it.
5458     //
5459     // (See below for code to add the scale.)
5460     if (AddrMode.Scale) {
5461       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5462       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5463           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5464         return Modified;
5465     }
5466 
5467     if (AddrMode.BaseGV) {
5468       if (ResultPtr)
5469         return Modified;
5470 
5471       ResultPtr = AddrMode.BaseGV;
5472     }
5473 
5474     // If the real base value actually came from an inttoptr, then the matcher
5475     // will look through it and provide only the integer value. In that case,
5476     // use it here.
5477     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5478       if (!ResultPtr && AddrMode.BaseReg) {
5479         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5480                                            "sunkaddr");
5481         AddrMode.BaseReg = nullptr;
5482       } else if (!ResultPtr && AddrMode.Scale == 1) {
5483         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5484                                            "sunkaddr");
5485         AddrMode.Scale = 0;
5486       }
5487     }
5488 
5489     if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
5490         !AddrMode.BaseOffs) {
5491       SunkAddr = Constant::getNullValue(Addr->getType());
5492     } else if (!ResultPtr) {
5493       return Modified;
5494     } else {
5495       Type *I8PtrTy =
5496           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5497       Type *I8Ty = Builder.getInt8Ty();
5498 
5499       // Start with the base register. Do this first so that subsequent address
5500       // matching finds it last, which will prevent it from trying to match it
5501       // as the scaled value in case it happens to be a mul. That would be
5502       // problematic if we've sunk a different mul for the scale, because then
5503       // we'd end up sinking both muls.
5504       if (AddrMode.BaseReg) {
5505         Value *V = AddrMode.BaseReg;
5506         if (V->getType() != IntPtrTy)
5507           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5508 
5509         ResultIndex = V;
5510       }
5511 
5512       // Add the scale value.
5513       if (AddrMode.Scale) {
5514         Value *V = AddrMode.ScaledReg;
5515         if (V->getType() == IntPtrTy) {
5516           // done.
5517         } else {
5518           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5519                      cast<IntegerType>(V->getType())->getBitWidth() &&
5520                  "We can't transform if ScaledReg is too narrow");
5521           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5522         }
5523 
5524         if (AddrMode.Scale != 1)
5525           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5526                                 "sunkaddr");
5527         if (ResultIndex)
5528           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5529         else
5530           ResultIndex = V;
5531       }
5532 
5533       // Add in the Base Offset if present.
5534       if (AddrMode.BaseOffs) {
5535         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5536         if (ResultIndex) {
5537           // We need to add this separately from the scale above to help with
5538           // SDAG consecutive load/store merging.
5539           if (ResultPtr->getType() != I8PtrTy)
5540             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5541           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex,
5542                                         "sunkaddr", AddrMode.InBounds);
5543         }
5544 
5545         ResultIndex = V;
5546       }
5547 
5548       if (!ResultIndex) {
5549         SunkAddr = ResultPtr;
5550       } else {
5551         if (ResultPtr->getType() != I8PtrTy)
5552           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5553         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr",
5554                                      AddrMode.InBounds);
5555       }
5556 
5557       if (SunkAddr->getType() != Addr->getType()) {
5558         if (SunkAddr->getType()->getPointerAddressSpace() !=
5559                 Addr->getType()->getPointerAddressSpace() &&
5560             !DL->isNonIntegralPointerType(Addr->getType())) {
5561           // There are two reasons the address spaces might not match: a no-op
5562           // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5563           // ptrtoint/inttoptr pair to ensure we match the original semantics.
5564           // TODO: allow bitcast between different address space pointers with
5565           // the same size.
5566           SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5567           SunkAddr =
5568               Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5569         } else
5570           SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5571       }
5572     }
5573   } else {
5574     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5575     // non-integral pointers, so in that case bail out now.
5576     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5577     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5578     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5579     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5580     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5581         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5582         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5583         (AddrMode.BaseGV &&
5584          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5585       return Modified;
5586 
5587     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5588                       << " for " << *MemoryInst << "\n");
5589     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5590     Value *Result = nullptr;
5591 
5592     // Start with the base register. Do this first so that subsequent address
5593     // matching finds it last, which will prevent it from trying to match it
5594     // as the scaled value in case it happens to be a mul. That would be
5595     // problematic if we've sunk a different mul for the scale, because then
5596     // we'd end up sinking both muls.
5597     if (AddrMode.BaseReg) {
5598       Value *V = AddrMode.BaseReg;
5599       if (V->getType()->isPointerTy())
5600         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5601       if (V->getType() != IntPtrTy)
5602         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5603       Result = V;
5604     }
5605 
5606     // Add the scale value.
5607     if (AddrMode.Scale) {
5608       Value *V = AddrMode.ScaledReg;
5609       if (V->getType() == IntPtrTy) {
5610         // done.
5611       } else if (V->getType()->isPointerTy()) {
5612         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5613       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5614                  cast<IntegerType>(V->getType())->getBitWidth()) {
5615         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5616       } else {
5617         // It is only safe to sign extend the BaseReg if we know that the math
5618         // required to create it did not overflow before we extend it. Since
5619         // the original IR value was tossed in favor of a constant back when
5620         // the AddrMode was created we need to bail out gracefully if widths
5621         // do not match instead of extending it.
5622         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5623         if (I && (Result != AddrMode.BaseReg))
5624           I->eraseFromParent();
5625         return Modified;
5626       }
5627       if (AddrMode.Scale != 1)
5628         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5629                               "sunkaddr");
5630       if (Result)
5631         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5632       else
5633         Result = V;
5634     }
5635 
5636     // Add in the BaseGV if present.
5637     if (AddrMode.BaseGV) {
5638       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5639       if (Result)
5640         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5641       else
5642         Result = V;
5643     }
5644 
5645     // Add in the Base Offset if present.
5646     if (AddrMode.BaseOffs) {
5647       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5648       if (Result)
5649         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5650       else
5651         Result = V;
5652     }
5653 
5654     if (!Result)
5655       SunkAddr = Constant::getNullValue(Addr->getType());
5656     else
5657       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5658   }
5659 
5660   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5661   // Store the newly computed address into the cache. In the case we reused a
5662   // value, this should be idempotent.
5663   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5664 
5665   // If we have no uses, recursively delete the value and all dead instructions
5666   // using it.
5667   if (Repl->use_empty()) {
5668     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5669       RecursivelyDeleteTriviallyDeadInstructions(
5670           Repl, TLInfo, nullptr,
5671           [&](Value *V) { removeAllAssertingVHReferences(V); });
5672     });
5673   }
5674   ++NumMemoryInsts;
5675   return true;
5676 }
5677 
5678 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5679 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5680 /// only handle a 2 operand GEP in the same basic block or a splat constant
5681 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5682 /// index.
5683 ///
5684 /// If the existing GEP has a vector base pointer that is splat, we can look
5685 /// through the splat to find the scalar pointer. If we can't find a scalar
5686 /// pointer there's nothing we can do.
5687 ///
5688 /// If we have a GEP with more than 2 indices where the middle indices are all
5689 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5690 ///
5691 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5692 /// followed by a GEP with an all zeroes vector index. This will enable
5693 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5694 /// zero index.
5695 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5696                                                Value *Ptr) {
5697   Value *NewAddr;
5698 
5699   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5700     // Don't optimize GEPs that don't have indices.
5701     if (!GEP->hasIndices())
5702       return false;
5703 
5704     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5705     // FIXME: We should support this by sinking the GEP.
5706     if (MemoryInst->getParent() != GEP->getParent())
5707       return false;
5708 
5709     SmallVector<Value *, 2> Ops(GEP->operands());
5710 
5711     bool RewriteGEP = false;
5712 
5713     if (Ops[0]->getType()->isVectorTy()) {
5714       Ops[0] = getSplatValue(Ops[0]);
5715       if (!Ops[0])
5716         return false;
5717       RewriteGEP = true;
5718     }
5719 
5720     unsigned FinalIndex = Ops.size() - 1;
5721 
5722     // Ensure all but the last index is 0.
5723     // FIXME: This isn't strictly required. All that's required is that they are
5724     // all scalars or splats.
5725     for (unsigned i = 1; i < FinalIndex; ++i) {
5726       auto *C = dyn_cast<Constant>(Ops[i]);
5727       if (!C)
5728         return false;
5729       if (isa<VectorType>(C->getType()))
5730         C = C->getSplatValue();
5731       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5732       if (!CI || !CI->isZero())
5733         return false;
5734       // Scalarize the index if needed.
5735       Ops[i] = CI;
5736     }
5737 
5738     // Try to scalarize the final index.
5739     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5740       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5741         auto *C = dyn_cast<ConstantInt>(V);
5742         // Don't scalarize all zeros vector.
5743         if (!C || !C->isZero()) {
5744           Ops[FinalIndex] = V;
5745           RewriteGEP = true;
5746         }
5747       }
5748     }
5749 
5750     // If we made any changes or the we have extra operands, we need to generate
5751     // new instructions.
5752     if (!RewriteGEP && Ops.size() == 2)
5753       return false;
5754 
5755     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5756 
5757     IRBuilder<> Builder(MemoryInst);
5758 
5759     Type *SourceTy = GEP->getSourceElementType();
5760     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5761 
5762     // If the final index isn't a vector, emit a scalar GEP containing all ops
5763     // and a vector GEP with all zeroes final index.
5764     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5765       NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
5766       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5767       auto *SecondTy = GetElementPtrInst::getIndexedType(
5768           SourceTy, ArrayRef(Ops).drop_front());
5769       NewAddr =
5770           Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5771     } else {
5772       Value *Base = Ops[0];
5773       Value *Index = Ops[FinalIndex];
5774 
5775       // Create a scalar GEP if there are more than 2 operands.
5776       if (Ops.size() != 2) {
5777         // Replace the last index with 0.
5778         Ops[FinalIndex] =
5779             Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
5780         Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
5781         SourceTy = GetElementPtrInst::getIndexedType(
5782             SourceTy, ArrayRef(Ops).drop_front());
5783       }
5784 
5785       // Now create the GEP with scalar pointer and vector index.
5786       NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5787     }
5788   } else if (!isa<Constant>(Ptr)) {
5789     // Not a GEP, maybe its a splat and we can create a GEP to enable
5790     // SelectionDAGBuilder to use it as a uniform base.
5791     Value *V = getSplatValue(Ptr);
5792     if (!V)
5793       return false;
5794 
5795     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5796 
5797     IRBuilder<> Builder(MemoryInst);
5798 
5799     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5800     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5801     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5802     Type *ScalarTy;
5803     if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5804         Intrinsic::masked_gather) {
5805       ScalarTy = MemoryInst->getType()->getScalarType();
5806     } else {
5807       assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5808              Intrinsic::masked_scatter);
5809       ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5810     }
5811     NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5812   } else {
5813     // Constant, SelectionDAGBuilder knows to check if its a splat.
5814     return false;
5815   }
5816 
5817   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5818 
5819   // If we have no uses, recursively delete the value and all dead instructions
5820   // using it.
5821   if (Ptr->use_empty())
5822     RecursivelyDeleteTriviallyDeadInstructions(
5823         Ptr, TLInfo, nullptr,
5824         [&](Value *V) { removeAllAssertingVHReferences(V); });
5825 
5826   return true;
5827 }
5828 
5829 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5830 /// address computing into the block when possible / profitable.
5831 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5832   bool MadeChange = false;
5833 
5834   const TargetRegisterInfo *TRI =
5835       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5836   TargetLowering::AsmOperandInfoVector TargetConstraints =
5837       TLI->ParseConstraints(*DL, TRI, *CS);
5838   unsigned ArgNo = 0;
5839   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5840     // Compute the constraint code and ConstraintType to use.
5841     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5842 
5843     // TODO: Also handle C_Address?
5844     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5845         OpInfo.isIndirect) {
5846       Value *OpVal = CS->getArgOperand(ArgNo++);
5847       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5848     } else if (OpInfo.Type == InlineAsm::isInput)
5849       ArgNo++;
5850   }
5851 
5852   return MadeChange;
5853 }
5854 
5855 /// Check if all the uses of \p Val are equivalent (or free) zero or
5856 /// sign extensions.
5857 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5858   assert(!Val->use_empty() && "Input must have at least one use");
5859   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5860   bool IsSExt = isa<SExtInst>(FirstUser);
5861   Type *ExtTy = FirstUser->getType();
5862   for (const User *U : Val->users()) {
5863     const Instruction *UI = cast<Instruction>(U);
5864     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5865       return false;
5866     Type *CurTy = UI->getType();
5867     // Same input and output types: Same instruction after CSE.
5868     if (CurTy == ExtTy)
5869       continue;
5870 
5871     // If IsSExt is true, we are in this situation:
5872     // a = Val
5873     // b = sext ty1 a to ty2
5874     // c = sext ty1 a to ty3
5875     // Assuming ty2 is shorter than ty3, this could be turned into:
5876     // a = Val
5877     // b = sext ty1 a to ty2
5878     // c = sext ty2 b to ty3
5879     // However, the last sext is not free.
5880     if (IsSExt)
5881       return false;
5882 
5883     // This is a ZExt, maybe this is free to extend from one type to another.
5884     // In that case, we would not account for a different use.
5885     Type *NarrowTy;
5886     Type *LargeTy;
5887     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5888         CurTy->getScalarType()->getIntegerBitWidth()) {
5889       NarrowTy = CurTy;
5890       LargeTy = ExtTy;
5891     } else {
5892       NarrowTy = ExtTy;
5893       LargeTy = CurTy;
5894     }
5895 
5896     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5897       return false;
5898   }
5899   // All uses are the same or can be derived from one another for free.
5900   return true;
5901 }
5902 
5903 /// Try to speculatively promote extensions in \p Exts and continue
5904 /// promoting through newly promoted operands recursively as far as doing so is
5905 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5906 /// When some promotion happened, \p TPT contains the proper state to revert
5907 /// them.
5908 ///
5909 /// \return true if some promotion happened, false otherwise.
5910 bool CodeGenPrepare::tryToPromoteExts(
5911     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5912     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5913     unsigned CreatedInstsCost) {
5914   bool Promoted = false;
5915 
5916   // Iterate over all the extensions to try to promote them.
5917   for (auto *I : Exts) {
5918     // Early check if we directly have ext(load).
5919     if (isa<LoadInst>(I->getOperand(0))) {
5920       ProfitablyMovedExts.push_back(I);
5921       continue;
5922     }
5923 
5924     // Check whether or not we want to do any promotion.  The reason we have
5925     // this check inside the for loop is to catch the case where an extension
5926     // is directly fed by a load because in such case the extension can be moved
5927     // up without any promotion on its operands.
5928     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5929       return false;
5930 
5931     // Get the action to perform the promotion.
5932     TypePromotionHelper::Action TPH =
5933         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5934     // Check if we can promote.
5935     if (!TPH) {
5936       // Save the current extension as we cannot move up through its operand.
5937       ProfitablyMovedExts.push_back(I);
5938       continue;
5939     }
5940 
5941     // Save the current state.
5942     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5943         TPT.getRestorationPoint();
5944     SmallVector<Instruction *, 4> NewExts;
5945     unsigned NewCreatedInstsCost = 0;
5946     unsigned ExtCost = !TLI->isExtFree(I);
5947     // Promote.
5948     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5949                              &NewExts, nullptr, *TLI);
5950     assert(PromotedVal &&
5951            "TypePromotionHelper should have filtered out those cases");
5952 
5953     // We would be able to merge only one extension in a load.
5954     // Therefore, if we have more than 1 new extension we heuristically
5955     // cut this search path, because it means we degrade the code quality.
5956     // With exactly 2, the transformation is neutral, because we will merge
5957     // one extension but leave one. However, we optimistically keep going,
5958     // because the new extension may be removed too.
5959     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5960     // FIXME: It would be possible to propagate a negative value instead of
5961     // conservatively ceiling it to 0.
5962     TotalCreatedInstsCost =
5963         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5964     if (!StressExtLdPromotion &&
5965         (TotalCreatedInstsCost > 1 ||
5966          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5967       // This promotion is not profitable, rollback to the previous state, and
5968       // save the current extension in ProfitablyMovedExts as the latest
5969       // speculative promotion turned out to be unprofitable.
5970       TPT.rollback(LastKnownGood);
5971       ProfitablyMovedExts.push_back(I);
5972       continue;
5973     }
5974     // Continue promoting NewExts as far as doing so is profitable.
5975     SmallVector<Instruction *, 2> NewlyMovedExts;
5976     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5977     bool NewPromoted = false;
5978     for (auto *ExtInst : NewlyMovedExts) {
5979       Instruction *MovedExt = cast<Instruction>(ExtInst);
5980       Value *ExtOperand = MovedExt->getOperand(0);
5981       // If we have reached to a load, we need this extra profitability check
5982       // as it could potentially be merged into an ext(load).
5983       if (isa<LoadInst>(ExtOperand) &&
5984           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5985             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5986         continue;
5987 
5988       ProfitablyMovedExts.push_back(MovedExt);
5989       NewPromoted = true;
5990     }
5991 
5992     // If none of speculative promotions for NewExts is profitable, rollback
5993     // and save the current extension (I) as the last profitable extension.
5994     if (!NewPromoted) {
5995       TPT.rollback(LastKnownGood);
5996       ProfitablyMovedExts.push_back(I);
5997       continue;
5998     }
5999     // The promotion is profitable.
6000     Promoted = true;
6001   }
6002   return Promoted;
6003 }
6004 
6005 /// Merging redundant sexts when one is dominating the other.
6006 bool CodeGenPrepare::mergeSExts(Function &F) {
6007   bool Changed = false;
6008   for (auto &Entry : ValToSExtendedUses) {
6009     SExts &Insts = Entry.second;
6010     SExts CurPts;
6011     for (Instruction *Inst : Insts) {
6012       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6013           Inst->getOperand(0) != Entry.first)
6014         continue;
6015       bool inserted = false;
6016       for (auto &Pt : CurPts) {
6017         if (getDT(F).dominates(Inst, Pt)) {
6018           replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6019           RemovedInsts.insert(Pt);
6020           Pt->removeFromParent();
6021           Pt = Inst;
6022           inserted = true;
6023           Changed = true;
6024           break;
6025         }
6026         if (!getDT(F).dominates(Pt, Inst))
6027           // Give up if we need to merge in a common dominator as the
6028           // experiments show it is not profitable.
6029           continue;
6030         replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6031         RemovedInsts.insert(Inst);
6032         Inst->removeFromParent();
6033         inserted = true;
6034         Changed = true;
6035         break;
6036       }
6037       if (!inserted)
6038         CurPts.push_back(Inst);
6039     }
6040   }
6041   return Changed;
6042 }
6043 
6044 // Splitting large data structures so that the GEPs accessing them can have
6045 // smaller offsets so that they can be sunk to the same blocks as their users.
6046 // For example, a large struct starting from %base is split into two parts
6047 // where the second part starts from %new_base.
6048 //
6049 // Before:
6050 // BB0:
6051 //   %base     =
6052 //
6053 // BB1:
6054 //   %gep0     = gep %base, off0
6055 //   %gep1     = gep %base, off1
6056 //   %gep2     = gep %base, off2
6057 //
6058 // BB2:
6059 //   %load1    = load %gep0
6060 //   %load2    = load %gep1
6061 //   %load3    = load %gep2
6062 //
6063 // After:
6064 // BB0:
6065 //   %base     =
6066 //   %new_base = gep %base, off0
6067 //
6068 // BB1:
6069 //   %new_gep0 = %new_base
6070 //   %new_gep1 = gep %new_base, off1 - off0
6071 //   %new_gep2 = gep %new_base, off2 - off0
6072 //
6073 // BB2:
6074 //   %load1    = load i32, i32* %new_gep0
6075 //   %load2    = load i32, i32* %new_gep1
6076 //   %load3    = load i32, i32* %new_gep2
6077 //
6078 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6079 // their offsets are smaller enough to fit into the addressing mode.
6080 bool CodeGenPrepare::splitLargeGEPOffsets() {
6081   bool Changed = false;
6082   for (auto &Entry : LargeOffsetGEPMap) {
6083     Value *OldBase = Entry.first;
6084     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6085         &LargeOffsetGEPs = Entry.second;
6086     auto compareGEPOffset =
6087         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6088             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6089           if (LHS.first == RHS.first)
6090             return false;
6091           if (LHS.second != RHS.second)
6092             return LHS.second < RHS.second;
6093           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6094         };
6095     // Sorting all the GEPs of the same data structures based on the offsets.
6096     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6097     LargeOffsetGEPs.erase(
6098         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
6099         LargeOffsetGEPs.end());
6100     // Skip if all the GEPs have the same offsets.
6101     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6102       continue;
6103     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6104     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6105     Value *NewBaseGEP = nullptr;
6106 
6107     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6108     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6109       GetElementPtrInst *GEP = LargeOffsetGEP->first;
6110       int64_t Offset = LargeOffsetGEP->second;
6111       if (Offset != BaseOffset) {
6112         TargetLowering::AddrMode AddrMode;
6113         AddrMode.HasBaseReg = true;
6114         AddrMode.BaseOffs = Offset - BaseOffset;
6115         // The result type of the GEP might not be the type of the memory
6116         // access.
6117         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6118                                         GEP->getResultElementType(),
6119                                         GEP->getAddressSpace())) {
6120           // We need to create a new base if the offset to the current base is
6121           // too large to fit into the addressing mode. So, a very large struct
6122           // may be split into several parts.
6123           BaseGEP = GEP;
6124           BaseOffset = Offset;
6125           NewBaseGEP = nullptr;
6126         }
6127       }
6128 
6129       // Generate a new GEP to replace the current one.
6130       LLVMContext &Ctx = GEP->getContext();
6131       Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6132       Type *I8PtrTy =
6133           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
6134       Type *I8Ty = Type::getInt8Ty(Ctx);
6135 
6136       if (!NewBaseGEP) {
6137         // Create a new base if we don't have one yet.  Find the insertion
6138         // pointer for the new base first.
6139         BasicBlock::iterator NewBaseInsertPt;
6140         BasicBlock *NewBaseInsertBB;
6141         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6142           // If the base of the struct is an instruction, the new base will be
6143           // inserted close to it.
6144           NewBaseInsertBB = BaseI->getParent();
6145           if (isa<PHINode>(BaseI))
6146             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6147           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6148             NewBaseInsertBB =
6149                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6150             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6151           } else
6152             NewBaseInsertPt = std::next(BaseI->getIterator());
6153         } else {
6154           // If the current base is an argument or global value, the new base
6155           // will be inserted to the entry block.
6156           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6157           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6158         }
6159         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6160         // Create a new base.
6161         Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6162         NewBaseGEP = OldBase;
6163         if (NewBaseGEP->getType() != I8PtrTy)
6164           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6165         NewBaseGEP =
6166             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
6167         NewGEPBases.insert(NewBaseGEP);
6168       }
6169 
6170       IRBuilder<> Builder(GEP);
6171       Value *NewGEP = NewBaseGEP;
6172       if (Offset == BaseOffset) {
6173         if (GEP->getType() != I8PtrTy)
6174           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
6175       } else {
6176         // Calculate the new offset for the new GEP.
6177         Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6178         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
6179 
6180         if (GEP->getType() != I8PtrTy)
6181           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
6182       }
6183       replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6184       LargeOffsetGEPID.erase(GEP);
6185       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6186       GEP->eraseFromParent();
6187       Changed = true;
6188     }
6189   }
6190   return Changed;
6191 }
6192 
6193 bool CodeGenPrepare::optimizePhiType(
6194     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6195     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6196   // We are looking for a collection on interconnected phi nodes that together
6197   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6198   // are of the same type. Convert the whole set of nodes to the type of the
6199   // bitcast.
6200   Type *PhiTy = I->getType();
6201   Type *ConvertTy = nullptr;
6202   if (Visited.count(I) ||
6203       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6204     return false;
6205 
6206   SmallVector<Instruction *, 4> Worklist;
6207   Worklist.push_back(cast<Instruction>(I));
6208   SmallPtrSet<PHINode *, 4> PhiNodes;
6209   SmallPtrSet<ConstantData *, 4> Constants;
6210   PhiNodes.insert(I);
6211   Visited.insert(I);
6212   SmallPtrSet<Instruction *, 4> Defs;
6213   SmallPtrSet<Instruction *, 4> Uses;
6214   // This works by adding extra bitcasts between load/stores and removing
6215   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6216   // we can get in the situation where we remove a bitcast in one iteration
6217   // just to add it again in the next. We need to ensure that at least one
6218   // bitcast we remove are anchored to something that will not change back.
6219   bool AnyAnchored = false;
6220 
6221   while (!Worklist.empty()) {
6222     Instruction *II = Worklist.pop_back_val();
6223 
6224     if (auto *Phi = dyn_cast<PHINode>(II)) {
6225       // Handle Defs, which might also be PHI's
6226       for (Value *V : Phi->incoming_values()) {
6227         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6228           if (!PhiNodes.count(OpPhi)) {
6229             if (!Visited.insert(OpPhi).second)
6230               return false;
6231             PhiNodes.insert(OpPhi);
6232             Worklist.push_back(OpPhi);
6233           }
6234         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6235           if (!OpLoad->isSimple())
6236             return false;
6237           if (Defs.insert(OpLoad).second)
6238             Worklist.push_back(OpLoad);
6239         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6240           if (Defs.insert(OpEx).second)
6241             Worklist.push_back(OpEx);
6242         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6243           if (!ConvertTy)
6244             ConvertTy = OpBC->getOperand(0)->getType();
6245           if (OpBC->getOperand(0)->getType() != ConvertTy)
6246             return false;
6247           if (Defs.insert(OpBC).second) {
6248             Worklist.push_back(OpBC);
6249             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6250                            !isa<ExtractElementInst>(OpBC->getOperand(0));
6251           }
6252         } else if (auto *OpC = dyn_cast<ConstantData>(V))
6253           Constants.insert(OpC);
6254         else
6255           return false;
6256       }
6257     }
6258 
6259     // Handle uses which might also be phi's
6260     for (User *V : II->users()) {
6261       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6262         if (!PhiNodes.count(OpPhi)) {
6263           if (Visited.count(OpPhi))
6264             return false;
6265           PhiNodes.insert(OpPhi);
6266           Visited.insert(OpPhi);
6267           Worklist.push_back(OpPhi);
6268         }
6269       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6270         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6271           return false;
6272         Uses.insert(OpStore);
6273       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6274         if (!ConvertTy)
6275           ConvertTy = OpBC->getType();
6276         if (OpBC->getType() != ConvertTy)
6277           return false;
6278         Uses.insert(OpBC);
6279         AnyAnchored |=
6280             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6281       } else {
6282         return false;
6283       }
6284     }
6285   }
6286 
6287   if (!ConvertTy || !AnyAnchored ||
6288       !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6289     return false;
6290 
6291   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
6292                     << *ConvertTy << "\n");
6293 
6294   // Create all the new phi nodes of the new type, and bitcast any loads to the
6295   // correct type.
6296   ValueToValueMap ValMap;
6297   for (ConstantData *C : Constants)
6298     ValMap[C] = ConstantExpr::getCast(Instruction::BitCast, C, ConvertTy);
6299   for (Instruction *D : Defs) {
6300     if (isa<BitCastInst>(D)) {
6301       ValMap[D] = D->getOperand(0);
6302       DeletedInstrs.insert(D);
6303     } else {
6304       ValMap[D] =
6305           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6306     }
6307   }
6308   for (PHINode *Phi : PhiNodes)
6309     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6310                                   Phi->getName() + ".tc", Phi);
6311   // Pipe together all the PhiNodes.
6312   for (PHINode *Phi : PhiNodes) {
6313     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6314     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6315       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6316                           Phi->getIncomingBlock(i));
6317     Visited.insert(NewPhi);
6318   }
6319   // And finally pipe up the stores and bitcasts
6320   for (Instruction *U : Uses) {
6321     if (isa<BitCastInst>(U)) {
6322       DeletedInstrs.insert(U);
6323       replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
6324     } else {
6325       U->setOperand(0,
6326                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6327     }
6328   }
6329 
6330   // Save the removed phis to be deleted later.
6331   for (PHINode *Phi : PhiNodes)
6332     DeletedInstrs.insert(Phi);
6333   return true;
6334 }
6335 
6336 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6337   if (!OptimizePhiTypes)
6338     return false;
6339 
6340   bool Changed = false;
6341   SmallPtrSet<PHINode *, 4> Visited;
6342   SmallPtrSet<Instruction *, 4> DeletedInstrs;
6343 
6344   // Attempt to optimize all the phis in the functions to the correct type.
6345   for (auto &BB : F)
6346     for (auto &Phi : BB.phis())
6347       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6348 
6349   // Remove any old phi's that have been converted.
6350   for (auto *I : DeletedInstrs) {
6351     replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
6352     I->eraseFromParent();
6353   }
6354 
6355   return Changed;
6356 }
6357 
6358 /// Return true, if an ext(load) can be formed from an extension in
6359 /// \p MovedExts.
6360 bool CodeGenPrepare::canFormExtLd(
6361     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6362     Instruction *&Inst, bool HasPromoted) {
6363   for (auto *MovedExtInst : MovedExts) {
6364     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6365       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6366       Inst = MovedExtInst;
6367       break;
6368     }
6369   }
6370   if (!LI)
6371     return false;
6372 
6373   // If they're already in the same block, there's nothing to do.
6374   // Make the cheap checks first if we did not promote.
6375   // If we promoted, we need to check if it is indeed profitable.
6376   if (!HasPromoted && LI->getParent() == Inst->getParent())
6377     return false;
6378 
6379   return TLI->isExtLoad(LI, Inst, *DL);
6380 }
6381 
6382 /// Move a zext or sext fed by a load into the same basic block as the load,
6383 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6384 /// extend into the load.
6385 ///
6386 /// E.g.,
6387 /// \code
6388 /// %ld = load i32* %addr
6389 /// %add = add nuw i32 %ld, 4
6390 /// %zext = zext i32 %add to i64
6391 // \endcode
6392 /// =>
6393 /// \code
6394 /// %ld = load i32* %addr
6395 /// %zext = zext i32 %ld to i64
6396 /// %add = add nuw i64 %zext, 4
6397 /// \encode
6398 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6399 /// allow us to match zext(load i32*) to i64.
6400 ///
6401 /// Also, try to promote the computations used to obtain a sign extended
6402 /// value used into memory accesses.
6403 /// E.g.,
6404 /// \code
6405 /// a = add nsw i32 b, 3
6406 /// d = sext i32 a to i64
6407 /// e = getelementptr ..., i64 d
6408 /// \endcode
6409 /// =>
6410 /// \code
6411 /// f = sext i32 b to i64
6412 /// a = add nsw i64 f, 3
6413 /// e = getelementptr ..., i64 a
6414 /// \endcode
6415 ///
6416 /// \p Inst[in/out] the extension may be modified during the process if some
6417 /// promotions apply.
6418 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6419   bool AllowPromotionWithoutCommonHeader = false;
6420   /// See if it is an interesting sext operations for the address type
6421   /// promotion before trying to promote it, e.g., the ones with the right
6422   /// type and used in memory accesses.
6423   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6424       *Inst, AllowPromotionWithoutCommonHeader);
6425   TypePromotionTransaction TPT(RemovedInsts);
6426   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6427       TPT.getRestorationPoint();
6428   SmallVector<Instruction *, 1> Exts;
6429   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6430   Exts.push_back(Inst);
6431 
6432   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6433 
6434   // Look for a load being extended.
6435   LoadInst *LI = nullptr;
6436   Instruction *ExtFedByLoad;
6437 
6438   // Try to promote a chain of computation if it allows to form an extended
6439   // load.
6440   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6441     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6442     TPT.commit();
6443     // Move the extend into the same block as the load.
6444     ExtFedByLoad->moveAfter(LI);
6445     ++NumExtsMoved;
6446     Inst = ExtFedByLoad;
6447     return true;
6448   }
6449 
6450   // Continue promoting SExts if known as considerable depending on targets.
6451   if (ATPConsiderable &&
6452       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6453                                   HasPromoted, TPT, SpeculativelyMovedExts))
6454     return true;
6455 
6456   TPT.rollback(LastKnownGood);
6457   return false;
6458 }
6459 
6460 // Perform address type promotion if doing so is profitable.
6461 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6462 // instructions that sign extended the same initial value. However, if
6463 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6464 // extension is just profitable.
6465 bool CodeGenPrepare::performAddressTypePromotion(
6466     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6467     bool HasPromoted, TypePromotionTransaction &TPT,
6468     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6469   bool Promoted = false;
6470   SmallPtrSet<Instruction *, 1> UnhandledExts;
6471   bool AllSeenFirst = true;
6472   for (auto *I : SpeculativelyMovedExts) {
6473     Value *HeadOfChain = I->getOperand(0);
6474     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6475         SeenChainsForSExt.find(HeadOfChain);
6476     // If there is an unhandled SExt which has the same header, try to promote
6477     // it as well.
6478     if (AlreadySeen != SeenChainsForSExt.end()) {
6479       if (AlreadySeen->second != nullptr)
6480         UnhandledExts.insert(AlreadySeen->second);
6481       AllSeenFirst = false;
6482     }
6483   }
6484 
6485   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6486                         SpeculativelyMovedExts.size() == 1)) {
6487     TPT.commit();
6488     if (HasPromoted)
6489       Promoted = true;
6490     for (auto *I : SpeculativelyMovedExts) {
6491       Value *HeadOfChain = I->getOperand(0);
6492       SeenChainsForSExt[HeadOfChain] = nullptr;
6493       ValToSExtendedUses[HeadOfChain].push_back(I);
6494     }
6495     // Update Inst as promotion happen.
6496     Inst = SpeculativelyMovedExts.pop_back_val();
6497   } else {
6498     // This is the first chain visited from the header, keep the current chain
6499     // as unhandled. Defer to promote this until we encounter another SExt
6500     // chain derived from the same header.
6501     for (auto *I : SpeculativelyMovedExts) {
6502       Value *HeadOfChain = I->getOperand(0);
6503       SeenChainsForSExt[HeadOfChain] = Inst;
6504     }
6505     return false;
6506   }
6507 
6508   if (!AllSeenFirst && !UnhandledExts.empty())
6509     for (auto *VisitedSExt : UnhandledExts) {
6510       if (RemovedInsts.count(VisitedSExt))
6511         continue;
6512       TypePromotionTransaction TPT(RemovedInsts);
6513       SmallVector<Instruction *, 1> Exts;
6514       SmallVector<Instruction *, 2> Chains;
6515       Exts.push_back(VisitedSExt);
6516       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6517       TPT.commit();
6518       if (HasPromoted)
6519         Promoted = true;
6520       for (auto *I : Chains) {
6521         Value *HeadOfChain = I->getOperand(0);
6522         // Mark this as handled.
6523         SeenChainsForSExt[HeadOfChain] = nullptr;
6524         ValToSExtendedUses[HeadOfChain].push_back(I);
6525       }
6526     }
6527   return Promoted;
6528 }
6529 
6530 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6531   BasicBlock *DefBB = I->getParent();
6532 
6533   // If the result of a {s|z}ext and its source are both live out, rewrite all
6534   // other uses of the source with result of extension.
6535   Value *Src = I->getOperand(0);
6536   if (Src->hasOneUse())
6537     return false;
6538 
6539   // Only do this xform if truncating is free.
6540   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6541     return false;
6542 
6543   // Only safe to perform the optimization if the source is also defined in
6544   // this block.
6545   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6546     return false;
6547 
6548   bool DefIsLiveOut = false;
6549   for (User *U : I->users()) {
6550     Instruction *UI = cast<Instruction>(U);
6551 
6552     // Figure out which BB this ext is used in.
6553     BasicBlock *UserBB = UI->getParent();
6554     if (UserBB == DefBB)
6555       continue;
6556     DefIsLiveOut = true;
6557     break;
6558   }
6559   if (!DefIsLiveOut)
6560     return false;
6561 
6562   // Make sure none of the uses are PHI nodes.
6563   for (User *U : Src->users()) {
6564     Instruction *UI = cast<Instruction>(U);
6565     BasicBlock *UserBB = UI->getParent();
6566     if (UserBB == DefBB)
6567       continue;
6568     // Be conservative. We don't want this xform to end up introducing
6569     // reloads just before load / store instructions.
6570     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6571       return false;
6572   }
6573 
6574   // InsertedTruncs - Only insert one trunc in each block once.
6575   DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
6576 
6577   bool MadeChange = false;
6578   for (Use &U : Src->uses()) {
6579     Instruction *User = cast<Instruction>(U.getUser());
6580 
6581     // Figure out which BB this ext is used in.
6582     BasicBlock *UserBB = User->getParent();
6583     if (UserBB == DefBB)
6584       continue;
6585 
6586     // Both src and def are live in this block. Rewrite the use.
6587     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6588 
6589     if (!InsertedTrunc) {
6590       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6591       assert(InsertPt != UserBB->end());
6592       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6593       InsertedInsts.insert(InsertedTrunc);
6594     }
6595 
6596     // Replace a use of the {s|z}ext source with a use of the result.
6597     U = InsertedTrunc;
6598     ++NumExtUses;
6599     MadeChange = true;
6600   }
6601 
6602   return MadeChange;
6603 }
6604 
6605 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6606 // just after the load if the target can fold this into one extload instruction,
6607 // with the hope of eliminating some of the other later "and" instructions using
6608 // the loaded value.  "and"s that are made trivially redundant by the insertion
6609 // of the new "and" are removed by this function, while others (e.g. those whose
6610 // path from the load goes through a phi) are left for isel to potentially
6611 // remove.
6612 //
6613 // For example:
6614 //
6615 // b0:
6616 //   x = load i32
6617 //   ...
6618 // b1:
6619 //   y = and x, 0xff
6620 //   z = use y
6621 //
6622 // becomes:
6623 //
6624 // b0:
6625 //   x = load i32
6626 //   x' = and x, 0xff
6627 //   ...
6628 // b1:
6629 //   z = use x'
6630 //
6631 // whereas:
6632 //
6633 // b0:
6634 //   x1 = load i32
6635 //   ...
6636 // b1:
6637 //   x2 = load i32
6638 //   ...
6639 // b2:
6640 //   x = phi x1, x2
6641 //   y = and x, 0xff
6642 //
6643 // becomes (after a call to optimizeLoadExt for each load):
6644 //
6645 // b0:
6646 //   x1 = load i32
6647 //   x1' = and x1, 0xff
6648 //   ...
6649 // b1:
6650 //   x2 = load i32
6651 //   x2' = and x2, 0xff
6652 //   ...
6653 // b2:
6654 //   x = phi x1', x2'
6655 //   y = and x, 0xff
6656 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6657   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6658     return false;
6659 
6660   // Skip loads we've already transformed.
6661   if (Load->hasOneUse() &&
6662       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6663     return false;
6664 
6665   // Look at all uses of Load, looking through phis, to determine how many bits
6666   // of the loaded value are needed.
6667   SmallVector<Instruction *, 8> WorkList;
6668   SmallPtrSet<Instruction *, 16> Visited;
6669   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6670   for (auto *U : Load->users())
6671     WorkList.push_back(cast<Instruction>(U));
6672 
6673   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6674   unsigned BitWidth = LoadResultVT.getSizeInBits();
6675   // If the BitWidth is 0, do not try to optimize the type
6676   if (BitWidth == 0)
6677     return false;
6678 
6679   APInt DemandBits(BitWidth, 0);
6680   APInt WidestAndBits(BitWidth, 0);
6681 
6682   while (!WorkList.empty()) {
6683     Instruction *I = WorkList.pop_back_val();
6684 
6685     // Break use-def graph loops.
6686     if (!Visited.insert(I).second)
6687       continue;
6688 
6689     // For a PHI node, push all of its users.
6690     if (auto *Phi = dyn_cast<PHINode>(I)) {
6691       for (auto *U : Phi->users())
6692         WorkList.push_back(cast<Instruction>(U));
6693       continue;
6694     }
6695 
6696     switch (I->getOpcode()) {
6697     case Instruction::And: {
6698       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6699       if (!AndC)
6700         return false;
6701       APInt AndBits = AndC->getValue();
6702       DemandBits |= AndBits;
6703       // Keep track of the widest and mask we see.
6704       if (AndBits.ugt(WidestAndBits))
6705         WidestAndBits = AndBits;
6706       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6707         AndsToMaybeRemove.push_back(I);
6708       break;
6709     }
6710 
6711     case Instruction::Shl: {
6712       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6713       if (!ShlC)
6714         return false;
6715       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6716       DemandBits.setLowBits(BitWidth - ShiftAmt);
6717       break;
6718     }
6719 
6720     case Instruction::Trunc: {
6721       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6722       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6723       DemandBits.setLowBits(TruncBitWidth);
6724       break;
6725     }
6726 
6727     default:
6728       return false;
6729     }
6730   }
6731 
6732   uint32_t ActiveBits = DemandBits.getActiveBits();
6733   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6734   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6735   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6736   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6737   // followed by an AND.
6738   // TODO: Look into removing this restriction by fixing backends to either
6739   // return false for isLoadExtLegal for i1 or have them select this pattern to
6740   // a single instruction.
6741   //
6742   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6743   // mask, since these are the only ands that will be removed by isel.
6744   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6745       WidestAndBits != DemandBits)
6746     return false;
6747 
6748   LLVMContext &Ctx = Load->getType()->getContext();
6749   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6750   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6751 
6752   // Reject cases that won't be matched as extloads.
6753   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6754       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6755     return false;
6756 
6757   IRBuilder<> Builder(Load->getNextNode());
6758   auto *NewAnd = cast<Instruction>(
6759       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6760   // Mark this instruction as "inserted by CGP", so that other
6761   // optimizations don't touch it.
6762   InsertedInsts.insert(NewAnd);
6763 
6764   // Replace all uses of load with new and (except for the use of load in the
6765   // new and itself).
6766   replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
6767   NewAnd->setOperand(0, Load);
6768 
6769   // Remove any and instructions that are now redundant.
6770   for (auto *And : AndsToMaybeRemove)
6771     // Check that the and mask is the same as the one we decided to put on the
6772     // new and.
6773     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6774       replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
6775       if (&*CurInstIterator == And)
6776         CurInstIterator = std::next(And->getIterator());
6777       And->eraseFromParent();
6778       ++NumAndUses;
6779     }
6780 
6781   ++NumAndsAdded;
6782   return true;
6783 }
6784 
6785 /// Check if V (an operand of a select instruction) is an expensive instruction
6786 /// that is only used once.
6787 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6788   auto *I = dyn_cast<Instruction>(V);
6789   // If it's safe to speculatively execute, then it should not have side
6790   // effects; therefore, it's safe to sink and possibly *not* execute.
6791   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6792          TTI->isExpensiveToSpeculativelyExecute(I);
6793 }
6794 
6795 /// Returns true if a SelectInst should be turned into an explicit branch.
6796 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6797                                                 const TargetLowering *TLI,
6798                                                 SelectInst *SI) {
6799   // If even a predictable select is cheap, then a branch can't be cheaper.
6800   if (!TLI->isPredictableSelectExpensive())
6801     return false;
6802 
6803   // FIXME: This should use the same heuristics as IfConversion to determine
6804   // whether a select is better represented as a branch.
6805 
6806   // If metadata tells us that the select condition is obviously predictable,
6807   // then we want to replace the select with a branch.
6808   uint64_t TrueWeight, FalseWeight;
6809   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
6810     uint64_t Max = std::max(TrueWeight, FalseWeight);
6811     uint64_t Sum = TrueWeight + FalseWeight;
6812     if (Sum != 0) {
6813       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6814       if (Probability > TTI->getPredictableBranchThreshold())
6815         return true;
6816     }
6817   }
6818 
6819   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6820 
6821   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6822   // comparison condition. If the compare has more than one use, there's
6823   // probably another cmov or setcc around, so it's not worth emitting a branch.
6824   if (!Cmp || !Cmp->hasOneUse())
6825     return false;
6826 
6827   // If either operand of the select is expensive and only needed on one side
6828   // of the select, we should form a branch.
6829   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6830       sinkSelectOperand(TTI, SI->getFalseValue()))
6831     return true;
6832 
6833   return false;
6834 }
6835 
6836 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6837 /// false value of \p SI. If the true/false value of \p SI is defined by any
6838 /// select instructions in \p Selects, look through the defining select
6839 /// instruction until the true/false value is not defined in \p Selects.
6840 static Value *
6841 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
6842                     const SmallPtrSet<const Instruction *, 2> &Selects) {
6843   Value *V = nullptr;
6844 
6845   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6846        DefSI = dyn_cast<SelectInst>(V)) {
6847     assert(DefSI->getCondition() == SI->getCondition() &&
6848            "The condition of DefSI does not match with SI");
6849     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6850   }
6851 
6852   assert(V && "Failed to get select true/false value");
6853   return V;
6854 }
6855 
6856 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6857   assert(Shift->isShift() && "Expected a shift");
6858 
6859   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6860   // general vector shifts, and (3) the shift amount is a select-of-splatted
6861   // values, hoist the shifts before the select:
6862   //   shift Op0, (select Cond, TVal, FVal) -->
6863   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6864   //
6865   // This is inverting a generic IR transform when we know that the cost of a
6866   // general vector shift is more than the cost of 2 shift-by-scalars.
6867   // We can't do this effectively in SDAG because we may not be able to
6868   // determine if the select operands are splats from within a basic block.
6869   Type *Ty = Shift->getType();
6870   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6871     return false;
6872   Value *Cond, *TVal, *FVal;
6873   if (!match(Shift->getOperand(1),
6874              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6875     return false;
6876   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6877     return false;
6878 
6879   IRBuilder<> Builder(Shift);
6880   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6881   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6882   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6883   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6884   replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
6885   Shift->eraseFromParent();
6886   return true;
6887 }
6888 
6889 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6890   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6891   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6892          "Expected a funnel shift");
6893 
6894   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6895   // than general vector shifts, and (3) the shift amount is select-of-splatted
6896   // values, hoist the funnel shifts before the select:
6897   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6898   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6899   //
6900   // This is inverting a generic IR transform when we know that the cost of a
6901   // general vector shift is more than the cost of 2 shift-by-scalars.
6902   // We can't do this effectively in SDAG because we may not be able to
6903   // determine if the select operands are splats from within a basic block.
6904   Type *Ty = Fsh->getType();
6905   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6906     return false;
6907   Value *Cond, *TVal, *FVal;
6908   if (!match(Fsh->getOperand(2),
6909              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6910     return false;
6911   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6912     return false;
6913 
6914   IRBuilder<> Builder(Fsh);
6915   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6916   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
6917   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
6918   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6919   replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
6920   Fsh->eraseFromParent();
6921   return true;
6922 }
6923 
6924 /// If we have a SelectInst that will likely profit from branch prediction,
6925 /// turn it into a branch.
6926 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6927   if (DisableSelectToBranch)
6928     return false;
6929 
6930   // If the SelectOptimize pass is enabled, selects have already been optimized.
6931   if (!getCGPassBuilderOption().DisableSelectOptimize)
6932     return false;
6933 
6934   // Find all consecutive select instructions that share the same condition.
6935   SmallVector<SelectInst *, 2> ASI;
6936   ASI.push_back(SI);
6937   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6938        It != SI->getParent()->end(); ++It) {
6939     SelectInst *I = dyn_cast<SelectInst>(&*It);
6940     if (I && SI->getCondition() == I->getCondition()) {
6941       ASI.push_back(I);
6942     } else {
6943       break;
6944     }
6945   }
6946 
6947   SelectInst *LastSI = ASI.back();
6948   // Increment the current iterator to skip all the rest of select instructions
6949   // because they will be either "not lowered" or "all lowered" to branch.
6950   CurInstIterator = std::next(LastSI->getIterator());
6951 
6952   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6953 
6954   // Can we convert the 'select' to CF ?
6955   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6956     return false;
6957 
6958   TargetLowering::SelectSupportKind SelectKind;
6959   if (SI->getType()->isVectorTy())
6960     SelectKind = TargetLowering::ScalarCondVectorVal;
6961   else
6962     SelectKind = TargetLowering::ScalarValSelect;
6963 
6964   if (TLI->isSelectSupported(SelectKind) &&
6965       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6966        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6967     return false;
6968 
6969   // The DominatorTree needs to be rebuilt by any consumers after this
6970   // transformation. We simply reset here rather than setting the ModifiedDT
6971   // flag to avoid restarting the function walk in runOnFunction for each
6972   // select optimized.
6973   DT.reset();
6974 
6975   // Transform a sequence like this:
6976   //    start:
6977   //       %cmp = cmp uge i32 %a, %b
6978   //       %sel = select i1 %cmp, i32 %c, i32 %d
6979   //
6980   // Into:
6981   //    start:
6982   //       %cmp = cmp uge i32 %a, %b
6983   //       %cmp.frozen = freeze %cmp
6984   //       br i1 %cmp.frozen, label %select.true, label %select.false
6985   //    select.true:
6986   //       br label %select.end
6987   //    select.false:
6988   //       br label %select.end
6989   //    select.end:
6990   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6991   //
6992   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6993   // In addition, we may sink instructions that produce %c or %d from
6994   // the entry block into the destination(s) of the new branch.
6995   // If the true or false blocks do not contain a sunken instruction, that
6996   // block and its branch may be optimized away. In that case, one side of the
6997   // first branch will point directly to select.end, and the corresponding PHI
6998   // predecessor block will be the start block.
6999 
7000   // Collect values that go on the true side and the values that go on the false
7001   // side.
7002   SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7003   for (SelectInst *SI : ASI) {
7004     if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7005       TrueInstrs.push_back(cast<Instruction>(V));
7006     if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7007       FalseInstrs.push_back(cast<Instruction>(V));
7008   }
7009 
7010   // Split the select block, according to how many (if any) values go on each
7011   // side.
7012   BasicBlock *StartBlock = SI->getParent();
7013   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
7014 
7015   IRBuilder<> IB(SI);
7016   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7017 
7018   BasicBlock *TrueBlock = nullptr;
7019   BasicBlock *FalseBlock = nullptr;
7020   BasicBlock *EndBlock = nullptr;
7021   BranchInst *TrueBranch = nullptr;
7022   BranchInst *FalseBranch = nullptr;
7023   if (TrueInstrs.size() == 0) {
7024     FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse(
7025         CondFr, &*SplitPt, false, nullptr, nullptr, LI));
7026     FalseBlock = FalseBranch->getParent();
7027     EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7028   } else if (FalseInstrs.size() == 0) {
7029     TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen(
7030         CondFr, &*SplitPt, false, nullptr, nullptr, LI));
7031     TrueBlock = TrueBranch->getParent();
7032     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7033   } else {
7034     Instruction *ThenTerm = nullptr;
7035     Instruction *ElseTerm = nullptr;
7036     SplitBlockAndInsertIfThenElse(CondFr, &*SplitPt, &ThenTerm, &ElseTerm,
7037                                   nullptr, nullptr, LI);
7038     TrueBranch = cast<BranchInst>(ThenTerm);
7039     FalseBranch = cast<BranchInst>(ElseTerm);
7040     TrueBlock = TrueBranch->getParent();
7041     FalseBlock = FalseBranch->getParent();
7042     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7043   }
7044 
7045   EndBlock->setName("select.end");
7046   if (TrueBlock)
7047     TrueBlock->setName("select.true.sink");
7048   if (FalseBlock)
7049     FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7050                                                 : "select.false.sink");
7051 
7052   if (IsHugeFunc) {
7053     if (TrueBlock)
7054       FreshBBs.insert(TrueBlock);
7055     if (FalseBlock)
7056       FreshBBs.insert(FalseBlock);
7057     FreshBBs.insert(EndBlock);
7058   }
7059 
7060   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
7061 
7062   static const unsigned MD[] = {
7063       LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7064       LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7065   StartBlock->getTerminator()->copyMetadata(*SI, MD);
7066 
7067   // Sink expensive instructions into the conditional blocks to avoid executing
7068   // them speculatively.
7069   for (Instruction *I : TrueInstrs)
7070     I->moveBefore(TrueBranch);
7071   for (Instruction *I : FalseInstrs)
7072     I->moveBefore(FalseBranch);
7073 
7074   // If we did not create a new block for one of the 'true' or 'false' paths
7075   // of the condition, it means that side of the branch goes to the end block
7076   // directly and the path originates from the start block from the point of
7077   // view of the new PHI.
7078   if (TrueBlock == nullptr)
7079     TrueBlock = StartBlock;
7080   else if (FalseBlock == nullptr)
7081     FalseBlock = StartBlock;
7082 
7083   SmallPtrSet<const Instruction *, 2> INS;
7084   INS.insert(ASI.begin(), ASI.end());
7085   // Use reverse iterator because later select may use the value of the
7086   // earlier select, and we need to propagate value through earlier select
7087   // to get the PHI operand.
7088   for (SelectInst *SI : llvm::reverse(ASI)) {
7089     // The select itself is replaced with a PHI Node.
7090     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
7091     PN->takeName(SI);
7092     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7093     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7094     PN->setDebugLoc(SI->getDebugLoc());
7095 
7096     replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7097     SI->eraseFromParent();
7098     INS.erase(SI);
7099     ++NumSelectsExpanded;
7100   }
7101 
7102   // Instruct OptimizeBlock to skip to the next block.
7103   CurInstIterator = StartBlock->end();
7104   return true;
7105 }
7106 
7107 /// Some targets only accept certain types for splat inputs. For example a VDUP
7108 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7109 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7110 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7111   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7112   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7113                             m_Undef(), m_ZeroMask())))
7114     return false;
7115   Type *NewType = TLI->shouldConvertSplatType(SVI);
7116   if (!NewType)
7117     return false;
7118 
7119   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7120   assert(!NewType->isVectorTy() && "Expected a scalar type!");
7121   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7122          "Expected a type of the same size!");
7123   auto *NewVecType =
7124       FixedVectorType::get(NewType, SVIVecType->getNumElements());
7125 
7126   // Create a bitcast (shuffle (insert (bitcast(..))))
7127   IRBuilder<> Builder(SVI->getContext());
7128   Builder.SetInsertPoint(SVI);
7129   Value *BC1 = Builder.CreateBitCast(
7130       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7131   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7132   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7133 
7134   replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7135   RecursivelyDeleteTriviallyDeadInstructions(
7136       SVI, TLInfo, nullptr,
7137       [&](Value *V) { removeAllAssertingVHReferences(V); });
7138 
7139   // Also hoist the bitcast up to its operand if it they are not in the same
7140   // block.
7141   if (auto *BCI = dyn_cast<Instruction>(BC1))
7142     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7143       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7144           !Op->isTerminator() && !Op->isEHPad())
7145         BCI->moveAfter(Op);
7146 
7147   return true;
7148 }
7149 
7150 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7151   // If the operands of I can be folded into a target instruction together with
7152   // I, duplicate and sink them.
7153   SmallVector<Use *, 4> OpsToSink;
7154   if (!TLI->shouldSinkOperands(I, OpsToSink))
7155     return false;
7156 
7157   // OpsToSink can contain multiple uses in a use chain (e.g.
7158   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7159   // uses must come first, so we process the ops in reverse order so as to not
7160   // create invalid IR.
7161   BasicBlock *TargetBB = I->getParent();
7162   bool Changed = false;
7163   SmallVector<Use *, 4> ToReplace;
7164   Instruction *InsertPoint = I;
7165   DenseMap<const Instruction *, unsigned long> InstOrdering;
7166   unsigned long InstNumber = 0;
7167   for (const auto &I : *TargetBB)
7168     InstOrdering[&I] = InstNumber++;
7169 
7170   for (Use *U : reverse(OpsToSink)) {
7171     auto *UI = cast<Instruction>(U->get());
7172     if (isa<PHINode>(UI))
7173       continue;
7174     if (UI->getParent() == TargetBB) {
7175       if (InstOrdering[UI] < InstOrdering[InsertPoint])
7176         InsertPoint = UI;
7177       continue;
7178     }
7179     ToReplace.push_back(U);
7180   }
7181 
7182   SetVector<Instruction *> MaybeDead;
7183   DenseMap<Instruction *, Instruction *> NewInstructions;
7184   for (Use *U : ToReplace) {
7185     auto *UI = cast<Instruction>(U->get());
7186     Instruction *NI = UI->clone();
7187 
7188     if (IsHugeFunc) {
7189       // Now we clone an instruction, its operands' defs may sink to this BB
7190       // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7191       for (unsigned I = 0; I < NI->getNumOperands(); ++I) {
7192         auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I));
7193         if (!OpDef)
7194           continue;
7195         FreshBBs.insert(OpDef->getParent());
7196       }
7197     }
7198 
7199     NewInstructions[UI] = NI;
7200     MaybeDead.insert(UI);
7201     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7202     NI->insertBefore(InsertPoint);
7203     InsertPoint = NI;
7204     InsertedInsts.insert(NI);
7205 
7206     // Update the use for the new instruction, making sure that we update the
7207     // sunk instruction uses, if it is part of a chain that has already been
7208     // sunk.
7209     Instruction *OldI = cast<Instruction>(U->getUser());
7210     if (NewInstructions.count(OldI))
7211       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7212     else
7213       U->set(NI);
7214     Changed = true;
7215   }
7216 
7217   // Remove instructions that are dead after sinking.
7218   for (auto *I : MaybeDead) {
7219     if (!I->hasNUsesOrMore(1)) {
7220       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7221       I->eraseFromParent();
7222     }
7223   }
7224 
7225   return Changed;
7226 }
7227 
7228 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7229   Value *Cond = SI->getCondition();
7230   Type *OldType = Cond->getType();
7231   LLVMContext &Context = Cond->getContext();
7232   EVT OldVT = TLI->getValueType(*DL, OldType);
7233   MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7234   unsigned RegWidth = RegType.getSizeInBits();
7235 
7236   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7237     return false;
7238 
7239   // If the register width is greater than the type width, expand the condition
7240   // of the switch instruction and each case constant to the width of the
7241   // register. By widening the type of the switch condition, subsequent
7242   // comparisons (for case comparisons) will not need to be extended to the
7243   // preferred register width, so we will potentially eliminate N-1 extends,
7244   // where N is the number of cases in the switch.
7245   auto *NewType = Type::getIntNTy(Context, RegWidth);
7246 
7247   // Extend the switch condition and case constants using the target preferred
7248   // extend unless the switch condition is a function argument with an extend
7249   // attribute. In that case, we can avoid an unnecessary mask/extension by
7250   // matching the argument extension instead.
7251   Instruction::CastOps ExtType = Instruction::ZExt;
7252   // Some targets prefer SExt over ZExt.
7253   if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7254     ExtType = Instruction::SExt;
7255 
7256   if (auto *Arg = dyn_cast<Argument>(Cond)) {
7257     if (Arg->hasSExtAttr())
7258       ExtType = Instruction::SExt;
7259     if (Arg->hasZExtAttr())
7260       ExtType = Instruction::ZExt;
7261   }
7262 
7263   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7264   ExtInst->insertBefore(SI);
7265   ExtInst->setDebugLoc(SI->getDebugLoc());
7266   SI->setCondition(ExtInst);
7267   for (auto Case : SI->cases()) {
7268     const APInt &NarrowConst = Case.getCaseValue()->getValue();
7269     APInt WideConst = (ExtType == Instruction::ZExt)
7270                           ? NarrowConst.zext(RegWidth)
7271                           : NarrowConst.sext(RegWidth);
7272     Case.setValue(ConstantInt::get(Context, WideConst));
7273   }
7274 
7275   return true;
7276 }
7277 
7278 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7279   // The SCCP optimization tends to produce code like this:
7280   //   switch(x) { case 42: phi(42, ...) }
7281   // Materializing the constant for the phi-argument needs instructions; So we
7282   // change the code to:
7283   //   switch(x) { case 42: phi(x, ...) }
7284 
7285   Value *Condition = SI->getCondition();
7286   // Avoid endless loop in degenerate case.
7287   if (isa<ConstantInt>(*Condition))
7288     return false;
7289 
7290   bool Changed = false;
7291   BasicBlock *SwitchBB = SI->getParent();
7292   Type *ConditionType = Condition->getType();
7293 
7294   for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7295     ConstantInt *CaseValue = Case.getCaseValue();
7296     BasicBlock *CaseBB = Case.getCaseSuccessor();
7297     // Set to true if we previously checked that `CaseBB` is only reached by
7298     // a single case from this switch.
7299     bool CheckedForSinglePred = false;
7300     for (PHINode &PHI : CaseBB->phis()) {
7301       Type *PHIType = PHI.getType();
7302       // If ZExt is free then we can also catch patterns like this:
7303       //   switch((i32)x) { case 42: phi((i64)42, ...); }
7304       // and replace `(i64)42` with `zext i32 %x to i64`.
7305       bool TryZExt =
7306           PHIType->isIntegerTy() &&
7307           PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7308           TLI->isZExtFree(ConditionType, PHIType);
7309       if (PHIType == ConditionType || TryZExt) {
7310         // Set to true to skip this case because of multiple preds.
7311         bool SkipCase = false;
7312         Value *Replacement = nullptr;
7313         for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7314           Value *PHIValue = PHI.getIncomingValue(I);
7315           if (PHIValue != CaseValue) {
7316             if (!TryZExt)
7317               continue;
7318             ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7319             if (!PHIValueInt ||
7320                 PHIValueInt->getValue() !=
7321                     CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7322               continue;
7323           }
7324           if (PHI.getIncomingBlock(I) != SwitchBB)
7325             continue;
7326           // We cannot optimize if there are multiple case labels jumping to
7327           // this block.  This check may get expensive when there are many
7328           // case labels so we test for it last.
7329           if (!CheckedForSinglePred) {
7330             CheckedForSinglePred = true;
7331             if (SI->findCaseDest(CaseBB) == nullptr) {
7332               SkipCase = true;
7333               break;
7334             }
7335           }
7336 
7337           if (Replacement == nullptr) {
7338             if (PHIValue == CaseValue) {
7339               Replacement = Condition;
7340             } else {
7341               IRBuilder<> Builder(SI);
7342               Replacement = Builder.CreateZExt(Condition, PHIType);
7343             }
7344           }
7345           PHI.setIncomingValue(I, Replacement);
7346           Changed = true;
7347         }
7348         if (SkipCase)
7349           break;
7350       }
7351     }
7352   }
7353   return Changed;
7354 }
7355 
7356 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7357   bool Changed = optimizeSwitchType(SI);
7358   Changed |= optimizeSwitchPhiConstants(SI);
7359   return Changed;
7360 }
7361 
7362 namespace {
7363 
7364 /// Helper class to promote a scalar operation to a vector one.
7365 /// This class is used to move downward extractelement transition.
7366 /// E.g.,
7367 /// a = vector_op <2 x i32>
7368 /// b = extractelement <2 x i32> a, i32 0
7369 /// c = scalar_op b
7370 /// store c
7371 ///
7372 /// =>
7373 /// a = vector_op <2 x i32>
7374 /// c = vector_op a (equivalent to scalar_op on the related lane)
7375 /// * d = extractelement <2 x i32> c, i32 0
7376 /// * store d
7377 /// Assuming both extractelement and store can be combine, we get rid of the
7378 /// transition.
7379 class VectorPromoteHelper {
7380   /// DataLayout associated with the current module.
7381   const DataLayout &DL;
7382 
7383   /// Used to perform some checks on the legality of vector operations.
7384   const TargetLowering &TLI;
7385 
7386   /// Used to estimated the cost of the promoted chain.
7387   const TargetTransformInfo &TTI;
7388 
7389   /// The transition being moved downwards.
7390   Instruction *Transition;
7391 
7392   /// The sequence of instructions to be promoted.
7393   SmallVector<Instruction *, 4> InstsToBePromoted;
7394 
7395   /// Cost of combining a store and an extract.
7396   unsigned StoreExtractCombineCost;
7397 
7398   /// Instruction that will be combined with the transition.
7399   Instruction *CombineInst = nullptr;
7400 
7401   /// The instruction that represents the current end of the transition.
7402   /// Since we are faking the promotion until we reach the end of the chain
7403   /// of computation, we need a way to get the current end of the transition.
7404   Instruction *getEndOfTransition() const {
7405     if (InstsToBePromoted.empty())
7406       return Transition;
7407     return InstsToBePromoted.back();
7408   }
7409 
7410   /// Return the index of the original value in the transition.
7411   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7412   /// c, is at index 0.
7413   unsigned getTransitionOriginalValueIdx() const {
7414     assert(isa<ExtractElementInst>(Transition) &&
7415            "Other kind of transitions are not supported yet");
7416     return 0;
7417   }
7418 
7419   /// Return the index of the index in the transition.
7420   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7421   /// is at index 1.
7422   unsigned getTransitionIdx() const {
7423     assert(isa<ExtractElementInst>(Transition) &&
7424            "Other kind of transitions are not supported yet");
7425     return 1;
7426   }
7427 
7428   /// Get the type of the transition.
7429   /// This is the type of the original value.
7430   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7431   /// transition is <2 x i32>.
7432   Type *getTransitionType() const {
7433     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7434   }
7435 
7436   /// Promote \p ToBePromoted by moving \p Def downward through.
7437   /// I.e., we have the following sequence:
7438   /// Def = Transition <ty1> a to <ty2>
7439   /// b = ToBePromoted <ty2> Def, ...
7440   /// =>
7441   /// b = ToBePromoted <ty1> a, ...
7442   /// Def = Transition <ty1> ToBePromoted to <ty2>
7443   void promoteImpl(Instruction *ToBePromoted);
7444 
7445   /// Check whether or not it is profitable to promote all the
7446   /// instructions enqueued to be promoted.
7447   bool isProfitableToPromote() {
7448     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7449     unsigned Index = isa<ConstantInt>(ValIdx)
7450                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
7451                          : -1;
7452     Type *PromotedType = getTransitionType();
7453 
7454     StoreInst *ST = cast<StoreInst>(CombineInst);
7455     unsigned AS = ST->getPointerAddressSpace();
7456     // Check if this store is supported.
7457     if (!TLI.allowsMisalignedMemoryAccesses(
7458             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7459             ST->getAlign())) {
7460       // If this is not supported, there is no way we can combine
7461       // the extract with the store.
7462       return false;
7463     }
7464 
7465     // The scalar chain of computation has to pay for the transition
7466     // scalar to vector.
7467     // The vector chain has to account for the combining cost.
7468     enum TargetTransformInfo::TargetCostKind CostKind =
7469         TargetTransformInfo::TCK_RecipThroughput;
7470     InstructionCost ScalarCost =
7471         TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
7472     InstructionCost VectorCost = StoreExtractCombineCost;
7473     for (const auto &Inst : InstsToBePromoted) {
7474       // Compute the cost.
7475       // By construction, all instructions being promoted are arithmetic ones.
7476       // Moreover, one argument is a constant that can be viewed as a splat
7477       // constant.
7478       Value *Arg0 = Inst->getOperand(0);
7479       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7480                             isa<ConstantFP>(Arg0);
7481       TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
7482       if (IsArg0Constant)
7483         Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7484       else
7485         Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7486 
7487       ScalarCost += TTI.getArithmeticInstrCost(
7488           Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
7489       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7490                                                CostKind, Arg0Info, Arg1Info);
7491     }
7492     LLVM_DEBUG(
7493         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7494                << ScalarCost << "\nVector: " << VectorCost << '\n');
7495     return ScalarCost > VectorCost;
7496   }
7497 
7498   /// Generate a constant vector with \p Val with the same
7499   /// number of elements as the transition.
7500   /// \p UseSplat defines whether or not \p Val should be replicated
7501   /// across the whole vector.
7502   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7503   /// otherwise we generate a vector with as many undef as possible:
7504   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7505   /// used at the index of the extract.
7506   Value *getConstantVector(Constant *Val, bool UseSplat) const {
7507     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7508     if (!UseSplat) {
7509       // If we cannot determine where the constant must be, we have to
7510       // use a splat constant.
7511       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7512       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7513         ExtractIdx = CstVal->getSExtValue();
7514       else
7515         UseSplat = true;
7516     }
7517 
7518     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7519     if (UseSplat)
7520       return ConstantVector::getSplat(EC, Val);
7521 
7522     if (!EC.isScalable()) {
7523       SmallVector<Constant *, 4> ConstVec;
7524       UndefValue *UndefVal = UndefValue::get(Val->getType());
7525       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7526         if (Idx == ExtractIdx)
7527           ConstVec.push_back(Val);
7528         else
7529           ConstVec.push_back(UndefVal);
7530       }
7531       return ConstantVector::get(ConstVec);
7532     } else
7533       llvm_unreachable(
7534           "Generate scalable vector for non-splat is unimplemented");
7535   }
7536 
7537   /// Check if promoting to a vector type an operand at \p OperandIdx
7538   /// in \p Use can trigger undefined behavior.
7539   static bool canCauseUndefinedBehavior(const Instruction *Use,
7540                                         unsigned OperandIdx) {
7541     // This is not safe to introduce undef when the operand is on
7542     // the right hand side of a division-like instruction.
7543     if (OperandIdx != 1)
7544       return false;
7545     switch (Use->getOpcode()) {
7546     default:
7547       return false;
7548     case Instruction::SDiv:
7549     case Instruction::UDiv:
7550     case Instruction::SRem:
7551     case Instruction::URem:
7552       return true;
7553     case Instruction::FDiv:
7554     case Instruction::FRem:
7555       return !Use->hasNoNaNs();
7556     }
7557     llvm_unreachable(nullptr);
7558   }
7559 
7560 public:
7561   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7562                       const TargetTransformInfo &TTI, Instruction *Transition,
7563                       unsigned CombineCost)
7564       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7565         StoreExtractCombineCost(CombineCost) {
7566     assert(Transition && "Do not know how to promote null");
7567   }
7568 
7569   /// Check if we can promote \p ToBePromoted to \p Type.
7570   bool canPromote(const Instruction *ToBePromoted) const {
7571     // We could support CastInst too.
7572     return isa<BinaryOperator>(ToBePromoted);
7573   }
7574 
7575   /// Check if it is profitable to promote \p ToBePromoted
7576   /// by moving downward the transition through.
7577   bool shouldPromote(const Instruction *ToBePromoted) const {
7578     // Promote only if all the operands can be statically expanded.
7579     // Indeed, we do not want to introduce any new kind of transitions.
7580     for (const Use &U : ToBePromoted->operands()) {
7581       const Value *Val = U.get();
7582       if (Val == getEndOfTransition()) {
7583         // If the use is a division and the transition is on the rhs,
7584         // we cannot promote the operation, otherwise we may create a
7585         // division by zero.
7586         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7587           return false;
7588         continue;
7589       }
7590       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7591           !isa<ConstantFP>(Val))
7592         return false;
7593     }
7594     // Check that the resulting operation is legal.
7595     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7596     if (!ISDOpcode)
7597       return false;
7598     return StressStoreExtract ||
7599            TLI.isOperationLegalOrCustom(
7600                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7601   }
7602 
7603   /// Check whether or not \p Use can be combined
7604   /// with the transition.
7605   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7606   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7607 
7608   /// Record \p ToBePromoted as part of the chain to be promoted.
7609   void enqueueForPromotion(Instruction *ToBePromoted) {
7610     InstsToBePromoted.push_back(ToBePromoted);
7611   }
7612 
7613   /// Set the instruction that will be combined with the transition.
7614   void recordCombineInstruction(Instruction *ToBeCombined) {
7615     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7616     CombineInst = ToBeCombined;
7617   }
7618 
7619   /// Promote all the instructions enqueued for promotion if it is
7620   /// is profitable.
7621   /// \return True if the promotion happened, false otherwise.
7622   bool promote() {
7623     // Check if there is something to promote.
7624     // Right now, if we do not have anything to combine with,
7625     // we assume the promotion is not profitable.
7626     if (InstsToBePromoted.empty() || !CombineInst)
7627       return false;
7628 
7629     // Check cost.
7630     if (!StressStoreExtract && !isProfitableToPromote())
7631       return false;
7632 
7633     // Promote.
7634     for (auto &ToBePromoted : InstsToBePromoted)
7635       promoteImpl(ToBePromoted);
7636     InstsToBePromoted.clear();
7637     return true;
7638   }
7639 };
7640 
7641 } // end anonymous namespace
7642 
7643 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7644   // At this point, we know that all the operands of ToBePromoted but Def
7645   // can be statically promoted.
7646   // For Def, we need to use its parameter in ToBePromoted:
7647   // b = ToBePromoted ty1 a
7648   // Def = Transition ty1 b to ty2
7649   // Move the transition down.
7650   // 1. Replace all uses of the promoted operation by the transition.
7651   // = ... b => = ... Def.
7652   assert(ToBePromoted->getType() == Transition->getType() &&
7653          "The type of the result of the transition does not match "
7654          "the final type");
7655   ToBePromoted->replaceAllUsesWith(Transition);
7656   // 2. Update the type of the uses.
7657   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7658   Type *TransitionTy = getTransitionType();
7659   ToBePromoted->mutateType(TransitionTy);
7660   // 3. Update all the operands of the promoted operation with promoted
7661   // operands.
7662   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7663   for (Use &U : ToBePromoted->operands()) {
7664     Value *Val = U.get();
7665     Value *NewVal = nullptr;
7666     if (Val == Transition)
7667       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7668     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7669              isa<ConstantFP>(Val)) {
7670       // Use a splat constant if it is not safe to use undef.
7671       NewVal = getConstantVector(
7672           cast<Constant>(Val),
7673           isa<UndefValue>(Val) ||
7674               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7675     } else
7676       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7677                        "this?");
7678     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7679   }
7680   Transition->moveAfter(ToBePromoted);
7681   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7682 }
7683 
7684 /// Some targets can do store(extractelement) with one instruction.
7685 /// Try to push the extractelement towards the stores when the target
7686 /// has this feature and this is profitable.
7687 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7688   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7689   if (DisableStoreExtract ||
7690       (!StressStoreExtract &&
7691        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7692                                        Inst->getOperand(1), CombineCost)))
7693     return false;
7694 
7695   // At this point we know that Inst is a vector to scalar transition.
7696   // Try to move it down the def-use chain, until:
7697   // - We can combine the transition with its single use
7698   //   => we got rid of the transition.
7699   // - We escape the current basic block
7700   //   => we would need to check that we are moving it at a cheaper place and
7701   //      we do not do that for now.
7702   BasicBlock *Parent = Inst->getParent();
7703   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7704   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7705   // If the transition has more than one use, assume this is not going to be
7706   // beneficial.
7707   while (Inst->hasOneUse()) {
7708     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7709     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7710 
7711     if (ToBePromoted->getParent() != Parent) {
7712       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7713                         << ToBePromoted->getParent()->getName()
7714                         << ") than the transition (" << Parent->getName()
7715                         << ").\n");
7716       return false;
7717     }
7718 
7719     if (VPH.canCombine(ToBePromoted)) {
7720       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7721                         << "will be combined with: " << *ToBePromoted << '\n');
7722       VPH.recordCombineInstruction(ToBePromoted);
7723       bool Changed = VPH.promote();
7724       NumStoreExtractExposed += Changed;
7725       return Changed;
7726     }
7727 
7728     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7729     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7730       return false;
7731 
7732     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7733 
7734     VPH.enqueueForPromotion(ToBePromoted);
7735     Inst = ToBePromoted;
7736   }
7737   return false;
7738 }
7739 
7740 /// For the instruction sequence of store below, F and I values
7741 /// are bundled together as an i64 value before being stored into memory.
7742 /// Sometimes it is more efficient to generate separate stores for F and I,
7743 /// which can remove the bitwise instructions or sink them to colder places.
7744 ///
7745 ///   (store (or (zext (bitcast F to i32) to i64),
7746 ///              (shl (zext I to i64), 32)), addr)  -->
7747 ///   (store F, addr) and (store I, addr+4)
7748 ///
7749 /// Similarly, splitting for other merged store can also be beneficial, like:
7750 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7751 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7752 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7753 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7754 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7755 ///
7756 /// We allow each target to determine specifically which kind of splitting is
7757 /// supported.
7758 ///
7759 /// The store patterns are commonly seen from the simple code snippet below
7760 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7761 ///   void goo(const std::pair<int, float> &);
7762 ///   hoo() {
7763 ///     ...
7764 ///     goo(std::make_pair(tmp, ftmp));
7765 ///     ...
7766 ///   }
7767 ///
7768 /// Although we already have similar splitting in DAG Combine, we duplicate
7769 /// it in CodeGenPrepare to catch the case in which pattern is across
7770 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7771 /// during code expansion.
7772 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7773                                 const TargetLowering &TLI) {
7774   // Handle simple but common cases only.
7775   Type *StoreType = SI.getValueOperand()->getType();
7776 
7777   // The code below assumes shifting a value by <number of bits>,
7778   // whereas scalable vectors would have to be shifted by
7779   // <2log(vscale) + number of bits> in order to store the
7780   // low/high parts. Bailing out for now.
7781   if (StoreType->isScalableTy())
7782     return false;
7783 
7784   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7785       DL.getTypeSizeInBits(StoreType) == 0)
7786     return false;
7787 
7788   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7789   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7790   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7791     return false;
7792 
7793   // Don't split the store if it is volatile.
7794   if (SI.isVolatile())
7795     return false;
7796 
7797   // Match the following patterns:
7798   // (store (or (zext LValue to i64),
7799   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7800   //  or
7801   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7802   //            (zext LValue to i64),
7803   // Expect both operands of OR and the first operand of SHL have only
7804   // one use.
7805   Value *LValue, *HValue;
7806   if (!match(SI.getValueOperand(),
7807              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7808                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7809                                    m_SpecificInt(HalfValBitSize))))))
7810     return false;
7811 
7812   // Check LValue and HValue are int with size less or equal than 32.
7813   if (!LValue->getType()->isIntegerTy() ||
7814       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7815       !HValue->getType()->isIntegerTy() ||
7816       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7817     return false;
7818 
7819   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7820   // as the input of target query.
7821   auto *LBC = dyn_cast<BitCastInst>(LValue);
7822   auto *HBC = dyn_cast<BitCastInst>(HValue);
7823   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7824                   : EVT::getEVT(LValue->getType());
7825   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7826                    : EVT::getEVT(HValue->getType());
7827   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7828     return false;
7829 
7830   // Start to split store.
7831   IRBuilder<> Builder(SI.getContext());
7832   Builder.SetInsertPoint(&SI);
7833 
7834   // If LValue/HValue is a bitcast in another BB, create a new one in current
7835   // BB so it may be merged with the splitted stores by dag combiner.
7836   if (LBC && LBC->getParent() != SI.getParent())
7837     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7838   if (HBC && HBC->getParent() != SI.getParent())
7839     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7840 
7841   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7842   auto CreateSplitStore = [&](Value *V, bool Upper) {
7843     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7844     Value *Addr = Builder.CreateBitCast(
7845         SI.getOperand(1),
7846         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7847     Align Alignment = SI.getAlign();
7848     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7849     if (IsOffsetStore) {
7850       Addr = Builder.CreateGEP(
7851           SplitStoreType, Addr,
7852           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7853 
7854       // When splitting the store in half, naturally one half will retain the
7855       // alignment of the original wider store, regardless of whether it was
7856       // over-aligned or not, while the other will require adjustment.
7857       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7858     }
7859     Builder.CreateAlignedStore(V, Addr, Alignment);
7860   };
7861 
7862   CreateSplitStore(LValue, false);
7863   CreateSplitStore(HValue, true);
7864 
7865   // Delete the old store.
7866   SI.eraseFromParent();
7867   return true;
7868 }
7869 
7870 // Return true if the GEP has two operands, the first operand is of a sequential
7871 // type, and the second operand is a constant.
7872 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7873   gep_type_iterator I = gep_type_begin(*GEP);
7874   return GEP->getNumOperands() == 2 && I.isSequential() &&
7875          isa<ConstantInt>(GEP->getOperand(1));
7876 }
7877 
7878 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7879 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7880 // reducing liveness interference across those edges benefits global register
7881 // allocation. Currently handles only certain cases.
7882 //
7883 // For example, unmerge %GEPI and %UGEPI as below.
7884 //
7885 // ---------- BEFORE ----------
7886 // SrcBlock:
7887 //   ...
7888 //   %GEPIOp = ...
7889 //   ...
7890 //   %GEPI = gep %GEPIOp, Idx
7891 //   ...
7892 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7893 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7894 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7895 //   %UGEPI)
7896 //
7897 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7898 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7899 // ...
7900 //
7901 // DstBi:
7902 //   ...
7903 //   %UGEPI = gep %GEPIOp, UIdx
7904 // ...
7905 // ---------------------------
7906 //
7907 // ---------- AFTER ----------
7908 // SrcBlock:
7909 //   ... (same as above)
7910 //    (* %GEPI is still alive on the indirectbr edges)
7911 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7912 //    unmerging)
7913 // ...
7914 //
7915 // DstBi:
7916 //   ...
7917 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7918 //   ...
7919 // ---------------------------
7920 //
7921 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7922 // no longer alive on them.
7923 //
7924 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7925 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7926 // not to disable further simplications and optimizations as a result of GEP
7927 // merging.
7928 //
7929 // Note this unmerging may increase the length of the data flow critical path
7930 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7931 // between the register pressure and the length of data-flow critical
7932 // path. Restricting this to the uncommon IndirectBr case would minimize the
7933 // impact of potentially longer critical path, if any, and the impact on compile
7934 // time.
7935 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7936                                              const TargetTransformInfo *TTI) {
7937   BasicBlock *SrcBlock = GEPI->getParent();
7938   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7939   // (non-IndirectBr) cases exit early here.
7940   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7941     return false;
7942   // Check that GEPI is a simple gep with a single constant index.
7943   if (!GEPSequentialConstIndexed(GEPI))
7944     return false;
7945   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7946   // Check that GEPI is a cheap one.
7947   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7948                          TargetTransformInfo::TCK_SizeAndLatency) >
7949       TargetTransformInfo::TCC_Basic)
7950     return false;
7951   Value *GEPIOp = GEPI->getOperand(0);
7952   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7953   if (!isa<Instruction>(GEPIOp))
7954     return false;
7955   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7956   if (GEPIOpI->getParent() != SrcBlock)
7957     return false;
7958   // Check that GEP is used outside the block, meaning it's alive on the
7959   // IndirectBr edge(s).
7960   if (llvm::none_of(GEPI->users(), [&](User *Usr) {
7961         if (auto *I = dyn_cast<Instruction>(Usr)) {
7962           if (I->getParent() != SrcBlock) {
7963             return true;
7964           }
7965         }
7966         return false;
7967       }))
7968     return false;
7969   // The second elements of the GEP chains to be unmerged.
7970   std::vector<GetElementPtrInst *> UGEPIs;
7971   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7972   // on IndirectBr edges.
7973   for (User *Usr : GEPIOp->users()) {
7974     if (Usr == GEPI)
7975       continue;
7976     // Check if Usr is an Instruction. If not, give up.
7977     if (!isa<Instruction>(Usr))
7978       return false;
7979     auto *UI = cast<Instruction>(Usr);
7980     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7981     if (UI->getParent() == SrcBlock)
7982       continue;
7983     // Check if Usr is a GEP. If not, give up.
7984     if (!isa<GetElementPtrInst>(Usr))
7985       return false;
7986     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7987     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7988     // the pointer operand to it. If so, record it in the vector. If not, give
7989     // up.
7990     if (!GEPSequentialConstIndexed(UGEPI))
7991       return false;
7992     if (UGEPI->getOperand(0) != GEPIOp)
7993       return false;
7994     if (GEPIIdx->getType() !=
7995         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7996       return false;
7997     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7998     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7999                            TargetTransformInfo::TCK_SizeAndLatency) >
8000         TargetTransformInfo::TCC_Basic)
8001       return false;
8002     UGEPIs.push_back(UGEPI);
8003   }
8004   if (UGEPIs.size() == 0)
8005     return false;
8006   // Check the materializing cost of (Uidx-Idx).
8007   for (GetElementPtrInst *UGEPI : UGEPIs) {
8008     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8009     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8010     InstructionCost ImmCost = TTI->getIntImmCost(
8011         NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8012     if (ImmCost > TargetTransformInfo::TCC_Basic)
8013       return false;
8014   }
8015   // Now unmerge between GEPI and UGEPIs.
8016   for (GetElementPtrInst *UGEPI : UGEPIs) {
8017     UGEPI->setOperand(0, GEPI);
8018     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8019     Constant *NewUGEPIIdx = ConstantInt::get(
8020         GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8021     UGEPI->setOperand(1, NewUGEPIIdx);
8022     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8023     // inbounds to avoid UB.
8024     if (!GEPI->isInBounds()) {
8025       UGEPI->setIsInBounds(false);
8026     }
8027   }
8028   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8029   // alive on IndirectBr edges).
8030   assert(llvm::none_of(GEPIOp->users(),
8031                        [&](User *Usr) {
8032                          return cast<Instruction>(Usr)->getParent() != SrcBlock;
8033                        }) &&
8034          "GEPIOp is used outside SrcBlock");
8035   return true;
8036 }
8037 
8038 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8039                            SmallSet<BasicBlock *, 32> &FreshBBs,
8040                            bool IsHugeFunc) {
8041   // Try and convert
8042   //  %c = icmp ult %x, 8
8043   //  br %c, bla, blb
8044   //  %tc = lshr %x, 3
8045   // to
8046   //  %tc = lshr %x, 3
8047   //  %c = icmp eq %tc, 0
8048   //  br %c, bla, blb
8049   // Creating the cmp to zero can be better for the backend, especially if the
8050   // lshr produces flags that can be used automatically.
8051   if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8052     return false;
8053 
8054   ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8055   if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8056     return false;
8057 
8058   Value *X = Cmp->getOperand(0);
8059   APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8060 
8061   for (auto *U : X->users()) {
8062     Instruction *UI = dyn_cast<Instruction>(U);
8063     // A quick dominance check
8064     if (!UI ||
8065         (UI->getParent() != Branch->getParent() &&
8066          UI->getParent() != Branch->getSuccessor(0) &&
8067          UI->getParent() != Branch->getSuccessor(1)) ||
8068         (UI->getParent() != Branch->getParent() &&
8069          !UI->getParent()->getSinglePredecessor()))
8070       continue;
8071 
8072     if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8073         match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8074       IRBuilder<> Builder(Branch);
8075       if (UI->getParent() != Branch->getParent())
8076         UI->moveBefore(Branch);
8077       Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8078                                         ConstantInt::get(UI->getType(), 0));
8079       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8080       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8081       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8082       return true;
8083     }
8084     if (Cmp->isEquality() &&
8085         (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8086          match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
8087       IRBuilder<> Builder(Branch);
8088       if (UI->getParent() != Branch->getParent())
8089         UI->moveBefore(Branch);
8090       Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8091                                         ConstantInt::get(UI->getType(), 0));
8092       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8093       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8094       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8095       return true;
8096     }
8097   }
8098   return false;
8099 }
8100 
8101 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8102   // Bail out if we inserted the instruction to prevent optimizations from
8103   // stepping on each other's toes.
8104   if (InsertedInsts.count(I))
8105     return false;
8106 
8107   // TODO: Move into the switch on opcode below here.
8108   if (PHINode *P = dyn_cast<PHINode>(I)) {
8109     // It is possible for very late stage optimizations (such as SimplifyCFG)
8110     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
8111     // trivial PHI, go ahead and zap it here.
8112     if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8113       LargeOffsetGEPMap.erase(P);
8114       replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8115       P->eraseFromParent();
8116       ++NumPHIsElim;
8117       return true;
8118     }
8119     return false;
8120   }
8121 
8122   if (CastInst *CI = dyn_cast<CastInst>(I)) {
8123     // If the source of the cast is a constant, then this should have
8124     // already been constant folded.  The only reason NOT to constant fold
8125     // it is if something (e.g. LSR) was careful to place the constant
8126     // evaluation in a block other than then one that uses it (e.g. to hoist
8127     // the address of globals out of a loop).  If this is the case, we don't
8128     // want to forward-subst the cast.
8129     if (isa<Constant>(CI->getOperand(0)))
8130       return false;
8131 
8132     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8133       return true;
8134 
8135     if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) &&
8136         TLI->optimizeExtendOrTruncateConversion(
8137             I, LI->getLoopFor(I->getParent()), *TTI))
8138       return true;
8139 
8140     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8141       /// Sink a zext or sext into its user blocks if the target type doesn't
8142       /// fit in one register
8143       if (TLI->getTypeAction(CI->getContext(),
8144                              TLI->getValueType(*DL, CI->getType())) ==
8145           TargetLowering::TypeExpandInteger) {
8146         return SinkCast(CI);
8147       } else {
8148         if (TLI->optimizeExtendOrTruncateConversion(
8149                 I, LI->getLoopFor(I->getParent()), *TTI))
8150           return true;
8151 
8152         bool MadeChange = optimizeExt(I);
8153         return MadeChange | optimizeExtUses(I);
8154       }
8155     }
8156     return false;
8157   }
8158 
8159   if (auto *Cmp = dyn_cast<CmpInst>(I))
8160     if (optimizeCmp(Cmp, ModifiedDT))
8161       return true;
8162 
8163   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8164     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8165     bool Modified = optimizeLoadExt(LI);
8166     unsigned AS = LI->getPointerAddressSpace();
8167     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8168     return Modified;
8169   }
8170 
8171   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8172     if (splitMergedValStore(*SI, *DL, *TLI))
8173       return true;
8174     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8175     unsigned AS = SI->getPointerAddressSpace();
8176     return optimizeMemoryInst(I, SI->getOperand(1),
8177                               SI->getOperand(0)->getType(), AS);
8178   }
8179 
8180   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8181     unsigned AS = RMW->getPointerAddressSpace();
8182     return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8183   }
8184 
8185   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8186     unsigned AS = CmpX->getPointerAddressSpace();
8187     return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8188                               CmpX->getCompareOperand()->getType(), AS);
8189   }
8190 
8191   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8192 
8193   if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8194       sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8195     return true;
8196 
8197   // TODO: Move this into the switch on opcode - it handles shifts already.
8198   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8199                 BinOp->getOpcode() == Instruction::LShr)) {
8200     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8201     if (CI && TLI->hasExtractBitsInsn())
8202       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8203         return true;
8204   }
8205 
8206   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8207     if (GEPI->hasAllZeroIndices()) {
8208       /// The GEP operand must be a pointer, so must its result -> BitCast
8209       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8210                                         GEPI->getName(), GEPI);
8211       NC->setDebugLoc(GEPI->getDebugLoc());
8212       replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8213       RecursivelyDeleteTriviallyDeadInstructions(
8214           GEPI, TLInfo, nullptr,
8215           [&](Value *V) { removeAllAssertingVHReferences(V); });
8216       ++NumGEPsElim;
8217       optimizeInst(NC, ModifiedDT);
8218       return true;
8219     }
8220     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8221       return true;
8222     }
8223     return false;
8224   }
8225 
8226   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8227     // freeze(icmp a, const)) -> icmp (freeze a), const
8228     // This helps generate efficient conditional jumps.
8229     Instruction *CmpI = nullptr;
8230     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8231       CmpI = II;
8232     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8233       CmpI = F->getFastMathFlags().none() ? F : nullptr;
8234 
8235     if (CmpI && CmpI->hasOneUse()) {
8236       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8237       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8238                     isa<ConstantPointerNull>(Op0);
8239       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8240                     isa<ConstantPointerNull>(Op1);
8241       if (Const0 || Const1) {
8242         if (!Const0 || !Const1) {
8243           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
8244           F->takeName(FI);
8245           CmpI->setOperand(Const0 ? 1 : 0, F);
8246         }
8247         replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
8248         FI->eraseFromParent();
8249         return true;
8250       }
8251     }
8252     return false;
8253   }
8254 
8255   if (tryToSinkFreeOperands(I))
8256     return true;
8257 
8258   switch (I->getOpcode()) {
8259   case Instruction::Shl:
8260   case Instruction::LShr:
8261   case Instruction::AShr:
8262     return optimizeShiftInst(cast<BinaryOperator>(I));
8263   case Instruction::Call:
8264     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8265   case Instruction::Select:
8266     return optimizeSelectInst(cast<SelectInst>(I));
8267   case Instruction::ShuffleVector:
8268     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8269   case Instruction::Switch:
8270     return optimizeSwitchInst(cast<SwitchInst>(I));
8271   case Instruction::ExtractElement:
8272     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8273   case Instruction::Br:
8274     return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
8275   }
8276 
8277   return false;
8278 }
8279 
8280 /// Given an OR instruction, check to see if this is a bitreverse
8281 /// idiom. If so, insert the new intrinsic and return true.
8282 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8283   if (!I.getType()->isIntegerTy() ||
8284       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8285                                      TLI->getValueType(*DL, I.getType(), true)))
8286     return false;
8287 
8288   SmallVector<Instruction *, 4> Insts;
8289   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8290     return false;
8291   Instruction *LastInst = Insts.back();
8292   replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
8293   RecursivelyDeleteTriviallyDeadInstructions(
8294       &I, TLInfo, nullptr,
8295       [&](Value *V) { removeAllAssertingVHReferences(V); });
8296   return true;
8297 }
8298 
8299 // In this pass we look for GEP and cast instructions that are used
8300 // across basic blocks and rewrite them to improve basic-block-at-a-time
8301 // selection.
8302 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
8303   SunkAddrs.clear();
8304   bool MadeChange = false;
8305 
8306   do {
8307     CurInstIterator = BB.begin();
8308     ModifiedDT = ModifyDT::NotModifyDT;
8309     while (CurInstIterator != BB.end()) {
8310       MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8311       if (ModifiedDT != ModifyDT::NotModifyDT) {
8312         // For huge function we tend to quickly go though the inner optmization
8313         // opportunities in the BB. So we go back to the BB head to re-optimize
8314         // each instruction instead of go back to the function head.
8315         if (IsHugeFunc) {
8316           DT.reset();
8317           getDT(*BB.getParent());
8318           break;
8319         } else {
8320           return true;
8321         }
8322       }
8323     }
8324   } while (ModifiedDT == ModifyDT::ModifyInstDT);
8325 
8326   bool MadeBitReverse = true;
8327   while (MadeBitReverse) {
8328     MadeBitReverse = false;
8329     for (auto &I : reverse(BB)) {
8330       if (makeBitReverse(I)) {
8331         MadeBitReverse = MadeChange = true;
8332         break;
8333       }
8334     }
8335   }
8336   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8337 
8338   return MadeChange;
8339 }
8340 
8341 // Some CGP optimizations may move or alter what's computed in a block. Check
8342 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8343 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8344   assert(isa<DbgValueInst>(I));
8345   DbgValueInst &DVI = *cast<DbgValueInst>(I);
8346 
8347   // Does this dbg.value refer to a sunk address calculation?
8348   bool AnyChange = false;
8349   SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8350                                      DVI.location_ops().end());
8351   for (Value *Location : LocationOps) {
8352     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8353     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8354     if (SunkAddr) {
8355       // Point dbg.value at locally computed address, which should give the best
8356       // opportunity to be accurately lowered. This update may change the type
8357       // of pointer being referred to; however this makes no difference to
8358       // debugging information, and we can't generate bitcasts that may affect
8359       // codegen.
8360       DVI.replaceVariableLocationOp(Location, SunkAddr);
8361       AnyChange = true;
8362     }
8363   }
8364   return AnyChange;
8365 }
8366 
8367 // A llvm.dbg.value may be using a value before its definition, due to
8368 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8369 // them by moving the dbg.value to immediately after the value definition.
8370 // FIXME: Ideally this should never be necessary, and this has the potential
8371 // to re-order dbg.value intrinsics.
8372 bool CodeGenPrepare::placeDbgValues(Function &F) {
8373   bool MadeChange = false;
8374   DominatorTree DT(F);
8375 
8376   for (BasicBlock &BB : F) {
8377     for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8378       DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8379       if (!DVI)
8380         continue;
8381 
8382       SmallVector<Instruction *, 4> VIs;
8383       for (Value *V : DVI->getValues())
8384         if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8385           VIs.push_back(VI);
8386 
8387       // This DVI may depend on multiple instructions, complicating any
8388       // potential sink. This block takes the defensive approach, opting to
8389       // "undef" the DVI if it has more than one instruction and any of them do
8390       // not dominate DVI.
8391       for (Instruction *VI : VIs) {
8392         if (VI->isTerminator())
8393           continue;
8394 
8395         // If VI is a phi in a block with an EHPad terminator, we can't insert
8396         // after it.
8397         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8398           continue;
8399 
8400         // If the defining instruction dominates the dbg.value, we do not need
8401         // to move the dbg.value.
8402         if (DT.dominates(VI, DVI))
8403           continue;
8404 
8405         // If we depend on multiple instructions and any of them doesn't
8406         // dominate this DVI, we probably can't salvage it: moving it to
8407         // after any of the instructions could cause us to lose the others.
8408         if (VIs.size() > 1) {
8409           LLVM_DEBUG(
8410               dbgs()
8411               << "Unable to find valid location for Debug Value, undefing:\n"
8412               << *DVI);
8413           DVI->setKillLocation();
8414           break;
8415         }
8416 
8417         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8418                           << *DVI << ' ' << *VI);
8419         DVI->removeFromParent();
8420         if (isa<PHINode>(VI))
8421           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8422         else
8423           DVI->insertAfter(VI);
8424         MadeChange = true;
8425         ++NumDbgValueMoved;
8426       }
8427     }
8428   }
8429   return MadeChange;
8430 }
8431 
8432 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8433 // probes can be chained dependencies of other regular DAG nodes and block DAG
8434 // combine optimizations.
8435 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8436   bool MadeChange = false;
8437   for (auto &Block : F) {
8438     // Move the rest probes to the beginning of the block.
8439     auto FirstInst = Block.getFirstInsertionPt();
8440     while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8441       ++FirstInst;
8442     BasicBlock::iterator I(FirstInst);
8443     I++;
8444     while (I != Block.end()) {
8445       if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8446         II->moveBefore(&*FirstInst);
8447         MadeChange = true;
8448       }
8449     }
8450   }
8451   return MadeChange;
8452 }
8453 
8454 /// Scale down both weights to fit into uint32_t.
8455 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8456   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8457   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8458   NewTrue = NewTrue / Scale;
8459   NewFalse = NewFalse / Scale;
8460 }
8461 
8462 /// Some targets prefer to split a conditional branch like:
8463 /// \code
8464 ///   %0 = icmp ne i32 %a, 0
8465 ///   %1 = icmp ne i32 %b, 0
8466 ///   %or.cond = or i1 %0, %1
8467 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
8468 /// \endcode
8469 /// into multiple branch instructions like:
8470 /// \code
8471 ///   bb1:
8472 ///     %0 = icmp ne i32 %a, 0
8473 ///     br i1 %0, label %TrueBB, label %bb2
8474 ///   bb2:
8475 ///     %1 = icmp ne i32 %b, 0
8476 ///     br i1 %1, label %TrueBB, label %FalseBB
8477 /// \endcode
8478 /// This usually allows instruction selection to do even further optimizations
8479 /// and combine the compare with the branch instruction. Currently this is
8480 /// applied for targets which have "cheap" jump instructions.
8481 ///
8482 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8483 ///
8484 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
8485   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8486     return false;
8487 
8488   bool MadeChange = false;
8489   for (auto &BB : F) {
8490     // Does this BB end with the following?
8491     //   %cond1 = icmp|fcmp|binary instruction ...
8492     //   %cond2 = icmp|fcmp|binary instruction ...
8493     //   %cond.or = or|and i1 %cond1, cond2
8494     //   br i1 %cond.or label %dest1, label %dest2"
8495     Instruction *LogicOp;
8496     BasicBlock *TBB, *FBB;
8497     if (!match(BB.getTerminator(),
8498                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8499       continue;
8500 
8501     auto *Br1 = cast<BranchInst>(BB.getTerminator());
8502     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8503       continue;
8504 
8505     // The merging of mostly empty BB can cause a degenerate branch.
8506     if (TBB == FBB)
8507       continue;
8508 
8509     unsigned Opc;
8510     Value *Cond1, *Cond2;
8511     if (match(LogicOp,
8512               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8513       Opc = Instruction::And;
8514     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8515                                         m_OneUse(m_Value(Cond2)))))
8516       Opc = Instruction::Or;
8517     else
8518       continue;
8519 
8520     auto IsGoodCond = [](Value *Cond) {
8521       return match(
8522           Cond,
8523           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8524                                            m_LogicalOr(m_Value(), m_Value()))));
8525     };
8526     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8527       continue;
8528 
8529     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8530 
8531     // Create a new BB.
8532     auto *TmpBB =
8533         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8534                            BB.getParent(), BB.getNextNode());
8535     if (IsHugeFunc)
8536       FreshBBs.insert(TmpBB);
8537 
8538     // Update original basic block by using the first condition directly by the
8539     // branch instruction and removing the no longer needed and/or instruction.
8540     Br1->setCondition(Cond1);
8541     LogicOp->eraseFromParent();
8542 
8543     // Depending on the condition we have to either replace the true or the
8544     // false successor of the original branch instruction.
8545     if (Opc == Instruction::And)
8546       Br1->setSuccessor(0, TmpBB);
8547     else
8548       Br1->setSuccessor(1, TmpBB);
8549 
8550     // Fill in the new basic block.
8551     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8552     if (auto *I = dyn_cast<Instruction>(Cond2)) {
8553       I->removeFromParent();
8554       I->insertBefore(Br2);
8555     }
8556 
8557     // Update PHI nodes in both successors. The original BB needs to be
8558     // replaced in one successor's PHI nodes, because the branch comes now from
8559     // the newly generated BB (NewBB). In the other successor we need to add one
8560     // incoming edge to the PHI nodes, because both branch instructions target
8561     // now the same successor. Depending on the original branch condition
8562     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8563     // we perform the correct update for the PHI nodes.
8564     // This doesn't change the successor order of the just created branch
8565     // instruction (or any other instruction).
8566     if (Opc == Instruction::Or)
8567       std::swap(TBB, FBB);
8568 
8569     // Replace the old BB with the new BB.
8570     TBB->replacePhiUsesWith(&BB, TmpBB);
8571 
8572     // Add another incoming edge from the new BB.
8573     for (PHINode &PN : FBB->phis()) {
8574       auto *Val = PN.getIncomingValueForBlock(&BB);
8575       PN.addIncoming(Val, TmpBB);
8576     }
8577 
8578     // Update the branch weights (from SelectionDAGBuilder::
8579     // FindMergedConditions).
8580     if (Opc == Instruction::Or) {
8581       // Codegen X | Y as:
8582       // BB1:
8583       //   jmp_if_X TBB
8584       //   jmp TmpBB
8585       // TmpBB:
8586       //   jmp_if_Y TBB
8587       //   jmp FBB
8588       //
8589 
8590       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8591       // The requirement is that
8592       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8593       //     = TrueProb for original BB.
8594       // Assuming the original weights are A and B, one choice is to set BB1's
8595       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8596       // assumes that
8597       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8598       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8599       // TmpBB, but the math is more complicated.
8600       uint64_t TrueWeight, FalseWeight;
8601       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8602         uint64_t NewTrueWeight = TrueWeight;
8603         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8604         scaleWeights(NewTrueWeight, NewFalseWeight);
8605         Br1->setMetadata(LLVMContext::MD_prof,
8606                          MDBuilder(Br1->getContext())
8607                              .createBranchWeights(TrueWeight, FalseWeight));
8608 
8609         NewTrueWeight = TrueWeight;
8610         NewFalseWeight = 2 * FalseWeight;
8611         scaleWeights(NewTrueWeight, NewFalseWeight);
8612         Br2->setMetadata(LLVMContext::MD_prof,
8613                          MDBuilder(Br2->getContext())
8614                              .createBranchWeights(TrueWeight, FalseWeight));
8615       }
8616     } else {
8617       // Codegen X & Y as:
8618       // BB1:
8619       //   jmp_if_X TmpBB
8620       //   jmp FBB
8621       // TmpBB:
8622       //   jmp_if_Y TBB
8623       //   jmp FBB
8624       //
8625       //  This requires creation of TmpBB after CurBB.
8626 
8627       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8628       // The requirement is that
8629       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8630       //     = FalseProb for original BB.
8631       // Assuming the original weights are A and B, one choice is to set BB1's
8632       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8633       // assumes that
8634       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8635       uint64_t TrueWeight, FalseWeight;
8636       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8637         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8638         uint64_t NewFalseWeight = FalseWeight;
8639         scaleWeights(NewTrueWeight, NewFalseWeight);
8640         Br1->setMetadata(LLVMContext::MD_prof,
8641                          MDBuilder(Br1->getContext())
8642                              .createBranchWeights(TrueWeight, FalseWeight));
8643 
8644         NewTrueWeight = 2 * TrueWeight;
8645         NewFalseWeight = FalseWeight;
8646         scaleWeights(NewTrueWeight, NewFalseWeight);
8647         Br2->setMetadata(LLVMContext::MD_prof,
8648                          MDBuilder(Br2->getContext())
8649                              .createBranchWeights(TrueWeight, FalseWeight));
8650       }
8651     }
8652 
8653     ModifiedDT = ModifyDT::ModifyBBDT;
8654     MadeChange = true;
8655 
8656     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8657                TmpBB->dump());
8658   }
8659   return MadeChange;
8660 }
8661