1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfo.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, 181 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 182 "profile, we cannot tell the function is cold for sure because " 183 "it may be a function newly added without ever being sampled. " 184 "With the flag enabled, compiler can put such profile unknown " 185 "functions into a special section, so runtime system can choose " 186 "to handle it in a different way than .text section, to save " 187 "RAM for example. ")); 188 189 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 190 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 191 cl::desc("Use the basic-block-sections profile to determine the text " 192 "section prefix for hot functions. Functions with " 193 "basic-block-sections profile will be placed in `.text.hot` " 194 "regardless of their FDO profile info. Other functions won't be " 195 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 196 "profiles.")); 197 198 static cl::opt<unsigned> FreqRatioToSkipMerge( 199 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 200 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 201 "(frequency of destination block) is greater than this ratio")); 202 203 static cl::opt<bool> ForceSplitStore( 204 "force-split-store", cl::Hidden, cl::init(false), 205 cl::desc("Force store splitting no matter what the target query says.")); 206 207 static cl::opt<bool> 208 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 209 cl::desc("Enable merging of redundant sexts when one is dominating" 210 " the other."), cl::init(true)); 211 212 static cl::opt<bool> DisableComplexAddrModes( 213 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 214 cl::desc("Disables combining addressing modes with different parts " 215 "in optimizeMemoryInst.")); 216 217 static cl::opt<bool> 218 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 219 cl::desc("Allow creation of Phis in Address sinking.")); 220 221 static cl::opt<bool> 222 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 223 cl::desc("Allow creation of selects in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseReg( 226 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseReg field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineBaseGV( 230 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of BaseGV field in Address sinking.")); 232 233 static cl::opt<bool> AddrSinkCombineBaseOffs( 234 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 235 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 236 237 static cl::opt<bool> AddrSinkCombineScaledReg( 238 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 239 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 240 241 static cl::opt<bool> 242 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 243 cl::init(true), 244 cl::desc("Enable splitting large offset of GEP.")); 245 246 static cl::opt<bool> EnableICMP_EQToICMP_ST( 247 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 248 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 249 250 static cl::opt<bool> 251 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 252 cl::desc("Enable BFI update verification for " 253 "CodeGenPrepare.")); 254 255 static cl::opt<bool> OptimizePhiTypes( 256 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 257 cl::desc("Enable converting phi types in CodeGenPrepare")); 258 259 namespace { 260 261 enum ExtType { 262 ZeroExtension, // Zero extension has been seen. 263 SignExtension, // Sign extension has been seen. 264 BothExtension // This extension type is used if we saw sext after 265 // ZeroExtension had been set, or if we saw zext after 266 // SignExtension had been set. It makes the type 267 // information of a promoted instruction invalid. 268 }; 269 270 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 271 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 272 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 273 using SExts = SmallVector<Instruction *, 16>; 274 using ValueToSExts = DenseMap<Value *, SExts>; 275 276 class TypePromotionTransaction; 277 278 class CodeGenPrepare : public FunctionPass { 279 const TargetMachine *TM = nullptr; 280 const TargetSubtargetInfo *SubtargetInfo; 281 const TargetLowering *TLI = nullptr; 282 const TargetRegisterInfo *TRI; 283 const TargetTransformInfo *TTI = nullptr; 284 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 285 const TargetLibraryInfo *TLInfo; 286 const LoopInfo *LI; 287 std::unique_ptr<BlockFrequencyInfo> BFI; 288 std::unique_ptr<BranchProbabilityInfo> BPI; 289 ProfileSummaryInfo *PSI; 290 291 /// As we scan instructions optimizing them, this is the next instruction 292 /// to optimize. Transforms that can invalidate this should update it. 293 BasicBlock::iterator CurInstIterator; 294 295 /// Keeps track of non-local addresses that have been sunk into a block. 296 /// This allows us to avoid inserting duplicate code for blocks with 297 /// multiple load/stores of the same address. The usage of WeakTrackingVH 298 /// enables SunkAddrs to be treated as a cache whose entries can be 299 /// invalidated if a sunken address computation has been erased. 300 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 301 302 /// Keeps track of all instructions inserted for the current function. 303 SetOfInstrs InsertedInsts; 304 305 /// Keeps track of the type of the related instruction before their 306 /// promotion for the current function. 307 InstrToOrigTy PromotedInsts; 308 309 /// Keep track of instructions removed during promotion. 310 SetOfInstrs RemovedInsts; 311 312 /// Keep track of sext chains based on their initial value. 313 DenseMap<Value *, Instruction *> SeenChainsForSExt; 314 315 /// Keep track of GEPs accessing the same data structures such as structs or 316 /// arrays that are candidates to be split later because of their large 317 /// size. 318 MapVector< 319 AssertingVH<Value>, 320 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 321 LargeOffsetGEPMap; 322 323 /// Keep track of new GEP base after splitting the GEPs having large offset. 324 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 325 326 /// Map serial numbers to Large offset GEPs. 327 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 328 329 /// Keep track of SExt promoted. 330 ValueToSExts ValToSExtendedUses; 331 332 /// True if the function has the OptSize attribute. 333 bool OptSize; 334 335 /// DataLayout for the Function being processed. 336 const DataLayout *DL = nullptr; 337 338 /// Building the dominator tree can be expensive, so we only build it 339 /// lazily and update it when required. 340 std::unique_ptr<DominatorTree> DT; 341 342 public: 343 static char ID; // Pass identification, replacement for typeid 344 345 CodeGenPrepare() : FunctionPass(ID) { 346 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 347 } 348 349 bool runOnFunction(Function &F) override; 350 351 StringRef getPassName() const override { return "CodeGen Prepare"; } 352 353 void getAnalysisUsage(AnalysisUsage &AU) const override { 354 // FIXME: When we can selectively preserve passes, preserve the domtree. 355 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 356 AU.addRequired<TargetLibraryInfoWrapperPass>(); 357 AU.addRequired<TargetPassConfig>(); 358 AU.addRequired<TargetTransformInfoWrapperPass>(); 359 AU.addRequired<LoopInfoWrapperPass>(); 360 AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); 361 } 362 363 private: 364 template <typename F> 365 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 366 // Substituting can cause recursive simplifications, which can invalidate 367 // our iterator. Use a WeakTrackingVH to hold onto it in case this 368 // happens. 369 Value *CurValue = &*CurInstIterator; 370 WeakTrackingVH IterHandle(CurValue); 371 372 f(); 373 374 // If the iterator instruction was recursively deleted, start over at the 375 // start of the block. 376 if (IterHandle != CurValue) { 377 CurInstIterator = BB->begin(); 378 SunkAddrs.clear(); 379 } 380 } 381 382 // Get the DominatorTree, building if necessary. 383 DominatorTree &getDT(Function &F) { 384 if (!DT) 385 DT = std::make_unique<DominatorTree>(F); 386 return *DT; 387 } 388 389 void removeAllAssertingVHReferences(Value *V); 390 bool eliminateAssumptions(Function &F); 391 bool eliminateFallThrough(Function &F); 392 bool eliminateMostlyEmptyBlocks(Function &F); 393 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 394 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 395 void eliminateMostlyEmptyBlock(BasicBlock *BB); 396 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 397 bool isPreheader); 398 bool makeBitReverse(Instruction &I); 399 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 400 bool optimizeInst(Instruction *I, bool &ModifiedDT); 401 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 402 Type *AccessTy, unsigned AddrSpace); 403 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 404 bool optimizeInlineAsmInst(CallInst *CS); 405 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 406 bool optimizeExt(Instruction *&I); 407 bool optimizeExtUses(Instruction *I); 408 bool optimizeLoadExt(LoadInst *Load); 409 bool optimizeShiftInst(BinaryOperator *BO); 410 bool optimizeFunnelShift(IntrinsicInst *Fsh); 411 bool optimizeSelectInst(SelectInst *SI); 412 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 413 bool optimizeSwitchType(SwitchInst *SI); 414 bool optimizeSwitchPhiConstants(SwitchInst *SI); 415 bool optimizeSwitchInst(SwitchInst *SI); 416 bool optimizeExtractElementInst(Instruction *Inst); 417 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 418 bool fixupDbgValue(Instruction *I); 419 bool placeDbgValues(Function &F); 420 bool placePseudoProbes(Function &F); 421 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 422 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 423 bool tryToPromoteExts(TypePromotionTransaction &TPT, 424 const SmallVectorImpl<Instruction *> &Exts, 425 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 426 unsigned CreatedInstsCost = 0); 427 bool mergeSExts(Function &F); 428 bool splitLargeGEPOffsets(); 429 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 430 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 431 bool optimizePhiTypes(Function &F); 432 bool performAddressTypePromotion( 433 Instruction *&Inst, 434 bool AllowPromotionWithoutCommonHeader, 435 bool HasPromoted, TypePromotionTransaction &TPT, 436 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 437 bool splitBranchCondition(Function &F, bool &ModifiedDT); 438 bool simplifyOffsetableRelocate(GCStatepointInst &I); 439 440 bool tryToSinkFreeOperands(Instruction *I); 441 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 442 Value *Arg1, CmpInst *Cmp, 443 Intrinsic::ID IID); 444 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 445 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 446 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 447 void verifyBFIUpdates(Function &F); 448 }; 449 450 } // end anonymous namespace 451 452 char CodeGenPrepare::ID = 0; 453 454 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 455 "Optimize for code generation", false, false) 456 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader) 457 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 458 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 459 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 460 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 461 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 462 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 463 "Optimize for code generation", false, false) 464 465 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 466 467 bool CodeGenPrepare::runOnFunction(Function &F) { 468 if (skipFunction(F)) 469 return false; 470 471 DL = &F.getParent()->getDataLayout(); 472 473 bool EverMadeChange = false; 474 // Clear per function information. 475 InsertedInsts.clear(); 476 PromotedInsts.clear(); 477 478 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 479 SubtargetInfo = TM->getSubtargetImpl(F); 480 TLI = SubtargetInfo->getTargetLowering(); 481 TRI = SubtargetInfo->getRegisterInfo(); 482 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 483 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 484 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 485 BPI.reset(new BranchProbabilityInfo(F, *LI)); 486 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 487 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 488 BBSectionsProfileReader = 489 getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); 490 OptSize = F.hasOptSize(); 491 // Use the basic-block-sections profile to promote hot functions to .text.hot if requested. 492 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 493 BBSectionsProfileReader->isFunctionHot(F.getName())) { 494 F.setSectionPrefix("hot"); 495 } else if (ProfileGuidedSectionPrefix) { 496 // The hot attribute overwrites profile count based hotness while profile 497 // counts based hotness overwrite the cold attribute. 498 // This is a conservative behabvior. 499 if (F.hasFnAttribute(Attribute::Hot) || 500 PSI->isFunctionHotInCallGraph(&F, *BFI)) 501 F.setSectionPrefix("hot"); 502 // If PSI shows this function is not hot, we will placed the function 503 // into unlikely section if (1) PSI shows this is a cold function, or 504 // (2) the function has a attribute of cold. 505 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 506 F.hasFnAttribute(Attribute::Cold)) 507 F.setSectionPrefix("unlikely"); 508 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 509 PSI->isFunctionHotnessUnknown(F)) 510 F.setSectionPrefix("unknown"); 511 } 512 513 /// This optimization identifies DIV instructions that can be 514 /// profitably bypassed and carried out with a shorter, faster divide. 515 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 516 const DenseMap<unsigned int, unsigned int> &BypassWidths = 517 TLI->getBypassSlowDivWidths(); 518 BasicBlock* BB = &*F.begin(); 519 while (BB != nullptr) { 520 // bypassSlowDivision may create new BBs, but we don't want to reapply the 521 // optimization to those blocks. 522 BasicBlock* Next = BB->getNextNode(); 523 // F.hasOptSize is already checked in the outer if statement. 524 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 525 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 526 BB = Next; 527 } 528 } 529 530 // Get rid of @llvm.assume builtins before attempting to eliminate empty 531 // blocks, since there might be blocks that only contain @llvm.assume calls 532 // (plus arguments that we can get rid of). 533 EverMadeChange |= eliminateAssumptions(F); 534 535 // Eliminate blocks that contain only PHI nodes and an 536 // unconditional branch. 537 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 538 539 bool ModifiedDT = false; 540 if (!DisableBranchOpts) 541 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 542 543 // Split some critical edges where one of the sources is an indirect branch, 544 // to help generate sane code for PHIs involving such edges. 545 EverMadeChange |= 546 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 547 548 bool MadeChange = true; 549 while (MadeChange) { 550 MadeChange = false; 551 DT.reset(); 552 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 553 bool ModifiedDTOnIteration = false; 554 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); 555 556 // Restart BB iteration if the dominator tree of the Function was changed 557 if (ModifiedDTOnIteration) 558 break; 559 } 560 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 561 MadeChange |= mergeSExts(F); 562 if (!LargeOffsetGEPMap.empty()) 563 MadeChange |= splitLargeGEPOffsets(); 564 MadeChange |= optimizePhiTypes(F); 565 566 if (MadeChange) 567 eliminateFallThrough(F); 568 569 // Really free removed instructions during promotion. 570 for (Instruction *I : RemovedInsts) 571 I->deleteValue(); 572 573 EverMadeChange |= MadeChange; 574 SeenChainsForSExt.clear(); 575 ValToSExtendedUses.clear(); 576 RemovedInsts.clear(); 577 LargeOffsetGEPMap.clear(); 578 LargeOffsetGEPID.clear(); 579 } 580 581 NewGEPBases.clear(); 582 SunkAddrs.clear(); 583 584 if (!DisableBranchOpts) { 585 MadeChange = false; 586 // Use a set vector to get deterministic iteration order. The order the 587 // blocks are removed may affect whether or not PHI nodes in successors 588 // are removed. 589 SmallSetVector<BasicBlock*, 8> WorkList; 590 for (BasicBlock &BB : F) { 591 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 592 MadeChange |= ConstantFoldTerminator(&BB, true); 593 if (!MadeChange) continue; 594 595 for (BasicBlock *Succ : Successors) 596 if (pred_empty(Succ)) 597 WorkList.insert(Succ); 598 } 599 600 // Delete the dead blocks and any of their dead successors. 601 MadeChange |= !WorkList.empty(); 602 while (!WorkList.empty()) { 603 BasicBlock *BB = WorkList.pop_back_val(); 604 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 605 606 DeleteDeadBlock(BB); 607 608 for (BasicBlock *Succ : Successors) 609 if (pred_empty(Succ)) 610 WorkList.insert(Succ); 611 } 612 613 // Merge pairs of basic blocks with unconditional branches, connected by 614 // a single edge. 615 if (EverMadeChange || MadeChange) 616 MadeChange |= eliminateFallThrough(F); 617 618 EverMadeChange |= MadeChange; 619 } 620 621 if (!DisableGCOpts) { 622 SmallVector<GCStatepointInst *, 2> Statepoints; 623 for (BasicBlock &BB : F) 624 for (Instruction &I : BB) 625 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 626 Statepoints.push_back(SP); 627 for (auto &I : Statepoints) 628 EverMadeChange |= simplifyOffsetableRelocate(*I); 629 } 630 631 // Do this last to clean up use-before-def scenarios introduced by other 632 // preparatory transforms. 633 EverMadeChange |= placeDbgValues(F); 634 EverMadeChange |= placePseudoProbes(F); 635 636 #ifndef NDEBUG 637 if (VerifyBFIUpdates) 638 verifyBFIUpdates(F); 639 #endif 640 641 return EverMadeChange; 642 } 643 644 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 645 bool MadeChange = false; 646 for (BasicBlock &BB : F) { 647 CurInstIterator = BB.begin(); 648 while (CurInstIterator != BB.end()) { 649 Instruction *I = &*(CurInstIterator++); 650 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 651 MadeChange = true; 652 Value *Operand = Assume->getOperand(0); 653 Assume->eraseFromParent(); 654 655 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 656 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 657 }); 658 } 659 } 660 } 661 return MadeChange; 662 } 663 664 /// An instruction is about to be deleted, so remove all references to it in our 665 /// GEP-tracking data strcutures. 666 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 667 LargeOffsetGEPMap.erase(V); 668 NewGEPBases.erase(V); 669 670 auto GEP = dyn_cast<GetElementPtrInst>(V); 671 if (!GEP) 672 return; 673 674 LargeOffsetGEPID.erase(GEP); 675 676 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 677 if (VecI == LargeOffsetGEPMap.end()) 678 return; 679 680 auto &GEPVector = VecI->second; 681 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 682 683 if (GEPVector.empty()) 684 LargeOffsetGEPMap.erase(VecI); 685 } 686 687 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 688 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 689 DominatorTree NewDT(F); 690 LoopInfo NewLI(NewDT); 691 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 692 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 693 NewBFI.verifyMatch(*BFI); 694 } 695 696 /// Merge basic blocks which are connected by a single edge, where one of the 697 /// basic blocks has a single successor pointing to the other basic block, 698 /// which has a single predecessor. 699 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 700 bool Changed = false; 701 // Scan all of the blocks in the function, except for the entry block. 702 // Use a temporary array to avoid iterator being invalidated when 703 // deleting blocks. 704 SmallVector<WeakTrackingVH, 16> Blocks; 705 for (auto &Block : llvm::drop_begin(F)) 706 Blocks.push_back(&Block); 707 708 SmallSet<WeakTrackingVH, 16> Preds; 709 for (auto &Block : Blocks) { 710 auto *BB = cast_or_null<BasicBlock>(Block); 711 if (!BB) 712 continue; 713 // If the destination block has a single pred, then this is a trivial 714 // edge, just collapse it. 715 BasicBlock *SinglePred = BB->getSinglePredecessor(); 716 717 // Don't merge if BB's address is taken. 718 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 719 720 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 721 if (Term && !Term->isConditional()) { 722 Changed = true; 723 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 724 725 // Merge BB into SinglePred and delete it. 726 MergeBlockIntoPredecessor(BB); 727 Preds.insert(SinglePred); 728 } 729 } 730 731 // (Repeatedly) merging blocks into their predecessors can create redundant 732 // debug intrinsics. 733 for (const auto &Pred : Preds) 734 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 735 RemoveRedundantDbgInstrs(BB); 736 737 return Changed; 738 } 739 740 /// Find a destination block from BB if BB is mergeable empty block. 741 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 742 // If this block doesn't end with an uncond branch, ignore it. 743 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 744 if (!BI || !BI->isUnconditional()) 745 return nullptr; 746 747 // If the instruction before the branch (skipping debug info) isn't a phi 748 // node, then other stuff is happening here. 749 BasicBlock::iterator BBI = BI->getIterator(); 750 if (BBI != BB->begin()) { 751 --BBI; 752 while (isa<DbgInfoIntrinsic>(BBI)) { 753 if (BBI == BB->begin()) 754 break; 755 --BBI; 756 } 757 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 758 return nullptr; 759 } 760 761 // Do not break infinite loops. 762 BasicBlock *DestBB = BI->getSuccessor(0); 763 if (DestBB == BB) 764 return nullptr; 765 766 if (!canMergeBlocks(BB, DestBB)) 767 DestBB = nullptr; 768 769 return DestBB; 770 } 771 772 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 773 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 774 /// edges in ways that are non-optimal for isel. Start by eliminating these 775 /// blocks so we can split them the way we want them. 776 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 777 SmallPtrSet<BasicBlock *, 16> Preheaders; 778 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 779 while (!LoopList.empty()) { 780 Loop *L = LoopList.pop_back_val(); 781 llvm::append_range(LoopList, *L); 782 if (BasicBlock *Preheader = L->getLoopPreheader()) 783 Preheaders.insert(Preheader); 784 } 785 786 bool MadeChange = false; 787 // Copy blocks into a temporary array to avoid iterator invalidation issues 788 // as we remove them. 789 // Note that this intentionally skips the entry block. 790 SmallVector<WeakTrackingVH, 16> Blocks; 791 for (auto &Block : llvm::drop_begin(F)) 792 Blocks.push_back(&Block); 793 794 for (auto &Block : Blocks) { 795 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 796 if (!BB) 797 continue; 798 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 799 if (!DestBB || 800 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 801 continue; 802 803 eliminateMostlyEmptyBlock(BB); 804 MadeChange = true; 805 } 806 return MadeChange; 807 } 808 809 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 810 BasicBlock *DestBB, 811 bool isPreheader) { 812 // Do not delete loop preheaders if doing so would create a critical edge. 813 // Loop preheaders can be good locations to spill registers. If the 814 // preheader is deleted and we create a critical edge, registers may be 815 // spilled in the loop body instead. 816 if (!DisablePreheaderProtect && isPreheader && 817 !(BB->getSinglePredecessor() && 818 BB->getSinglePredecessor()->getSingleSuccessor())) 819 return false; 820 821 // Skip merging if the block's successor is also a successor to any callbr 822 // that leads to this block. 823 // FIXME: Is this really needed? Is this a correctness issue? 824 for (BasicBlock *Pred : predecessors(BB)) { 825 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 826 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 827 if (DestBB == CBI->getSuccessor(i)) 828 return false; 829 } 830 831 // Try to skip merging if the unique predecessor of BB is terminated by a 832 // switch or indirect branch instruction, and BB is used as an incoming block 833 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 834 // add COPY instructions in the predecessor of BB instead of BB (if it is not 835 // merged). Note that the critical edge created by merging such blocks wont be 836 // split in MachineSink because the jump table is not analyzable. By keeping 837 // such empty block (BB), ISel will place COPY instructions in BB, not in the 838 // predecessor of BB. 839 BasicBlock *Pred = BB->getUniquePredecessor(); 840 if (!Pred || 841 !(isa<SwitchInst>(Pred->getTerminator()) || 842 isa<IndirectBrInst>(Pred->getTerminator()))) 843 return true; 844 845 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 846 return true; 847 848 // We use a simple cost heuristic which determine skipping merging is 849 // profitable if the cost of skipping merging is less than the cost of 850 // merging : Cost(skipping merging) < Cost(merging BB), where the 851 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 852 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 853 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 854 // Freq(Pred) / Freq(BB) > 2. 855 // Note that if there are multiple empty blocks sharing the same incoming 856 // value for the PHIs in the DestBB, we consider them together. In such 857 // case, Cost(merging BB) will be the sum of their frequencies. 858 859 if (!isa<PHINode>(DestBB->begin())) 860 return true; 861 862 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 863 864 // Find all other incoming blocks from which incoming values of all PHIs in 865 // DestBB are the same as the ones from BB. 866 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 867 if (DestBBPred == BB) 868 continue; 869 870 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 871 return DestPN.getIncomingValueForBlock(BB) == 872 DestPN.getIncomingValueForBlock(DestBBPred); 873 })) 874 SameIncomingValueBBs.insert(DestBBPred); 875 } 876 877 // See if all BB's incoming values are same as the value from Pred. In this 878 // case, no reason to skip merging because COPYs are expected to be place in 879 // Pred already. 880 if (SameIncomingValueBBs.count(Pred)) 881 return true; 882 883 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 884 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 885 886 for (auto *SameValueBB : SameIncomingValueBBs) 887 if (SameValueBB->getUniquePredecessor() == Pred && 888 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 889 BBFreq += BFI->getBlockFreq(SameValueBB); 890 891 return PredFreq.getFrequency() <= 892 BBFreq.getFrequency() * FreqRatioToSkipMerge; 893 } 894 895 /// Return true if we can merge BB into DestBB if there is a single 896 /// unconditional branch between them, and BB contains no other non-phi 897 /// instructions. 898 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 899 const BasicBlock *DestBB) const { 900 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 901 // the successor. If there are more complex condition (e.g. preheaders), 902 // don't mess around with them. 903 for (const PHINode &PN : BB->phis()) { 904 for (const User *U : PN.users()) { 905 const Instruction *UI = cast<Instruction>(U); 906 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 907 return false; 908 // If User is inside DestBB block and it is a PHINode then check 909 // incoming value. If incoming value is not from BB then this is 910 // a complex condition (e.g. preheaders) we want to avoid here. 911 if (UI->getParent() == DestBB) { 912 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 913 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 914 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 915 if (Insn && Insn->getParent() == BB && 916 Insn->getParent() != UPN->getIncomingBlock(I)) 917 return false; 918 } 919 } 920 } 921 } 922 923 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 924 // and DestBB may have conflicting incoming values for the block. If so, we 925 // can't merge the block. 926 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 927 if (!DestBBPN) return true; // no conflict. 928 929 // Collect the preds of BB. 930 SmallPtrSet<const BasicBlock*, 16> BBPreds; 931 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 932 // It is faster to get preds from a PHI than with pred_iterator. 933 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 934 BBPreds.insert(BBPN->getIncomingBlock(i)); 935 } else { 936 BBPreds.insert(pred_begin(BB), pred_end(BB)); 937 } 938 939 // Walk the preds of DestBB. 940 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 941 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 942 if (BBPreds.count(Pred)) { // Common predecessor? 943 for (const PHINode &PN : DestBB->phis()) { 944 const Value *V1 = PN.getIncomingValueForBlock(Pred); 945 const Value *V2 = PN.getIncomingValueForBlock(BB); 946 947 // If V2 is a phi node in BB, look up what the mapped value will be. 948 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 949 if (V2PN->getParent() == BB) 950 V2 = V2PN->getIncomingValueForBlock(Pred); 951 952 // If there is a conflict, bail out. 953 if (V1 != V2) return false; 954 } 955 } 956 } 957 958 return true; 959 } 960 961 /// Eliminate a basic block that has only phi's and an unconditional branch in 962 /// it. 963 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 964 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 965 BasicBlock *DestBB = BI->getSuccessor(0); 966 967 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 968 << *BB << *DestBB); 969 970 // If the destination block has a single pred, then this is a trivial edge, 971 // just collapse it. 972 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 973 if (SinglePred != DestBB) { 974 assert(SinglePred == BB && 975 "Single predecessor not the same as predecessor"); 976 // Merge DestBB into SinglePred/BB and delete it. 977 MergeBlockIntoPredecessor(DestBB); 978 // Note: BB(=SinglePred) will not be deleted on this path. 979 // DestBB(=its single successor) is the one that was deleted. 980 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 981 return; 982 } 983 } 984 985 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 986 // to handle the new incoming edges it is about to have. 987 for (PHINode &PN : DestBB->phis()) { 988 // Remove the incoming value for BB, and remember it. 989 Value *InVal = PN.removeIncomingValue(BB, false); 990 991 // Two options: either the InVal is a phi node defined in BB or it is some 992 // value that dominates BB. 993 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 994 if (InValPhi && InValPhi->getParent() == BB) { 995 // Add all of the input values of the input PHI as inputs of this phi. 996 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 997 PN.addIncoming(InValPhi->getIncomingValue(i), 998 InValPhi->getIncomingBlock(i)); 999 } else { 1000 // Otherwise, add one instance of the dominating value for each edge that 1001 // we will be adding. 1002 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1003 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1004 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1005 } else { 1006 for (BasicBlock *Pred : predecessors(BB)) 1007 PN.addIncoming(InVal, Pred); 1008 } 1009 } 1010 } 1011 1012 // The PHIs are now updated, change everything that refers to BB to use 1013 // DestBB and remove BB. 1014 BB->replaceAllUsesWith(DestBB); 1015 BB->eraseFromParent(); 1016 ++NumBlocksElim; 1017 1018 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1019 } 1020 1021 // Computes a map of base pointer relocation instructions to corresponding 1022 // derived pointer relocation instructions given a vector of all relocate calls 1023 static void computeBaseDerivedRelocateMap( 1024 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1025 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1026 &RelocateInstMap) { 1027 // Collect information in two maps: one primarily for locating the base object 1028 // while filling the second map; the second map is the final structure holding 1029 // a mapping between Base and corresponding Derived relocate calls 1030 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1031 for (auto *ThisRelocate : AllRelocateCalls) { 1032 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1033 ThisRelocate->getDerivedPtrIndex()); 1034 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1035 } 1036 for (auto &Item : RelocateIdxMap) { 1037 std::pair<unsigned, unsigned> Key = Item.first; 1038 if (Key.first == Key.second) 1039 // Base relocation: nothing to insert 1040 continue; 1041 1042 GCRelocateInst *I = Item.second; 1043 auto BaseKey = std::make_pair(Key.first, Key.first); 1044 1045 // We're iterating over RelocateIdxMap so we cannot modify it. 1046 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1047 if (MaybeBase == RelocateIdxMap.end()) 1048 // TODO: We might want to insert a new base object relocate and gep off 1049 // that, if there are enough derived object relocates. 1050 continue; 1051 1052 RelocateInstMap[MaybeBase->second].push_back(I); 1053 } 1054 } 1055 1056 // Accepts a GEP and extracts the operands into a vector provided they're all 1057 // small integer constants 1058 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1059 SmallVectorImpl<Value *> &OffsetV) { 1060 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1061 // Only accept small constant integer operands 1062 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1063 if (!Op || Op->getZExtValue() > 20) 1064 return false; 1065 } 1066 1067 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1068 OffsetV.push_back(GEP->getOperand(i)); 1069 return true; 1070 } 1071 1072 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1073 // replace, computes a replacement, and affects it. 1074 static bool 1075 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1076 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1077 bool MadeChange = false; 1078 // We must ensure the relocation of derived pointer is defined after 1079 // relocation of base pointer. If we find a relocation corresponding to base 1080 // defined earlier than relocation of base then we move relocation of base 1081 // right before found relocation. We consider only relocation in the same 1082 // basic block as relocation of base. Relocations from other basic block will 1083 // be skipped by optimization and we do not care about them. 1084 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1085 &*R != RelocatedBase; ++R) 1086 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1087 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1088 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1089 RelocatedBase->moveBefore(RI); 1090 break; 1091 } 1092 1093 for (GCRelocateInst *ToReplace : Targets) { 1094 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1095 "Not relocating a derived object of the original base object"); 1096 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1097 // A duplicate relocate call. TODO: coalesce duplicates. 1098 continue; 1099 } 1100 1101 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1102 // Base and derived relocates are in different basic blocks. 1103 // In this case transform is only valid when base dominates derived 1104 // relocate. However it would be too expensive to check dominance 1105 // for each such relocate, so we skip the whole transformation. 1106 continue; 1107 } 1108 1109 Value *Base = ToReplace->getBasePtr(); 1110 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1111 if (!Derived || Derived->getPointerOperand() != Base) 1112 continue; 1113 1114 SmallVector<Value *, 2> OffsetV; 1115 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1116 continue; 1117 1118 // Create a Builder and replace the target callsite with a gep 1119 assert(RelocatedBase->getNextNode() && 1120 "Should always have one since it's not a terminator"); 1121 1122 // Insert after RelocatedBase 1123 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1124 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1125 1126 // If gc_relocate does not match the actual type, cast it to the right type. 1127 // In theory, there must be a bitcast after gc_relocate if the type does not 1128 // match, and we should reuse it to get the derived pointer. But it could be 1129 // cases like this: 1130 // bb1: 1131 // ... 1132 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1133 // br label %merge 1134 // 1135 // bb2: 1136 // ... 1137 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1138 // br label %merge 1139 // 1140 // merge: 1141 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1142 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1143 // 1144 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1145 // no matter there is already one or not. In this way, we can handle all cases, and 1146 // the extra bitcast should be optimized away in later passes. 1147 Value *ActualRelocatedBase = RelocatedBase; 1148 if (RelocatedBase->getType() != Base->getType()) { 1149 ActualRelocatedBase = 1150 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1151 } 1152 Value *Replacement = Builder.CreateGEP( 1153 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1154 Replacement->takeName(ToReplace); 1155 // If the newly generated derived pointer's type does not match the original derived 1156 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1157 Value *ActualReplacement = Replacement; 1158 if (Replacement->getType() != ToReplace->getType()) { 1159 ActualReplacement = 1160 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1161 } 1162 ToReplace->replaceAllUsesWith(ActualReplacement); 1163 ToReplace->eraseFromParent(); 1164 1165 MadeChange = true; 1166 } 1167 return MadeChange; 1168 } 1169 1170 // Turns this: 1171 // 1172 // %base = ... 1173 // %ptr = gep %base + 15 1174 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1175 // %base' = relocate(%tok, i32 4, i32 4) 1176 // %ptr' = relocate(%tok, i32 4, i32 5) 1177 // %val = load %ptr' 1178 // 1179 // into this: 1180 // 1181 // %base = ... 1182 // %ptr = gep %base + 15 1183 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1184 // %base' = gc.relocate(%tok, i32 4, i32 4) 1185 // %ptr' = gep %base' + 15 1186 // %val = load %ptr' 1187 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1188 bool MadeChange = false; 1189 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1190 for (auto *U : I.users()) 1191 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1192 // Collect all the relocate calls associated with a statepoint 1193 AllRelocateCalls.push_back(Relocate); 1194 1195 // We need at least one base pointer relocation + one derived pointer 1196 // relocation to mangle 1197 if (AllRelocateCalls.size() < 2) 1198 return false; 1199 1200 // RelocateInstMap is a mapping from the base relocate instruction to the 1201 // corresponding derived relocate instructions 1202 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1203 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1204 if (RelocateInstMap.empty()) 1205 return false; 1206 1207 for (auto &Item : RelocateInstMap) 1208 // Item.first is the RelocatedBase to offset against 1209 // Item.second is the vector of Targets to replace 1210 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1211 return MadeChange; 1212 } 1213 1214 /// Sink the specified cast instruction into its user blocks. 1215 static bool SinkCast(CastInst *CI) { 1216 BasicBlock *DefBB = CI->getParent(); 1217 1218 /// InsertedCasts - Only insert a cast in each block once. 1219 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1220 1221 bool MadeChange = false; 1222 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1223 UI != E; ) { 1224 Use &TheUse = UI.getUse(); 1225 Instruction *User = cast<Instruction>(*UI); 1226 1227 // Figure out which BB this cast is used in. For PHI's this is the 1228 // appropriate predecessor block. 1229 BasicBlock *UserBB = User->getParent(); 1230 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1231 UserBB = PN->getIncomingBlock(TheUse); 1232 } 1233 1234 // Preincrement use iterator so we don't invalidate it. 1235 ++UI; 1236 1237 // The first insertion point of a block containing an EH pad is after the 1238 // pad. If the pad is the user, we cannot sink the cast past the pad. 1239 if (User->isEHPad()) 1240 continue; 1241 1242 // If the block selected to receive the cast is an EH pad that does not 1243 // allow non-PHI instructions before the terminator, we can't sink the 1244 // cast. 1245 if (UserBB->getTerminator()->isEHPad()) 1246 continue; 1247 1248 // If this user is in the same block as the cast, don't change the cast. 1249 if (UserBB == DefBB) continue; 1250 1251 // If we have already inserted a cast into this block, use it. 1252 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1253 1254 if (!InsertedCast) { 1255 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1256 assert(InsertPt != UserBB->end()); 1257 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1258 CI->getType(), "", &*InsertPt); 1259 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1260 } 1261 1262 // Replace a use of the cast with a use of the new cast. 1263 TheUse = InsertedCast; 1264 MadeChange = true; 1265 ++NumCastUses; 1266 } 1267 1268 // If we removed all uses, nuke the cast. 1269 if (CI->use_empty()) { 1270 salvageDebugInfo(*CI); 1271 CI->eraseFromParent(); 1272 MadeChange = true; 1273 } 1274 1275 return MadeChange; 1276 } 1277 1278 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1279 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1280 /// reduce the number of virtual registers that must be created and coalesced. 1281 /// 1282 /// Return true if any changes are made. 1283 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1284 const DataLayout &DL) { 1285 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1286 // than sinking only nop casts, but is helpful on some platforms. 1287 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1288 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1289 ASC->getDestAddressSpace())) 1290 return false; 1291 } 1292 1293 // If this is a noop copy, 1294 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1295 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1296 1297 // This is an fp<->int conversion? 1298 if (SrcVT.isInteger() != DstVT.isInteger()) 1299 return false; 1300 1301 // If this is an extension, it will be a zero or sign extension, which 1302 // isn't a noop. 1303 if (SrcVT.bitsLT(DstVT)) return false; 1304 1305 // If these values will be promoted, find out what they will be promoted 1306 // to. This helps us consider truncates on PPC as noop copies when they 1307 // are. 1308 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1309 TargetLowering::TypePromoteInteger) 1310 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1311 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1312 TargetLowering::TypePromoteInteger) 1313 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1314 1315 // If, after promotion, these are the same types, this is a noop copy. 1316 if (SrcVT != DstVT) 1317 return false; 1318 1319 return SinkCast(CI); 1320 } 1321 1322 // Match a simple increment by constant operation. Note that if a sub is 1323 // matched, the step is negated (as if the step had been canonicalized to 1324 // an add, even though we leave the instruction alone.) 1325 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1326 Constant *&Step) { 1327 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1328 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1329 m_Instruction(LHS), m_Constant(Step))))) 1330 return true; 1331 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1332 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1333 m_Instruction(LHS), m_Constant(Step))))) { 1334 Step = ConstantExpr::getNeg(Step); 1335 return true; 1336 } 1337 return false; 1338 } 1339 1340 /// If given \p PN is an inductive variable with value IVInc coming from the 1341 /// backedge, and on each iteration it gets increased by Step, return pair 1342 /// <IVInc, Step>. Otherwise, return None. 1343 static Optional<std::pair<Instruction *, Constant *> > 1344 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1345 const Loop *L = LI->getLoopFor(PN->getParent()); 1346 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1347 return None; 1348 auto *IVInc = 1349 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1350 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1351 return None; 1352 Instruction *LHS = nullptr; 1353 Constant *Step = nullptr; 1354 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1355 return std::make_pair(IVInc, Step); 1356 return None; 1357 } 1358 1359 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1360 auto *I = dyn_cast<Instruction>(V); 1361 if (!I) 1362 return false; 1363 Instruction *LHS = nullptr; 1364 Constant *Step = nullptr; 1365 if (!matchIncrement(I, LHS, Step)) 1366 return false; 1367 if (auto *PN = dyn_cast<PHINode>(LHS)) 1368 if (auto IVInc = getIVIncrement(PN, LI)) 1369 return IVInc->first == I; 1370 return false; 1371 } 1372 1373 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1374 Value *Arg0, Value *Arg1, 1375 CmpInst *Cmp, 1376 Intrinsic::ID IID) { 1377 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1378 if (!isIVIncrement(BO, LI)) 1379 return false; 1380 const Loop *L = LI->getLoopFor(BO->getParent()); 1381 assert(L && "L should not be null after isIVIncrement()"); 1382 // Do not risk on moving increment into a child loop. 1383 if (LI->getLoopFor(Cmp->getParent()) != L) 1384 return false; 1385 1386 // Finally, we need to ensure that the insert point will dominate all 1387 // existing uses of the increment. 1388 1389 auto &DT = getDT(*BO->getParent()->getParent()); 1390 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1391 // If we're moving up the dom tree, all uses are trivially dominated. 1392 // (This is the common case for code produced by LSR.) 1393 return true; 1394 1395 // Otherwise, special case the single use in the phi recurrence. 1396 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1397 }; 1398 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1399 // We used to use a dominator tree here to allow multi-block optimization. 1400 // But that was problematic because: 1401 // 1. It could cause a perf regression by hoisting the math op into the 1402 // critical path. 1403 // 2. It could cause a perf regression by creating a value that was live 1404 // across multiple blocks and increasing register pressure. 1405 // 3. Use of a dominator tree could cause large compile-time regression. 1406 // This is because we recompute the DT on every change in the main CGP 1407 // run-loop. The recomputing is probably unnecessary in many cases, so if 1408 // that was fixed, using a DT here would be ok. 1409 // 1410 // There is one important particular case we still want to handle: if BO is 1411 // the IV increment. Important properties that make it profitable: 1412 // - We can speculate IV increment anywhere in the loop (as long as the 1413 // indvar Phi is its only user); 1414 // - Upon computing Cmp, we effectively compute something equivalent to the 1415 // IV increment (despite it loops differently in the IR). So moving it up 1416 // to the cmp point does not really increase register pressure. 1417 return false; 1418 } 1419 1420 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1421 if (BO->getOpcode() == Instruction::Add && 1422 IID == Intrinsic::usub_with_overflow) { 1423 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1424 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1425 } 1426 1427 // Insert at the first instruction of the pair. 1428 Instruction *InsertPt = nullptr; 1429 for (Instruction &Iter : *Cmp->getParent()) { 1430 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1431 // the overflow intrinsic are defined. 1432 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1433 InsertPt = &Iter; 1434 break; 1435 } 1436 } 1437 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1438 1439 IRBuilder<> Builder(InsertPt); 1440 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1441 if (BO->getOpcode() != Instruction::Xor) { 1442 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1443 BO->replaceAllUsesWith(Math); 1444 } else 1445 assert(BO->hasOneUse() && 1446 "Patterns with XOr should use the BO only in the compare"); 1447 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1448 Cmp->replaceAllUsesWith(OV); 1449 Cmp->eraseFromParent(); 1450 BO->eraseFromParent(); 1451 return true; 1452 } 1453 1454 /// Match special-case patterns that check for unsigned add overflow. 1455 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1456 BinaryOperator *&Add) { 1457 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1458 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1459 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1460 1461 // We are not expecting non-canonical/degenerate code. Just bail out. 1462 if (isa<Constant>(A)) 1463 return false; 1464 1465 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1466 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1467 B = ConstantInt::get(B->getType(), 1); 1468 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1469 B = ConstantInt::get(B->getType(), -1); 1470 else 1471 return false; 1472 1473 // Check the users of the variable operand of the compare looking for an add 1474 // with the adjusted constant. 1475 for (User *U : A->users()) { 1476 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1477 Add = cast<BinaryOperator>(U); 1478 return true; 1479 } 1480 } 1481 return false; 1482 } 1483 1484 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1485 /// intrinsic. Return true if any changes were made. 1486 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1487 bool &ModifiedDT) { 1488 Value *A, *B; 1489 BinaryOperator *Add; 1490 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1491 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1492 return false; 1493 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1494 A = Add->getOperand(0); 1495 B = Add->getOperand(1); 1496 } 1497 1498 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1499 TLI->getValueType(*DL, Add->getType()), 1500 Add->hasNUsesOrMore(2))) 1501 return false; 1502 1503 // We don't want to move around uses of condition values this late, so we 1504 // check if it is legal to create the call to the intrinsic in the basic 1505 // block containing the icmp. 1506 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1507 return false; 1508 1509 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1510 Intrinsic::uadd_with_overflow)) 1511 return false; 1512 1513 // Reset callers - do not crash by iterating over a dead instruction. 1514 ModifiedDT = true; 1515 return true; 1516 } 1517 1518 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1519 bool &ModifiedDT) { 1520 // We are not expecting non-canonical/degenerate code. Just bail out. 1521 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1522 if (isa<Constant>(A) && isa<Constant>(B)) 1523 return false; 1524 1525 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1526 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1527 if (Pred == ICmpInst::ICMP_UGT) { 1528 std::swap(A, B); 1529 Pred = ICmpInst::ICMP_ULT; 1530 } 1531 // Convert special-case: (A == 0) is the same as (A u< 1). 1532 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1533 B = ConstantInt::get(B->getType(), 1); 1534 Pred = ICmpInst::ICMP_ULT; 1535 } 1536 // Convert special-case: (A != 0) is the same as (0 u< A). 1537 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1538 std::swap(A, B); 1539 Pred = ICmpInst::ICMP_ULT; 1540 } 1541 if (Pred != ICmpInst::ICMP_ULT) 1542 return false; 1543 1544 // Walk the users of a variable operand of a compare looking for a subtract or 1545 // add with that same operand. Also match the 2nd operand of the compare to 1546 // the add/sub, but that may be a negated constant operand of an add. 1547 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1548 BinaryOperator *Sub = nullptr; 1549 for (User *U : CmpVariableOperand->users()) { 1550 // A - B, A u< B --> usubo(A, B) 1551 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1552 Sub = cast<BinaryOperator>(U); 1553 break; 1554 } 1555 1556 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1557 const APInt *CmpC, *AddC; 1558 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1559 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1560 Sub = cast<BinaryOperator>(U); 1561 break; 1562 } 1563 } 1564 if (!Sub) 1565 return false; 1566 1567 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1568 TLI->getValueType(*DL, Sub->getType()), 1569 Sub->hasNUsesOrMore(2))) 1570 return false; 1571 1572 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1573 Cmp, Intrinsic::usub_with_overflow)) 1574 return false; 1575 1576 // Reset callers - do not crash by iterating over a dead instruction. 1577 ModifiedDT = true; 1578 return true; 1579 } 1580 1581 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1582 /// registers that must be created and coalesced. This is a clear win except on 1583 /// targets with multiple condition code registers (PowerPC), where it might 1584 /// lose; some adjustment may be wanted there. 1585 /// 1586 /// Return true if any changes are made. 1587 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1588 if (TLI.hasMultipleConditionRegisters()) 1589 return false; 1590 1591 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1592 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1593 return false; 1594 1595 // Only insert a cmp in each block once. 1596 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1597 1598 bool MadeChange = false; 1599 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1600 UI != E; ) { 1601 Use &TheUse = UI.getUse(); 1602 Instruction *User = cast<Instruction>(*UI); 1603 1604 // Preincrement use iterator so we don't invalidate it. 1605 ++UI; 1606 1607 // Don't bother for PHI nodes. 1608 if (isa<PHINode>(User)) 1609 continue; 1610 1611 // Figure out which BB this cmp is used in. 1612 BasicBlock *UserBB = User->getParent(); 1613 BasicBlock *DefBB = Cmp->getParent(); 1614 1615 // If this user is in the same block as the cmp, don't change the cmp. 1616 if (UserBB == DefBB) continue; 1617 1618 // If we have already inserted a cmp into this block, use it. 1619 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1620 1621 if (!InsertedCmp) { 1622 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1623 assert(InsertPt != UserBB->end()); 1624 InsertedCmp = 1625 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1626 Cmp->getOperand(0), Cmp->getOperand(1), "", 1627 &*InsertPt); 1628 // Propagate the debug info. 1629 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1630 } 1631 1632 // Replace a use of the cmp with a use of the new cmp. 1633 TheUse = InsertedCmp; 1634 MadeChange = true; 1635 ++NumCmpUses; 1636 } 1637 1638 // If we removed all uses, nuke the cmp. 1639 if (Cmp->use_empty()) { 1640 Cmp->eraseFromParent(); 1641 MadeChange = true; 1642 } 1643 1644 return MadeChange; 1645 } 1646 1647 /// For pattern like: 1648 /// 1649 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1650 /// ... 1651 /// DomBB: 1652 /// ... 1653 /// br DomCond, TrueBB, CmpBB 1654 /// CmpBB: (with DomBB being the single predecessor) 1655 /// ... 1656 /// Cmp = icmp eq CmpOp0, CmpOp1 1657 /// ... 1658 /// 1659 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1660 /// different from lowering of icmp eq (PowerPC). This function try to convert 1661 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1662 /// After that, DomCond and Cmp can use the same comparison so reduce one 1663 /// comparison. 1664 /// 1665 /// Return true if any changes are made. 1666 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1667 const TargetLowering &TLI) { 1668 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1669 return false; 1670 1671 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1672 if (Pred != ICmpInst::ICMP_EQ) 1673 return false; 1674 1675 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1676 // icmp slt/sgt would introduce more redundant LLVM IR. 1677 for (User *U : Cmp->users()) { 1678 if (isa<BranchInst>(U)) 1679 continue; 1680 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1681 continue; 1682 return false; 1683 } 1684 1685 // This is a cheap/incomplete check for dominance - just match a single 1686 // predecessor with a conditional branch. 1687 BasicBlock *CmpBB = Cmp->getParent(); 1688 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1689 if (!DomBB) 1690 return false; 1691 1692 // We want to ensure that the only way control gets to the comparison of 1693 // interest is that a less/greater than comparison on the same operands is 1694 // false. 1695 Value *DomCond; 1696 BasicBlock *TrueBB, *FalseBB; 1697 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1698 return false; 1699 if (CmpBB != FalseBB) 1700 return false; 1701 1702 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1703 ICmpInst::Predicate DomPred; 1704 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1705 return false; 1706 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1707 return false; 1708 1709 // Convert the equality comparison to the opposite of the dominating 1710 // comparison and swap the direction for all branch/select users. 1711 // We have conceptually converted: 1712 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1713 // to 1714 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1715 // And similarly for branches. 1716 for (User *U : Cmp->users()) { 1717 if (auto *BI = dyn_cast<BranchInst>(U)) { 1718 assert(BI->isConditional() && "Must be conditional"); 1719 BI->swapSuccessors(); 1720 continue; 1721 } 1722 if (auto *SI = dyn_cast<SelectInst>(U)) { 1723 // Swap operands 1724 SI->swapValues(); 1725 SI->swapProfMetadata(); 1726 continue; 1727 } 1728 llvm_unreachable("Must be a branch or a select"); 1729 } 1730 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1731 return true; 1732 } 1733 1734 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1735 if (sinkCmpExpression(Cmp, *TLI)) 1736 return true; 1737 1738 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1739 return true; 1740 1741 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1742 return true; 1743 1744 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1745 return true; 1746 1747 return false; 1748 } 1749 1750 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1751 /// used in a compare to allow isel to generate better code for targets where 1752 /// this operation can be combined. 1753 /// 1754 /// Return true if any changes are made. 1755 static bool sinkAndCmp0Expression(Instruction *AndI, 1756 const TargetLowering &TLI, 1757 SetOfInstrs &InsertedInsts) { 1758 // Double-check that we're not trying to optimize an instruction that was 1759 // already optimized by some other part of this pass. 1760 assert(!InsertedInsts.count(AndI) && 1761 "Attempting to optimize already optimized and instruction"); 1762 (void) InsertedInsts; 1763 1764 // Nothing to do for single use in same basic block. 1765 if (AndI->hasOneUse() && 1766 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1767 return false; 1768 1769 // Try to avoid cases where sinking/duplicating is likely to increase register 1770 // pressure. 1771 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1772 !isa<ConstantInt>(AndI->getOperand(1)) && 1773 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1774 return false; 1775 1776 for (auto *U : AndI->users()) { 1777 Instruction *User = cast<Instruction>(U); 1778 1779 // Only sink 'and' feeding icmp with 0. 1780 if (!isa<ICmpInst>(User)) 1781 return false; 1782 1783 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1784 if (!CmpC || !CmpC->isZero()) 1785 return false; 1786 } 1787 1788 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1789 return false; 1790 1791 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1792 LLVM_DEBUG(AndI->getParent()->dump()); 1793 1794 // Push the 'and' into the same block as the icmp 0. There should only be 1795 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1796 // others, so we don't need to keep track of which BBs we insert into. 1797 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1798 UI != E; ) { 1799 Use &TheUse = UI.getUse(); 1800 Instruction *User = cast<Instruction>(*UI); 1801 1802 // Preincrement use iterator so we don't invalidate it. 1803 ++UI; 1804 1805 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1806 1807 // Keep the 'and' in the same place if the use is already in the same block. 1808 Instruction *InsertPt = 1809 User->getParent() == AndI->getParent() ? AndI : User; 1810 Instruction *InsertedAnd = 1811 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1812 AndI->getOperand(1), "", InsertPt); 1813 // Propagate the debug info. 1814 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1815 1816 // Replace a use of the 'and' with a use of the new 'and'. 1817 TheUse = InsertedAnd; 1818 ++NumAndUses; 1819 LLVM_DEBUG(User->getParent()->dump()); 1820 } 1821 1822 // We removed all uses, nuke the and. 1823 AndI->eraseFromParent(); 1824 return true; 1825 } 1826 1827 /// Check if the candidates could be combined with a shift instruction, which 1828 /// includes: 1829 /// 1. Truncate instruction 1830 /// 2. And instruction and the imm is a mask of the low bits: 1831 /// imm & (imm+1) == 0 1832 static bool isExtractBitsCandidateUse(Instruction *User) { 1833 if (!isa<TruncInst>(User)) { 1834 if (User->getOpcode() != Instruction::And || 1835 !isa<ConstantInt>(User->getOperand(1))) 1836 return false; 1837 1838 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1839 1840 if ((Cimm & (Cimm + 1)).getBoolValue()) 1841 return false; 1842 } 1843 return true; 1844 } 1845 1846 /// Sink both shift and truncate instruction to the use of truncate's BB. 1847 static bool 1848 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1849 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1850 const TargetLowering &TLI, const DataLayout &DL) { 1851 BasicBlock *UserBB = User->getParent(); 1852 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1853 auto *TruncI = cast<TruncInst>(User); 1854 bool MadeChange = false; 1855 1856 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1857 TruncE = TruncI->user_end(); 1858 TruncUI != TruncE;) { 1859 1860 Use &TruncTheUse = TruncUI.getUse(); 1861 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1862 // Preincrement use iterator so we don't invalidate it. 1863 1864 ++TruncUI; 1865 1866 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1867 if (!ISDOpcode) 1868 continue; 1869 1870 // If the use is actually a legal node, there will not be an 1871 // implicit truncate. 1872 // FIXME: always querying the result type is just an 1873 // approximation; some nodes' legality is determined by the 1874 // operand or other means. There's no good way to find out though. 1875 if (TLI.isOperationLegalOrCustom( 1876 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1877 continue; 1878 1879 // Don't bother for PHI nodes. 1880 if (isa<PHINode>(TruncUser)) 1881 continue; 1882 1883 BasicBlock *TruncUserBB = TruncUser->getParent(); 1884 1885 if (UserBB == TruncUserBB) 1886 continue; 1887 1888 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1889 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1890 1891 if (!InsertedShift && !InsertedTrunc) { 1892 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1893 assert(InsertPt != TruncUserBB->end()); 1894 // Sink the shift 1895 if (ShiftI->getOpcode() == Instruction::AShr) 1896 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1897 "", &*InsertPt); 1898 else 1899 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1900 "", &*InsertPt); 1901 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1902 1903 // Sink the trunc 1904 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1905 TruncInsertPt++; 1906 assert(TruncInsertPt != TruncUserBB->end()); 1907 1908 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1909 TruncI->getType(), "", &*TruncInsertPt); 1910 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1911 1912 MadeChange = true; 1913 1914 TruncTheUse = InsertedTrunc; 1915 } 1916 } 1917 return MadeChange; 1918 } 1919 1920 /// Sink the shift *right* instruction into user blocks if the uses could 1921 /// potentially be combined with this shift instruction and generate BitExtract 1922 /// instruction. It will only be applied if the architecture supports BitExtract 1923 /// instruction. Here is an example: 1924 /// BB1: 1925 /// %x.extract.shift = lshr i64 %arg1, 32 1926 /// BB2: 1927 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1928 /// ==> 1929 /// 1930 /// BB2: 1931 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1932 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1933 /// 1934 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1935 /// instruction. 1936 /// Return true if any changes are made. 1937 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1938 const TargetLowering &TLI, 1939 const DataLayout &DL) { 1940 BasicBlock *DefBB = ShiftI->getParent(); 1941 1942 /// Only insert instructions in each block once. 1943 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1944 1945 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1946 1947 bool MadeChange = false; 1948 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1949 UI != E;) { 1950 Use &TheUse = UI.getUse(); 1951 Instruction *User = cast<Instruction>(*UI); 1952 // Preincrement use iterator so we don't invalidate it. 1953 ++UI; 1954 1955 // Don't bother for PHI nodes. 1956 if (isa<PHINode>(User)) 1957 continue; 1958 1959 if (!isExtractBitsCandidateUse(User)) 1960 continue; 1961 1962 BasicBlock *UserBB = User->getParent(); 1963 1964 if (UserBB == DefBB) { 1965 // If the shift and truncate instruction are in the same BB. The use of 1966 // the truncate(TruncUse) may still introduce another truncate if not 1967 // legal. In this case, we would like to sink both shift and truncate 1968 // instruction to the BB of TruncUse. 1969 // for example: 1970 // BB1: 1971 // i64 shift.result = lshr i64 opnd, imm 1972 // trunc.result = trunc shift.result to i16 1973 // 1974 // BB2: 1975 // ----> We will have an implicit truncate here if the architecture does 1976 // not have i16 compare. 1977 // cmp i16 trunc.result, opnd2 1978 // 1979 if (isa<TruncInst>(User) && shiftIsLegal 1980 // If the type of the truncate is legal, no truncate will be 1981 // introduced in other basic blocks. 1982 && 1983 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1984 MadeChange = 1985 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1986 1987 continue; 1988 } 1989 // If we have already inserted a shift into this block, use it. 1990 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1991 1992 if (!InsertedShift) { 1993 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1994 assert(InsertPt != UserBB->end()); 1995 1996 if (ShiftI->getOpcode() == Instruction::AShr) 1997 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1998 "", &*InsertPt); 1999 else 2000 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 2001 "", &*InsertPt); 2002 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2003 2004 MadeChange = true; 2005 } 2006 2007 // Replace a use of the shift with a use of the new shift. 2008 TheUse = InsertedShift; 2009 } 2010 2011 // If we removed all uses, or there are none, nuke the shift. 2012 if (ShiftI->use_empty()) { 2013 salvageDebugInfo(*ShiftI); 2014 ShiftI->eraseFromParent(); 2015 MadeChange = true; 2016 } 2017 2018 return MadeChange; 2019 } 2020 2021 /// If counting leading or trailing zeros is an expensive operation and a zero 2022 /// input is defined, add a check for zero to avoid calling the intrinsic. 2023 /// 2024 /// We want to transform: 2025 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2026 /// 2027 /// into: 2028 /// entry: 2029 /// %cmpz = icmp eq i64 %A, 0 2030 /// br i1 %cmpz, label %cond.end, label %cond.false 2031 /// cond.false: 2032 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2033 /// br label %cond.end 2034 /// cond.end: 2035 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2036 /// 2037 /// If the transform is performed, return true and set ModifiedDT to true. 2038 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2039 const TargetLowering *TLI, 2040 const DataLayout *DL, 2041 bool &ModifiedDT) { 2042 // If a zero input is undefined, it doesn't make sense to despeculate that. 2043 if (match(CountZeros->getOperand(1), m_One())) 2044 return false; 2045 2046 // If it's cheap to speculate, there's nothing to do. 2047 auto IntrinsicID = CountZeros->getIntrinsicID(); 2048 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2049 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2050 return false; 2051 2052 // Only handle legal scalar cases. Anything else requires too much work. 2053 Type *Ty = CountZeros->getType(); 2054 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2055 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2056 return false; 2057 2058 // Bail if the value is never zero. 2059 Use &Op = CountZeros->getOperandUse(0); 2060 if (isKnownNonZero(Op, *DL)) 2061 return false; 2062 2063 // The intrinsic will be sunk behind a compare against zero and branch. 2064 BasicBlock *StartBlock = CountZeros->getParent(); 2065 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2066 2067 // Create another block after the count zero intrinsic. A PHI will be added 2068 // in this block to select the result of the intrinsic or the bit-width 2069 // constant if the input to the intrinsic is zero. 2070 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2071 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2072 2073 // Set up a builder to create a compare, conditional branch, and PHI. 2074 IRBuilder<> Builder(CountZeros->getContext()); 2075 Builder.SetInsertPoint(StartBlock->getTerminator()); 2076 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2077 2078 // Replace the unconditional branch that was created by the first split with 2079 // a compare against zero and a conditional branch. 2080 Value *Zero = Constant::getNullValue(Ty); 2081 // Avoid introducing branch on poison. This also replaces the ctz operand. 2082 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2083 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2084 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2085 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2086 StartBlock->getTerminator()->eraseFromParent(); 2087 2088 // Create a PHI in the end block to select either the output of the intrinsic 2089 // or the bit width of the operand. 2090 Builder.SetInsertPoint(&EndBlock->front()); 2091 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2092 CountZeros->replaceAllUsesWith(PN); 2093 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2094 PN->addIncoming(BitWidth, StartBlock); 2095 PN->addIncoming(CountZeros, CallBlock); 2096 2097 // We are explicitly handling the zero case, so we can set the intrinsic's 2098 // undefined zero argument to 'true'. This will also prevent reprocessing the 2099 // intrinsic; we only despeculate when a zero input is defined. 2100 CountZeros->setArgOperand(1, Builder.getTrue()); 2101 ModifiedDT = true; 2102 return true; 2103 } 2104 2105 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2106 BasicBlock *BB = CI->getParent(); 2107 2108 // Lower inline assembly if we can. 2109 // If we found an inline asm expession, and if the target knows how to 2110 // lower it to normal LLVM code, do so now. 2111 if (CI->isInlineAsm()) { 2112 if (TLI->ExpandInlineAsm(CI)) { 2113 // Avoid invalidating the iterator. 2114 CurInstIterator = BB->begin(); 2115 // Avoid processing instructions out of order, which could cause 2116 // reuse before a value is defined. 2117 SunkAddrs.clear(); 2118 return true; 2119 } 2120 // Sink address computing for memory operands into the block. 2121 if (optimizeInlineAsmInst(CI)) 2122 return true; 2123 } 2124 2125 // Align the pointer arguments to this call if the target thinks it's a good 2126 // idea 2127 unsigned MinSize; 2128 Align PrefAlign; 2129 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2130 for (auto &Arg : CI->args()) { 2131 // We want to align both objects whose address is used directly and 2132 // objects whose address is used in casts and GEPs, though it only makes 2133 // sense for GEPs if the offset is a multiple of the desired alignment and 2134 // if size - offset meets the size threshold. 2135 if (!Arg->getType()->isPointerTy()) 2136 continue; 2137 APInt Offset(DL->getIndexSizeInBits( 2138 cast<PointerType>(Arg->getType())->getAddressSpace()), 2139 0); 2140 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2141 uint64_t Offset2 = Offset.getLimitedValue(); 2142 if (!isAligned(PrefAlign, Offset2)) 2143 continue; 2144 AllocaInst *AI; 2145 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2146 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2147 AI->setAlignment(PrefAlign); 2148 // Global variables can only be aligned if they are defined in this 2149 // object (i.e. they are uniquely initialized in this object), and 2150 // over-aligning global variables that have an explicit section is 2151 // forbidden. 2152 GlobalVariable *GV; 2153 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2154 GV->getPointerAlignment(*DL) < PrefAlign && 2155 DL->getTypeAllocSize(GV->getValueType()) >= 2156 MinSize + Offset2) 2157 GV->setAlignment(PrefAlign); 2158 } 2159 // If this is a memcpy (or similar) then we may be able to improve the 2160 // alignment 2161 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2162 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2163 MaybeAlign MIDestAlign = MI->getDestAlign(); 2164 if (!MIDestAlign || DestAlign > *MIDestAlign) 2165 MI->setDestAlignment(DestAlign); 2166 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2167 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2168 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2169 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2170 MTI->setSourceAlignment(SrcAlign); 2171 } 2172 } 2173 } 2174 2175 // If we have a cold call site, try to sink addressing computation into the 2176 // cold block. This interacts with our handling for loads and stores to 2177 // ensure that we can fold all uses of a potential addressing computation 2178 // into their uses. TODO: generalize this to work over profiling data 2179 if (CI->hasFnAttr(Attribute::Cold) && 2180 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2181 for (auto &Arg : CI->args()) { 2182 if (!Arg->getType()->isPointerTy()) 2183 continue; 2184 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2185 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2186 } 2187 2188 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2189 if (II) { 2190 switch (II->getIntrinsicID()) { 2191 default: break; 2192 case Intrinsic::assume: 2193 llvm_unreachable("llvm.assume should have been removed already"); 2194 case Intrinsic::experimental_widenable_condition: { 2195 // Give up on future widening oppurtunties so that we can fold away dead 2196 // paths and merge blocks before going into block-local instruction 2197 // selection. 2198 if (II->use_empty()) { 2199 II->eraseFromParent(); 2200 return true; 2201 } 2202 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2203 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2204 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2205 }); 2206 return true; 2207 } 2208 case Intrinsic::objectsize: 2209 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2210 case Intrinsic::is_constant: 2211 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2212 case Intrinsic::aarch64_stlxr: 2213 case Intrinsic::aarch64_stxr: { 2214 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2215 if (!ExtVal || !ExtVal->hasOneUse() || 2216 ExtVal->getParent() == CI->getParent()) 2217 return false; 2218 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2219 ExtVal->moveBefore(CI); 2220 // Mark this instruction as "inserted by CGP", so that other 2221 // optimizations don't touch it. 2222 InsertedInsts.insert(ExtVal); 2223 return true; 2224 } 2225 2226 case Intrinsic::launder_invariant_group: 2227 case Intrinsic::strip_invariant_group: { 2228 Value *ArgVal = II->getArgOperand(0); 2229 auto it = LargeOffsetGEPMap.find(II); 2230 if (it != LargeOffsetGEPMap.end()) { 2231 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2232 // Make sure not to have to deal with iterator invalidation 2233 // after possibly adding ArgVal to LargeOffsetGEPMap. 2234 auto GEPs = std::move(it->second); 2235 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2236 LargeOffsetGEPMap.erase(II); 2237 } 2238 2239 II->replaceAllUsesWith(ArgVal); 2240 II->eraseFromParent(); 2241 return true; 2242 } 2243 case Intrinsic::cttz: 2244 case Intrinsic::ctlz: 2245 // If counting zeros is expensive, try to avoid it. 2246 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2247 case Intrinsic::fshl: 2248 case Intrinsic::fshr: 2249 return optimizeFunnelShift(II); 2250 case Intrinsic::dbg_value: 2251 return fixupDbgValue(II); 2252 case Intrinsic::vscale: { 2253 // If datalayout has no special restrictions on vector data layout, 2254 // replace `llvm.vscale` by an equivalent constant expression 2255 // to benefit from cheap constant propagation. 2256 Type *ScalableVectorTy = 2257 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2258 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2259 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2260 auto *One = ConstantInt::getSigned(II->getType(), 1); 2261 auto *CGep = 2262 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2263 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2264 II->eraseFromParent(); 2265 return true; 2266 } 2267 break; 2268 } 2269 case Intrinsic::masked_gather: 2270 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2271 case Intrinsic::masked_scatter: 2272 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2273 } 2274 2275 SmallVector<Value *, 2> PtrOps; 2276 Type *AccessTy; 2277 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2278 while (!PtrOps.empty()) { 2279 Value *PtrVal = PtrOps.pop_back_val(); 2280 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2281 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2282 return true; 2283 } 2284 } 2285 2286 // From here on out we're working with named functions. 2287 if (!CI->getCalledFunction()) return false; 2288 2289 // Lower all default uses of _chk calls. This is very similar 2290 // to what InstCombineCalls does, but here we are only lowering calls 2291 // to fortified library functions (e.g. __memcpy_chk) that have the default 2292 // "don't know" as the objectsize. Anything else should be left alone. 2293 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2294 IRBuilder<> Builder(CI); 2295 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2296 CI->replaceAllUsesWith(V); 2297 CI->eraseFromParent(); 2298 return true; 2299 } 2300 2301 return false; 2302 } 2303 2304 /// Look for opportunities to duplicate return instructions to the predecessor 2305 /// to enable tail call optimizations. The case it is currently looking for is: 2306 /// @code 2307 /// bb0: 2308 /// %tmp0 = tail call i32 @f0() 2309 /// br label %return 2310 /// bb1: 2311 /// %tmp1 = tail call i32 @f1() 2312 /// br label %return 2313 /// bb2: 2314 /// %tmp2 = tail call i32 @f2() 2315 /// br label %return 2316 /// return: 2317 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2318 /// ret i32 %retval 2319 /// @endcode 2320 /// 2321 /// => 2322 /// 2323 /// @code 2324 /// bb0: 2325 /// %tmp0 = tail call i32 @f0() 2326 /// ret i32 %tmp0 2327 /// bb1: 2328 /// %tmp1 = tail call i32 @f1() 2329 /// ret i32 %tmp1 2330 /// bb2: 2331 /// %tmp2 = tail call i32 @f2() 2332 /// ret i32 %tmp2 2333 /// @endcode 2334 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2335 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2336 if (!RetI) 2337 return false; 2338 2339 PHINode *PN = nullptr; 2340 ExtractValueInst *EVI = nullptr; 2341 BitCastInst *BCI = nullptr; 2342 Value *V = RetI->getReturnValue(); 2343 if (V) { 2344 BCI = dyn_cast<BitCastInst>(V); 2345 if (BCI) 2346 V = BCI->getOperand(0); 2347 2348 EVI = dyn_cast<ExtractValueInst>(V); 2349 if (EVI) { 2350 V = EVI->getOperand(0); 2351 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2352 return false; 2353 } 2354 2355 PN = dyn_cast<PHINode>(V); 2356 if (!PN) 2357 return false; 2358 } 2359 2360 if (PN && PN->getParent() != BB) 2361 return false; 2362 2363 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2364 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2365 if (BC && BC->hasOneUse()) 2366 Inst = BC->user_back(); 2367 2368 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2369 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2370 return false; 2371 }; 2372 2373 // Make sure there are no instructions between the first instruction 2374 // and return. 2375 const Instruction *BI = BB->getFirstNonPHI(); 2376 // Skip over debug and the bitcast. 2377 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2378 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2379 BI = BI->getNextNode(); 2380 if (BI != RetI) 2381 return false; 2382 2383 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2384 /// call. 2385 const Function *F = BB->getParent(); 2386 SmallVector<BasicBlock*, 4> TailCallBBs; 2387 if (PN) { 2388 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2389 // Look through bitcasts. 2390 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2391 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2392 BasicBlock *PredBB = PN->getIncomingBlock(I); 2393 // Make sure the phi value is indeed produced by the tail call. 2394 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2395 TLI->mayBeEmittedAsTailCall(CI) && 2396 attributesPermitTailCall(F, CI, RetI, *TLI)) 2397 TailCallBBs.push_back(PredBB); 2398 } 2399 } else { 2400 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2401 for (BasicBlock *Pred : predecessors(BB)) { 2402 if (!VisitedBBs.insert(Pred).second) 2403 continue; 2404 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2405 CallInst *CI = dyn_cast<CallInst>(I); 2406 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2407 attributesPermitTailCall(F, CI, RetI, *TLI)) 2408 TailCallBBs.push_back(Pred); 2409 } 2410 } 2411 } 2412 2413 bool Changed = false; 2414 for (auto const &TailCallBB : TailCallBBs) { 2415 // Make sure the call instruction is followed by an unconditional branch to 2416 // the return block. 2417 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2418 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2419 continue; 2420 2421 // Duplicate the return into TailCallBB. 2422 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2423 assert(!VerifyBFIUpdates || 2424 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2425 BFI->setBlockFreq( 2426 BB, 2427 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2428 ModifiedDT = Changed = true; 2429 ++NumRetsDup; 2430 } 2431 2432 // If we eliminated all predecessors of the block, delete the block now. 2433 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2434 BB->eraseFromParent(); 2435 2436 return Changed; 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // Memory Optimization 2441 //===----------------------------------------------------------------------===// 2442 2443 namespace { 2444 2445 /// This is an extended version of TargetLowering::AddrMode 2446 /// which holds actual Value*'s for register values. 2447 struct ExtAddrMode : public TargetLowering::AddrMode { 2448 Value *BaseReg = nullptr; 2449 Value *ScaledReg = nullptr; 2450 Value *OriginalValue = nullptr; 2451 bool InBounds = true; 2452 2453 enum FieldName { 2454 NoField = 0x00, 2455 BaseRegField = 0x01, 2456 BaseGVField = 0x02, 2457 BaseOffsField = 0x04, 2458 ScaledRegField = 0x08, 2459 ScaleField = 0x10, 2460 MultipleFields = 0xff 2461 }; 2462 2463 2464 ExtAddrMode() = default; 2465 2466 void print(raw_ostream &OS) const; 2467 void dump() const; 2468 2469 FieldName compare(const ExtAddrMode &other) { 2470 // First check that the types are the same on each field, as differing types 2471 // is something we can't cope with later on. 2472 if (BaseReg && other.BaseReg && 2473 BaseReg->getType() != other.BaseReg->getType()) 2474 return MultipleFields; 2475 if (BaseGV && other.BaseGV && 2476 BaseGV->getType() != other.BaseGV->getType()) 2477 return MultipleFields; 2478 if (ScaledReg && other.ScaledReg && 2479 ScaledReg->getType() != other.ScaledReg->getType()) 2480 return MultipleFields; 2481 2482 // Conservatively reject 'inbounds' mismatches. 2483 if (InBounds != other.InBounds) 2484 return MultipleFields; 2485 2486 // Check each field to see if it differs. 2487 unsigned Result = NoField; 2488 if (BaseReg != other.BaseReg) 2489 Result |= BaseRegField; 2490 if (BaseGV != other.BaseGV) 2491 Result |= BaseGVField; 2492 if (BaseOffs != other.BaseOffs) 2493 Result |= BaseOffsField; 2494 if (ScaledReg != other.ScaledReg) 2495 Result |= ScaledRegField; 2496 // Don't count 0 as being a different scale, because that actually means 2497 // unscaled (which will already be counted by having no ScaledReg). 2498 if (Scale && other.Scale && Scale != other.Scale) 2499 Result |= ScaleField; 2500 2501 if (countPopulation(Result) > 1) 2502 return MultipleFields; 2503 else 2504 return static_cast<FieldName>(Result); 2505 } 2506 2507 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2508 // with no offset. 2509 bool isTrivial() { 2510 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2511 // trivial if at most one of these terms is nonzero, except that BaseGV and 2512 // BaseReg both being zero actually means a null pointer value, which we 2513 // consider to be 'non-zero' here. 2514 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2515 } 2516 2517 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2518 switch (Field) { 2519 default: 2520 return nullptr; 2521 case BaseRegField: 2522 return BaseReg; 2523 case BaseGVField: 2524 return BaseGV; 2525 case ScaledRegField: 2526 return ScaledReg; 2527 case BaseOffsField: 2528 return ConstantInt::get(IntPtrTy, BaseOffs); 2529 } 2530 } 2531 2532 void SetCombinedField(FieldName Field, Value *V, 2533 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2534 switch (Field) { 2535 default: 2536 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2537 break; 2538 case ExtAddrMode::BaseRegField: 2539 BaseReg = V; 2540 break; 2541 case ExtAddrMode::BaseGVField: 2542 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2543 // in the BaseReg field. 2544 assert(BaseReg == nullptr); 2545 BaseReg = V; 2546 BaseGV = nullptr; 2547 break; 2548 case ExtAddrMode::ScaledRegField: 2549 ScaledReg = V; 2550 // If we have a mix of scaled and unscaled addrmodes then we want scale 2551 // to be the scale and not zero. 2552 if (!Scale) 2553 for (const ExtAddrMode &AM : AddrModes) 2554 if (AM.Scale) { 2555 Scale = AM.Scale; 2556 break; 2557 } 2558 break; 2559 case ExtAddrMode::BaseOffsField: 2560 // The offset is no longer a constant, so it goes in ScaledReg with a 2561 // scale of 1. 2562 assert(ScaledReg == nullptr); 2563 ScaledReg = V; 2564 Scale = 1; 2565 BaseOffs = 0; 2566 break; 2567 } 2568 } 2569 }; 2570 2571 #ifndef NDEBUG 2572 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2573 AM.print(OS); 2574 return OS; 2575 } 2576 #endif 2577 2578 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2579 void ExtAddrMode::print(raw_ostream &OS) const { 2580 bool NeedPlus = false; 2581 OS << "["; 2582 if (InBounds) 2583 OS << "inbounds "; 2584 if (BaseGV) { 2585 OS << (NeedPlus ? " + " : "") 2586 << "GV:"; 2587 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2588 NeedPlus = true; 2589 } 2590 2591 if (BaseOffs) { 2592 OS << (NeedPlus ? " + " : "") 2593 << BaseOffs; 2594 NeedPlus = true; 2595 } 2596 2597 if (BaseReg) { 2598 OS << (NeedPlus ? " + " : "") 2599 << "Base:"; 2600 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2601 NeedPlus = true; 2602 } 2603 if (Scale) { 2604 OS << (NeedPlus ? " + " : "") 2605 << Scale << "*"; 2606 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2607 } 2608 2609 OS << ']'; 2610 } 2611 2612 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2613 print(dbgs()); 2614 dbgs() << '\n'; 2615 } 2616 #endif 2617 2618 } // end anonymous namespace 2619 2620 namespace { 2621 2622 /// This class provides transaction based operation on the IR. 2623 /// Every change made through this class is recorded in the internal state and 2624 /// can be undone (rollback) until commit is called. 2625 /// CGP does not check if instructions could be speculatively executed when 2626 /// moved. Preserving the original location would pessimize the debugging 2627 /// experience, as well as negatively impact the quality of sample PGO. 2628 class TypePromotionTransaction { 2629 /// This represents the common interface of the individual transaction. 2630 /// Each class implements the logic for doing one specific modification on 2631 /// the IR via the TypePromotionTransaction. 2632 class TypePromotionAction { 2633 protected: 2634 /// The Instruction modified. 2635 Instruction *Inst; 2636 2637 public: 2638 /// Constructor of the action. 2639 /// The constructor performs the related action on the IR. 2640 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2641 2642 virtual ~TypePromotionAction() = default; 2643 2644 /// Undo the modification done by this action. 2645 /// When this method is called, the IR must be in the same state as it was 2646 /// before this action was applied. 2647 /// \pre Undoing the action works if and only if the IR is in the exact same 2648 /// state as it was directly after this action was applied. 2649 virtual void undo() = 0; 2650 2651 /// Advocate every change made by this action. 2652 /// When the results on the IR of the action are to be kept, it is important 2653 /// to call this function, otherwise hidden information may be kept forever. 2654 virtual void commit() { 2655 // Nothing to be done, this action is not doing anything. 2656 } 2657 }; 2658 2659 /// Utility to remember the position of an instruction. 2660 class InsertionHandler { 2661 /// Position of an instruction. 2662 /// Either an instruction: 2663 /// - Is the first in a basic block: BB is used. 2664 /// - Has a previous instruction: PrevInst is used. 2665 union { 2666 Instruction *PrevInst; 2667 BasicBlock *BB; 2668 } Point; 2669 2670 /// Remember whether or not the instruction had a previous instruction. 2671 bool HasPrevInstruction; 2672 2673 public: 2674 /// Record the position of \p Inst. 2675 InsertionHandler(Instruction *Inst) { 2676 BasicBlock::iterator It = Inst->getIterator(); 2677 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2678 if (HasPrevInstruction) 2679 Point.PrevInst = &*--It; 2680 else 2681 Point.BB = Inst->getParent(); 2682 } 2683 2684 /// Insert \p Inst at the recorded position. 2685 void insert(Instruction *Inst) { 2686 if (HasPrevInstruction) { 2687 if (Inst->getParent()) 2688 Inst->removeFromParent(); 2689 Inst->insertAfter(Point.PrevInst); 2690 } else { 2691 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2692 if (Inst->getParent()) 2693 Inst->moveBefore(Position); 2694 else 2695 Inst->insertBefore(Position); 2696 } 2697 } 2698 }; 2699 2700 /// Move an instruction before another. 2701 class InstructionMoveBefore : public TypePromotionAction { 2702 /// Original position of the instruction. 2703 InsertionHandler Position; 2704 2705 public: 2706 /// Move \p Inst before \p Before. 2707 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2708 : TypePromotionAction(Inst), Position(Inst) { 2709 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2710 << "\n"); 2711 Inst->moveBefore(Before); 2712 } 2713 2714 /// Move the instruction back to its original position. 2715 void undo() override { 2716 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2717 Position.insert(Inst); 2718 } 2719 }; 2720 2721 /// Set the operand of an instruction with a new value. 2722 class OperandSetter : public TypePromotionAction { 2723 /// Original operand of the instruction. 2724 Value *Origin; 2725 2726 /// Index of the modified instruction. 2727 unsigned Idx; 2728 2729 public: 2730 /// Set \p Idx operand of \p Inst with \p NewVal. 2731 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2732 : TypePromotionAction(Inst), Idx(Idx) { 2733 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2734 << "for:" << *Inst << "\n" 2735 << "with:" << *NewVal << "\n"); 2736 Origin = Inst->getOperand(Idx); 2737 Inst->setOperand(Idx, NewVal); 2738 } 2739 2740 /// Restore the original value of the instruction. 2741 void undo() override { 2742 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2743 << "for: " << *Inst << "\n" 2744 << "with: " << *Origin << "\n"); 2745 Inst->setOperand(Idx, Origin); 2746 } 2747 }; 2748 2749 /// Hide the operands of an instruction. 2750 /// Do as if this instruction was not using any of its operands. 2751 class OperandsHider : public TypePromotionAction { 2752 /// The list of original operands. 2753 SmallVector<Value *, 4> OriginalValues; 2754 2755 public: 2756 /// Remove \p Inst from the uses of the operands of \p Inst. 2757 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2758 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2759 unsigned NumOpnds = Inst->getNumOperands(); 2760 OriginalValues.reserve(NumOpnds); 2761 for (unsigned It = 0; It < NumOpnds; ++It) { 2762 // Save the current operand. 2763 Value *Val = Inst->getOperand(It); 2764 OriginalValues.push_back(Val); 2765 // Set a dummy one. 2766 // We could use OperandSetter here, but that would imply an overhead 2767 // that we are not willing to pay. 2768 Inst->setOperand(It, UndefValue::get(Val->getType())); 2769 } 2770 } 2771 2772 /// Restore the original list of uses. 2773 void undo() override { 2774 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2775 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2776 Inst->setOperand(It, OriginalValues[It]); 2777 } 2778 }; 2779 2780 /// Build a truncate instruction. 2781 class TruncBuilder : public TypePromotionAction { 2782 Value *Val; 2783 2784 public: 2785 /// Build a truncate instruction of \p Opnd producing a \p Ty 2786 /// result. 2787 /// trunc Opnd to Ty. 2788 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2789 IRBuilder<> Builder(Opnd); 2790 Builder.SetCurrentDebugLocation(DebugLoc()); 2791 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2792 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2793 } 2794 2795 /// Get the built value. 2796 Value *getBuiltValue() { return Val; } 2797 2798 /// Remove the built instruction. 2799 void undo() override { 2800 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2801 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2802 IVal->eraseFromParent(); 2803 } 2804 }; 2805 2806 /// Build a sign extension instruction. 2807 class SExtBuilder : public TypePromotionAction { 2808 Value *Val; 2809 2810 public: 2811 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2812 /// result. 2813 /// sext Opnd to Ty. 2814 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2815 : TypePromotionAction(InsertPt) { 2816 IRBuilder<> Builder(InsertPt); 2817 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2818 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2819 } 2820 2821 /// Get the built value. 2822 Value *getBuiltValue() { return Val; } 2823 2824 /// Remove the built instruction. 2825 void undo() override { 2826 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2827 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2828 IVal->eraseFromParent(); 2829 } 2830 }; 2831 2832 /// Build a zero extension instruction. 2833 class ZExtBuilder : public TypePromotionAction { 2834 Value *Val; 2835 2836 public: 2837 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2838 /// result. 2839 /// zext Opnd to Ty. 2840 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2841 : TypePromotionAction(InsertPt) { 2842 IRBuilder<> Builder(InsertPt); 2843 Builder.SetCurrentDebugLocation(DebugLoc()); 2844 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2845 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2846 } 2847 2848 /// Get the built value. 2849 Value *getBuiltValue() { return Val; } 2850 2851 /// Remove the built instruction. 2852 void undo() override { 2853 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2854 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2855 IVal->eraseFromParent(); 2856 } 2857 }; 2858 2859 /// Mutate an instruction to another type. 2860 class TypeMutator : public TypePromotionAction { 2861 /// Record the original type. 2862 Type *OrigTy; 2863 2864 public: 2865 /// Mutate the type of \p Inst into \p NewTy. 2866 TypeMutator(Instruction *Inst, Type *NewTy) 2867 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2868 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2869 << "\n"); 2870 Inst->mutateType(NewTy); 2871 } 2872 2873 /// Mutate the instruction back to its original type. 2874 void undo() override { 2875 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2876 << "\n"); 2877 Inst->mutateType(OrigTy); 2878 } 2879 }; 2880 2881 /// Replace the uses of an instruction by another instruction. 2882 class UsesReplacer : public TypePromotionAction { 2883 /// Helper structure to keep track of the replaced uses. 2884 struct InstructionAndIdx { 2885 /// The instruction using the instruction. 2886 Instruction *Inst; 2887 2888 /// The index where this instruction is used for Inst. 2889 unsigned Idx; 2890 2891 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2892 : Inst(Inst), Idx(Idx) {} 2893 }; 2894 2895 /// Keep track of the original uses (pair Instruction, Index). 2896 SmallVector<InstructionAndIdx, 4> OriginalUses; 2897 /// Keep track of the debug users. 2898 SmallVector<DbgValueInst *, 1> DbgValues; 2899 2900 /// Keep track of the new value so that we can undo it by replacing 2901 /// instances of the new value with the original value. 2902 Value *New; 2903 2904 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2905 2906 public: 2907 /// Replace all the use of \p Inst by \p New. 2908 UsesReplacer(Instruction *Inst, Value *New) 2909 : TypePromotionAction(Inst), New(New) { 2910 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2911 << "\n"); 2912 // Record the original uses. 2913 for (Use &U : Inst->uses()) { 2914 Instruction *UserI = cast<Instruction>(U.getUser()); 2915 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2916 } 2917 // Record the debug uses separately. They are not in the instruction's 2918 // use list, but they are replaced by RAUW. 2919 findDbgValues(DbgValues, Inst); 2920 2921 // Now, we can replace the uses. 2922 Inst->replaceAllUsesWith(New); 2923 } 2924 2925 /// Reassign the original uses of Inst to Inst. 2926 void undo() override { 2927 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2928 for (InstructionAndIdx &Use : OriginalUses) 2929 Use.Inst->setOperand(Use.Idx, Inst); 2930 // RAUW has replaced all original uses with references to the new value, 2931 // including the debug uses. Since we are undoing the replacements, 2932 // the original debug uses must also be reinstated to maintain the 2933 // correctness and utility of debug value instructions. 2934 for (auto *DVI : DbgValues) 2935 DVI->replaceVariableLocationOp(New, Inst); 2936 } 2937 }; 2938 2939 /// Remove an instruction from the IR. 2940 class InstructionRemover : public TypePromotionAction { 2941 /// Original position of the instruction. 2942 InsertionHandler Inserter; 2943 2944 /// Helper structure to hide all the link to the instruction. In other 2945 /// words, this helps to do as if the instruction was removed. 2946 OperandsHider Hider; 2947 2948 /// Keep track of the uses replaced, if any. 2949 UsesReplacer *Replacer = nullptr; 2950 2951 /// Keep track of instructions removed. 2952 SetOfInstrs &RemovedInsts; 2953 2954 public: 2955 /// Remove all reference of \p Inst and optionally replace all its 2956 /// uses with New. 2957 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2958 /// \pre If !Inst->use_empty(), then New != nullptr 2959 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2960 Value *New = nullptr) 2961 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2962 RemovedInsts(RemovedInsts) { 2963 if (New) 2964 Replacer = new UsesReplacer(Inst, New); 2965 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2966 RemovedInsts.insert(Inst); 2967 /// The instructions removed here will be freed after completing 2968 /// optimizeBlock() for all blocks as we need to keep track of the 2969 /// removed instructions during promotion. 2970 Inst->removeFromParent(); 2971 } 2972 2973 ~InstructionRemover() override { delete Replacer; } 2974 2975 /// Resurrect the instruction and reassign it to the proper uses if 2976 /// new value was provided when build this action. 2977 void undo() override { 2978 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2979 Inserter.insert(Inst); 2980 if (Replacer) 2981 Replacer->undo(); 2982 Hider.undo(); 2983 RemovedInsts.erase(Inst); 2984 } 2985 }; 2986 2987 public: 2988 /// Restoration point. 2989 /// The restoration point is a pointer to an action instead of an iterator 2990 /// because the iterator may be invalidated but not the pointer. 2991 using ConstRestorationPt = const TypePromotionAction *; 2992 2993 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2994 : RemovedInsts(RemovedInsts) {} 2995 2996 /// Advocate every changes made in that transaction. Return true if any change 2997 /// happen. 2998 bool commit(); 2999 3000 /// Undo all the changes made after the given point. 3001 void rollback(ConstRestorationPt Point); 3002 3003 /// Get the current restoration point. 3004 ConstRestorationPt getRestorationPoint() const; 3005 3006 /// \name API for IR modification with state keeping to support rollback. 3007 /// @{ 3008 /// Same as Instruction::setOperand. 3009 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3010 3011 /// Same as Instruction::eraseFromParent. 3012 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3013 3014 /// Same as Value::replaceAllUsesWith. 3015 void replaceAllUsesWith(Instruction *Inst, Value *New); 3016 3017 /// Same as Value::mutateType. 3018 void mutateType(Instruction *Inst, Type *NewTy); 3019 3020 /// Same as IRBuilder::createTrunc. 3021 Value *createTrunc(Instruction *Opnd, Type *Ty); 3022 3023 /// Same as IRBuilder::createSExt. 3024 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3025 3026 /// Same as IRBuilder::createZExt. 3027 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3028 3029 /// Same as Instruction::moveBefore. 3030 void moveBefore(Instruction *Inst, Instruction *Before); 3031 /// @} 3032 3033 private: 3034 /// The ordered list of actions made so far. 3035 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3036 3037 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3038 3039 SetOfInstrs &RemovedInsts; 3040 }; 3041 3042 } // end anonymous namespace 3043 3044 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3045 Value *NewVal) { 3046 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3047 Inst, Idx, NewVal)); 3048 } 3049 3050 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3051 Value *NewVal) { 3052 Actions.push_back( 3053 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3054 Inst, RemovedInsts, NewVal)); 3055 } 3056 3057 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3058 Value *New) { 3059 Actions.push_back( 3060 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3061 } 3062 3063 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3064 Actions.push_back( 3065 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3066 } 3067 3068 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3069 Type *Ty) { 3070 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3071 Value *Val = Ptr->getBuiltValue(); 3072 Actions.push_back(std::move(Ptr)); 3073 return Val; 3074 } 3075 3076 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3077 Value *Opnd, Type *Ty) { 3078 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3079 Value *Val = Ptr->getBuiltValue(); 3080 Actions.push_back(std::move(Ptr)); 3081 return Val; 3082 } 3083 3084 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3085 Value *Opnd, Type *Ty) { 3086 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3087 Value *Val = Ptr->getBuiltValue(); 3088 Actions.push_back(std::move(Ptr)); 3089 return Val; 3090 } 3091 3092 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3093 Instruction *Before) { 3094 Actions.push_back( 3095 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3096 Inst, Before)); 3097 } 3098 3099 TypePromotionTransaction::ConstRestorationPt 3100 TypePromotionTransaction::getRestorationPoint() const { 3101 return !Actions.empty() ? Actions.back().get() : nullptr; 3102 } 3103 3104 bool TypePromotionTransaction::commit() { 3105 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3106 Action->commit(); 3107 bool Modified = !Actions.empty(); 3108 Actions.clear(); 3109 return Modified; 3110 } 3111 3112 void TypePromotionTransaction::rollback( 3113 TypePromotionTransaction::ConstRestorationPt Point) { 3114 while (!Actions.empty() && Point != Actions.back().get()) { 3115 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3116 Curr->undo(); 3117 } 3118 } 3119 3120 namespace { 3121 3122 /// A helper class for matching addressing modes. 3123 /// 3124 /// This encapsulates the logic for matching the target-legal addressing modes. 3125 class AddressingModeMatcher { 3126 SmallVectorImpl<Instruction*> &AddrModeInsts; 3127 const TargetLowering &TLI; 3128 const TargetRegisterInfo &TRI; 3129 const DataLayout &DL; 3130 const LoopInfo &LI; 3131 const std::function<const DominatorTree &()> getDTFn; 3132 3133 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3134 /// the memory instruction that we're computing this address for. 3135 Type *AccessTy; 3136 unsigned AddrSpace; 3137 Instruction *MemoryInst; 3138 3139 /// This is the addressing mode that we're building up. This is 3140 /// part of the return value of this addressing mode matching stuff. 3141 ExtAddrMode &AddrMode; 3142 3143 /// The instructions inserted by other CodeGenPrepare optimizations. 3144 const SetOfInstrs &InsertedInsts; 3145 3146 /// A map from the instructions to their type before promotion. 3147 InstrToOrigTy &PromotedInsts; 3148 3149 /// The ongoing transaction where every action should be registered. 3150 TypePromotionTransaction &TPT; 3151 3152 // A GEP which has too large offset to be folded into the addressing mode. 3153 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3154 3155 /// This is set to true when we should not do profitability checks. 3156 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3157 bool IgnoreProfitability; 3158 3159 /// True if we are optimizing for size. 3160 bool OptSize; 3161 3162 ProfileSummaryInfo *PSI; 3163 BlockFrequencyInfo *BFI; 3164 3165 AddressingModeMatcher( 3166 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3167 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3168 const std::function<const DominatorTree &()> getDTFn, 3169 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3170 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3171 TypePromotionTransaction &TPT, 3172 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3173 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3174 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3175 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3176 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3177 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3178 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3179 IgnoreProfitability = false; 3180 } 3181 3182 public: 3183 /// Find the maximal addressing mode that a load/store of V can fold, 3184 /// give an access type of AccessTy. This returns a list of involved 3185 /// instructions in AddrModeInsts. 3186 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3187 /// optimizations. 3188 /// \p PromotedInsts maps the instructions to their type before promotion. 3189 /// \p The ongoing transaction where every action should be registered. 3190 static ExtAddrMode 3191 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3192 SmallVectorImpl<Instruction *> &AddrModeInsts, 3193 const TargetLowering &TLI, const LoopInfo &LI, 3194 const std::function<const DominatorTree &()> getDTFn, 3195 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3196 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3197 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3198 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3199 ExtAddrMode Result; 3200 3201 bool Success = AddressingModeMatcher( 3202 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3203 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3204 BFI).matchAddr(V, 0); 3205 (void)Success; assert(Success && "Couldn't select *anything*?"); 3206 return Result; 3207 } 3208 3209 private: 3210 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3211 bool matchAddr(Value *Addr, unsigned Depth); 3212 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3213 bool *MovedAway = nullptr); 3214 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3215 ExtAddrMode &AMBefore, 3216 ExtAddrMode &AMAfter); 3217 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3218 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3219 Value *PromotedOperand) const; 3220 }; 3221 3222 class PhiNodeSet; 3223 3224 /// An iterator for PhiNodeSet. 3225 class PhiNodeSetIterator { 3226 PhiNodeSet * const Set; 3227 size_t CurrentIndex = 0; 3228 3229 public: 3230 /// The constructor. Start should point to either a valid element, or be equal 3231 /// to the size of the underlying SmallVector of the PhiNodeSet. 3232 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3233 PHINode * operator*() const; 3234 PhiNodeSetIterator& operator++(); 3235 bool operator==(const PhiNodeSetIterator &RHS) const; 3236 bool operator!=(const PhiNodeSetIterator &RHS) const; 3237 }; 3238 3239 /// Keeps a set of PHINodes. 3240 /// 3241 /// This is a minimal set implementation for a specific use case: 3242 /// It is very fast when there are very few elements, but also provides good 3243 /// performance when there are many. It is similar to SmallPtrSet, but also 3244 /// provides iteration by insertion order, which is deterministic and stable 3245 /// across runs. It is also similar to SmallSetVector, but provides removing 3246 /// elements in O(1) time. This is achieved by not actually removing the element 3247 /// from the underlying vector, so comes at the cost of using more memory, but 3248 /// that is fine, since PhiNodeSets are used as short lived objects. 3249 class PhiNodeSet { 3250 friend class PhiNodeSetIterator; 3251 3252 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3253 using iterator = PhiNodeSetIterator; 3254 3255 /// Keeps the elements in the order of their insertion in the underlying 3256 /// vector. To achieve constant time removal, it never deletes any element. 3257 SmallVector<PHINode *, 32> NodeList; 3258 3259 /// Keeps the elements in the underlying set implementation. This (and not the 3260 /// NodeList defined above) is the source of truth on whether an element 3261 /// is actually in the collection. 3262 MapType NodeMap; 3263 3264 /// Points to the first valid (not deleted) element when the set is not empty 3265 /// and the value is not zero. Equals to the size of the underlying vector 3266 /// when the set is empty. When the value is 0, as in the beginning, the 3267 /// first element may or may not be valid. 3268 size_t FirstValidElement = 0; 3269 3270 public: 3271 /// Inserts a new element to the collection. 3272 /// \returns true if the element is actually added, i.e. was not in the 3273 /// collection before the operation. 3274 bool insert(PHINode *Ptr) { 3275 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3276 NodeList.push_back(Ptr); 3277 return true; 3278 } 3279 return false; 3280 } 3281 3282 /// Removes the element from the collection. 3283 /// \returns whether the element is actually removed, i.e. was in the 3284 /// collection before the operation. 3285 bool erase(PHINode *Ptr) { 3286 if (NodeMap.erase(Ptr)) { 3287 SkipRemovedElements(FirstValidElement); 3288 return true; 3289 } 3290 return false; 3291 } 3292 3293 /// Removes all elements and clears the collection. 3294 void clear() { 3295 NodeMap.clear(); 3296 NodeList.clear(); 3297 FirstValidElement = 0; 3298 } 3299 3300 /// \returns an iterator that will iterate the elements in the order of 3301 /// insertion. 3302 iterator begin() { 3303 if (FirstValidElement == 0) 3304 SkipRemovedElements(FirstValidElement); 3305 return PhiNodeSetIterator(this, FirstValidElement); 3306 } 3307 3308 /// \returns an iterator that points to the end of the collection. 3309 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3310 3311 /// Returns the number of elements in the collection. 3312 size_t size() const { 3313 return NodeMap.size(); 3314 } 3315 3316 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3317 size_t count(PHINode *Ptr) const { 3318 return NodeMap.count(Ptr); 3319 } 3320 3321 private: 3322 /// Updates the CurrentIndex so that it will point to a valid element. 3323 /// 3324 /// If the element of NodeList at CurrentIndex is valid, it does not 3325 /// change it. If there are no more valid elements, it updates CurrentIndex 3326 /// to point to the end of the NodeList. 3327 void SkipRemovedElements(size_t &CurrentIndex) { 3328 while (CurrentIndex < NodeList.size()) { 3329 auto it = NodeMap.find(NodeList[CurrentIndex]); 3330 // If the element has been deleted and added again later, NodeMap will 3331 // point to a different index, so CurrentIndex will still be invalid. 3332 if (it != NodeMap.end() && it->second == CurrentIndex) 3333 break; 3334 ++CurrentIndex; 3335 } 3336 } 3337 }; 3338 3339 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3340 : Set(Set), CurrentIndex(Start) {} 3341 3342 PHINode * PhiNodeSetIterator::operator*() const { 3343 assert(CurrentIndex < Set->NodeList.size() && 3344 "PhiNodeSet access out of range"); 3345 return Set->NodeList[CurrentIndex]; 3346 } 3347 3348 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3349 assert(CurrentIndex < Set->NodeList.size() && 3350 "PhiNodeSet access out of range"); 3351 ++CurrentIndex; 3352 Set->SkipRemovedElements(CurrentIndex); 3353 return *this; 3354 } 3355 3356 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3357 return CurrentIndex == RHS.CurrentIndex; 3358 } 3359 3360 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3361 return !((*this) == RHS); 3362 } 3363 3364 /// Keep track of simplification of Phi nodes. 3365 /// Accept the set of all phi nodes and erase phi node from this set 3366 /// if it is simplified. 3367 class SimplificationTracker { 3368 DenseMap<Value *, Value *> Storage; 3369 const SimplifyQuery &SQ; 3370 // Tracks newly created Phi nodes. The elements are iterated by insertion 3371 // order. 3372 PhiNodeSet AllPhiNodes; 3373 // Tracks newly created Select nodes. 3374 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3375 3376 public: 3377 SimplificationTracker(const SimplifyQuery &sq) 3378 : SQ(sq) {} 3379 3380 Value *Get(Value *V) { 3381 do { 3382 auto SV = Storage.find(V); 3383 if (SV == Storage.end()) 3384 return V; 3385 V = SV->second; 3386 } while (true); 3387 } 3388 3389 Value *Simplify(Value *Val) { 3390 SmallVector<Value *, 32> WorkList; 3391 SmallPtrSet<Value *, 32> Visited; 3392 WorkList.push_back(Val); 3393 while (!WorkList.empty()) { 3394 auto *P = WorkList.pop_back_val(); 3395 if (!Visited.insert(P).second) 3396 continue; 3397 if (auto *PI = dyn_cast<Instruction>(P)) 3398 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3399 for (auto *U : PI->users()) 3400 WorkList.push_back(cast<Value>(U)); 3401 Put(PI, V); 3402 PI->replaceAllUsesWith(V); 3403 if (auto *PHI = dyn_cast<PHINode>(PI)) 3404 AllPhiNodes.erase(PHI); 3405 if (auto *Select = dyn_cast<SelectInst>(PI)) 3406 AllSelectNodes.erase(Select); 3407 PI->eraseFromParent(); 3408 } 3409 } 3410 return Get(Val); 3411 } 3412 3413 void Put(Value *From, Value *To) { 3414 Storage.insert({ From, To }); 3415 } 3416 3417 void ReplacePhi(PHINode *From, PHINode *To) { 3418 Value* OldReplacement = Get(From); 3419 while (OldReplacement != From) { 3420 From = To; 3421 To = dyn_cast<PHINode>(OldReplacement); 3422 OldReplacement = Get(From); 3423 } 3424 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3425 Put(From, To); 3426 From->replaceAllUsesWith(To); 3427 AllPhiNodes.erase(From); 3428 From->eraseFromParent(); 3429 } 3430 3431 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3432 3433 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3434 3435 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3436 3437 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3438 3439 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3440 3441 void destroyNewNodes(Type *CommonType) { 3442 // For safe erasing, replace the uses with dummy value first. 3443 auto *Dummy = PoisonValue::get(CommonType); 3444 for (auto *I : AllPhiNodes) { 3445 I->replaceAllUsesWith(Dummy); 3446 I->eraseFromParent(); 3447 } 3448 AllPhiNodes.clear(); 3449 for (auto *I : AllSelectNodes) { 3450 I->replaceAllUsesWith(Dummy); 3451 I->eraseFromParent(); 3452 } 3453 AllSelectNodes.clear(); 3454 } 3455 }; 3456 3457 /// A helper class for combining addressing modes. 3458 class AddressingModeCombiner { 3459 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3460 typedef std::pair<PHINode *, PHINode *> PHIPair; 3461 3462 private: 3463 /// The addressing modes we've collected. 3464 SmallVector<ExtAddrMode, 16> AddrModes; 3465 3466 /// The field in which the AddrModes differ, when we have more than one. 3467 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3468 3469 /// Are the AddrModes that we have all just equal to their original values? 3470 bool AllAddrModesTrivial = true; 3471 3472 /// Common Type for all different fields in addressing modes. 3473 Type *CommonType = nullptr; 3474 3475 /// SimplifyQuery for simplifyInstruction utility. 3476 const SimplifyQuery &SQ; 3477 3478 /// Original Address. 3479 Value *Original; 3480 3481 public: 3482 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3483 : SQ(_SQ), Original(OriginalValue) {} 3484 3485 /// Get the combined AddrMode 3486 const ExtAddrMode &getAddrMode() const { 3487 return AddrModes[0]; 3488 } 3489 3490 /// Add a new AddrMode if it's compatible with the AddrModes we already 3491 /// have. 3492 /// \return True iff we succeeded in doing so. 3493 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3494 // Take note of if we have any non-trivial AddrModes, as we need to detect 3495 // when all AddrModes are trivial as then we would introduce a phi or select 3496 // which just duplicates what's already there. 3497 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3498 3499 // If this is the first addrmode then everything is fine. 3500 if (AddrModes.empty()) { 3501 AddrModes.emplace_back(NewAddrMode); 3502 return true; 3503 } 3504 3505 // Figure out how different this is from the other address modes, which we 3506 // can do just by comparing against the first one given that we only care 3507 // about the cumulative difference. 3508 ExtAddrMode::FieldName ThisDifferentField = 3509 AddrModes[0].compare(NewAddrMode); 3510 if (DifferentField == ExtAddrMode::NoField) 3511 DifferentField = ThisDifferentField; 3512 else if (DifferentField != ThisDifferentField) 3513 DifferentField = ExtAddrMode::MultipleFields; 3514 3515 // If NewAddrMode differs in more than one dimension we cannot handle it. 3516 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3517 3518 // If Scale Field is different then we reject. 3519 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3520 3521 // We also must reject the case when base offset is different and 3522 // scale reg is not null, we cannot handle this case due to merge of 3523 // different offsets will be used as ScaleReg. 3524 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3525 !NewAddrMode.ScaledReg); 3526 3527 // We also must reject the case when GV is different and BaseReg installed 3528 // due to we want to use base reg as a merge of GV values. 3529 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3530 !NewAddrMode.HasBaseReg); 3531 3532 // Even if NewAddMode is the same we still need to collect it due to 3533 // original value is different. And later we will need all original values 3534 // as anchors during finding the common Phi node. 3535 if (CanHandle) 3536 AddrModes.emplace_back(NewAddrMode); 3537 else 3538 AddrModes.clear(); 3539 3540 return CanHandle; 3541 } 3542 3543 /// Combine the addressing modes we've collected into a single 3544 /// addressing mode. 3545 /// \return True iff we successfully combined them or we only had one so 3546 /// didn't need to combine them anyway. 3547 bool combineAddrModes() { 3548 // If we have no AddrModes then they can't be combined. 3549 if (AddrModes.size() == 0) 3550 return false; 3551 3552 // A single AddrMode can trivially be combined. 3553 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3554 return true; 3555 3556 // If the AddrModes we collected are all just equal to the value they are 3557 // derived from then combining them wouldn't do anything useful. 3558 if (AllAddrModesTrivial) 3559 return false; 3560 3561 if (!addrModeCombiningAllowed()) 3562 return false; 3563 3564 // Build a map between <original value, basic block where we saw it> to 3565 // value of base register. 3566 // Bail out if there is no common type. 3567 FoldAddrToValueMapping Map; 3568 if (!initializeMap(Map)) 3569 return false; 3570 3571 Value *CommonValue = findCommon(Map); 3572 if (CommonValue) 3573 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3574 return CommonValue != nullptr; 3575 } 3576 3577 private: 3578 /// Initialize Map with anchor values. For address seen 3579 /// we set the value of different field saw in this address. 3580 /// At the same time we find a common type for different field we will 3581 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3582 /// Return false if there is no common type found. 3583 bool initializeMap(FoldAddrToValueMapping &Map) { 3584 // Keep track of keys where the value is null. We will need to replace it 3585 // with constant null when we know the common type. 3586 SmallVector<Value *, 2> NullValue; 3587 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3588 for (auto &AM : AddrModes) { 3589 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3590 if (DV) { 3591 auto *Type = DV->getType(); 3592 if (CommonType && CommonType != Type) 3593 return false; 3594 CommonType = Type; 3595 Map[AM.OriginalValue] = DV; 3596 } else { 3597 NullValue.push_back(AM.OriginalValue); 3598 } 3599 } 3600 assert(CommonType && "At least one non-null value must be!"); 3601 for (auto *V : NullValue) 3602 Map[V] = Constant::getNullValue(CommonType); 3603 return true; 3604 } 3605 3606 /// We have mapping between value A and other value B where B was a field in 3607 /// addressing mode represented by A. Also we have an original value C 3608 /// representing an address we start with. Traversing from C through phi and 3609 /// selects we ended up with A's in a map. This utility function tries to find 3610 /// a value V which is a field in addressing mode C and traversing through phi 3611 /// nodes and selects we will end up in corresponded values B in a map. 3612 /// The utility will create a new Phi/Selects if needed. 3613 // The simple example looks as follows: 3614 // BB1: 3615 // p1 = b1 + 40 3616 // br cond BB2, BB3 3617 // BB2: 3618 // p2 = b2 + 40 3619 // br BB3 3620 // BB3: 3621 // p = phi [p1, BB1], [p2, BB2] 3622 // v = load p 3623 // Map is 3624 // p1 -> b1 3625 // p2 -> b2 3626 // Request is 3627 // p -> ? 3628 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3629 Value *findCommon(FoldAddrToValueMapping &Map) { 3630 // Tracks the simplification of newly created phi nodes. The reason we use 3631 // this mapping is because we will add new created Phi nodes in AddrToBase. 3632 // Simplification of Phi nodes is recursive, so some Phi node may 3633 // be simplified after we added it to AddrToBase. In reality this 3634 // simplification is possible only if original phi/selects were not 3635 // simplified yet. 3636 // Using this mapping we can find the current value in AddrToBase. 3637 SimplificationTracker ST(SQ); 3638 3639 // First step, DFS to create PHI nodes for all intermediate blocks. 3640 // Also fill traverse order for the second step. 3641 SmallVector<Value *, 32> TraverseOrder; 3642 InsertPlaceholders(Map, TraverseOrder, ST); 3643 3644 // Second Step, fill new nodes by merged values and simplify if possible. 3645 FillPlaceholders(Map, TraverseOrder, ST); 3646 3647 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3648 ST.destroyNewNodes(CommonType); 3649 return nullptr; 3650 } 3651 3652 // Now we'd like to match New Phi nodes to existed ones. 3653 unsigned PhiNotMatchedCount = 0; 3654 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3655 ST.destroyNewNodes(CommonType); 3656 return nullptr; 3657 } 3658 3659 auto *Result = ST.Get(Map.find(Original)->second); 3660 if (Result) { 3661 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3662 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3663 } 3664 return Result; 3665 } 3666 3667 /// Try to match PHI node to Candidate. 3668 /// Matcher tracks the matched Phi nodes. 3669 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3670 SmallSetVector<PHIPair, 8> &Matcher, 3671 PhiNodeSet &PhiNodesToMatch) { 3672 SmallVector<PHIPair, 8> WorkList; 3673 Matcher.insert({ PHI, Candidate }); 3674 SmallSet<PHINode *, 8> MatchedPHIs; 3675 MatchedPHIs.insert(PHI); 3676 WorkList.push_back({ PHI, Candidate }); 3677 SmallSet<PHIPair, 8> Visited; 3678 while (!WorkList.empty()) { 3679 auto Item = WorkList.pop_back_val(); 3680 if (!Visited.insert(Item).second) 3681 continue; 3682 // We iterate over all incoming values to Phi to compare them. 3683 // If values are different and both of them Phi and the first one is a 3684 // Phi we added (subject to match) and both of them is in the same basic 3685 // block then we can match our pair if values match. So we state that 3686 // these values match and add it to work list to verify that. 3687 for (auto *B : Item.first->blocks()) { 3688 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3689 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3690 if (FirstValue == SecondValue) 3691 continue; 3692 3693 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3694 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3695 3696 // One of them is not Phi or 3697 // The first one is not Phi node from the set we'd like to match or 3698 // Phi nodes from different basic blocks then 3699 // we will not be able to match. 3700 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3701 FirstPhi->getParent() != SecondPhi->getParent()) 3702 return false; 3703 3704 // If we already matched them then continue. 3705 if (Matcher.count({ FirstPhi, SecondPhi })) 3706 continue; 3707 // So the values are different and does not match. So we need them to 3708 // match. (But we register no more than one match per PHI node, so that 3709 // we won't later try to replace them twice.) 3710 if (MatchedPHIs.insert(FirstPhi).second) 3711 Matcher.insert({ FirstPhi, SecondPhi }); 3712 // But me must check it. 3713 WorkList.push_back({ FirstPhi, SecondPhi }); 3714 } 3715 } 3716 return true; 3717 } 3718 3719 /// For the given set of PHI nodes (in the SimplificationTracker) try 3720 /// to find their equivalents. 3721 /// Returns false if this matching fails and creation of new Phi is disabled. 3722 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3723 unsigned &PhiNotMatchedCount) { 3724 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3725 // order, so the replacements (ReplacePhi) are also done in a deterministic 3726 // order. 3727 SmallSetVector<PHIPair, 8> Matched; 3728 SmallPtrSet<PHINode *, 8> WillNotMatch; 3729 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3730 while (PhiNodesToMatch.size()) { 3731 PHINode *PHI = *PhiNodesToMatch.begin(); 3732 3733 // Add us, if no Phi nodes in the basic block we do not match. 3734 WillNotMatch.clear(); 3735 WillNotMatch.insert(PHI); 3736 3737 // Traverse all Phis until we found equivalent or fail to do that. 3738 bool IsMatched = false; 3739 for (auto &P : PHI->getParent()->phis()) { 3740 // Skip new Phi nodes. 3741 if (PhiNodesToMatch.count(&P)) 3742 continue; 3743 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3744 break; 3745 // If it does not match, collect all Phi nodes from matcher. 3746 // if we end up with no match, them all these Phi nodes will not match 3747 // later. 3748 for (auto M : Matched) 3749 WillNotMatch.insert(M.first); 3750 Matched.clear(); 3751 } 3752 if (IsMatched) { 3753 // Replace all matched values and erase them. 3754 for (auto MV : Matched) 3755 ST.ReplacePhi(MV.first, MV.second); 3756 Matched.clear(); 3757 continue; 3758 } 3759 // If we are not allowed to create new nodes then bail out. 3760 if (!AllowNewPhiNodes) 3761 return false; 3762 // Just remove all seen values in matcher. They will not match anything. 3763 PhiNotMatchedCount += WillNotMatch.size(); 3764 for (auto *P : WillNotMatch) 3765 PhiNodesToMatch.erase(P); 3766 } 3767 return true; 3768 } 3769 /// Fill the placeholders with values from predecessors and simplify them. 3770 void FillPlaceholders(FoldAddrToValueMapping &Map, 3771 SmallVectorImpl<Value *> &TraverseOrder, 3772 SimplificationTracker &ST) { 3773 while (!TraverseOrder.empty()) { 3774 Value *Current = TraverseOrder.pop_back_val(); 3775 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3776 Value *V = Map[Current]; 3777 3778 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3779 // CurrentValue also must be Select. 3780 auto *CurrentSelect = cast<SelectInst>(Current); 3781 auto *TrueValue = CurrentSelect->getTrueValue(); 3782 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3783 Select->setTrueValue(ST.Get(Map[TrueValue])); 3784 auto *FalseValue = CurrentSelect->getFalseValue(); 3785 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3786 Select->setFalseValue(ST.Get(Map[FalseValue])); 3787 } else { 3788 // Must be a Phi node then. 3789 auto *PHI = cast<PHINode>(V); 3790 // Fill the Phi node with values from predecessors. 3791 for (auto *B : predecessors(PHI->getParent())) { 3792 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3793 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3794 PHI->addIncoming(ST.Get(Map[PV]), B); 3795 } 3796 } 3797 Map[Current] = ST.Simplify(V); 3798 } 3799 } 3800 3801 /// Starting from original value recursively iterates over def-use chain up to 3802 /// known ending values represented in a map. For each traversed phi/select 3803 /// inserts a placeholder Phi or Select. 3804 /// Reports all new created Phi/Select nodes by adding them to set. 3805 /// Also reports and order in what values have been traversed. 3806 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3807 SmallVectorImpl<Value *> &TraverseOrder, 3808 SimplificationTracker &ST) { 3809 SmallVector<Value *, 32> Worklist; 3810 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3811 "Address must be a Phi or Select node"); 3812 auto *Dummy = PoisonValue::get(CommonType); 3813 Worklist.push_back(Original); 3814 while (!Worklist.empty()) { 3815 Value *Current = Worklist.pop_back_val(); 3816 // if it is already visited or it is an ending value then skip it. 3817 if (Map.find(Current) != Map.end()) 3818 continue; 3819 TraverseOrder.push_back(Current); 3820 3821 // CurrentValue must be a Phi node or select. All others must be covered 3822 // by anchors. 3823 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3824 // Is it OK to get metadata from OrigSelect?! 3825 // Create a Select placeholder with dummy value. 3826 SelectInst *Select = SelectInst::Create( 3827 CurrentSelect->getCondition(), Dummy, Dummy, 3828 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3829 Map[Current] = Select; 3830 ST.insertNewSelect(Select); 3831 // We are interested in True and False values. 3832 Worklist.push_back(CurrentSelect->getTrueValue()); 3833 Worklist.push_back(CurrentSelect->getFalseValue()); 3834 } else { 3835 // It must be a Phi node then. 3836 PHINode *CurrentPhi = cast<PHINode>(Current); 3837 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3838 PHINode *PHI = 3839 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3840 Map[Current] = PHI; 3841 ST.insertNewPhi(PHI); 3842 append_range(Worklist, CurrentPhi->incoming_values()); 3843 } 3844 } 3845 } 3846 3847 bool addrModeCombiningAllowed() { 3848 if (DisableComplexAddrModes) 3849 return false; 3850 switch (DifferentField) { 3851 default: 3852 return false; 3853 case ExtAddrMode::BaseRegField: 3854 return AddrSinkCombineBaseReg; 3855 case ExtAddrMode::BaseGVField: 3856 return AddrSinkCombineBaseGV; 3857 case ExtAddrMode::BaseOffsField: 3858 return AddrSinkCombineBaseOffs; 3859 case ExtAddrMode::ScaledRegField: 3860 return AddrSinkCombineScaledReg; 3861 } 3862 } 3863 }; 3864 } // end anonymous namespace 3865 3866 /// Try adding ScaleReg*Scale to the current addressing mode. 3867 /// Return true and update AddrMode if this addr mode is legal for the target, 3868 /// false if not. 3869 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3870 unsigned Depth) { 3871 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3872 // mode. Just process that directly. 3873 if (Scale == 1) 3874 return matchAddr(ScaleReg, Depth); 3875 3876 // If the scale is 0, it takes nothing to add this. 3877 if (Scale == 0) 3878 return true; 3879 3880 // If we already have a scale of this value, we can add to it, otherwise, we 3881 // need an available scale field. 3882 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3883 return false; 3884 3885 ExtAddrMode TestAddrMode = AddrMode; 3886 3887 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3888 // [A+B + A*7] -> [B+A*8]. 3889 TestAddrMode.Scale += Scale; 3890 TestAddrMode.ScaledReg = ScaleReg; 3891 3892 // If the new address isn't legal, bail out. 3893 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3894 return false; 3895 3896 // It was legal, so commit it. 3897 AddrMode = TestAddrMode; 3898 3899 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3900 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3901 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3902 // go any further: we can reuse it and cannot eliminate it. 3903 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3904 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3905 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3906 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3907 TestAddrMode.InBounds = false; 3908 TestAddrMode.ScaledReg = AddLHS; 3909 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3910 3911 // If this addressing mode is legal, commit it and remember that we folded 3912 // this instruction. 3913 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3914 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3915 AddrMode = TestAddrMode; 3916 return true; 3917 } 3918 // Restore status quo. 3919 TestAddrMode = AddrMode; 3920 } 3921 3922 // If this is an add recurrence with a constant step, return the increment 3923 // instruction and the canonicalized step. 3924 auto GetConstantStep = [this](const Value * V) 3925 ->Optional<std::pair<Instruction *, APInt> > { 3926 auto *PN = dyn_cast<PHINode>(V); 3927 if (!PN) 3928 return None; 3929 auto IVInc = getIVIncrement(PN, &LI); 3930 if (!IVInc) 3931 return None; 3932 // TODO: The result of the intrinsics above is two-compliment. However when 3933 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3934 // If it has nuw or nsw flags, we need to make sure that these flags are 3935 // inferrable at the point of memory instruction. Otherwise we are replacing 3936 // well-defined two-compliment computation with poison. Currently, to avoid 3937 // potentially complex analysis needed to prove this, we reject such cases. 3938 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3939 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3940 return None; 3941 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3942 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3943 return None; 3944 }; 3945 3946 // Try to account for the following special case: 3947 // 1. ScaleReg is an inductive variable; 3948 // 2. We use it with non-zero offset; 3949 // 3. IV's increment is available at the point of memory instruction. 3950 // 3951 // In this case, we may reuse the IV increment instead of the IV Phi to 3952 // achieve the following advantages: 3953 // 1. If IV step matches the offset, we will have no need in the offset; 3954 // 2. Even if they don't match, we will reduce the overlap of living IV 3955 // and IV increment, that will potentially lead to better register 3956 // assignment. 3957 if (AddrMode.BaseOffs) { 3958 if (auto IVStep = GetConstantStep(ScaleReg)) { 3959 Instruction *IVInc = IVStep->first; 3960 // The following assert is important to ensure a lack of infinite loops. 3961 // This transforms is (intentionally) the inverse of the one just above. 3962 // If they don't agree on the definition of an increment, we'd alternate 3963 // back and forth indefinitely. 3964 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3965 APInt Step = IVStep->second; 3966 APInt Offset = Step * AddrMode.Scale; 3967 if (Offset.isSignedIntN(64)) { 3968 TestAddrMode.InBounds = false; 3969 TestAddrMode.ScaledReg = IVInc; 3970 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3971 // If this addressing mode is legal, commit it.. 3972 // (Note that we defer the (expensive) domtree base legality check 3973 // to the very last possible point.) 3974 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3975 getDTFn().dominates(IVInc, MemoryInst)) { 3976 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3977 AddrMode = TestAddrMode; 3978 return true; 3979 } 3980 // Restore status quo. 3981 TestAddrMode = AddrMode; 3982 } 3983 } 3984 } 3985 3986 // Otherwise, just return what we have. 3987 return true; 3988 } 3989 3990 /// This is a little filter, which returns true if an addressing computation 3991 /// involving I might be folded into a load/store accessing it. 3992 /// This doesn't need to be perfect, but needs to accept at least 3993 /// the set of instructions that MatchOperationAddr can. 3994 static bool MightBeFoldableInst(Instruction *I) { 3995 switch (I->getOpcode()) { 3996 case Instruction::BitCast: 3997 case Instruction::AddrSpaceCast: 3998 // Don't touch identity bitcasts. 3999 if (I->getType() == I->getOperand(0)->getType()) 4000 return false; 4001 return I->getType()->isIntOrPtrTy(); 4002 case Instruction::PtrToInt: 4003 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4004 return true; 4005 case Instruction::IntToPtr: 4006 // We know the input is intptr_t, so this is foldable. 4007 return true; 4008 case Instruction::Add: 4009 return true; 4010 case Instruction::Mul: 4011 case Instruction::Shl: 4012 // Can only handle X*C and X << C. 4013 return isa<ConstantInt>(I->getOperand(1)); 4014 case Instruction::GetElementPtr: 4015 return true; 4016 default: 4017 return false; 4018 } 4019 } 4020 4021 /// Check whether or not \p Val is a legal instruction for \p TLI. 4022 /// \note \p Val is assumed to be the product of some type promotion. 4023 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4024 /// to be legal, as the non-promoted value would have had the same state. 4025 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4026 const DataLayout &DL, Value *Val) { 4027 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4028 if (!PromotedInst) 4029 return false; 4030 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4031 // If the ISDOpcode is undefined, it was undefined before the promotion. 4032 if (!ISDOpcode) 4033 return true; 4034 // Otherwise, check if the promoted instruction is legal or not. 4035 return TLI.isOperationLegalOrCustom( 4036 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4037 } 4038 4039 namespace { 4040 4041 /// Hepler class to perform type promotion. 4042 class TypePromotionHelper { 4043 /// Utility function to add a promoted instruction \p ExtOpnd to 4044 /// \p PromotedInsts and record the type of extension we have seen. 4045 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4046 Instruction *ExtOpnd, 4047 bool IsSExt) { 4048 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4049 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4050 if (It != PromotedInsts.end()) { 4051 // If the new extension is same as original, the information in 4052 // PromotedInsts[ExtOpnd] is still correct. 4053 if (It->second.getInt() == ExtTy) 4054 return; 4055 4056 // Now the new extension is different from old extension, we make 4057 // the type information invalid by setting extension type to 4058 // BothExtension. 4059 ExtTy = BothExtension; 4060 } 4061 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4062 } 4063 4064 /// Utility function to query the original type of instruction \p Opnd 4065 /// with a matched extension type. If the extension doesn't match, we 4066 /// cannot use the information we had on the original type. 4067 /// BothExtension doesn't match any extension type. 4068 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4069 Instruction *Opnd, 4070 bool IsSExt) { 4071 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4072 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4073 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4074 return It->second.getPointer(); 4075 return nullptr; 4076 } 4077 4078 /// Utility function to check whether or not a sign or zero extension 4079 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4080 /// either using the operands of \p Inst or promoting \p Inst. 4081 /// The type of the extension is defined by \p IsSExt. 4082 /// In other words, check if: 4083 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4084 /// #1 Promotion applies: 4085 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4086 /// #2 Operand reuses: 4087 /// ext opnd1 to ConsideredExtType. 4088 /// \p PromotedInsts maps the instructions to their type before promotion. 4089 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4090 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4091 4092 /// Utility function to determine if \p OpIdx should be promoted when 4093 /// promoting \p Inst. 4094 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4095 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4096 } 4097 4098 /// Utility function to promote the operand of \p Ext when this 4099 /// operand is a promotable trunc or sext or zext. 4100 /// \p PromotedInsts maps the instructions to their type before promotion. 4101 /// \p CreatedInstsCost[out] contains the cost of all instructions 4102 /// created to promote the operand of Ext. 4103 /// Newly added extensions are inserted in \p Exts. 4104 /// Newly added truncates are inserted in \p Truncs. 4105 /// Should never be called directly. 4106 /// \return The promoted value which is used instead of Ext. 4107 static Value *promoteOperandForTruncAndAnyExt( 4108 Instruction *Ext, TypePromotionTransaction &TPT, 4109 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4110 SmallVectorImpl<Instruction *> *Exts, 4111 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4112 4113 /// Utility function to promote the operand of \p Ext when this 4114 /// operand is promotable and is not a supported trunc or sext. 4115 /// \p PromotedInsts maps the instructions to their type before promotion. 4116 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4117 /// created to promote the operand of Ext. 4118 /// Newly added extensions are inserted in \p Exts. 4119 /// Newly added truncates are inserted in \p Truncs. 4120 /// Should never be called directly. 4121 /// \return The promoted value which is used instead of Ext. 4122 static Value *promoteOperandForOther(Instruction *Ext, 4123 TypePromotionTransaction &TPT, 4124 InstrToOrigTy &PromotedInsts, 4125 unsigned &CreatedInstsCost, 4126 SmallVectorImpl<Instruction *> *Exts, 4127 SmallVectorImpl<Instruction *> *Truncs, 4128 const TargetLowering &TLI, bool IsSExt); 4129 4130 /// \see promoteOperandForOther. 4131 static Value *signExtendOperandForOther( 4132 Instruction *Ext, TypePromotionTransaction &TPT, 4133 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4134 SmallVectorImpl<Instruction *> *Exts, 4135 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4136 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4137 Exts, Truncs, TLI, true); 4138 } 4139 4140 /// \see promoteOperandForOther. 4141 static Value *zeroExtendOperandForOther( 4142 Instruction *Ext, TypePromotionTransaction &TPT, 4143 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4144 SmallVectorImpl<Instruction *> *Exts, 4145 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4146 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4147 Exts, Truncs, TLI, false); 4148 } 4149 4150 public: 4151 /// Type for the utility function that promotes the operand of Ext. 4152 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4153 InstrToOrigTy &PromotedInsts, 4154 unsigned &CreatedInstsCost, 4155 SmallVectorImpl<Instruction *> *Exts, 4156 SmallVectorImpl<Instruction *> *Truncs, 4157 const TargetLowering &TLI); 4158 4159 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4160 /// action to promote the operand of \p Ext instead of using Ext. 4161 /// \return NULL if no promotable action is possible with the current 4162 /// sign extension. 4163 /// \p InsertedInsts keeps track of all the instructions inserted by the 4164 /// other CodeGenPrepare optimizations. This information is important 4165 /// because we do not want to promote these instructions as CodeGenPrepare 4166 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4167 /// \p PromotedInsts maps the instructions to their type before promotion. 4168 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4169 const TargetLowering &TLI, 4170 const InstrToOrigTy &PromotedInsts); 4171 }; 4172 4173 } // end anonymous namespace 4174 4175 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4176 Type *ConsideredExtType, 4177 const InstrToOrigTy &PromotedInsts, 4178 bool IsSExt) { 4179 // The promotion helper does not know how to deal with vector types yet. 4180 // To be able to fix that, we would need to fix the places where we 4181 // statically extend, e.g., constants and such. 4182 if (Inst->getType()->isVectorTy()) 4183 return false; 4184 4185 // We can always get through zext. 4186 if (isa<ZExtInst>(Inst)) 4187 return true; 4188 4189 // sext(sext) is ok too. 4190 if (IsSExt && isa<SExtInst>(Inst)) 4191 return true; 4192 4193 // We can get through binary operator, if it is legal. In other words, the 4194 // binary operator must have a nuw or nsw flag. 4195 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4196 if (isa<OverflowingBinaryOperator>(BinOp) && 4197 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4198 (IsSExt && BinOp->hasNoSignedWrap()))) 4199 return true; 4200 4201 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4202 if ((Inst->getOpcode() == Instruction::And || 4203 Inst->getOpcode() == Instruction::Or)) 4204 return true; 4205 4206 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4207 if (Inst->getOpcode() == Instruction::Xor) { 4208 // Make sure it is not a NOT. 4209 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4210 if (!Cst->getValue().isAllOnes()) 4211 return true; 4212 } 4213 4214 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4215 // It may change a poisoned value into a regular value, like 4216 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4217 // poisoned value regular value 4218 // It should be OK since undef covers valid value. 4219 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4220 return true; 4221 4222 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4223 // It may change a poisoned value into a regular value, like 4224 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4225 // poisoned value regular value 4226 // It should be OK since undef covers valid value. 4227 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4228 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4229 if (ExtInst->hasOneUse()) { 4230 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4231 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4232 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4233 if (Cst && 4234 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4235 return true; 4236 } 4237 } 4238 } 4239 4240 // Check if we can do the following simplification. 4241 // ext(trunc(opnd)) --> ext(opnd) 4242 if (!isa<TruncInst>(Inst)) 4243 return false; 4244 4245 Value *OpndVal = Inst->getOperand(0); 4246 // Check if we can use this operand in the extension. 4247 // If the type is larger than the result type of the extension, we cannot. 4248 if (!OpndVal->getType()->isIntegerTy() || 4249 OpndVal->getType()->getIntegerBitWidth() > 4250 ConsideredExtType->getIntegerBitWidth()) 4251 return false; 4252 4253 // If the operand of the truncate is not an instruction, we will not have 4254 // any information on the dropped bits. 4255 // (Actually we could for constant but it is not worth the extra logic). 4256 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4257 if (!Opnd) 4258 return false; 4259 4260 // Check if the source of the type is narrow enough. 4261 // I.e., check that trunc just drops extended bits of the same kind of 4262 // the extension. 4263 // #1 get the type of the operand and check the kind of the extended bits. 4264 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4265 if (OpndType) 4266 ; 4267 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4268 OpndType = Opnd->getOperand(0)->getType(); 4269 else 4270 return false; 4271 4272 // #2 check that the truncate just drops extended bits. 4273 return Inst->getType()->getIntegerBitWidth() >= 4274 OpndType->getIntegerBitWidth(); 4275 } 4276 4277 TypePromotionHelper::Action TypePromotionHelper::getAction( 4278 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4279 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4280 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4281 "Unexpected instruction type"); 4282 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4283 Type *ExtTy = Ext->getType(); 4284 bool IsSExt = isa<SExtInst>(Ext); 4285 // If the operand of the extension is not an instruction, we cannot 4286 // get through. 4287 // If it, check we can get through. 4288 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4289 return nullptr; 4290 4291 // Do not promote if the operand has been added by codegenprepare. 4292 // Otherwise, it means we are undoing an optimization that is likely to be 4293 // redone, thus causing potential infinite loop. 4294 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4295 return nullptr; 4296 4297 // SExt or Trunc instructions. 4298 // Return the related handler. 4299 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4300 isa<ZExtInst>(ExtOpnd)) 4301 return promoteOperandForTruncAndAnyExt; 4302 4303 // Regular instruction. 4304 // Abort early if we will have to insert non-free instructions. 4305 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4306 return nullptr; 4307 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4308 } 4309 4310 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4311 Instruction *SExt, TypePromotionTransaction &TPT, 4312 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4313 SmallVectorImpl<Instruction *> *Exts, 4314 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4315 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4316 // get through it and this method should not be called. 4317 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4318 Value *ExtVal = SExt; 4319 bool HasMergedNonFreeExt = false; 4320 if (isa<ZExtInst>(SExtOpnd)) { 4321 // Replace s|zext(zext(opnd)) 4322 // => zext(opnd). 4323 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4324 Value *ZExt = 4325 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4326 TPT.replaceAllUsesWith(SExt, ZExt); 4327 TPT.eraseInstruction(SExt); 4328 ExtVal = ZExt; 4329 } else { 4330 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4331 // => z|sext(opnd). 4332 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4333 } 4334 CreatedInstsCost = 0; 4335 4336 // Remove dead code. 4337 if (SExtOpnd->use_empty()) 4338 TPT.eraseInstruction(SExtOpnd); 4339 4340 // Check if the extension is still needed. 4341 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4342 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4343 if (ExtInst) { 4344 if (Exts) 4345 Exts->push_back(ExtInst); 4346 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4347 } 4348 return ExtVal; 4349 } 4350 4351 // At this point we have: ext ty opnd to ty. 4352 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4353 Value *NextVal = ExtInst->getOperand(0); 4354 TPT.eraseInstruction(ExtInst, NextVal); 4355 return NextVal; 4356 } 4357 4358 Value *TypePromotionHelper::promoteOperandForOther( 4359 Instruction *Ext, TypePromotionTransaction &TPT, 4360 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4361 SmallVectorImpl<Instruction *> *Exts, 4362 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4363 bool IsSExt) { 4364 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4365 // get through it and this method should not be called. 4366 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4367 CreatedInstsCost = 0; 4368 if (!ExtOpnd->hasOneUse()) { 4369 // ExtOpnd will be promoted. 4370 // All its uses, but Ext, will need to use a truncated value of the 4371 // promoted version. 4372 // Create the truncate now. 4373 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4374 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4375 // Insert it just after the definition. 4376 ITrunc->moveAfter(ExtOpnd); 4377 if (Truncs) 4378 Truncs->push_back(ITrunc); 4379 } 4380 4381 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4382 // Restore the operand of Ext (which has been replaced by the previous call 4383 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4384 TPT.setOperand(Ext, 0, ExtOpnd); 4385 } 4386 4387 // Get through the Instruction: 4388 // 1. Update its type. 4389 // 2. Replace the uses of Ext by Inst. 4390 // 3. Extend each operand that needs to be extended. 4391 4392 // Remember the original type of the instruction before promotion. 4393 // This is useful to know that the high bits are sign extended bits. 4394 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4395 // Step #1. 4396 TPT.mutateType(ExtOpnd, Ext->getType()); 4397 // Step #2. 4398 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4399 // Step #3. 4400 Instruction *ExtForOpnd = Ext; 4401 4402 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4403 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4404 ++OpIdx) { 4405 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4406 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4407 !shouldExtOperand(ExtOpnd, OpIdx)) { 4408 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4409 continue; 4410 } 4411 // Check if we can statically extend the operand. 4412 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4413 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4414 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4415 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4416 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4417 : Cst->getValue().zext(BitWidth); 4418 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4419 continue; 4420 } 4421 // UndefValue are typed, so we have to statically sign extend them. 4422 if (isa<UndefValue>(Opnd)) { 4423 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4424 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4425 continue; 4426 } 4427 4428 // Otherwise we have to explicitly sign extend the operand. 4429 // Check if Ext was reused to extend an operand. 4430 if (!ExtForOpnd) { 4431 // If yes, create a new one. 4432 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4433 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4434 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4435 if (!isa<Instruction>(ValForExtOpnd)) { 4436 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4437 continue; 4438 } 4439 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4440 } 4441 if (Exts) 4442 Exts->push_back(ExtForOpnd); 4443 TPT.setOperand(ExtForOpnd, 0, Opnd); 4444 4445 // Move the sign extension before the insertion point. 4446 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4447 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4448 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4449 // If more sext are required, new instructions will have to be created. 4450 ExtForOpnd = nullptr; 4451 } 4452 if (ExtForOpnd == Ext) { 4453 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4454 TPT.eraseInstruction(Ext); 4455 } 4456 return ExtOpnd; 4457 } 4458 4459 /// Check whether or not promoting an instruction to a wider type is profitable. 4460 /// \p NewCost gives the cost of extension instructions created by the 4461 /// promotion. 4462 /// \p OldCost gives the cost of extension instructions before the promotion 4463 /// plus the number of instructions that have been 4464 /// matched in the addressing mode the promotion. 4465 /// \p PromotedOperand is the value that has been promoted. 4466 /// \return True if the promotion is profitable, false otherwise. 4467 bool AddressingModeMatcher::isPromotionProfitable( 4468 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4469 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4470 << '\n'); 4471 // The cost of the new extensions is greater than the cost of the 4472 // old extension plus what we folded. 4473 // This is not profitable. 4474 if (NewCost > OldCost) 4475 return false; 4476 if (NewCost < OldCost) 4477 return true; 4478 // The promotion is neutral but it may help folding the sign extension in 4479 // loads for instance. 4480 // Check that we did not create an illegal instruction. 4481 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4482 } 4483 4484 /// Given an instruction or constant expr, see if we can fold the operation 4485 /// into the addressing mode. If so, update the addressing mode and return 4486 /// true, otherwise return false without modifying AddrMode. 4487 /// If \p MovedAway is not NULL, it contains the information of whether or 4488 /// not AddrInst has to be folded into the addressing mode on success. 4489 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4490 /// because it has been moved away. 4491 /// Thus AddrInst must not be added in the matched instructions. 4492 /// This state can happen when AddrInst is a sext, since it may be moved away. 4493 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4494 /// not be referenced anymore. 4495 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4496 unsigned Depth, 4497 bool *MovedAway) { 4498 // Avoid exponential behavior on extremely deep expression trees. 4499 if (Depth >= 5) return false; 4500 4501 // By default, all matched instructions stay in place. 4502 if (MovedAway) 4503 *MovedAway = false; 4504 4505 switch (Opcode) { 4506 case Instruction::PtrToInt: 4507 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4508 return matchAddr(AddrInst->getOperand(0), Depth); 4509 case Instruction::IntToPtr: { 4510 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4511 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4512 // This inttoptr is a no-op if the integer type is pointer sized. 4513 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4514 return matchAddr(AddrInst->getOperand(0), Depth); 4515 return false; 4516 } 4517 case Instruction::BitCast: 4518 // BitCast is always a noop, and we can handle it as long as it is 4519 // int->int or pointer->pointer (we don't want int<->fp or something). 4520 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4521 // Don't touch identity bitcasts. These were probably put here by LSR, 4522 // and we don't want to mess around with them. Assume it knows what it 4523 // is doing. 4524 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4525 return matchAddr(AddrInst->getOperand(0), Depth); 4526 return false; 4527 case Instruction::AddrSpaceCast: { 4528 unsigned SrcAS 4529 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4530 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4531 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4532 return matchAddr(AddrInst->getOperand(0), Depth); 4533 return false; 4534 } 4535 case Instruction::Add: { 4536 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4537 ExtAddrMode BackupAddrMode = AddrMode; 4538 unsigned OldSize = AddrModeInsts.size(); 4539 // Start a transaction at this point. 4540 // The LHS may match but not the RHS. 4541 // Therefore, we need a higher level restoration point to undo partially 4542 // matched operation. 4543 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4544 TPT.getRestorationPoint(); 4545 4546 AddrMode.InBounds = false; 4547 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4548 matchAddr(AddrInst->getOperand(0), Depth+1)) 4549 return true; 4550 4551 // Restore the old addr mode info. 4552 AddrMode = BackupAddrMode; 4553 AddrModeInsts.resize(OldSize); 4554 TPT.rollback(LastKnownGood); 4555 4556 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4557 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4558 matchAddr(AddrInst->getOperand(1), Depth+1)) 4559 return true; 4560 4561 // Otherwise we definitely can't merge the ADD in. 4562 AddrMode = BackupAddrMode; 4563 AddrModeInsts.resize(OldSize); 4564 TPT.rollback(LastKnownGood); 4565 break; 4566 } 4567 //case Instruction::Or: 4568 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4569 //break; 4570 case Instruction::Mul: 4571 case Instruction::Shl: { 4572 // Can only handle X*C and X << C. 4573 AddrMode.InBounds = false; 4574 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4575 if (!RHS || RHS->getBitWidth() > 64) 4576 return false; 4577 int64_t Scale = Opcode == Instruction::Shl 4578 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4579 : RHS->getSExtValue(); 4580 4581 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4582 } 4583 case Instruction::GetElementPtr: { 4584 // Scan the GEP. We check it if it contains constant offsets and at most 4585 // one variable offset. 4586 int VariableOperand = -1; 4587 unsigned VariableScale = 0; 4588 4589 int64_t ConstantOffset = 0; 4590 gep_type_iterator GTI = gep_type_begin(AddrInst); 4591 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4592 if (StructType *STy = GTI.getStructTypeOrNull()) { 4593 const StructLayout *SL = DL.getStructLayout(STy); 4594 unsigned Idx = 4595 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4596 ConstantOffset += SL->getElementOffset(Idx); 4597 } else { 4598 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4599 if (TS.isNonZero()) { 4600 // The optimisations below currently only work for fixed offsets. 4601 if (TS.isScalable()) 4602 return false; 4603 int64_t TypeSize = TS.getFixedSize(); 4604 if (ConstantInt *CI = 4605 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4606 const APInt &CVal = CI->getValue(); 4607 if (CVal.getMinSignedBits() <= 64) { 4608 ConstantOffset += CVal.getSExtValue() * TypeSize; 4609 continue; 4610 } 4611 } 4612 // We only allow one variable index at the moment. 4613 if (VariableOperand != -1) 4614 return false; 4615 4616 // Remember the variable index. 4617 VariableOperand = i; 4618 VariableScale = TypeSize; 4619 } 4620 } 4621 } 4622 4623 // A common case is for the GEP to only do a constant offset. In this case, 4624 // just add it to the disp field and check validity. 4625 if (VariableOperand == -1) { 4626 AddrMode.BaseOffs += ConstantOffset; 4627 if (ConstantOffset == 0 || 4628 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4629 // Check to see if we can fold the base pointer in too. 4630 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4631 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4632 AddrMode.InBounds = false; 4633 return true; 4634 } 4635 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4636 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4637 ConstantOffset > 0) { 4638 // Record GEPs with non-zero offsets as candidates for splitting in the 4639 // event that the offset cannot fit into the r+i addressing mode. 4640 // Simple and common case that only one GEP is used in calculating the 4641 // address for the memory access. 4642 Value *Base = AddrInst->getOperand(0); 4643 auto *BaseI = dyn_cast<Instruction>(Base); 4644 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4645 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4646 (BaseI && !isa<CastInst>(BaseI) && 4647 !isa<GetElementPtrInst>(BaseI))) { 4648 // Make sure the parent block allows inserting non-PHI instructions 4649 // before the terminator. 4650 BasicBlock *Parent = 4651 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4652 if (!Parent->getTerminator()->isEHPad()) 4653 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4654 } 4655 } 4656 AddrMode.BaseOffs -= ConstantOffset; 4657 return false; 4658 } 4659 4660 // Save the valid addressing mode in case we can't match. 4661 ExtAddrMode BackupAddrMode = AddrMode; 4662 unsigned OldSize = AddrModeInsts.size(); 4663 4664 // See if the scale and offset amount is valid for this target. 4665 AddrMode.BaseOffs += ConstantOffset; 4666 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4667 AddrMode.InBounds = false; 4668 4669 // Match the base operand of the GEP. 4670 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4671 // If it couldn't be matched, just stuff the value in a register. 4672 if (AddrMode.HasBaseReg) { 4673 AddrMode = BackupAddrMode; 4674 AddrModeInsts.resize(OldSize); 4675 return false; 4676 } 4677 AddrMode.HasBaseReg = true; 4678 AddrMode.BaseReg = AddrInst->getOperand(0); 4679 } 4680 4681 // Match the remaining variable portion of the GEP. 4682 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4683 Depth)) { 4684 // If it couldn't be matched, try stuffing the base into a register 4685 // instead of matching it, and retrying the match of the scale. 4686 AddrMode = BackupAddrMode; 4687 AddrModeInsts.resize(OldSize); 4688 if (AddrMode.HasBaseReg) 4689 return false; 4690 AddrMode.HasBaseReg = true; 4691 AddrMode.BaseReg = AddrInst->getOperand(0); 4692 AddrMode.BaseOffs += ConstantOffset; 4693 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4694 VariableScale, Depth)) { 4695 // If even that didn't work, bail. 4696 AddrMode = BackupAddrMode; 4697 AddrModeInsts.resize(OldSize); 4698 return false; 4699 } 4700 } 4701 4702 return true; 4703 } 4704 case Instruction::SExt: 4705 case Instruction::ZExt: { 4706 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4707 if (!Ext) 4708 return false; 4709 4710 // Try to move this ext out of the way of the addressing mode. 4711 // Ask for a method for doing so. 4712 TypePromotionHelper::Action TPH = 4713 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4714 if (!TPH) 4715 return false; 4716 4717 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4718 TPT.getRestorationPoint(); 4719 unsigned CreatedInstsCost = 0; 4720 unsigned ExtCost = !TLI.isExtFree(Ext); 4721 Value *PromotedOperand = 4722 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4723 // SExt has been moved away. 4724 // Thus either it will be rematched later in the recursive calls or it is 4725 // gone. Anyway, we must not fold it into the addressing mode at this point. 4726 // E.g., 4727 // op = add opnd, 1 4728 // idx = ext op 4729 // addr = gep base, idx 4730 // is now: 4731 // promotedOpnd = ext opnd <- no match here 4732 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4733 // addr = gep base, op <- match 4734 if (MovedAway) 4735 *MovedAway = true; 4736 4737 assert(PromotedOperand && 4738 "TypePromotionHelper should have filtered out those cases"); 4739 4740 ExtAddrMode BackupAddrMode = AddrMode; 4741 unsigned OldSize = AddrModeInsts.size(); 4742 4743 if (!matchAddr(PromotedOperand, Depth) || 4744 // The total of the new cost is equal to the cost of the created 4745 // instructions. 4746 // The total of the old cost is equal to the cost of the extension plus 4747 // what we have saved in the addressing mode. 4748 !isPromotionProfitable(CreatedInstsCost, 4749 ExtCost + (AddrModeInsts.size() - OldSize), 4750 PromotedOperand)) { 4751 AddrMode = BackupAddrMode; 4752 AddrModeInsts.resize(OldSize); 4753 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4754 TPT.rollback(LastKnownGood); 4755 return false; 4756 } 4757 return true; 4758 } 4759 } 4760 return false; 4761 } 4762 4763 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4764 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4765 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4766 /// for the target. 4767 /// 4768 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4769 // Start a transaction at this point that we will rollback if the matching 4770 // fails. 4771 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4772 TPT.getRestorationPoint(); 4773 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4774 if (CI->getValue().isSignedIntN(64)) { 4775 // Fold in immediates if legal for the target. 4776 AddrMode.BaseOffs += CI->getSExtValue(); 4777 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4778 return true; 4779 AddrMode.BaseOffs -= CI->getSExtValue(); 4780 } 4781 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4782 // If this is a global variable, try to fold it into the addressing mode. 4783 if (!AddrMode.BaseGV) { 4784 AddrMode.BaseGV = GV; 4785 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4786 return true; 4787 AddrMode.BaseGV = nullptr; 4788 } 4789 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4790 ExtAddrMode BackupAddrMode = AddrMode; 4791 unsigned OldSize = AddrModeInsts.size(); 4792 4793 // Check to see if it is possible to fold this operation. 4794 bool MovedAway = false; 4795 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4796 // This instruction may have been moved away. If so, there is nothing 4797 // to check here. 4798 if (MovedAway) 4799 return true; 4800 // Okay, it's possible to fold this. Check to see if it is actually 4801 // *profitable* to do so. We use a simple cost model to avoid increasing 4802 // register pressure too much. 4803 if (I->hasOneUse() || 4804 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4805 AddrModeInsts.push_back(I); 4806 return true; 4807 } 4808 4809 // It isn't profitable to do this, roll back. 4810 AddrMode = BackupAddrMode; 4811 AddrModeInsts.resize(OldSize); 4812 TPT.rollback(LastKnownGood); 4813 } 4814 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4815 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4816 return true; 4817 TPT.rollback(LastKnownGood); 4818 } else if (isa<ConstantPointerNull>(Addr)) { 4819 // Null pointer gets folded without affecting the addressing mode. 4820 return true; 4821 } 4822 4823 // Worse case, the target should support [reg] addressing modes. :) 4824 if (!AddrMode.HasBaseReg) { 4825 AddrMode.HasBaseReg = true; 4826 AddrMode.BaseReg = Addr; 4827 // Still check for legality in case the target supports [imm] but not [i+r]. 4828 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4829 return true; 4830 AddrMode.HasBaseReg = false; 4831 AddrMode.BaseReg = nullptr; 4832 } 4833 4834 // If the base register is already taken, see if we can do [r+r]. 4835 if (AddrMode.Scale == 0) { 4836 AddrMode.Scale = 1; 4837 AddrMode.ScaledReg = Addr; 4838 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4839 return true; 4840 AddrMode.Scale = 0; 4841 AddrMode.ScaledReg = nullptr; 4842 } 4843 // Couldn't match. 4844 TPT.rollback(LastKnownGood); 4845 return false; 4846 } 4847 4848 /// Check to see if all uses of OpVal by the specified inline asm call are due 4849 /// to memory operands. If so, return true, otherwise return false. 4850 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4851 const TargetLowering &TLI, 4852 const TargetRegisterInfo &TRI) { 4853 const Function *F = CI->getFunction(); 4854 TargetLowering::AsmOperandInfoVector TargetConstraints = 4855 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4856 4857 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 4858 // Compute the constraint code and ConstraintType to use. 4859 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4860 4861 // If this asm operand is our Value*, and if it isn't an indirect memory 4862 // operand, we can't fold it! TODO: Also handle C_Address? 4863 if (OpInfo.CallOperandVal == OpVal && 4864 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4865 !OpInfo.isIndirect)) 4866 return false; 4867 } 4868 4869 return true; 4870 } 4871 4872 // Max number of memory uses to look at before aborting the search to conserve 4873 // compile time. 4874 static constexpr int MaxMemoryUsesToScan = 20; 4875 4876 /// Recursively walk all the uses of I until we find a memory use. 4877 /// If we find an obviously non-foldable instruction, return true. 4878 /// Add accessed addresses and types to MemoryUses. 4879 static bool FindAllMemoryUses( 4880 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4881 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4882 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4883 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4884 // If we already considered this instruction, we're done. 4885 if (!ConsideredInsts.insert(I).second) 4886 return false; 4887 4888 // If this is an obviously unfoldable instruction, bail out. 4889 if (!MightBeFoldableInst(I)) 4890 return true; 4891 4892 // Loop over all the uses, recursively processing them. 4893 for (Use &U : I->uses()) { 4894 // Conservatively return true if we're seeing a large number or a deep chain 4895 // of users. This avoids excessive compilation times in pathological cases. 4896 if (SeenInsts++ >= MaxMemoryUsesToScan) 4897 return true; 4898 4899 Instruction *UserI = cast<Instruction>(U.getUser()); 4900 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4901 MemoryUses.push_back({U.get(), LI->getType()}); 4902 continue; 4903 } 4904 4905 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4906 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 4907 return true; // Storing addr, not into addr. 4908 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 4909 continue; 4910 } 4911 4912 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4913 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 4914 return true; // Storing addr, not into addr. 4915 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 4916 continue; 4917 } 4918 4919 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4920 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 4921 return true; // Storing addr, not into addr. 4922 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 4923 continue; 4924 } 4925 4926 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4927 if (CI->hasFnAttr(Attribute::Cold)) { 4928 // If this is a cold call, we can sink the addressing calculation into 4929 // the cold path. See optimizeCallInst 4930 bool OptForSize = OptSize || 4931 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4932 if (!OptForSize) 4933 continue; 4934 } 4935 4936 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4937 if (!IA) return true; 4938 4939 // If this is a memory operand, we're cool, otherwise bail out. 4940 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4941 return true; 4942 continue; 4943 } 4944 4945 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4946 PSI, BFI, SeenInsts)) 4947 return true; 4948 } 4949 4950 return false; 4951 } 4952 4953 /// Return true if Val is already known to be live at the use site that we're 4954 /// folding it into. If so, there is no cost to include it in the addressing 4955 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4956 /// instruction already. 4957 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4958 Value *KnownLive2) { 4959 // If Val is either of the known-live values, we know it is live! 4960 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4961 return true; 4962 4963 // All values other than instructions and arguments (e.g. constants) are live. 4964 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4965 4966 // If Val is a constant sized alloca in the entry block, it is live, this is 4967 // true because it is just a reference to the stack/frame pointer, which is 4968 // live for the whole function. 4969 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4970 if (AI->isStaticAlloca()) 4971 return true; 4972 4973 // Check to see if this value is already used in the memory instruction's 4974 // block. If so, it's already live into the block at the very least, so we 4975 // can reasonably fold it. 4976 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4977 } 4978 4979 /// It is possible for the addressing mode of the machine to fold the specified 4980 /// instruction into a load or store that ultimately uses it. 4981 /// However, the specified instruction has multiple uses. 4982 /// Given this, it may actually increase register pressure to fold it 4983 /// into the load. For example, consider this code: 4984 /// 4985 /// X = ... 4986 /// Y = X+1 4987 /// use(Y) -> nonload/store 4988 /// Z = Y+1 4989 /// load Z 4990 /// 4991 /// In this case, Y has multiple uses, and can be folded into the load of Z 4992 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4993 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4994 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4995 /// number of computations either. 4996 /// 4997 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4998 /// X was live across 'load Z' for other reasons, we actually *would* want to 4999 /// fold the addressing mode in the Z case. This would make Y die earlier. 5000 bool AddressingModeMatcher:: 5001 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 5002 ExtAddrMode &AMAfter) { 5003 if (IgnoreProfitability) return true; 5004 5005 // AMBefore is the addressing mode before this instruction was folded into it, 5006 // and AMAfter is the addressing mode after the instruction was folded. Get 5007 // the set of registers referenced by AMAfter and subtract out those 5008 // referenced by AMBefore: this is the set of values which folding in this 5009 // address extends the lifetime of. 5010 // 5011 // Note that there are only two potential values being referenced here, 5012 // BaseReg and ScaleReg (global addresses are always available, as are any 5013 // folded immediates). 5014 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5015 5016 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5017 // lifetime wasn't extended by adding this instruction. 5018 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5019 BaseReg = nullptr; 5020 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5021 ScaledReg = nullptr; 5022 5023 // If folding this instruction (and it's subexprs) didn't extend any live 5024 // ranges, we're ok with it. 5025 if (!BaseReg && !ScaledReg) 5026 return true; 5027 5028 // If all uses of this instruction can have the address mode sunk into them, 5029 // we can remove the addressing mode and effectively trade one live register 5030 // for another (at worst.) In this context, folding an addressing mode into 5031 // the use is just a particularly nice way of sinking it. 5032 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5033 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5034 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5035 PSI, BFI)) 5036 return false; // Has a non-memory, non-foldable use! 5037 5038 // Now that we know that all uses of this instruction are part of a chain of 5039 // computation involving only operations that could theoretically be folded 5040 // into a memory use, loop over each of these memory operation uses and see 5041 // if they could *actually* fold the instruction. The assumption is that 5042 // addressing modes are cheap and that duplicating the computation involved 5043 // many times is worthwhile, even on a fastpath. For sinking candidates 5044 // (i.e. cold call sites), this serves as a way to prevent excessive code 5045 // growth since most architectures have some reasonable small and fast way to 5046 // compute an effective address. (i.e LEA on x86) 5047 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5048 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5049 Value *Address = Pair.first; 5050 Type *AddressAccessTy = Pair.second; 5051 unsigned AS = Address->getType()->getPointerAddressSpace(); 5052 5053 // Do a match against the root of this address, ignoring profitability. This 5054 // will tell us if the addressing mode for the memory operation will 5055 // *actually* cover the shared instruction. 5056 ExtAddrMode Result; 5057 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5058 0); 5059 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5060 TPT.getRestorationPoint(); 5061 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5062 AddressAccessTy, AS, MemoryInst, Result, 5063 InsertedInsts, PromotedInsts, TPT, 5064 LargeOffsetGEP, OptSize, PSI, BFI); 5065 Matcher.IgnoreProfitability = true; 5066 bool Success = Matcher.matchAddr(Address, 0); 5067 (void)Success; assert(Success && "Couldn't select *anything*?"); 5068 5069 // The match was to check the profitability, the changes made are not 5070 // part of the original matcher. Therefore, they should be dropped 5071 // otherwise the original matcher will not present the right state. 5072 TPT.rollback(LastKnownGood); 5073 5074 // If the match didn't cover I, then it won't be shared by it. 5075 if (!is_contained(MatchedAddrModeInsts, I)) 5076 return false; 5077 5078 MatchedAddrModeInsts.clear(); 5079 } 5080 5081 return true; 5082 } 5083 5084 /// Return true if the specified values are defined in a 5085 /// different basic block than BB. 5086 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5087 if (Instruction *I = dyn_cast<Instruction>(V)) 5088 return I->getParent() != BB; 5089 return false; 5090 } 5091 5092 /// Sink addressing mode computation immediate before MemoryInst if doing so 5093 /// can be done without increasing register pressure. The need for the 5094 /// register pressure constraint means this can end up being an all or nothing 5095 /// decision for all uses of the same addressing computation. 5096 /// 5097 /// Load and Store Instructions often have addressing modes that can do 5098 /// significant amounts of computation. As such, instruction selection will try 5099 /// to get the load or store to do as much computation as possible for the 5100 /// program. The problem is that isel can only see within a single block. As 5101 /// such, we sink as much legal addressing mode work into the block as possible. 5102 /// 5103 /// This method is used to optimize both load/store and inline asms with memory 5104 /// operands. It's also used to sink addressing computations feeding into cold 5105 /// call sites into their (cold) basic block. 5106 /// 5107 /// The motivation for handling sinking into cold blocks is that doing so can 5108 /// both enable other address mode sinking (by satisfying the register pressure 5109 /// constraint above), and reduce register pressure globally (by removing the 5110 /// addressing mode computation from the fast path entirely.). 5111 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5112 Type *AccessTy, unsigned AddrSpace) { 5113 Value *Repl = Addr; 5114 5115 // Try to collapse single-value PHI nodes. This is necessary to undo 5116 // unprofitable PRE transformations. 5117 SmallVector<Value*, 8> worklist; 5118 SmallPtrSet<Value*, 16> Visited; 5119 worklist.push_back(Addr); 5120 5121 // Use a worklist to iteratively look through PHI and select nodes, and 5122 // ensure that the addressing mode obtained from the non-PHI/select roots of 5123 // the graph are compatible. 5124 bool PhiOrSelectSeen = false; 5125 SmallVector<Instruction*, 16> AddrModeInsts; 5126 const SimplifyQuery SQ(*DL, TLInfo); 5127 AddressingModeCombiner AddrModes(SQ, Addr); 5128 TypePromotionTransaction TPT(RemovedInsts); 5129 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5130 TPT.getRestorationPoint(); 5131 while (!worklist.empty()) { 5132 Value *V = worklist.pop_back_val(); 5133 5134 // We allow traversing cyclic Phi nodes. 5135 // In case of success after this loop we ensure that traversing through 5136 // Phi nodes ends up with all cases to compute address of the form 5137 // BaseGV + Base + Scale * Index + Offset 5138 // where Scale and Offset are constans and BaseGV, Base and Index 5139 // are exactly the same Values in all cases. 5140 // It means that BaseGV, Scale and Offset dominate our memory instruction 5141 // and have the same value as they had in address computation represented 5142 // as Phi. So we can safely sink address computation to memory instruction. 5143 if (!Visited.insert(V).second) 5144 continue; 5145 5146 // For a PHI node, push all of its incoming values. 5147 if (PHINode *P = dyn_cast<PHINode>(V)) { 5148 append_range(worklist, P->incoming_values()); 5149 PhiOrSelectSeen = true; 5150 continue; 5151 } 5152 // Similar for select. 5153 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5154 worklist.push_back(SI->getFalseValue()); 5155 worklist.push_back(SI->getTrueValue()); 5156 PhiOrSelectSeen = true; 5157 continue; 5158 } 5159 5160 // For non-PHIs, determine the addressing mode being computed. Note that 5161 // the result may differ depending on what other uses our candidate 5162 // addressing instructions might have. 5163 AddrModeInsts.clear(); 5164 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5165 0); 5166 // Defer the query (and possible computation of) the dom tree to point of 5167 // actual use. It's expected that most address matches don't actually need 5168 // the domtree. 5169 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5170 Function *F = MemoryInst->getParent()->getParent(); 5171 return this->getDT(*F); 5172 }; 5173 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5174 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5175 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5176 BFI.get()); 5177 5178 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5179 if (GEP && !NewGEPBases.count(GEP)) { 5180 // If splitting the underlying data structure can reduce the offset of a 5181 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5182 // previously split data structures. 5183 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5184 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5185 } 5186 5187 NewAddrMode.OriginalValue = V; 5188 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5189 break; 5190 } 5191 5192 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5193 // or we have multiple but either couldn't combine them or combining them 5194 // wouldn't do anything useful, bail out now. 5195 if (!AddrModes.combineAddrModes()) { 5196 TPT.rollback(LastKnownGood); 5197 return false; 5198 } 5199 bool Modified = TPT.commit(); 5200 5201 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5202 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5203 5204 // If all the instructions matched are already in this BB, don't do anything. 5205 // If we saw a Phi node then it is not local definitely, and if we saw a select 5206 // then we want to push the address calculation past it even if it's already 5207 // in this BB. 5208 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5209 return IsNonLocalValue(V, MemoryInst->getParent()); 5210 })) { 5211 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5212 << "\n"); 5213 return Modified; 5214 } 5215 5216 // Insert this computation right after this user. Since our caller is 5217 // scanning from the top of the BB to the bottom, reuse of the expr are 5218 // guaranteed to happen later. 5219 IRBuilder<> Builder(MemoryInst); 5220 5221 // Now that we determined the addressing expression we want to use and know 5222 // that we have to sink it into this block. Check to see if we have already 5223 // done this for some other load/store instr in this block. If so, reuse 5224 // the computation. Before attempting reuse, check if the address is valid 5225 // as it may have been erased. 5226 5227 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5228 5229 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5230 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5231 if (SunkAddr) { 5232 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5233 << " for " << *MemoryInst << "\n"); 5234 if (SunkAddr->getType() != Addr->getType()) { 5235 if (SunkAddr->getType()->getPointerAddressSpace() != 5236 Addr->getType()->getPointerAddressSpace() && 5237 !DL->isNonIntegralPointerType(Addr->getType())) { 5238 // There are two reasons the address spaces might not match: a no-op 5239 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5240 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5241 // TODO: allow bitcast between different address space pointers with the 5242 // same size. 5243 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5244 SunkAddr = 5245 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5246 } else 5247 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5248 } 5249 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5250 SubtargetInfo->addrSinkUsingGEPs())) { 5251 // By default, we use the GEP-based method when AA is used later. This 5252 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5253 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5254 << " for " << *MemoryInst << "\n"); 5255 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5256 5257 // First, find the pointer. 5258 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5259 ResultPtr = AddrMode.BaseReg; 5260 AddrMode.BaseReg = nullptr; 5261 } 5262 5263 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5264 // We can't add more than one pointer together, nor can we scale a 5265 // pointer (both of which seem meaningless). 5266 if (ResultPtr || AddrMode.Scale != 1) 5267 return Modified; 5268 5269 ResultPtr = AddrMode.ScaledReg; 5270 AddrMode.Scale = 0; 5271 } 5272 5273 // It is only safe to sign extend the BaseReg if we know that the math 5274 // required to create it did not overflow before we extend it. Since 5275 // the original IR value was tossed in favor of a constant back when 5276 // the AddrMode was created we need to bail out gracefully if widths 5277 // do not match instead of extending it. 5278 // 5279 // (See below for code to add the scale.) 5280 if (AddrMode.Scale) { 5281 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5282 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5283 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5284 return Modified; 5285 } 5286 5287 if (AddrMode.BaseGV) { 5288 if (ResultPtr) 5289 return Modified; 5290 5291 ResultPtr = AddrMode.BaseGV; 5292 } 5293 5294 // If the real base value actually came from an inttoptr, then the matcher 5295 // will look through it and provide only the integer value. In that case, 5296 // use it here. 5297 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5298 if (!ResultPtr && AddrMode.BaseReg) { 5299 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5300 "sunkaddr"); 5301 AddrMode.BaseReg = nullptr; 5302 } else if (!ResultPtr && AddrMode.Scale == 1) { 5303 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5304 "sunkaddr"); 5305 AddrMode.Scale = 0; 5306 } 5307 } 5308 5309 if (!ResultPtr && 5310 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5311 SunkAddr = Constant::getNullValue(Addr->getType()); 5312 } else if (!ResultPtr) { 5313 return Modified; 5314 } else { 5315 Type *I8PtrTy = 5316 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5317 Type *I8Ty = Builder.getInt8Ty(); 5318 5319 // Start with the base register. Do this first so that subsequent address 5320 // matching finds it last, which will prevent it from trying to match it 5321 // as the scaled value in case it happens to be a mul. That would be 5322 // problematic if we've sunk a different mul for the scale, because then 5323 // we'd end up sinking both muls. 5324 if (AddrMode.BaseReg) { 5325 Value *V = AddrMode.BaseReg; 5326 if (V->getType() != IntPtrTy) 5327 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5328 5329 ResultIndex = V; 5330 } 5331 5332 // Add the scale value. 5333 if (AddrMode.Scale) { 5334 Value *V = AddrMode.ScaledReg; 5335 if (V->getType() == IntPtrTy) { 5336 // done. 5337 } else { 5338 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5339 cast<IntegerType>(V->getType())->getBitWidth() && 5340 "We can't transform if ScaledReg is too narrow"); 5341 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5342 } 5343 5344 if (AddrMode.Scale != 1) 5345 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5346 "sunkaddr"); 5347 if (ResultIndex) 5348 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5349 else 5350 ResultIndex = V; 5351 } 5352 5353 // Add in the Base Offset if present. 5354 if (AddrMode.BaseOffs) { 5355 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5356 if (ResultIndex) { 5357 // We need to add this separately from the scale above to help with 5358 // SDAG consecutive load/store merging. 5359 if (ResultPtr->getType() != I8PtrTy) 5360 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5361 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, 5362 "sunkaddr", AddrMode.InBounds); 5363 } 5364 5365 ResultIndex = V; 5366 } 5367 5368 if (!ResultIndex) { 5369 SunkAddr = ResultPtr; 5370 } else { 5371 if (ResultPtr->getType() != I8PtrTy) 5372 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5373 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", 5374 AddrMode.InBounds); 5375 } 5376 5377 if (SunkAddr->getType() != Addr->getType()) { 5378 if (SunkAddr->getType()->getPointerAddressSpace() != 5379 Addr->getType()->getPointerAddressSpace() && 5380 !DL->isNonIntegralPointerType(Addr->getType())) { 5381 // There are two reasons the address spaces might not match: a no-op 5382 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5383 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5384 // TODO: allow bitcast between different address space pointers with 5385 // the same size. 5386 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5387 SunkAddr = 5388 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5389 } else 5390 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5391 } 5392 } 5393 } else { 5394 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5395 // non-integral pointers, so in that case bail out now. 5396 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5397 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5398 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5399 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5400 if (DL->isNonIntegralPointerType(Addr->getType()) || 5401 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5402 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5403 (AddrMode.BaseGV && 5404 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5405 return Modified; 5406 5407 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5408 << " for " << *MemoryInst << "\n"); 5409 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5410 Value *Result = nullptr; 5411 5412 // Start with the base register. Do this first so that subsequent address 5413 // matching finds it last, which will prevent it from trying to match it 5414 // as the scaled value in case it happens to be a mul. That would be 5415 // problematic if we've sunk a different mul for the scale, because then 5416 // we'd end up sinking both muls. 5417 if (AddrMode.BaseReg) { 5418 Value *V = AddrMode.BaseReg; 5419 if (V->getType()->isPointerTy()) 5420 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5421 if (V->getType() != IntPtrTy) 5422 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5423 Result = V; 5424 } 5425 5426 // Add the scale value. 5427 if (AddrMode.Scale) { 5428 Value *V = AddrMode.ScaledReg; 5429 if (V->getType() == IntPtrTy) { 5430 // done. 5431 } else if (V->getType()->isPointerTy()) { 5432 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5433 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5434 cast<IntegerType>(V->getType())->getBitWidth()) { 5435 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5436 } else { 5437 // It is only safe to sign extend the BaseReg if we know that the math 5438 // required to create it did not overflow before we extend it. Since 5439 // the original IR value was tossed in favor of a constant back when 5440 // the AddrMode was created we need to bail out gracefully if widths 5441 // do not match instead of extending it. 5442 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5443 if (I && (Result != AddrMode.BaseReg)) 5444 I->eraseFromParent(); 5445 return Modified; 5446 } 5447 if (AddrMode.Scale != 1) 5448 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5449 "sunkaddr"); 5450 if (Result) 5451 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5452 else 5453 Result = V; 5454 } 5455 5456 // Add in the BaseGV if present. 5457 if (AddrMode.BaseGV) { 5458 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5459 if (Result) 5460 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5461 else 5462 Result = V; 5463 } 5464 5465 // Add in the Base Offset if present. 5466 if (AddrMode.BaseOffs) { 5467 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5468 if (Result) 5469 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5470 else 5471 Result = V; 5472 } 5473 5474 if (!Result) 5475 SunkAddr = Constant::getNullValue(Addr->getType()); 5476 else 5477 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5478 } 5479 5480 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5481 // Store the newly computed address into the cache. In the case we reused a 5482 // value, this should be idempotent. 5483 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5484 5485 // If we have no uses, recursively delete the value and all dead instructions 5486 // using it. 5487 if (Repl->use_empty()) { 5488 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5489 RecursivelyDeleteTriviallyDeadInstructions( 5490 Repl, TLInfo, nullptr, 5491 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5492 }); 5493 } 5494 ++NumMemoryInsts; 5495 return true; 5496 } 5497 5498 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5499 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5500 /// only handle a 2 operand GEP in the same basic block or a splat constant 5501 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5502 /// index. 5503 /// 5504 /// If the existing GEP has a vector base pointer that is splat, we can look 5505 /// through the splat to find the scalar pointer. If we can't find a scalar 5506 /// pointer there's nothing we can do. 5507 /// 5508 /// If we have a GEP with more than 2 indices where the middle indices are all 5509 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5510 /// 5511 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5512 /// followed by a GEP with an all zeroes vector index. This will enable 5513 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5514 /// zero index. 5515 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5516 Value *Ptr) { 5517 Value *NewAddr; 5518 5519 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5520 // Don't optimize GEPs that don't have indices. 5521 if (!GEP->hasIndices()) 5522 return false; 5523 5524 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5525 // FIXME: We should support this by sinking the GEP. 5526 if (MemoryInst->getParent() != GEP->getParent()) 5527 return false; 5528 5529 SmallVector<Value *, 2> Ops(GEP->operands()); 5530 5531 bool RewriteGEP = false; 5532 5533 if (Ops[0]->getType()->isVectorTy()) { 5534 Ops[0] = getSplatValue(Ops[0]); 5535 if (!Ops[0]) 5536 return false; 5537 RewriteGEP = true; 5538 } 5539 5540 unsigned FinalIndex = Ops.size() - 1; 5541 5542 // Ensure all but the last index is 0. 5543 // FIXME: This isn't strictly required. All that's required is that they are 5544 // all scalars or splats. 5545 for (unsigned i = 1; i < FinalIndex; ++i) { 5546 auto *C = dyn_cast<Constant>(Ops[i]); 5547 if (!C) 5548 return false; 5549 if (isa<VectorType>(C->getType())) 5550 C = C->getSplatValue(); 5551 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5552 if (!CI || !CI->isZero()) 5553 return false; 5554 // Scalarize the index if needed. 5555 Ops[i] = CI; 5556 } 5557 5558 // Try to scalarize the final index. 5559 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5560 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5561 auto *C = dyn_cast<ConstantInt>(V); 5562 // Don't scalarize all zeros vector. 5563 if (!C || !C->isZero()) { 5564 Ops[FinalIndex] = V; 5565 RewriteGEP = true; 5566 } 5567 } 5568 } 5569 5570 // If we made any changes or the we have extra operands, we need to generate 5571 // new instructions. 5572 if (!RewriteGEP && Ops.size() == 2) 5573 return false; 5574 5575 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5576 5577 IRBuilder<> Builder(MemoryInst); 5578 5579 Type *SourceTy = GEP->getSourceElementType(); 5580 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5581 5582 // If the final index isn't a vector, emit a scalar GEP containing all ops 5583 // and a vector GEP with all zeroes final index. 5584 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5585 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5586 makeArrayRef(Ops).drop_front()); 5587 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5588 auto *SecondTy = GetElementPtrInst::getIndexedType( 5589 SourceTy, makeArrayRef(Ops).drop_front()); 5590 NewAddr = 5591 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5592 } else { 5593 Value *Base = Ops[0]; 5594 Value *Index = Ops[FinalIndex]; 5595 5596 // Create a scalar GEP if there are more than 2 operands. 5597 if (Ops.size() != 2) { 5598 // Replace the last index with 0. 5599 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5600 Base = Builder.CreateGEP(SourceTy, Base, 5601 makeArrayRef(Ops).drop_front()); 5602 SourceTy = GetElementPtrInst::getIndexedType( 5603 SourceTy, makeArrayRef(Ops).drop_front()); 5604 } 5605 5606 // Now create the GEP with scalar pointer and vector index. 5607 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5608 } 5609 } else if (!isa<Constant>(Ptr)) { 5610 // Not a GEP, maybe its a splat and we can create a GEP to enable 5611 // SelectionDAGBuilder to use it as a uniform base. 5612 Value *V = getSplatValue(Ptr); 5613 if (!V) 5614 return false; 5615 5616 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5617 5618 IRBuilder<> Builder(MemoryInst); 5619 5620 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5621 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5622 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5623 Type *ScalarTy; 5624 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5625 Intrinsic::masked_gather) { 5626 ScalarTy = MemoryInst->getType()->getScalarType(); 5627 } else { 5628 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5629 Intrinsic::masked_scatter); 5630 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5631 } 5632 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5633 } else { 5634 // Constant, SelectionDAGBuilder knows to check if its a splat. 5635 return false; 5636 } 5637 5638 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5639 5640 // If we have no uses, recursively delete the value and all dead instructions 5641 // using it. 5642 if (Ptr->use_empty()) 5643 RecursivelyDeleteTriviallyDeadInstructions( 5644 Ptr, TLInfo, nullptr, 5645 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5646 5647 return true; 5648 } 5649 5650 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5651 /// address computing into the block when possible / profitable. 5652 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5653 bool MadeChange = false; 5654 5655 const TargetRegisterInfo *TRI = 5656 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5657 TargetLowering::AsmOperandInfoVector TargetConstraints = 5658 TLI->ParseConstraints(*DL, TRI, *CS); 5659 unsigned ArgNo = 0; 5660 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5661 // Compute the constraint code and ConstraintType to use. 5662 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5663 5664 // TODO: Also handle C_Address? 5665 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5666 OpInfo.isIndirect) { 5667 Value *OpVal = CS->getArgOperand(ArgNo++); 5668 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5669 } else if (OpInfo.Type == InlineAsm::isInput) 5670 ArgNo++; 5671 } 5672 5673 return MadeChange; 5674 } 5675 5676 /// Check if all the uses of \p Val are equivalent (or free) zero or 5677 /// sign extensions. 5678 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5679 assert(!Val->use_empty() && "Input must have at least one use"); 5680 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5681 bool IsSExt = isa<SExtInst>(FirstUser); 5682 Type *ExtTy = FirstUser->getType(); 5683 for (const User *U : Val->users()) { 5684 const Instruction *UI = cast<Instruction>(U); 5685 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5686 return false; 5687 Type *CurTy = UI->getType(); 5688 // Same input and output types: Same instruction after CSE. 5689 if (CurTy == ExtTy) 5690 continue; 5691 5692 // If IsSExt is true, we are in this situation: 5693 // a = Val 5694 // b = sext ty1 a to ty2 5695 // c = sext ty1 a to ty3 5696 // Assuming ty2 is shorter than ty3, this could be turned into: 5697 // a = Val 5698 // b = sext ty1 a to ty2 5699 // c = sext ty2 b to ty3 5700 // However, the last sext is not free. 5701 if (IsSExt) 5702 return false; 5703 5704 // This is a ZExt, maybe this is free to extend from one type to another. 5705 // In that case, we would not account for a different use. 5706 Type *NarrowTy; 5707 Type *LargeTy; 5708 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5709 CurTy->getScalarType()->getIntegerBitWidth()) { 5710 NarrowTy = CurTy; 5711 LargeTy = ExtTy; 5712 } else { 5713 NarrowTy = ExtTy; 5714 LargeTy = CurTy; 5715 } 5716 5717 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5718 return false; 5719 } 5720 // All uses are the same or can be derived from one another for free. 5721 return true; 5722 } 5723 5724 /// Try to speculatively promote extensions in \p Exts and continue 5725 /// promoting through newly promoted operands recursively as far as doing so is 5726 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5727 /// When some promotion happened, \p TPT contains the proper state to revert 5728 /// them. 5729 /// 5730 /// \return true if some promotion happened, false otherwise. 5731 bool CodeGenPrepare::tryToPromoteExts( 5732 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5733 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5734 unsigned CreatedInstsCost) { 5735 bool Promoted = false; 5736 5737 // Iterate over all the extensions to try to promote them. 5738 for (auto *I : Exts) { 5739 // Early check if we directly have ext(load). 5740 if (isa<LoadInst>(I->getOperand(0))) { 5741 ProfitablyMovedExts.push_back(I); 5742 continue; 5743 } 5744 5745 // Check whether or not we want to do any promotion. The reason we have 5746 // this check inside the for loop is to catch the case where an extension 5747 // is directly fed by a load because in such case the extension can be moved 5748 // up without any promotion on its operands. 5749 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5750 return false; 5751 5752 // Get the action to perform the promotion. 5753 TypePromotionHelper::Action TPH = 5754 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5755 // Check if we can promote. 5756 if (!TPH) { 5757 // Save the current extension as we cannot move up through its operand. 5758 ProfitablyMovedExts.push_back(I); 5759 continue; 5760 } 5761 5762 // Save the current state. 5763 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5764 TPT.getRestorationPoint(); 5765 SmallVector<Instruction *, 4> NewExts; 5766 unsigned NewCreatedInstsCost = 0; 5767 unsigned ExtCost = !TLI->isExtFree(I); 5768 // Promote. 5769 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5770 &NewExts, nullptr, *TLI); 5771 assert(PromotedVal && 5772 "TypePromotionHelper should have filtered out those cases"); 5773 5774 // We would be able to merge only one extension in a load. 5775 // Therefore, if we have more than 1 new extension we heuristically 5776 // cut this search path, because it means we degrade the code quality. 5777 // With exactly 2, the transformation is neutral, because we will merge 5778 // one extension but leave one. However, we optimistically keep going, 5779 // because the new extension may be removed too. 5780 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5781 // FIXME: It would be possible to propagate a negative value instead of 5782 // conservatively ceiling it to 0. 5783 TotalCreatedInstsCost = 5784 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5785 if (!StressExtLdPromotion && 5786 (TotalCreatedInstsCost > 1 || 5787 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5788 // This promotion is not profitable, rollback to the previous state, and 5789 // save the current extension in ProfitablyMovedExts as the latest 5790 // speculative promotion turned out to be unprofitable. 5791 TPT.rollback(LastKnownGood); 5792 ProfitablyMovedExts.push_back(I); 5793 continue; 5794 } 5795 // Continue promoting NewExts as far as doing so is profitable. 5796 SmallVector<Instruction *, 2> NewlyMovedExts; 5797 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5798 bool NewPromoted = false; 5799 for (auto *ExtInst : NewlyMovedExts) { 5800 Instruction *MovedExt = cast<Instruction>(ExtInst); 5801 Value *ExtOperand = MovedExt->getOperand(0); 5802 // If we have reached to a load, we need this extra profitability check 5803 // as it could potentially be merged into an ext(load). 5804 if (isa<LoadInst>(ExtOperand) && 5805 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5806 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5807 continue; 5808 5809 ProfitablyMovedExts.push_back(MovedExt); 5810 NewPromoted = true; 5811 } 5812 5813 // If none of speculative promotions for NewExts is profitable, rollback 5814 // and save the current extension (I) as the last profitable extension. 5815 if (!NewPromoted) { 5816 TPT.rollback(LastKnownGood); 5817 ProfitablyMovedExts.push_back(I); 5818 continue; 5819 } 5820 // The promotion is profitable. 5821 Promoted = true; 5822 } 5823 return Promoted; 5824 } 5825 5826 /// Merging redundant sexts when one is dominating the other. 5827 bool CodeGenPrepare::mergeSExts(Function &F) { 5828 bool Changed = false; 5829 for (auto &Entry : ValToSExtendedUses) { 5830 SExts &Insts = Entry.second; 5831 SExts CurPts; 5832 for (Instruction *Inst : Insts) { 5833 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5834 Inst->getOperand(0) != Entry.first) 5835 continue; 5836 bool inserted = false; 5837 for (auto &Pt : CurPts) { 5838 if (getDT(F).dominates(Inst, Pt)) { 5839 Pt->replaceAllUsesWith(Inst); 5840 RemovedInsts.insert(Pt); 5841 Pt->removeFromParent(); 5842 Pt = Inst; 5843 inserted = true; 5844 Changed = true; 5845 break; 5846 } 5847 if (!getDT(F).dominates(Pt, Inst)) 5848 // Give up if we need to merge in a common dominator as the 5849 // experiments show it is not profitable. 5850 continue; 5851 Inst->replaceAllUsesWith(Pt); 5852 RemovedInsts.insert(Inst); 5853 Inst->removeFromParent(); 5854 inserted = true; 5855 Changed = true; 5856 break; 5857 } 5858 if (!inserted) 5859 CurPts.push_back(Inst); 5860 } 5861 } 5862 return Changed; 5863 } 5864 5865 // Splitting large data structures so that the GEPs accessing them can have 5866 // smaller offsets so that they can be sunk to the same blocks as their users. 5867 // For example, a large struct starting from %base is split into two parts 5868 // where the second part starts from %new_base. 5869 // 5870 // Before: 5871 // BB0: 5872 // %base = 5873 // 5874 // BB1: 5875 // %gep0 = gep %base, off0 5876 // %gep1 = gep %base, off1 5877 // %gep2 = gep %base, off2 5878 // 5879 // BB2: 5880 // %load1 = load %gep0 5881 // %load2 = load %gep1 5882 // %load3 = load %gep2 5883 // 5884 // After: 5885 // BB0: 5886 // %base = 5887 // %new_base = gep %base, off0 5888 // 5889 // BB1: 5890 // %new_gep0 = %new_base 5891 // %new_gep1 = gep %new_base, off1 - off0 5892 // %new_gep2 = gep %new_base, off2 - off0 5893 // 5894 // BB2: 5895 // %load1 = load i32, i32* %new_gep0 5896 // %load2 = load i32, i32* %new_gep1 5897 // %load3 = load i32, i32* %new_gep2 5898 // 5899 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5900 // their offsets are smaller enough to fit into the addressing mode. 5901 bool CodeGenPrepare::splitLargeGEPOffsets() { 5902 bool Changed = false; 5903 for (auto &Entry : LargeOffsetGEPMap) { 5904 Value *OldBase = Entry.first; 5905 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5906 &LargeOffsetGEPs = Entry.second; 5907 auto compareGEPOffset = 5908 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5909 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5910 if (LHS.first == RHS.first) 5911 return false; 5912 if (LHS.second != RHS.second) 5913 return LHS.second < RHS.second; 5914 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5915 }; 5916 // Sorting all the GEPs of the same data structures based on the offsets. 5917 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5918 LargeOffsetGEPs.erase( 5919 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5920 LargeOffsetGEPs.end()); 5921 // Skip if all the GEPs have the same offsets. 5922 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5923 continue; 5924 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5925 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5926 Value *NewBaseGEP = nullptr; 5927 5928 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5929 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5930 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5931 int64_t Offset = LargeOffsetGEP->second; 5932 if (Offset != BaseOffset) { 5933 TargetLowering::AddrMode AddrMode; 5934 AddrMode.BaseOffs = Offset - BaseOffset; 5935 // The result type of the GEP might not be the type of the memory 5936 // access. 5937 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5938 GEP->getResultElementType(), 5939 GEP->getAddressSpace())) { 5940 // We need to create a new base if the offset to the current base is 5941 // too large to fit into the addressing mode. So, a very large struct 5942 // may be split into several parts. 5943 BaseGEP = GEP; 5944 BaseOffset = Offset; 5945 NewBaseGEP = nullptr; 5946 } 5947 } 5948 5949 // Generate a new GEP to replace the current one. 5950 LLVMContext &Ctx = GEP->getContext(); 5951 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5952 Type *I8PtrTy = 5953 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5954 Type *I8Ty = Type::getInt8Ty(Ctx); 5955 5956 if (!NewBaseGEP) { 5957 // Create a new base if we don't have one yet. Find the insertion 5958 // pointer for the new base first. 5959 BasicBlock::iterator NewBaseInsertPt; 5960 BasicBlock *NewBaseInsertBB; 5961 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5962 // If the base of the struct is an instruction, the new base will be 5963 // inserted close to it. 5964 NewBaseInsertBB = BaseI->getParent(); 5965 if (isa<PHINode>(BaseI)) 5966 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5967 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5968 NewBaseInsertBB = 5969 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5970 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5971 } else 5972 NewBaseInsertPt = std::next(BaseI->getIterator()); 5973 } else { 5974 // If the current base is an argument or global value, the new base 5975 // will be inserted to the entry block. 5976 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5977 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5978 } 5979 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5980 // Create a new base. 5981 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5982 NewBaseGEP = OldBase; 5983 if (NewBaseGEP->getType() != I8PtrTy) 5984 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5985 NewBaseGEP = 5986 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5987 NewGEPBases.insert(NewBaseGEP); 5988 } 5989 5990 IRBuilder<> Builder(GEP); 5991 Value *NewGEP = NewBaseGEP; 5992 if (Offset == BaseOffset) { 5993 if (GEP->getType() != I8PtrTy) 5994 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5995 } else { 5996 // Calculate the new offset for the new GEP. 5997 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5998 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5999 6000 if (GEP->getType() != I8PtrTy) 6001 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 6002 } 6003 GEP->replaceAllUsesWith(NewGEP); 6004 LargeOffsetGEPID.erase(GEP); 6005 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6006 GEP->eraseFromParent(); 6007 Changed = true; 6008 } 6009 } 6010 return Changed; 6011 } 6012 6013 bool CodeGenPrepare::optimizePhiType( 6014 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6015 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6016 // We are looking for a collection on interconnected phi nodes that together 6017 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6018 // are of the same type. Convert the whole set of nodes to the type of the 6019 // bitcast. 6020 Type *PhiTy = I->getType(); 6021 Type *ConvertTy = nullptr; 6022 if (Visited.count(I) || 6023 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6024 return false; 6025 6026 SmallVector<Instruction *, 4> Worklist; 6027 Worklist.push_back(cast<Instruction>(I)); 6028 SmallPtrSet<PHINode *, 4> PhiNodes; 6029 PhiNodes.insert(I); 6030 Visited.insert(I); 6031 SmallPtrSet<Instruction *, 4> Defs; 6032 SmallPtrSet<Instruction *, 4> Uses; 6033 // This works by adding extra bitcasts between load/stores and removing 6034 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6035 // we can get in the situation where we remove a bitcast in one iteration 6036 // just to add it again in the next. We need to ensure that at least one 6037 // bitcast we remove are anchored to something that will not change back. 6038 bool AnyAnchored = false; 6039 6040 while (!Worklist.empty()) { 6041 Instruction *II = Worklist.pop_back_val(); 6042 6043 if (auto *Phi = dyn_cast<PHINode>(II)) { 6044 // Handle Defs, which might also be PHI's 6045 for (Value *V : Phi->incoming_values()) { 6046 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6047 if (!PhiNodes.count(OpPhi)) { 6048 if (!Visited.insert(OpPhi).second) 6049 return false; 6050 PhiNodes.insert(OpPhi); 6051 Worklist.push_back(OpPhi); 6052 } 6053 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6054 if (!OpLoad->isSimple()) 6055 return false; 6056 if (Defs.insert(OpLoad).second) 6057 Worklist.push_back(OpLoad); 6058 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6059 if (Defs.insert(OpEx).second) 6060 Worklist.push_back(OpEx); 6061 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6062 if (!ConvertTy) 6063 ConvertTy = OpBC->getOperand(0)->getType(); 6064 if (OpBC->getOperand(0)->getType() != ConvertTy) 6065 return false; 6066 if (Defs.insert(OpBC).second) { 6067 Worklist.push_back(OpBC); 6068 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6069 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6070 } 6071 } else if (!isa<UndefValue>(V)) { 6072 return false; 6073 } 6074 } 6075 } 6076 6077 // Handle uses which might also be phi's 6078 for (User *V : II->users()) { 6079 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6080 if (!PhiNodes.count(OpPhi)) { 6081 if (Visited.count(OpPhi)) 6082 return false; 6083 PhiNodes.insert(OpPhi); 6084 Visited.insert(OpPhi); 6085 Worklist.push_back(OpPhi); 6086 } 6087 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6088 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6089 return false; 6090 Uses.insert(OpStore); 6091 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6092 if (!ConvertTy) 6093 ConvertTy = OpBC->getType(); 6094 if (OpBC->getType() != ConvertTy) 6095 return false; 6096 Uses.insert(OpBC); 6097 AnyAnchored |= 6098 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6099 } else { 6100 return false; 6101 } 6102 } 6103 } 6104 6105 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6106 return false; 6107 6108 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6109 << *ConvertTy << "\n"); 6110 6111 // Create all the new phi nodes of the new type, and bitcast any loads to the 6112 // correct type. 6113 ValueToValueMap ValMap; 6114 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6115 for (Instruction *D : Defs) { 6116 if (isa<BitCastInst>(D)) { 6117 ValMap[D] = D->getOperand(0); 6118 DeletedInstrs.insert(D); 6119 } else { 6120 ValMap[D] = 6121 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6122 } 6123 } 6124 for (PHINode *Phi : PhiNodes) 6125 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6126 Phi->getName() + ".tc", Phi); 6127 // Pipe together all the PhiNodes. 6128 for (PHINode *Phi : PhiNodes) { 6129 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6130 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6131 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6132 Phi->getIncomingBlock(i)); 6133 Visited.insert(NewPhi); 6134 } 6135 // And finally pipe up the stores and bitcasts 6136 for (Instruction *U : Uses) { 6137 if (isa<BitCastInst>(U)) { 6138 DeletedInstrs.insert(U); 6139 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6140 } else { 6141 U->setOperand(0, 6142 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6143 } 6144 } 6145 6146 // Save the removed phis to be deleted later. 6147 for (PHINode *Phi : PhiNodes) 6148 DeletedInstrs.insert(Phi); 6149 return true; 6150 } 6151 6152 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6153 if (!OptimizePhiTypes) 6154 return false; 6155 6156 bool Changed = false; 6157 SmallPtrSet<PHINode *, 4> Visited; 6158 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6159 6160 // Attempt to optimize all the phis in the functions to the correct type. 6161 for (auto &BB : F) 6162 for (auto &Phi : BB.phis()) 6163 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6164 6165 // Remove any old phi's that have been converted. 6166 for (auto *I : DeletedInstrs) { 6167 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 6168 I->eraseFromParent(); 6169 } 6170 6171 return Changed; 6172 } 6173 6174 /// Return true, if an ext(load) can be formed from an extension in 6175 /// \p MovedExts. 6176 bool CodeGenPrepare::canFormExtLd( 6177 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6178 Instruction *&Inst, bool HasPromoted) { 6179 for (auto *MovedExtInst : MovedExts) { 6180 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6181 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6182 Inst = MovedExtInst; 6183 break; 6184 } 6185 } 6186 if (!LI) 6187 return false; 6188 6189 // If they're already in the same block, there's nothing to do. 6190 // Make the cheap checks first if we did not promote. 6191 // If we promoted, we need to check if it is indeed profitable. 6192 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6193 return false; 6194 6195 return TLI->isExtLoad(LI, Inst, *DL); 6196 } 6197 6198 /// Move a zext or sext fed by a load into the same basic block as the load, 6199 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6200 /// extend into the load. 6201 /// 6202 /// E.g., 6203 /// \code 6204 /// %ld = load i32* %addr 6205 /// %add = add nuw i32 %ld, 4 6206 /// %zext = zext i32 %add to i64 6207 // \endcode 6208 /// => 6209 /// \code 6210 /// %ld = load i32* %addr 6211 /// %zext = zext i32 %ld to i64 6212 /// %add = add nuw i64 %zext, 4 6213 /// \encode 6214 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6215 /// allow us to match zext(load i32*) to i64. 6216 /// 6217 /// Also, try to promote the computations used to obtain a sign extended 6218 /// value used into memory accesses. 6219 /// E.g., 6220 /// \code 6221 /// a = add nsw i32 b, 3 6222 /// d = sext i32 a to i64 6223 /// e = getelementptr ..., i64 d 6224 /// \endcode 6225 /// => 6226 /// \code 6227 /// f = sext i32 b to i64 6228 /// a = add nsw i64 f, 3 6229 /// e = getelementptr ..., i64 a 6230 /// \endcode 6231 /// 6232 /// \p Inst[in/out] the extension may be modified during the process if some 6233 /// promotions apply. 6234 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6235 bool AllowPromotionWithoutCommonHeader = false; 6236 /// See if it is an interesting sext operations for the address type 6237 /// promotion before trying to promote it, e.g., the ones with the right 6238 /// type and used in memory accesses. 6239 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6240 *Inst, AllowPromotionWithoutCommonHeader); 6241 TypePromotionTransaction TPT(RemovedInsts); 6242 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6243 TPT.getRestorationPoint(); 6244 SmallVector<Instruction *, 1> Exts; 6245 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6246 Exts.push_back(Inst); 6247 6248 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6249 6250 // Look for a load being extended. 6251 LoadInst *LI = nullptr; 6252 Instruction *ExtFedByLoad; 6253 6254 // Try to promote a chain of computation if it allows to form an extended 6255 // load. 6256 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6257 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6258 TPT.commit(); 6259 // Move the extend into the same block as the load. 6260 ExtFedByLoad->moveAfter(LI); 6261 ++NumExtsMoved; 6262 Inst = ExtFedByLoad; 6263 return true; 6264 } 6265 6266 // Continue promoting SExts if known as considerable depending on targets. 6267 if (ATPConsiderable && 6268 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6269 HasPromoted, TPT, SpeculativelyMovedExts)) 6270 return true; 6271 6272 TPT.rollback(LastKnownGood); 6273 return false; 6274 } 6275 6276 // Perform address type promotion if doing so is profitable. 6277 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6278 // instructions that sign extended the same initial value. However, if 6279 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6280 // extension is just profitable. 6281 bool CodeGenPrepare::performAddressTypePromotion( 6282 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6283 bool HasPromoted, TypePromotionTransaction &TPT, 6284 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6285 bool Promoted = false; 6286 SmallPtrSet<Instruction *, 1> UnhandledExts; 6287 bool AllSeenFirst = true; 6288 for (auto *I : SpeculativelyMovedExts) { 6289 Value *HeadOfChain = I->getOperand(0); 6290 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6291 SeenChainsForSExt.find(HeadOfChain); 6292 // If there is an unhandled SExt which has the same header, try to promote 6293 // it as well. 6294 if (AlreadySeen != SeenChainsForSExt.end()) { 6295 if (AlreadySeen->second != nullptr) 6296 UnhandledExts.insert(AlreadySeen->second); 6297 AllSeenFirst = false; 6298 } 6299 } 6300 6301 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6302 SpeculativelyMovedExts.size() == 1)) { 6303 TPT.commit(); 6304 if (HasPromoted) 6305 Promoted = true; 6306 for (auto *I : SpeculativelyMovedExts) { 6307 Value *HeadOfChain = I->getOperand(0); 6308 SeenChainsForSExt[HeadOfChain] = nullptr; 6309 ValToSExtendedUses[HeadOfChain].push_back(I); 6310 } 6311 // Update Inst as promotion happen. 6312 Inst = SpeculativelyMovedExts.pop_back_val(); 6313 } else { 6314 // This is the first chain visited from the header, keep the current chain 6315 // as unhandled. Defer to promote this until we encounter another SExt 6316 // chain derived from the same header. 6317 for (auto *I : SpeculativelyMovedExts) { 6318 Value *HeadOfChain = I->getOperand(0); 6319 SeenChainsForSExt[HeadOfChain] = Inst; 6320 } 6321 return false; 6322 } 6323 6324 if (!AllSeenFirst && !UnhandledExts.empty()) 6325 for (auto *VisitedSExt : UnhandledExts) { 6326 if (RemovedInsts.count(VisitedSExt)) 6327 continue; 6328 TypePromotionTransaction TPT(RemovedInsts); 6329 SmallVector<Instruction *, 1> Exts; 6330 SmallVector<Instruction *, 2> Chains; 6331 Exts.push_back(VisitedSExt); 6332 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6333 TPT.commit(); 6334 if (HasPromoted) 6335 Promoted = true; 6336 for (auto *I : Chains) { 6337 Value *HeadOfChain = I->getOperand(0); 6338 // Mark this as handled. 6339 SeenChainsForSExt[HeadOfChain] = nullptr; 6340 ValToSExtendedUses[HeadOfChain].push_back(I); 6341 } 6342 } 6343 return Promoted; 6344 } 6345 6346 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6347 BasicBlock *DefBB = I->getParent(); 6348 6349 // If the result of a {s|z}ext and its source are both live out, rewrite all 6350 // other uses of the source with result of extension. 6351 Value *Src = I->getOperand(0); 6352 if (Src->hasOneUse()) 6353 return false; 6354 6355 // Only do this xform if truncating is free. 6356 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6357 return false; 6358 6359 // Only safe to perform the optimization if the source is also defined in 6360 // this block. 6361 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6362 return false; 6363 6364 bool DefIsLiveOut = false; 6365 for (User *U : I->users()) { 6366 Instruction *UI = cast<Instruction>(U); 6367 6368 // Figure out which BB this ext is used in. 6369 BasicBlock *UserBB = UI->getParent(); 6370 if (UserBB == DefBB) continue; 6371 DefIsLiveOut = true; 6372 break; 6373 } 6374 if (!DefIsLiveOut) 6375 return false; 6376 6377 // Make sure none of the uses are PHI nodes. 6378 for (User *U : Src->users()) { 6379 Instruction *UI = cast<Instruction>(U); 6380 BasicBlock *UserBB = UI->getParent(); 6381 if (UserBB == DefBB) continue; 6382 // Be conservative. We don't want this xform to end up introducing 6383 // reloads just before load / store instructions. 6384 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6385 return false; 6386 } 6387 6388 // InsertedTruncs - Only insert one trunc in each block once. 6389 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6390 6391 bool MadeChange = false; 6392 for (Use &U : Src->uses()) { 6393 Instruction *User = cast<Instruction>(U.getUser()); 6394 6395 // Figure out which BB this ext is used in. 6396 BasicBlock *UserBB = User->getParent(); 6397 if (UserBB == DefBB) continue; 6398 6399 // Both src and def are live in this block. Rewrite the use. 6400 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6401 6402 if (!InsertedTrunc) { 6403 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6404 assert(InsertPt != UserBB->end()); 6405 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6406 InsertedInsts.insert(InsertedTrunc); 6407 } 6408 6409 // Replace a use of the {s|z}ext source with a use of the result. 6410 U = InsertedTrunc; 6411 ++NumExtUses; 6412 MadeChange = true; 6413 } 6414 6415 return MadeChange; 6416 } 6417 6418 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6419 // just after the load if the target can fold this into one extload instruction, 6420 // with the hope of eliminating some of the other later "and" instructions using 6421 // the loaded value. "and"s that are made trivially redundant by the insertion 6422 // of the new "and" are removed by this function, while others (e.g. those whose 6423 // path from the load goes through a phi) are left for isel to potentially 6424 // remove. 6425 // 6426 // For example: 6427 // 6428 // b0: 6429 // x = load i32 6430 // ... 6431 // b1: 6432 // y = and x, 0xff 6433 // z = use y 6434 // 6435 // becomes: 6436 // 6437 // b0: 6438 // x = load i32 6439 // x' = and x, 0xff 6440 // ... 6441 // b1: 6442 // z = use x' 6443 // 6444 // whereas: 6445 // 6446 // b0: 6447 // x1 = load i32 6448 // ... 6449 // b1: 6450 // x2 = load i32 6451 // ... 6452 // b2: 6453 // x = phi x1, x2 6454 // y = and x, 0xff 6455 // 6456 // becomes (after a call to optimizeLoadExt for each load): 6457 // 6458 // b0: 6459 // x1 = load i32 6460 // x1' = and x1, 0xff 6461 // ... 6462 // b1: 6463 // x2 = load i32 6464 // x2' = and x2, 0xff 6465 // ... 6466 // b2: 6467 // x = phi x1', x2' 6468 // y = and x, 0xff 6469 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6470 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6471 return false; 6472 6473 // Skip loads we've already transformed. 6474 if (Load->hasOneUse() && 6475 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6476 return false; 6477 6478 // Look at all uses of Load, looking through phis, to determine how many bits 6479 // of the loaded value are needed. 6480 SmallVector<Instruction *, 8> WorkList; 6481 SmallPtrSet<Instruction *, 16> Visited; 6482 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6483 for (auto *U : Load->users()) 6484 WorkList.push_back(cast<Instruction>(U)); 6485 6486 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6487 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6488 // If the BitWidth is 0, do not try to optimize the type 6489 if (BitWidth == 0) 6490 return false; 6491 6492 APInt DemandBits(BitWidth, 0); 6493 APInt WidestAndBits(BitWidth, 0); 6494 6495 while (!WorkList.empty()) { 6496 Instruction *I = WorkList.pop_back_val(); 6497 6498 // Break use-def graph loops. 6499 if (!Visited.insert(I).second) 6500 continue; 6501 6502 // For a PHI node, push all of its users. 6503 if (auto *Phi = dyn_cast<PHINode>(I)) { 6504 for (auto *U : Phi->users()) 6505 WorkList.push_back(cast<Instruction>(U)); 6506 continue; 6507 } 6508 6509 switch (I->getOpcode()) { 6510 case Instruction::And: { 6511 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6512 if (!AndC) 6513 return false; 6514 APInt AndBits = AndC->getValue(); 6515 DemandBits |= AndBits; 6516 // Keep track of the widest and mask we see. 6517 if (AndBits.ugt(WidestAndBits)) 6518 WidestAndBits = AndBits; 6519 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6520 AndsToMaybeRemove.push_back(I); 6521 break; 6522 } 6523 6524 case Instruction::Shl: { 6525 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6526 if (!ShlC) 6527 return false; 6528 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6529 DemandBits.setLowBits(BitWidth - ShiftAmt); 6530 break; 6531 } 6532 6533 case Instruction::Trunc: { 6534 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6535 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6536 DemandBits.setLowBits(TruncBitWidth); 6537 break; 6538 } 6539 6540 default: 6541 return false; 6542 } 6543 } 6544 6545 uint32_t ActiveBits = DemandBits.getActiveBits(); 6546 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6547 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6548 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6549 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6550 // followed by an AND. 6551 // TODO: Look into removing this restriction by fixing backends to either 6552 // return false for isLoadExtLegal for i1 or have them select this pattern to 6553 // a single instruction. 6554 // 6555 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6556 // mask, since these are the only ands that will be removed by isel. 6557 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6558 WidestAndBits != DemandBits) 6559 return false; 6560 6561 LLVMContext &Ctx = Load->getType()->getContext(); 6562 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6563 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6564 6565 // Reject cases that won't be matched as extloads. 6566 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6567 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6568 return false; 6569 6570 IRBuilder<> Builder(Load->getNextNode()); 6571 auto *NewAnd = cast<Instruction>( 6572 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6573 // Mark this instruction as "inserted by CGP", so that other 6574 // optimizations don't touch it. 6575 InsertedInsts.insert(NewAnd); 6576 6577 // Replace all uses of load with new and (except for the use of load in the 6578 // new and itself). 6579 Load->replaceAllUsesWith(NewAnd); 6580 NewAnd->setOperand(0, Load); 6581 6582 // Remove any and instructions that are now redundant. 6583 for (auto *And : AndsToMaybeRemove) 6584 // Check that the and mask is the same as the one we decided to put on the 6585 // new and. 6586 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6587 And->replaceAllUsesWith(NewAnd); 6588 if (&*CurInstIterator == And) 6589 CurInstIterator = std::next(And->getIterator()); 6590 And->eraseFromParent(); 6591 ++NumAndUses; 6592 } 6593 6594 ++NumAndsAdded; 6595 return true; 6596 } 6597 6598 /// Check if V (an operand of a select instruction) is an expensive instruction 6599 /// that is only used once. 6600 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6601 auto *I = dyn_cast<Instruction>(V); 6602 // If it's safe to speculatively execute, then it should not have side 6603 // effects; therefore, it's safe to sink and possibly *not* execute. 6604 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6605 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6606 TargetTransformInfo::TCC_Expensive; 6607 } 6608 6609 /// Returns true if a SelectInst should be turned into an explicit branch. 6610 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6611 const TargetLowering *TLI, 6612 SelectInst *SI) { 6613 // If even a predictable select is cheap, then a branch can't be cheaper. 6614 if (!TLI->isPredictableSelectExpensive()) 6615 return false; 6616 6617 // FIXME: This should use the same heuristics as IfConversion to determine 6618 // whether a select is better represented as a branch. 6619 6620 // If metadata tells us that the select condition is obviously predictable, 6621 // then we want to replace the select with a branch. 6622 uint64_t TrueWeight, FalseWeight; 6623 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6624 uint64_t Max = std::max(TrueWeight, FalseWeight); 6625 uint64_t Sum = TrueWeight + FalseWeight; 6626 if (Sum != 0) { 6627 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6628 if (Probability > TTI->getPredictableBranchThreshold()) 6629 return true; 6630 } 6631 } 6632 6633 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6634 6635 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6636 // comparison condition. If the compare has more than one use, there's 6637 // probably another cmov or setcc around, so it's not worth emitting a branch. 6638 if (!Cmp || !Cmp->hasOneUse()) 6639 return false; 6640 6641 // If either operand of the select is expensive and only needed on one side 6642 // of the select, we should form a branch. 6643 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6644 sinkSelectOperand(TTI, SI->getFalseValue())) 6645 return true; 6646 6647 return false; 6648 } 6649 6650 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6651 /// false value of \p SI. If the true/false value of \p SI is defined by any 6652 /// select instructions in \p Selects, look through the defining select 6653 /// instruction until the true/false value is not defined in \p Selects. 6654 static Value *getTrueOrFalseValue( 6655 SelectInst *SI, bool isTrue, 6656 const SmallPtrSet<const Instruction *, 2> &Selects) { 6657 Value *V = nullptr; 6658 6659 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6660 DefSI = dyn_cast<SelectInst>(V)) { 6661 assert(DefSI->getCondition() == SI->getCondition() && 6662 "The condition of DefSI does not match with SI"); 6663 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6664 } 6665 6666 assert(V && "Failed to get select true/false value"); 6667 return V; 6668 } 6669 6670 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6671 assert(Shift->isShift() && "Expected a shift"); 6672 6673 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6674 // general vector shifts, and (3) the shift amount is a select-of-splatted 6675 // values, hoist the shifts before the select: 6676 // shift Op0, (select Cond, TVal, FVal) --> 6677 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6678 // 6679 // This is inverting a generic IR transform when we know that the cost of a 6680 // general vector shift is more than the cost of 2 shift-by-scalars. 6681 // We can't do this effectively in SDAG because we may not be able to 6682 // determine if the select operands are splats from within a basic block. 6683 Type *Ty = Shift->getType(); 6684 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6685 return false; 6686 Value *Cond, *TVal, *FVal; 6687 if (!match(Shift->getOperand(1), 6688 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6689 return false; 6690 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6691 return false; 6692 6693 IRBuilder<> Builder(Shift); 6694 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6695 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6696 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6697 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6698 Shift->replaceAllUsesWith(NewSel); 6699 Shift->eraseFromParent(); 6700 return true; 6701 } 6702 6703 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6704 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6705 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6706 "Expected a funnel shift"); 6707 6708 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6709 // than general vector shifts, and (3) the shift amount is select-of-splatted 6710 // values, hoist the funnel shifts before the select: 6711 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6712 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6713 // 6714 // This is inverting a generic IR transform when we know that the cost of a 6715 // general vector shift is more than the cost of 2 shift-by-scalars. 6716 // We can't do this effectively in SDAG because we may not be able to 6717 // determine if the select operands are splats from within a basic block. 6718 Type *Ty = Fsh->getType(); 6719 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6720 return false; 6721 Value *Cond, *TVal, *FVal; 6722 if (!match(Fsh->getOperand(2), 6723 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6724 return false; 6725 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6726 return false; 6727 6728 IRBuilder<> Builder(Fsh); 6729 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6730 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6731 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6732 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6733 Fsh->replaceAllUsesWith(NewSel); 6734 Fsh->eraseFromParent(); 6735 return true; 6736 } 6737 6738 /// If we have a SelectInst that will likely profit from branch prediction, 6739 /// turn it into a branch. 6740 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6741 if (DisableSelectToBranch) 6742 return false; 6743 6744 // Find all consecutive select instructions that share the same condition. 6745 SmallVector<SelectInst *, 2> ASI; 6746 ASI.push_back(SI); 6747 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6748 It != SI->getParent()->end(); ++It) { 6749 SelectInst *I = dyn_cast<SelectInst>(&*It); 6750 if (I && SI->getCondition() == I->getCondition()) { 6751 ASI.push_back(I); 6752 } else { 6753 break; 6754 } 6755 } 6756 6757 SelectInst *LastSI = ASI.back(); 6758 // Increment the current iterator to skip all the rest of select instructions 6759 // because they will be either "not lowered" or "all lowered" to branch. 6760 CurInstIterator = std::next(LastSI->getIterator()); 6761 6762 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6763 6764 // Can we convert the 'select' to CF ? 6765 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6766 return false; 6767 6768 TargetLowering::SelectSupportKind SelectKind; 6769 if (VectorCond) 6770 SelectKind = TargetLowering::VectorMaskSelect; 6771 else if (SI->getType()->isVectorTy()) 6772 SelectKind = TargetLowering::ScalarCondVectorVal; 6773 else 6774 SelectKind = TargetLowering::ScalarValSelect; 6775 6776 if (TLI->isSelectSupported(SelectKind) && 6777 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6778 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6779 return false; 6780 6781 // The DominatorTree needs to be rebuilt by any consumers after this 6782 // transformation. We simply reset here rather than setting the ModifiedDT 6783 // flag to avoid restarting the function walk in runOnFunction for each 6784 // select optimized. 6785 DT.reset(); 6786 6787 // Transform a sequence like this: 6788 // start: 6789 // %cmp = cmp uge i32 %a, %b 6790 // %sel = select i1 %cmp, i32 %c, i32 %d 6791 // 6792 // Into: 6793 // start: 6794 // %cmp = cmp uge i32 %a, %b 6795 // %cmp.frozen = freeze %cmp 6796 // br i1 %cmp.frozen, label %select.true, label %select.false 6797 // select.true: 6798 // br label %select.end 6799 // select.false: 6800 // br label %select.end 6801 // select.end: 6802 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6803 // 6804 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6805 // In addition, we may sink instructions that produce %c or %d from 6806 // the entry block into the destination(s) of the new branch. 6807 // If the true or false blocks do not contain a sunken instruction, that 6808 // block and its branch may be optimized away. In that case, one side of the 6809 // first branch will point directly to select.end, and the corresponding PHI 6810 // predecessor block will be the start block. 6811 6812 // First, we split the block containing the select into 2 blocks. 6813 BasicBlock *StartBlock = SI->getParent(); 6814 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6815 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6816 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6817 6818 // Delete the unconditional branch that was just created by the split. 6819 StartBlock->getTerminator()->eraseFromParent(); 6820 6821 // These are the new basic blocks for the conditional branch. 6822 // At least one will become an actual new basic block. 6823 BasicBlock *TrueBlock = nullptr; 6824 BasicBlock *FalseBlock = nullptr; 6825 BranchInst *TrueBranch = nullptr; 6826 BranchInst *FalseBranch = nullptr; 6827 6828 // Sink expensive instructions into the conditional blocks to avoid executing 6829 // them speculatively. 6830 for (SelectInst *SI : ASI) { 6831 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6832 if (TrueBlock == nullptr) { 6833 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6834 EndBlock->getParent(), EndBlock); 6835 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6836 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6837 } 6838 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6839 TrueInst->moveBefore(TrueBranch); 6840 } 6841 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6842 if (FalseBlock == nullptr) { 6843 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6844 EndBlock->getParent(), EndBlock); 6845 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6846 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6847 } 6848 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6849 FalseInst->moveBefore(FalseBranch); 6850 } 6851 } 6852 6853 // If there was nothing to sink, then arbitrarily choose the 'false' side 6854 // for a new input value to the PHI. 6855 if (TrueBlock == FalseBlock) { 6856 assert(TrueBlock == nullptr && 6857 "Unexpected basic block transform while optimizing select"); 6858 6859 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6860 EndBlock->getParent(), EndBlock); 6861 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6862 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6863 } 6864 6865 // Insert the real conditional branch based on the original condition. 6866 // If we did not create a new block for one of the 'true' or 'false' paths 6867 // of the condition, it means that side of the branch goes to the end block 6868 // directly and the path originates from the start block from the point of 6869 // view of the new PHI. 6870 BasicBlock *TT, *FT; 6871 if (TrueBlock == nullptr) { 6872 TT = EndBlock; 6873 FT = FalseBlock; 6874 TrueBlock = StartBlock; 6875 } else if (FalseBlock == nullptr) { 6876 TT = TrueBlock; 6877 FT = EndBlock; 6878 FalseBlock = StartBlock; 6879 } else { 6880 TT = TrueBlock; 6881 FT = FalseBlock; 6882 } 6883 IRBuilder<> IB(SI); 6884 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6885 IB.CreateCondBr(CondFr, TT, FT, SI); 6886 6887 SmallPtrSet<const Instruction *, 2> INS; 6888 INS.insert(ASI.begin(), ASI.end()); 6889 // Use reverse iterator because later select may use the value of the 6890 // earlier select, and we need to propagate value through earlier select 6891 // to get the PHI operand. 6892 for (SelectInst *SI : llvm::reverse(ASI)) { 6893 // The select itself is replaced with a PHI Node. 6894 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6895 PN->takeName(SI); 6896 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6897 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6898 PN->setDebugLoc(SI->getDebugLoc()); 6899 6900 SI->replaceAllUsesWith(PN); 6901 SI->eraseFromParent(); 6902 INS.erase(SI); 6903 ++NumSelectsExpanded; 6904 } 6905 6906 // Instruct OptimizeBlock to skip to the next block. 6907 CurInstIterator = StartBlock->end(); 6908 return true; 6909 } 6910 6911 /// Some targets only accept certain types for splat inputs. For example a VDUP 6912 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6913 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6914 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6915 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6916 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6917 m_Undef(), m_ZeroMask()))) 6918 return false; 6919 Type *NewType = TLI->shouldConvertSplatType(SVI); 6920 if (!NewType) 6921 return false; 6922 6923 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6924 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6925 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6926 "Expected a type of the same size!"); 6927 auto *NewVecType = 6928 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6929 6930 // Create a bitcast (shuffle (insert (bitcast(..)))) 6931 IRBuilder<> Builder(SVI->getContext()); 6932 Builder.SetInsertPoint(SVI); 6933 Value *BC1 = Builder.CreateBitCast( 6934 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6935 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6936 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6937 6938 SVI->replaceAllUsesWith(BC2); 6939 RecursivelyDeleteTriviallyDeadInstructions( 6940 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6941 6942 // Also hoist the bitcast up to its operand if it they are not in the same 6943 // block. 6944 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6945 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6946 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6947 !Op->isTerminator() && !Op->isEHPad()) 6948 BCI->moveAfter(Op); 6949 6950 return true; 6951 } 6952 6953 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6954 // If the operands of I can be folded into a target instruction together with 6955 // I, duplicate and sink them. 6956 SmallVector<Use *, 4> OpsToSink; 6957 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6958 return false; 6959 6960 // OpsToSink can contain multiple uses in a use chain (e.g. 6961 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6962 // uses must come first, so we process the ops in reverse order so as to not 6963 // create invalid IR. 6964 BasicBlock *TargetBB = I->getParent(); 6965 bool Changed = false; 6966 SmallVector<Use *, 4> ToReplace; 6967 Instruction *InsertPoint = I; 6968 DenseMap<const Instruction *, unsigned long> InstOrdering; 6969 unsigned long InstNumber = 0; 6970 for (const auto &I : *TargetBB) 6971 InstOrdering[&I] = InstNumber++; 6972 6973 for (Use *U : reverse(OpsToSink)) { 6974 auto *UI = cast<Instruction>(U->get()); 6975 if (isa<PHINode>(UI)) 6976 continue; 6977 if (UI->getParent() == TargetBB) { 6978 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 6979 InsertPoint = UI; 6980 continue; 6981 } 6982 ToReplace.push_back(U); 6983 } 6984 6985 SetVector<Instruction *> MaybeDead; 6986 DenseMap<Instruction *, Instruction *> NewInstructions; 6987 for (Use *U : ToReplace) { 6988 auto *UI = cast<Instruction>(U->get()); 6989 Instruction *NI = UI->clone(); 6990 NewInstructions[UI] = NI; 6991 MaybeDead.insert(UI); 6992 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6993 NI->insertBefore(InsertPoint); 6994 InsertPoint = NI; 6995 InsertedInsts.insert(NI); 6996 6997 // Update the use for the new instruction, making sure that we update the 6998 // sunk instruction uses, if it is part of a chain that has already been 6999 // sunk. 7000 Instruction *OldI = cast<Instruction>(U->getUser()); 7001 if (NewInstructions.count(OldI)) 7002 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7003 else 7004 U->set(NI); 7005 Changed = true; 7006 } 7007 7008 // Remove instructions that are dead after sinking. 7009 for (auto *I : MaybeDead) { 7010 if (!I->hasNUsesOrMore(1)) { 7011 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7012 I->eraseFromParent(); 7013 } 7014 } 7015 7016 return Changed; 7017 } 7018 7019 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7020 Value *Cond = SI->getCondition(); 7021 Type *OldType = Cond->getType(); 7022 LLVMContext &Context = Cond->getContext(); 7023 EVT OldVT = TLI->getValueType(*DL, OldType); 7024 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7025 unsigned RegWidth = RegType.getSizeInBits(); 7026 7027 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7028 return false; 7029 7030 // If the register width is greater than the type width, expand the condition 7031 // of the switch instruction and each case constant to the width of the 7032 // register. By widening the type of the switch condition, subsequent 7033 // comparisons (for case comparisons) will not need to be extended to the 7034 // preferred register width, so we will potentially eliminate N-1 extends, 7035 // where N is the number of cases in the switch. 7036 auto *NewType = Type::getIntNTy(Context, RegWidth); 7037 7038 // Extend the switch condition and case constants using the target preferred 7039 // extend unless the switch condition is a function argument with an extend 7040 // attribute. In that case, we can avoid an unnecessary mask/extension by 7041 // matching the argument extension instead. 7042 Instruction::CastOps ExtType = Instruction::ZExt; 7043 // Some targets prefer SExt over ZExt. 7044 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7045 ExtType = Instruction::SExt; 7046 7047 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7048 if (Arg->hasSExtAttr()) 7049 ExtType = Instruction::SExt; 7050 if (Arg->hasZExtAttr()) 7051 ExtType = Instruction::ZExt; 7052 } 7053 7054 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7055 ExtInst->insertBefore(SI); 7056 ExtInst->setDebugLoc(SI->getDebugLoc()); 7057 SI->setCondition(ExtInst); 7058 for (auto Case : SI->cases()) { 7059 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7060 APInt WideConst = (ExtType == Instruction::ZExt) ? 7061 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7062 Case.setValue(ConstantInt::get(Context, WideConst)); 7063 } 7064 7065 return true; 7066 } 7067 7068 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7069 // The SCCP optimization tends to produce code like this: 7070 // switch(x) { case 42: phi(42, ...) } 7071 // Materializing the constant for the phi-argument needs instructions; So we 7072 // change the code to: 7073 // switch(x) { case 42: phi(x, ...) } 7074 7075 Value *Condition = SI->getCondition(); 7076 // Avoid endless loop in degenerate case. 7077 if (isa<ConstantInt>(*Condition)) 7078 return false; 7079 7080 bool Changed = false; 7081 BasicBlock *SwitchBB = SI->getParent(); 7082 Type *ConditionType = Condition->getType(); 7083 7084 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7085 ConstantInt *CaseValue = Case.getCaseValue(); 7086 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7087 // Set to true if we previously checked that `CaseBB` is only reached by 7088 // a single case from this switch. 7089 bool CheckedForSinglePred = false; 7090 for (PHINode &PHI : CaseBB->phis()) { 7091 Type *PHIType = PHI.getType(); 7092 // If ZExt is free then we can also catch patterns like this: 7093 // switch((i32)x) { case 42: phi((i64)42, ...); } 7094 // and replace `(i64)42` with `zext i32 %x to i64`. 7095 bool TryZExt = 7096 PHIType->isIntegerTy() && 7097 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7098 TLI->isZExtFree(ConditionType, PHIType); 7099 if (PHIType == ConditionType || TryZExt) { 7100 // Set to true to skip this case because of multiple preds. 7101 bool SkipCase = false; 7102 Value *Replacement = nullptr; 7103 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7104 Value *PHIValue = PHI.getIncomingValue(I); 7105 if (PHIValue != CaseValue) { 7106 if (!TryZExt) 7107 continue; 7108 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7109 if (!PHIValueInt || 7110 PHIValueInt->getValue() != 7111 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7112 continue; 7113 } 7114 if (PHI.getIncomingBlock(I) != SwitchBB) 7115 continue; 7116 // We cannot optimize if there are multiple case labels jumping to 7117 // this block. This check may get expensive when there are many 7118 // case labels so we test for it last. 7119 if (!CheckedForSinglePred) { 7120 CheckedForSinglePred = true; 7121 if (SI->findCaseDest(CaseBB) == nullptr) { 7122 SkipCase = true; 7123 break; 7124 } 7125 } 7126 7127 if (Replacement == nullptr) { 7128 if (PHIValue == CaseValue) { 7129 Replacement = Condition; 7130 } else { 7131 IRBuilder<> Builder(SI); 7132 Replacement = Builder.CreateZExt(Condition, PHIType); 7133 } 7134 } 7135 PHI.setIncomingValue(I, Replacement); 7136 Changed = true; 7137 } 7138 if (SkipCase) 7139 break; 7140 } 7141 } 7142 } 7143 return Changed; 7144 } 7145 7146 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7147 bool Changed = optimizeSwitchType(SI); 7148 Changed |= optimizeSwitchPhiConstants(SI); 7149 return Changed; 7150 } 7151 7152 namespace { 7153 7154 /// Helper class to promote a scalar operation to a vector one. 7155 /// This class is used to move downward extractelement transition. 7156 /// E.g., 7157 /// a = vector_op <2 x i32> 7158 /// b = extractelement <2 x i32> a, i32 0 7159 /// c = scalar_op b 7160 /// store c 7161 /// 7162 /// => 7163 /// a = vector_op <2 x i32> 7164 /// c = vector_op a (equivalent to scalar_op on the related lane) 7165 /// * d = extractelement <2 x i32> c, i32 0 7166 /// * store d 7167 /// Assuming both extractelement and store can be combine, we get rid of the 7168 /// transition. 7169 class VectorPromoteHelper { 7170 /// DataLayout associated with the current module. 7171 const DataLayout &DL; 7172 7173 /// Used to perform some checks on the legality of vector operations. 7174 const TargetLowering &TLI; 7175 7176 /// Used to estimated the cost of the promoted chain. 7177 const TargetTransformInfo &TTI; 7178 7179 /// The transition being moved downwards. 7180 Instruction *Transition; 7181 7182 /// The sequence of instructions to be promoted. 7183 SmallVector<Instruction *, 4> InstsToBePromoted; 7184 7185 /// Cost of combining a store and an extract. 7186 unsigned StoreExtractCombineCost; 7187 7188 /// Instruction that will be combined with the transition. 7189 Instruction *CombineInst = nullptr; 7190 7191 /// The instruction that represents the current end of the transition. 7192 /// Since we are faking the promotion until we reach the end of the chain 7193 /// of computation, we need a way to get the current end of the transition. 7194 Instruction *getEndOfTransition() const { 7195 if (InstsToBePromoted.empty()) 7196 return Transition; 7197 return InstsToBePromoted.back(); 7198 } 7199 7200 /// Return the index of the original value in the transition. 7201 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7202 /// c, is at index 0. 7203 unsigned getTransitionOriginalValueIdx() const { 7204 assert(isa<ExtractElementInst>(Transition) && 7205 "Other kind of transitions are not supported yet"); 7206 return 0; 7207 } 7208 7209 /// Return the index of the index in the transition. 7210 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7211 /// is at index 1. 7212 unsigned getTransitionIdx() const { 7213 assert(isa<ExtractElementInst>(Transition) && 7214 "Other kind of transitions are not supported yet"); 7215 return 1; 7216 } 7217 7218 /// Get the type of the transition. 7219 /// This is the type of the original value. 7220 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7221 /// transition is <2 x i32>. 7222 Type *getTransitionType() const { 7223 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7224 } 7225 7226 /// Promote \p ToBePromoted by moving \p Def downward through. 7227 /// I.e., we have the following sequence: 7228 /// Def = Transition <ty1> a to <ty2> 7229 /// b = ToBePromoted <ty2> Def, ... 7230 /// => 7231 /// b = ToBePromoted <ty1> a, ... 7232 /// Def = Transition <ty1> ToBePromoted to <ty2> 7233 void promoteImpl(Instruction *ToBePromoted); 7234 7235 /// Check whether or not it is profitable to promote all the 7236 /// instructions enqueued to be promoted. 7237 bool isProfitableToPromote() { 7238 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7239 unsigned Index = isa<ConstantInt>(ValIdx) 7240 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7241 : -1; 7242 Type *PromotedType = getTransitionType(); 7243 7244 StoreInst *ST = cast<StoreInst>(CombineInst); 7245 unsigned AS = ST->getPointerAddressSpace(); 7246 // Check if this store is supported. 7247 if (!TLI.allowsMisalignedMemoryAccesses( 7248 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7249 ST->getAlign())) { 7250 // If this is not supported, there is no way we can combine 7251 // the extract with the store. 7252 return false; 7253 } 7254 7255 // The scalar chain of computation has to pay for the transition 7256 // scalar to vector. 7257 // The vector chain has to account for the combining cost. 7258 InstructionCost ScalarCost = 7259 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7260 InstructionCost VectorCost = StoreExtractCombineCost; 7261 enum TargetTransformInfo::TargetCostKind CostKind = 7262 TargetTransformInfo::TCK_RecipThroughput; 7263 for (const auto &Inst : InstsToBePromoted) { 7264 // Compute the cost. 7265 // By construction, all instructions being promoted are arithmetic ones. 7266 // Moreover, one argument is a constant that can be viewed as a splat 7267 // constant. 7268 Value *Arg0 = Inst->getOperand(0); 7269 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7270 isa<ConstantFP>(Arg0); 7271 TargetTransformInfo::OperandValueKind Arg0OVK = 7272 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7273 : TargetTransformInfo::OK_AnyValue; 7274 TargetTransformInfo::OperandValueKind Arg1OVK = 7275 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7276 : TargetTransformInfo::OK_AnyValue; 7277 ScalarCost += TTI.getArithmeticInstrCost( 7278 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7279 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7280 CostKind, 7281 Arg0OVK, Arg1OVK); 7282 } 7283 LLVM_DEBUG( 7284 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7285 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7286 return ScalarCost > VectorCost; 7287 } 7288 7289 /// Generate a constant vector with \p Val with the same 7290 /// number of elements as the transition. 7291 /// \p UseSplat defines whether or not \p Val should be replicated 7292 /// across the whole vector. 7293 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7294 /// otherwise we generate a vector with as many undef as possible: 7295 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7296 /// used at the index of the extract. 7297 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7298 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7299 if (!UseSplat) { 7300 // If we cannot determine where the constant must be, we have to 7301 // use a splat constant. 7302 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7303 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7304 ExtractIdx = CstVal->getSExtValue(); 7305 else 7306 UseSplat = true; 7307 } 7308 7309 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7310 if (UseSplat) 7311 return ConstantVector::getSplat(EC, Val); 7312 7313 if (!EC.isScalable()) { 7314 SmallVector<Constant *, 4> ConstVec; 7315 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7316 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7317 if (Idx == ExtractIdx) 7318 ConstVec.push_back(Val); 7319 else 7320 ConstVec.push_back(UndefVal); 7321 } 7322 return ConstantVector::get(ConstVec); 7323 } else 7324 llvm_unreachable( 7325 "Generate scalable vector for non-splat is unimplemented"); 7326 } 7327 7328 /// Check if promoting to a vector type an operand at \p OperandIdx 7329 /// in \p Use can trigger undefined behavior. 7330 static bool canCauseUndefinedBehavior(const Instruction *Use, 7331 unsigned OperandIdx) { 7332 // This is not safe to introduce undef when the operand is on 7333 // the right hand side of a division-like instruction. 7334 if (OperandIdx != 1) 7335 return false; 7336 switch (Use->getOpcode()) { 7337 default: 7338 return false; 7339 case Instruction::SDiv: 7340 case Instruction::UDiv: 7341 case Instruction::SRem: 7342 case Instruction::URem: 7343 return true; 7344 case Instruction::FDiv: 7345 case Instruction::FRem: 7346 return !Use->hasNoNaNs(); 7347 } 7348 llvm_unreachable(nullptr); 7349 } 7350 7351 public: 7352 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7353 const TargetTransformInfo &TTI, Instruction *Transition, 7354 unsigned CombineCost) 7355 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7356 StoreExtractCombineCost(CombineCost) { 7357 assert(Transition && "Do not know how to promote null"); 7358 } 7359 7360 /// Check if we can promote \p ToBePromoted to \p Type. 7361 bool canPromote(const Instruction *ToBePromoted) const { 7362 // We could support CastInst too. 7363 return isa<BinaryOperator>(ToBePromoted); 7364 } 7365 7366 /// Check if it is profitable to promote \p ToBePromoted 7367 /// by moving downward the transition through. 7368 bool shouldPromote(const Instruction *ToBePromoted) const { 7369 // Promote only if all the operands can be statically expanded. 7370 // Indeed, we do not want to introduce any new kind of transitions. 7371 for (const Use &U : ToBePromoted->operands()) { 7372 const Value *Val = U.get(); 7373 if (Val == getEndOfTransition()) { 7374 // If the use is a division and the transition is on the rhs, 7375 // we cannot promote the operation, otherwise we may create a 7376 // division by zero. 7377 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7378 return false; 7379 continue; 7380 } 7381 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7382 !isa<ConstantFP>(Val)) 7383 return false; 7384 } 7385 // Check that the resulting operation is legal. 7386 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7387 if (!ISDOpcode) 7388 return false; 7389 return StressStoreExtract || 7390 TLI.isOperationLegalOrCustom( 7391 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7392 } 7393 7394 /// Check whether or not \p Use can be combined 7395 /// with the transition. 7396 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7397 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7398 7399 /// Record \p ToBePromoted as part of the chain to be promoted. 7400 void enqueueForPromotion(Instruction *ToBePromoted) { 7401 InstsToBePromoted.push_back(ToBePromoted); 7402 } 7403 7404 /// Set the instruction that will be combined with the transition. 7405 void recordCombineInstruction(Instruction *ToBeCombined) { 7406 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7407 CombineInst = ToBeCombined; 7408 } 7409 7410 /// Promote all the instructions enqueued for promotion if it is 7411 /// is profitable. 7412 /// \return True if the promotion happened, false otherwise. 7413 bool promote() { 7414 // Check if there is something to promote. 7415 // Right now, if we do not have anything to combine with, 7416 // we assume the promotion is not profitable. 7417 if (InstsToBePromoted.empty() || !CombineInst) 7418 return false; 7419 7420 // Check cost. 7421 if (!StressStoreExtract && !isProfitableToPromote()) 7422 return false; 7423 7424 // Promote. 7425 for (auto &ToBePromoted : InstsToBePromoted) 7426 promoteImpl(ToBePromoted); 7427 InstsToBePromoted.clear(); 7428 return true; 7429 } 7430 }; 7431 7432 } // end anonymous namespace 7433 7434 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7435 // At this point, we know that all the operands of ToBePromoted but Def 7436 // can be statically promoted. 7437 // For Def, we need to use its parameter in ToBePromoted: 7438 // b = ToBePromoted ty1 a 7439 // Def = Transition ty1 b to ty2 7440 // Move the transition down. 7441 // 1. Replace all uses of the promoted operation by the transition. 7442 // = ... b => = ... Def. 7443 assert(ToBePromoted->getType() == Transition->getType() && 7444 "The type of the result of the transition does not match " 7445 "the final type"); 7446 ToBePromoted->replaceAllUsesWith(Transition); 7447 // 2. Update the type of the uses. 7448 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7449 Type *TransitionTy = getTransitionType(); 7450 ToBePromoted->mutateType(TransitionTy); 7451 // 3. Update all the operands of the promoted operation with promoted 7452 // operands. 7453 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7454 for (Use &U : ToBePromoted->operands()) { 7455 Value *Val = U.get(); 7456 Value *NewVal = nullptr; 7457 if (Val == Transition) 7458 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7459 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7460 isa<ConstantFP>(Val)) { 7461 // Use a splat constant if it is not safe to use undef. 7462 NewVal = getConstantVector( 7463 cast<Constant>(Val), 7464 isa<UndefValue>(Val) || 7465 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7466 } else 7467 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7468 "this?"); 7469 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7470 } 7471 Transition->moveAfter(ToBePromoted); 7472 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7473 } 7474 7475 /// Some targets can do store(extractelement) with one instruction. 7476 /// Try to push the extractelement towards the stores when the target 7477 /// has this feature and this is profitable. 7478 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7479 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7480 if (DisableStoreExtract || 7481 (!StressStoreExtract && 7482 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7483 Inst->getOperand(1), CombineCost))) 7484 return false; 7485 7486 // At this point we know that Inst is a vector to scalar transition. 7487 // Try to move it down the def-use chain, until: 7488 // - We can combine the transition with its single use 7489 // => we got rid of the transition. 7490 // - We escape the current basic block 7491 // => we would need to check that we are moving it at a cheaper place and 7492 // we do not do that for now. 7493 BasicBlock *Parent = Inst->getParent(); 7494 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7495 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7496 // If the transition has more than one use, assume this is not going to be 7497 // beneficial. 7498 while (Inst->hasOneUse()) { 7499 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7500 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7501 7502 if (ToBePromoted->getParent() != Parent) { 7503 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7504 << ToBePromoted->getParent()->getName() 7505 << ") than the transition (" << Parent->getName() 7506 << ").\n"); 7507 return false; 7508 } 7509 7510 if (VPH.canCombine(ToBePromoted)) { 7511 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7512 << "will be combined with: " << *ToBePromoted << '\n'); 7513 VPH.recordCombineInstruction(ToBePromoted); 7514 bool Changed = VPH.promote(); 7515 NumStoreExtractExposed += Changed; 7516 return Changed; 7517 } 7518 7519 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7520 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7521 return false; 7522 7523 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7524 7525 VPH.enqueueForPromotion(ToBePromoted); 7526 Inst = ToBePromoted; 7527 } 7528 return false; 7529 } 7530 7531 /// For the instruction sequence of store below, F and I values 7532 /// are bundled together as an i64 value before being stored into memory. 7533 /// Sometimes it is more efficient to generate separate stores for F and I, 7534 /// which can remove the bitwise instructions or sink them to colder places. 7535 /// 7536 /// (store (or (zext (bitcast F to i32) to i64), 7537 /// (shl (zext I to i64), 32)), addr) --> 7538 /// (store F, addr) and (store I, addr+4) 7539 /// 7540 /// Similarly, splitting for other merged store can also be beneficial, like: 7541 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7542 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7543 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7544 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7545 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7546 /// 7547 /// We allow each target to determine specifically which kind of splitting is 7548 /// supported. 7549 /// 7550 /// The store patterns are commonly seen from the simple code snippet below 7551 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7552 /// void goo(const std::pair<int, float> &); 7553 /// hoo() { 7554 /// ... 7555 /// goo(std::make_pair(tmp, ftmp)); 7556 /// ... 7557 /// } 7558 /// 7559 /// Although we already have similar splitting in DAG Combine, we duplicate 7560 /// it in CodeGenPrepare to catch the case in which pattern is across 7561 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7562 /// during code expansion. 7563 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7564 const TargetLowering &TLI) { 7565 // Handle simple but common cases only. 7566 Type *StoreType = SI.getValueOperand()->getType(); 7567 7568 // The code below assumes shifting a value by <number of bits>, 7569 // whereas scalable vectors would have to be shifted by 7570 // <2log(vscale) + number of bits> in order to store the 7571 // low/high parts. Bailing out for now. 7572 if (isa<ScalableVectorType>(StoreType)) 7573 return false; 7574 7575 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7576 DL.getTypeSizeInBits(StoreType) == 0) 7577 return false; 7578 7579 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7580 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7581 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7582 return false; 7583 7584 // Don't split the store if it is volatile. 7585 if (SI.isVolatile()) 7586 return false; 7587 7588 // Match the following patterns: 7589 // (store (or (zext LValue to i64), 7590 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7591 // or 7592 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7593 // (zext LValue to i64), 7594 // Expect both operands of OR and the first operand of SHL have only 7595 // one use. 7596 Value *LValue, *HValue; 7597 if (!match(SI.getValueOperand(), 7598 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7599 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7600 m_SpecificInt(HalfValBitSize)))))) 7601 return false; 7602 7603 // Check LValue and HValue are int with size less or equal than 32. 7604 if (!LValue->getType()->isIntegerTy() || 7605 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7606 !HValue->getType()->isIntegerTy() || 7607 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7608 return false; 7609 7610 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7611 // as the input of target query. 7612 auto *LBC = dyn_cast<BitCastInst>(LValue); 7613 auto *HBC = dyn_cast<BitCastInst>(HValue); 7614 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7615 : EVT::getEVT(LValue->getType()); 7616 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7617 : EVT::getEVT(HValue->getType()); 7618 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7619 return false; 7620 7621 // Start to split store. 7622 IRBuilder<> Builder(SI.getContext()); 7623 Builder.SetInsertPoint(&SI); 7624 7625 // If LValue/HValue is a bitcast in another BB, create a new one in current 7626 // BB so it may be merged with the splitted stores by dag combiner. 7627 if (LBC && LBC->getParent() != SI.getParent()) 7628 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7629 if (HBC && HBC->getParent() != SI.getParent()) 7630 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7631 7632 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7633 auto CreateSplitStore = [&](Value *V, bool Upper) { 7634 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7635 Value *Addr = Builder.CreateBitCast( 7636 SI.getOperand(1), 7637 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7638 Align Alignment = SI.getAlign(); 7639 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7640 if (IsOffsetStore) { 7641 Addr = Builder.CreateGEP( 7642 SplitStoreType, Addr, 7643 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7644 7645 // When splitting the store in half, naturally one half will retain the 7646 // alignment of the original wider store, regardless of whether it was 7647 // over-aligned or not, while the other will require adjustment. 7648 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7649 } 7650 Builder.CreateAlignedStore(V, Addr, Alignment); 7651 }; 7652 7653 CreateSplitStore(LValue, false); 7654 CreateSplitStore(HValue, true); 7655 7656 // Delete the old store. 7657 SI.eraseFromParent(); 7658 return true; 7659 } 7660 7661 // Return true if the GEP has two operands, the first operand is of a sequential 7662 // type, and the second operand is a constant. 7663 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7664 gep_type_iterator I = gep_type_begin(*GEP); 7665 return GEP->getNumOperands() == 2 && 7666 I.isSequential() && 7667 isa<ConstantInt>(GEP->getOperand(1)); 7668 } 7669 7670 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7671 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7672 // reducing liveness interference across those edges benefits global register 7673 // allocation. Currently handles only certain cases. 7674 // 7675 // For example, unmerge %GEPI and %UGEPI as below. 7676 // 7677 // ---------- BEFORE ---------- 7678 // SrcBlock: 7679 // ... 7680 // %GEPIOp = ... 7681 // ... 7682 // %GEPI = gep %GEPIOp, Idx 7683 // ... 7684 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7685 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7686 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7687 // %UGEPI) 7688 // 7689 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7690 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7691 // ... 7692 // 7693 // DstBi: 7694 // ... 7695 // %UGEPI = gep %GEPIOp, UIdx 7696 // ... 7697 // --------------------------- 7698 // 7699 // ---------- AFTER ---------- 7700 // SrcBlock: 7701 // ... (same as above) 7702 // (* %GEPI is still alive on the indirectbr edges) 7703 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7704 // unmerging) 7705 // ... 7706 // 7707 // DstBi: 7708 // ... 7709 // %UGEPI = gep %GEPI, (UIdx-Idx) 7710 // ... 7711 // --------------------------- 7712 // 7713 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7714 // no longer alive on them. 7715 // 7716 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7717 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7718 // not to disable further simplications and optimizations as a result of GEP 7719 // merging. 7720 // 7721 // Note this unmerging may increase the length of the data flow critical path 7722 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7723 // between the register pressure and the length of data-flow critical 7724 // path. Restricting this to the uncommon IndirectBr case would minimize the 7725 // impact of potentially longer critical path, if any, and the impact on compile 7726 // time. 7727 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7728 const TargetTransformInfo *TTI) { 7729 BasicBlock *SrcBlock = GEPI->getParent(); 7730 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7731 // (non-IndirectBr) cases exit early here. 7732 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7733 return false; 7734 // Check that GEPI is a simple gep with a single constant index. 7735 if (!GEPSequentialConstIndexed(GEPI)) 7736 return false; 7737 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7738 // Check that GEPI is a cheap one. 7739 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7740 TargetTransformInfo::TCK_SizeAndLatency) 7741 > TargetTransformInfo::TCC_Basic) 7742 return false; 7743 Value *GEPIOp = GEPI->getOperand(0); 7744 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7745 if (!isa<Instruction>(GEPIOp)) 7746 return false; 7747 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7748 if (GEPIOpI->getParent() != SrcBlock) 7749 return false; 7750 // Check that GEP is used outside the block, meaning it's alive on the 7751 // IndirectBr edge(s). 7752 if (find_if(GEPI->users(), [&](User *Usr) { 7753 if (auto *I = dyn_cast<Instruction>(Usr)) { 7754 if (I->getParent() != SrcBlock) { 7755 return true; 7756 } 7757 } 7758 return false; 7759 }) == GEPI->users().end()) 7760 return false; 7761 // The second elements of the GEP chains to be unmerged. 7762 std::vector<GetElementPtrInst *> UGEPIs; 7763 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7764 // on IndirectBr edges. 7765 for (User *Usr : GEPIOp->users()) { 7766 if (Usr == GEPI) continue; 7767 // Check if Usr is an Instruction. If not, give up. 7768 if (!isa<Instruction>(Usr)) 7769 return false; 7770 auto *UI = cast<Instruction>(Usr); 7771 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7772 if (UI->getParent() == SrcBlock) 7773 continue; 7774 // Check if Usr is a GEP. If not, give up. 7775 if (!isa<GetElementPtrInst>(Usr)) 7776 return false; 7777 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7778 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7779 // the pointer operand to it. If so, record it in the vector. If not, give 7780 // up. 7781 if (!GEPSequentialConstIndexed(UGEPI)) 7782 return false; 7783 if (UGEPI->getOperand(0) != GEPIOp) 7784 return false; 7785 if (GEPIIdx->getType() != 7786 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7787 return false; 7788 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7789 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7790 TargetTransformInfo::TCK_SizeAndLatency) 7791 > TargetTransformInfo::TCC_Basic) 7792 return false; 7793 UGEPIs.push_back(UGEPI); 7794 } 7795 if (UGEPIs.size() == 0) 7796 return false; 7797 // Check the materializing cost of (Uidx-Idx). 7798 for (GetElementPtrInst *UGEPI : UGEPIs) { 7799 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7800 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7801 InstructionCost ImmCost = TTI->getIntImmCost( 7802 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7803 if (ImmCost > TargetTransformInfo::TCC_Basic) 7804 return false; 7805 } 7806 // Now unmerge between GEPI and UGEPIs. 7807 for (GetElementPtrInst *UGEPI : UGEPIs) { 7808 UGEPI->setOperand(0, GEPI); 7809 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7810 Constant *NewUGEPIIdx = 7811 ConstantInt::get(GEPIIdx->getType(), 7812 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7813 UGEPI->setOperand(1, NewUGEPIIdx); 7814 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7815 // inbounds to avoid UB. 7816 if (!GEPI->isInBounds()) { 7817 UGEPI->setIsInBounds(false); 7818 } 7819 } 7820 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7821 // alive on IndirectBr edges). 7822 assert(llvm::none_of(GEPIOp->users(), 7823 [&](User *Usr) { 7824 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7825 }) && 7826 "GEPIOp is used outside SrcBlock"); 7827 return true; 7828 } 7829 7830 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) { 7831 // Try and convert 7832 // %c = icmp ult %x, 8 7833 // br %c, bla, blb 7834 // %tc = lshr %x, 3 7835 // to 7836 // %tc = lshr %x, 3 7837 // %c = icmp eq %tc, 0 7838 // br %c, bla, blb 7839 // Creating the cmp to zero can be better for the backend, especially if the 7840 // lshr produces flags that can be used automatically. 7841 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7842 return false; 7843 7844 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7845 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7846 return false; 7847 7848 Value *X = Cmp->getOperand(0); 7849 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7850 7851 for (auto *U : X->users()) { 7852 Instruction *UI = dyn_cast<Instruction>(U); 7853 // A quick dominance check 7854 if (!UI || 7855 (UI->getParent() != Branch->getParent() && 7856 UI->getParent() != Branch->getSuccessor(0) && 7857 UI->getParent() != Branch->getSuccessor(1)) || 7858 (UI->getParent() != Branch->getParent() && 7859 !UI->getParent()->getSinglePredecessor())) 7860 continue; 7861 7862 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7863 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7864 IRBuilder<> Builder(Branch); 7865 if (UI->getParent() != Branch->getParent()) 7866 UI->moveBefore(Branch); 7867 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7868 ConstantInt::get(UI->getType(), 0)); 7869 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7870 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7871 Cmp->replaceAllUsesWith(NewCmp); 7872 return true; 7873 } 7874 if (Cmp->isEquality() && 7875 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 7876 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 7877 IRBuilder<> Builder(Branch); 7878 if (UI->getParent() != Branch->getParent()) 7879 UI->moveBefore(Branch); 7880 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 7881 ConstantInt::get(UI->getType(), 0)); 7882 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7883 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7884 Cmp->replaceAllUsesWith(NewCmp); 7885 return true; 7886 } 7887 } 7888 return false; 7889 } 7890 7891 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7892 // Bail out if we inserted the instruction to prevent optimizations from 7893 // stepping on each other's toes. 7894 if (InsertedInsts.count(I)) 7895 return false; 7896 7897 // TODO: Move into the switch on opcode below here. 7898 if (PHINode *P = dyn_cast<PHINode>(I)) { 7899 // It is possible for very late stage optimizations (such as SimplifyCFG) 7900 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7901 // trivial PHI, go ahead and zap it here. 7902 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 7903 LargeOffsetGEPMap.erase(P); 7904 P->replaceAllUsesWith(V); 7905 P->eraseFromParent(); 7906 ++NumPHIsElim; 7907 return true; 7908 } 7909 return false; 7910 } 7911 7912 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7913 // If the source of the cast is a constant, then this should have 7914 // already been constant folded. The only reason NOT to constant fold 7915 // it is if something (e.g. LSR) was careful to place the constant 7916 // evaluation in a block other than then one that uses it (e.g. to hoist 7917 // the address of globals out of a loop). If this is the case, we don't 7918 // want to forward-subst the cast. 7919 if (isa<Constant>(CI->getOperand(0))) 7920 return false; 7921 7922 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7923 return true; 7924 7925 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7926 /// Sink a zext or sext into its user blocks if the target type doesn't 7927 /// fit in one register 7928 if (TLI->getTypeAction(CI->getContext(), 7929 TLI->getValueType(*DL, CI->getType())) == 7930 TargetLowering::TypeExpandInteger) { 7931 return SinkCast(CI); 7932 } else { 7933 bool MadeChange = optimizeExt(I); 7934 return MadeChange | optimizeExtUses(I); 7935 } 7936 } 7937 return false; 7938 } 7939 7940 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7941 if (optimizeCmp(Cmp, ModifiedDT)) 7942 return true; 7943 7944 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7945 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7946 bool Modified = optimizeLoadExt(LI); 7947 unsigned AS = LI->getPointerAddressSpace(); 7948 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7949 return Modified; 7950 } 7951 7952 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7953 if (splitMergedValStore(*SI, *DL, *TLI)) 7954 return true; 7955 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7956 unsigned AS = SI->getPointerAddressSpace(); 7957 return optimizeMemoryInst(I, SI->getOperand(1), 7958 SI->getOperand(0)->getType(), AS); 7959 } 7960 7961 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7962 unsigned AS = RMW->getPointerAddressSpace(); 7963 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7964 RMW->getType(), AS); 7965 } 7966 7967 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7968 unsigned AS = CmpX->getPointerAddressSpace(); 7969 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7970 CmpX->getCompareOperand()->getType(), AS); 7971 } 7972 7973 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7974 7975 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 7976 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 7977 return true; 7978 7979 // TODO: Move this into the switch on opcode - it handles shifts already. 7980 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7981 BinOp->getOpcode() == Instruction::LShr)) { 7982 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7983 if (CI && TLI->hasExtractBitsInsn()) 7984 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7985 return true; 7986 } 7987 7988 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7989 if (GEPI->hasAllZeroIndices()) { 7990 /// The GEP operand must be a pointer, so must its result -> BitCast 7991 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7992 GEPI->getName(), GEPI); 7993 NC->setDebugLoc(GEPI->getDebugLoc()); 7994 GEPI->replaceAllUsesWith(NC); 7995 GEPI->eraseFromParent(); 7996 ++NumGEPsElim; 7997 optimizeInst(NC, ModifiedDT); 7998 return true; 7999 } 8000 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8001 return true; 8002 } 8003 return false; 8004 } 8005 8006 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8007 // freeze(icmp a, const)) -> icmp (freeze a), const 8008 // This helps generate efficient conditional jumps. 8009 Instruction *CmpI = nullptr; 8010 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8011 CmpI = II; 8012 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8013 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8014 8015 if (CmpI && CmpI->hasOneUse()) { 8016 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8017 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8018 isa<ConstantPointerNull>(Op0); 8019 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8020 isa<ConstantPointerNull>(Op1); 8021 if (Const0 || Const1) { 8022 if (!Const0 || !Const1) { 8023 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 8024 F->takeName(FI); 8025 CmpI->setOperand(Const0 ? 1 : 0, F); 8026 } 8027 FI->replaceAllUsesWith(CmpI); 8028 FI->eraseFromParent(); 8029 return true; 8030 } 8031 } 8032 return false; 8033 } 8034 8035 if (tryToSinkFreeOperands(I)) 8036 return true; 8037 8038 switch (I->getOpcode()) { 8039 case Instruction::Shl: 8040 case Instruction::LShr: 8041 case Instruction::AShr: 8042 return optimizeShiftInst(cast<BinaryOperator>(I)); 8043 case Instruction::Call: 8044 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8045 case Instruction::Select: 8046 return optimizeSelectInst(cast<SelectInst>(I)); 8047 case Instruction::ShuffleVector: 8048 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8049 case Instruction::Switch: 8050 return optimizeSwitchInst(cast<SwitchInst>(I)); 8051 case Instruction::ExtractElement: 8052 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8053 case Instruction::Br: 8054 return optimizeBranch(cast<BranchInst>(I), *TLI); 8055 } 8056 8057 return false; 8058 } 8059 8060 /// Given an OR instruction, check to see if this is a bitreverse 8061 /// idiom. If so, insert the new intrinsic and return true. 8062 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8063 if (!I.getType()->isIntegerTy() || 8064 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8065 TLI->getValueType(*DL, I.getType(), true))) 8066 return false; 8067 8068 SmallVector<Instruction*, 4> Insts; 8069 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8070 return false; 8071 Instruction *LastInst = Insts.back(); 8072 I.replaceAllUsesWith(LastInst); 8073 RecursivelyDeleteTriviallyDeadInstructions( 8074 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 8075 return true; 8076 } 8077 8078 // In this pass we look for GEP and cast instructions that are used 8079 // across basic blocks and rewrite them to improve basic-block-at-a-time 8080 // selection. 8081 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 8082 SunkAddrs.clear(); 8083 bool MadeChange = false; 8084 8085 CurInstIterator = BB.begin(); 8086 while (CurInstIterator != BB.end()) { 8087 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8088 if (ModifiedDT) 8089 return true; 8090 } 8091 8092 bool MadeBitReverse = true; 8093 while (MadeBitReverse) { 8094 MadeBitReverse = false; 8095 for (auto &I : reverse(BB)) { 8096 if (makeBitReverse(I)) { 8097 MadeBitReverse = MadeChange = true; 8098 break; 8099 } 8100 } 8101 } 8102 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8103 8104 return MadeChange; 8105 } 8106 8107 // Some CGP optimizations may move or alter what's computed in a block. Check 8108 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8109 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8110 assert(isa<DbgValueInst>(I)); 8111 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8112 8113 // Does this dbg.value refer to a sunk address calculation? 8114 bool AnyChange = false; 8115 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8116 DVI.location_ops().end()); 8117 for (Value *Location : LocationOps) { 8118 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8119 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8120 if (SunkAddr) { 8121 // Point dbg.value at locally computed address, which should give the best 8122 // opportunity to be accurately lowered. This update may change the type 8123 // of pointer being referred to; however this makes no difference to 8124 // debugging information, and we can't generate bitcasts that may affect 8125 // codegen. 8126 DVI.replaceVariableLocationOp(Location, SunkAddr); 8127 AnyChange = true; 8128 } 8129 } 8130 return AnyChange; 8131 } 8132 8133 // A llvm.dbg.value may be using a value before its definition, due to 8134 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8135 // them by moving the dbg.value to immediately after the value definition. 8136 // FIXME: Ideally this should never be necessary, and this has the potential 8137 // to re-order dbg.value intrinsics. 8138 bool CodeGenPrepare::placeDbgValues(Function &F) { 8139 bool MadeChange = false; 8140 DominatorTree DT(F); 8141 8142 for (BasicBlock &BB : F) { 8143 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8144 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8145 if (!DVI) 8146 continue; 8147 8148 SmallVector<Instruction *, 4> VIs; 8149 for (Value *V : DVI->getValues()) 8150 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8151 VIs.push_back(VI); 8152 8153 // This DVI may depend on multiple instructions, complicating any 8154 // potential sink. This block takes the defensive approach, opting to 8155 // "undef" the DVI if it has more than one instruction and any of them do 8156 // not dominate DVI. 8157 for (Instruction *VI : VIs) { 8158 if (VI->isTerminator()) 8159 continue; 8160 8161 // If VI is a phi in a block with an EHPad terminator, we can't insert 8162 // after it. 8163 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8164 continue; 8165 8166 // If the defining instruction dominates the dbg.value, we do not need 8167 // to move the dbg.value. 8168 if (DT.dominates(VI, DVI)) 8169 continue; 8170 8171 // If we depend on multiple instructions and any of them doesn't 8172 // dominate this DVI, we probably can't salvage it: moving it to 8173 // after any of the instructions could cause us to lose the others. 8174 if (VIs.size() > 1) { 8175 LLVM_DEBUG( 8176 dbgs() 8177 << "Unable to find valid location for Debug Value, undefing:\n" 8178 << *DVI); 8179 DVI->setUndef(); 8180 break; 8181 } 8182 8183 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8184 << *DVI << ' ' << *VI); 8185 DVI->removeFromParent(); 8186 if (isa<PHINode>(VI)) 8187 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8188 else 8189 DVI->insertAfter(VI); 8190 MadeChange = true; 8191 ++NumDbgValueMoved; 8192 } 8193 } 8194 } 8195 return MadeChange; 8196 } 8197 8198 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8199 // probes can be chained dependencies of other regular DAG nodes and block DAG 8200 // combine optimizations. 8201 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8202 bool MadeChange = false; 8203 for (auto &Block : F) { 8204 // Move the rest probes to the beginning of the block. 8205 auto FirstInst = Block.getFirstInsertionPt(); 8206 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8207 ++FirstInst; 8208 BasicBlock::iterator I(FirstInst); 8209 I++; 8210 while (I != Block.end()) { 8211 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8212 II->moveBefore(&*FirstInst); 8213 MadeChange = true; 8214 } 8215 } 8216 } 8217 return MadeChange; 8218 } 8219 8220 /// Scale down both weights to fit into uint32_t. 8221 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8222 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8223 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8224 NewTrue = NewTrue / Scale; 8225 NewFalse = NewFalse / Scale; 8226 } 8227 8228 /// Some targets prefer to split a conditional branch like: 8229 /// \code 8230 /// %0 = icmp ne i32 %a, 0 8231 /// %1 = icmp ne i32 %b, 0 8232 /// %or.cond = or i1 %0, %1 8233 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8234 /// \endcode 8235 /// into multiple branch instructions like: 8236 /// \code 8237 /// bb1: 8238 /// %0 = icmp ne i32 %a, 0 8239 /// br i1 %0, label %TrueBB, label %bb2 8240 /// bb2: 8241 /// %1 = icmp ne i32 %b, 0 8242 /// br i1 %1, label %TrueBB, label %FalseBB 8243 /// \endcode 8244 /// This usually allows instruction selection to do even further optimizations 8245 /// and combine the compare with the branch instruction. Currently this is 8246 /// applied for targets which have "cheap" jump instructions. 8247 /// 8248 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8249 /// 8250 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8251 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8252 return false; 8253 8254 bool MadeChange = false; 8255 for (auto &BB : F) { 8256 // Does this BB end with the following? 8257 // %cond1 = icmp|fcmp|binary instruction ... 8258 // %cond2 = icmp|fcmp|binary instruction ... 8259 // %cond.or = or|and i1 %cond1, cond2 8260 // br i1 %cond.or label %dest1, label %dest2" 8261 Instruction *LogicOp; 8262 BasicBlock *TBB, *FBB; 8263 if (!match(BB.getTerminator(), 8264 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8265 continue; 8266 8267 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8268 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8269 continue; 8270 8271 // The merging of mostly empty BB can cause a degenerate branch. 8272 if (TBB == FBB) 8273 continue; 8274 8275 unsigned Opc; 8276 Value *Cond1, *Cond2; 8277 if (match(LogicOp, 8278 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8279 Opc = Instruction::And; 8280 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8281 m_OneUse(m_Value(Cond2))))) 8282 Opc = Instruction::Or; 8283 else 8284 continue; 8285 8286 auto IsGoodCond = [](Value *Cond) { 8287 return match( 8288 Cond, 8289 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8290 m_LogicalOr(m_Value(), m_Value())))); 8291 }; 8292 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8293 continue; 8294 8295 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8296 8297 // Create a new BB. 8298 auto *TmpBB = 8299 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8300 BB.getParent(), BB.getNextNode()); 8301 8302 // Update original basic block by using the first condition directly by the 8303 // branch instruction and removing the no longer needed and/or instruction. 8304 Br1->setCondition(Cond1); 8305 LogicOp->eraseFromParent(); 8306 8307 // Depending on the condition we have to either replace the true or the 8308 // false successor of the original branch instruction. 8309 if (Opc == Instruction::And) 8310 Br1->setSuccessor(0, TmpBB); 8311 else 8312 Br1->setSuccessor(1, TmpBB); 8313 8314 // Fill in the new basic block. 8315 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8316 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8317 I->removeFromParent(); 8318 I->insertBefore(Br2); 8319 } 8320 8321 // Update PHI nodes in both successors. The original BB needs to be 8322 // replaced in one successor's PHI nodes, because the branch comes now from 8323 // the newly generated BB (NewBB). In the other successor we need to add one 8324 // incoming edge to the PHI nodes, because both branch instructions target 8325 // now the same successor. Depending on the original branch condition 8326 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8327 // we perform the correct update for the PHI nodes. 8328 // This doesn't change the successor order of the just created branch 8329 // instruction (or any other instruction). 8330 if (Opc == Instruction::Or) 8331 std::swap(TBB, FBB); 8332 8333 // Replace the old BB with the new BB. 8334 TBB->replacePhiUsesWith(&BB, TmpBB); 8335 8336 // Add another incoming edge form the new BB. 8337 for (PHINode &PN : FBB->phis()) { 8338 auto *Val = PN.getIncomingValueForBlock(&BB); 8339 PN.addIncoming(Val, TmpBB); 8340 } 8341 8342 // Update the branch weights (from SelectionDAGBuilder:: 8343 // FindMergedConditions). 8344 if (Opc == Instruction::Or) { 8345 // Codegen X | Y as: 8346 // BB1: 8347 // jmp_if_X TBB 8348 // jmp TmpBB 8349 // TmpBB: 8350 // jmp_if_Y TBB 8351 // jmp FBB 8352 // 8353 8354 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8355 // The requirement is that 8356 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8357 // = TrueProb for original BB. 8358 // Assuming the original weights are A and B, one choice is to set BB1's 8359 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8360 // assumes that 8361 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8362 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8363 // TmpBB, but the math is more complicated. 8364 uint64_t TrueWeight, FalseWeight; 8365 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8366 uint64_t NewTrueWeight = TrueWeight; 8367 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8368 scaleWeights(NewTrueWeight, NewFalseWeight); 8369 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8370 .createBranchWeights(TrueWeight, FalseWeight)); 8371 8372 NewTrueWeight = TrueWeight; 8373 NewFalseWeight = 2 * FalseWeight; 8374 scaleWeights(NewTrueWeight, NewFalseWeight); 8375 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8376 .createBranchWeights(TrueWeight, FalseWeight)); 8377 } 8378 } else { 8379 // Codegen X & Y as: 8380 // BB1: 8381 // jmp_if_X TmpBB 8382 // jmp FBB 8383 // TmpBB: 8384 // jmp_if_Y TBB 8385 // jmp FBB 8386 // 8387 // This requires creation of TmpBB after CurBB. 8388 8389 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8390 // The requirement is that 8391 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8392 // = FalseProb for original BB. 8393 // Assuming the original weights are A and B, one choice is to set BB1's 8394 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8395 // assumes that 8396 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8397 uint64_t TrueWeight, FalseWeight; 8398 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8399 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8400 uint64_t NewFalseWeight = FalseWeight; 8401 scaleWeights(NewTrueWeight, NewFalseWeight); 8402 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8403 .createBranchWeights(TrueWeight, FalseWeight)); 8404 8405 NewTrueWeight = 2 * TrueWeight; 8406 NewFalseWeight = FalseWeight; 8407 scaleWeights(NewTrueWeight, NewFalseWeight); 8408 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8409 .createBranchWeights(TrueWeight, FalseWeight)); 8410 } 8411 } 8412 8413 ModifiedDT = true; 8414 MadeChange = true; 8415 8416 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8417 TmpBB->dump()); 8418 } 8419 return MadeChange; 8420 } 8421