1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 bool eliminateFallThrough(Function &F); 380 bool eliminateMostlyEmptyBlocks(Function &F); 381 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 382 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 383 void eliminateMostlyEmptyBlock(BasicBlock *BB); 384 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 385 bool isPreheader); 386 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 387 bool optimizeInst(Instruction *I, bool &ModifiedDT); 388 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 389 Type *AccessTy, unsigned AddrSpace); 390 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 391 bool optimizeInlineAsmInst(CallInst *CS); 392 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 393 bool optimizeExt(Instruction *&I); 394 bool optimizeExtUses(Instruction *I); 395 bool optimizeLoadExt(LoadInst *Load); 396 bool optimizeShiftInst(BinaryOperator *BO); 397 bool optimizeFunnelShift(IntrinsicInst *Fsh); 398 bool optimizeSelectInst(SelectInst *SI); 399 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 400 bool optimizeSwitchInst(SwitchInst *SI); 401 bool optimizeExtractElementInst(Instruction *Inst); 402 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 403 bool fixupDbgValue(Instruction *I); 404 bool placeDbgValues(Function &F); 405 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 406 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 407 bool tryToPromoteExts(TypePromotionTransaction &TPT, 408 const SmallVectorImpl<Instruction *> &Exts, 409 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 410 unsigned CreatedInstsCost = 0); 411 bool mergeSExts(Function &F); 412 bool splitLargeGEPOffsets(); 413 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 414 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 415 bool optimizePhiTypes(Function &F); 416 bool performAddressTypePromotion( 417 Instruction *&Inst, 418 bool AllowPromotionWithoutCommonHeader, 419 bool HasPromoted, TypePromotionTransaction &TPT, 420 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 421 bool splitBranchCondition(Function &F, bool &ModifiedDT); 422 bool simplifyOffsetableRelocate(GCStatepointInst &I); 423 424 bool tryToSinkFreeOperands(Instruction *I); 425 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 426 Value *Arg1, CmpInst *Cmp, 427 Intrinsic::ID IID); 428 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 429 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 430 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 431 void verifyBFIUpdates(Function &F); 432 }; 433 434 } // end anonymous namespace 435 436 char CodeGenPrepare::ID = 0; 437 438 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 439 "Optimize for code generation", false, false) 440 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 441 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 442 "Optimize for code generation", false, false) 443 444 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 445 446 bool CodeGenPrepare::runOnFunction(Function &F) { 447 if (skipFunction(F)) 448 return false; 449 450 DL = &F.getParent()->getDataLayout(); 451 452 bool EverMadeChange = false; 453 // Clear per function information. 454 InsertedInsts.clear(); 455 PromotedInsts.clear(); 456 457 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 458 SubtargetInfo = TM->getSubtargetImpl(F); 459 TLI = SubtargetInfo->getTargetLowering(); 460 TRI = SubtargetInfo->getRegisterInfo(); 461 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 462 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 463 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 464 BPI.reset(new BranchProbabilityInfo(F, *LI)); 465 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 466 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 467 OptSize = F.hasOptSize(); 468 if (ProfileGuidedSectionPrefix) { 469 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 470 F.setSectionPrefix(".hot"); 471 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 472 F.setSectionPrefix(".unlikely"); 473 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 474 PSI->isFunctionHotnessUnknown(F)) 475 F.setSectionPrefix(".unknown"); 476 } 477 478 /// This optimization identifies DIV instructions that can be 479 /// profitably bypassed and carried out with a shorter, faster divide. 480 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 481 const DenseMap<unsigned int, unsigned int> &BypassWidths = 482 TLI->getBypassSlowDivWidths(); 483 BasicBlock* BB = &*F.begin(); 484 while (BB != nullptr) { 485 // bypassSlowDivision may create new BBs, but we don't want to reapply the 486 // optimization to those blocks. 487 BasicBlock* Next = BB->getNextNode(); 488 // F.hasOptSize is already checked in the outer if statement. 489 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 490 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 491 BB = Next; 492 } 493 } 494 495 // Eliminate blocks that contain only PHI nodes and an 496 // unconditional branch. 497 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 498 499 bool ModifiedDT = false; 500 if (!DisableBranchOpts) 501 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 502 503 // Split some critical edges where one of the sources is an indirect branch, 504 // to help generate sane code for PHIs involving such edges. 505 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 506 507 bool MadeChange = true; 508 while (MadeChange) { 509 MadeChange = false; 510 DT.reset(); 511 for (Function::iterator I = F.begin(); I != F.end(); ) { 512 BasicBlock *BB = &*I++; 513 bool ModifiedDTOnIteration = false; 514 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 515 516 // Restart BB iteration if the dominator tree of the Function was changed 517 if (ModifiedDTOnIteration) 518 break; 519 } 520 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 521 MadeChange |= mergeSExts(F); 522 if (!LargeOffsetGEPMap.empty()) 523 MadeChange |= splitLargeGEPOffsets(); 524 MadeChange |= optimizePhiTypes(F); 525 526 if (MadeChange) 527 eliminateFallThrough(F); 528 529 // Really free removed instructions during promotion. 530 for (Instruction *I : RemovedInsts) 531 I->deleteValue(); 532 533 EverMadeChange |= MadeChange; 534 SeenChainsForSExt.clear(); 535 ValToSExtendedUses.clear(); 536 RemovedInsts.clear(); 537 LargeOffsetGEPMap.clear(); 538 LargeOffsetGEPID.clear(); 539 } 540 541 SunkAddrs.clear(); 542 543 if (!DisableBranchOpts) { 544 MadeChange = false; 545 // Use a set vector to get deterministic iteration order. The order the 546 // blocks are removed may affect whether or not PHI nodes in successors 547 // are removed. 548 SmallSetVector<BasicBlock*, 8> WorkList; 549 for (BasicBlock &BB : F) { 550 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 551 MadeChange |= ConstantFoldTerminator(&BB, true); 552 if (!MadeChange) continue; 553 554 for (SmallVectorImpl<BasicBlock*>::iterator 555 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 556 if (pred_begin(*II) == pred_end(*II)) 557 WorkList.insert(*II); 558 } 559 560 // Delete the dead blocks and any of their dead successors. 561 MadeChange |= !WorkList.empty(); 562 while (!WorkList.empty()) { 563 BasicBlock *BB = WorkList.pop_back_val(); 564 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 565 566 DeleteDeadBlock(BB); 567 568 for (SmallVectorImpl<BasicBlock*>::iterator 569 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 570 if (pred_begin(*II) == pred_end(*II)) 571 WorkList.insert(*II); 572 } 573 574 // Merge pairs of basic blocks with unconditional branches, connected by 575 // a single edge. 576 if (EverMadeChange || MadeChange) 577 MadeChange |= eliminateFallThrough(F); 578 579 EverMadeChange |= MadeChange; 580 } 581 582 if (!DisableGCOpts) { 583 SmallVector<GCStatepointInst *, 2> Statepoints; 584 for (BasicBlock &BB : F) 585 for (Instruction &I : BB) 586 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 587 Statepoints.push_back(SP); 588 for (auto &I : Statepoints) 589 EverMadeChange |= simplifyOffsetableRelocate(*I); 590 } 591 592 // Do this last to clean up use-before-def scenarios introduced by other 593 // preparatory transforms. 594 EverMadeChange |= placeDbgValues(F); 595 596 #ifndef NDEBUG 597 if (VerifyBFIUpdates) 598 verifyBFIUpdates(F); 599 #endif 600 601 return EverMadeChange; 602 } 603 604 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 605 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 606 DominatorTree NewDT(F); 607 LoopInfo NewLI(NewDT); 608 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 609 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 610 NewBFI.verifyMatch(*BFI); 611 } 612 613 /// Merge basic blocks which are connected by a single edge, where one of the 614 /// basic blocks has a single successor pointing to the other basic block, 615 /// which has a single predecessor. 616 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 617 bool Changed = false; 618 // Scan all of the blocks in the function, except for the entry block. 619 // Use a temporary array to avoid iterator being invalidated when 620 // deleting blocks. 621 SmallVector<WeakTrackingVH, 16> Blocks; 622 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 623 Blocks.push_back(&Block); 624 625 for (auto &Block : Blocks) { 626 auto *BB = cast_or_null<BasicBlock>(Block); 627 if (!BB) 628 continue; 629 // If the destination block has a single pred, then this is a trivial 630 // edge, just collapse it. 631 BasicBlock *SinglePred = BB->getSinglePredecessor(); 632 633 // Don't merge if BB's address is taken. 634 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 635 636 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 637 if (Term && !Term->isConditional()) { 638 Changed = true; 639 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 640 641 // Merge BB into SinglePred and delete it. 642 MergeBlockIntoPredecessor(BB); 643 } 644 } 645 return Changed; 646 } 647 648 /// Find a destination block from BB if BB is mergeable empty block. 649 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 650 // If this block doesn't end with an uncond branch, ignore it. 651 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 652 if (!BI || !BI->isUnconditional()) 653 return nullptr; 654 655 // If the instruction before the branch (skipping debug info) isn't a phi 656 // node, then other stuff is happening here. 657 BasicBlock::iterator BBI = BI->getIterator(); 658 if (BBI != BB->begin()) { 659 --BBI; 660 while (isa<DbgInfoIntrinsic>(BBI)) { 661 if (BBI == BB->begin()) 662 break; 663 --BBI; 664 } 665 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 666 return nullptr; 667 } 668 669 // Do not break infinite loops. 670 BasicBlock *DestBB = BI->getSuccessor(0); 671 if (DestBB == BB) 672 return nullptr; 673 674 if (!canMergeBlocks(BB, DestBB)) 675 DestBB = nullptr; 676 677 return DestBB; 678 } 679 680 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 681 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 682 /// edges in ways that are non-optimal for isel. Start by eliminating these 683 /// blocks so we can split them the way we want them. 684 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 685 SmallPtrSet<BasicBlock *, 16> Preheaders; 686 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 687 while (!LoopList.empty()) { 688 Loop *L = LoopList.pop_back_val(); 689 LoopList.insert(LoopList.end(), L->begin(), L->end()); 690 if (BasicBlock *Preheader = L->getLoopPreheader()) 691 Preheaders.insert(Preheader); 692 } 693 694 bool MadeChange = false; 695 // Copy blocks into a temporary array to avoid iterator invalidation issues 696 // as we remove them. 697 // Note that this intentionally skips the entry block. 698 SmallVector<WeakTrackingVH, 16> Blocks; 699 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 700 Blocks.push_back(&Block); 701 702 for (auto &Block : Blocks) { 703 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 704 if (!BB) 705 continue; 706 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 707 if (!DestBB || 708 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 709 continue; 710 711 eliminateMostlyEmptyBlock(BB); 712 MadeChange = true; 713 } 714 return MadeChange; 715 } 716 717 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 718 BasicBlock *DestBB, 719 bool isPreheader) { 720 // Do not delete loop preheaders if doing so would create a critical edge. 721 // Loop preheaders can be good locations to spill registers. If the 722 // preheader is deleted and we create a critical edge, registers may be 723 // spilled in the loop body instead. 724 if (!DisablePreheaderProtect && isPreheader && 725 !(BB->getSinglePredecessor() && 726 BB->getSinglePredecessor()->getSingleSuccessor())) 727 return false; 728 729 // Skip merging if the block's successor is also a successor to any callbr 730 // that leads to this block. 731 // FIXME: Is this really needed? Is this a correctness issue? 732 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 733 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 734 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 735 if (DestBB == CBI->getSuccessor(i)) 736 return false; 737 } 738 739 // Try to skip merging if the unique predecessor of BB is terminated by a 740 // switch or indirect branch instruction, and BB is used as an incoming block 741 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 742 // add COPY instructions in the predecessor of BB instead of BB (if it is not 743 // merged). Note that the critical edge created by merging such blocks wont be 744 // split in MachineSink because the jump table is not analyzable. By keeping 745 // such empty block (BB), ISel will place COPY instructions in BB, not in the 746 // predecessor of BB. 747 BasicBlock *Pred = BB->getUniquePredecessor(); 748 if (!Pred || 749 !(isa<SwitchInst>(Pred->getTerminator()) || 750 isa<IndirectBrInst>(Pred->getTerminator()))) 751 return true; 752 753 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 754 return true; 755 756 // We use a simple cost heuristic which determine skipping merging is 757 // profitable if the cost of skipping merging is less than the cost of 758 // merging : Cost(skipping merging) < Cost(merging BB), where the 759 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 760 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 761 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 762 // Freq(Pred) / Freq(BB) > 2. 763 // Note that if there are multiple empty blocks sharing the same incoming 764 // value for the PHIs in the DestBB, we consider them together. In such 765 // case, Cost(merging BB) will be the sum of their frequencies. 766 767 if (!isa<PHINode>(DestBB->begin())) 768 return true; 769 770 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 771 772 // Find all other incoming blocks from which incoming values of all PHIs in 773 // DestBB are the same as the ones from BB. 774 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 775 ++PI) { 776 BasicBlock *DestBBPred = *PI; 777 if (DestBBPred == BB) 778 continue; 779 780 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 781 return DestPN.getIncomingValueForBlock(BB) == 782 DestPN.getIncomingValueForBlock(DestBBPred); 783 })) 784 SameIncomingValueBBs.insert(DestBBPred); 785 } 786 787 // See if all BB's incoming values are same as the value from Pred. In this 788 // case, no reason to skip merging because COPYs are expected to be place in 789 // Pred already. 790 if (SameIncomingValueBBs.count(Pred)) 791 return true; 792 793 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 794 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 795 796 for (auto *SameValueBB : SameIncomingValueBBs) 797 if (SameValueBB->getUniquePredecessor() == Pred && 798 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 799 BBFreq += BFI->getBlockFreq(SameValueBB); 800 801 return PredFreq.getFrequency() <= 802 BBFreq.getFrequency() * FreqRatioToSkipMerge; 803 } 804 805 /// Return true if we can merge BB into DestBB if there is a single 806 /// unconditional branch between them, and BB contains no other non-phi 807 /// instructions. 808 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 809 const BasicBlock *DestBB) const { 810 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 811 // the successor. If there are more complex condition (e.g. preheaders), 812 // don't mess around with them. 813 for (const PHINode &PN : BB->phis()) { 814 for (const User *U : PN.users()) { 815 const Instruction *UI = cast<Instruction>(U); 816 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 817 return false; 818 // If User is inside DestBB block and it is a PHINode then check 819 // incoming value. If incoming value is not from BB then this is 820 // a complex condition (e.g. preheaders) we want to avoid here. 821 if (UI->getParent() == DestBB) { 822 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 823 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 824 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 825 if (Insn && Insn->getParent() == BB && 826 Insn->getParent() != UPN->getIncomingBlock(I)) 827 return false; 828 } 829 } 830 } 831 } 832 833 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 834 // and DestBB may have conflicting incoming values for the block. If so, we 835 // can't merge the block. 836 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 837 if (!DestBBPN) return true; // no conflict. 838 839 // Collect the preds of BB. 840 SmallPtrSet<const BasicBlock*, 16> BBPreds; 841 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 842 // It is faster to get preds from a PHI than with pred_iterator. 843 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 844 BBPreds.insert(BBPN->getIncomingBlock(i)); 845 } else { 846 BBPreds.insert(pred_begin(BB), pred_end(BB)); 847 } 848 849 // Walk the preds of DestBB. 850 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 851 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 852 if (BBPreds.count(Pred)) { // Common predecessor? 853 for (const PHINode &PN : DestBB->phis()) { 854 const Value *V1 = PN.getIncomingValueForBlock(Pred); 855 const Value *V2 = PN.getIncomingValueForBlock(BB); 856 857 // If V2 is a phi node in BB, look up what the mapped value will be. 858 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 859 if (V2PN->getParent() == BB) 860 V2 = V2PN->getIncomingValueForBlock(Pred); 861 862 // If there is a conflict, bail out. 863 if (V1 != V2) return false; 864 } 865 } 866 } 867 868 return true; 869 } 870 871 /// Eliminate a basic block that has only phi's and an unconditional branch in 872 /// it. 873 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 874 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 875 BasicBlock *DestBB = BI->getSuccessor(0); 876 877 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 878 << *BB << *DestBB); 879 880 // If the destination block has a single pred, then this is a trivial edge, 881 // just collapse it. 882 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 883 if (SinglePred != DestBB) { 884 assert(SinglePred == BB && 885 "Single predecessor not the same as predecessor"); 886 // Merge DestBB into SinglePred/BB and delete it. 887 MergeBlockIntoPredecessor(DestBB); 888 // Note: BB(=SinglePred) will not be deleted on this path. 889 // DestBB(=its single successor) is the one that was deleted. 890 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 891 return; 892 } 893 } 894 895 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 896 // to handle the new incoming edges it is about to have. 897 for (PHINode &PN : DestBB->phis()) { 898 // Remove the incoming value for BB, and remember it. 899 Value *InVal = PN.removeIncomingValue(BB, false); 900 901 // Two options: either the InVal is a phi node defined in BB or it is some 902 // value that dominates BB. 903 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 904 if (InValPhi && InValPhi->getParent() == BB) { 905 // Add all of the input values of the input PHI as inputs of this phi. 906 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 907 PN.addIncoming(InValPhi->getIncomingValue(i), 908 InValPhi->getIncomingBlock(i)); 909 } else { 910 // Otherwise, add one instance of the dominating value for each edge that 911 // we will be adding. 912 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 913 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 914 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 915 } else { 916 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 917 PN.addIncoming(InVal, *PI); 918 } 919 } 920 } 921 922 // The PHIs are now updated, change everything that refers to BB to use 923 // DestBB and remove BB. 924 BB->replaceAllUsesWith(DestBB); 925 BB->eraseFromParent(); 926 ++NumBlocksElim; 927 928 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 929 } 930 931 // Computes a map of base pointer relocation instructions to corresponding 932 // derived pointer relocation instructions given a vector of all relocate calls 933 static void computeBaseDerivedRelocateMap( 934 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 935 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 936 &RelocateInstMap) { 937 // Collect information in two maps: one primarily for locating the base object 938 // while filling the second map; the second map is the final structure holding 939 // a mapping between Base and corresponding Derived relocate calls 940 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 941 for (auto *ThisRelocate : AllRelocateCalls) { 942 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 943 ThisRelocate->getDerivedPtrIndex()); 944 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 945 } 946 for (auto &Item : RelocateIdxMap) { 947 std::pair<unsigned, unsigned> Key = Item.first; 948 if (Key.first == Key.second) 949 // Base relocation: nothing to insert 950 continue; 951 952 GCRelocateInst *I = Item.second; 953 auto BaseKey = std::make_pair(Key.first, Key.first); 954 955 // We're iterating over RelocateIdxMap so we cannot modify it. 956 auto MaybeBase = RelocateIdxMap.find(BaseKey); 957 if (MaybeBase == RelocateIdxMap.end()) 958 // TODO: We might want to insert a new base object relocate and gep off 959 // that, if there are enough derived object relocates. 960 continue; 961 962 RelocateInstMap[MaybeBase->second].push_back(I); 963 } 964 } 965 966 // Accepts a GEP and extracts the operands into a vector provided they're all 967 // small integer constants 968 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 969 SmallVectorImpl<Value *> &OffsetV) { 970 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 971 // Only accept small constant integer operands 972 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 973 if (!Op || Op->getZExtValue() > 20) 974 return false; 975 } 976 977 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 978 OffsetV.push_back(GEP->getOperand(i)); 979 return true; 980 } 981 982 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 983 // replace, computes a replacement, and affects it. 984 static bool 985 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 986 const SmallVectorImpl<GCRelocateInst *> &Targets) { 987 bool MadeChange = false; 988 // We must ensure the relocation of derived pointer is defined after 989 // relocation of base pointer. If we find a relocation corresponding to base 990 // defined earlier than relocation of base then we move relocation of base 991 // right before found relocation. We consider only relocation in the same 992 // basic block as relocation of base. Relocations from other basic block will 993 // be skipped by optimization and we do not care about them. 994 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 995 &*R != RelocatedBase; ++R) 996 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 997 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 998 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 999 RelocatedBase->moveBefore(RI); 1000 break; 1001 } 1002 1003 for (GCRelocateInst *ToReplace : Targets) { 1004 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1005 "Not relocating a derived object of the original base object"); 1006 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1007 // A duplicate relocate call. TODO: coalesce duplicates. 1008 continue; 1009 } 1010 1011 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1012 // Base and derived relocates are in different basic blocks. 1013 // In this case transform is only valid when base dominates derived 1014 // relocate. However it would be too expensive to check dominance 1015 // for each such relocate, so we skip the whole transformation. 1016 continue; 1017 } 1018 1019 Value *Base = ToReplace->getBasePtr(); 1020 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1021 if (!Derived || Derived->getPointerOperand() != Base) 1022 continue; 1023 1024 SmallVector<Value *, 2> OffsetV; 1025 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1026 continue; 1027 1028 // Create a Builder and replace the target callsite with a gep 1029 assert(RelocatedBase->getNextNode() && 1030 "Should always have one since it's not a terminator"); 1031 1032 // Insert after RelocatedBase 1033 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1034 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1035 1036 // If gc_relocate does not match the actual type, cast it to the right type. 1037 // In theory, there must be a bitcast after gc_relocate if the type does not 1038 // match, and we should reuse it to get the derived pointer. But it could be 1039 // cases like this: 1040 // bb1: 1041 // ... 1042 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1043 // br label %merge 1044 // 1045 // bb2: 1046 // ... 1047 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1048 // br label %merge 1049 // 1050 // merge: 1051 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1052 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1053 // 1054 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1055 // no matter there is already one or not. In this way, we can handle all cases, and 1056 // the extra bitcast should be optimized away in later passes. 1057 Value *ActualRelocatedBase = RelocatedBase; 1058 if (RelocatedBase->getType() != Base->getType()) { 1059 ActualRelocatedBase = 1060 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1061 } 1062 Value *Replacement = Builder.CreateGEP( 1063 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1064 Replacement->takeName(ToReplace); 1065 // If the newly generated derived pointer's type does not match the original derived 1066 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1067 Value *ActualReplacement = Replacement; 1068 if (Replacement->getType() != ToReplace->getType()) { 1069 ActualReplacement = 1070 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1071 } 1072 ToReplace->replaceAllUsesWith(ActualReplacement); 1073 ToReplace->eraseFromParent(); 1074 1075 MadeChange = true; 1076 } 1077 return MadeChange; 1078 } 1079 1080 // Turns this: 1081 // 1082 // %base = ... 1083 // %ptr = gep %base + 15 1084 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1085 // %base' = relocate(%tok, i32 4, i32 4) 1086 // %ptr' = relocate(%tok, i32 4, i32 5) 1087 // %val = load %ptr' 1088 // 1089 // into this: 1090 // 1091 // %base = ... 1092 // %ptr = gep %base + 15 1093 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1094 // %base' = gc.relocate(%tok, i32 4, i32 4) 1095 // %ptr' = gep %base' + 15 1096 // %val = load %ptr' 1097 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1098 bool MadeChange = false; 1099 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1100 for (auto *U : I.users()) 1101 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1102 // Collect all the relocate calls associated with a statepoint 1103 AllRelocateCalls.push_back(Relocate); 1104 1105 // We need at least one base pointer relocation + one derived pointer 1106 // relocation to mangle 1107 if (AllRelocateCalls.size() < 2) 1108 return false; 1109 1110 // RelocateInstMap is a mapping from the base relocate instruction to the 1111 // corresponding derived relocate instructions 1112 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1113 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1114 if (RelocateInstMap.empty()) 1115 return false; 1116 1117 for (auto &Item : RelocateInstMap) 1118 // Item.first is the RelocatedBase to offset against 1119 // Item.second is the vector of Targets to replace 1120 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1121 return MadeChange; 1122 } 1123 1124 /// Sink the specified cast instruction into its user blocks. 1125 static bool SinkCast(CastInst *CI) { 1126 BasicBlock *DefBB = CI->getParent(); 1127 1128 /// InsertedCasts - Only insert a cast in each block once. 1129 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1130 1131 bool MadeChange = false; 1132 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1133 UI != E; ) { 1134 Use &TheUse = UI.getUse(); 1135 Instruction *User = cast<Instruction>(*UI); 1136 1137 // Figure out which BB this cast is used in. For PHI's this is the 1138 // appropriate predecessor block. 1139 BasicBlock *UserBB = User->getParent(); 1140 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1141 UserBB = PN->getIncomingBlock(TheUse); 1142 } 1143 1144 // Preincrement use iterator so we don't invalidate it. 1145 ++UI; 1146 1147 // The first insertion point of a block containing an EH pad is after the 1148 // pad. If the pad is the user, we cannot sink the cast past the pad. 1149 if (User->isEHPad()) 1150 continue; 1151 1152 // If the block selected to receive the cast is an EH pad that does not 1153 // allow non-PHI instructions before the terminator, we can't sink the 1154 // cast. 1155 if (UserBB->getTerminator()->isEHPad()) 1156 continue; 1157 1158 // If this user is in the same block as the cast, don't change the cast. 1159 if (UserBB == DefBB) continue; 1160 1161 // If we have already inserted a cast into this block, use it. 1162 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1163 1164 if (!InsertedCast) { 1165 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1166 assert(InsertPt != UserBB->end()); 1167 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1168 CI->getType(), "", &*InsertPt); 1169 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1170 } 1171 1172 // Replace a use of the cast with a use of the new cast. 1173 TheUse = InsertedCast; 1174 MadeChange = true; 1175 ++NumCastUses; 1176 } 1177 1178 // If we removed all uses, nuke the cast. 1179 if (CI->use_empty()) { 1180 salvageDebugInfo(*CI); 1181 CI->eraseFromParent(); 1182 MadeChange = true; 1183 } 1184 1185 return MadeChange; 1186 } 1187 1188 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1189 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1190 /// reduce the number of virtual registers that must be created and coalesced. 1191 /// 1192 /// Return true if any changes are made. 1193 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1194 const DataLayout &DL) { 1195 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1196 // than sinking only nop casts, but is helpful on some platforms. 1197 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1198 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1199 ASC->getDestAddressSpace())) 1200 return false; 1201 } 1202 1203 // If this is a noop copy, 1204 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1205 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1206 1207 // This is an fp<->int conversion? 1208 if (SrcVT.isInteger() != DstVT.isInteger()) 1209 return false; 1210 1211 // If this is an extension, it will be a zero or sign extension, which 1212 // isn't a noop. 1213 if (SrcVT.bitsLT(DstVT)) return false; 1214 1215 // If these values will be promoted, find out what they will be promoted 1216 // to. This helps us consider truncates on PPC as noop copies when they 1217 // are. 1218 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1219 TargetLowering::TypePromoteInteger) 1220 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1221 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1222 TargetLowering::TypePromoteInteger) 1223 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1224 1225 // If, after promotion, these are the same types, this is a noop copy. 1226 if (SrcVT != DstVT) 1227 return false; 1228 1229 return SinkCast(CI); 1230 } 1231 1232 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1233 Value *Arg0, Value *Arg1, 1234 CmpInst *Cmp, 1235 Intrinsic::ID IID) { 1236 if (BO->getParent() != Cmp->getParent()) { 1237 // We used to use a dominator tree here to allow multi-block optimization. 1238 // But that was problematic because: 1239 // 1. It could cause a perf regression by hoisting the math op into the 1240 // critical path. 1241 // 2. It could cause a perf regression by creating a value that was live 1242 // across multiple blocks and increasing register pressure. 1243 // 3. Use of a dominator tree could cause large compile-time regression. 1244 // This is because we recompute the DT on every change in the main CGP 1245 // run-loop. The recomputing is probably unnecessary in many cases, so if 1246 // that was fixed, using a DT here would be ok. 1247 return false; 1248 } 1249 1250 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1251 if (BO->getOpcode() == Instruction::Add && 1252 IID == Intrinsic::usub_with_overflow) { 1253 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1254 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1255 } 1256 1257 // Insert at the first instruction of the pair. 1258 Instruction *InsertPt = nullptr; 1259 for (Instruction &Iter : *Cmp->getParent()) { 1260 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1261 // the overflow intrinsic are defined. 1262 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1263 InsertPt = &Iter; 1264 break; 1265 } 1266 } 1267 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1268 1269 IRBuilder<> Builder(InsertPt); 1270 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1271 if (BO->getOpcode() != Instruction::Xor) { 1272 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1273 BO->replaceAllUsesWith(Math); 1274 } else 1275 assert(BO->hasOneUse() && 1276 "Patterns with XOr should use the BO only in the compare"); 1277 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1278 Cmp->replaceAllUsesWith(OV); 1279 Cmp->eraseFromParent(); 1280 BO->eraseFromParent(); 1281 return true; 1282 } 1283 1284 /// Match special-case patterns that check for unsigned add overflow. 1285 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1286 BinaryOperator *&Add) { 1287 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1288 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1289 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1290 1291 // We are not expecting non-canonical/degenerate code. Just bail out. 1292 if (isa<Constant>(A)) 1293 return false; 1294 1295 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1296 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1297 B = ConstantInt::get(B->getType(), 1); 1298 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1299 B = ConstantInt::get(B->getType(), -1); 1300 else 1301 return false; 1302 1303 // Check the users of the variable operand of the compare looking for an add 1304 // with the adjusted constant. 1305 for (User *U : A->users()) { 1306 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1307 Add = cast<BinaryOperator>(U); 1308 return true; 1309 } 1310 } 1311 return false; 1312 } 1313 1314 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1315 /// intrinsic. Return true if any changes were made. 1316 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1317 bool &ModifiedDT) { 1318 Value *A, *B; 1319 BinaryOperator *Add; 1320 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1321 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1322 return false; 1323 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1324 A = Add->getOperand(0); 1325 B = Add->getOperand(1); 1326 } 1327 1328 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1329 TLI->getValueType(*DL, Add->getType()), 1330 Add->hasNUsesOrMore(2))) 1331 return false; 1332 1333 // We don't want to move around uses of condition values this late, so we 1334 // check if it is legal to create the call to the intrinsic in the basic 1335 // block containing the icmp. 1336 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1337 return false; 1338 1339 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1340 Intrinsic::uadd_with_overflow)) 1341 return false; 1342 1343 // Reset callers - do not crash by iterating over a dead instruction. 1344 ModifiedDT = true; 1345 return true; 1346 } 1347 1348 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1349 bool &ModifiedDT) { 1350 // We are not expecting non-canonical/degenerate code. Just bail out. 1351 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1352 if (isa<Constant>(A) && isa<Constant>(B)) 1353 return false; 1354 1355 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1356 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1357 if (Pred == ICmpInst::ICMP_UGT) { 1358 std::swap(A, B); 1359 Pred = ICmpInst::ICMP_ULT; 1360 } 1361 // Convert special-case: (A == 0) is the same as (A u< 1). 1362 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1363 B = ConstantInt::get(B->getType(), 1); 1364 Pred = ICmpInst::ICMP_ULT; 1365 } 1366 // Convert special-case: (A != 0) is the same as (0 u< A). 1367 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1368 std::swap(A, B); 1369 Pred = ICmpInst::ICMP_ULT; 1370 } 1371 if (Pred != ICmpInst::ICMP_ULT) 1372 return false; 1373 1374 // Walk the users of a variable operand of a compare looking for a subtract or 1375 // add with that same operand. Also match the 2nd operand of the compare to 1376 // the add/sub, but that may be a negated constant operand of an add. 1377 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1378 BinaryOperator *Sub = nullptr; 1379 for (User *U : CmpVariableOperand->users()) { 1380 // A - B, A u< B --> usubo(A, B) 1381 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1382 Sub = cast<BinaryOperator>(U); 1383 break; 1384 } 1385 1386 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1387 const APInt *CmpC, *AddC; 1388 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1389 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1390 Sub = cast<BinaryOperator>(U); 1391 break; 1392 } 1393 } 1394 if (!Sub) 1395 return false; 1396 1397 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1398 TLI->getValueType(*DL, Sub->getType()), 1399 Sub->hasNUsesOrMore(2))) 1400 return false; 1401 1402 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1403 Cmp, Intrinsic::usub_with_overflow)) 1404 return false; 1405 1406 // Reset callers - do not crash by iterating over a dead instruction. 1407 ModifiedDT = true; 1408 return true; 1409 } 1410 1411 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1412 /// registers that must be created and coalesced. This is a clear win except on 1413 /// targets with multiple condition code registers (PowerPC), where it might 1414 /// lose; some adjustment may be wanted there. 1415 /// 1416 /// Return true if any changes are made. 1417 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1418 if (TLI.hasMultipleConditionRegisters()) 1419 return false; 1420 1421 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1422 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1423 return false; 1424 1425 // Only insert a cmp in each block once. 1426 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1427 1428 bool MadeChange = false; 1429 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1430 UI != E; ) { 1431 Use &TheUse = UI.getUse(); 1432 Instruction *User = cast<Instruction>(*UI); 1433 1434 // Preincrement use iterator so we don't invalidate it. 1435 ++UI; 1436 1437 // Don't bother for PHI nodes. 1438 if (isa<PHINode>(User)) 1439 continue; 1440 1441 // Figure out which BB this cmp is used in. 1442 BasicBlock *UserBB = User->getParent(); 1443 BasicBlock *DefBB = Cmp->getParent(); 1444 1445 // If this user is in the same block as the cmp, don't change the cmp. 1446 if (UserBB == DefBB) continue; 1447 1448 // If we have already inserted a cmp into this block, use it. 1449 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1450 1451 if (!InsertedCmp) { 1452 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1453 assert(InsertPt != UserBB->end()); 1454 InsertedCmp = 1455 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1456 Cmp->getOperand(0), Cmp->getOperand(1), "", 1457 &*InsertPt); 1458 // Propagate the debug info. 1459 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1460 } 1461 1462 // Replace a use of the cmp with a use of the new cmp. 1463 TheUse = InsertedCmp; 1464 MadeChange = true; 1465 ++NumCmpUses; 1466 } 1467 1468 // If we removed all uses, nuke the cmp. 1469 if (Cmp->use_empty()) { 1470 Cmp->eraseFromParent(); 1471 MadeChange = true; 1472 } 1473 1474 return MadeChange; 1475 } 1476 1477 /// For pattern like: 1478 /// 1479 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1480 /// ... 1481 /// DomBB: 1482 /// ... 1483 /// br DomCond, TrueBB, CmpBB 1484 /// CmpBB: (with DomBB being the single predecessor) 1485 /// ... 1486 /// Cmp = icmp eq CmpOp0, CmpOp1 1487 /// ... 1488 /// 1489 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1490 /// different from lowering of icmp eq (PowerPC). This function try to convert 1491 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1492 /// After that, DomCond and Cmp can use the same comparison so reduce one 1493 /// comparison. 1494 /// 1495 /// Return true if any changes are made. 1496 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1497 const TargetLowering &TLI) { 1498 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1499 return false; 1500 1501 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1502 if (Pred != ICmpInst::ICMP_EQ) 1503 return false; 1504 1505 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1506 // icmp slt/sgt would introduce more redundant LLVM IR. 1507 for (User *U : Cmp->users()) { 1508 if (isa<BranchInst>(U)) 1509 continue; 1510 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1511 continue; 1512 return false; 1513 } 1514 1515 // This is a cheap/incomplete check for dominance - just match a single 1516 // predecessor with a conditional branch. 1517 BasicBlock *CmpBB = Cmp->getParent(); 1518 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1519 if (!DomBB) 1520 return false; 1521 1522 // We want to ensure that the only way control gets to the comparison of 1523 // interest is that a less/greater than comparison on the same operands is 1524 // false. 1525 Value *DomCond; 1526 BasicBlock *TrueBB, *FalseBB; 1527 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1528 return false; 1529 if (CmpBB != FalseBB) 1530 return false; 1531 1532 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1533 ICmpInst::Predicate DomPred; 1534 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1535 return false; 1536 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1537 return false; 1538 1539 // Convert the equality comparison to the opposite of the dominating 1540 // comparison and swap the direction for all branch/select users. 1541 // We have conceptually converted: 1542 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1543 // to 1544 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1545 // And similarly for branches. 1546 for (User *U : Cmp->users()) { 1547 if (auto *BI = dyn_cast<BranchInst>(U)) { 1548 assert(BI->isConditional() && "Must be conditional"); 1549 BI->swapSuccessors(); 1550 continue; 1551 } 1552 if (auto *SI = dyn_cast<SelectInst>(U)) { 1553 // Swap operands 1554 SI->swapValues(); 1555 SI->swapProfMetadata(); 1556 continue; 1557 } 1558 llvm_unreachable("Must be a branch or a select"); 1559 } 1560 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1561 return true; 1562 } 1563 1564 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1565 if (sinkCmpExpression(Cmp, *TLI)) 1566 return true; 1567 1568 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1569 return true; 1570 1571 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1572 return true; 1573 1574 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1575 return true; 1576 1577 return false; 1578 } 1579 1580 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1581 /// used in a compare to allow isel to generate better code for targets where 1582 /// this operation can be combined. 1583 /// 1584 /// Return true if any changes are made. 1585 static bool sinkAndCmp0Expression(Instruction *AndI, 1586 const TargetLowering &TLI, 1587 SetOfInstrs &InsertedInsts) { 1588 // Double-check that we're not trying to optimize an instruction that was 1589 // already optimized by some other part of this pass. 1590 assert(!InsertedInsts.count(AndI) && 1591 "Attempting to optimize already optimized and instruction"); 1592 (void) InsertedInsts; 1593 1594 // Nothing to do for single use in same basic block. 1595 if (AndI->hasOneUse() && 1596 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1597 return false; 1598 1599 // Try to avoid cases where sinking/duplicating is likely to increase register 1600 // pressure. 1601 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1602 !isa<ConstantInt>(AndI->getOperand(1)) && 1603 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1604 return false; 1605 1606 for (auto *U : AndI->users()) { 1607 Instruction *User = cast<Instruction>(U); 1608 1609 // Only sink 'and' feeding icmp with 0. 1610 if (!isa<ICmpInst>(User)) 1611 return false; 1612 1613 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1614 if (!CmpC || !CmpC->isZero()) 1615 return false; 1616 } 1617 1618 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1619 return false; 1620 1621 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1622 LLVM_DEBUG(AndI->getParent()->dump()); 1623 1624 // Push the 'and' into the same block as the icmp 0. There should only be 1625 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1626 // others, so we don't need to keep track of which BBs we insert into. 1627 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1628 UI != E; ) { 1629 Use &TheUse = UI.getUse(); 1630 Instruction *User = cast<Instruction>(*UI); 1631 1632 // Preincrement use iterator so we don't invalidate it. 1633 ++UI; 1634 1635 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1636 1637 // Keep the 'and' in the same place if the use is already in the same block. 1638 Instruction *InsertPt = 1639 User->getParent() == AndI->getParent() ? AndI : User; 1640 Instruction *InsertedAnd = 1641 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1642 AndI->getOperand(1), "", InsertPt); 1643 // Propagate the debug info. 1644 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1645 1646 // Replace a use of the 'and' with a use of the new 'and'. 1647 TheUse = InsertedAnd; 1648 ++NumAndUses; 1649 LLVM_DEBUG(User->getParent()->dump()); 1650 } 1651 1652 // We removed all uses, nuke the and. 1653 AndI->eraseFromParent(); 1654 return true; 1655 } 1656 1657 /// Check if the candidates could be combined with a shift instruction, which 1658 /// includes: 1659 /// 1. Truncate instruction 1660 /// 2. And instruction and the imm is a mask of the low bits: 1661 /// imm & (imm+1) == 0 1662 static bool isExtractBitsCandidateUse(Instruction *User) { 1663 if (!isa<TruncInst>(User)) { 1664 if (User->getOpcode() != Instruction::And || 1665 !isa<ConstantInt>(User->getOperand(1))) 1666 return false; 1667 1668 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1669 1670 if ((Cimm & (Cimm + 1)).getBoolValue()) 1671 return false; 1672 } 1673 return true; 1674 } 1675 1676 /// Sink both shift and truncate instruction to the use of truncate's BB. 1677 static bool 1678 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1679 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1680 const TargetLowering &TLI, const DataLayout &DL) { 1681 BasicBlock *UserBB = User->getParent(); 1682 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1683 auto *TruncI = cast<TruncInst>(User); 1684 bool MadeChange = false; 1685 1686 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1687 TruncE = TruncI->user_end(); 1688 TruncUI != TruncE;) { 1689 1690 Use &TruncTheUse = TruncUI.getUse(); 1691 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1692 // Preincrement use iterator so we don't invalidate it. 1693 1694 ++TruncUI; 1695 1696 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1697 if (!ISDOpcode) 1698 continue; 1699 1700 // If the use is actually a legal node, there will not be an 1701 // implicit truncate. 1702 // FIXME: always querying the result type is just an 1703 // approximation; some nodes' legality is determined by the 1704 // operand or other means. There's no good way to find out though. 1705 if (TLI.isOperationLegalOrCustom( 1706 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1707 continue; 1708 1709 // Don't bother for PHI nodes. 1710 if (isa<PHINode>(TruncUser)) 1711 continue; 1712 1713 BasicBlock *TruncUserBB = TruncUser->getParent(); 1714 1715 if (UserBB == TruncUserBB) 1716 continue; 1717 1718 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1719 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1720 1721 if (!InsertedShift && !InsertedTrunc) { 1722 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1723 assert(InsertPt != TruncUserBB->end()); 1724 // Sink the shift 1725 if (ShiftI->getOpcode() == Instruction::AShr) 1726 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1727 "", &*InsertPt); 1728 else 1729 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1730 "", &*InsertPt); 1731 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1732 1733 // Sink the trunc 1734 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1735 TruncInsertPt++; 1736 assert(TruncInsertPt != TruncUserBB->end()); 1737 1738 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1739 TruncI->getType(), "", &*TruncInsertPt); 1740 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1741 1742 MadeChange = true; 1743 1744 TruncTheUse = InsertedTrunc; 1745 } 1746 } 1747 return MadeChange; 1748 } 1749 1750 /// Sink the shift *right* instruction into user blocks if the uses could 1751 /// potentially be combined with this shift instruction and generate BitExtract 1752 /// instruction. It will only be applied if the architecture supports BitExtract 1753 /// instruction. Here is an example: 1754 /// BB1: 1755 /// %x.extract.shift = lshr i64 %arg1, 32 1756 /// BB2: 1757 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1758 /// ==> 1759 /// 1760 /// BB2: 1761 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1762 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1763 /// 1764 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1765 /// instruction. 1766 /// Return true if any changes are made. 1767 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1768 const TargetLowering &TLI, 1769 const DataLayout &DL) { 1770 BasicBlock *DefBB = ShiftI->getParent(); 1771 1772 /// Only insert instructions in each block once. 1773 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1774 1775 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1776 1777 bool MadeChange = false; 1778 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1779 UI != E;) { 1780 Use &TheUse = UI.getUse(); 1781 Instruction *User = cast<Instruction>(*UI); 1782 // Preincrement use iterator so we don't invalidate it. 1783 ++UI; 1784 1785 // Don't bother for PHI nodes. 1786 if (isa<PHINode>(User)) 1787 continue; 1788 1789 if (!isExtractBitsCandidateUse(User)) 1790 continue; 1791 1792 BasicBlock *UserBB = User->getParent(); 1793 1794 if (UserBB == DefBB) { 1795 // If the shift and truncate instruction are in the same BB. The use of 1796 // the truncate(TruncUse) may still introduce another truncate if not 1797 // legal. In this case, we would like to sink both shift and truncate 1798 // instruction to the BB of TruncUse. 1799 // for example: 1800 // BB1: 1801 // i64 shift.result = lshr i64 opnd, imm 1802 // trunc.result = trunc shift.result to i16 1803 // 1804 // BB2: 1805 // ----> We will have an implicit truncate here if the architecture does 1806 // not have i16 compare. 1807 // cmp i16 trunc.result, opnd2 1808 // 1809 if (isa<TruncInst>(User) && shiftIsLegal 1810 // If the type of the truncate is legal, no truncate will be 1811 // introduced in other basic blocks. 1812 && 1813 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1814 MadeChange = 1815 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1816 1817 continue; 1818 } 1819 // If we have already inserted a shift into this block, use it. 1820 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1821 1822 if (!InsertedShift) { 1823 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1824 assert(InsertPt != UserBB->end()); 1825 1826 if (ShiftI->getOpcode() == Instruction::AShr) 1827 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1828 "", &*InsertPt); 1829 else 1830 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1831 "", &*InsertPt); 1832 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1833 1834 MadeChange = true; 1835 } 1836 1837 // Replace a use of the shift with a use of the new shift. 1838 TheUse = InsertedShift; 1839 } 1840 1841 // If we removed all uses, or there are none, nuke the shift. 1842 if (ShiftI->use_empty()) { 1843 salvageDebugInfo(*ShiftI); 1844 ShiftI->eraseFromParent(); 1845 MadeChange = true; 1846 } 1847 1848 return MadeChange; 1849 } 1850 1851 /// If counting leading or trailing zeros is an expensive operation and a zero 1852 /// input is defined, add a check for zero to avoid calling the intrinsic. 1853 /// 1854 /// We want to transform: 1855 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1856 /// 1857 /// into: 1858 /// entry: 1859 /// %cmpz = icmp eq i64 %A, 0 1860 /// br i1 %cmpz, label %cond.end, label %cond.false 1861 /// cond.false: 1862 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1863 /// br label %cond.end 1864 /// cond.end: 1865 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1866 /// 1867 /// If the transform is performed, return true and set ModifiedDT to true. 1868 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1869 const TargetLowering *TLI, 1870 const DataLayout *DL, 1871 bool &ModifiedDT) { 1872 // If a zero input is undefined, it doesn't make sense to despeculate that. 1873 if (match(CountZeros->getOperand(1), m_One())) 1874 return false; 1875 1876 // If it's cheap to speculate, there's nothing to do. 1877 auto IntrinsicID = CountZeros->getIntrinsicID(); 1878 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1879 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1880 return false; 1881 1882 // Only handle legal scalar cases. Anything else requires too much work. 1883 Type *Ty = CountZeros->getType(); 1884 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1885 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1886 return false; 1887 1888 // The intrinsic will be sunk behind a compare against zero and branch. 1889 BasicBlock *StartBlock = CountZeros->getParent(); 1890 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1891 1892 // Create another block after the count zero intrinsic. A PHI will be added 1893 // in this block to select the result of the intrinsic or the bit-width 1894 // constant if the input to the intrinsic is zero. 1895 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1896 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1897 1898 // Set up a builder to create a compare, conditional branch, and PHI. 1899 IRBuilder<> Builder(CountZeros->getContext()); 1900 Builder.SetInsertPoint(StartBlock->getTerminator()); 1901 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1902 1903 // Replace the unconditional branch that was created by the first split with 1904 // a compare against zero and a conditional branch. 1905 Value *Zero = Constant::getNullValue(Ty); 1906 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1907 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1908 StartBlock->getTerminator()->eraseFromParent(); 1909 1910 // Create a PHI in the end block to select either the output of the intrinsic 1911 // or the bit width of the operand. 1912 Builder.SetInsertPoint(&EndBlock->front()); 1913 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1914 CountZeros->replaceAllUsesWith(PN); 1915 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1916 PN->addIncoming(BitWidth, StartBlock); 1917 PN->addIncoming(CountZeros, CallBlock); 1918 1919 // We are explicitly handling the zero case, so we can set the intrinsic's 1920 // undefined zero argument to 'true'. This will also prevent reprocessing the 1921 // intrinsic; we only despeculate when a zero input is defined. 1922 CountZeros->setArgOperand(1, Builder.getTrue()); 1923 ModifiedDT = true; 1924 return true; 1925 } 1926 1927 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1928 BasicBlock *BB = CI->getParent(); 1929 1930 // Lower inline assembly if we can. 1931 // If we found an inline asm expession, and if the target knows how to 1932 // lower it to normal LLVM code, do so now. 1933 if (CI->isInlineAsm()) { 1934 if (TLI->ExpandInlineAsm(CI)) { 1935 // Avoid invalidating the iterator. 1936 CurInstIterator = BB->begin(); 1937 // Avoid processing instructions out of order, which could cause 1938 // reuse before a value is defined. 1939 SunkAddrs.clear(); 1940 return true; 1941 } 1942 // Sink address computing for memory operands into the block. 1943 if (optimizeInlineAsmInst(CI)) 1944 return true; 1945 } 1946 1947 // Align the pointer arguments to this call if the target thinks it's a good 1948 // idea 1949 unsigned MinSize, PrefAlign; 1950 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1951 for (auto &Arg : CI->arg_operands()) { 1952 // We want to align both objects whose address is used directly and 1953 // objects whose address is used in casts and GEPs, though it only makes 1954 // sense for GEPs if the offset is a multiple of the desired alignment and 1955 // if size - offset meets the size threshold. 1956 if (!Arg->getType()->isPointerTy()) 1957 continue; 1958 APInt Offset(DL->getIndexSizeInBits( 1959 cast<PointerType>(Arg->getType())->getAddressSpace()), 1960 0); 1961 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1962 uint64_t Offset2 = Offset.getLimitedValue(); 1963 if ((Offset2 & (PrefAlign-1)) != 0) 1964 continue; 1965 AllocaInst *AI; 1966 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1967 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1968 AI->setAlignment(Align(PrefAlign)); 1969 // Global variables can only be aligned if they are defined in this 1970 // object (i.e. they are uniquely initialized in this object), and 1971 // over-aligning global variables that have an explicit section is 1972 // forbidden. 1973 GlobalVariable *GV; 1974 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1975 GV->getPointerAlignment(*DL) < PrefAlign && 1976 DL->getTypeAllocSize(GV->getValueType()) >= 1977 MinSize + Offset2) 1978 GV->setAlignment(MaybeAlign(PrefAlign)); 1979 } 1980 // If this is a memcpy (or similar) then we may be able to improve the 1981 // alignment 1982 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1983 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 1984 MaybeAlign MIDestAlign = MI->getDestAlign(); 1985 if (!MIDestAlign || DestAlign > *MIDestAlign) 1986 MI->setDestAlignment(DestAlign); 1987 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1988 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 1989 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1990 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 1991 MTI->setSourceAlignment(SrcAlign); 1992 } 1993 } 1994 } 1995 1996 // If we have a cold call site, try to sink addressing computation into the 1997 // cold block. This interacts with our handling for loads and stores to 1998 // ensure that we can fold all uses of a potential addressing computation 1999 // into their uses. TODO: generalize this to work over profiling data 2000 if (CI->hasFnAttr(Attribute::Cold) && 2001 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2002 for (auto &Arg : CI->arg_operands()) { 2003 if (!Arg->getType()->isPointerTy()) 2004 continue; 2005 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2006 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2007 } 2008 2009 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2010 if (II) { 2011 switch (II->getIntrinsicID()) { 2012 default: break; 2013 case Intrinsic::assume: { 2014 II->eraseFromParent(); 2015 return true; 2016 } 2017 2018 case Intrinsic::experimental_widenable_condition: { 2019 // Give up on future widening oppurtunties so that we can fold away dead 2020 // paths and merge blocks before going into block-local instruction 2021 // selection. 2022 if (II->use_empty()) { 2023 II->eraseFromParent(); 2024 return true; 2025 } 2026 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2027 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2028 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2029 }); 2030 return true; 2031 } 2032 case Intrinsic::objectsize: 2033 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2034 case Intrinsic::is_constant: 2035 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2036 case Intrinsic::aarch64_stlxr: 2037 case Intrinsic::aarch64_stxr: { 2038 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2039 if (!ExtVal || !ExtVal->hasOneUse() || 2040 ExtVal->getParent() == CI->getParent()) 2041 return false; 2042 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2043 ExtVal->moveBefore(CI); 2044 // Mark this instruction as "inserted by CGP", so that other 2045 // optimizations don't touch it. 2046 InsertedInsts.insert(ExtVal); 2047 return true; 2048 } 2049 2050 case Intrinsic::launder_invariant_group: 2051 case Intrinsic::strip_invariant_group: { 2052 Value *ArgVal = II->getArgOperand(0); 2053 auto it = LargeOffsetGEPMap.find(II); 2054 if (it != LargeOffsetGEPMap.end()) { 2055 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2056 // Make sure not to have to deal with iterator invalidation 2057 // after possibly adding ArgVal to LargeOffsetGEPMap. 2058 auto GEPs = std::move(it->second); 2059 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2060 LargeOffsetGEPMap.erase(II); 2061 } 2062 2063 II->replaceAllUsesWith(ArgVal); 2064 II->eraseFromParent(); 2065 return true; 2066 } 2067 case Intrinsic::cttz: 2068 case Intrinsic::ctlz: 2069 // If counting zeros is expensive, try to avoid it. 2070 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2071 case Intrinsic::fshl: 2072 case Intrinsic::fshr: 2073 return optimizeFunnelShift(II); 2074 case Intrinsic::dbg_value: 2075 return fixupDbgValue(II); 2076 case Intrinsic::vscale: { 2077 // If datalayout has no special restrictions on vector data layout, 2078 // replace `llvm.vscale` by an equivalent constant expression 2079 // to benefit from cheap constant propagation. 2080 Type *ScalableVectorTy = 2081 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2082 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2083 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2084 auto *One = ConstantInt::getSigned(II->getType(), 1); 2085 auto *CGep = 2086 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2087 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2088 II->eraseFromParent(); 2089 return true; 2090 } 2091 break; 2092 } 2093 case Intrinsic::masked_gather: 2094 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2095 case Intrinsic::masked_scatter: 2096 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2097 } 2098 2099 SmallVector<Value *, 2> PtrOps; 2100 Type *AccessTy; 2101 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2102 while (!PtrOps.empty()) { 2103 Value *PtrVal = PtrOps.pop_back_val(); 2104 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2105 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2106 return true; 2107 } 2108 } 2109 2110 // From here on out we're working with named functions. 2111 if (!CI->getCalledFunction()) return false; 2112 2113 // Lower all default uses of _chk calls. This is very similar 2114 // to what InstCombineCalls does, but here we are only lowering calls 2115 // to fortified library functions (e.g. __memcpy_chk) that have the default 2116 // "don't know" as the objectsize. Anything else should be left alone. 2117 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2118 IRBuilder<> Builder(CI); 2119 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2120 CI->replaceAllUsesWith(V); 2121 CI->eraseFromParent(); 2122 return true; 2123 } 2124 2125 return false; 2126 } 2127 2128 /// Look for opportunities to duplicate return instructions to the predecessor 2129 /// to enable tail call optimizations. The case it is currently looking for is: 2130 /// @code 2131 /// bb0: 2132 /// %tmp0 = tail call i32 @f0() 2133 /// br label %return 2134 /// bb1: 2135 /// %tmp1 = tail call i32 @f1() 2136 /// br label %return 2137 /// bb2: 2138 /// %tmp2 = tail call i32 @f2() 2139 /// br label %return 2140 /// return: 2141 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2142 /// ret i32 %retval 2143 /// @endcode 2144 /// 2145 /// => 2146 /// 2147 /// @code 2148 /// bb0: 2149 /// %tmp0 = tail call i32 @f0() 2150 /// ret i32 %tmp0 2151 /// bb1: 2152 /// %tmp1 = tail call i32 @f1() 2153 /// ret i32 %tmp1 2154 /// bb2: 2155 /// %tmp2 = tail call i32 @f2() 2156 /// ret i32 %tmp2 2157 /// @endcode 2158 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2159 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2160 if (!RetI) 2161 return false; 2162 2163 PHINode *PN = nullptr; 2164 ExtractValueInst *EVI = nullptr; 2165 BitCastInst *BCI = nullptr; 2166 Value *V = RetI->getReturnValue(); 2167 if (V) { 2168 BCI = dyn_cast<BitCastInst>(V); 2169 if (BCI) 2170 V = BCI->getOperand(0); 2171 2172 EVI = dyn_cast<ExtractValueInst>(V); 2173 if (EVI) { 2174 V = EVI->getOperand(0); 2175 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2176 [](unsigned idx) { return idx == 0; })) 2177 return false; 2178 } 2179 2180 PN = dyn_cast<PHINode>(V); 2181 if (!PN) 2182 return false; 2183 } 2184 2185 if (PN && PN->getParent() != BB) 2186 return false; 2187 2188 // Make sure there are no instructions between the PHI and return, or that the 2189 // return is the first instruction in the block. 2190 if (PN) { 2191 BasicBlock::iterator BI = BB->begin(); 2192 // Skip over debug and the bitcast. 2193 do { 2194 ++BI; 2195 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2196 if (&*BI != RetI) 2197 return false; 2198 } else { 2199 BasicBlock::iterator BI = BB->begin(); 2200 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2201 if (&*BI != RetI) 2202 return false; 2203 } 2204 2205 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2206 /// call. 2207 const Function *F = BB->getParent(); 2208 SmallVector<BasicBlock*, 4> TailCallBBs; 2209 if (PN) { 2210 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2211 // Look through bitcasts. 2212 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2213 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2214 BasicBlock *PredBB = PN->getIncomingBlock(I); 2215 // Make sure the phi value is indeed produced by the tail call. 2216 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2217 TLI->mayBeEmittedAsTailCall(CI) && 2218 attributesPermitTailCall(F, CI, RetI, *TLI)) 2219 TailCallBBs.push_back(PredBB); 2220 } 2221 } else { 2222 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2223 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2224 if (!VisitedBBs.insert(*PI).second) 2225 continue; 2226 2227 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2228 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2229 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2230 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2231 if (RI == RE) 2232 continue; 2233 2234 CallInst *CI = dyn_cast<CallInst>(&*RI); 2235 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2236 attributesPermitTailCall(F, CI, RetI, *TLI)) 2237 TailCallBBs.push_back(*PI); 2238 } 2239 } 2240 2241 bool Changed = false; 2242 for (auto const &TailCallBB : TailCallBBs) { 2243 // Make sure the call instruction is followed by an unconditional branch to 2244 // the return block. 2245 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2246 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2247 continue; 2248 2249 // Duplicate the return into TailCallBB. 2250 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2251 assert(!VerifyBFIUpdates || 2252 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2253 BFI->setBlockFreq( 2254 BB, 2255 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2256 ModifiedDT = Changed = true; 2257 ++NumRetsDup; 2258 } 2259 2260 // If we eliminated all predecessors of the block, delete the block now. 2261 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2262 BB->eraseFromParent(); 2263 2264 return Changed; 2265 } 2266 2267 //===----------------------------------------------------------------------===// 2268 // Memory Optimization 2269 //===----------------------------------------------------------------------===// 2270 2271 namespace { 2272 2273 /// This is an extended version of TargetLowering::AddrMode 2274 /// which holds actual Value*'s for register values. 2275 struct ExtAddrMode : public TargetLowering::AddrMode { 2276 Value *BaseReg = nullptr; 2277 Value *ScaledReg = nullptr; 2278 Value *OriginalValue = nullptr; 2279 bool InBounds = true; 2280 2281 enum FieldName { 2282 NoField = 0x00, 2283 BaseRegField = 0x01, 2284 BaseGVField = 0x02, 2285 BaseOffsField = 0x04, 2286 ScaledRegField = 0x08, 2287 ScaleField = 0x10, 2288 MultipleFields = 0xff 2289 }; 2290 2291 2292 ExtAddrMode() = default; 2293 2294 void print(raw_ostream &OS) const; 2295 void dump() const; 2296 2297 FieldName compare(const ExtAddrMode &other) { 2298 // First check that the types are the same on each field, as differing types 2299 // is something we can't cope with later on. 2300 if (BaseReg && other.BaseReg && 2301 BaseReg->getType() != other.BaseReg->getType()) 2302 return MultipleFields; 2303 if (BaseGV && other.BaseGV && 2304 BaseGV->getType() != other.BaseGV->getType()) 2305 return MultipleFields; 2306 if (ScaledReg && other.ScaledReg && 2307 ScaledReg->getType() != other.ScaledReg->getType()) 2308 return MultipleFields; 2309 2310 // Conservatively reject 'inbounds' mismatches. 2311 if (InBounds != other.InBounds) 2312 return MultipleFields; 2313 2314 // Check each field to see if it differs. 2315 unsigned Result = NoField; 2316 if (BaseReg != other.BaseReg) 2317 Result |= BaseRegField; 2318 if (BaseGV != other.BaseGV) 2319 Result |= BaseGVField; 2320 if (BaseOffs != other.BaseOffs) 2321 Result |= BaseOffsField; 2322 if (ScaledReg != other.ScaledReg) 2323 Result |= ScaledRegField; 2324 // Don't count 0 as being a different scale, because that actually means 2325 // unscaled (which will already be counted by having no ScaledReg). 2326 if (Scale && other.Scale && Scale != other.Scale) 2327 Result |= ScaleField; 2328 2329 if (countPopulation(Result) > 1) 2330 return MultipleFields; 2331 else 2332 return static_cast<FieldName>(Result); 2333 } 2334 2335 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2336 // with no offset. 2337 bool isTrivial() { 2338 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2339 // trivial if at most one of these terms is nonzero, except that BaseGV and 2340 // BaseReg both being zero actually means a null pointer value, which we 2341 // consider to be 'non-zero' here. 2342 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2343 } 2344 2345 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2346 switch (Field) { 2347 default: 2348 return nullptr; 2349 case BaseRegField: 2350 return BaseReg; 2351 case BaseGVField: 2352 return BaseGV; 2353 case ScaledRegField: 2354 return ScaledReg; 2355 case BaseOffsField: 2356 return ConstantInt::get(IntPtrTy, BaseOffs); 2357 } 2358 } 2359 2360 void SetCombinedField(FieldName Field, Value *V, 2361 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2362 switch (Field) { 2363 default: 2364 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2365 break; 2366 case ExtAddrMode::BaseRegField: 2367 BaseReg = V; 2368 break; 2369 case ExtAddrMode::BaseGVField: 2370 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2371 // in the BaseReg field. 2372 assert(BaseReg == nullptr); 2373 BaseReg = V; 2374 BaseGV = nullptr; 2375 break; 2376 case ExtAddrMode::ScaledRegField: 2377 ScaledReg = V; 2378 // If we have a mix of scaled and unscaled addrmodes then we want scale 2379 // to be the scale and not zero. 2380 if (!Scale) 2381 for (const ExtAddrMode &AM : AddrModes) 2382 if (AM.Scale) { 2383 Scale = AM.Scale; 2384 break; 2385 } 2386 break; 2387 case ExtAddrMode::BaseOffsField: 2388 // The offset is no longer a constant, so it goes in ScaledReg with a 2389 // scale of 1. 2390 assert(ScaledReg == nullptr); 2391 ScaledReg = V; 2392 Scale = 1; 2393 BaseOffs = 0; 2394 break; 2395 } 2396 } 2397 }; 2398 2399 } // end anonymous namespace 2400 2401 #ifndef NDEBUG 2402 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2403 AM.print(OS); 2404 return OS; 2405 } 2406 #endif 2407 2408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2409 void ExtAddrMode::print(raw_ostream &OS) const { 2410 bool NeedPlus = false; 2411 OS << "["; 2412 if (InBounds) 2413 OS << "inbounds "; 2414 if (BaseGV) { 2415 OS << (NeedPlus ? " + " : "") 2416 << "GV:"; 2417 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2418 NeedPlus = true; 2419 } 2420 2421 if (BaseOffs) { 2422 OS << (NeedPlus ? " + " : "") 2423 << BaseOffs; 2424 NeedPlus = true; 2425 } 2426 2427 if (BaseReg) { 2428 OS << (NeedPlus ? " + " : "") 2429 << "Base:"; 2430 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2431 NeedPlus = true; 2432 } 2433 if (Scale) { 2434 OS << (NeedPlus ? " + " : "") 2435 << Scale << "*"; 2436 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2437 } 2438 2439 OS << ']'; 2440 } 2441 2442 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2443 print(dbgs()); 2444 dbgs() << '\n'; 2445 } 2446 #endif 2447 2448 namespace { 2449 2450 /// This class provides transaction based operation on the IR. 2451 /// Every change made through this class is recorded in the internal state and 2452 /// can be undone (rollback) until commit is called. 2453 /// CGP does not check if instructions could be speculatively executed when 2454 /// moved. Preserving the original location would pessimize the debugging 2455 /// experience, as well as negatively impact the quality of sample PGO. 2456 class TypePromotionTransaction { 2457 /// This represents the common interface of the individual transaction. 2458 /// Each class implements the logic for doing one specific modification on 2459 /// the IR via the TypePromotionTransaction. 2460 class TypePromotionAction { 2461 protected: 2462 /// The Instruction modified. 2463 Instruction *Inst; 2464 2465 public: 2466 /// Constructor of the action. 2467 /// The constructor performs the related action on the IR. 2468 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2469 2470 virtual ~TypePromotionAction() = default; 2471 2472 /// Undo the modification done by this action. 2473 /// When this method is called, the IR must be in the same state as it was 2474 /// before this action was applied. 2475 /// \pre Undoing the action works if and only if the IR is in the exact same 2476 /// state as it was directly after this action was applied. 2477 virtual void undo() = 0; 2478 2479 /// Advocate every change made by this action. 2480 /// When the results on the IR of the action are to be kept, it is important 2481 /// to call this function, otherwise hidden information may be kept forever. 2482 virtual void commit() { 2483 // Nothing to be done, this action is not doing anything. 2484 } 2485 }; 2486 2487 /// Utility to remember the position of an instruction. 2488 class InsertionHandler { 2489 /// Position of an instruction. 2490 /// Either an instruction: 2491 /// - Is the first in a basic block: BB is used. 2492 /// - Has a previous instruction: PrevInst is used. 2493 union { 2494 Instruction *PrevInst; 2495 BasicBlock *BB; 2496 } Point; 2497 2498 /// Remember whether or not the instruction had a previous instruction. 2499 bool HasPrevInstruction; 2500 2501 public: 2502 /// Record the position of \p Inst. 2503 InsertionHandler(Instruction *Inst) { 2504 BasicBlock::iterator It = Inst->getIterator(); 2505 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2506 if (HasPrevInstruction) 2507 Point.PrevInst = &*--It; 2508 else 2509 Point.BB = Inst->getParent(); 2510 } 2511 2512 /// Insert \p Inst at the recorded position. 2513 void insert(Instruction *Inst) { 2514 if (HasPrevInstruction) { 2515 if (Inst->getParent()) 2516 Inst->removeFromParent(); 2517 Inst->insertAfter(Point.PrevInst); 2518 } else { 2519 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2520 if (Inst->getParent()) 2521 Inst->moveBefore(Position); 2522 else 2523 Inst->insertBefore(Position); 2524 } 2525 } 2526 }; 2527 2528 /// Move an instruction before another. 2529 class InstructionMoveBefore : public TypePromotionAction { 2530 /// Original position of the instruction. 2531 InsertionHandler Position; 2532 2533 public: 2534 /// Move \p Inst before \p Before. 2535 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2536 : TypePromotionAction(Inst), Position(Inst) { 2537 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2538 << "\n"); 2539 Inst->moveBefore(Before); 2540 } 2541 2542 /// Move the instruction back to its original position. 2543 void undo() override { 2544 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2545 Position.insert(Inst); 2546 } 2547 }; 2548 2549 /// Set the operand of an instruction with a new value. 2550 class OperandSetter : public TypePromotionAction { 2551 /// Original operand of the instruction. 2552 Value *Origin; 2553 2554 /// Index of the modified instruction. 2555 unsigned Idx; 2556 2557 public: 2558 /// Set \p Idx operand of \p Inst with \p NewVal. 2559 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2560 : TypePromotionAction(Inst), Idx(Idx) { 2561 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2562 << "for:" << *Inst << "\n" 2563 << "with:" << *NewVal << "\n"); 2564 Origin = Inst->getOperand(Idx); 2565 Inst->setOperand(Idx, NewVal); 2566 } 2567 2568 /// Restore the original value of the instruction. 2569 void undo() override { 2570 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2571 << "for: " << *Inst << "\n" 2572 << "with: " << *Origin << "\n"); 2573 Inst->setOperand(Idx, Origin); 2574 } 2575 }; 2576 2577 /// Hide the operands of an instruction. 2578 /// Do as if this instruction was not using any of its operands. 2579 class OperandsHider : public TypePromotionAction { 2580 /// The list of original operands. 2581 SmallVector<Value *, 4> OriginalValues; 2582 2583 public: 2584 /// Remove \p Inst from the uses of the operands of \p Inst. 2585 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2586 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2587 unsigned NumOpnds = Inst->getNumOperands(); 2588 OriginalValues.reserve(NumOpnds); 2589 for (unsigned It = 0; It < NumOpnds; ++It) { 2590 // Save the current operand. 2591 Value *Val = Inst->getOperand(It); 2592 OriginalValues.push_back(Val); 2593 // Set a dummy one. 2594 // We could use OperandSetter here, but that would imply an overhead 2595 // that we are not willing to pay. 2596 Inst->setOperand(It, UndefValue::get(Val->getType())); 2597 } 2598 } 2599 2600 /// Restore the original list of uses. 2601 void undo() override { 2602 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2603 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2604 Inst->setOperand(It, OriginalValues[It]); 2605 } 2606 }; 2607 2608 /// Build a truncate instruction. 2609 class TruncBuilder : public TypePromotionAction { 2610 Value *Val; 2611 2612 public: 2613 /// Build a truncate instruction of \p Opnd producing a \p Ty 2614 /// result. 2615 /// trunc Opnd to Ty. 2616 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2617 IRBuilder<> Builder(Opnd); 2618 Builder.SetCurrentDebugLocation(DebugLoc()); 2619 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2620 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2621 } 2622 2623 /// Get the built value. 2624 Value *getBuiltValue() { return Val; } 2625 2626 /// Remove the built instruction. 2627 void undo() override { 2628 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2629 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2630 IVal->eraseFromParent(); 2631 } 2632 }; 2633 2634 /// Build a sign extension instruction. 2635 class SExtBuilder : public TypePromotionAction { 2636 Value *Val; 2637 2638 public: 2639 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2640 /// result. 2641 /// sext Opnd to Ty. 2642 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2643 : TypePromotionAction(InsertPt) { 2644 IRBuilder<> Builder(InsertPt); 2645 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2646 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2647 } 2648 2649 /// Get the built value. 2650 Value *getBuiltValue() { return Val; } 2651 2652 /// Remove the built instruction. 2653 void undo() override { 2654 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2655 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2656 IVal->eraseFromParent(); 2657 } 2658 }; 2659 2660 /// Build a zero extension instruction. 2661 class ZExtBuilder : public TypePromotionAction { 2662 Value *Val; 2663 2664 public: 2665 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2666 /// result. 2667 /// zext Opnd to Ty. 2668 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2669 : TypePromotionAction(InsertPt) { 2670 IRBuilder<> Builder(InsertPt); 2671 Builder.SetCurrentDebugLocation(DebugLoc()); 2672 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2673 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2674 } 2675 2676 /// Get the built value. 2677 Value *getBuiltValue() { return Val; } 2678 2679 /// Remove the built instruction. 2680 void undo() override { 2681 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2682 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2683 IVal->eraseFromParent(); 2684 } 2685 }; 2686 2687 /// Mutate an instruction to another type. 2688 class TypeMutator : public TypePromotionAction { 2689 /// Record the original type. 2690 Type *OrigTy; 2691 2692 public: 2693 /// Mutate the type of \p Inst into \p NewTy. 2694 TypeMutator(Instruction *Inst, Type *NewTy) 2695 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2696 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2697 << "\n"); 2698 Inst->mutateType(NewTy); 2699 } 2700 2701 /// Mutate the instruction back to its original type. 2702 void undo() override { 2703 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2704 << "\n"); 2705 Inst->mutateType(OrigTy); 2706 } 2707 }; 2708 2709 /// Replace the uses of an instruction by another instruction. 2710 class UsesReplacer : public TypePromotionAction { 2711 /// Helper structure to keep track of the replaced uses. 2712 struct InstructionAndIdx { 2713 /// The instruction using the instruction. 2714 Instruction *Inst; 2715 2716 /// The index where this instruction is used for Inst. 2717 unsigned Idx; 2718 2719 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2720 : Inst(Inst), Idx(Idx) {} 2721 }; 2722 2723 /// Keep track of the original uses (pair Instruction, Index). 2724 SmallVector<InstructionAndIdx, 4> OriginalUses; 2725 /// Keep track of the debug users. 2726 SmallVector<DbgValueInst *, 1> DbgValues; 2727 2728 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2729 2730 public: 2731 /// Replace all the use of \p Inst by \p New. 2732 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2733 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2734 << "\n"); 2735 // Record the original uses. 2736 for (Use &U : Inst->uses()) { 2737 Instruction *UserI = cast<Instruction>(U.getUser()); 2738 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2739 } 2740 // Record the debug uses separately. They are not in the instruction's 2741 // use list, but they are replaced by RAUW. 2742 findDbgValues(DbgValues, Inst); 2743 2744 // Now, we can replace the uses. 2745 Inst->replaceAllUsesWith(New); 2746 } 2747 2748 /// Reassign the original uses of Inst to Inst. 2749 void undo() override { 2750 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2751 for (use_iterator UseIt = OriginalUses.begin(), 2752 EndIt = OriginalUses.end(); 2753 UseIt != EndIt; ++UseIt) { 2754 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2755 } 2756 // RAUW has replaced all original uses with references to the new value, 2757 // including the debug uses. Since we are undoing the replacements, 2758 // the original debug uses must also be reinstated to maintain the 2759 // correctness and utility of debug value instructions. 2760 for (auto *DVI: DbgValues) { 2761 LLVMContext &Ctx = Inst->getType()->getContext(); 2762 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2763 DVI->setOperand(0, MV); 2764 } 2765 } 2766 }; 2767 2768 /// Remove an instruction from the IR. 2769 class InstructionRemover : public TypePromotionAction { 2770 /// Original position of the instruction. 2771 InsertionHandler Inserter; 2772 2773 /// Helper structure to hide all the link to the instruction. In other 2774 /// words, this helps to do as if the instruction was removed. 2775 OperandsHider Hider; 2776 2777 /// Keep track of the uses replaced, if any. 2778 UsesReplacer *Replacer = nullptr; 2779 2780 /// Keep track of instructions removed. 2781 SetOfInstrs &RemovedInsts; 2782 2783 public: 2784 /// Remove all reference of \p Inst and optionally replace all its 2785 /// uses with New. 2786 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2787 /// \pre If !Inst->use_empty(), then New != nullptr 2788 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2789 Value *New = nullptr) 2790 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2791 RemovedInsts(RemovedInsts) { 2792 if (New) 2793 Replacer = new UsesReplacer(Inst, New); 2794 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2795 RemovedInsts.insert(Inst); 2796 /// The instructions removed here will be freed after completing 2797 /// optimizeBlock() for all blocks as we need to keep track of the 2798 /// removed instructions during promotion. 2799 Inst->removeFromParent(); 2800 } 2801 2802 ~InstructionRemover() override { delete Replacer; } 2803 2804 /// Resurrect the instruction and reassign it to the proper uses if 2805 /// new value was provided when build this action. 2806 void undo() override { 2807 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2808 Inserter.insert(Inst); 2809 if (Replacer) 2810 Replacer->undo(); 2811 Hider.undo(); 2812 RemovedInsts.erase(Inst); 2813 } 2814 }; 2815 2816 public: 2817 /// Restoration point. 2818 /// The restoration point is a pointer to an action instead of an iterator 2819 /// because the iterator may be invalidated but not the pointer. 2820 using ConstRestorationPt = const TypePromotionAction *; 2821 2822 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2823 : RemovedInsts(RemovedInsts) {} 2824 2825 /// Advocate every changes made in that transaction. Return true if any change 2826 /// happen. 2827 bool commit(); 2828 2829 /// Undo all the changes made after the given point. 2830 void rollback(ConstRestorationPt Point); 2831 2832 /// Get the current restoration point. 2833 ConstRestorationPt getRestorationPoint() const; 2834 2835 /// \name API for IR modification with state keeping to support rollback. 2836 /// @{ 2837 /// Same as Instruction::setOperand. 2838 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2839 2840 /// Same as Instruction::eraseFromParent. 2841 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2842 2843 /// Same as Value::replaceAllUsesWith. 2844 void replaceAllUsesWith(Instruction *Inst, Value *New); 2845 2846 /// Same as Value::mutateType. 2847 void mutateType(Instruction *Inst, Type *NewTy); 2848 2849 /// Same as IRBuilder::createTrunc. 2850 Value *createTrunc(Instruction *Opnd, Type *Ty); 2851 2852 /// Same as IRBuilder::createSExt. 2853 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2854 2855 /// Same as IRBuilder::createZExt. 2856 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2857 2858 /// Same as Instruction::moveBefore. 2859 void moveBefore(Instruction *Inst, Instruction *Before); 2860 /// @} 2861 2862 private: 2863 /// The ordered list of actions made so far. 2864 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2865 2866 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2867 2868 SetOfInstrs &RemovedInsts; 2869 }; 2870 2871 } // end anonymous namespace 2872 2873 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2874 Value *NewVal) { 2875 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2876 Inst, Idx, NewVal)); 2877 } 2878 2879 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2880 Value *NewVal) { 2881 Actions.push_back( 2882 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2883 Inst, RemovedInsts, NewVal)); 2884 } 2885 2886 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2887 Value *New) { 2888 Actions.push_back( 2889 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2890 } 2891 2892 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2893 Actions.push_back( 2894 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2895 } 2896 2897 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2898 Type *Ty) { 2899 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2900 Value *Val = Ptr->getBuiltValue(); 2901 Actions.push_back(std::move(Ptr)); 2902 return Val; 2903 } 2904 2905 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2906 Value *Opnd, Type *Ty) { 2907 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2908 Value *Val = Ptr->getBuiltValue(); 2909 Actions.push_back(std::move(Ptr)); 2910 return Val; 2911 } 2912 2913 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2914 Value *Opnd, Type *Ty) { 2915 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2916 Value *Val = Ptr->getBuiltValue(); 2917 Actions.push_back(std::move(Ptr)); 2918 return Val; 2919 } 2920 2921 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2922 Instruction *Before) { 2923 Actions.push_back( 2924 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2925 Inst, Before)); 2926 } 2927 2928 TypePromotionTransaction::ConstRestorationPt 2929 TypePromotionTransaction::getRestorationPoint() const { 2930 return !Actions.empty() ? Actions.back().get() : nullptr; 2931 } 2932 2933 bool TypePromotionTransaction::commit() { 2934 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2935 ++It) 2936 (*It)->commit(); 2937 bool Modified = !Actions.empty(); 2938 Actions.clear(); 2939 return Modified; 2940 } 2941 2942 void TypePromotionTransaction::rollback( 2943 TypePromotionTransaction::ConstRestorationPt Point) { 2944 while (!Actions.empty() && Point != Actions.back().get()) { 2945 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2946 Curr->undo(); 2947 } 2948 } 2949 2950 namespace { 2951 2952 /// A helper class for matching addressing modes. 2953 /// 2954 /// This encapsulates the logic for matching the target-legal addressing modes. 2955 class AddressingModeMatcher { 2956 SmallVectorImpl<Instruction*> &AddrModeInsts; 2957 const TargetLowering &TLI; 2958 const TargetRegisterInfo &TRI; 2959 const DataLayout &DL; 2960 2961 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2962 /// the memory instruction that we're computing this address for. 2963 Type *AccessTy; 2964 unsigned AddrSpace; 2965 Instruction *MemoryInst; 2966 2967 /// This is the addressing mode that we're building up. This is 2968 /// part of the return value of this addressing mode matching stuff. 2969 ExtAddrMode &AddrMode; 2970 2971 /// The instructions inserted by other CodeGenPrepare optimizations. 2972 const SetOfInstrs &InsertedInsts; 2973 2974 /// A map from the instructions to their type before promotion. 2975 InstrToOrigTy &PromotedInsts; 2976 2977 /// The ongoing transaction where every action should be registered. 2978 TypePromotionTransaction &TPT; 2979 2980 // A GEP which has too large offset to be folded into the addressing mode. 2981 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2982 2983 /// This is set to true when we should not do profitability checks. 2984 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2985 bool IgnoreProfitability; 2986 2987 /// True if we are optimizing for size. 2988 bool OptSize; 2989 2990 ProfileSummaryInfo *PSI; 2991 BlockFrequencyInfo *BFI; 2992 2993 AddressingModeMatcher( 2994 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2995 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2996 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2997 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2998 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2999 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3000 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3001 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3002 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3003 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3004 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3005 IgnoreProfitability = false; 3006 } 3007 3008 public: 3009 /// Find the maximal addressing mode that a load/store of V can fold, 3010 /// give an access type of AccessTy. This returns a list of involved 3011 /// instructions in AddrModeInsts. 3012 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3013 /// optimizations. 3014 /// \p PromotedInsts maps the instructions to their type before promotion. 3015 /// \p The ongoing transaction where every action should be registered. 3016 static ExtAddrMode 3017 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3018 SmallVectorImpl<Instruction *> &AddrModeInsts, 3019 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3020 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3021 TypePromotionTransaction &TPT, 3022 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3023 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3024 ExtAddrMode Result; 3025 3026 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3027 MemoryInst, Result, InsertedInsts, 3028 PromotedInsts, TPT, LargeOffsetGEP, 3029 OptSize, PSI, BFI) 3030 .matchAddr(V, 0); 3031 (void)Success; assert(Success && "Couldn't select *anything*?"); 3032 return Result; 3033 } 3034 3035 private: 3036 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3037 bool matchAddr(Value *Addr, unsigned Depth); 3038 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3039 bool *MovedAway = nullptr); 3040 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3041 ExtAddrMode &AMBefore, 3042 ExtAddrMode &AMAfter); 3043 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3044 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3045 Value *PromotedOperand) const; 3046 }; 3047 3048 class PhiNodeSet; 3049 3050 /// An iterator for PhiNodeSet. 3051 class PhiNodeSetIterator { 3052 PhiNodeSet * const Set; 3053 size_t CurrentIndex = 0; 3054 3055 public: 3056 /// The constructor. Start should point to either a valid element, or be equal 3057 /// to the size of the underlying SmallVector of the PhiNodeSet. 3058 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3059 PHINode * operator*() const; 3060 PhiNodeSetIterator& operator++(); 3061 bool operator==(const PhiNodeSetIterator &RHS) const; 3062 bool operator!=(const PhiNodeSetIterator &RHS) const; 3063 }; 3064 3065 /// Keeps a set of PHINodes. 3066 /// 3067 /// This is a minimal set implementation for a specific use case: 3068 /// It is very fast when there are very few elements, but also provides good 3069 /// performance when there are many. It is similar to SmallPtrSet, but also 3070 /// provides iteration by insertion order, which is deterministic and stable 3071 /// across runs. It is also similar to SmallSetVector, but provides removing 3072 /// elements in O(1) time. This is achieved by not actually removing the element 3073 /// from the underlying vector, so comes at the cost of using more memory, but 3074 /// that is fine, since PhiNodeSets are used as short lived objects. 3075 class PhiNodeSet { 3076 friend class PhiNodeSetIterator; 3077 3078 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3079 using iterator = PhiNodeSetIterator; 3080 3081 /// Keeps the elements in the order of their insertion in the underlying 3082 /// vector. To achieve constant time removal, it never deletes any element. 3083 SmallVector<PHINode *, 32> NodeList; 3084 3085 /// Keeps the elements in the underlying set implementation. This (and not the 3086 /// NodeList defined above) is the source of truth on whether an element 3087 /// is actually in the collection. 3088 MapType NodeMap; 3089 3090 /// Points to the first valid (not deleted) element when the set is not empty 3091 /// and the value is not zero. Equals to the size of the underlying vector 3092 /// when the set is empty. When the value is 0, as in the beginning, the 3093 /// first element may or may not be valid. 3094 size_t FirstValidElement = 0; 3095 3096 public: 3097 /// Inserts a new element to the collection. 3098 /// \returns true if the element is actually added, i.e. was not in the 3099 /// collection before the operation. 3100 bool insert(PHINode *Ptr) { 3101 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3102 NodeList.push_back(Ptr); 3103 return true; 3104 } 3105 return false; 3106 } 3107 3108 /// Removes the element from the collection. 3109 /// \returns whether the element is actually removed, i.e. was in the 3110 /// collection before the operation. 3111 bool erase(PHINode *Ptr) { 3112 auto it = NodeMap.find(Ptr); 3113 if (it != NodeMap.end()) { 3114 NodeMap.erase(Ptr); 3115 SkipRemovedElements(FirstValidElement); 3116 return true; 3117 } 3118 return false; 3119 } 3120 3121 /// Removes all elements and clears the collection. 3122 void clear() { 3123 NodeMap.clear(); 3124 NodeList.clear(); 3125 FirstValidElement = 0; 3126 } 3127 3128 /// \returns an iterator that will iterate the elements in the order of 3129 /// insertion. 3130 iterator begin() { 3131 if (FirstValidElement == 0) 3132 SkipRemovedElements(FirstValidElement); 3133 return PhiNodeSetIterator(this, FirstValidElement); 3134 } 3135 3136 /// \returns an iterator that points to the end of the collection. 3137 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3138 3139 /// Returns the number of elements in the collection. 3140 size_t size() const { 3141 return NodeMap.size(); 3142 } 3143 3144 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3145 size_t count(PHINode *Ptr) const { 3146 return NodeMap.count(Ptr); 3147 } 3148 3149 private: 3150 /// Updates the CurrentIndex so that it will point to a valid element. 3151 /// 3152 /// If the element of NodeList at CurrentIndex is valid, it does not 3153 /// change it. If there are no more valid elements, it updates CurrentIndex 3154 /// to point to the end of the NodeList. 3155 void SkipRemovedElements(size_t &CurrentIndex) { 3156 while (CurrentIndex < NodeList.size()) { 3157 auto it = NodeMap.find(NodeList[CurrentIndex]); 3158 // If the element has been deleted and added again later, NodeMap will 3159 // point to a different index, so CurrentIndex will still be invalid. 3160 if (it != NodeMap.end() && it->second == CurrentIndex) 3161 break; 3162 ++CurrentIndex; 3163 } 3164 } 3165 }; 3166 3167 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3168 : Set(Set), CurrentIndex(Start) {} 3169 3170 PHINode * PhiNodeSetIterator::operator*() const { 3171 assert(CurrentIndex < Set->NodeList.size() && 3172 "PhiNodeSet access out of range"); 3173 return Set->NodeList[CurrentIndex]; 3174 } 3175 3176 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3177 assert(CurrentIndex < Set->NodeList.size() && 3178 "PhiNodeSet access out of range"); 3179 ++CurrentIndex; 3180 Set->SkipRemovedElements(CurrentIndex); 3181 return *this; 3182 } 3183 3184 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3185 return CurrentIndex == RHS.CurrentIndex; 3186 } 3187 3188 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3189 return !((*this) == RHS); 3190 } 3191 3192 /// Keep track of simplification of Phi nodes. 3193 /// Accept the set of all phi nodes and erase phi node from this set 3194 /// if it is simplified. 3195 class SimplificationTracker { 3196 DenseMap<Value *, Value *> Storage; 3197 const SimplifyQuery &SQ; 3198 // Tracks newly created Phi nodes. The elements are iterated by insertion 3199 // order. 3200 PhiNodeSet AllPhiNodes; 3201 // Tracks newly created Select nodes. 3202 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3203 3204 public: 3205 SimplificationTracker(const SimplifyQuery &sq) 3206 : SQ(sq) {} 3207 3208 Value *Get(Value *V) { 3209 do { 3210 auto SV = Storage.find(V); 3211 if (SV == Storage.end()) 3212 return V; 3213 V = SV->second; 3214 } while (true); 3215 } 3216 3217 Value *Simplify(Value *Val) { 3218 SmallVector<Value *, 32> WorkList; 3219 SmallPtrSet<Value *, 32> Visited; 3220 WorkList.push_back(Val); 3221 while (!WorkList.empty()) { 3222 auto *P = WorkList.pop_back_val(); 3223 if (!Visited.insert(P).second) 3224 continue; 3225 if (auto *PI = dyn_cast<Instruction>(P)) 3226 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3227 for (auto *U : PI->users()) 3228 WorkList.push_back(cast<Value>(U)); 3229 Put(PI, V); 3230 PI->replaceAllUsesWith(V); 3231 if (auto *PHI = dyn_cast<PHINode>(PI)) 3232 AllPhiNodes.erase(PHI); 3233 if (auto *Select = dyn_cast<SelectInst>(PI)) 3234 AllSelectNodes.erase(Select); 3235 PI->eraseFromParent(); 3236 } 3237 } 3238 return Get(Val); 3239 } 3240 3241 void Put(Value *From, Value *To) { 3242 Storage.insert({ From, To }); 3243 } 3244 3245 void ReplacePhi(PHINode *From, PHINode *To) { 3246 Value* OldReplacement = Get(From); 3247 while (OldReplacement != From) { 3248 From = To; 3249 To = dyn_cast<PHINode>(OldReplacement); 3250 OldReplacement = Get(From); 3251 } 3252 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3253 Put(From, To); 3254 From->replaceAllUsesWith(To); 3255 AllPhiNodes.erase(From); 3256 From->eraseFromParent(); 3257 } 3258 3259 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3260 3261 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3262 3263 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3264 3265 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3266 3267 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3268 3269 void destroyNewNodes(Type *CommonType) { 3270 // For safe erasing, replace the uses with dummy value first. 3271 auto *Dummy = UndefValue::get(CommonType); 3272 for (auto *I : AllPhiNodes) { 3273 I->replaceAllUsesWith(Dummy); 3274 I->eraseFromParent(); 3275 } 3276 AllPhiNodes.clear(); 3277 for (auto *I : AllSelectNodes) { 3278 I->replaceAllUsesWith(Dummy); 3279 I->eraseFromParent(); 3280 } 3281 AllSelectNodes.clear(); 3282 } 3283 }; 3284 3285 /// A helper class for combining addressing modes. 3286 class AddressingModeCombiner { 3287 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3288 typedef std::pair<PHINode *, PHINode *> PHIPair; 3289 3290 private: 3291 /// The addressing modes we've collected. 3292 SmallVector<ExtAddrMode, 16> AddrModes; 3293 3294 /// The field in which the AddrModes differ, when we have more than one. 3295 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3296 3297 /// Are the AddrModes that we have all just equal to their original values? 3298 bool AllAddrModesTrivial = true; 3299 3300 /// Common Type for all different fields in addressing modes. 3301 Type *CommonType; 3302 3303 /// SimplifyQuery for simplifyInstruction utility. 3304 const SimplifyQuery &SQ; 3305 3306 /// Original Address. 3307 Value *Original; 3308 3309 public: 3310 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3311 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3312 3313 /// Get the combined AddrMode 3314 const ExtAddrMode &getAddrMode() const { 3315 return AddrModes[0]; 3316 } 3317 3318 /// Add a new AddrMode if it's compatible with the AddrModes we already 3319 /// have. 3320 /// \return True iff we succeeded in doing so. 3321 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3322 // Take note of if we have any non-trivial AddrModes, as we need to detect 3323 // when all AddrModes are trivial as then we would introduce a phi or select 3324 // which just duplicates what's already there. 3325 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3326 3327 // If this is the first addrmode then everything is fine. 3328 if (AddrModes.empty()) { 3329 AddrModes.emplace_back(NewAddrMode); 3330 return true; 3331 } 3332 3333 // Figure out how different this is from the other address modes, which we 3334 // can do just by comparing against the first one given that we only care 3335 // about the cumulative difference. 3336 ExtAddrMode::FieldName ThisDifferentField = 3337 AddrModes[0].compare(NewAddrMode); 3338 if (DifferentField == ExtAddrMode::NoField) 3339 DifferentField = ThisDifferentField; 3340 else if (DifferentField != ThisDifferentField) 3341 DifferentField = ExtAddrMode::MultipleFields; 3342 3343 // If NewAddrMode differs in more than one dimension we cannot handle it. 3344 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3345 3346 // If Scale Field is different then we reject. 3347 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3348 3349 // We also must reject the case when base offset is different and 3350 // scale reg is not null, we cannot handle this case due to merge of 3351 // different offsets will be used as ScaleReg. 3352 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3353 !NewAddrMode.ScaledReg); 3354 3355 // We also must reject the case when GV is different and BaseReg installed 3356 // due to we want to use base reg as a merge of GV values. 3357 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3358 !NewAddrMode.HasBaseReg); 3359 3360 // Even if NewAddMode is the same we still need to collect it due to 3361 // original value is different. And later we will need all original values 3362 // as anchors during finding the common Phi node. 3363 if (CanHandle) 3364 AddrModes.emplace_back(NewAddrMode); 3365 else 3366 AddrModes.clear(); 3367 3368 return CanHandle; 3369 } 3370 3371 /// Combine the addressing modes we've collected into a single 3372 /// addressing mode. 3373 /// \return True iff we successfully combined them or we only had one so 3374 /// didn't need to combine them anyway. 3375 bool combineAddrModes() { 3376 // If we have no AddrModes then they can't be combined. 3377 if (AddrModes.size() == 0) 3378 return false; 3379 3380 // A single AddrMode can trivially be combined. 3381 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3382 return true; 3383 3384 // If the AddrModes we collected are all just equal to the value they are 3385 // derived from then combining them wouldn't do anything useful. 3386 if (AllAddrModesTrivial) 3387 return false; 3388 3389 if (!addrModeCombiningAllowed()) 3390 return false; 3391 3392 // Build a map between <original value, basic block where we saw it> to 3393 // value of base register. 3394 // Bail out if there is no common type. 3395 FoldAddrToValueMapping Map; 3396 if (!initializeMap(Map)) 3397 return false; 3398 3399 Value *CommonValue = findCommon(Map); 3400 if (CommonValue) 3401 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3402 return CommonValue != nullptr; 3403 } 3404 3405 private: 3406 /// Initialize Map with anchor values. For address seen 3407 /// we set the value of different field saw in this address. 3408 /// At the same time we find a common type for different field we will 3409 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3410 /// Return false if there is no common type found. 3411 bool initializeMap(FoldAddrToValueMapping &Map) { 3412 // Keep track of keys where the value is null. We will need to replace it 3413 // with constant null when we know the common type. 3414 SmallVector<Value *, 2> NullValue; 3415 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3416 for (auto &AM : AddrModes) { 3417 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3418 if (DV) { 3419 auto *Type = DV->getType(); 3420 if (CommonType && CommonType != Type) 3421 return false; 3422 CommonType = Type; 3423 Map[AM.OriginalValue] = DV; 3424 } else { 3425 NullValue.push_back(AM.OriginalValue); 3426 } 3427 } 3428 assert(CommonType && "At least one non-null value must be!"); 3429 for (auto *V : NullValue) 3430 Map[V] = Constant::getNullValue(CommonType); 3431 return true; 3432 } 3433 3434 /// We have mapping between value A and other value B where B was a field in 3435 /// addressing mode represented by A. Also we have an original value C 3436 /// representing an address we start with. Traversing from C through phi and 3437 /// selects we ended up with A's in a map. This utility function tries to find 3438 /// a value V which is a field in addressing mode C and traversing through phi 3439 /// nodes and selects we will end up in corresponded values B in a map. 3440 /// The utility will create a new Phi/Selects if needed. 3441 // The simple example looks as follows: 3442 // BB1: 3443 // p1 = b1 + 40 3444 // br cond BB2, BB3 3445 // BB2: 3446 // p2 = b2 + 40 3447 // br BB3 3448 // BB3: 3449 // p = phi [p1, BB1], [p2, BB2] 3450 // v = load p 3451 // Map is 3452 // p1 -> b1 3453 // p2 -> b2 3454 // Request is 3455 // p -> ? 3456 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3457 Value *findCommon(FoldAddrToValueMapping &Map) { 3458 // Tracks the simplification of newly created phi nodes. The reason we use 3459 // this mapping is because we will add new created Phi nodes in AddrToBase. 3460 // Simplification of Phi nodes is recursive, so some Phi node may 3461 // be simplified after we added it to AddrToBase. In reality this 3462 // simplification is possible only if original phi/selects were not 3463 // simplified yet. 3464 // Using this mapping we can find the current value in AddrToBase. 3465 SimplificationTracker ST(SQ); 3466 3467 // First step, DFS to create PHI nodes for all intermediate blocks. 3468 // Also fill traverse order for the second step. 3469 SmallVector<Value *, 32> TraverseOrder; 3470 InsertPlaceholders(Map, TraverseOrder, ST); 3471 3472 // Second Step, fill new nodes by merged values and simplify if possible. 3473 FillPlaceholders(Map, TraverseOrder, ST); 3474 3475 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3476 ST.destroyNewNodes(CommonType); 3477 return nullptr; 3478 } 3479 3480 // Now we'd like to match New Phi nodes to existed ones. 3481 unsigned PhiNotMatchedCount = 0; 3482 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3483 ST.destroyNewNodes(CommonType); 3484 return nullptr; 3485 } 3486 3487 auto *Result = ST.Get(Map.find(Original)->second); 3488 if (Result) { 3489 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3490 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3491 } 3492 return Result; 3493 } 3494 3495 /// Try to match PHI node to Candidate. 3496 /// Matcher tracks the matched Phi nodes. 3497 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3498 SmallSetVector<PHIPair, 8> &Matcher, 3499 PhiNodeSet &PhiNodesToMatch) { 3500 SmallVector<PHIPair, 8> WorkList; 3501 Matcher.insert({ PHI, Candidate }); 3502 SmallSet<PHINode *, 8> MatchedPHIs; 3503 MatchedPHIs.insert(PHI); 3504 WorkList.push_back({ PHI, Candidate }); 3505 SmallSet<PHIPair, 8> Visited; 3506 while (!WorkList.empty()) { 3507 auto Item = WorkList.pop_back_val(); 3508 if (!Visited.insert(Item).second) 3509 continue; 3510 // We iterate over all incoming values to Phi to compare them. 3511 // If values are different and both of them Phi and the first one is a 3512 // Phi we added (subject to match) and both of them is in the same basic 3513 // block then we can match our pair if values match. So we state that 3514 // these values match and add it to work list to verify that. 3515 for (auto B : Item.first->blocks()) { 3516 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3517 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3518 if (FirstValue == SecondValue) 3519 continue; 3520 3521 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3522 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3523 3524 // One of them is not Phi or 3525 // The first one is not Phi node from the set we'd like to match or 3526 // Phi nodes from different basic blocks then 3527 // we will not be able to match. 3528 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3529 FirstPhi->getParent() != SecondPhi->getParent()) 3530 return false; 3531 3532 // If we already matched them then continue. 3533 if (Matcher.count({ FirstPhi, SecondPhi })) 3534 continue; 3535 // So the values are different and does not match. So we need them to 3536 // match. (But we register no more than one match per PHI node, so that 3537 // we won't later try to replace them twice.) 3538 if (MatchedPHIs.insert(FirstPhi).second) 3539 Matcher.insert({ FirstPhi, SecondPhi }); 3540 // But me must check it. 3541 WorkList.push_back({ FirstPhi, SecondPhi }); 3542 } 3543 } 3544 return true; 3545 } 3546 3547 /// For the given set of PHI nodes (in the SimplificationTracker) try 3548 /// to find their equivalents. 3549 /// Returns false if this matching fails and creation of new Phi is disabled. 3550 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3551 unsigned &PhiNotMatchedCount) { 3552 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3553 // order, so the replacements (ReplacePhi) are also done in a deterministic 3554 // order. 3555 SmallSetVector<PHIPair, 8> Matched; 3556 SmallPtrSet<PHINode *, 8> WillNotMatch; 3557 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3558 while (PhiNodesToMatch.size()) { 3559 PHINode *PHI = *PhiNodesToMatch.begin(); 3560 3561 // Add us, if no Phi nodes in the basic block we do not match. 3562 WillNotMatch.clear(); 3563 WillNotMatch.insert(PHI); 3564 3565 // Traverse all Phis until we found equivalent or fail to do that. 3566 bool IsMatched = false; 3567 for (auto &P : PHI->getParent()->phis()) { 3568 if (&P == PHI) 3569 continue; 3570 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3571 break; 3572 // If it does not match, collect all Phi nodes from matcher. 3573 // if we end up with no match, them all these Phi nodes will not match 3574 // later. 3575 for (auto M : Matched) 3576 WillNotMatch.insert(M.first); 3577 Matched.clear(); 3578 } 3579 if (IsMatched) { 3580 // Replace all matched values and erase them. 3581 for (auto MV : Matched) 3582 ST.ReplacePhi(MV.first, MV.second); 3583 Matched.clear(); 3584 continue; 3585 } 3586 // If we are not allowed to create new nodes then bail out. 3587 if (!AllowNewPhiNodes) 3588 return false; 3589 // Just remove all seen values in matcher. They will not match anything. 3590 PhiNotMatchedCount += WillNotMatch.size(); 3591 for (auto *P : WillNotMatch) 3592 PhiNodesToMatch.erase(P); 3593 } 3594 return true; 3595 } 3596 /// Fill the placeholders with values from predecessors and simplify them. 3597 void FillPlaceholders(FoldAddrToValueMapping &Map, 3598 SmallVectorImpl<Value *> &TraverseOrder, 3599 SimplificationTracker &ST) { 3600 while (!TraverseOrder.empty()) { 3601 Value *Current = TraverseOrder.pop_back_val(); 3602 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3603 Value *V = Map[Current]; 3604 3605 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3606 // CurrentValue also must be Select. 3607 auto *CurrentSelect = cast<SelectInst>(Current); 3608 auto *TrueValue = CurrentSelect->getTrueValue(); 3609 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3610 Select->setTrueValue(ST.Get(Map[TrueValue])); 3611 auto *FalseValue = CurrentSelect->getFalseValue(); 3612 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3613 Select->setFalseValue(ST.Get(Map[FalseValue])); 3614 } else { 3615 // Must be a Phi node then. 3616 auto *PHI = cast<PHINode>(V); 3617 // Fill the Phi node with values from predecessors. 3618 for (auto *B : predecessors(PHI->getParent())) { 3619 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3620 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3621 PHI->addIncoming(ST.Get(Map[PV]), B); 3622 } 3623 } 3624 Map[Current] = ST.Simplify(V); 3625 } 3626 } 3627 3628 /// Starting from original value recursively iterates over def-use chain up to 3629 /// known ending values represented in a map. For each traversed phi/select 3630 /// inserts a placeholder Phi or Select. 3631 /// Reports all new created Phi/Select nodes by adding them to set. 3632 /// Also reports and order in what values have been traversed. 3633 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3634 SmallVectorImpl<Value *> &TraverseOrder, 3635 SimplificationTracker &ST) { 3636 SmallVector<Value *, 32> Worklist; 3637 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3638 "Address must be a Phi or Select node"); 3639 auto *Dummy = UndefValue::get(CommonType); 3640 Worklist.push_back(Original); 3641 while (!Worklist.empty()) { 3642 Value *Current = Worklist.pop_back_val(); 3643 // if it is already visited or it is an ending value then skip it. 3644 if (Map.find(Current) != Map.end()) 3645 continue; 3646 TraverseOrder.push_back(Current); 3647 3648 // CurrentValue must be a Phi node or select. All others must be covered 3649 // by anchors. 3650 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3651 // Is it OK to get metadata from OrigSelect?! 3652 // Create a Select placeholder with dummy value. 3653 SelectInst *Select = SelectInst::Create( 3654 CurrentSelect->getCondition(), Dummy, Dummy, 3655 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3656 Map[Current] = Select; 3657 ST.insertNewSelect(Select); 3658 // We are interested in True and False values. 3659 Worklist.push_back(CurrentSelect->getTrueValue()); 3660 Worklist.push_back(CurrentSelect->getFalseValue()); 3661 } else { 3662 // It must be a Phi node then. 3663 PHINode *CurrentPhi = cast<PHINode>(Current); 3664 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3665 PHINode *PHI = 3666 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3667 Map[Current] = PHI; 3668 ST.insertNewPhi(PHI); 3669 for (Value *P : CurrentPhi->incoming_values()) 3670 Worklist.push_back(P); 3671 } 3672 } 3673 } 3674 3675 bool addrModeCombiningAllowed() { 3676 if (DisableComplexAddrModes) 3677 return false; 3678 switch (DifferentField) { 3679 default: 3680 return false; 3681 case ExtAddrMode::BaseRegField: 3682 return AddrSinkCombineBaseReg; 3683 case ExtAddrMode::BaseGVField: 3684 return AddrSinkCombineBaseGV; 3685 case ExtAddrMode::BaseOffsField: 3686 return AddrSinkCombineBaseOffs; 3687 case ExtAddrMode::ScaledRegField: 3688 return AddrSinkCombineScaledReg; 3689 } 3690 } 3691 }; 3692 } // end anonymous namespace 3693 3694 /// Try adding ScaleReg*Scale to the current addressing mode. 3695 /// Return true and update AddrMode if this addr mode is legal for the target, 3696 /// false if not. 3697 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3698 unsigned Depth) { 3699 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3700 // mode. Just process that directly. 3701 if (Scale == 1) 3702 return matchAddr(ScaleReg, Depth); 3703 3704 // If the scale is 0, it takes nothing to add this. 3705 if (Scale == 0) 3706 return true; 3707 3708 // If we already have a scale of this value, we can add to it, otherwise, we 3709 // need an available scale field. 3710 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3711 return false; 3712 3713 ExtAddrMode TestAddrMode = AddrMode; 3714 3715 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3716 // [A+B + A*7] -> [B+A*8]. 3717 TestAddrMode.Scale += Scale; 3718 TestAddrMode.ScaledReg = ScaleReg; 3719 3720 // If the new address isn't legal, bail out. 3721 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3722 return false; 3723 3724 // It was legal, so commit it. 3725 AddrMode = TestAddrMode; 3726 3727 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3728 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3729 // X*Scale + C*Scale to addr mode. 3730 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3731 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3732 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3733 CI->getValue().isSignedIntN(64)) { 3734 TestAddrMode.InBounds = false; 3735 TestAddrMode.ScaledReg = AddLHS; 3736 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3737 3738 // If this addressing mode is legal, commit it and remember that we folded 3739 // this instruction. 3740 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3741 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3742 AddrMode = TestAddrMode; 3743 return true; 3744 } 3745 } 3746 3747 // Otherwise, not (x+c)*scale, just return what we have. 3748 return true; 3749 } 3750 3751 /// This is a little filter, which returns true if an addressing computation 3752 /// involving I might be folded into a load/store accessing it. 3753 /// This doesn't need to be perfect, but needs to accept at least 3754 /// the set of instructions that MatchOperationAddr can. 3755 static bool MightBeFoldableInst(Instruction *I) { 3756 switch (I->getOpcode()) { 3757 case Instruction::BitCast: 3758 case Instruction::AddrSpaceCast: 3759 // Don't touch identity bitcasts. 3760 if (I->getType() == I->getOperand(0)->getType()) 3761 return false; 3762 return I->getType()->isIntOrPtrTy(); 3763 case Instruction::PtrToInt: 3764 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3765 return true; 3766 case Instruction::IntToPtr: 3767 // We know the input is intptr_t, so this is foldable. 3768 return true; 3769 case Instruction::Add: 3770 return true; 3771 case Instruction::Mul: 3772 case Instruction::Shl: 3773 // Can only handle X*C and X << C. 3774 return isa<ConstantInt>(I->getOperand(1)); 3775 case Instruction::GetElementPtr: 3776 return true; 3777 default: 3778 return false; 3779 } 3780 } 3781 3782 /// Check whether or not \p Val is a legal instruction for \p TLI. 3783 /// \note \p Val is assumed to be the product of some type promotion. 3784 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3785 /// to be legal, as the non-promoted value would have had the same state. 3786 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3787 const DataLayout &DL, Value *Val) { 3788 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3789 if (!PromotedInst) 3790 return false; 3791 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3792 // If the ISDOpcode is undefined, it was undefined before the promotion. 3793 if (!ISDOpcode) 3794 return true; 3795 // Otherwise, check if the promoted instruction is legal or not. 3796 return TLI.isOperationLegalOrCustom( 3797 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3798 } 3799 3800 namespace { 3801 3802 /// Hepler class to perform type promotion. 3803 class TypePromotionHelper { 3804 /// Utility function to add a promoted instruction \p ExtOpnd to 3805 /// \p PromotedInsts and record the type of extension we have seen. 3806 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3807 Instruction *ExtOpnd, 3808 bool IsSExt) { 3809 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3810 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3811 if (It != PromotedInsts.end()) { 3812 // If the new extension is same as original, the information in 3813 // PromotedInsts[ExtOpnd] is still correct. 3814 if (It->second.getInt() == ExtTy) 3815 return; 3816 3817 // Now the new extension is different from old extension, we make 3818 // the type information invalid by setting extension type to 3819 // BothExtension. 3820 ExtTy = BothExtension; 3821 } 3822 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3823 } 3824 3825 /// Utility function to query the original type of instruction \p Opnd 3826 /// with a matched extension type. If the extension doesn't match, we 3827 /// cannot use the information we had on the original type. 3828 /// BothExtension doesn't match any extension type. 3829 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3830 Instruction *Opnd, 3831 bool IsSExt) { 3832 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3833 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3834 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3835 return It->second.getPointer(); 3836 return nullptr; 3837 } 3838 3839 /// Utility function to check whether or not a sign or zero extension 3840 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3841 /// either using the operands of \p Inst or promoting \p Inst. 3842 /// The type of the extension is defined by \p IsSExt. 3843 /// In other words, check if: 3844 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3845 /// #1 Promotion applies: 3846 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3847 /// #2 Operand reuses: 3848 /// ext opnd1 to ConsideredExtType. 3849 /// \p PromotedInsts maps the instructions to their type before promotion. 3850 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3851 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3852 3853 /// Utility function to determine if \p OpIdx should be promoted when 3854 /// promoting \p Inst. 3855 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3856 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3857 } 3858 3859 /// Utility function to promote the operand of \p Ext when this 3860 /// operand is a promotable trunc or sext or zext. 3861 /// \p PromotedInsts maps the instructions to their type before promotion. 3862 /// \p CreatedInstsCost[out] contains the cost of all instructions 3863 /// created to promote the operand of Ext. 3864 /// Newly added extensions are inserted in \p Exts. 3865 /// Newly added truncates are inserted in \p Truncs. 3866 /// Should never be called directly. 3867 /// \return The promoted value which is used instead of Ext. 3868 static Value *promoteOperandForTruncAndAnyExt( 3869 Instruction *Ext, TypePromotionTransaction &TPT, 3870 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3871 SmallVectorImpl<Instruction *> *Exts, 3872 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3873 3874 /// Utility function to promote the operand of \p Ext when this 3875 /// operand is promotable and is not a supported trunc or sext. 3876 /// \p PromotedInsts maps the instructions to their type before promotion. 3877 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3878 /// created to promote the operand of Ext. 3879 /// Newly added extensions are inserted in \p Exts. 3880 /// Newly added truncates are inserted in \p Truncs. 3881 /// Should never be called directly. 3882 /// \return The promoted value which is used instead of Ext. 3883 static Value *promoteOperandForOther(Instruction *Ext, 3884 TypePromotionTransaction &TPT, 3885 InstrToOrigTy &PromotedInsts, 3886 unsigned &CreatedInstsCost, 3887 SmallVectorImpl<Instruction *> *Exts, 3888 SmallVectorImpl<Instruction *> *Truncs, 3889 const TargetLowering &TLI, bool IsSExt); 3890 3891 /// \see promoteOperandForOther. 3892 static Value *signExtendOperandForOther( 3893 Instruction *Ext, TypePromotionTransaction &TPT, 3894 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3895 SmallVectorImpl<Instruction *> *Exts, 3896 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3897 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3898 Exts, Truncs, TLI, true); 3899 } 3900 3901 /// \see promoteOperandForOther. 3902 static Value *zeroExtendOperandForOther( 3903 Instruction *Ext, TypePromotionTransaction &TPT, 3904 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3905 SmallVectorImpl<Instruction *> *Exts, 3906 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3907 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3908 Exts, Truncs, TLI, false); 3909 } 3910 3911 public: 3912 /// Type for the utility function that promotes the operand of Ext. 3913 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3914 InstrToOrigTy &PromotedInsts, 3915 unsigned &CreatedInstsCost, 3916 SmallVectorImpl<Instruction *> *Exts, 3917 SmallVectorImpl<Instruction *> *Truncs, 3918 const TargetLowering &TLI); 3919 3920 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3921 /// action to promote the operand of \p Ext instead of using Ext. 3922 /// \return NULL if no promotable action is possible with the current 3923 /// sign extension. 3924 /// \p InsertedInsts keeps track of all the instructions inserted by the 3925 /// other CodeGenPrepare optimizations. This information is important 3926 /// because we do not want to promote these instructions as CodeGenPrepare 3927 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3928 /// \p PromotedInsts maps the instructions to their type before promotion. 3929 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3930 const TargetLowering &TLI, 3931 const InstrToOrigTy &PromotedInsts); 3932 }; 3933 3934 } // end anonymous namespace 3935 3936 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3937 Type *ConsideredExtType, 3938 const InstrToOrigTy &PromotedInsts, 3939 bool IsSExt) { 3940 // The promotion helper does not know how to deal with vector types yet. 3941 // To be able to fix that, we would need to fix the places where we 3942 // statically extend, e.g., constants and such. 3943 if (Inst->getType()->isVectorTy()) 3944 return false; 3945 3946 // We can always get through zext. 3947 if (isa<ZExtInst>(Inst)) 3948 return true; 3949 3950 // sext(sext) is ok too. 3951 if (IsSExt && isa<SExtInst>(Inst)) 3952 return true; 3953 3954 // We can get through binary operator, if it is legal. In other words, the 3955 // binary operator must have a nuw or nsw flag. 3956 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3957 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 3958 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3959 (IsSExt && BinOp->hasNoSignedWrap()))) 3960 return true; 3961 3962 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3963 if ((Inst->getOpcode() == Instruction::And || 3964 Inst->getOpcode() == Instruction::Or)) 3965 return true; 3966 3967 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3968 if (Inst->getOpcode() == Instruction::Xor) { 3969 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3970 // Make sure it is not a NOT. 3971 if (Cst && !Cst->getValue().isAllOnesValue()) 3972 return true; 3973 } 3974 3975 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3976 // It may change a poisoned value into a regular value, like 3977 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3978 // poisoned value regular value 3979 // It should be OK since undef covers valid value. 3980 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3981 return true; 3982 3983 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3984 // It may change a poisoned value into a regular value, like 3985 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3986 // poisoned value regular value 3987 // It should be OK since undef covers valid value. 3988 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3989 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3990 if (ExtInst->hasOneUse()) { 3991 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3992 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3993 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3994 if (Cst && 3995 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3996 return true; 3997 } 3998 } 3999 } 4000 4001 // Check if we can do the following simplification. 4002 // ext(trunc(opnd)) --> ext(opnd) 4003 if (!isa<TruncInst>(Inst)) 4004 return false; 4005 4006 Value *OpndVal = Inst->getOperand(0); 4007 // Check if we can use this operand in the extension. 4008 // If the type is larger than the result type of the extension, we cannot. 4009 if (!OpndVal->getType()->isIntegerTy() || 4010 OpndVal->getType()->getIntegerBitWidth() > 4011 ConsideredExtType->getIntegerBitWidth()) 4012 return false; 4013 4014 // If the operand of the truncate is not an instruction, we will not have 4015 // any information on the dropped bits. 4016 // (Actually we could for constant but it is not worth the extra logic). 4017 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4018 if (!Opnd) 4019 return false; 4020 4021 // Check if the source of the type is narrow enough. 4022 // I.e., check that trunc just drops extended bits of the same kind of 4023 // the extension. 4024 // #1 get the type of the operand and check the kind of the extended bits. 4025 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4026 if (OpndType) 4027 ; 4028 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4029 OpndType = Opnd->getOperand(0)->getType(); 4030 else 4031 return false; 4032 4033 // #2 check that the truncate just drops extended bits. 4034 return Inst->getType()->getIntegerBitWidth() >= 4035 OpndType->getIntegerBitWidth(); 4036 } 4037 4038 TypePromotionHelper::Action TypePromotionHelper::getAction( 4039 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4040 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4041 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4042 "Unexpected instruction type"); 4043 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4044 Type *ExtTy = Ext->getType(); 4045 bool IsSExt = isa<SExtInst>(Ext); 4046 // If the operand of the extension is not an instruction, we cannot 4047 // get through. 4048 // If it, check we can get through. 4049 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4050 return nullptr; 4051 4052 // Do not promote if the operand has been added by codegenprepare. 4053 // Otherwise, it means we are undoing an optimization that is likely to be 4054 // redone, thus causing potential infinite loop. 4055 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4056 return nullptr; 4057 4058 // SExt or Trunc instructions. 4059 // Return the related handler. 4060 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4061 isa<ZExtInst>(ExtOpnd)) 4062 return promoteOperandForTruncAndAnyExt; 4063 4064 // Regular instruction. 4065 // Abort early if we will have to insert non-free instructions. 4066 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4067 return nullptr; 4068 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4069 } 4070 4071 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4072 Instruction *SExt, TypePromotionTransaction &TPT, 4073 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4074 SmallVectorImpl<Instruction *> *Exts, 4075 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4076 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4077 // get through it and this method should not be called. 4078 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4079 Value *ExtVal = SExt; 4080 bool HasMergedNonFreeExt = false; 4081 if (isa<ZExtInst>(SExtOpnd)) { 4082 // Replace s|zext(zext(opnd)) 4083 // => zext(opnd). 4084 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4085 Value *ZExt = 4086 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4087 TPT.replaceAllUsesWith(SExt, ZExt); 4088 TPT.eraseInstruction(SExt); 4089 ExtVal = ZExt; 4090 } else { 4091 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4092 // => z|sext(opnd). 4093 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4094 } 4095 CreatedInstsCost = 0; 4096 4097 // Remove dead code. 4098 if (SExtOpnd->use_empty()) 4099 TPT.eraseInstruction(SExtOpnd); 4100 4101 // Check if the extension is still needed. 4102 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4103 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4104 if (ExtInst) { 4105 if (Exts) 4106 Exts->push_back(ExtInst); 4107 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4108 } 4109 return ExtVal; 4110 } 4111 4112 // At this point we have: ext ty opnd to ty. 4113 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4114 Value *NextVal = ExtInst->getOperand(0); 4115 TPT.eraseInstruction(ExtInst, NextVal); 4116 return NextVal; 4117 } 4118 4119 Value *TypePromotionHelper::promoteOperandForOther( 4120 Instruction *Ext, TypePromotionTransaction &TPT, 4121 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4122 SmallVectorImpl<Instruction *> *Exts, 4123 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4124 bool IsSExt) { 4125 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4126 // get through it and this method should not be called. 4127 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4128 CreatedInstsCost = 0; 4129 if (!ExtOpnd->hasOneUse()) { 4130 // ExtOpnd will be promoted. 4131 // All its uses, but Ext, will need to use a truncated value of the 4132 // promoted version. 4133 // Create the truncate now. 4134 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4135 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4136 // Insert it just after the definition. 4137 ITrunc->moveAfter(ExtOpnd); 4138 if (Truncs) 4139 Truncs->push_back(ITrunc); 4140 } 4141 4142 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4143 // Restore the operand of Ext (which has been replaced by the previous call 4144 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4145 TPT.setOperand(Ext, 0, ExtOpnd); 4146 } 4147 4148 // Get through the Instruction: 4149 // 1. Update its type. 4150 // 2. Replace the uses of Ext by Inst. 4151 // 3. Extend each operand that needs to be extended. 4152 4153 // Remember the original type of the instruction before promotion. 4154 // This is useful to know that the high bits are sign extended bits. 4155 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4156 // Step #1. 4157 TPT.mutateType(ExtOpnd, Ext->getType()); 4158 // Step #2. 4159 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4160 // Step #3. 4161 Instruction *ExtForOpnd = Ext; 4162 4163 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4164 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4165 ++OpIdx) { 4166 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4167 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4168 !shouldExtOperand(ExtOpnd, OpIdx)) { 4169 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4170 continue; 4171 } 4172 // Check if we can statically extend the operand. 4173 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4174 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4175 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4176 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4177 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4178 : Cst->getValue().zext(BitWidth); 4179 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4180 continue; 4181 } 4182 // UndefValue are typed, so we have to statically sign extend them. 4183 if (isa<UndefValue>(Opnd)) { 4184 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4185 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4186 continue; 4187 } 4188 4189 // Otherwise we have to explicitly sign extend the operand. 4190 // Check if Ext was reused to extend an operand. 4191 if (!ExtForOpnd) { 4192 // If yes, create a new one. 4193 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4194 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4195 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4196 if (!isa<Instruction>(ValForExtOpnd)) { 4197 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4198 continue; 4199 } 4200 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4201 } 4202 if (Exts) 4203 Exts->push_back(ExtForOpnd); 4204 TPT.setOperand(ExtForOpnd, 0, Opnd); 4205 4206 // Move the sign extension before the insertion point. 4207 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4208 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4209 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4210 // If more sext are required, new instructions will have to be created. 4211 ExtForOpnd = nullptr; 4212 } 4213 if (ExtForOpnd == Ext) { 4214 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4215 TPT.eraseInstruction(Ext); 4216 } 4217 return ExtOpnd; 4218 } 4219 4220 /// Check whether or not promoting an instruction to a wider type is profitable. 4221 /// \p NewCost gives the cost of extension instructions created by the 4222 /// promotion. 4223 /// \p OldCost gives the cost of extension instructions before the promotion 4224 /// plus the number of instructions that have been 4225 /// matched in the addressing mode the promotion. 4226 /// \p PromotedOperand is the value that has been promoted. 4227 /// \return True if the promotion is profitable, false otherwise. 4228 bool AddressingModeMatcher::isPromotionProfitable( 4229 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4230 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4231 << '\n'); 4232 // The cost of the new extensions is greater than the cost of the 4233 // old extension plus what we folded. 4234 // This is not profitable. 4235 if (NewCost > OldCost) 4236 return false; 4237 if (NewCost < OldCost) 4238 return true; 4239 // The promotion is neutral but it may help folding the sign extension in 4240 // loads for instance. 4241 // Check that we did not create an illegal instruction. 4242 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4243 } 4244 4245 /// Given an instruction or constant expr, see if we can fold the operation 4246 /// into the addressing mode. If so, update the addressing mode and return 4247 /// true, otherwise return false without modifying AddrMode. 4248 /// If \p MovedAway is not NULL, it contains the information of whether or 4249 /// not AddrInst has to be folded into the addressing mode on success. 4250 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4251 /// because it has been moved away. 4252 /// Thus AddrInst must not be added in the matched instructions. 4253 /// This state can happen when AddrInst is a sext, since it may be moved away. 4254 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4255 /// not be referenced anymore. 4256 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4257 unsigned Depth, 4258 bool *MovedAway) { 4259 // Avoid exponential behavior on extremely deep expression trees. 4260 if (Depth >= 5) return false; 4261 4262 // By default, all matched instructions stay in place. 4263 if (MovedAway) 4264 *MovedAway = false; 4265 4266 switch (Opcode) { 4267 case Instruction::PtrToInt: 4268 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4269 return matchAddr(AddrInst->getOperand(0), Depth); 4270 case Instruction::IntToPtr: { 4271 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4272 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4273 // This inttoptr is a no-op if the integer type is pointer sized. 4274 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4275 return matchAddr(AddrInst->getOperand(0), Depth); 4276 return false; 4277 } 4278 case Instruction::BitCast: 4279 // BitCast is always a noop, and we can handle it as long as it is 4280 // int->int or pointer->pointer (we don't want int<->fp or something). 4281 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4282 // Don't touch identity bitcasts. These were probably put here by LSR, 4283 // and we don't want to mess around with them. Assume it knows what it 4284 // is doing. 4285 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4286 return matchAddr(AddrInst->getOperand(0), Depth); 4287 return false; 4288 case Instruction::AddrSpaceCast: { 4289 unsigned SrcAS 4290 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4291 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4292 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4293 return matchAddr(AddrInst->getOperand(0), Depth); 4294 return false; 4295 } 4296 case Instruction::Add: { 4297 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4298 ExtAddrMode BackupAddrMode = AddrMode; 4299 unsigned OldSize = AddrModeInsts.size(); 4300 // Start a transaction at this point. 4301 // The LHS may match but not the RHS. 4302 // Therefore, we need a higher level restoration point to undo partially 4303 // matched operation. 4304 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4305 TPT.getRestorationPoint(); 4306 4307 AddrMode.InBounds = false; 4308 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4309 matchAddr(AddrInst->getOperand(0), Depth+1)) 4310 return true; 4311 4312 // Restore the old addr mode info. 4313 AddrMode = BackupAddrMode; 4314 AddrModeInsts.resize(OldSize); 4315 TPT.rollback(LastKnownGood); 4316 4317 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4318 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4319 matchAddr(AddrInst->getOperand(1), Depth+1)) 4320 return true; 4321 4322 // Otherwise we definitely can't merge the ADD in. 4323 AddrMode = BackupAddrMode; 4324 AddrModeInsts.resize(OldSize); 4325 TPT.rollback(LastKnownGood); 4326 break; 4327 } 4328 //case Instruction::Or: 4329 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4330 //break; 4331 case Instruction::Mul: 4332 case Instruction::Shl: { 4333 // Can only handle X*C and X << C. 4334 AddrMode.InBounds = false; 4335 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4336 if (!RHS || RHS->getBitWidth() > 64) 4337 return false; 4338 int64_t Scale = RHS->getSExtValue(); 4339 if (Opcode == Instruction::Shl) 4340 Scale = 1LL << Scale; 4341 4342 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4343 } 4344 case Instruction::GetElementPtr: { 4345 // Scan the GEP. We check it if it contains constant offsets and at most 4346 // one variable offset. 4347 int VariableOperand = -1; 4348 unsigned VariableScale = 0; 4349 4350 int64_t ConstantOffset = 0; 4351 gep_type_iterator GTI = gep_type_begin(AddrInst); 4352 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4353 if (StructType *STy = GTI.getStructTypeOrNull()) { 4354 const StructLayout *SL = DL.getStructLayout(STy); 4355 unsigned Idx = 4356 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4357 ConstantOffset += SL->getElementOffset(Idx); 4358 } else { 4359 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4360 if (TS.isNonZero()) { 4361 // The optimisations below currently only work for fixed offsets. 4362 if (TS.isScalable()) 4363 return false; 4364 int64_t TypeSize = TS.getFixedSize(); 4365 if (ConstantInt *CI = 4366 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4367 const APInt &CVal = CI->getValue(); 4368 if (CVal.getMinSignedBits() <= 64) { 4369 ConstantOffset += CVal.getSExtValue() * TypeSize; 4370 continue; 4371 } 4372 } 4373 // We only allow one variable index at the moment. 4374 if (VariableOperand != -1) 4375 return false; 4376 4377 // Remember the variable index. 4378 VariableOperand = i; 4379 VariableScale = TypeSize; 4380 } 4381 } 4382 } 4383 4384 // A common case is for the GEP to only do a constant offset. In this case, 4385 // just add it to the disp field and check validity. 4386 if (VariableOperand == -1) { 4387 AddrMode.BaseOffs += ConstantOffset; 4388 if (ConstantOffset == 0 || 4389 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4390 // Check to see if we can fold the base pointer in too. 4391 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4392 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4393 AddrMode.InBounds = false; 4394 return true; 4395 } 4396 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4397 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4398 ConstantOffset > 0) { 4399 // Record GEPs with non-zero offsets as candidates for splitting in the 4400 // event that the offset cannot fit into the r+i addressing mode. 4401 // Simple and common case that only one GEP is used in calculating the 4402 // address for the memory access. 4403 Value *Base = AddrInst->getOperand(0); 4404 auto *BaseI = dyn_cast<Instruction>(Base); 4405 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4406 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4407 (BaseI && !isa<CastInst>(BaseI) && 4408 !isa<GetElementPtrInst>(BaseI))) { 4409 // Make sure the parent block allows inserting non-PHI instructions 4410 // before the terminator. 4411 BasicBlock *Parent = 4412 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4413 if (!Parent->getTerminator()->isEHPad()) 4414 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4415 } 4416 } 4417 AddrMode.BaseOffs -= ConstantOffset; 4418 return false; 4419 } 4420 4421 // Save the valid addressing mode in case we can't match. 4422 ExtAddrMode BackupAddrMode = AddrMode; 4423 unsigned OldSize = AddrModeInsts.size(); 4424 4425 // See if the scale and offset amount is valid for this target. 4426 AddrMode.BaseOffs += ConstantOffset; 4427 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4428 AddrMode.InBounds = false; 4429 4430 // Match the base operand of the GEP. 4431 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4432 // If it couldn't be matched, just stuff the value in a register. 4433 if (AddrMode.HasBaseReg) { 4434 AddrMode = BackupAddrMode; 4435 AddrModeInsts.resize(OldSize); 4436 return false; 4437 } 4438 AddrMode.HasBaseReg = true; 4439 AddrMode.BaseReg = AddrInst->getOperand(0); 4440 } 4441 4442 // Match the remaining variable portion of the GEP. 4443 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4444 Depth)) { 4445 // If it couldn't be matched, try stuffing the base into a register 4446 // instead of matching it, and retrying the match of the scale. 4447 AddrMode = BackupAddrMode; 4448 AddrModeInsts.resize(OldSize); 4449 if (AddrMode.HasBaseReg) 4450 return false; 4451 AddrMode.HasBaseReg = true; 4452 AddrMode.BaseReg = AddrInst->getOperand(0); 4453 AddrMode.BaseOffs += ConstantOffset; 4454 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4455 VariableScale, Depth)) { 4456 // If even that didn't work, bail. 4457 AddrMode = BackupAddrMode; 4458 AddrModeInsts.resize(OldSize); 4459 return false; 4460 } 4461 } 4462 4463 return true; 4464 } 4465 case Instruction::SExt: 4466 case Instruction::ZExt: { 4467 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4468 if (!Ext) 4469 return false; 4470 4471 // Try to move this ext out of the way of the addressing mode. 4472 // Ask for a method for doing so. 4473 TypePromotionHelper::Action TPH = 4474 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4475 if (!TPH) 4476 return false; 4477 4478 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4479 TPT.getRestorationPoint(); 4480 unsigned CreatedInstsCost = 0; 4481 unsigned ExtCost = !TLI.isExtFree(Ext); 4482 Value *PromotedOperand = 4483 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4484 // SExt has been moved away. 4485 // Thus either it will be rematched later in the recursive calls or it is 4486 // gone. Anyway, we must not fold it into the addressing mode at this point. 4487 // E.g., 4488 // op = add opnd, 1 4489 // idx = ext op 4490 // addr = gep base, idx 4491 // is now: 4492 // promotedOpnd = ext opnd <- no match here 4493 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4494 // addr = gep base, op <- match 4495 if (MovedAway) 4496 *MovedAway = true; 4497 4498 assert(PromotedOperand && 4499 "TypePromotionHelper should have filtered out those cases"); 4500 4501 ExtAddrMode BackupAddrMode = AddrMode; 4502 unsigned OldSize = AddrModeInsts.size(); 4503 4504 if (!matchAddr(PromotedOperand, Depth) || 4505 // The total of the new cost is equal to the cost of the created 4506 // instructions. 4507 // The total of the old cost is equal to the cost of the extension plus 4508 // what we have saved in the addressing mode. 4509 !isPromotionProfitable(CreatedInstsCost, 4510 ExtCost + (AddrModeInsts.size() - OldSize), 4511 PromotedOperand)) { 4512 AddrMode = BackupAddrMode; 4513 AddrModeInsts.resize(OldSize); 4514 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4515 TPT.rollback(LastKnownGood); 4516 return false; 4517 } 4518 return true; 4519 } 4520 } 4521 return false; 4522 } 4523 4524 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4525 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4526 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4527 /// for the target. 4528 /// 4529 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4530 // Start a transaction at this point that we will rollback if the matching 4531 // fails. 4532 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4533 TPT.getRestorationPoint(); 4534 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4535 if (CI->getValue().isSignedIntN(64)) { 4536 // Fold in immediates if legal for the target. 4537 AddrMode.BaseOffs += CI->getSExtValue(); 4538 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4539 return true; 4540 AddrMode.BaseOffs -= CI->getSExtValue(); 4541 } 4542 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4543 // If this is a global variable, try to fold it into the addressing mode. 4544 if (!AddrMode.BaseGV) { 4545 AddrMode.BaseGV = GV; 4546 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4547 return true; 4548 AddrMode.BaseGV = nullptr; 4549 } 4550 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4551 ExtAddrMode BackupAddrMode = AddrMode; 4552 unsigned OldSize = AddrModeInsts.size(); 4553 4554 // Check to see if it is possible to fold this operation. 4555 bool MovedAway = false; 4556 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4557 // This instruction may have been moved away. If so, there is nothing 4558 // to check here. 4559 if (MovedAway) 4560 return true; 4561 // Okay, it's possible to fold this. Check to see if it is actually 4562 // *profitable* to do so. We use a simple cost model to avoid increasing 4563 // register pressure too much. 4564 if (I->hasOneUse() || 4565 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4566 AddrModeInsts.push_back(I); 4567 return true; 4568 } 4569 4570 // It isn't profitable to do this, roll back. 4571 //cerr << "NOT FOLDING: " << *I; 4572 AddrMode = BackupAddrMode; 4573 AddrModeInsts.resize(OldSize); 4574 TPT.rollback(LastKnownGood); 4575 } 4576 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4577 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4578 return true; 4579 TPT.rollback(LastKnownGood); 4580 } else if (isa<ConstantPointerNull>(Addr)) { 4581 // Null pointer gets folded without affecting the addressing mode. 4582 return true; 4583 } 4584 4585 // Worse case, the target should support [reg] addressing modes. :) 4586 if (!AddrMode.HasBaseReg) { 4587 AddrMode.HasBaseReg = true; 4588 AddrMode.BaseReg = Addr; 4589 // Still check for legality in case the target supports [imm] but not [i+r]. 4590 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4591 return true; 4592 AddrMode.HasBaseReg = false; 4593 AddrMode.BaseReg = nullptr; 4594 } 4595 4596 // If the base register is already taken, see if we can do [r+r]. 4597 if (AddrMode.Scale == 0) { 4598 AddrMode.Scale = 1; 4599 AddrMode.ScaledReg = Addr; 4600 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4601 return true; 4602 AddrMode.Scale = 0; 4603 AddrMode.ScaledReg = nullptr; 4604 } 4605 // Couldn't match. 4606 TPT.rollback(LastKnownGood); 4607 return false; 4608 } 4609 4610 /// Check to see if all uses of OpVal by the specified inline asm call are due 4611 /// to memory operands. If so, return true, otherwise return false. 4612 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4613 const TargetLowering &TLI, 4614 const TargetRegisterInfo &TRI) { 4615 const Function *F = CI->getFunction(); 4616 TargetLowering::AsmOperandInfoVector TargetConstraints = 4617 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4618 4619 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4620 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4621 4622 // Compute the constraint code and ConstraintType to use. 4623 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4624 4625 // If this asm operand is our Value*, and if it isn't an indirect memory 4626 // operand, we can't fold it! 4627 if (OpInfo.CallOperandVal == OpVal && 4628 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4629 !OpInfo.isIndirect)) 4630 return false; 4631 } 4632 4633 return true; 4634 } 4635 4636 // Max number of memory uses to look at before aborting the search to conserve 4637 // compile time. 4638 static constexpr int MaxMemoryUsesToScan = 20; 4639 4640 /// Recursively walk all the uses of I until we find a memory use. 4641 /// If we find an obviously non-foldable instruction, return true. 4642 /// Add the ultimately found memory instructions to MemoryUses. 4643 static bool FindAllMemoryUses( 4644 Instruction *I, 4645 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4646 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4647 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4648 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4649 // If we already considered this instruction, we're done. 4650 if (!ConsideredInsts.insert(I).second) 4651 return false; 4652 4653 // If this is an obviously unfoldable instruction, bail out. 4654 if (!MightBeFoldableInst(I)) 4655 return true; 4656 4657 // Loop over all the uses, recursively processing them. 4658 for (Use &U : I->uses()) { 4659 // Conservatively return true if we're seeing a large number or a deep chain 4660 // of users. This avoids excessive compilation times in pathological cases. 4661 if (SeenInsts++ >= MaxMemoryUsesToScan) 4662 return true; 4663 4664 Instruction *UserI = cast<Instruction>(U.getUser()); 4665 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4666 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4667 continue; 4668 } 4669 4670 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4671 unsigned opNo = U.getOperandNo(); 4672 if (opNo != StoreInst::getPointerOperandIndex()) 4673 return true; // Storing addr, not into addr. 4674 MemoryUses.push_back(std::make_pair(SI, opNo)); 4675 continue; 4676 } 4677 4678 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4679 unsigned opNo = U.getOperandNo(); 4680 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4681 return true; // Storing addr, not into addr. 4682 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4683 continue; 4684 } 4685 4686 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4687 unsigned opNo = U.getOperandNo(); 4688 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4689 return true; // Storing addr, not into addr. 4690 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4691 continue; 4692 } 4693 4694 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4695 if (CI->hasFnAttr(Attribute::Cold)) { 4696 // If this is a cold call, we can sink the addressing calculation into 4697 // the cold path. See optimizeCallInst 4698 bool OptForSize = OptSize || 4699 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4700 if (!OptForSize) 4701 continue; 4702 } 4703 4704 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4705 if (!IA) return true; 4706 4707 // If this is a memory operand, we're cool, otherwise bail out. 4708 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4709 return true; 4710 continue; 4711 } 4712 4713 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4714 PSI, BFI, SeenInsts)) 4715 return true; 4716 } 4717 4718 return false; 4719 } 4720 4721 /// Return true if Val is already known to be live at the use site that we're 4722 /// folding it into. If so, there is no cost to include it in the addressing 4723 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4724 /// instruction already. 4725 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4726 Value *KnownLive2) { 4727 // If Val is either of the known-live values, we know it is live! 4728 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4729 return true; 4730 4731 // All values other than instructions and arguments (e.g. constants) are live. 4732 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4733 4734 // If Val is a constant sized alloca in the entry block, it is live, this is 4735 // true because it is just a reference to the stack/frame pointer, which is 4736 // live for the whole function. 4737 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4738 if (AI->isStaticAlloca()) 4739 return true; 4740 4741 // Check to see if this value is already used in the memory instruction's 4742 // block. If so, it's already live into the block at the very least, so we 4743 // can reasonably fold it. 4744 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4745 } 4746 4747 /// It is possible for the addressing mode of the machine to fold the specified 4748 /// instruction into a load or store that ultimately uses it. 4749 /// However, the specified instruction has multiple uses. 4750 /// Given this, it may actually increase register pressure to fold it 4751 /// into the load. For example, consider this code: 4752 /// 4753 /// X = ... 4754 /// Y = X+1 4755 /// use(Y) -> nonload/store 4756 /// Z = Y+1 4757 /// load Z 4758 /// 4759 /// In this case, Y has multiple uses, and can be folded into the load of Z 4760 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4761 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4762 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4763 /// number of computations either. 4764 /// 4765 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4766 /// X was live across 'load Z' for other reasons, we actually *would* want to 4767 /// fold the addressing mode in the Z case. This would make Y die earlier. 4768 bool AddressingModeMatcher:: 4769 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4770 ExtAddrMode &AMAfter) { 4771 if (IgnoreProfitability) return true; 4772 4773 // AMBefore is the addressing mode before this instruction was folded into it, 4774 // and AMAfter is the addressing mode after the instruction was folded. Get 4775 // the set of registers referenced by AMAfter and subtract out those 4776 // referenced by AMBefore: this is the set of values which folding in this 4777 // address extends the lifetime of. 4778 // 4779 // Note that there are only two potential values being referenced here, 4780 // BaseReg and ScaleReg (global addresses are always available, as are any 4781 // folded immediates). 4782 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4783 4784 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4785 // lifetime wasn't extended by adding this instruction. 4786 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4787 BaseReg = nullptr; 4788 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4789 ScaledReg = nullptr; 4790 4791 // If folding this instruction (and it's subexprs) didn't extend any live 4792 // ranges, we're ok with it. 4793 if (!BaseReg && !ScaledReg) 4794 return true; 4795 4796 // If all uses of this instruction can have the address mode sunk into them, 4797 // we can remove the addressing mode and effectively trade one live register 4798 // for another (at worst.) In this context, folding an addressing mode into 4799 // the use is just a particularly nice way of sinking it. 4800 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4801 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4802 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4803 PSI, BFI)) 4804 return false; // Has a non-memory, non-foldable use! 4805 4806 // Now that we know that all uses of this instruction are part of a chain of 4807 // computation involving only operations that could theoretically be folded 4808 // into a memory use, loop over each of these memory operation uses and see 4809 // if they could *actually* fold the instruction. The assumption is that 4810 // addressing modes are cheap and that duplicating the computation involved 4811 // many times is worthwhile, even on a fastpath. For sinking candidates 4812 // (i.e. cold call sites), this serves as a way to prevent excessive code 4813 // growth since most architectures have some reasonable small and fast way to 4814 // compute an effective address. (i.e LEA on x86) 4815 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4816 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4817 Instruction *User = MemoryUses[i].first; 4818 unsigned OpNo = MemoryUses[i].second; 4819 4820 // Get the access type of this use. If the use isn't a pointer, we don't 4821 // know what it accesses. 4822 Value *Address = User->getOperand(OpNo); 4823 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4824 if (!AddrTy) 4825 return false; 4826 Type *AddressAccessTy = AddrTy->getElementType(); 4827 unsigned AS = AddrTy->getAddressSpace(); 4828 4829 // Do a match against the root of this address, ignoring profitability. This 4830 // will tell us if the addressing mode for the memory operation will 4831 // *actually* cover the shared instruction. 4832 ExtAddrMode Result; 4833 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4834 0); 4835 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4836 TPT.getRestorationPoint(); 4837 AddressingModeMatcher Matcher( 4838 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4839 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4840 Matcher.IgnoreProfitability = true; 4841 bool Success = Matcher.matchAddr(Address, 0); 4842 (void)Success; assert(Success && "Couldn't select *anything*?"); 4843 4844 // The match was to check the profitability, the changes made are not 4845 // part of the original matcher. Therefore, they should be dropped 4846 // otherwise the original matcher will not present the right state. 4847 TPT.rollback(LastKnownGood); 4848 4849 // If the match didn't cover I, then it won't be shared by it. 4850 if (!is_contained(MatchedAddrModeInsts, I)) 4851 return false; 4852 4853 MatchedAddrModeInsts.clear(); 4854 } 4855 4856 return true; 4857 } 4858 4859 /// Return true if the specified values are defined in a 4860 /// different basic block than BB. 4861 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4862 if (Instruction *I = dyn_cast<Instruction>(V)) 4863 return I->getParent() != BB; 4864 return false; 4865 } 4866 4867 /// Sink addressing mode computation immediate before MemoryInst if doing so 4868 /// can be done without increasing register pressure. The need for the 4869 /// register pressure constraint means this can end up being an all or nothing 4870 /// decision for all uses of the same addressing computation. 4871 /// 4872 /// Load and Store Instructions often have addressing modes that can do 4873 /// significant amounts of computation. As such, instruction selection will try 4874 /// to get the load or store to do as much computation as possible for the 4875 /// program. The problem is that isel can only see within a single block. As 4876 /// such, we sink as much legal addressing mode work into the block as possible. 4877 /// 4878 /// This method is used to optimize both load/store and inline asms with memory 4879 /// operands. It's also used to sink addressing computations feeding into cold 4880 /// call sites into their (cold) basic block. 4881 /// 4882 /// The motivation for handling sinking into cold blocks is that doing so can 4883 /// both enable other address mode sinking (by satisfying the register pressure 4884 /// constraint above), and reduce register pressure globally (by removing the 4885 /// addressing mode computation from the fast path entirely.). 4886 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4887 Type *AccessTy, unsigned AddrSpace) { 4888 Value *Repl = Addr; 4889 4890 // Try to collapse single-value PHI nodes. This is necessary to undo 4891 // unprofitable PRE transformations. 4892 SmallVector<Value*, 8> worklist; 4893 SmallPtrSet<Value*, 16> Visited; 4894 worklist.push_back(Addr); 4895 4896 // Use a worklist to iteratively look through PHI and select nodes, and 4897 // ensure that the addressing mode obtained from the non-PHI/select roots of 4898 // the graph are compatible. 4899 bool PhiOrSelectSeen = false; 4900 SmallVector<Instruction*, 16> AddrModeInsts; 4901 const SimplifyQuery SQ(*DL, TLInfo); 4902 AddressingModeCombiner AddrModes(SQ, Addr); 4903 TypePromotionTransaction TPT(RemovedInsts); 4904 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4905 TPT.getRestorationPoint(); 4906 while (!worklist.empty()) { 4907 Value *V = worklist.back(); 4908 worklist.pop_back(); 4909 4910 // We allow traversing cyclic Phi nodes. 4911 // In case of success after this loop we ensure that traversing through 4912 // Phi nodes ends up with all cases to compute address of the form 4913 // BaseGV + Base + Scale * Index + Offset 4914 // where Scale and Offset are constans and BaseGV, Base and Index 4915 // are exactly the same Values in all cases. 4916 // It means that BaseGV, Scale and Offset dominate our memory instruction 4917 // and have the same value as they had in address computation represented 4918 // as Phi. So we can safely sink address computation to memory instruction. 4919 if (!Visited.insert(V).second) 4920 continue; 4921 4922 // For a PHI node, push all of its incoming values. 4923 if (PHINode *P = dyn_cast<PHINode>(V)) { 4924 for (Value *IncValue : P->incoming_values()) 4925 worklist.push_back(IncValue); 4926 PhiOrSelectSeen = true; 4927 continue; 4928 } 4929 // Similar for select. 4930 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4931 worklist.push_back(SI->getFalseValue()); 4932 worklist.push_back(SI->getTrueValue()); 4933 PhiOrSelectSeen = true; 4934 continue; 4935 } 4936 4937 // For non-PHIs, determine the addressing mode being computed. Note that 4938 // the result may differ depending on what other uses our candidate 4939 // addressing instructions might have. 4940 AddrModeInsts.clear(); 4941 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4942 0); 4943 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4944 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4945 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4946 BFI.get()); 4947 4948 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4949 if (GEP && !NewGEPBases.count(GEP)) { 4950 // If splitting the underlying data structure can reduce the offset of a 4951 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4952 // previously split data structures. 4953 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4954 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4955 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4956 } 4957 4958 NewAddrMode.OriginalValue = V; 4959 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4960 break; 4961 } 4962 4963 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4964 // or we have multiple but either couldn't combine them or combining them 4965 // wouldn't do anything useful, bail out now. 4966 if (!AddrModes.combineAddrModes()) { 4967 TPT.rollback(LastKnownGood); 4968 return false; 4969 } 4970 bool Modified = TPT.commit(); 4971 4972 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4973 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4974 4975 // If all the instructions matched are already in this BB, don't do anything. 4976 // If we saw a Phi node then it is not local definitely, and if we saw a select 4977 // then we want to push the address calculation past it even if it's already 4978 // in this BB. 4979 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4980 return IsNonLocalValue(V, MemoryInst->getParent()); 4981 })) { 4982 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4983 << "\n"); 4984 return Modified; 4985 } 4986 4987 // Insert this computation right after this user. Since our caller is 4988 // scanning from the top of the BB to the bottom, reuse of the expr are 4989 // guaranteed to happen later. 4990 IRBuilder<> Builder(MemoryInst); 4991 4992 // Now that we determined the addressing expression we want to use and know 4993 // that we have to sink it into this block. Check to see if we have already 4994 // done this for some other load/store instr in this block. If so, reuse 4995 // the computation. Before attempting reuse, check if the address is valid 4996 // as it may have been erased. 4997 4998 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4999 5000 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5001 if (SunkAddr) { 5002 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5003 << " for " << *MemoryInst << "\n"); 5004 if (SunkAddr->getType() != Addr->getType()) 5005 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5006 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5007 SubtargetInfo->addrSinkUsingGEPs())) { 5008 // By default, we use the GEP-based method when AA is used later. This 5009 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5010 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5011 << " for " << *MemoryInst << "\n"); 5012 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5013 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5014 5015 // First, find the pointer. 5016 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5017 ResultPtr = AddrMode.BaseReg; 5018 AddrMode.BaseReg = nullptr; 5019 } 5020 5021 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5022 // We can't add more than one pointer together, nor can we scale a 5023 // pointer (both of which seem meaningless). 5024 if (ResultPtr || AddrMode.Scale != 1) 5025 return Modified; 5026 5027 ResultPtr = AddrMode.ScaledReg; 5028 AddrMode.Scale = 0; 5029 } 5030 5031 // It is only safe to sign extend the BaseReg if we know that the math 5032 // required to create it did not overflow before we extend it. Since 5033 // the original IR value was tossed in favor of a constant back when 5034 // the AddrMode was created we need to bail out gracefully if widths 5035 // do not match instead of extending it. 5036 // 5037 // (See below for code to add the scale.) 5038 if (AddrMode.Scale) { 5039 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5040 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5041 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5042 return Modified; 5043 } 5044 5045 if (AddrMode.BaseGV) { 5046 if (ResultPtr) 5047 return Modified; 5048 5049 ResultPtr = AddrMode.BaseGV; 5050 } 5051 5052 // If the real base value actually came from an inttoptr, then the matcher 5053 // will look through it and provide only the integer value. In that case, 5054 // use it here. 5055 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5056 if (!ResultPtr && AddrMode.BaseReg) { 5057 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5058 "sunkaddr"); 5059 AddrMode.BaseReg = nullptr; 5060 } else if (!ResultPtr && AddrMode.Scale == 1) { 5061 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5062 "sunkaddr"); 5063 AddrMode.Scale = 0; 5064 } 5065 } 5066 5067 if (!ResultPtr && 5068 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5069 SunkAddr = Constant::getNullValue(Addr->getType()); 5070 } else if (!ResultPtr) { 5071 return Modified; 5072 } else { 5073 Type *I8PtrTy = 5074 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5075 Type *I8Ty = Builder.getInt8Ty(); 5076 5077 // Start with the base register. Do this first so that subsequent address 5078 // matching finds it last, which will prevent it from trying to match it 5079 // as the scaled value in case it happens to be a mul. That would be 5080 // problematic if we've sunk a different mul for the scale, because then 5081 // we'd end up sinking both muls. 5082 if (AddrMode.BaseReg) { 5083 Value *V = AddrMode.BaseReg; 5084 if (V->getType() != IntPtrTy) 5085 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5086 5087 ResultIndex = V; 5088 } 5089 5090 // Add the scale value. 5091 if (AddrMode.Scale) { 5092 Value *V = AddrMode.ScaledReg; 5093 if (V->getType() == IntPtrTy) { 5094 // done. 5095 } else { 5096 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5097 cast<IntegerType>(V->getType())->getBitWidth() && 5098 "We can't transform if ScaledReg is too narrow"); 5099 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5100 } 5101 5102 if (AddrMode.Scale != 1) 5103 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5104 "sunkaddr"); 5105 if (ResultIndex) 5106 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5107 else 5108 ResultIndex = V; 5109 } 5110 5111 // Add in the Base Offset if present. 5112 if (AddrMode.BaseOffs) { 5113 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5114 if (ResultIndex) { 5115 // We need to add this separately from the scale above to help with 5116 // SDAG consecutive load/store merging. 5117 if (ResultPtr->getType() != I8PtrTy) 5118 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5119 ResultPtr = 5120 AddrMode.InBounds 5121 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5122 "sunkaddr") 5123 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5124 } 5125 5126 ResultIndex = V; 5127 } 5128 5129 if (!ResultIndex) { 5130 SunkAddr = ResultPtr; 5131 } else { 5132 if (ResultPtr->getType() != I8PtrTy) 5133 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5134 SunkAddr = 5135 AddrMode.InBounds 5136 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5137 "sunkaddr") 5138 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5139 } 5140 5141 if (SunkAddr->getType() != Addr->getType()) 5142 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5143 } 5144 } else { 5145 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5146 // non-integral pointers, so in that case bail out now. 5147 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5148 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5149 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5150 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5151 if (DL->isNonIntegralPointerType(Addr->getType()) || 5152 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5153 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5154 (AddrMode.BaseGV && 5155 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5156 return Modified; 5157 5158 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5159 << " for " << *MemoryInst << "\n"); 5160 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5161 Value *Result = nullptr; 5162 5163 // Start with the base register. Do this first so that subsequent address 5164 // matching finds it last, which will prevent it from trying to match it 5165 // as the scaled value in case it happens to be a mul. That would be 5166 // problematic if we've sunk a different mul for the scale, because then 5167 // we'd end up sinking both muls. 5168 if (AddrMode.BaseReg) { 5169 Value *V = AddrMode.BaseReg; 5170 if (V->getType()->isPointerTy()) 5171 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5172 if (V->getType() != IntPtrTy) 5173 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5174 Result = V; 5175 } 5176 5177 // Add the scale value. 5178 if (AddrMode.Scale) { 5179 Value *V = AddrMode.ScaledReg; 5180 if (V->getType() == IntPtrTy) { 5181 // done. 5182 } else if (V->getType()->isPointerTy()) { 5183 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5184 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5185 cast<IntegerType>(V->getType())->getBitWidth()) { 5186 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5187 } else { 5188 // It is only safe to sign extend the BaseReg if we know that the math 5189 // required to create it did not overflow before we extend it. Since 5190 // the original IR value was tossed in favor of a constant back when 5191 // the AddrMode was created we need to bail out gracefully if widths 5192 // do not match instead of extending it. 5193 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5194 if (I && (Result != AddrMode.BaseReg)) 5195 I->eraseFromParent(); 5196 return Modified; 5197 } 5198 if (AddrMode.Scale != 1) 5199 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5200 "sunkaddr"); 5201 if (Result) 5202 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5203 else 5204 Result = V; 5205 } 5206 5207 // Add in the BaseGV if present. 5208 if (AddrMode.BaseGV) { 5209 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5210 if (Result) 5211 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5212 else 5213 Result = V; 5214 } 5215 5216 // Add in the Base Offset if present. 5217 if (AddrMode.BaseOffs) { 5218 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5219 if (Result) 5220 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5221 else 5222 Result = V; 5223 } 5224 5225 if (!Result) 5226 SunkAddr = Constant::getNullValue(Addr->getType()); 5227 else 5228 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5229 } 5230 5231 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5232 // Store the newly computed address into the cache. In the case we reused a 5233 // value, this should be idempotent. 5234 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5235 5236 // If we have no uses, recursively delete the value and all dead instructions 5237 // using it. 5238 if (Repl->use_empty()) { 5239 // This can cause recursive deletion, which can invalidate our iterator. 5240 // Use a WeakTrackingVH to hold onto it in case this happens. 5241 Value *CurValue = &*CurInstIterator; 5242 WeakTrackingVH IterHandle(CurValue); 5243 BasicBlock *BB = CurInstIterator->getParent(); 5244 5245 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5246 5247 if (IterHandle != CurValue) { 5248 // If the iterator instruction was recursively deleted, start over at the 5249 // start of the block. 5250 CurInstIterator = BB->begin(); 5251 SunkAddrs.clear(); 5252 } 5253 } 5254 ++NumMemoryInsts; 5255 return true; 5256 } 5257 5258 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5259 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5260 /// only handle a 2 operand GEP in the same basic block or a splat constant 5261 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5262 /// index. 5263 /// 5264 /// If the existing GEP has a vector base pointer that is splat, we can look 5265 /// through the splat to find the scalar pointer. If we can't find a scalar 5266 /// pointer there's nothing we can do. 5267 /// 5268 /// If we have a GEP with more than 2 indices where the middle indices are all 5269 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5270 /// 5271 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5272 /// followed by a GEP with an all zeroes vector index. This will enable 5273 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5274 /// zero index. 5275 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5276 Value *Ptr) { 5277 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 5278 if (!GEP || !GEP->hasIndices()) 5279 return false; 5280 5281 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5282 // FIXME: We should support this by sinking the GEP. 5283 if (MemoryInst->getParent() != GEP->getParent()) 5284 return false; 5285 5286 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5287 5288 bool RewriteGEP = false; 5289 5290 if (Ops[0]->getType()->isVectorTy()) { 5291 Ops[0] = const_cast<Value *>(getSplatValue(Ops[0])); 5292 if (!Ops[0]) 5293 return false; 5294 RewriteGEP = true; 5295 } 5296 5297 unsigned FinalIndex = Ops.size() - 1; 5298 5299 // Ensure all but the last index is 0. 5300 // FIXME: This isn't strictly required. All that's required is that they are 5301 // all scalars or splats. 5302 for (unsigned i = 1; i < FinalIndex; ++i) { 5303 auto *C = dyn_cast<Constant>(Ops[i]); 5304 if (!C) 5305 return false; 5306 if (isa<VectorType>(C->getType())) 5307 C = C->getSplatValue(); 5308 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5309 if (!CI || !CI->isZero()) 5310 return false; 5311 // Scalarize the index if needed. 5312 Ops[i] = CI; 5313 } 5314 5315 // Try to scalarize the final index. 5316 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5317 if (Value *V = const_cast<Value *>(getSplatValue(Ops[FinalIndex]))) { 5318 auto *C = dyn_cast<ConstantInt>(V); 5319 // Don't scalarize all zeros vector. 5320 if (!C || !C->isZero()) { 5321 Ops[FinalIndex] = V; 5322 RewriteGEP = true; 5323 } 5324 } 5325 } 5326 5327 // If we made any changes or the we have extra operands, we need to generate 5328 // new instructions. 5329 if (!RewriteGEP && Ops.size() == 2) 5330 return false; 5331 5332 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 5333 5334 IRBuilder<> Builder(MemoryInst); 5335 5336 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5337 5338 Value *NewAddr; 5339 5340 // If the final index isn't a vector, emit a scalar GEP containing all ops 5341 // and a vector GEP with all zeroes final index. 5342 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5343 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5344 auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts); 5345 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5346 } else { 5347 Value *Base = Ops[0]; 5348 Value *Index = Ops[FinalIndex]; 5349 5350 // Create a scalar GEP if there are more than 2 operands. 5351 if (Ops.size() != 2) { 5352 // Replace the last index with 0. 5353 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5354 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5355 } 5356 5357 // Now create the GEP with scalar pointer and vector index. 5358 NewAddr = Builder.CreateGEP(Base, Index); 5359 } 5360 5361 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5362 5363 // If we have no uses, recursively delete the value and all dead instructions 5364 // using it. 5365 if (Ptr->use_empty()) 5366 RecursivelyDeleteTriviallyDeadInstructions(Ptr, TLInfo); 5367 5368 return true; 5369 } 5370 5371 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5372 /// address computing into the block when possible / profitable. 5373 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5374 bool MadeChange = false; 5375 5376 const TargetRegisterInfo *TRI = 5377 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5378 TargetLowering::AsmOperandInfoVector TargetConstraints = 5379 TLI->ParseConstraints(*DL, TRI, *CS); 5380 unsigned ArgNo = 0; 5381 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5382 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5383 5384 // Compute the constraint code and ConstraintType to use. 5385 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5386 5387 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5388 OpInfo.isIndirect) { 5389 Value *OpVal = CS->getArgOperand(ArgNo++); 5390 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5391 } else if (OpInfo.Type == InlineAsm::isInput) 5392 ArgNo++; 5393 } 5394 5395 return MadeChange; 5396 } 5397 5398 /// Check if all the uses of \p Val are equivalent (or free) zero or 5399 /// sign extensions. 5400 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5401 assert(!Val->use_empty() && "Input must have at least one use"); 5402 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5403 bool IsSExt = isa<SExtInst>(FirstUser); 5404 Type *ExtTy = FirstUser->getType(); 5405 for (const User *U : Val->users()) { 5406 const Instruction *UI = cast<Instruction>(U); 5407 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5408 return false; 5409 Type *CurTy = UI->getType(); 5410 // Same input and output types: Same instruction after CSE. 5411 if (CurTy == ExtTy) 5412 continue; 5413 5414 // If IsSExt is true, we are in this situation: 5415 // a = Val 5416 // b = sext ty1 a to ty2 5417 // c = sext ty1 a to ty3 5418 // Assuming ty2 is shorter than ty3, this could be turned into: 5419 // a = Val 5420 // b = sext ty1 a to ty2 5421 // c = sext ty2 b to ty3 5422 // However, the last sext is not free. 5423 if (IsSExt) 5424 return false; 5425 5426 // This is a ZExt, maybe this is free to extend from one type to another. 5427 // In that case, we would not account for a different use. 5428 Type *NarrowTy; 5429 Type *LargeTy; 5430 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5431 CurTy->getScalarType()->getIntegerBitWidth()) { 5432 NarrowTy = CurTy; 5433 LargeTy = ExtTy; 5434 } else { 5435 NarrowTy = ExtTy; 5436 LargeTy = CurTy; 5437 } 5438 5439 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5440 return false; 5441 } 5442 // All uses are the same or can be derived from one another for free. 5443 return true; 5444 } 5445 5446 /// Try to speculatively promote extensions in \p Exts and continue 5447 /// promoting through newly promoted operands recursively as far as doing so is 5448 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5449 /// When some promotion happened, \p TPT contains the proper state to revert 5450 /// them. 5451 /// 5452 /// \return true if some promotion happened, false otherwise. 5453 bool CodeGenPrepare::tryToPromoteExts( 5454 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5455 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5456 unsigned CreatedInstsCost) { 5457 bool Promoted = false; 5458 5459 // Iterate over all the extensions to try to promote them. 5460 for (auto *I : Exts) { 5461 // Early check if we directly have ext(load). 5462 if (isa<LoadInst>(I->getOperand(0))) { 5463 ProfitablyMovedExts.push_back(I); 5464 continue; 5465 } 5466 5467 // Check whether or not we want to do any promotion. The reason we have 5468 // this check inside the for loop is to catch the case where an extension 5469 // is directly fed by a load because in such case the extension can be moved 5470 // up without any promotion on its operands. 5471 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5472 return false; 5473 5474 // Get the action to perform the promotion. 5475 TypePromotionHelper::Action TPH = 5476 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5477 // Check if we can promote. 5478 if (!TPH) { 5479 // Save the current extension as we cannot move up through its operand. 5480 ProfitablyMovedExts.push_back(I); 5481 continue; 5482 } 5483 5484 // Save the current state. 5485 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5486 TPT.getRestorationPoint(); 5487 SmallVector<Instruction *, 4> NewExts; 5488 unsigned NewCreatedInstsCost = 0; 5489 unsigned ExtCost = !TLI->isExtFree(I); 5490 // Promote. 5491 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5492 &NewExts, nullptr, *TLI); 5493 assert(PromotedVal && 5494 "TypePromotionHelper should have filtered out those cases"); 5495 5496 // We would be able to merge only one extension in a load. 5497 // Therefore, if we have more than 1 new extension we heuristically 5498 // cut this search path, because it means we degrade the code quality. 5499 // With exactly 2, the transformation is neutral, because we will merge 5500 // one extension but leave one. However, we optimistically keep going, 5501 // because the new extension may be removed too. 5502 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5503 // FIXME: It would be possible to propagate a negative value instead of 5504 // conservatively ceiling it to 0. 5505 TotalCreatedInstsCost = 5506 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5507 if (!StressExtLdPromotion && 5508 (TotalCreatedInstsCost > 1 || 5509 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5510 // This promotion is not profitable, rollback to the previous state, and 5511 // save the current extension in ProfitablyMovedExts as the latest 5512 // speculative promotion turned out to be unprofitable. 5513 TPT.rollback(LastKnownGood); 5514 ProfitablyMovedExts.push_back(I); 5515 continue; 5516 } 5517 // Continue promoting NewExts as far as doing so is profitable. 5518 SmallVector<Instruction *, 2> NewlyMovedExts; 5519 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5520 bool NewPromoted = false; 5521 for (auto *ExtInst : NewlyMovedExts) { 5522 Instruction *MovedExt = cast<Instruction>(ExtInst); 5523 Value *ExtOperand = MovedExt->getOperand(0); 5524 // If we have reached to a load, we need this extra profitability check 5525 // as it could potentially be merged into an ext(load). 5526 if (isa<LoadInst>(ExtOperand) && 5527 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5528 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5529 continue; 5530 5531 ProfitablyMovedExts.push_back(MovedExt); 5532 NewPromoted = true; 5533 } 5534 5535 // If none of speculative promotions for NewExts is profitable, rollback 5536 // and save the current extension (I) as the last profitable extension. 5537 if (!NewPromoted) { 5538 TPT.rollback(LastKnownGood); 5539 ProfitablyMovedExts.push_back(I); 5540 continue; 5541 } 5542 // The promotion is profitable. 5543 Promoted = true; 5544 } 5545 return Promoted; 5546 } 5547 5548 /// Merging redundant sexts when one is dominating the other. 5549 bool CodeGenPrepare::mergeSExts(Function &F) { 5550 bool Changed = false; 5551 for (auto &Entry : ValToSExtendedUses) { 5552 SExts &Insts = Entry.second; 5553 SExts CurPts; 5554 for (Instruction *Inst : Insts) { 5555 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5556 Inst->getOperand(0) != Entry.first) 5557 continue; 5558 bool inserted = false; 5559 for (auto &Pt : CurPts) { 5560 if (getDT(F).dominates(Inst, Pt)) { 5561 Pt->replaceAllUsesWith(Inst); 5562 RemovedInsts.insert(Pt); 5563 Pt->removeFromParent(); 5564 Pt = Inst; 5565 inserted = true; 5566 Changed = true; 5567 break; 5568 } 5569 if (!getDT(F).dominates(Pt, Inst)) 5570 // Give up if we need to merge in a common dominator as the 5571 // experiments show it is not profitable. 5572 continue; 5573 Inst->replaceAllUsesWith(Pt); 5574 RemovedInsts.insert(Inst); 5575 Inst->removeFromParent(); 5576 inserted = true; 5577 Changed = true; 5578 break; 5579 } 5580 if (!inserted) 5581 CurPts.push_back(Inst); 5582 } 5583 } 5584 return Changed; 5585 } 5586 5587 // Splitting large data structures so that the GEPs accessing them can have 5588 // smaller offsets so that they can be sunk to the same blocks as their users. 5589 // For example, a large struct starting from %base is split into two parts 5590 // where the second part starts from %new_base. 5591 // 5592 // Before: 5593 // BB0: 5594 // %base = 5595 // 5596 // BB1: 5597 // %gep0 = gep %base, off0 5598 // %gep1 = gep %base, off1 5599 // %gep2 = gep %base, off2 5600 // 5601 // BB2: 5602 // %load1 = load %gep0 5603 // %load2 = load %gep1 5604 // %load3 = load %gep2 5605 // 5606 // After: 5607 // BB0: 5608 // %base = 5609 // %new_base = gep %base, off0 5610 // 5611 // BB1: 5612 // %new_gep0 = %new_base 5613 // %new_gep1 = gep %new_base, off1 - off0 5614 // %new_gep2 = gep %new_base, off2 - off0 5615 // 5616 // BB2: 5617 // %load1 = load i32, i32* %new_gep0 5618 // %load2 = load i32, i32* %new_gep1 5619 // %load3 = load i32, i32* %new_gep2 5620 // 5621 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5622 // their offsets are smaller enough to fit into the addressing mode. 5623 bool CodeGenPrepare::splitLargeGEPOffsets() { 5624 bool Changed = false; 5625 for (auto &Entry : LargeOffsetGEPMap) { 5626 Value *OldBase = Entry.first; 5627 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5628 &LargeOffsetGEPs = Entry.second; 5629 auto compareGEPOffset = 5630 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5631 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5632 if (LHS.first == RHS.first) 5633 return false; 5634 if (LHS.second != RHS.second) 5635 return LHS.second < RHS.second; 5636 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5637 }; 5638 // Sorting all the GEPs of the same data structures based on the offsets. 5639 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5640 LargeOffsetGEPs.erase( 5641 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5642 LargeOffsetGEPs.end()); 5643 // Skip if all the GEPs have the same offsets. 5644 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5645 continue; 5646 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5647 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5648 Value *NewBaseGEP = nullptr; 5649 5650 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5651 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5652 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5653 int64_t Offset = LargeOffsetGEP->second; 5654 if (Offset != BaseOffset) { 5655 TargetLowering::AddrMode AddrMode; 5656 AddrMode.BaseOffs = Offset - BaseOffset; 5657 // The result type of the GEP might not be the type of the memory 5658 // access. 5659 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5660 GEP->getResultElementType(), 5661 GEP->getAddressSpace())) { 5662 // We need to create a new base if the offset to the current base is 5663 // too large to fit into the addressing mode. So, a very large struct 5664 // may be split into several parts. 5665 BaseGEP = GEP; 5666 BaseOffset = Offset; 5667 NewBaseGEP = nullptr; 5668 } 5669 } 5670 5671 // Generate a new GEP to replace the current one. 5672 LLVMContext &Ctx = GEP->getContext(); 5673 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5674 Type *I8PtrTy = 5675 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5676 Type *I8Ty = Type::getInt8Ty(Ctx); 5677 5678 if (!NewBaseGEP) { 5679 // Create a new base if we don't have one yet. Find the insertion 5680 // pointer for the new base first. 5681 BasicBlock::iterator NewBaseInsertPt; 5682 BasicBlock *NewBaseInsertBB; 5683 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5684 // If the base of the struct is an instruction, the new base will be 5685 // inserted close to it. 5686 NewBaseInsertBB = BaseI->getParent(); 5687 if (isa<PHINode>(BaseI)) 5688 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5689 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5690 NewBaseInsertBB = 5691 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5692 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5693 } else 5694 NewBaseInsertPt = std::next(BaseI->getIterator()); 5695 } else { 5696 // If the current base is an argument or global value, the new base 5697 // will be inserted to the entry block. 5698 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5699 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5700 } 5701 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5702 // Create a new base. 5703 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5704 NewBaseGEP = OldBase; 5705 if (NewBaseGEP->getType() != I8PtrTy) 5706 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5707 NewBaseGEP = 5708 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5709 NewGEPBases.insert(NewBaseGEP); 5710 } 5711 5712 IRBuilder<> Builder(GEP); 5713 Value *NewGEP = NewBaseGEP; 5714 if (Offset == BaseOffset) { 5715 if (GEP->getType() != I8PtrTy) 5716 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5717 } else { 5718 // Calculate the new offset for the new GEP. 5719 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5720 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5721 5722 if (GEP->getType() != I8PtrTy) 5723 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5724 } 5725 GEP->replaceAllUsesWith(NewGEP); 5726 LargeOffsetGEPID.erase(GEP); 5727 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5728 GEP->eraseFromParent(); 5729 Changed = true; 5730 } 5731 } 5732 return Changed; 5733 } 5734 5735 bool CodeGenPrepare::optimizePhiType( 5736 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5737 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5738 // We are looking for a collection on interconnected phi nodes that together 5739 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5740 // are of the same type. Convert the whole set of nodes to the type of the 5741 // bitcast. 5742 Type *PhiTy = I->getType(); 5743 Type *ConvertTy = nullptr; 5744 if (Visited.count(I) || 5745 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5746 return false; 5747 5748 SmallVector<Instruction *, 4> Worklist; 5749 Worklist.push_back(cast<Instruction>(I)); 5750 SmallPtrSet<PHINode *, 4> PhiNodes; 5751 PhiNodes.insert(I); 5752 Visited.insert(I); 5753 SmallPtrSet<Instruction *, 4> Defs; 5754 SmallPtrSet<Instruction *, 4> Uses; 5755 5756 while (!Worklist.empty()) { 5757 Instruction *II = Worklist.pop_back_val(); 5758 5759 if (auto *Phi = dyn_cast<PHINode>(II)) { 5760 // Handle Defs, which might also be PHI's 5761 for (Value *V : Phi->incoming_values()) { 5762 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5763 if (!PhiNodes.count(OpPhi)) { 5764 if (Visited.count(OpPhi)) 5765 return false; 5766 PhiNodes.insert(OpPhi); 5767 Visited.insert(OpPhi); 5768 Worklist.push_back(OpPhi); 5769 } 5770 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5771 if (!Defs.count(OpLoad)) { 5772 Defs.insert(OpLoad); 5773 Worklist.push_back(OpLoad); 5774 } 5775 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5776 if (!Defs.count(OpEx)) { 5777 Defs.insert(OpEx); 5778 Worklist.push_back(OpEx); 5779 } 5780 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5781 if (!ConvertTy) 5782 ConvertTy = OpBC->getOperand(0)->getType(); 5783 if (OpBC->getOperand(0)->getType() != ConvertTy) 5784 return false; 5785 if (!Defs.count(OpBC)) { 5786 Defs.insert(OpBC); 5787 Worklist.push_back(OpBC); 5788 } 5789 } else if (!isa<UndefValue>(V)) 5790 return false; 5791 } 5792 } 5793 5794 // Handle uses which might also be phi's 5795 for (User *V : II->users()) { 5796 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5797 if (!PhiNodes.count(OpPhi)) { 5798 if (Visited.count(OpPhi)) 5799 return false; 5800 PhiNodes.insert(OpPhi); 5801 Visited.insert(OpPhi); 5802 Worklist.push_back(OpPhi); 5803 } 5804 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5805 if (OpStore->getOperand(0) != II) 5806 return false; 5807 Uses.insert(OpStore); 5808 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5809 if (!ConvertTy) 5810 ConvertTy = OpBC->getType(); 5811 if (OpBC->getType() != ConvertTy) 5812 return false; 5813 Uses.insert(OpBC); 5814 } else 5815 return false; 5816 } 5817 } 5818 5819 if (!ConvertTy || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5820 return false; 5821 5822 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5823 << *ConvertTy << "\n"); 5824 5825 // Create all the new phi nodes of the new type, and bitcast any loads to the 5826 // correct type. 5827 ValueToValueMap ValMap; 5828 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5829 for (Instruction *D : Defs) { 5830 if (isa<BitCastInst>(D)) 5831 ValMap[D] = D->getOperand(0); 5832 else 5833 ValMap[D] = 5834 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5835 } 5836 for (PHINode *Phi : PhiNodes) 5837 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5838 Phi->getName() + ".tc", Phi); 5839 // Pipe together all the PhiNodes. 5840 for (PHINode *Phi : PhiNodes) { 5841 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5842 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5843 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5844 Phi->getIncomingBlock(i)); 5845 } 5846 // And finally pipe up the stores and bitcasts 5847 for (Instruction *U : Uses) { 5848 if (isa<BitCastInst>(U)) { 5849 DeletedInstrs.insert(U); 5850 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5851 } else 5852 U->setOperand(0, 5853 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5854 } 5855 5856 // Save the removed phis to be deleted later. 5857 for (PHINode *Phi : PhiNodes) 5858 DeletedInstrs.insert(Phi); 5859 return true; 5860 } 5861 5862 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5863 if (!OptimizePhiTypes) 5864 return false; 5865 5866 bool Changed = false; 5867 SmallPtrSet<PHINode *, 4> Visited; 5868 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5869 5870 // Attempt to optimize all the phis in the functions to the correct type. 5871 for (auto &BB : F) 5872 for (auto &Phi : BB.phis()) 5873 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5874 5875 // Remove any old phi's that have been converted. 5876 for (auto *I : DeletedInstrs) { 5877 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5878 I->eraseFromParent(); 5879 } 5880 5881 return Changed; 5882 } 5883 5884 /// Return true, if an ext(load) can be formed from an extension in 5885 /// \p MovedExts. 5886 bool CodeGenPrepare::canFormExtLd( 5887 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5888 Instruction *&Inst, bool HasPromoted) { 5889 for (auto *MovedExtInst : MovedExts) { 5890 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5891 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5892 Inst = MovedExtInst; 5893 break; 5894 } 5895 } 5896 if (!LI) 5897 return false; 5898 5899 // If they're already in the same block, there's nothing to do. 5900 // Make the cheap checks first if we did not promote. 5901 // If we promoted, we need to check if it is indeed profitable. 5902 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5903 return false; 5904 5905 return TLI->isExtLoad(LI, Inst, *DL); 5906 } 5907 5908 /// Move a zext or sext fed by a load into the same basic block as the load, 5909 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5910 /// extend into the load. 5911 /// 5912 /// E.g., 5913 /// \code 5914 /// %ld = load i32* %addr 5915 /// %add = add nuw i32 %ld, 4 5916 /// %zext = zext i32 %add to i64 5917 // \endcode 5918 /// => 5919 /// \code 5920 /// %ld = load i32* %addr 5921 /// %zext = zext i32 %ld to i64 5922 /// %add = add nuw i64 %zext, 4 5923 /// \encode 5924 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5925 /// allow us to match zext(load i32*) to i64. 5926 /// 5927 /// Also, try to promote the computations used to obtain a sign extended 5928 /// value used into memory accesses. 5929 /// E.g., 5930 /// \code 5931 /// a = add nsw i32 b, 3 5932 /// d = sext i32 a to i64 5933 /// e = getelementptr ..., i64 d 5934 /// \endcode 5935 /// => 5936 /// \code 5937 /// f = sext i32 b to i64 5938 /// a = add nsw i64 f, 3 5939 /// e = getelementptr ..., i64 a 5940 /// \endcode 5941 /// 5942 /// \p Inst[in/out] the extension may be modified during the process if some 5943 /// promotions apply. 5944 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5945 bool AllowPromotionWithoutCommonHeader = false; 5946 /// See if it is an interesting sext operations for the address type 5947 /// promotion before trying to promote it, e.g., the ones with the right 5948 /// type and used in memory accesses. 5949 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5950 *Inst, AllowPromotionWithoutCommonHeader); 5951 TypePromotionTransaction TPT(RemovedInsts); 5952 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5953 TPT.getRestorationPoint(); 5954 SmallVector<Instruction *, 1> Exts; 5955 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5956 Exts.push_back(Inst); 5957 5958 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5959 5960 // Look for a load being extended. 5961 LoadInst *LI = nullptr; 5962 Instruction *ExtFedByLoad; 5963 5964 // Try to promote a chain of computation if it allows to form an extended 5965 // load. 5966 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5967 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5968 TPT.commit(); 5969 // Move the extend into the same block as the load. 5970 ExtFedByLoad->moveAfter(LI); 5971 ++NumExtsMoved; 5972 Inst = ExtFedByLoad; 5973 return true; 5974 } 5975 5976 // Continue promoting SExts if known as considerable depending on targets. 5977 if (ATPConsiderable && 5978 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5979 HasPromoted, TPT, SpeculativelyMovedExts)) 5980 return true; 5981 5982 TPT.rollback(LastKnownGood); 5983 return false; 5984 } 5985 5986 // Perform address type promotion if doing so is profitable. 5987 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5988 // instructions that sign extended the same initial value. However, if 5989 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5990 // extension is just profitable. 5991 bool CodeGenPrepare::performAddressTypePromotion( 5992 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5993 bool HasPromoted, TypePromotionTransaction &TPT, 5994 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5995 bool Promoted = false; 5996 SmallPtrSet<Instruction *, 1> UnhandledExts; 5997 bool AllSeenFirst = true; 5998 for (auto *I : SpeculativelyMovedExts) { 5999 Value *HeadOfChain = I->getOperand(0); 6000 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6001 SeenChainsForSExt.find(HeadOfChain); 6002 // If there is an unhandled SExt which has the same header, try to promote 6003 // it as well. 6004 if (AlreadySeen != SeenChainsForSExt.end()) { 6005 if (AlreadySeen->second != nullptr) 6006 UnhandledExts.insert(AlreadySeen->second); 6007 AllSeenFirst = false; 6008 } 6009 } 6010 6011 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6012 SpeculativelyMovedExts.size() == 1)) { 6013 TPT.commit(); 6014 if (HasPromoted) 6015 Promoted = true; 6016 for (auto *I : SpeculativelyMovedExts) { 6017 Value *HeadOfChain = I->getOperand(0); 6018 SeenChainsForSExt[HeadOfChain] = nullptr; 6019 ValToSExtendedUses[HeadOfChain].push_back(I); 6020 } 6021 // Update Inst as promotion happen. 6022 Inst = SpeculativelyMovedExts.pop_back_val(); 6023 } else { 6024 // This is the first chain visited from the header, keep the current chain 6025 // as unhandled. Defer to promote this until we encounter another SExt 6026 // chain derived from the same header. 6027 for (auto *I : SpeculativelyMovedExts) { 6028 Value *HeadOfChain = I->getOperand(0); 6029 SeenChainsForSExt[HeadOfChain] = Inst; 6030 } 6031 return false; 6032 } 6033 6034 if (!AllSeenFirst && !UnhandledExts.empty()) 6035 for (auto *VisitedSExt : UnhandledExts) { 6036 if (RemovedInsts.count(VisitedSExt)) 6037 continue; 6038 TypePromotionTransaction TPT(RemovedInsts); 6039 SmallVector<Instruction *, 1> Exts; 6040 SmallVector<Instruction *, 2> Chains; 6041 Exts.push_back(VisitedSExt); 6042 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6043 TPT.commit(); 6044 if (HasPromoted) 6045 Promoted = true; 6046 for (auto *I : Chains) { 6047 Value *HeadOfChain = I->getOperand(0); 6048 // Mark this as handled. 6049 SeenChainsForSExt[HeadOfChain] = nullptr; 6050 ValToSExtendedUses[HeadOfChain].push_back(I); 6051 } 6052 } 6053 return Promoted; 6054 } 6055 6056 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6057 BasicBlock *DefBB = I->getParent(); 6058 6059 // If the result of a {s|z}ext and its source are both live out, rewrite all 6060 // other uses of the source with result of extension. 6061 Value *Src = I->getOperand(0); 6062 if (Src->hasOneUse()) 6063 return false; 6064 6065 // Only do this xform if truncating is free. 6066 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6067 return false; 6068 6069 // Only safe to perform the optimization if the source is also defined in 6070 // this block. 6071 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6072 return false; 6073 6074 bool DefIsLiveOut = false; 6075 for (User *U : I->users()) { 6076 Instruction *UI = cast<Instruction>(U); 6077 6078 // Figure out which BB this ext is used in. 6079 BasicBlock *UserBB = UI->getParent(); 6080 if (UserBB == DefBB) continue; 6081 DefIsLiveOut = true; 6082 break; 6083 } 6084 if (!DefIsLiveOut) 6085 return false; 6086 6087 // Make sure none of the uses are PHI nodes. 6088 for (User *U : Src->users()) { 6089 Instruction *UI = cast<Instruction>(U); 6090 BasicBlock *UserBB = UI->getParent(); 6091 if (UserBB == DefBB) continue; 6092 // Be conservative. We don't want this xform to end up introducing 6093 // reloads just before load / store instructions. 6094 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6095 return false; 6096 } 6097 6098 // InsertedTruncs - Only insert one trunc in each block once. 6099 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6100 6101 bool MadeChange = false; 6102 for (Use &U : Src->uses()) { 6103 Instruction *User = cast<Instruction>(U.getUser()); 6104 6105 // Figure out which BB this ext is used in. 6106 BasicBlock *UserBB = User->getParent(); 6107 if (UserBB == DefBB) continue; 6108 6109 // Both src and def are live in this block. Rewrite the use. 6110 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6111 6112 if (!InsertedTrunc) { 6113 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6114 assert(InsertPt != UserBB->end()); 6115 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6116 InsertedInsts.insert(InsertedTrunc); 6117 } 6118 6119 // Replace a use of the {s|z}ext source with a use of the result. 6120 U = InsertedTrunc; 6121 ++NumExtUses; 6122 MadeChange = true; 6123 } 6124 6125 return MadeChange; 6126 } 6127 6128 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6129 // just after the load if the target can fold this into one extload instruction, 6130 // with the hope of eliminating some of the other later "and" instructions using 6131 // the loaded value. "and"s that are made trivially redundant by the insertion 6132 // of the new "and" are removed by this function, while others (e.g. those whose 6133 // path from the load goes through a phi) are left for isel to potentially 6134 // remove. 6135 // 6136 // For example: 6137 // 6138 // b0: 6139 // x = load i32 6140 // ... 6141 // b1: 6142 // y = and x, 0xff 6143 // z = use y 6144 // 6145 // becomes: 6146 // 6147 // b0: 6148 // x = load i32 6149 // x' = and x, 0xff 6150 // ... 6151 // b1: 6152 // z = use x' 6153 // 6154 // whereas: 6155 // 6156 // b0: 6157 // x1 = load i32 6158 // ... 6159 // b1: 6160 // x2 = load i32 6161 // ... 6162 // b2: 6163 // x = phi x1, x2 6164 // y = and x, 0xff 6165 // 6166 // becomes (after a call to optimizeLoadExt for each load): 6167 // 6168 // b0: 6169 // x1 = load i32 6170 // x1' = and x1, 0xff 6171 // ... 6172 // b1: 6173 // x2 = load i32 6174 // x2' = and x2, 0xff 6175 // ... 6176 // b2: 6177 // x = phi x1', x2' 6178 // y = and x, 0xff 6179 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6180 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6181 return false; 6182 6183 // Skip loads we've already transformed. 6184 if (Load->hasOneUse() && 6185 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6186 return false; 6187 6188 // Look at all uses of Load, looking through phis, to determine how many bits 6189 // of the loaded value are needed. 6190 SmallVector<Instruction *, 8> WorkList; 6191 SmallPtrSet<Instruction *, 16> Visited; 6192 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6193 for (auto *U : Load->users()) 6194 WorkList.push_back(cast<Instruction>(U)); 6195 6196 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6197 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6198 APInt DemandBits(BitWidth, 0); 6199 APInt WidestAndBits(BitWidth, 0); 6200 6201 while (!WorkList.empty()) { 6202 Instruction *I = WorkList.back(); 6203 WorkList.pop_back(); 6204 6205 // Break use-def graph loops. 6206 if (!Visited.insert(I).second) 6207 continue; 6208 6209 // For a PHI node, push all of its users. 6210 if (auto *Phi = dyn_cast<PHINode>(I)) { 6211 for (auto *U : Phi->users()) 6212 WorkList.push_back(cast<Instruction>(U)); 6213 continue; 6214 } 6215 6216 switch (I->getOpcode()) { 6217 case Instruction::And: { 6218 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6219 if (!AndC) 6220 return false; 6221 APInt AndBits = AndC->getValue(); 6222 DemandBits |= AndBits; 6223 // Keep track of the widest and mask we see. 6224 if (AndBits.ugt(WidestAndBits)) 6225 WidestAndBits = AndBits; 6226 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6227 AndsToMaybeRemove.push_back(I); 6228 break; 6229 } 6230 6231 case Instruction::Shl: { 6232 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6233 if (!ShlC) 6234 return false; 6235 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6236 DemandBits.setLowBits(BitWidth - ShiftAmt); 6237 break; 6238 } 6239 6240 case Instruction::Trunc: { 6241 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6242 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6243 DemandBits.setLowBits(TruncBitWidth); 6244 break; 6245 } 6246 6247 default: 6248 return false; 6249 } 6250 } 6251 6252 uint32_t ActiveBits = DemandBits.getActiveBits(); 6253 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6254 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6255 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6256 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6257 // followed by an AND. 6258 // TODO: Look into removing this restriction by fixing backends to either 6259 // return false for isLoadExtLegal for i1 or have them select this pattern to 6260 // a single instruction. 6261 // 6262 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6263 // mask, since these are the only ands that will be removed by isel. 6264 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6265 WidestAndBits != DemandBits) 6266 return false; 6267 6268 LLVMContext &Ctx = Load->getType()->getContext(); 6269 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6270 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6271 6272 // Reject cases that won't be matched as extloads. 6273 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6274 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6275 return false; 6276 6277 IRBuilder<> Builder(Load->getNextNode()); 6278 auto *NewAnd = cast<Instruction>( 6279 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6280 // Mark this instruction as "inserted by CGP", so that other 6281 // optimizations don't touch it. 6282 InsertedInsts.insert(NewAnd); 6283 6284 // Replace all uses of load with new and (except for the use of load in the 6285 // new and itself). 6286 Load->replaceAllUsesWith(NewAnd); 6287 NewAnd->setOperand(0, Load); 6288 6289 // Remove any and instructions that are now redundant. 6290 for (auto *And : AndsToMaybeRemove) 6291 // Check that the and mask is the same as the one we decided to put on the 6292 // new and. 6293 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6294 And->replaceAllUsesWith(NewAnd); 6295 if (&*CurInstIterator == And) 6296 CurInstIterator = std::next(And->getIterator()); 6297 And->eraseFromParent(); 6298 ++NumAndUses; 6299 } 6300 6301 ++NumAndsAdded; 6302 return true; 6303 } 6304 6305 /// Check if V (an operand of a select instruction) is an expensive instruction 6306 /// that is only used once. 6307 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6308 auto *I = dyn_cast<Instruction>(V); 6309 // If it's safe to speculatively execute, then it should not have side 6310 // effects; therefore, it's safe to sink and possibly *not* execute. 6311 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6312 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6313 TargetTransformInfo::TCC_Expensive; 6314 } 6315 6316 /// Returns true if a SelectInst should be turned into an explicit branch. 6317 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6318 const TargetLowering *TLI, 6319 SelectInst *SI) { 6320 // If even a predictable select is cheap, then a branch can't be cheaper. 6321 if (!TLI->isPredictableSelectExpensive()) 6322 return false; 6323 6324 // FIXME: This should use the same heuristics as IfConversion to determine 6325 // whether a select is better represented as a branch. 6326 6327 // If metadata tells us that the select condition is obviously predictable, 6328 // then we want to replace the select with a branch. 6329 uint64_t TrueWeight, FalseWeight; 6330 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6331 uint64_t Max = std::max(TrueWeight, FalseWeight); 6332 uint64_t Sum = TrueWeight + FalseWeight; 6333 if (Sum != 0) { 6334 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6335 if (Probability > TLI->getPredictableBranchThreshold()) 6336 return true; 6337 } 6338 } 6339 6340 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6341 6342 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6343 // comparison condition. If the compare has more than one use, there's 6344 // probably another cmov or setcc around, so it's not worth emitting a branch. 6345 if (!Cmp || !Cmp->hasOneUse()) 6346 return false; 6347 6348 // If either operand of the select is expensive and only needed on one side 6349 // of the select, we should form a branch. 6350 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6351 sinkSelectOperand(TTI, SI->getFalseValue())) 6352 return true; 6353 6354 return false; 6355 } 6356 6357 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6358 /// false value of \p SI. If the true/false value of \p SI is defined by any 6359 /// select instructions in \p Selects, look through the defining select 6360 /// instruction until the true/false value is not defined in \p Selects. 6361 static Value *getTrueOrFalseValue( 6362 SelectInst *SI, bool isTrue, 6363 const SmallPtrSet<const Instruction *, 2> &Selects) { 6364 Value *V = nullptr; 6365 6366 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6367 DefSI = dyn_cast<SelectInst>(V)) { 6368 assert(DefSI->getCondition() == SI->getCondition() && 6369 "The condition of DefSI does not match with SI"); 6370 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6371 } 6372 6373 assert(V && "Failed to get select true/false value"); 6374 return V; 6375 } 6376 6377 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6378 assert(Shift->isShift() && "Expected a shift"); 6379 6380 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6381 // general vector shifts, and (3) the shift amount is a select-of-splatted 6382 // values, hoist the shifts before the select: 6383 // shift Op0, (select Cond, TVal, FVal) --> 6384 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6385 // 6386 // This is inverting a generic IR transform when we know that the cost of a 6387 // general vector shift is more than the cost of 2 shift-by-scalars. 6388 // We can't do this effectively in SDAG because we may not be able to 6389 // determine if the select operands are splats from within a basic block. 6390 Type *Ty = Shift->getType(); 6391 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6392 return false; 6393 Value *Cond, *TVal, *FVal; 6394 if (!match(Shift->getOperand(1), 6395 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6396 return false; 6397 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6398 return false; 6399 6400 IRBuilder<> Builder(Shift); 6401 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6402 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6403 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6404 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6405 Shift->replaceAllUsesWith(NewSel); 6406 Shift->eraseFromParent(); 6407 return true; 6408 } 6409 6410 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6411 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6412 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6413 "Expected a funnel shift"); 6414 6415 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6416 // than general vector shifts, and (3) the shift amount is select-of-splatted 6417 // values, hoist the funnel shifts before the select: 6418 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6419 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6420 // 6421 // This is inverting a generic IR transform when we know that the cost of a 6422 // general vector shift is more than the cost of 2 shift-by-scalars. 6423 // We can't do this effectively in SDAG because we may not be able to 6424 // determine if the select operands are splats from within a basic block. 6425 Type *Ty = Fsh->getType(); 6426 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6427 return false; 6428 Value *Cond, *TVal, *FVal; 6429 if (!match(Fsh->getOperand(2), 6430 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6431 return false; 6432 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6433 return false; 6434 6435 IRBuilder<> Builder(Fsh); 6436 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6437 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6438 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6439 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6440 Fsh->replaceAllUsesWith(NewSel); 6441 Fsh->eraseFromParent(); 6442 return true; 6443 } 6444 6445 /// If we have a SelectInst that will likely profit from branch prediction, 6446 /// turn it into a branch. 6447 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6448 // If branch conversion isn't desirable, exit early. 6449 if (DisableSelectToBranch || OptSize || 6450 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6451 return false; 6452 6453 // Find all consecutive select instructions that share the same condition. 6454 SmallVector<SelectInst *, 2> ASI; 6455 ASI.push_back(SI); 6456 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6457 It != SI->getParent()->end(); ++It) { 6458 SelectInst *I = dyn_cast<SelectInst>(&*It); 6459 if (I && SI->getCondition() == I->getCondition()) { 6460 ASI.push_back(I); 6461 } else { 6462 break; 6463 } 6464 } 6465 6466 SelectInst *LastSI = ASI.back(); 6467 // Increment the current iterator to skip all the rest of select instructions 6468 // because they will be either "not lowered" or "all lowered" to branch. 6469 CurInstIterator = std::next(LastSI->getIterator()); 6470 6471 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6472 6473 // Can we convert the 'select' to CF ? 6474 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6475 return false; 6476 6477 TargetLowering::SelectSupportKind SelectKind; 6478 if (VectorCond) 6479 SelectKind = TargetLowering::VectorMaskSelect; 6480 else if (SI->getType()->isVectorTy()) 6481 SelectKind = TargetLowering::ScalarCondVectorVal; 6482 else 6483 SelectKind = TargetLowering::ScalarValSelect; 6484 6485 if (TLI->isSelectSupported(SelectKind) && 6486 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6487 return false; 6488 6489 // The DominatorTree needs to be rebuilt by any consumers after this 6490 // transformation. We simply reset here rather than setting the ModifiedDT 6491 // flag to avoid restarting the function walk in runOnFunction for each 6492 // select optimized. 6493 DT.reset(); 6494 6495 // Transform a sequence like this: 6496 // start: 6497 // %cmp = cmp uge i32 %a, %b 6498 // %sel = select i1 %cmp, i32 %c, i32 %d 6499 // 6500 // Into: 6501 // start: 6502 // %cmp = cmp uge i32 %a, %b 6503 // %cmp.frozen = freeze %cmp 6504 // br i1 %cmp.frozen, label %select.true, label %select.false 6505 // select.true: 6506 // br label %select.end 6507 // select.false: 6508 // br label %select.end 6509 // select.end: 6510 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6511 // 6512 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6513 // In addition, we may sink instructions that produce %c or %d from 6514 // the entry block into the destination(s) of the new branch. 6515 // If the true or false blocks do not contain a sunken instruction, that 6516 // block and its branch may be optimized away. In that case, one side of the 6517 // first branch will point directly to select.end, and the corresponding PHI 6518 // predecessor block will be the start block. 6519 6520 // First, we split the block containing the select into 2 blocks. 6521 BasicBlock *StartBlock = SI->getParent(); 6522 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6523 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6524 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6525 6526 // Delete the unconditional branch that was just created by the split. 6527 StartBlock->getTerminator()->eraseFromParent(); 6528 6529 // These are the new basic blocks for the conditional branch. 6530 // At least one will become an actual new basic block. 6531 BasicBlock *TrueBlock = nullptr; 6532 BasicBlock *FalseBlock = nullptr; 6533 BranchInst *TrueBranch = nullptr; 6534 BranchInst *FalseBranch = nullptr; 6535 6536 // Sink expensive instructions into the conditional blocks to avoid executing 6537 // them speculatively. 6538 for (SelectInst *SI : ASI) { 6539 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6540 if (TrueBlock == nullptr) { 6541 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6542 EndBlock->getParent(), EndBlock); 6543 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6544 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6545 } 6546 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6547 TrueInst->moveBefore(TrueBranch); 6548 } 6549 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6550 if (FalseBlock == nullptr) { 6551 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6552 EndBlock->getParent(), EndBlock); 6553 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6554 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6555 } 6556 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6557 FalseInst->moveBefore(FalseBranch); 6558 } 6559 } 6560 6561 // If there was nothing to sink, then arbitrarily choose the 'false' side 6562 // for a new input value to the PHI. 6563 if (TrueBlock == FalseBlock) { 6564 assert(TrueBlock == nullptr && 6565 "Unexpected basic block transform while optimizing select"); 6566 6567 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6568 EndBlock->getParent(), EndBlock); 6569 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6570 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6571 } 6572 6573 // Insert the real conditional branch based on the original condition. 6574 // If we did not create a new block for one of the 'true' or 'false' paths 6575 // of the condition, it means that side of the branch goes to the end block 6576 // directly and the path originates from the start block from the point of 6577 // view of the new PHI. 6578 BasicBlock *TT, *FT; 6579 if (TrueBlock == nullptr) { 6580 TT = EndBlock; 6581 FT = FalseBlock; 6582 TrueBlock = StartBlock; 6583 } else if (FalseBlock == nullptr) { 6584 TT = TrueBlock; 6585 FT = EndBlock; 6586 FalseBlock = StartBlock; 6587 } else { 6588 TT = TrueBlock; 6589 FT = FalseBlock; 6590 } 6591 IRBuilder<> IB(SI); 6592 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6593 IB.CreateCondBr(CondFr, TT, FT, SI); 6594 6595 SmallPtrSet<const Instruction *, 2> INS; 6596 INS.insert(ASI.begin(), ASI.end()); 6597 // Use reverse iterator because later select may use the value of the 6598 // earlier select, and we need to propagate value through earlier select 6599 // to get the PHI operand. 6600 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6601 SelectInst *SI = *It; 6602 // The select itself is replaced with a PHI Node. 6603 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6604 PN->takeName(SI); 6605 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6606 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6607 PN->setDebugLoc(SI->getDebugLoc()); 6608 6609 SI->replaceAllUsesWith(PN); 6610 SI->eraseFromParent(); 6611 INS.erase(SI); 6612 ++NumSelectsExpanded; 6613 } 6614 6615 // Instruct OptimizeBlock to skip to the next block. 6616 CurInstIterator = StartBlock->end(); 6617 return true; 6618 } 6619 6620 /// Some targets only accept certain types for splat inputs. For example a VDUP 6621 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6622 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6623 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6624 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6625 m_Undef(), m_ZeroMask()))) 6626 return false; 6627 Type *NewType = TLI->shouldConvertSplatType(SVI); 6628 if (!NewType) 6629 return false; 6630 6631 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6632 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6633 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6634 "Expected a type of the same size!"); 6635 auto *NewVecType = 6636 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6637 6638 // Create a bitcast (shuffle (insert (bitcast(..)))) 6639 IRBuilder<> Builder(SVI->getContext()); 6640 Builder.SetInsertPoint(SVI); 6641 Value *BC1 = Builder.CreateBitCast( 6642 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6643 Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1, 6644 (uint64_t)0); 6645 Value *Shuffle = Builder.CreateShuffleVector( 6646 Insert, UndefValue::get(NewVecType), SVI->getShuffleMask()); 6647 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6648 6649 SVI->replaceAllUsesWith(BC2); 6650 RecursivelyDeleteTriviallyDeadInstructions(SVI); 6651 6652 // Also hoist the bitcast up to its operand if it they are not in the same 6653 // block. 6654 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6655 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6656 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6657 !Op->isTerminator() && !Op->isEHPad()) 6658 BCI->moveAfter(Op); 6659 6660 return true; 6661 } 6662 6663 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6664 // If the operands of I can be folded into a target instruction together with 6665 // I, duplicate and sink them. 6666 SmallVector<Use *, 4> OpsToSink; 6667 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6668 return false; 6669 6670 // OpsToSink can contain multiple uses in a use chain (e.g. 6671 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6672 // uses must come first, so we process the ops in reverse order so as to not 6673 // create invalid IR. 6674 BasicBlock *TargetBB = I->getParent(); 6675 bool Changed = false; 6676 SmallVector<Use *, 4> ToReplace; 6677 for (Use *U : reverse(OpsToSink)) { 6678 auto *UI = cast<Instruction>(U->get()); 6679 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6680 continue; 6681 ToReplace.push_back(U); 6682 } 6683 6684 SetVector<Instruction *> MaybeDead; 6685 DenseMap<Instruction *, Instruction *> NewInstructions; 6686 Instruction *InsertPoint = I; 6687 for (Use *U : ToReplace) { 6688 auto *UI = cast<Instruction>(U->get()); 6689 Instruction *NI = UI->clone(); 6690 NewInstructions[UI] = NI; 6691 MaybeDead.insert(UI); 6692 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6693 NI->insertBefore(InsertPoint); 6694 InsertPoint = NI; 6695 InsertedInsts.insert(NI); 6696 6697 // Update the use for the new instruction, making sure that we update the 6698 // sunk instruction uses, if it is part of a chain that has already been 6699 // sunk. 6700 Instruction *OldI = cast<Instruction>(U->getUser()); 6701 if (NewInstructions.count(OldI)) 6702 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6703 else 6704 U->set(NI); 6705 Changed = true; 6706 } 6707 6708 // Remove instructions that are dead after sinking. 6709 for (auto *I : MaybeDead) { 6710 if (!I->hasNUsesOrMore(1)) { 6711 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6712 I->eraseFromParent(); 6713 } 6714 } 6715 6716 return Changed; 6717 } 6718 6719 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6720 Value *Cond = SI->getCondition(); 6721 Type *OldType = Cond->getType(); 6722 LLVMContext &Context = Cond->getContext(); 6723 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6724 unsigned RegWidth = RegType.getSizeInBits(); 6725 6726 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6727 return false; 6728 6729 // If the register width is greater than the type width, expand the condition 6730 // of the switch instruction and each case constant to the width of the 6731 // register. By widening the type of the switch condition, subsequent 6732 // comparisons (for case comparisons) will not need to be extended to the 6733 // preferred register width, so we will potentially eliminate N-1 extends, 6734 // where N is the number of cases in the switch. 6735 auto *NewType = Type::getIntNTy(Context, RegWidth); 6736 6737 // Zero-extend the switch condition and case constants unless the switch 6738 // condition is a function argument that is already being sign-extended. 6739 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6740 // everything instead. 6741 Instruction::CastOps ExtType = Instruction::ZExt; 6742 if (auto *Arg = dyn_cast<Argument>(Cond)) 6743 if (Arg->hasSExtAttr()) 6744 ExtType = Instruction::SExt; 6745 6746 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6747 ExtInst->insertBefore(SI); 6748 ExtInst->setDebugLoc(SI->getDebugLoc()); 6749 SI->setCondition(ExtInst); 6750 for (auto Case : SI->cases()) { 6751 APInt NarrowConst = Case.getCaseValue()->getValue(); 6752 APInt WideConst = (ExtType == Instruction::ZExt) ? 6753 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6754 Case.setValue(ConstantInt::get(Context, WideConst)); 6755 } 6756 6757 return true; 6758 } 6759 6760 6761 namespace { 6762 6763 /// Helper class to promote a scalar operation to a vector one. 6764 /// This class is used to move downward extractelement transition. 6765 /// E.g., 6766 /// a = vector_op <2 x i32> 6767 /// b = extractelement <2 x i32> a, i32 0 6768 /// c = scalar_op b 6769 /// store c 6770 /// 6771 /// => 6772 /// a = vector_op <2 x i32> 6773 /// c = vector_op a (equivalent to scalar_op on the related lane) 6774 /// * d = extractelement <2 x i32> c, i32 0 6775 /// * store d 6776 /// Assuming both extractelement and store can be combine, we get rid of the 6777 /// transition. 6778 class VectorPromoteHelper { 6779 /// DataLayout associated with the current module. 6780 const DataLayout &DL; 6781 6782 /// Used to perform some checks on the legality of vector operations. 6783 const TargetLowering &TLI; 6784 6785 /// Used to estimated the cost of the promoted chain. 6786 const TargetTransformInfo &TTI; 6787 6788 /// The transition being moved downwards. 6789 Instruction *Transition; 6790 6791 /// The sequence of instructions to be promoted. 6792 SmallVector<Instruction *, 4> InstsToBePromoted; 6793 6794 /// Cost of combining a store and an extract. 6795 unsigned StoreExtractCombineCost; 6796 6797 /// Instruction that will be combined with the transition. 6798 Instruction *CombineInst = nullptr; 6799 6800 /// The instruction that represents the current end of the transition. 6801 /// Since we are faking the promotion until we reach the end of the chain 6802 /// of computation, we need a way to get the current end of the transition. 6803 Instruction *getEndOfTransition() const { 6804 if (InstsToBePromoted.empty()) 6805 return Transition; 6806 return InstsToBePromoted.back(); 6807 } 6808 6809 /// Return the index of the original value in the transition. 6810 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6811 /// c, is at index 0. 6812 unsigned getTransitionOriginalValueIdx() const { 6813 assert(isa<ExtractElementInst>(Transition) && 6814 "Other kind of transitions are not supported yet"); 6815 return 0; 6816 } 6817 6818 /// Return the index of the index in the transition. 6819 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6820 /// is at index 1. 6821 unsigned getTransitionIdx() const { 6822 assert(isa<ExtractElementInst>(Transition) && 6823 "Other kind of transitions are not supported yet"); 6824 return 1; 6825 } 6826 6827 /// Get the type of the transition. 6828 /// This is the type of the original value. 6829 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6830 /// transition is <2 x i32>. 6831 Type *getTransitionType() const { 6832 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6833 } 6834 6835 /// Promote \p ToBePromoted by moving \p Def downward through. 6836 /// I.e., we have the following sequence: 6837 /// Def = Transition <ty1> a to <ty2> 6838 /// b = ToBePromoted <ty2> Def, ... 6839 /// => 6840 /// b = ToBePromoted <ty1> a, ... 6841 /// Def = Transition <ty1> ToBePromoted to <ty2> 6842 void promoteImpl(Instruction *ToBePromoted); 6843 6844 /// Check whether or not it is profitable to promote all the 6845 /// instructions enqueued to be promoted. 6846 bool isProfitableToPromote() { 6847 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6848 unsigned Index = isa<ConstantInt>(ValIdx) 6849 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6850 : -1; 6851 Type *PromotedType = getTransitionType(); 6852 6853 StoreInst *ST = cast<StoreInst>(CombineInst); 6854 unsigned AS = ST->getPointerAddressSpace(); 6855 unsigned Align = ST->getAlignment(); 6856 // Check if this store is supported. 6857 if (!TLI.allowsMisalignedMemoryAccesses( 6858 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6859 Align)) { 6860 // If this is not supported, there is no way we can combine 6861 // the extract with the store. 6862 return false; 6863 } 6864 6865 // The scalar chain of computation has to pay for the transition 6866 // scalar to vector. 6867 // The vector chain has to account for the combining cost. 6868 uint64_t ScalarCost = 6869 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6870 uint64_t VectorCost = StoreExtractCombineCost; 6871 enum TargetTransformInfo::TargetCostKind CostKind = 6872 TargetTransformInfo::TCK_RecipThroughput; 6873 for (const auto &Inst : InstsToBePromoted) { 6874 // Compute the cost. 6875 // By construction, all instructions being promoted are arithmetic ones. 6876 // Moreover, one argument is a constant that can be viewed as a splat 6877 // constant. 6878 Value *Arg0 = Inst->getOperand(0); 6879 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6880 isa<ConstantFP>(Arg0); 6881 TargetTransformInfo::OperandValueKind Arg0OVK = 6882 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6883 : TargetTransformInfo::OK_AnyValue; 6884 TargetTransformInfo::OperandValueKind Arg1OVK = 6885 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6886 : TargetTransformInfo::OK_AnyValue; 6887 ScalarCost += TTI.getArithmeticInstrCost( 6888 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6889 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6890 CostKind, 6891 Arg0OVK, Arg1OVK); 6892 } 6893 LLVM_DEBUG( 6894 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6895 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6896 return ScalarCost > VectorCost; 6897 } 6898 6899 /// Generate a constant vector with \p Val with the same 6900 /// number of elements as the transition. 6901 /// \p UseSplat defines whether or not \p Val should be replicated 6902 /// across the whole vector. 6903 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6904 /// otherwise we generate a vector with as many undef as possible: 6905 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6906 /// used at the index of the extract. 6907 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6908 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6909 if (!UseSplat) { 6910 // If we cannot determine where the constant must be, we have to 6911 // use a splat constant. 6912 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6913 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6914 ExtractIdx = CstVal->getSExtValue(); 6915 else 6916 UseSplat = true; 6917 } 6918 6919 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6920 if (UseSplat) 6921 return ConstantVector::getSplat(EC, Val); 6922 6923 if (!EC.Scalable) { 6924 SmallVector<Constant *, 4> ConstVec; 6925 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6926 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6927 if (Idx == ExtractIdx) 6928 ConstVec.push_back(Val); 6929 else 6930 ConstVec.push_back(UndefVal); 6931 } 6932 return ConstantVector::get(ConstVec); 6933 } else 6934 llvm_unreachable( 6935 "Generate scalable vector for non-splat is unimplemented"); 6936 } 6937 6938 /// Check if promoting to a vector type an operand at \p OperandIdx 6939 /// in \p Use can trigger undefined behavior. 6940 static bool canCauseUndefinedBehavior(const Instruction *Use, 6941 unsigned OperandIdx) { 6942 // This is not safe to introduce undef when the operand is on 6943 // the right hand side of a division-like instruction. 6944 if (OperandIdx != 1) 6945 return false; 6946 switch (Use->getOpcode()) { 6947 default: 6948 return false; 6949 case Instruction::SDiv: 6950 case Instruction::UDiv: 6951 case Instruction::SRem: 6952 case Instruction::URem: 6953 return true; 6954 case Instruction::FDiv: 6955 case Instruction::FRem: 6956 return !Use->hasNoNaNs(); 6957 } 6958 llvm_unreachable(nullptr); 6959 } 6960 6961 public: 6962 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6963 const TargetTransformInfo &TTI, Instruction *Transition, 6964 unsigned CombineCost) 6965 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6966 StoreExtractCombineCost(CombineCost) { 6967 assert(Transition && "Do not know how to promote null"); 6968 } 6969 6970 /// Check if we can promote \p ToBePromoted to \p Type. 6971 bool canPromote(const Instruction *ToBePromoted) const { 6972 // We could support CastInst too. 6973 return isa<BinaryOperator>(ToBePromoted); 6974 } 6975 6976 /// Check if it is profitable to promote \p ToBePromoted 6977 /// by moving downward the transition through. 6978 bool shouldPromote(const Instruction *ToBePromoted) const { 6979 // Promote only if all the operands can be statically expanded. 6980 // Indeed, we do not want to introduce any new kind of transitions. 6981 for (const Use &U : ToBePromoted->operands()) { 6982 const Value *Val = U.get(); 6983 if (Val == getEndOfTransition()) { 6984 // If the use is a division and the transition is on the rhs, 6985 // we cannot promote the operation, otherwise we may create a 6986 // division by zero. 6987 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6988 return false; 6989 continue; 6990 } 6991 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6992 !isa<ConstantFP>(Val)) 6993 return false; 6994 } 6995 // Check that the resulting operation is legal. 6996 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6997 if (!ISDOpcode) 6998 return false; 6999 return StressStoreExtract || 7000 TLI.isOperationLegalOrCustom( 7001 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7002 } 7003 7004 /// Check whether or not \p Use can be combined 7005 /// with the transition. 7006 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7007 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7008 7009 /// Record \p ToBePromoted as part of the chain to be promoted. 7010 void enqueueForPromotion(Instruction *ToBePromoted) { 7011 InstsToBePromoted.push_back(ToBePromoted); 7012 } 7013 7014 /// Set the instruction that will be combined with the transition. 7015 void recordCombineInstruction(Instruction *ToBeCombined) { 7016 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7017 CombineInst = ToBeCombined; 7018 } 7019 7020 /// Promote all the instructions enqueued for promotion if it is 7021 /// is profitable. 7022 /// \return True if the promotion happened, false otherwise. 7023 bool promote() { 7024 // Check if there is something to promote. 7025 // Right now, if we do not have anything to combine with, 7026 // we assume the promotion is not profitable. 7027 if (InstsToBePromoted.empty() || !CombineInst) 7028 return false; 7029 7030 // Check cost. 7031 if (!StressStoreExtract && !isProfitableToPromote()) 7032 return false; 7033 7034 // Promote. 7035 for (auto &ToBePromoted : InstsToBePromoted) 7036 promoteImpl(ToBePromoted); 7037 InstsToBePromoted.clear(); 7038 return true; 7039 } 7040 }; 7041 7042 } // end anonymous namespace 7043 7044 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7045 // At this point, we know that all the operands of ToBePromoted but Def 7046 // can be statically promoted. 7047 // For Def, we need to use its parameter in ToBePromoted: 7048 // b = ToBePromoted ty1 a 7049 // Def = Transition ty1 b to ty2 7050 // Move the transition down. 7051 // 1. Replace all uses of the promoted operation by the transition. 7052 // = ... b => = ... Def. 7053 assert(ToBePromoted->getType() == Transition->getType() && 7054 "The type of the result of the transition does not match " 7055 "the final type"); 7056 ToBePromoted->replaceAllUsesWith(Transition); 7057 // 2. Update the type of the uses. 7058 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7059 Type *TransitionTy = getTransitionType(); 7060 ToBePromoted->mutateType(TransitionTy); 7061 // 3. Update all the operands of the promoted operation with promoted 7062 // operands. 7063 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7064 for (Use &U : ToBePromoted->operands()) { 7065 Value *Val = U.get(); 7066 Value *NewVal = nullptr; 7067 if (Val == Transition) 7068 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7069 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7070 isa<ConstantFP>(Val)) { 7071 // Use a splat constant if it is not safe to use undef. 7072 NewVal = getConstantVector( 7073 cast<Constant>(Val), 7074 isa<UndefValue>(Val) || 7075 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7076 } else 7077 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7078 "this?"); 7079 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7080 } 7081 Transition->moveAfter(ToBePromoted); 7082 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7083 } 7084 7085 /// Some targets can do store(extractelement) with one instruction. 7086 /// Try to push the extractelement towards the stores when the target 7087 /// has this feature and this is profitable. 7088 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7089 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7090 if (DisableStoreExtract || 7091 (!StressStoreExtract && 7092 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7093 Inst->getOperand(1), CombineCost))) 7094 return false; 7095 7096 // At this point we know that Inst is a vector to scalar transition. 7097 // Try to move it down the def-use chain, until: 7098 // - We can combine the transition with its single use 7099 // => we got rid of the transition. 7100 // - We escape the current basic block 7101 // => we would need to check that we are moving it at a cheaper place and 7102 // we do not do that for now. 7103 BasicBlock *Parent = Inst->getParent(); 7104 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7105 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7106 // If the transition has more than one use, assume this is not going to be 7107 // beneficial. 7108 while (Inst->hasOneUse()) { 7109 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7110 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7111 7112 if (ToBePromoted->getParent() != Parent) { 7113 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7114 << ToBePromoted->getParent()->getName() 7115 << ") than the transition (" << Parent->getName() 7116 << ").\n"); 7117 return false; 7118 } 7119 7120 if (VPH.canCombine(ToBePromoted)) { 7121 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7122 << "will be combined with: " << *ToBePromoted << '\n'); 7123 VPH.recordCombineInstruction(ToBePromoted); 7124 bool Changed = VPH.promote(); 7125 NumStoreExtractExposed += Changed; 7126 return Changed; 7127 } 7128 7129 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7130 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7131 return false; 7132 7133 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7134 7135 VPH.enqueueForPromotion(ToBePromoted); 7136 Inst = ToBePromoted; 7137 } 7138 return false; 7139 } 7140 7141 /// For the instruction sequence of store below, F and I values 7142 /// are bundled together as an i64 value before being stored into memory. 7143 /// Sometimes it is more efficient to generate separate stores for F and I, 7144 /// which can remove the bitwise instructions or sink them to colder places. 7145 /// 7146 /// (store (or (zext (bitcast F to i32) to i64), 7147 /// (shl (zext I to i64), 32)), addr) --> 7148 /// (store F, addr) and (store I, addr+4) 7149 /// 7150 /// Similarly, splitting for other merged store can also be beneficial, like: 7151 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7152 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7153 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7154 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7155 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7156 /// 7157 /// We allow each target to determine specifically which kind of splitting is 7158 /// supported. 7159 /// 7160 /// The store patterns are commonly seen from the simple code snippet below 7161 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7162 /// void goo(const std::pair<int, float> &); 7163 /// hoo() { 7164 /// ... 7165 /// goo(std::make_pair(tmp, ftmp)); 7166 /// ... 7167 /// } 7168 /// 7169 /// Although we already have similar splitting in DAG Combine, we duplicate 7170 /// it in CodeGenPrepare to catch the case in which pattern is across 7171 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7172 /// during code expansion. 7173 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7174 const TargetLowering &TLI) { 7175 // Handle simple but common cases only. 7176 Type *StoreType = SI.getValueOperand()->getType(); 7177 7178 // The code below assumes shifting a value by <number of bits>, 7179 // whereas scalable vectors would have to be shifted by 7180 // <2log(vscale) + number of bits> in order to store the 7181 // low/high parts. Bailing out for now. 7182 if (isa<ScalableVectorType>(StoreType)) 7183 return false; 7184 7185 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7186 DL.getTypeSizeInBits(StoreType) == 0) 7187 return false; 7188 7189 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7190 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7191 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7192 return false; 7193 7194 // Don't split the store if it is volatile. 7195 if (SI.isVolatile()) 7196 return false; 7197 7198 // Match the following patterns: 7199 // (store (or (zext LValue to i64), 7200 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7201 // or 7202 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7203 // (zext LValue to i64), 7204 // Expect both operands of OR and the first operand of SHL have only 7205 // one use. 7206 Value *LValue, *HValue; 7207 if (!match(SI.getValueOperand(), 7208 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7209 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7210 m_SpecificInt(HalfValBitSize)))))) 7211 return false; 7212 7213 // Check LValue and HValue are int with size less or equal than 32. 7214 if (!LValue->getType()->isIntegerTy() || 7215 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7216 !HValue->getType()->isIntegerTy() || 7217 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7218 return false; 7219 7220 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7221 // as the input of target query. 7222 auto *LBC = dyn_cast<BitCastInst>(LValue); 7223 auto *HBC = dyn_cast<BitCastInst>(HValue); 7224 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7225 : EVT::getEVT(LValue->getType()); 7226 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7227 : EVT::getEVT(HValue->getType()); 7228 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7229 return false; 7230 7231 // Start to split store. 7232 IRBuilder<> Builder(SI.getContext()); 7233 Builder.SetInsertPoint(&SI); 7234 7235 // If LValue/HValue is a bitcast in another BB, create a new one in current 7236 // BB so it may be merged with the splitted stores by dag combiner. 7237 if (LBC && LBC->getParent() != SI.getParent()) 7238 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7239 if (HBC && HBC->getParent() != SI.getParent()) 7240 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7241 7242 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7243 auto CreateSplitStore = [&](Value *V, bool Upper) { 7244 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7245 Value *Addr = Builder.CreateBitCast( 7246 SI.getOperand(1), 7247 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7248 Align Alignment = SI.getAlign(); 7249 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7250 if (IsOffsetStore) { 7251 Addr = Builder.CreateGEP( 7252 SplitStoreType, Addr, 7253 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7254 7255 // When splitting the store in half, naturally one half will retain the 7256 // alignment of the original wider store, regardless of whether it was 7257 // over-aligned or not, while the other will require adjustment. 7258 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7259 } 7260 Builder.CreateAlignedStore(V, Addr, Alignment); 7261 }; 7262 7263 CreateSplitStore(LValue, false); 7264 CreateSplitStore(HValue, true); 7265 7266 // Delete the old store. 7267 SI.eraseFromParent(); 7268 return true; 7269 } 7270 7271 // Return true if the GEP has two operands, the first operand is of a sequential 7272 // type, and the second operand is a constant. 7273 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7274 gep_type_iterator I = gep_type_begin(*GEP); 7275 return GEP->getNumOperands() == 2 && 7276 I.isSequential() && 7277 isa<ConstantInt>(GEP->getOperand(1)); 7278 } 7279 7280 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7281 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7282 // reducing liveness interference across those edges benefits global register 7283 // allocation. Currently handles only certain cases. 7284 // 7285 // For example, unmerge %GEPI and %UGEPI as below. 7286 // 7287 // ---------- BEFORE ---------- 7288 // SrcBlock: 7289 // ... 7290 // %GEPIOp = ... 7291 // ... 7292 // %GEPI = gep %GEPIOp, Idx 7293 // ... 7294 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7295 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7296 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7297 // %UGEPI) 7298 // 7299 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7300 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7301 // ... 7302 // 7303 // DstBi: 7304 // ... 7305 // %UGEPI = gep %GEPIOp, UIdx 7306 // ... 7307 // --------------------------- 7308 // 7309 // ---------- AFTER ---------- 7310 // SrcBlock: 7311 // ... (same as above) 7312 // (* %GEPI is still alive on the indirectbr edges) 7313 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7314 // unmerging) 7315 // ... 7316 // 7317 // DstBi: 7318 // ... 7319 // %UGEPI = gep %GEPI, (UIdx-Idx) 7320 // ... 7321 // --------------------------- 7322 // 7323 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7324 // no longer alive on them. 7325 // 7326 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7327 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7328 // not to disable further simplications and optimizations as a result of GEP 7329 // merging. 7330 // 7331 // Note this unmerging may increase the length of the data flow critical path 7332 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7333 // between the register pressure and the length of data-flow critical 7334 // path. Restricting this to the uncommon IndirectBr case would minimize the 7335 // impact of potentially longer critical path, if any, and the impact on compile 7336 // time. 7337 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7338 const TargetTransformInfo *TTI) { 7339 BasicBlock *SrcBlock = GEPI->getParent(); 7340 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7341 // (non-IndirectBr) cases exit early here. 7342 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7343 return false; 7344 // Check that GEPI is a simple gep with a single constant index. 7345 if (!GEPSequentialConstIndexed(GEPI)) 7346 return false; 7347 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7348 // Check that GEPI is a cheap one. 7349 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7350 TargetTransformInfo::TCK_SizeAndLatency) 7351 > TargetTransformInfo::TCC_Basic) 7352 return false; 7353 Value *GEPIOp = GEPI->getOperand(0); 7354 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7355 if (!isa<Instruction>(GEPIOp)) 7356 return false; 7357 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7358 if (GEPIOpI->getParent() != SrcBlock) 7359 return false; 7360 // Check that GEP is used outside the block, meaning it's alive on the 7361 // IndirectBr edge(s). 7362 if (find_if(GEPI->users(), [&](User *Usr) { 7363 if (auto *I = dyn_cast<Instruction>(Usr)) { 7364 if (I->getParent() != SrcBlock) { 7365 return true; 7366 } 7367 } 7368 return false; 7369 }) == GEPI->users().end()) 7370 return false; 7371 // The second elements of the GEP chains to be unmerged. 7372 std::vector<GetElementPtrInst *> UGEPIs; 7373 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7374 // on IndirectBr edges. 7375 for (User *Usr : GEPIOp->users()) { 7376 if (Usr == GEPI) continue; 7377 // Check if Usr is an Instruction. If not, give up. 7378 if (!isa<Instruction>(Usr)) 7379 return false; 7380 auto *UI = cast<Instruction>(Usr); 7381 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7382 if (UI->getParent() == SrcBlock) 7383 continue; 7384 // Check if Usr is a GEP. If not, give up. 7385 if (!isa<GetElementPtrInst>(Usr)) 7386 return false; 7387 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7388 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7389 // the pointer operand to it. If so, record it in the vector. If not, give 7390 // up. 7391 if (!GEPSequentialConstIndexed(UGEPI)) 7392 return false; 7393 if (UGEPI->getOperand(0) != GEPIOp) 7394 return false; 7395 if (GEPIIdx->getType() != 7396 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7397 return false; 7398 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7399 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7400 TargetTransformInfo::TCK_SizeAndLatency) 7401 > TargetTransformInfo::TCC_Basic) 7402 return false; 7403 UGEPIs.push_back(UGEPI); 7404 } 7405 if (UGEPIs.size() == 0) 7406 return false; 7407 // Check the materializing cost of (Uidx-Idx). 7408 for (GetElementPtrInst *UGEPI : UGEPIs) { 7409 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7410 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7411 unsigned ImmCost = 7412 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7413 TargetTransformInfo::TCK_SizeAndLatency); 7414 if (ImmCost > TargetTransformInfo::TCC_Basic) 7415 return false; 7416 } 7417 // Now unmerge between GEPI and UGEPIs. 7418 for (GetElementPtrInst *UGEPI : UGEPIs) { 7419 UGEPI->setOperand(0, GEPI); 7420 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7421 Constant *NewUGEPIIdx = 7422 ConstantInt::get(GEPIIdx->getType(), 7423 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7424 UGEPI->setOperand(1, NewUGEPIIdx); 7425 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7426 // inbounds to avoid UB. 7427 if (!GEPI->isInBounds()) { 7428 UGEPI->setIsInBounds(false); 7429 } 7430 } 7431 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7432 // alive on IndirectBr edges). 7433 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7434 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7435 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7436 return true; 7437 } 7438 7439 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7440 // Bail out if we inserted the instruction to prevent optimizations from 7441 // stepping on each other's toes. 7442 if (InsertedInsts.count(I)) 7443 return false; 7444 7445 // TODO: Move into the switch on opcode below here. 7446 if (PHINode *P = dyn_cast<PHINode>(I)) { 7447 // It is possible for very late stage optimizations (such as SimplifyCFG) 7448 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7449 // trivial PHI, go ahead and zap it here. 7450 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7451 LargeOffsetGEPMap.erase(P); 7452 P->replaceAllUsesWith(V); 7453 P->eraseFromParent(); 7454 ++NumPHIsElim; 7455 return true; 7456 } 7457 return false; 7458 } 7459 7460 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7461 // If the source of the cast is a constant, then this should have 7462 // already been constant folded. The only reason NOT to constant fold 7463 // it is if something (e.g. LSR) was careful to place the constant 7464 // evaluation in a block other than then one that uses it (e.g. to hoist 7465 // the address of globals out of a loop). If this is the case, we don't 7466 // want to forward-subst the cast. 7467 if (isa<Constant>(CI->getOperand(0))) 7468 return false; 7469 7470 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7471 return true; 7472 7473 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7474 /// Sink a zext or sext into its user blocks if the target type doesn't 7475 /// fit in one register 7476 if (TLI->getTypeAction(CI->getContext(), 7477 TLI->getValueType(*DL, CI->getType())) == 7478 TargetLowering::TypeExpandInteger) { 7479 return SinkCast(CI); 7480 } else { 7481 bool MadeChange = optimizeExt(I); 7482 return MadeChange | optimizeExtUses(I); 7483 } 7484 } 7485 return false; 7486 } 7487 7488 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7489 if (optimizeCmp(Cmp, ModifiedDT)) 7490 return true; 7491 7492 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7493 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7494 bool Modified = optimizeLoadExt(LI); 7495 unsigned AS = LI->getPointerAddressSpace(); 7496 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7497 return Modified; 7498 } 7499 7500 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7501 if (splitMergedValStore(*SI, *DL, *TLI)) 7502 return true; 7503 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7504 unsigned AS = SI->getPointerAddressSpace(); 7505 return optimizeMemoryInst(I, SI->getOperand(1), 7506 SI->getOperand(0)->getType(), AS); 7507 } 7508 7509 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7510 unsigned AS = RMW->getPointerAddressSpace(); 7511 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7512 RMW->getType(), AS); 7513 } 7514 7515 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7516 unsigned AS = CmpX->getPointerAddressSpace(); 7517 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7518 CmpX->getCompareOperand()->getType(), AS); 7519 } 7520 7521 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7522 7523 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7524 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7525 7526 // TODO: Move this into the switch on opcode - it handles shifts already. 7527 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7528 BinOp->getOpcode() == Instruction::LShr)) { 7529 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7530 if (CI && TLI->hasExtractBitsInsn()) 7531 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7532 return true; 7533 } 7534 7535 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7536 if (GEPI->hasAllZeroIndices()) { 7537 /// The GEP operand must be a pointer, so must its result -> BitCast 7538 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7539 GEPI->getName(), GEPI); 7540 NC->setDebugLoc(GEPI->getDebugLoc()); 7541 GEPI->replaceAllUsesWith(NC); 7542 GEPI->eraseFromParent(); 7543 ++NumGEPsElim; 7544 optimizeInst(NC, ModifiedDT); 7545 return true; 7546 } 7547 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7548 return true; 7549 } 7550 return false; 7551 } 7552 7553 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7554 // freeze(icmp a, const)) -> icmp (freeze a), const 7555 // This helps generate efficient conditional jumps. 7556 Instruction *CmpI = nullptr; 7557 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7558 CmpI = II; 7559 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7560 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7561 7562 if (CmpI && CmpI->hasOneUse()) { 7563 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7564 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7565 isa<ConstantPointerNull>(Op0); 7566 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7567 isa<ConstantPointerNull>(Op1); 7568 if (Const0 || Const1) { 7569 if (!Const0 || !Const1) { 7570 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7571 F->takeName(FI); 7572 CmpI->setOperand(Const0 ? 1 : 0, F); 7573 } 7574 FI->replaceAllUsesWith(CmpI); 7575 FI->eraseFromParent(); 7576 return true; 7577 } 7578 } 7579 return false; 7580 } 7581 7582 if (tryToSinkFreeOperands(I)) 7583 return true; 7584 7585 switch (I->getOpcode()) { 7586 case Instruction::Shl: 7587 case Instruction::LShr: 7588 case Instruction::AShr: 7589 return optimizeShiftInst(cast<BinaryOperator>(I)); 7590 case Instruction::Call: 7591 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7592 case Instruction::Select: 7593 return optimizeSelectInst(cast<SelectInst>(I)); 7594 case Instruction::ShuffleVector: 7595 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7596 case Instruction::Switch: 7597 return optimizeSwitchInst(cast<SwitchInst>(I)); 7598 case Instruction::ExtractElement: 7599 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7600 } 7601 7602 return false; 7603 } 7604 7605 /// Given an OR instruction, check to see if this is a bitreverse 7606 /// idiom. If so, insert the new intrinsic and return true. 7607 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7608 const TargetLowering &TLI) { 7609 if (!I.getType()->isIntegerTy() || 7610 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7611 TLI.getValueType(DL, I.getType(), true))) 7612 return false; 7613 7614 SmallVector<Instruction*, 4> Insts; 7615 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7616 return false; 7617 Instruction *LastInst = Insts.back(); 7618 I.replaceAllUsesWith(LastInst); 7619 RecursivelyDeleteTriviallyDeadInstructions(&I); 7620 return true; 7621 } 7622 7623 // In this pass we look for GEP and cast instructions that are used 7624 // across basic blocks and rewrite them to improve basic-block-at-a-time 7625 // selection. 7626 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7627 SunkAddrs.clear(); 7628 bool MadeChange = false; 7629 7630 CurInstIterator = BB.begin(); 7631 while (CurInstIterator != BB.end()) { 7632 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7633 if (ModifiedDT) 7634 return true; 7635 } 7636 7637 bool MadeBitReverse = true; 7638 while (MadeBitReverse) { 7639 MadeBitReverse = false; 7640 for (auto &I : reverse(BB)) { 7641 if (makeBitReverse(I, *DL, *TLI)) { 7642 MadeBitReverse = MadeChange = true; 7643 break; 7644 } 7645 } 7646 } 7647 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7648 7649 return MadeChange; 7650 } 7651 7652 // Some CGP optimizations may move or alter what's computed in a block. Check 7653 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7654 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7655 assert(isa<DbgValueInst>(I)); 7656 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7657 7658 // Does this dbg.value refer to a sunk address calculation? 7659 Value *Location = DVI.getVariableLocation(); 7660 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7661 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7662 if (SunkAddr) { 7663 // Point dbg.value at locally computed address, which should give the best 7664 // opportunity to be accurately lowered. This update may change the type of 7665 // pointer being referred to; however this makes no difference to debugging 7666 // information, and we can't generate bitcasts that may affect codegen. 7667 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7668 ValueAsMetadata::get(SunkAddr))); 7669 return true; 7670 } 7671 return false; 7672 } 7673 7674 // A llvm.dbg.value may be using a value before its definition, due to 7675 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7676 // them by moving the dbg.value to immediately after the value definition. 7677 // FIXME: Ideally this should never be necessary, and this has the potential 7678 // to re-order dbg.value intrinsics. 7679 bool CodeGenPrepare::placeDbgValues(Function &F) { 7680 bool MadeChange = false; 7681 DominatorTree DT(F); 7682 7683 for (BasicBlock &BB : F) { 7684 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7685 Instruction *Insn = &*BI++; 7686 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7687 if (!DVI) 7688 continue; 7689 7690 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7691 7692 if (!VI || VI->isTerminator()) 7693 continue; 7694 7695 // If VI is a phi in a block with an EHPad terminator, we can't insert 7696 // after it. 7697 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7698 continue; 7699 7700 // If the defining instruction dominates the dbg.value, we do not need 7701 // to move the dbg.value. 7702 if (DT.dominates(VI, DVI)) 7703 continue; 7704 7705 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7706 << *DVI << ' ' << *VI); 7707 DVI->removeFromParent(); 7708 if (isa<PHINode>(VI)) 7709 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7710 else 7711 DVI->insertAfter(VI); 7712 MadeChange = true; 7713 ++NumDbgValueMoved; 7714 } 7715 } 7716 return MadeChange; 7717 } 7718 7719 /// Scale down both weights to fit into uint32_t. 7720 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7721 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7722 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7723 NewTrue = NewTrue / Scale; 7724 NewFalse = NewFalse / Scale; 7725 } 7726 7727 /// Some targets prefer to split a conditional branch like: 7728 /// \code 7729 /// %0 = icmp ne i32 %a, 0 7730 /// %1 = icmp ne i32 %b, 0 7731 /// %or.cond = or i1 %0, %1 7732 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7733 /// \endcode 7734 /// into multiple branch instructions like: 7735 /// \code 7736 /// bb1: 7737 /// %0 = icmp ne i32 %a, 0 7738 /// br i1 %0, label %TrueBB, label %bb2 7739 /// bb2: 7740 /// %1 = icmp ne i32 %b, 0 7741 /// br i1 %1, label %TrueBB, label %FalseBB 7742 /// \endcode 7743 /// This usually allows instruction selection to do even further optimizations 7744 /// and combine the compare with the branch instruction. Currently this is 7745 /// applied for targets which have "cheap" jump instructions. 7746 /// 7747 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7748 /// 7749 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7750 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7751 return false; 7752 7753 bool MadeChange = false; 7754 for (auto &BB : F) { 7755 // Does this BB end with the following? 7756 // %cond1 = icmp|fcmp|binary instruction ... 7757 // %cond2 = icmp|fcmp|binary instruction ... 7758 // %cond.or = or|and i1 %cond1, cond2 7759 // br i1 %cond.or label %dest1, label %dest2" 7760 BinaryOperator *LogicOp; 7761 BasicBlock *TBB, *FBB; 7762 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7763 continue; 7764 7765 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7766 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7767 continue; 7768 7769 // The merging of mostly empty BB can cause a degenerate branch. 7770 if (TBB == FBB) 7771 continue; 7772 7773 unsigned Opc; 7774 Value *Cond1, *Cond2; 7775 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7776 m_OneUse(m_Value(Cond2))))) 7777 Opc = Instruction::And; 7778 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7779 m_OneUse(m_Value(Cond2))))) 7780 Opc = Instruction::Or; 7781 else 7782 continue; 7783 7784 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7785 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7786 continue; 7787 7788 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7789 7790 // Create a new BB. 7791 auto *TmpBB = 7792 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7793 BB.getParent(), BB.getNextNode()); 7794 7795 // Update original basic block by using the first condition directly by the 7796 // branch instruction and removing the no longer needed and/or instruction. 7797 Br1->setCondition(Cond1); 7798 LogicOp->eraseFromParent(); 7799 7800 // Depending on the condition we have to either replace the true or the 7801 // false successor of the original branch instruction. 7802 if (Opc == Instruction::And) 7803 Br1->setSuccessor(0, TmpBB); 7804 else 7805 Br1->setSuccessor(1, TmpBB); 7806 7807 // Fill in the new basic block. 7808 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7809 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7810 I->removeFromParent(); 7811 I->insertBefore(Br2); 7812 } 7813 7814 // Update PHI nodes in both successors. The original BB needs to be 7815 // replaced in one successor's PHI nodes, because the branch comes now from 7816 // the newly generated BB (NewBB). In the other successor we need to add one 7817 // incoming edge to the PHI nodes, because both branch instructions target 7818 // now the same successor. Depending on the original branch condition 7819 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7820 // we perform the correct update for the PHI nodes. 7821 // This doesn't change the successor order of the just created branch 7822 // instruction (or any other instruction). 7823 if (Opc == Instruction::Or) 7824 std::swap(TBB, FBB); 7825 7826 // Replace the old BB with the new BB. 7827 TBB->replacePhiUsesWith(&BB, TmpBB); 7828 7829 // Add another incoming edge form the new BB. 7830 for (PHINode &PN : FBB->phis()) { 7831 auto *Val = PN.getIncomingValueForBlock(&BB); 7832 PN.addIncoming(Val, TmpBB); 7833 } 7834 7835 // Update the branch weights (from SelectionDAGBuilder:: 7836 // FindMergedConditions). 7837 if (Opc == Instruction::Or) { 7838 // Codegen X | Y as: 7839 // BB1: 7840 // jmp_if_X TBB 7841 // jmp TmpBB 7842 // TmpBB: 7843 // jmp_if_Y TBB 7844 // jmp FBB 7845 // 7846 7847 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7848 // The requirement is that 7849 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7850 // = TrueProb for original BB. 7851 // Assuming the original weights are A and B, one choice is to set BB1's 7852 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7853 // assumes that 7854 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7855 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7856 // TmpBB, but the math is more complicated. 7857 uint64_t TrueWeight, FalseWeight; 7858 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7859 uint64_t NewTrueWeight = TrueWeight; 7860 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7861 scaleWeights(NewTrueWeight, NewFalseWeight); 7862 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7863 .createBranchWeights(TrueWeight, FalseWeight)); 7864 7865 NewTrueWeight = TrueWeight; 7866 NewFalseWeight = 2 * FalseWeight; 7867 scaleWeights(NewTrueWeight, NewFalseWeight); 7868 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7869 .createBranchWeights(TrueWeight, FalseWeight)); 7870 } 7871 } else { 7872 // Codegen X & Y as: 7873 // BB1: 7874 // jmp_if_X TmpBB 7875 // jmp FBB 7876 // TmpBB: 7877 // jmp_if_Y TBB 7878 // jmp FBB 7879 // 7880 // This requires creation of TmpBB after CurBB. 7881 7882 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7883 // The requirement is that 7884 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7885 // = FalseProb for original BB. 7886 // Assuming the original weights are A and B, one choice is to set BB1's 7887 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7888 // assumes that 7889 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7890 uint64_t TrueWeight, FalseWeight; 7891 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7892 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7893 uint64_t NewFalseWeight = FalseWeight; 7894 scaleWeights(NewTrueWeight, NewFalseWeight); 7895 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7896 .createBranchWeights(TrueWeight, FalseWeight)); 7897 7898 NewTrueWeight = 2 * TrueWeight; 7899 NewFalseWeight = FalseWeight; 7900 scaleWeights(NewTrueWeight, NewFalseWeight); 7901 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7902 .createBranchWeights(TrueWeight, FalseWeight)); 7903 } 7904 } 7905 7906 ModifiedDT = true; 7907 MadeChange = true; 7908 7909 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7910 TmpBB->dump()); 7911 } 7912 return MadeChange; 7913 } 7914