1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineValueType.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Argument.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfo.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/IntrinsicsAArch64.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/ProfDataUtils.h" 71 #include "llvm/IR/Statepoint.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/User.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/IR/ValueHandle.h" 77 #include "llvm/IR/ValueMap.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/BlockFrequency.h" 81 #include "llvm/Support/BranchProbability.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <optional> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define DEBUG_TYPE "codegenprepare" 110 111 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 112 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 113 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 114 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 115 "sunken Cmps"); 116 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 117 "of sunken Casts"); 118 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 119 "computations were sunk"); 120 STATISTIC(NumMemoryInstsPhiCreated, 121 "Number of phis created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumMemoryInstsSelectCreated, 124 "Number of select created when address " 125 "computations were sunk to memory instructions"); 126 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 127 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 128 STATISTIC(NumAndsAdded, 129 "Number of and mask instructions added to form ext loads"); 130 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 131 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 132 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 133 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 134 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 135 136 static cl::opt<bool> DisableBranchOpts( 137 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable branch optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> 141 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 142 cl::desc("Disable GC optimizations in CodeGenPrepare")); 143 144 static cl::opt<bool> 145 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 146 cl::init(false), 147 cl::desc("Disable select to branch conversion.")); 148 149 static cl::opt<bool> 150 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 151 cl::desc("Address sinking in CGP using GEPs.")); 152 153 static cl::opt<bool> 154 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 155 cl::desc("Enable sinkinig and/cmp into branches.")); 156 157 static cl::opt<bool> DisableStoreExtract( 158 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> StressStoreExtract( 162 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 163 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 164 165 static cl::opt<bool> DisableExtLdPromotion( 166 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 168 "CodeGenPrepare")); 169 170 static cl::opt<bool> StressExtLdPromotion( 171 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 172 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 173 "optimization in CodeGenPrepare")); 174 175 static cl::opt<bool> DisablePreheaderProtect( 176 "disable-preheader-prot", cl::Hidden, cl::init(false), 177 cl::desc("Disable protection against removing loop preheaders")); 178 179 static cl::opt<bool> ProfileGuidedSectionPrefix( 180 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 181 cl::desc("Use profile info to add section prefix for hot/cold functions")); 182 183 static cl::opt<bool> ProfileUnknownInSpecialSection( 184 "profile-unknown-in-special-section", cl::Hidden, 185 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 186 "profile, we cannot tell the function is cold for sure because " 187 "it may be a function newly added without ever being sampled. " 188 "With the flag enabled, compiler can put such profile unknown " 189 "functions into a special section, so runtime system can choose " 190 "to handle it in a different way than .text section, to save " 191 "RAM for example. ")); 192 193 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 194 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 195 cl::desc("Use the basic-block-sections profile to determine the text " 196 "section prefix for hot functions. Functions with " 197 "basic-block-sections profile will be placed in `.text.hot` " 198 "regardless of their FDO profile info. Other functions won't be " 199 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 200 "profiles.")); 201 202 static cl::opt<uint64_t> FreqRatioToSkipMerge( 203 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 204 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 205 "(frequency of destination block) is greater than this ratio")); 206 207 static cl::opt<bool> ForceSplitStore( 208 "force-split-store", cl::Hidden, cl::init(false), 209 cl::desc("Force store splitting no matter what the target query says.")); 210 211 static cl::opt<bool> EnableTypePromotionMerge( 212 "cgp-type-promotion-merge", cl::Hidden, 213 cl::desc("Enable merging of redundant sexts when one is dominating" 214 " the other."), 215 cl::init(true)); 216 217 static cl::opt<bool> DisableComplexAddrModes( 218 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 219 cl::desc("Disables combining addressing modes with different parts " 220 "in optimizeMemoryInst.")); 221 222 static cl::opt<bool> 223 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 224 cl::desc("Allow creation of Phis in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkNewSelects( 227 "addr-sink-new-select", cl::Hidden, cl::init(true), 228 cl::desc("Allow creation of selects in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineBaseReg( 231 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of BaseReg field in Address sinking.")); 233 234 static cl::opt<bool> AddrSinkCombineBaseGV( 235 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 236 cl::desc("Allow combining of BaseGV field in Address sinking.")); 237 238 static cl::opt<bool> AddrSinkCombineBaseOffs( 239 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 240 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 241 242 static cl::opt<bool> AddrSinkCombineScaledReg( 243 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 244 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 245 246 static cl::opt<bool> 247 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 248 cl::init(true), 249 cl::desc("Enable splitting large offset of GEP.")); 250 251 static cl::opt<bool> EnableICMP_EQToICMP_ST( 252 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 253 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 254 255 static cl::opt<bool> 256 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 257 cl::desc("Enable BFI update verification for " 258 "CodeGenPrepare.")); 259 260 static cl::opt<bool> 261 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 262 cl::desc("Enable converting phi types in CodeGenPrepare")); 263 264 static cl::opt<unsigned> 265 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 266 cl::desc("Least BB number of huge function.")); 267 268 static cl::opt<unsigned> 269 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 270 cl::Hidden, 271 cl::desc("Max number of address users to look at")); 272 273 static cl::opt<bool> 274 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 275 cl::desc("Disable elimination of dead PHI nodes.")); 276 277 namespace { 278 279 enum ExtType { 280 ZeroExtension, // Zero extension has been seen. 281 SignExtension, // Sign extension has been seen. 282 BothExtension // This extension type is used if we saw sext after 283 // ZeroExtension had been set, or if we saw zext after 284 // SignExtension had been set. It makes the type 285 // information of a promoted instruction invalid. 286 }; 287 288 enum ModifyDT { 289 NotModifyDT, // Not Modify any DT. 290 ModifyBBDT, // Modify the Basic Block Dominator Tree. 291 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 292 // This usually means we move/delete/insert instruction 293 // in a Basic Block. So we should re-iterate instructions 294 // in such Basic Block. 295 }; 296 297 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 298 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 299 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 300 using SExts = SmallVector<Instruction *, 16>; 301 using ValueToSExts = MapVector<Value *, SExts>; 302 303 class TypePromotionTransaction; 304 305 class CodeGenPrepare { 306 friend class CodeGenPrepareLegacyPass; 307 const TargetMachine *TM = nullptr; 308 const TargetSubtargetInfo *SubtargetInfo = nullptr; 309 const TargetLowering *TLI = nullptr; 310 const TargetRegisterInfo *TRI = nullptr; 311 const TargetTransformInfo *TTI = nullptr; 312 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 313 const TargetLibraryInfo *TLInfo = nullptr; 314 LoopInfo *LI = nullptr; 315 std::unique_ptr<BlockFrequencyInfo> BFI; 316 std::unique_ptr<BranchProbabilityInfo> BPI; 317 ProfileSummaryInfo *PSI = nullptr; 318 319 /// As we scan instructions optimizing them, this is the next instruction 320 /// to optimize. Transforms that can invalidate this should update it. 321 BasicBlock::iterator CurInstIterator; 322 323 /// Keeps track of non-local addresses that have been sunk into a block. 324 /// This allows us to avoid inserting duplicate code for blocks with 325 /// multiple load/stores of the same address. The usage of WeakTrackingVH 326 /// enables SunkAddrs to be treated as a cache whose entries can be 327 /// invalidated if a sunken address computation has been erased. 328 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 329 330 /// Keeps track of all instructions inserted for the current function. 331 SetOfInstrs InsertedInsts; 332 333 /// Keeps track of the type of the related instruction before their 334 /// promotion for the current function. 335 InstrToOrigTy PromotedInsts; 336 337 /// Keep track of instructions removed during promotion. 338 SetOfInstrs RemovedInsts; 339 340 /// Keep track of sext chains based on their initial value. 341 DenseMap<Value *, Instruction *> SeenChainsForSExt; 342 343 /// Keep track of GEPs accessing the same data structures such as structs or 344 /// arrays that are candidates to be split later because of their large 345 /// size. 346 MapVector<AssertingVH<Value>, 347 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 348 LargeOffsetGEPMap; 349 350 /// Keep track of new GEP base after splitting the GEPs having large offset. 351 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 352 353 /// Map serial numbers to Large offset GEPs. 354 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 355 356 /// Keep track of SExt promoted. 357 ValueToSExts ValToSExtendedUses; 358 359 /// True if the function has the OptSize attribute. 360 bool OptSize; 361 362 /// DataLayout for the Function being processed. 363 const DataLayout *DL = nullptr; 364 365 /// Building the dominator tree can be expensive, so we only build it 366 /// lazily and update it when required. 367 std::unique_ptr<DominatorTree> DT; 368 369 public: 370 CodeGenPrepare(){}; 371 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 372 /// If encounter huge function, we need to limit the build time. 373 bool IsHugeFunc = false; 374 375 /// FreshBBs is like worklist, it collected the updated BBs which need 376 /// to be optimized again. 377 /// Note: Consider building time in this pass, when a BB updated, we need 378 /// to insert such BB into FreshBBs for huge function. 379 SmallSet<BasicBlock *, 32> FreshBBs; 380 381 void releaseMemory() { 382 // Clear per function information. 383 InsertedInsts.clear(); 384 PromotedInsts.clear(); 385 FreshBBs.clear(); 386 BPI.reset(); 387 BFI.reset(); 388 } 389 390 bool run(Function &F, FunctionAnalysisManager &AM); 391 392 private: 393 template <typename F> 394 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 395 // Substituting can cause recursive simplifications, which can invalidate 396 // our iterator. Use a WeakTrackingVH to hold onto it in case this 397 // happens. 398 Value *CurValue = &*CurInstIterator; 399 WeakTrackingVH IterHandle(CurValue); 400 401 f(); 402 403 // If the iterator instruction was recursively deleted, start over at the 404 // start of the block. 405 if (IterHandle != CurValue) { 406 CurInstIterator = BB->begin(); 407 SunkAddrs.clear(); 408 } 409 } 410 411 // Get the DominatorTree, building if necessary. 412 DominatorTree &getDT(Function &F) { 413 if (!DT) 414 DT = std::make_unique<DominatorTree>(F); 415 return *DT; 416 } 417 418 void removeAllAssertingVHReferences(Value *V); 419 bool eliminateAssumptions(Function &F); 420 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 421 bool eliminateMostlyEmptyBlocks(Function &F); 422 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 423 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 424 void eliminateMostlyEmptyBlock(BasicBlock *BB); 425 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 426 bool isPreheader); 427 bool makeBitReverse(Instruction &I); 428 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 429 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 430 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 431 unsigned AddrSpace); 432 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 433 bool optimizeInlineAsmInst(CallInst *CS); 434 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 435 bool optimizeExt(Instruction *&I); 436 bool optimizeExtUses(Instruction *I); 437 bool optimizeLoadExt(LoadInst *Load); 438 bool optimizeShiftInst(BinaryOperator *BO); 439 bool optimizeFunnelShift(IntrinsicInst *Fsh); 440 bool optimizeSelectInst(SelectInst *SI); 441 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 442 bool optimizeSwitchType(SwitchInst *SI); 443 bool optimizeSwitchPhiConstants(SwitchInst *SI); 444 bool optimizeSwitchInst(SwitchInst *SI); 445 bool optimizeExtractElementInst(Instruction *Inst); 446 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 447 bool fixupDbgValue(Instruction *I); 448 bool fixupDPValue(DPValue &I); 449 bool fixupDPValuesOnInst(Instruction &I); 450 bool placeDbgValues(Function &F); 451 bool placePseudoProbes(Function &F); 452 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 453 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 454 bool tryToPromoteExts(TypePromotionTransaction &TPT, 455 const SmallVectorImpl<Instruction *> &Exts, 456 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 457 unsigned CreatedInstsCost = 0); 458 bool mergeSExts(Function &F); 459 bool splitLargeGEPOffsets(); 460 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 461 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 462 bool optimizePhiTypes(Function &F); 463 bool performAddressTypePromotion( 464 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 465 bool HasPromoted, TypePromotionTransaction &TPT, 466 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 467 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 468 bool simplifyOffsetableRelocate(GCStatepointInst &I); 469 470 bool tryToSinkFreeOperands(Instruction *I); 471 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 472 CmpInst *Cmp, Intrinsic::ID IID); 473 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 474 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 476 void verifyBFIUpdates(Function &F); 477 bool _run(Function &F); 478 }; 479 480 class CodeGenPrepareLegacyPass : public FunctionPass { 481 public: 482 static char ID; // Pass identification, replacement for typeid 483 484 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 485 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 486 } 487 488 bool runOnFunction(Function &F) override; 489 490 StringRef getPassName() const override { return "CodeGen Prepare"; } 491 492 void getAnalysisUsage(AnalysisUsage &AU) const override { 493 // FIXME: When we can selectively preserve passes, preserve the domtree. 494 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 495 AU.addRequired<TargetLibraryInfoWrapperPass>(); 496 AU.addRequired<TargetPassConfig>(); 497 AU.addRequired<TargetTransformInfoWrapperPass>(); 498 AU.addRequired<LoopInfoWrapperPass>(); 499 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 500 } 501 }; 502 503 } // end anonymous namespace 504 505 char CodeGenPrepareLegacyPass::ID = 0; 506 507 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 508 if (skipFunction(F)) 509 return false; 510 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 511 CodeGenPrepare CGP(TM); 512 CGP.DL = &F.getParent()->getDataLayout(); 513 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 514 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 515 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 516 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 517 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 518 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 519 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 520 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 521 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 522 auto BBSPRWP = 523 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 524 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 525 526 return CGP._run(F); 527 } 528 529 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 530 "Optimize for code generation", false, false) 531 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 532 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 533 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 536 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 537 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 538 "Optimize for code generation", false, false) 539 540 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 541 return new CodeGenPrepareLegacyPass(); 542 } 543 544 PreservedAnalyses CodeGenPreparePass::run(Function &F, 545 FunctionAnalysisManager &AM) { 546 CodeGenPrepare CGP(TM); 547 548 bool Changed = CGP.run(F, AM); 549 if (!Changed) 550 return PreservedAnalyses::all(); 551 552 PreservedAnalyses PA; 553 PA.preserve<TargetLibraryAnalysis>(); 554 PA.preserve<TargetIRAnalysis>(); 555 PA.preserve<LoopAnalysis>(); 556 return PA; 557 } 558 559 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 560 DL = &F.getParent()->getDataLayout(); 561 SubtargetInfo = TM->getSubtargetImpl(F); 562 TLI = SubtargetInfo->getTargetLowering(); 563 TRI = SubtargetInfo->getRegisterInfo(); 564 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 565 TTI = &AM.getResult<TargetIRAnalysis>(F); 566 LI = &AM.getResult<LoopAnalysis>(F); 567 BPI.reset(new BranchProbabilityInfo(F, *LI)); 568 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 569 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 570 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 571 BBSectionsProfileReader = 572 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 573 return _run(F); 574 } 575 576 bool CodeGenPrepare::_run(Function &F) { 577 bool EverMadeChange = false; 578 579 OptSize = F.hasOptSize(); 580 // Use the basic-block-sections profile to promote hot functions to .text.hot 581 // if requested. 582 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 583 BBSectionsProfileReader->isFunctionHot(F.getName())) { 584 F.setSectionPrefix("hot"); 585 } else if (ProfileGuidedSectionPrefix) { 586 // The hot attribute overwrites profile count based hotness while profile 587 // counts based hotness overwrite the cold attribute. 588 // This is a conservative behabvior. 589 if (F.hasFnAttribute(Attribute::Hot) || 590 PSI->isFunctionHotInCallGraph(&F, *BFI)) 591 F.setSectionPrefix("hot"); 592 // If PSI shows this function is not hot, we will placed the function 593 // into unlikely section if (1) PSI shows this is a cold function, or 594 // (2) the function has a attribute of cold. 595 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 596 F.hasFnAttribute(Attribute::Cold)) 597 F.setSectionPrefix("unlikely"); 598 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 599 PSI->isFunctionHotnessUnknown(F)) 600 F.setSectionPrefix("unknown"); 601 } 602 603 /// This optimization identifies DIV instructions that can be 604 /// profitably bypassed and carried out with a shorter, faster divide. 605 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 606 const DenseMap<unsigned int, unsigned int> &BypassWidths = 607 TLI->getBypassSlowDivWidths(); 608 BasicBlock *BB = &*F.begin(); 609 while (BB != nullptr) { 610 // bypassSlowDivision may create new BBs, but we don't want to reapply the 611 // optimization to those blocks. 612 BasicBlock *Next = BB->getNextNode(); 613 // F.hasOptSize is already checked in the outer if statement. 614 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 615 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 616 BB = Next; 617 } 618 } 619 620 // Get rid of @llvm.assume builtins before attempting to eliminate empty 621 // blocks, since there might be blocks that only contain @llvm.assume calls 622 // (plus arguments that we can get rid of). 623 EverMadeChange |= eliminateAssumptions(F); 624 625 // Eliminate blocks that contain only PHI nodes and an 626 // unconditional branch. 627 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 628 629 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 630 if (!DisableBranchOpts) 631 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 632 633 // Split some critical edges where one of the sources is an indirect branch, 634 // to help generate sane code for PHIs involving such edges. 635 EverMadeChange |= 636 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 637 638 // If we are optimzing huge function, we need to consider the build time. 639 // Because the basic algorithm's complex is near O(N!). 640 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 641 642 // Transformations above may invalidate dominator tree and/or loop info. 643 DT.reset(); 644 LI->releaseMemory(); 645 LI->analyze(getDT(F)); 646 647 bool MadeChange = true; 648 bool FuncIterated = false; 649 while (MadeChange) { 650 MadeChange = false; 651 652 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 653 if (FuncIterated && !FreshBBs.contains(&BB)) 654 continue; 655 656 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 657 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 658 659 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 660 DT.reset(); 661 662 MadeChange |= Changed; 663 if (IsHugeFunc) { 664 // If the BB is updated, it may still has chance to be optimized. 665 // This usually happen at sink optimization. 666 // For example: 667 // 668 // bb0: 669 // %and = and i32 %a, 4 670 // %cmp = icmp eq i32 %and, 0 671 // 672 // If the %cmp sink to other BB, the %and will has chance to sink. 673 if (Changed) 674 FreshBBs.insert(&BB); 675 else if (FuncIterated) 676 FreshBBs.erase(&BB); 677 } else { 678 // For small/normal functions, we restart BB iteration if the dominator 679 // tree of the Function was changed. 680 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 681 break; 682 } 683 } 684 // We have iterated all the BB in the (only work for huge) function. 685 FuncIterated = IsHugeFunc; 686 687 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 688 MadeChange |= mergeSExts(F); 689 if (!LargeOffsetGEPMap.empty()) 690 MadeChange |= splitLargeGEPOffsets(); 691 MadeChange |= optimizePhiTypes(F); 692 693 if (MadeChange) 694 eliminateFallThrough(F, DT.get()); 695 696 #ifndef NDEBUG 697 if (MadeChange && VerifyLoopInfo) 698 LI->verify(getDT(F)); 699 #endif 700 701 // Really free removed instructions during promotion. 702 for (Instruction *I : RemovedInsts) 703 I->deleteValue(); 704 705 EverMadeChange |= MadeChange; 706 SeenChainsForSExt.clear(); 707 ValToSExtendedUses.clear(); 708 RemovedInsts.clear(); 709 LargeOffsetGEPMap.clear(); 710 LargeOffsetGEPID.clear(); 711 } 712 713 NewGEPBases.clear(); 714 SunkAddrs.clear(); 715 716 if (!DisableBranchOpts) { 717 MadeChange = false; 718 // Use a set vector to get deterministic iteration order. The order the 719 // blocks are removed may affect whether or not PHI nodes in successors 720 // are removed. 721 SmallSetVector<BasicBlock *, 8> WorkList; 722 for (BasicBlock &BB : F) { 723 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 724 MadeChange |= ConstantFoldTerminator(&BB, true); 725 if (!MadeChange) 726 continue; 727 728 for (BasicBlock *Succ : Successors) 729 if (pred_empty(Succ)) 730 WorkList.insert(Succ); 731 } 732 733 // Delete the dead blocks and any of their dead successors. 734 MadeChange |= !WorkList.empty(); 735 while (!WorkList.empty()) { 736 BasicBlock *BB = WorkList.pop_back_val(); 737 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 738 739 DeleteDeadBlock(BB); 740 741 for (BasicBlock *Succ : Successors) 742 if (pred_empty(Succ)) 743 WorkList.insert(Succ); 744 } 745 746 // Merge pairs of basic blocks with unconditional branches, connected by 747 // a single edge. 748 if (EverMadeChange || MadeChange) 749 MadeChange |= eliminateFallThrough(F); 750 751 EverMadeChange |= MadeChange; 752 } 753 754 if (!DisableGCOpts) { 755 SmallVector<GCStatepointInst *, 2> Statepoints; 756 for (BasicBlock &BB : F) 757 for (Instruction &I : BB) 758 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 759 Statepoints.push_back(SP); 760 for (auto &I : Statepoints) 761 EverMadeChange |= simplifyOffsetableRelocate(*I); 762 } 763 764 // Do this last to clean up use-before-def scenarios introduced by other 765 // preparatory transforms. 766 EverMadeChange |= placeDbgValues(F); 767 EverMadeChange |= placePseudoProbes(F); 768 769 #ifndef NDEBUG 770 if (VerifyBFIUpdates) 771 verifyBFIUpdates(F); 772 #endif 773 774 return EverMadeChange; 775 } 776 777 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 778 bool MadeChange = false; 779 for (BasicBlock &BB : F) { 780 CurInstIterator = BB.begin(); 781 while (CurInstIterator != BB.end()) { 782 Instruction *I = &*(CurInstIterator++); 783 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 784 MadeChange = true; 785 Value *Operand = Assume->getOperand(0); 786 Assume->eraseFromParent(); 787 788 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 789 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 790 }); 791 } 792 } 793 } 794 return MadeChange; 795 } 796 797 /// An instruction is about to be deleted, so remove all references to it in our 798 /// GEP-tracking data strcutures. 799 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 800 LargeOffsetGEPMap.erase(V); 801 NewGEPBases.erase(V); 802 803 auto GEP = dyn_cast<GetElementPtrInst>(V); 804 if (!GEP) 805 return; 806 807 LargeOffsetGEPID.erase(GEP); 808 809 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 810 if (VecI == LargeOffsetGEPMap.end()) 811 return; 812 813 auto &GEPVector = VecI->second; 814 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 815 816 if (GEPVector.empty()) 817 LargeOffsetGEPMap.erase(VecI); 818 } 819 820 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 821 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 822 DominatorTree NewDT(F); 823 LoopInfo NewLI(NewDT); 824 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 825 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 826 NewBFI.verifyMatch(*BFI); 827 } 828 829 /// Merge basic blocks which are connected by a single edge, where one of the 830 /// basic blocks has a single successor pointing to the other basic block, 831 /// which has a single predecessor. 832 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 833 bool Changed = false; 834 // Scan all of the blocks in the function, except for the entry block. 835 // Use a temporary array to avoid iterator being invalidated when 836 // deleting blocks. 837 SmallVector<WeakTrackingVH, 16> Blocks; 838 for (auto &Block : llvm::drop_begin(F)) 839 Blocks.push_back(&Block); 840 841 SmallSet<WeakTrackingVH, 16> Preds; 842 for (auto &Block : Blocks) { 843 auto *BB = cast_or_null<BasicBlock>(Block); 844 if (!BB) 845 continue; 846 // If the destination block has a single pred, then this is a trivial 847 // edge, just collapse it. 848 BasicBlock *SinglePred = BB->getSinglePredecessor(); 849 850 // Don't merge if BB's address is taken. 851 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 852 continue; 853 854 // Make an effort to skip unreachable blocks. 855 if (DT && !DT->isReachableFromEntry(BB)) 856 continue; 857 858 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 859 if (Term && !Term->isConditional()) { 860 Changed = true; 861 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 862 863 // Merge BB into SinglePred and delete it. 864 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 865 /* MemDep */ nullptr, 866 /* PredecessorWithTwoSuccessors */ false, DT); 867 Preds.insert(SinglePred); 868 869 if (IsHugeFunc) { 870 // Update FreshBBs to optimize the merged BB. 871 FreshBBs.insert(SinglePred); 872 FreshBBs.erase(BB); 873 } 874 } 875 } 876 877 // (Repeatedly) merging blocks into their predecessors can create redundant 878 // debug intrinsics. 879 for (const auto &Pred : Preds) 880 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 881 RemoveRedundantDbgInstrs(BB); 882 883 return Changed; 884 } 885 886 /// Find a destination block from BB if BB is mergeable empty block. 887 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 888 // If this block doesn't end with an uncond branch, ignore it. 889 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 890 if (!BI || !BI->isUnconditional()) 891 return nullptr; 892 893 // If the instruction before the branch (skipping debug info) isn't a phi 894 // node, then other stuff is happening here. 895 BasicBlock::iterator BBI = BI->getIterator(); 896 if (BBI != BB->begin()) { 897 --BBI; 898 while (isa<DbgInfoIntrinsic>(BBI)) { 899 if (BBI == BB->begin()) 900 break; 901 --BBI; 902 } 903 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 904 return nullptr; 905 } 906 907 // Do not break infinite loops. 908 BasicBlock *DestBB = BI->getSuccessor(0); 909 if (DestBB == BB) 910 return nullptr; 911 912 if (!canMergeBlocks(BB, DestBB)) 913 DestBB = nullptr; 914 915 return DestBB; 916 } 917 918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 920 /// edges in ways that are non-optimal for isel. Start by eliminating these 921 /// blocks so we can split them the way we want them. 922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 923 SmallPtrSet<BasicBlock *, 16> Preheaders; 924 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 925 while (!LoopList.empty()) { 926 Loop *L = LoopList.pop_back_val(); 927 llvm::append_range(LoopList, *L); 928 if (BasicBlock *Preheader = L->getLoopPreheader()) 929 Preheaders.insert(Preheader); 930 } 931 932 bool MadeChange = false; 933 // Copy blocks into a temporary array to avoid iterator invalidation issues 934 // as we remove them. 935 // Note that this intentionally skips the entry block. 936 SmallVector<WeakTrackingVH, 16> Blocks; 937 for (auto &Block : llvm::drop_begin(F)) { 938 // Delete phi nodes that could block deleting other empty blocks. 939 if (!DisableDeletePHIs) 940 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 941 Blocks.push_back(&Block); 942 } 943 944 for (auto &Block : Blocks) { 945 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 946 if (!BB) 947 continue; 948 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 949 if (!DestBB || 950 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 951 continue; 952 953 eliminateMostlyEmptyBlock(BB); 954 MadeChange = true; 955 } 956 return MadeChange; 957 } 958 959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 960 BasicBlock *DestBB, 961 bool isPreheader) { 962 // Do not delete loop preheaders if doing so would create a critical edge. 963 // Loop preheaders can be good locations to spill registers. If the 964 // preheader is deleted and we create a critical edge, registers may be 965 // spilled in the loop body instead. 966 if (!DisablePreheaderProtect && isPreheader && 967 !(BB->getSinglePredecessor() && 968 BB->getSinglePredecessor()->getSingleSuccessor())) 969 return false; 970 971 // Skip merging if the block's successor is also a successor to any callbr 972 // that leads to this block. 973 // FIXME: Is this really needed? Is this a correctness issue? 974 for (BasicBlock *Pred : predecessors(BB)) { 975 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 976 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 977 if (DestBB == CBI->getSuccessor(i)) 978 return false; 979 } 980 981 // Try to skip merging if the unique predecessor of BB is terminated by a 982 // switch or indirect branch instruction, and BB is used as an incoming block 983 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 984 // add COPY instructions in the predecessor of BB instead of BB (if it is not 985 // merged). Note that the critical edge created by merging such blocks wont be 986 // split in MachineSink because the jump table is not analyzable. By keeping 987 // such empty block (BB), ISel will place COPY instructions in BB, not in the 988 // predecessor of BB. 989 BasicBlock *Pred = BB->getUniquePredecessor(); 990 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 991 isa<IndirectBrInst>(Pred->getTerminator()))) 992 return true; 993 994 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 995 return true; 996 997 // We use a simple cost heuristic which determine skipping merging is 998 // profitable if the cost of skipping merging is less than the cost of 999 // merging : Cost(skipping merging) < Cost(merging BB), where the 1000 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1001 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1002 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1003 // Freq(Pred) / Freq(BB) > 2. 1004 // Note that if there are multiple empty blocks sharing the same incoming 1005 // value for the PHIs in the DestBB, we consider them together. In such 1006 // case, Cost(merging BB) will be the sum of their frequencies. 1007 1008 if (!isa<PHINode>(DestBB->begin())) 1009 return true; 1010 1011 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1012 1013 // Find all other incoming blocks from which incoming values of all PHIs in 1014 // DestBB are the same as the ones from BB. 1015 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1016 if (DestBBPred == BB) 1017 continue; 1018 1019 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1020 return DestPN.getIncomingValueForBlock(BB) == 1021 DestPN.getIncomingValueForBlock(DestBBPred); 1022 })) 1023 SameIncomingValueBBs.insert(DestBBPred); 1024 } 1025 1026 // See if all BB's incoming values are same as the value from Pred. In this 1027 // case, no reason to skip merging because COPYs are expected to be place in 1028 // Pred already. 1029 if (SameIncomingValueBBs.count(Pred)) 1030 return true; 1031 1032 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1033 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1034 1035 for (auto *SameValueBB : SameIncomingValueBBs) 1036 if (SameValueBB->getUniquePredecessor() == Pred && 1037 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1038 BBFreq += BFI->getBlockFreq(SameValueBB); 1039 1040 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1041 return !Limit || PredFreq <= *Limit; 1042 } 1043 1044 /// Return true if we can merge BB into DestBB if there is a single 1045 /// unconditional branch between them, and BB contains no other non-phi 1046 /// instructions. 1047 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1048 const BasicBlock *DestBB) const { 1049 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1050 // the successor. If there are more complex condition (e.g. preheaders), 1051 // don't mess around with them. 1052 for (const PHINode &PN : BB->phis()) { 1053 for (const User *U : PN.users()) { 1054 const Instruction *UI = cast<Instruction>(U); 1055 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1056 return false; 1057 // If User is inside DestBB block and it is a PHINode then check 1058 // incoming value. If incoming value is not from BB then this is 1059 // a complex condition (e.g. preheaders) we want to avoid here. 1060 if (UI->getParent() == DestBB) { 1061 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1062 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1063 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1064 if (Insn && Insn->getParent() == BB && 1065 Insn->getParent() != UPN->getIncomingBlock(I)) 1066 return false; 1067 } 1068 } 1069 } 1070 } 1071 1072 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1073 // and DestBB may have conflicting incoming values for the block. If so, we 1074 // can't merge the block. 1075 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1076 if (!DestBBPN) 1077 return true; // no conflict. 1078 1079 // Collect the preds of BB. 1080 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1081 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1082 // It is faster to get preds from a PHI than with pred_iterator. 1083 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1084 BBPreds.insert(BBPN->getIncomingBlock(i)); 1085 } else { 1086 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1087 } 1088 1089 // Walk the preds of DestBB. 1090 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1091 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1092 if (BBPreds.count(Pred)) { // Common predecessor? 1093 for (const PHINode &PN : DestBB->phis()) { 1094 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1095 const Value *V2 = PN.getIncomingValueForBlock(BB); 1096 1097 // If V2 is a phi node in BB, look up what the mapped value will be. 1098 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1099 if (V2PN->getParent() == BB) 1100 V2 = V2PN->getIncomingValueForBlock(Pred); 1101 1102 // If there is a conflict, bail out. 1103 if (V1 != V2) 1104 return false; 1105 } 1106 } 1107 } 1108 1109 return true; 1110 } 1111 1112 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1113 static void replaceAllUsesWith(Value *Old, Value *New, 1114 SmallSet<BasicBlock *, 32> &FreshBBs, 1115 bool IsHuge) { 1116 auto *OldI = dyn_cast<Instruction>(Old); 1117 if (OldI) { 1118 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1119 UI != E; ++UI) { 1120 Instruction *User = cast<Instruction>(*UI); 1121 if (IsHuge) 1122 FreshBBs.insert(User->getParent()); 1123 } 1124 } 1125 Old->replaceAllUsesWith(New); 1126 } 1127 1128 /// Eliminate a basic block that has only phi's and an unconditional branch in 1129 /// it. 1130 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1131 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1132 BasicBlock *DestBB = BI->getSuccessor(0); 1133 1134 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1135 << *BB << *DestBB); 1136 1137 // If the destination block has a single pred, then this is a trivial edge, 1138 // just collapse it. 1139 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1140 if (SinglePred != DestBB) { 1141 assert(SinglePred == BB && 1142 "Single predecessor not the same as predecessor"); 1143 // Merge DestBB into SinglePred/BB and delete it. 1144 MergeBlockIntoPredecessor(DestBB); 1145 // Note: BB(=SinglePred) will not be deleted on this path. 1146 // DestBB(=its single successor) is the one that was deleted. 1147 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1148 1149 if (IsHugeFunc) { 1150 // Update FreshBBs to optimize the merged BB. 1151 FreshBBs.insert(SinglePred); 1152 FreshBBs.erase(DestBB); 1153 } 1154 return; 1155 } 1156 } 1157 1158 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1159 // to handle the new incoming edges it is about to have. 1160 for (PHINode &PN : DestBB->phis()) { 1161 // Remove the incoming value for BB, and remember it. 1162 Value *InVal = PN.removeIncomingValue(BB, false); 1163 1164 // Two options: either the InVal is a phi node defined in BB or it is some 1165 // value that dominates BB. 1166 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1167 if (InValPhi && InValPhi->getParent() == BB) { 1168 // Add all of the input values of the input PHI as inputs of this phi. 1169 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1170 PN.addIncoming(InValPhi->getIncomingValue(i), 1171 InValPhi->getIncomingBlock(i)); 1172 } else { 1173 // Otherwise, add one instance of the dominating value for each edge that 1174 // we will be adding. 1175 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1176 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1177 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1178 } else { 1179 for (BasicBlock *Pred : predecessors(BB)) 1180 PN.addIncoming(InVal, Pred); 1181 } 1182 } 1183 } 1184 1185 // The PHIs are now updated, change everything that refers to BB to use 1186 // DestBB and remove BB. 1187 BB->replaceAllUsesWith(DestBB); 1188 BB->eraseFromParent(); 1189 ++NumBlocksElim; 1190 1191 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1192 } 1193 1194 // Computes a map of base pointer relocation instructions to corresponding 1195 // derived pointer relocation instructions given a vector of all relocate calls 1196 static void computeBaseDerivedRelocateMap( 1197 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1198 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1199 &RelocateInstMap) { 1200 // Collect information in two maps: one primarily for locating the base object 1201 // while filling the second map; the second map is the final structure holding 1202 // a mapping between Base and corresponding Derived relocate calls 1203 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1204 for (auto *ThisRelocate : AllRelocateCalls) { 1205 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1206 ThisRelocate->getDerivedPtrIndex()); 1207 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1208 } 1209 for (auto &Item : RelocateIdxMap) { 1210 std::pair<unsigned, unsigned> Key = Item.first; 1211 if (Key.first == Key.second) 1212 // Base relocation: nothing to insert 1213 continue; 1214 1215 GCRelocateInst *I = Item.second; 1216 auto BaseKey = std::make_pair(Key.first, Key.first); 1217 1218 // We're iterating over RelocateIdxMap so we cannot modify it. 1219 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1220 if (MaybeBase == RelocateIdxMap.end()) 1221 // TODO: We might want to insert a new base object relocate and gep off 1222 // that, if there are enough derived object relocates. 1223 continue; 1224 1225 RelocateInstMap[MaybeBase->second].push_back(I); 1226 } 1227 } 1228 1229 // Accepts a GEP and extracts the operands into a vector provided they're all 1230 // small integer constants 1231 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1232 SmallVectorImpl<Value *> &OffsetV) { 1233 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1234 // Only accept small constant integer operands 1235 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1236 if (!Op || Op->getZExtValue() > 20) 1237 return false; 1238 } 1239 1240 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1241 OffsetV.push_back(GEP->getOperand(i)); 1242 return true; 1243 } 1244 1245 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1246 // replace, computes a replacement, and affects it. 1247 static bool 1248 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1249 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1250 bool MadeChange = false; 1251 // We must ensure the relocation of derived pointer is defined after 1252 // relocation of base pointer. If we find a relocation corresponding to base 1253 // defined earlier than relocation of base then we move relocation of base 1254 // right before found relocation. We consider only relocation in the same 1255 // basic block as relocation of base. Relocations from other basic block will 1256 // be skipped by optimization and we do not care about them. 1257 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1258 &*R != RelocatedBase; ++R) 1259 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1260 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1261 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1262 RelocatedBase->moveBefore(RI); 1263 MadeChange = true; 1264 break; 1265 } 1266 1267 for (GCRelocateInst *ToReplace : Targets) { 1268 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1269 "Not relocating a derived object of the original base object"); 1270 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1271 // A duplicate relocate call. TODO: coalesce duplicates. 1272 continue; 1273 } 1274 1275 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1276 // Base and derived relocates are in different basic blocks. 1277 // In this case transform is only valid when base dominates derived 1278 // relocate. However it would be too expensive to check dominance 1279 // for each such relocate, so we skip the whole transformation. 1280 continue; 1281 } 1282 1283 Value *Base = ToReplace->getBasePtr(); 1284 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1285 if (!Derived || Derived->getPointerOperand() != Base) 1286 continue; 1287 1288 SmallVector<Value *, 2> OffsetV; 1289 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1290 continue; 1291 1292 // Create a Builder and replace the target callsite with a gep 1293 assert(RelocatedBase->getNextNode() && 1294 "Should always have one since it's not a terminator"); 1295 1296 // Insert after RelocatedBase 1297 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1298 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1299 1300 // If gc_relocate does not match the actual type, cast it to the right type. 1301 // In theory, there must be a bitcast after gc_relocate if the type does not 1302 // match, and we should reuse it to get the derived pointer. But it could be 1303 // cases like this: 1304 // bb1: 1305 // ... 1306 // %g1 = call coldcc i8 addrspace(1)* 1307 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1308 // 1309 // bb2: 1310 // ... 1311 // %g2 = call coldcc i8 addrspace(1)* 1312 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1313 // 1314 // merge: 1315 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1316 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1317 // 1318 // In this case, we can not find the bitcast any more. So we insert a new 1319 // bitcast no matter there is already one or not. In this way, we can handle 1320 // all cases, and the extra bitcast should be optimized away in later 1321 // passes. 1322 Value *ActualRelocatedBase = RelocatedBase; 1323 if (RelocatedBase->getType() != Base->getType()) { 1324 ActualRelocatedBase = 1325 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1326 } 1327 Value *Replacement = 1328 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1329 ArrayRef(OffsetV)); 1330 Replacement->takeName(ToReplace); 1331 // If the newly generated derived pointer's type does not match the original 1332 // derived pointer's type, cast the new derived pointer to match it. Same 1333 // reasoning as above. 1334 Value *ActualReplacement = Replacement; 1335 if (Replacement->getType() != ToReplace->getType()) { 1336 ActualReplacement = 1337 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1338 } 1339 ToReplace->replaceAllUsesWith(ActualReplacement); 1340 ToReplace->eraseFromParent(); 1341 1342 MadeChange = true; 1343 } 1344 return MadeChange; 1345 } 1346 1347 // Turns this: 1348 // 1349 // %base = ... 1350 // %ptr = gep %base + 15 1351 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1352 // %base' = relocate(%tok, i32 4, i32 4) 1353 // %ptr' = relocate(%tok, i32 4, i32 5) 1354 // %val = load %ptr' 1355 // 1356 // into this: 1357 // 1358 // %base = ... 1359 // %ptr = gep %base + 15 1360 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1361 // %base' = gc.relocate(%tok, i32 4, i32 4) 1362 // %ptr' = gep %base' + 15 1363 // %val = load %ptr' 1364 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1365 bool MadeChange = false; 1366 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1367 for (auto *U : I.users()) 1368 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1369 // Collect all the relocate calls associated with a statepoint 1370 AllRelocateCalls.push_back(Relocate); 1371 1372 // We need at least one base pointer relocation + one derived pointer 1373 // relocation to mangle 1374 if (AllRelocateCalls.size() < 2) 1375 return false; 1376 1377 // RelocateInstMap is a mapping from the base relocate instruction to the 1378 // corresponding derived relocate instructions 1379 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1380 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1381 if (RelocateInstMap.empty()) 1382 return false; 1383 1384 for (auto &Item : RelocateInstMap) 1385 // Item.first is the RelocatedBase to offset against 1386 // Item.second is the vector of Targets to replace 1387 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1388 return MadeChange; 1389 } 1390 1391 /// Sink the specified cast instruction into its user blocks. 1392 static bool SinkCast(CastInst *CI) { 1393 BasicBlock *DefBB = CI->getParent(); 1394 1395 /// InsertedCasts - Only insert a cast in each block once. 1396 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1397 1398 bool MadeChange = false; 1399 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1400 UI != E;) { 1401 Use &TheUse = UI.getUse(); 1402 Instruction *User = cast<Instruction>(*UI); 1403 1404 // Figure out which BB this cast is used in. For PHI's this is the 1405 // appropriate predecessor block. 1406 BasicBlock *UserBB = User->getParent(); 1407 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1408 UserBB = PN->getIncomingBlock(TheUse); 1409 } 1410 1411 // Preincrement use iterator so we don't invalidate it. 1412 ++UI; 1413 1414 // The first insertion point of a block containing an EH pad is after the 1415 // pad. If the pad is the user, we cannot sink the cast past the pad. 1416 if (User->isEHPad()) 1417 continue; 1418 1419 // If the block selected to receive the cast is an EH pad that does not 1420 // allow non-PHI instructions before the terminator, we can't sink the 1421 // cast. 1422 if (UserBB->getTerminator()->isEHPad()) 1423 continue; 1424 1425 // If this user is in the same block as the cast, don't change the cast. 1426 if (UserBB == DefBB) 1427 continue; 1428 1429 // If we have already inserted a cast into this block, use it. 1430 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1431 1432 if (!InsertedCast) { 1433 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1434 assert(InsertPt != UserBB->end()); 1435 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1436 CI->getType(), ""); 1437 InsertedCast->insertBefore(*UserBB, InsertPt); 1438 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1439 } 1440 1441 // Replace a use of the cast with a use of the new cast. 1442 TheUse = InsertedCast; 1443 MadeChange = true; 1444 ++NumCastUses; 1445 } 1446 1447 // If we removed all uses, nuke the cast. 1448 if (CI->use_empty()) { 1449 salvageDebugInfo(*CI); 1450 CI->eraseFromParent(); 1451 MadeChange = true; 1452 } 1453 1454 return MadeChange; 1455 } 1456 1457 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1458 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1459 /// reduce the number of virtual registers that must be created and coalesced. 1460 /// 1461 /// Return true if any changes are made. 1462 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1463 const DataLayout &DL) { 1464 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1465 // than sinking only nop casts, but is helpful on some platforms. 1466 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1467 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1468 ASC->getDestAddressSpace())) 1469 return false; 1470 } 1471 1472 // If this is a noop copy, 1473 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1474 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1475 1476 // This is an fp<->int conversion? 1477 if (SrcVT.isInteger() != DstVT.isInteger()) 1478 return false; 1479 1480 // If this is an extension, it will be a zero or sign extension, which 1481 // isn't a noop. 1482 if (SrcVT.bitsLT(DstVT)) 1483 return false; 1484 1485 // If these values will be promoted, find out what they will be promoted 1486 // to. This helps us consider truncates on PPC as noop copies when they 1487 // are. 1488 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1489 TargetLowering::TypePromoteInteger) 1490 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1491 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1492 TargetLowering::TypePromoteInteger) 1493 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1494 1495 // If, after promotion, these are the same types, this is a noop copy. 1496 if (SrcVT != DstVT) 1497 return false; 1498 1499 return SinkCast(CI); 1500 } 1501 1502 // Match a simple increment by constant operation. Note that if a sub is 1503 // matched, the step is negated (as if the step had been canonicalized to 1504 // an add, even though we leave the instruction alone.) 1505 bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1506 Constant *&Step) { 1507 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1508 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1509 m_Instruction(LHS), m_Constant(Step))))) 1510 return true; 1511 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1512 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1513 m_Instruction(LHS), m_Constant(Step))))) { 1514 Step = ConstantExpr::getNeg(Step); 1515 return true; 1516 } 1517 return false; 1518 } 1519 1520 /// If given \p PN is an inductive variable with value IVInc coming from the 1521 /// backedge, and on each iteration it gets increased by Step, return pair 1522 /// <IVInc, Step>. Otherwise, return std::nullopt. 1523 static std::optional<std::pair<Instruction *, Constant *>> 1524 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1525 const Loop *L = LI->getLoopFor(PN->getParent()); 1526 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1527 return std::nullopt; 1528 auto *IVInc = 1529 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1530 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1531 return std::nullopt; 1532 Instruction *LHS = nullptr; 1533 Constant *Step = nullptr; 1534 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1535 return std::make_pair(IVInc, Step); 1536 return std::nullopt; 1537 } 1538 1539 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1540 auto *I = dyn_cast<Instruction>(V); 1541 if (!I) 1542 return false; 1543 Instruction *LHS = nullptr; 1544 Constant *Step = nullptr; 1545 if (!matchIncrement(I, LHS, Step)) 1546 return false; 1547 if (auto *PN = dyn_cast<PHINode>(LHS)) 1548 if (auto IVInc = getIVIncrement(PN, LI)) 1549 return IVInc->first == I; 1550 return false; 1551 } 1552 1553 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1554 Value *Arg0, Value *Arg1, 1555 CmpInst *Cmp, 1556 Intrinsic::ID IID) { 1557 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1558 if (!isIVIncrement(BO, LI)) 1559 return false; 1560 const Loop *L = LI->getLoopFor(BO->getParent()); 1561 assert(L && "L should not be null after isIVIncrement()"); 1562 // Do not risk on moving increment into a child loop. 1563 if (LI->getLoopFor(Cmp->getParent()) != L) 1564 return false; 1565 1566 // Finally, we need to ensure that the insert point will dominate all 1567 // existing uses of the increment. 1568 1569 auto &DT = getDT(*BO->getParent()->getParent()); 1570 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1571 // If we're moving up the dom tree, all uses are trivially dominated. 1572 // (This is the common case for code produced by LSR.) 1573 return true; 1574 1575 // Otherwise, special case the single use in the phi recurrence. 1576 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1577 }; 1578 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1579 // We used to use a dominator tree here to allow multi-block optimization. 1580 // But that was problematic because: 1581 // 1. It could cause a perf regression by hoisting the math op into the 1582 // critical path. 1583 // 2. It could cause a perf regression by creating a value that was live 1584 // across multiple blocks and increasing register pressure. 1585 // 3. Use of a dominator tree could cause large compile-time regression. 1586 // This is because we recompute the DT on every change in the main CGP 1587 // run-loop. The recomputing is probably unnecessary in many cases, so if 1588 // that was fixed, using a DT here would be ok. 1589 // 1590 // There is one important particular case we still want to handle: if BO is 1591 // the IV increment. Important properties that make it profitable: 1592 // - We can speculate IV increment anywhere in the loop (as long as the 1593 // indvar Phi is its only user); 1594 // - Upon computing Cmp, we effectively compute something equivalent to the 1595 // IV increment (despite it loops differently in the IR). So moving it up 1596 // to the cmp point does not really increase register pressure. 1597 return false; 1598 } 1599 1600 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1601 if (BO->getOpcode() == Instruction::Add && 1602 IID == Intrinsic::usub_with_overflow) { 1603 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1604 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1605 } 1606 1607 // Insert at the first instruction of the pair. 1608 Instruction *InsertPt = nullptr; 1609 for (Instruction &Iter : *Cmp->getParent()) { 1610 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1611 // the overflow intrinsic are defined. 1612 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1613 InsertPt = &Iter; 1614 break; 1615 } 1616 } 1617 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1618 1619 IRBuilder<> Builder(InsertPt); 1620 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1621 if (BO->getOpcode() != Instruction::Xor) { 1622 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1623 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1624 } else 1625 assert(BO->hasOneUse() && 1626 "Patterns with XOr should use the BO only in the compare"); 1627 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1628 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1629 Cmp->eraseFromParent(); 1630 BO->eraseFromParent(); 1631 return true; 1632 } 1633 1634 /// Match special-case patterns that check for unsigned add overflow. 1635 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1636 BinaryOperator *&Add) { 1637 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1638 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1639 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1640 1641 // We are not expecting non-canonical/degenerate code. Just bail out. 1642 if (isa<Constant>(A)) 1643 return false; 1644 1645 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1646 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1647 B = ConstantInt::get(B->getType(), 1); 1648 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1649 B = ConstantInt::get(B->getType(), -1); 1650 else 1651 return false; 1652 1653 // Check the users of the variable operand of the compare looking for an add 1654 // with the adjusted constant. 1655 for (User *U : A->users()) { 1656 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1657 Add = cast<BinaryOperator>(U); 1658 return true; 1659 } 1660 } 1661 return false; 1662 } 1663 1664 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1665 /// intrinsic. Return true if any changes were made. 1666 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1667 ModifyDT &ModifiedDT) { 1668 bool EdgeCase = false; 1669 Value *A, *B; 1670 BinaryOperator *Add; 1671 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1672 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1673 return false; 1674 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1675 A = Add->getOperand(0); 1676 B = Add->getOperand(1); 1677 EdgeCase = true; 1678 } 1679 1680 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1681 TLI->getValueType(*DL, Add->getType()), 1682 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1683 return false; 1684 1685 // We don't want to move around uses of condition values this late, so we 1686 // check if it is legal to create the call to the intrinsic in the basic 1687 // block containing the icmp. 1688 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1689 return false; 1690 1691 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1692 Intrinsic::uadd_with_overflow)) 1693 return false; 1694 1695 // Reset callers - do not crash by iterating over a dead instruction. 1696 ModifiedDT = ModifyDT::ModifyInstDT; 1697 return true; 1698 } 1699 1700 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1701 ModifyDT &ModifiedDT) { 1702 // We are not expecting non-canonical/degenerate code. Just bail out. 1703 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1704 if (isa<Constant>(A) && isa<Constant>(B)) 1705 return false; 1706 1707 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1708 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1709 if (Pred == ICmpInst::ICMP_UGT) { 1710 std::swap(A, B); 1711 Pred = ICmpInst::ICMP_ULT; 1712 } 1713 // Convert special-case: (A == 0) is the same as (A u< 1). 1714 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1715 B = ConstantInt::get(B->getType(), 1); 1716 Pred = ICmpInst::ICMP_ULT; 1717 } 1718 // Convert special-case: (A != 0) is the same as (0 u< A). 1719 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1720 std::swap(A, B); 1721 Pred = ICmpInst::ICMP_ULT; 1722 } 1723 if (Pred != ICmpInst::ICMP_ULT) 1724 return false; 1725 1726 // Walk the users of a variable operand of a compare looking for a subtract or 1727 // add with that same operand. Also match the 2nd operand of the compare to 1728 // the add/sub, but that may be a negated constant operand of an add. 1729 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1730 BinaryOperator *Sub = nullptr; 1731 for (User *U : CmpVariableOperand->users()) { 1732 // A - B, A u< B --> usubo(A, B) 1733 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1734 Sub = cast<BinaryOperator>(U); 1735 break; 1736 } 1737 1738 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1739 const APInt *CmpC, *AddC; 1740 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1741 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1742 Sub = cast<BinaryOperator>(U); 1743 break; 1744 } 1745 } 1746 if (!Sub) 1747 return false; 1748 1749 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1750 TLI->getValueType(*DL, Sub->getType()), 1751 Sub->hasNUsesOrMore(1))) 1752 return false; 1753 1754 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1755 Cmp, Intrinsic::usub_with_overflow)) 1756 return false; 1757 1758 // Reset callers - do not crash by iterating over a dead instruction. 1759 ModifiedDT = ModifyDT::ModifyInstDT; 1760 return true; 1761 } 1762 1763 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1764 /// registers that must be created and coalesced. This is a clear win except on 1765 /// targets with multiple condition code registers (PowerPC), where it might 1766 /// lose; some adjustment may be wanted there. 1767 /// 1768 /// Return true if any changes are made. 1769 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1770 if (TLI.hasMultipleConditionRegisters()) 1771 return false; 1772 1773 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1774 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1775 return false; 1776 1777 // Only insert a cmp in each block once. 1778 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1779 1780 bool MadeChange = false; 1781 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1782 UI != E;) { 1783 Use &TheUse = UI.getUse(); 1784 Instruction *User = cast<Instruction>(*UI); 1785 1786 // Preincrement use iterator so we don't invalidate it. 1787 ++UI; 1788 1789 // Don't bother for PHI nodes. 1790 if (isa<PHINode>(User)) 1791 continue; 1792 1793 // Figure out which BB this cmp is used in. 1794 BasicBlock *UserBB = User->getParent(); 1795 BasicBlock *DefBB = Cmp->getParent(); 1796 1797 // If this user is in the same block as the cmp, don't change the cmp. 1798 if (UserBB == DefBB) 1799 continue; 1800 1801 // If we have already inserted a cmp into this block, use it. 1802 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1803 1804 if (!InsertedCmp) { 1805 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1806 assert(InsertPt != UserBB->end()); 1807 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1808 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1809 InsertedCmp->insertBefore(*UserBB, InsertPt); 1810 // Propagate the debug info. 1811 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1812 } 1813 1814 // Replace a use of the cmp with a use of the new cmp. 1815 TheUse = InsertedCmp; 1816 MadeChange = true; 1817 ++NumCmpUses; 1818 } 1819 1820 // If we removed all uses, nuke the cmp. 1821 if (Cmp->use_empty()) { 1822 Cmp->eraseFromParent(); 1823 MadeChange = true; 1824 } 1825 1826 return MadeChange; 1827 } 1828 1829 /// For pattern like: 1830 /// 1831 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1832 /// ... 1833 /// DomBB: 1834 /// ... 1835 /// br DomCond, TrueBB, CmpBB 1836 /// CmpBB: (with DomBB being the single predecessor) 1837 /// ... 1838 /// Cmp = icmp eq CmpOp0, CmpOp1 1839 /// ... 1840 /// 1841 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1842 /// different from lowering of icmp eq (PowerPC). This function try to convert 1843 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1844 /// After that, DomCond and Cmp can use the same comparison so reduce one 1845 /// comparison. 1846 /// 1847 /// Return true if any changes are made. 1848 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1849 const TargetLowering &TLI) { 1850 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1851 return false; 1852 1853 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1854 if (Pred != ICmpInst::ICMP_EQ) 1855 return false; 1856 1857 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1858 // icmp slt/sgt would introduce more redundant LLVM IR. 1859 for (User *U : Cmp->users()) { 1860 if (isa<BranchInst>(U)) 1861 continue; 1862 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1863 continue; 1864 return false; 1865 } 1866 1867 // This is a cheap/incomplete check for dominance - just match a single 1868 // predecessor with a conditional branch. 1869 BasicBlock *CmpBB = Cmp->getParent(); 1870 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1871 if (!DomBB) 1872 return false; 1873 1874 // We want to ensure that the only way control gets to the comparison of 1875 // interest is that a less/greater than comparison on the same operands is 1876 // false. 1877 Value *DomCond; 1878 BasicBlock *TrueBB, *FalseBB; 1879 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1880 return false; 1881 if (CmpBB != FalseBB) 1882 return false; 1883 1884 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1885 ICmpInst::Predicate DomPred; 1886 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1887 return false; 1888 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1889 return false; 1890 1891 // Convert the equality comparison to the opposite of the dominating 1892 // comparison and swap the direction for all branch/select users. 1893 // We have conceptually converted: 1894 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1895 // to 1896 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1897 // And similarly for branches. 1898 for (User *U : Cmp->users()) { 1899 if (auto *BI = dyn_cast<BranchInst>(U)) { 1900 assert(BI->isConditional() && "Must be conditional"); 1901 BI->swapSuccessors(); 1902 continue; 1903 } 1904 if (auto *SI = dyn_cast<SelectInst>(U)) { 1905 // Swap operands 1906 SI->swapValues(); 1907 SI->swapProfMetadata(); 1908 continue; 1909 } 1910 llvm_unreachable("Must be a branch or a select"); 1911 } 1912 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1913 return true; 1914 } 1915 1916 /// Many architectures use the same instruction for both subtract and cmp. Try 1917 /// to swap cmp operands to match subtract operations to allow for CSE. 1918 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1919 Value *Op0 = Cmp->getOperand(0); 1920 Value *Op1 = Cmp->getOperand(1); 1921 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1922 isa<Constant>(Op1) || Op0 == Op1) 1923 return false; 1924 1925 // If a subtract already has the same operands as a compare, swapping would be 1926 // bad. If a subtract has the same operands as a compare but in reverse order, 1927 // then swapping is good. 1928 int GoodToSwap = 0; 1929 unsigned NumInspected = 0; 1930 for (const User *U : Op0->users()) { 1931 // Avoid walking many users. 1932 if (++NumInspected > 128) 1933 return false; 1934 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1935 GoodToSwap++; 1936 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1937 GoodToSwap--; 1938 } 1939 1940 if (GoodToSwap > 0) { 1941 Cmp->swapOperands(); 1942 return true; 1943 } 1944 return false; 1945 } 1946 1947 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 1948 if (sinkCmpExpression(Cmp, *TLI)) 1949 return true; 1950 1951 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1952 return true; 1953 1954 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1955 return true; 1956 1957 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1958 return true; 1959 1960 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 1961 return true; 1962 1963 return false; 1964 } 1965 1966 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1967 /// used in a compare to allow isel to generate better code for targets where 1968 /// this operation can be combined. 1969 /// 1970 /// Return true if any changes are made. 1971 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 1972 SetOfInstrs &InsertedInsts) { 1973 // Double-check that we're not trying to optimize an instruction that was 1974 // already optimized by some other part of this pass. 1975 assert(!InsertedInsts.count(AndI) && 1976 "Attempting to optimize already optimized and instruction"); 1977 (void)InsertedInsts; 1978 1979 // Nothing to do for single use in same basic block. 1980 if (AndI->hasOneUse() && 1981 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1982 return false; 1983 1984 // Try to avoid cases where sinking/duplicating is likely to increase register 1985 // pressure. 1986 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1987 !isa<ConstantInt>(AndI->getOperand(1)) && 1988 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1989 return false; 1990 1991 for (auto *U : AndI->users()) { 1992 Instruction *User = cast<Instruction>(U); 1993 1994 // Only sink 'and' feeding icmp with 0. 1995 if (!isa<ICmpInst>(User)) 1996 return false; 1997 1998 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1999 if (!CmpC || !CmpC->isZero()) 2000 return false; 2001 } 2002 2003 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2004 return false; 2005 2006 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2007 LLVM_DEBUG(AndI->getParent()->dump()); 2008 2009 // Push the 'and' into the same block as the icmp 0. There should only be 2010 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2011 // others, so we don't need to keep track of which BBs we insert into. 2012 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2013 UI != E;) { 2014 Use &TheUse = UI.getUse(); 2015 Instruction *User = cast<Instruction>(*UI); 2016 2017 // Preincrement use iterator so we don't invalidate it. 2018 ++UI; 2019 2020 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2021 2022 // Keep the 'and' in the same place if the use is already in the same block. 2023 Instruction *InsertPt = 2024 User->getParent() == AndI->getParent() ? AndI : User; 2025 Instruction *InsertedAnd = 2026 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 2027 AndI->getOperand(1), "", InsertPt); 2028 // Propagate the debug info. 2029 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2030 2031 // Replace a use of the 'and' with a use of the new 'and'. 2032 TheUse = InsertedAnd; 2033 ++NumAndUses; 2034 LLVM_DEBUG(User->getParent()->dump()); 2035 } 2036 2037 // We removed all uses, nuke the and. 2038 AndI->eraseFromParent(); 2039 return true; 2040 } 2041 2042 /// Check if the candidates could be combined with a shift instruction, which 2043 /// includes: 2044 /// 1. Truncate instruction 2045 /// 2. And instruction and the imm is a mask of the low bits: 2046 /// imm & (imm+1) == 0 2047 static bool isExtractBitsCandidateUse(Instruction *User) { 2048 if (!isa<TruncInst>(User)) { 2049 if (User->getOpcode() != Instruction::And || 2050 !isa<ConstantInt>(User->getOperand(1))) 2051 return false; 2052 2053 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2054 2055 if ((Cimm & (Cimm + 1)).getBoolValue()) 2056 return false; 2057 } 2058 return true; 2059 } 2060 2061 /// Sink both shift and truncate instruction to the use of truncate's BB. 2062 static bool 2063 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2064 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2065 const TargetLowering &TLI, const DataLayout &DL) { 2066 BasicBlock *UserBB = User->getParent(); 2067 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2068 auto *TruncI = cast<TruncInst>(User); 2069 bool MadeChange = false; 2070 2071 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2072 TruncE = TruncI->user_end(); 2073 TruncUI != TruncE;) { 2074 2075 Use &TruncTheUse = TruncUI.getUse(); 2076 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2077 // Preincrement use iterator so we don't invalidate it. 2078 2079 ++TruncUI; 2080 2081 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2082 if (!ISDOpcode) 2083 continue; 2084 2085 // If the use is actually a legal node, there will not be an 2086 // implicit truncate. 2087 // FIXME: always querying the result type is just an 2088 // approximation; some nodes' legality is determined by the 2089 // operand or other means. There's no good way to find out though. 2090 if (TLI.isOperationLegalOrCustom( 2091 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2092 continue; 2093 2094 // Don't bother for PHI nodes. 2095 if (isa<PHINode>(TruncUser)) 2096 continue; 2097 2098 BasicBlock *TruncUserBB = TruncUser->getParent(); 2099 2100 if (UserBB == TruncUserBB) 2101 continue; 2102 2103 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2104 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2105 2106 if (!InsertedShift && !InsertedTrunc) { 2107 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2108 assert(InsertPt != TruncUserBB->end()); 2109 // Sink the shift 2110 if (ShiftI->getOpcode() == Instruction::AShr) 2111 InsertedShift = 2112 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2113 else 2114 InsertedShift = 2115 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2116 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2117 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2118 2119 // Sink the trunc 2120 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2121 TruncInsertPt++; 2122 // It will go ahead of any debug-info. 2123 TruncInsertPt.setHeadBit(true); 2124 assert(TruncInsertPt != TruncUserBB->end()); 2125 2126 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2127 TruncI->getType(), ""); 2128 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2129 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2130 2131 MadeChange = true; 2132 2133 TruncTheUse = InsertedTrunc; 2134 } 2135 } 2136 return MadeChange; 2137 } 2138 2139 /// Sink the shift *right* instruction into user blocks if the uses could 2140 /// potentially be combined with this shift instruction and generate BitExtract 2141 /// instruction. It will only be applied if the architecture supports BitExtract 2142 /// instruction. Here is an example: 2143 /// BB1: 2144 /// %x.extract.shift = lshr i64 %arg1, 32 2145 /// BB2: 2146 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2147 /// ==> 2148 /// 2149 /// BB2: 2150 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2151 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2152 /// 2153 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2154 /// instruction. 2155 /// Return true if any changes are made. 2156 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2157 const TargetLowering &TLI, 2158 const DataLayout &DL) { 2159 BasicBlock *DefBB = ShiftI->getParent(); 2160 2161 /// Only insert instructions in each block once. 2162 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2163 2164 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2165 2166 bool MadeChange = false; 2167 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2168 UI != E;) { 2169 Use &TheUse = UI.getUse(); 2170 Instruction *User = cast<Instruction>(*UI); 2171 // Preincrement use iterator so we don't invalidate it. 2172 ++UI; 2173 2174 // Don't bother for PHI nodes. 2175 if (isa<PHINode>(User)) 2176 continue; 2177 2178 if (!isExtractBitsCandidateUse(User)) 2179 continue; 2180 2181 BasicBlock *UserBB = User->getParent(); 2182 2183 if (UserBB == DefBB) { 2184 // If the shift and truncate instruction are in the same BB. The use of 2185 // the truncate(TruncUse) may still introduce another truncate if not 2186 // legal. In this case, we would like to sink both shift and truncate 2187 // instruction to the BB of TruncUse. 2188 // for example: 2189 // BB1: 2190 // i64 shift.result = lshr i64 opnd, imm 2191 // trunc.result = trunc shift.result to i16 2192 // 2193 // BB2: 2194 // ----> We will have an implicit truncate here if the architecture does 2195 // not have i16 compare. 2196 // cmp i16 trunc.result, opnd2 2197 // 2198 if (isa<TruncInst>(User) && 2199 shiftIsLegal 2200 // If the type of the truncate is legal, no truncate will be 2201 // introduced in other basic blocks. 2202 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2203 MadeChange = 2204 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2205 2206 continue; 2207 } 2208 // If we have already inserted a shift into this block, use it. 2209 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2210 2211 if (!InsertedShift) { 2212 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2213 assert(InsertPt != UserBB->end()); 2214 2215 if (ShiftI->getOpcode() == Instruction::AShr) 2216 InsertedShift = 2217 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2218 else 2219 InsertedShift = 2220 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2221 InsertedShift->insertBefore(*UserBB, InsertPt); 2222 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2223 2224 MadeChange = true; 2225 } 2226 2227 // Replace a use of the shift with a use of the new shift. 2228 TheUse = InsertedShift; 2229 } 2230 2231 // If we removed all uses, or there are none, nuke the shift. 2232 if (ShiftI->use_empty()) { 2233 salvageDebugInfo(*ShiftI); 2234 ShiftI->eraseFromParent(); 2235 MadeChange = true; 2236 } 2237 2238 return MadeChange; 2239 } 2240 2241 /// If counting leading or trailing zeros is an expensive operation and a zero 2242 /// input is defined, add a check for zero to avoid calling the intrinsic. 2243 /// 2244 /// We want to transform: 2245 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2246 /// 2247 /// into: 2248 /// entry: 2249 /// %cmpz = icmp eq i64 %A, 0 2250 /// br i1 %cmpz, label %cond.end, label %cond.false 2251 /// cond.false: 2252 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2253 /// br label %cond.end 2254 /// cond.end: 2255 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2256 /// 2257 /// If the transform is performed, return true and set ModifiedDT to true. 2258 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2259 LoopInfo &LI, 2260 const TargetLowering *TLI, 2261 const DataLayout *DL, ModifyDT &ModifiedDT, 2262 SmallSet<BasicBlock *, 32> &FreshBBs, 2263 bool IsHugeFunc) { 2264 // If a zero input is undefined, it doesn't make sense to despeculate that. 2265 if (match(CountZeros->getOperand(1), m_One())) 2266 return false; 2267 2268 // If it's cheap to speculate, there's nothing to do. 2269 Type *Ty = CountZeros->getType(); 2270 auto IntrinsicID = CountZeros->getIntrinsicID(); 2271 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2272 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2273 return false; 2274 2275 // Only handle legal scalar cases. Anything else requires too much work. 2276 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2277 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2278 return false; 2279 2280 // Bail if the value is never zero. 2281 Use &Op = CountZeros->getOperandUse(0); 2282 if (isKnownNonZero(Op, *DL)) 2283 return false; 2284 2285 // The intrinsic will be sunk behind a compare against zero and branch. 2286 BasicBlock *StartBlock = CountZeros->getParent(); 2287 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2288 if (IsHugeFunc) 2289 FreshBBs.insert(CallBlock); 2290 2291 // Create another block after the count zero intrinsic. A PHI will be added 2292 // in this block to select the result of the intrinsic or the bit-width 2293 // constant if the input to the intrinsic is zero. 2294 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2295 // Any debug-info after CountZeros should not be included. 2296 SplitPt.setHeadBit(true); 2297 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2298 if (IsHugeFunc) 2299 FreshBBs.insert(EndBlock); 2300 2301 // Update the LoopInfo. The new blocks are in the same loop as the start 2302 // block. 2303 if (Loop *L = LI.getLoopFor(StartBlock)) { 2304 L->addBasicBlockToLoop(CallBlock, LI); 2305 L->addBasicBlockToLoop(EndBlock, LI); 2306 } 2307 2308 // Set up a builder to create a compare, conditional branch, and PHI. 2309 IRBuilder<> Builder(CountZeros->getContext()); 2310 Builder.SetInsertPoint(StartBlock->getTerminator()); 2311 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2312 2313 // Replace the unconditional branch that was created by the first split with 2314 // a compare against zero and a conditional branch. 2315 Value *Zero = Constant::getNullValue(Ty); 2316 // Avoid introducing branch on poison. This also replaces the ctz operand. 2317 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2318 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2319 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2320 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2321 StartBlock->getTerminator()->eraseFromParent(); 2322 2323 // Create a PHI in the end block to select either the output of the intrinsic 2324 // or the bit width of the operand. 2325 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2326 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2327 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2328 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2329 PN->addIncoming(BitWidth, StartBlock); 2330 PN->addIncoming(CountZeros, CallBlock); 2331 2332 // We are explicitly handling the zero case, so we can set the intrinsic's 2333 // undefined zero argument to 'true'. This will also prevent reprocessing the 2334 // intrinsic; we only despeculate when a zero input is defined. 2335 CountZeros->setArgOperand(1, Builder.getTrue()); 2336 ModifiedDT = ModifyDT::ModifyBBDT; 2337 return true; 2338 } 2339 2340 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2341 BasicBlock *BB = CI->getParent(); 2342 2343 // Lower inline assembly if we can. 2344 // If we found an inline asm expession, and if the target knows how to 2345 // lower it to normal LLVM code, do so now. 2346 if (CI->isInlineAsm()) { 2347 if (TLI->ExpandInlineAsm(CI)) { 2348 // Avoid invalidating the iterator. 2349 CurInstIterator = BB->begin(); 2350 // Avoid processing instructions out of order, which could cause 2351 // reuse before a value is defined. 2352 SunkAddrs.clear(); 2353 return true; 2354 } 2355 // Sink address computing for memory operands into the block. 2356 if (optimizeInlineAsmInst(CI)) 2357 return true; 2358 } 2359 2360 // Align the pointer arguments to this call if the target thinks it's a good 2361 // idea 2362 unsigned MinSize; 2363 Align PrefAlign; 2364 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2365 for (auto &Arg : CI->args()) { 2366 // We want to align both objects whose address is used directly and 2367 // objects whose address is used in casts and GEPs, though it only makes 2368 // sense for GEPs if the offset is a multiple of the desired alignment and 2369 // if size - offset meets the size threshold. 2370 if (!Arg->getType()->isPointerTy()) 2371 continue; 2372 APInt Offset(DL->getIndexSizeInBits( 2373 cast<PointerType>(Arg->getType())->getAddressSpace()), 2374 0); 2375 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2376 uint64_t Offset2 = Offset.getLimitedValue(); 2377 if (!isAligned(PrefAlign, Offset2)) 2378 continue; 2379 AllocaInst *AI; 2380 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2381 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2382 AI->setAlignment(PrefAlign); 2383 // Global variables can only be aligned if they are defined in this 2384 // object (i.e. they are uniquely initialized in this object), and 2385 // over-aligning global variables that have an explicit section is 2386 // forbidden. 2387 GlobalVariable *GV; 2388 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2389 GV->getPointerAlignment(*DL) < PrefAlign && 2390 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2391 GV->setAlignment(PrefAlign); 2392 } 2393 } 2394 // If this is a memcpy (or similar) then we may be able to improve the 2395 // alignment. 2396 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2397 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2398 MaybeAlign MIDestAlign = MI->getDestAlign(); 2399 if (!MIDestAlign || DestAlign > *MIDestAlign) 2400 MI->setDestAlignment(DestAlign); 2401 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2402 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2403 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2404 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2405 MTI->setSourceAlignment(SrcAlign); 2406 } 2407 } 2408 2409 // If we have a cold call site, try to sink addressing computation into the 2410 // cold block. This interacts with our handling for loads and stores to 2411 // ensure that we can fold all uses of a potential addressing computation 2412 // into their uses. TODO: generalize this to work over profiling data 2413 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2414 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2415 for (auto &Arg : CI->args()) { 2416 if (!Arg->getType()->isPointerTy()) 2417 continue; 2418 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2419 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2420 return true; 2421 } 2422 2423 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2424 if (II) { 2425 switch (II->getIntrinsicID()) { 2426 default: 2427 break; 2428 case Intrinsic::assume: 2429 llvm_unreachable("llvm.assume should have been removed already"); 2430 case Intrinsic::experimental_widenable_condition: { 2431 // Give up on future widening oppurtunties so that we can fold away dead 2432 // paths and merge blocks before going into block-local instruction 2433 // selection. 2434 if (II->use_empty()) { 2435 II->eraseFromParent(); 2436 return true; 2437 } 2438 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2439 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2440 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2441 }); 2442 return true; 2443 } 2444 case Intrinsic::objectsize: 2445 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2446 case Intrinsic::is_constant: 2447 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2448 case Intrinsic::aarch64_stlxr: 2449 case Intrinsic::aarch64_stxr: { 2450 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2451 if (!ExtVal || !ExtVal->hasOneUse() || 2452 ExtVal->getParent() == CI->getParent()) 2453 return false; 2454 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2455 ExtVal->moveBefore(CI); 2456 // Mark this instruction as "inserted by CGP", so that other 2457 // optimizations don't touch it. 2458 InsertedInsts.insert(ExtVal); 2459 return true; 2460 } 2461 2462 case Intrinsic::launder_invariant_group: 2463 case Intrinsic::strip_invariant_group: { 2464 Value *ArgVal = II->getArgOperand(0); 2465 auto it = LargeOffsetGEPMap.find(II); 2466 if (it != LargeOffsetGEPMap.end()) { 2467 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2468 // Make sure not to have to deal with iterator invalidation 2469 // after possibly adding ArgVal to LargeOffsetGEPMap. 2470 auto GEPs = std::move(it->second); 2471 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2472 LargeOffsetGEPMap.erase(II); 2473 } 2474 2475 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2476 II->eraseFromParent(); 2477 return true; 2478 } 2479 case Intrinsic::cttz: 2480 case Intrinsic::ctlz: 2481 // If counting zeros is expensive, try to avoid it. 2482 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2483 IsHugeFunc); 2484 case Intrinsic::fshl: 2485 case Intrinsic::fshr: 2486 return optimizeFunnelShift(II); 2487 case Intrinsic::dbg_assign: 2488 case Intrinsic::dbg_value: 2489 return fixupDbgValue(II); 2490 case Intrinsic::masked_gather: 2491 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2492 case Intrinsic::masked_scatter: 2493 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2494 } 2495 2496 SmallVector<Value *, 2> PtrOps; 2497 Type *AccessTy; 2498 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2499 while (!PtrOps.empty()) { 2500 Value *PtrVal = PtrOps.pop_back_val(); 2501 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2502 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2503 return true; 2504 } 2505 } 2506 2507 // From here on out we're working with named functions. 2508 if (!CI->getCalledFunction()) 2509 return false; 2510 2511 // Lower all default uses of _chk calls. This is very similar 2512 // to what InstCombineCalls does, but here we are only lowering calls 2513 // to fortified library functions (e.g. __memcpy_chk) that have the default 2514 // "don't know" as the objectsize. Anything else should be left alone. 2515 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2516 IRBuilder<> Builder(CI); 2517 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2518 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2519 CI->eraseFromParent(); 2520 return true; 2521 } 2522 2523 return false; 2524 } 2525 2526 /// Look for opportunities to duplicate return instructions to the predecessor 2527 /// to enable tail call optimizations. The case it is currently looking for is: 2528 /// @code 2529 /// bb0: 2530 /// %tmp0 = tail call i32 @f0() 2531 /// br label %return 2532 /// bb1: 2533 /// %tmp1 = tail call i32 @f1() 2534 /// br label %return 2535 /// bb2: 2536 /// %tmp2 = tail call i32 @f2() 2537 /// br label %return 2538 /// return: 2539 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2540 /// ret i32 %retval 2541 /// @endcode 2542 /// 2543 /// => 2544 /// 2545 /// @code 2546 /// bb0: 2547 /// %tmp0 = tail call i32 @f0() 2548 /// ret i32 %tmp0 2549 /// bb1: 2550 /// %tmp1 = tail call i32 @f1() 2551 /// ret i32 %tmp1 2552 /// bb2: 2553 /// %tmp2 = tail call i32 @f2() 2554 /// ret i32 %tmp2 2555 /// @endcode 2556 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2557 ModifyDT &ModifiedDT) { 2558 if (!BB->getTerminator()) 2559 return false; 2560 2561 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2562 if (!RetI) 2563 return false; 2564 2565 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2566 2567 PHINode *PN = nullptr; 2568 ExtractValueInst *EVI = nullptr; 2569 BitCastInst *BCI = nullptr; 2570 Value *V = RetI->getReturnValue(); 2571 if (V) { 2572 BCI = dyn_cast<BitCastInst>(V); 2573 if (BCI) 2574 V = BCI->getOperand(0); 2575 2576 EVI = dyn_cast<ExtractValueInst>(V); 2577 if (EVI) { 2578 V = EVI->getOperand(0); 2579 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2580 return false; 2581 } 2582 2583 PN = dyn_cast<PHINode>(V); 2584 if (!PN) 2585 return false; 2586 } 2587 2588 if (PN && PN->getParent() != BB) 2589 return false; 2590 2591 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2592 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2593 if (BC && BC->hasOneUse()) 2594 Inst = BC->user_back(); 2595 2596 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2597 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2598 return false; 2599 }; 2600 2601 // Make sure there are no instructions between the first instruction 2602 // and return. 2603 const Instruction *BI = BB->getFirstNonPHI(); 2604 // Skip over debug and the bitcast. 2605 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2606 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2607 BI = BI->getNextNode(); 2608 if (BI != RetI) 2609 return false; 2610 2611 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2612 /// call. 2613 const Function *F = BB->getParent(); 2614 SmallVector<BasicBlock *, 4> TailCallBBs; 2615 if (PN) { 2616 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2617 // Look through bitcasts. 2618 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2619 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2620 BasicBlock *PredBB = PN->getIncomingBlock(I); 2621 // Make sure the phi value is indeed produced by the tail call. 2622 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2623 TLI->mayBeEmittedAsTailCall(CI) && 2624 attributesPermitTailCall(F, CI, RetI, *TLI)) 2625 TailCallBBs.push_back(PredBB); 2626 } 2627 } else { 2628 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2629 for (BasicBlock *Pred : predecessors(BB)) { 2630 if (!VisitedBBs.insert(Pred).second) 2631 continue; 2632 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2633 CallInst *CI = dyn_cast<CallInst>(I); 2634 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2635 attributesPermitTailCall(F, CI, RetI, *TLI)) 2636 TailCallBBs.push_back(Pred); 2637 } 2638 } 2639 } 2640 2641 bool Changed = false; 2642 for (auto const &TailCallBB : TailCallBBs) { 2643 // Make sure the call instruction is followed by an unconditional branch to 2644 // the return block. 2645 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2646 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2647 continue; 2648 2649 // Duplicate the return into TailCallBB. 2650 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2651 assert(!VerifyBFIUpdates || 2652 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2653 BFI->setBlockFreq(BB, 2654 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2655 ModifiedDT = ModifyDT::ModifyBBDT; 2656 Changed = true; 2657 ++NumRetsDup; 2658 } 2659 2660 // If we eliminated all predecessors of the block, delete the block now. 2661 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2662 BB->eraseFromParent(); 2663 2664 return Changed; 2665 } 2666 2667 //===----------------------------------------------------------------------===// 2668 // Memory Optimization 2669 //===----------------------------------------------------------------------===// 2670 2671 namespace { 2672 2673 /// This is an extended version of TargetLowering::AddrMode 2674 /// which holds actual Value*'s for register values. 2675 struct ExtAddrMode : public TargetLowering::AddrMode { 2676 Value *BaseReg = nullptr; 2677 Value *ScaledReg = nullptr; 2678 Value *OriginalValue = nullptr; 2679 bool InBounds = true; 2680 2681 enum FieldName { 2682 NoField = 0x00, 2683 BaseRegField = 0x01, 2684 BaseGVField = 0x02, 2685 BaseOffsField = 0x04, 2686 ScaledRegField = 0x08, 2687 ScaleField = 0x10, 2688 MultipleFields = 0xff 2689 }; 2690 2691 ExtAddrMode() = default; 2692 2693 void print(raw_ostream &OS) const; 2694 void dump() const; 2695 2696 FieldName compare(const ExtAddrMode &other) { 2697 // First check that the types are the same on each field, as differing types 2698 // is something we can't cope with later on. 2699 if (BaseReg && other.BaseReg && 2700 BaseReg->getType() != other.BaseReg->getType()) 2701 return MultipleFields; 2702 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2703 return MultipleFields; 2704 if (ScaledReg && other.ScaledReg && 2705 ScaledReg->getType() != other.ScaledReg->getType()) 2706 return MultipleFields; 2707 2708 // Conservatively reject 'inbounds' mismatches. 2709 if (InBounds != other.InBounds) 2710 return MultipleFields; 2711 2712 // Check each field to see if it differs. 2713 unsigned Result = NoField; 2714 if (BaseReg != other.BaseReg) 2715 Result |= BaseRegField; 2716 if (BaseGV != other.BaseGV) 2717 Result |= BaseGVField; 2718 if (BaseOffs != other.BaseOffs) 2719 Result |= BaseOffsField; 2720 if (ScaledReg != other.ScaledReg) 2721 Result |= ScaledRegField; 2722 // Don't count 0 as being a different scale, because that actually means 2723 // unscaled (which will already be counted by having no ScaledReg). 2724 if (Scale && other.Scale && Scale != other.Scale) 2725 Result |= ScaleField; 2726 2727 if (llvm::popcount(Result) > 1) 2728 return MultipleFields; 2729 else 2730 return static_cast<FieldName>(Result); 2731 } 2732 2733 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2734 // with no offset. 2735 bool isTrivial() { 2736 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2737 // trivial if at most one of these terms is nonzero, except that BaseGV and 2738 // BaseReg both being zero actually means a null pointer value, which we 2739 // consider to be 'non-zero' here. 2740 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2741 } 2742 2743 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2744 switch (Field) { 2745 default: 2746 return nullptr; 2747 case BaseRegField: 2748 return BaseReg; 2749 case BaseGVField: 2750 return BaseGV; 2751 case ScaledRegField: 2752 return ScaledReg; 2753 case BaseOffsField: 2754 return ConstantInt::get(IntPtrTy, BaseOffs); 2755 } 2756 } 2757 2758 void SetCombinedField(FieldName Field, Value *V, 2759 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2760 switch (Field) { 2761 default: 2762 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2763 break; 2764 case ExtAddrMode::BaseRegField: 2765 BaseReg = V; 2766 break; 2767 case ExtAddrMode::BaseGVField: 2768 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2769 // in the BaseReg field. 2770 assert(BaseReg == nullptr); 2771 BaseReg = V; 2772 BaseGV = nullptr; 2773 break; 2774 case ExtAddrMode::ScaledRegField: 2775 ScaledReg = V; 2776 // If we have a mix of scaled and unscaled addrmodes then we want scale 2777 // to be the scale and not zero. 2778 if (!Scale) 2779 for (const ExtAddrMode &AM : AddrModes) 2780 if (AM.Scale) { 2781 Scale = AM.Scale; 2782 break; 2783 } 2784 break; 2785 case ExtAddrMode::BaseOffsField: 2786 // The offset is no longer a constant, so it goes in ScaledReg with a 2787 // scale of 1. 2788 assert(ScaledReg == nullptr); 2789 ScaledReg = V; 2790 Scale = 1; 2791 BaseOffs = 0; 2792 break; 2793 } 2794 } 2795 }; 2796 2797 #ifndef NDEBUG 2798 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2799 AM.print(OS); 2800 return OS; 2801 } 2802 #endif 2803 2804 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2805 void ExtAddrMode::print(raw_ostream &OS) const { 2806 bool NeedPlus = false; 2807 OS << "["; 2808 if (InBounds) 2809 OS << "inbounds "; 2810 if (BaseGV) { 2811 OS << "GV:"; 2812 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2813 NeedPlus = true; 2814 } 2815 2816 if (BaseOffs) { 2817 OS << (NeedPlus ? " + " : "") << BaseOffs; 2818 NeedPlus = true; 2819 } 2820 2821 if (BaseReg) { 2822 OS << (NeedPlus ? " + " : "") << "Base:"; 2823 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2824 NeedPlus = true; 2825 } 2826 if (Scale) { 2827 OS << (NeedPlus ? " + " : "") << Scale << "*"; 2828 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2829 } 2830 2831 OS << ']'; 2832 } 2833 2834 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2835 print(dbgs()); 2836 dbgs() << '\n'; 2837 } 2838 #endif 2839 2840 } // end anonymous namespace 2841 2842 namespace { 2843 2844 /// This class provides transaction based operation on the IR. 2845 /// Every change made through this class is recorded in the internal state and 2846 /// can be undone (rollback) until commit is called. 2847 /// CGP does not check if instructions could be speculatively executed when 2848 /// moved. Preserving the original location would pessimize the debugging 2849 /// experience, as well as negatively impact the quality of sample PGO. 2850 class TypePromotionTransaction { 2851 /// This represents the common interface of the individual transaction. 2852 /// Each class implements the logic for doing one specific modification on 2853 /// the IR via the TypePromotionTransaction. 2854 class TypePromotionAction { 2855 protected: 2856 /// The Instruction modified. 2857 Instruction *Inst; 2858 2859 public: 2860 /// Constructor of the action. 2861 /// The constructor performs the related action on the IR. 2862 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2863 2864 virtual ~TypePromotionAction() = default; 2865 2866 /// Undo the modification done by this action. 2867 /// When this method is called, the IR must be in the same state as it was 2868 /// before this action was applied. 2869 /// \pre Undoing the action works if and only if the IR is in the exact same 2870 /// state as it was directly after this action was applied. 2871 virtual void undo() = 0; 2872 2873 /// Advocate every change made by this action. 2874 /// When the results on the IR of the action are to be kept, it is important 2875 /// to call this function, otherwise hidden information may be kept forever. 2876 virtual void commit() { 2877 // Nothing to be done, this action is not doing anything. 2878 } 2879 }; 2880 2881 /// Utility to remember the position of an instruction. 2882 class InsertionHandler { 2883 /// Position of an instruction. 2884 /// Either an instruction: 2885 /// - Is the first in a basic block: BB is used. 2886 /// - Has a previous instruction: PrevInst is used. 2887 union { 2888 Instruction *PrevInst; 2889 BasicBlock *BB; 2890 } Point; 2891 std::optional<DPValue::self_iterator> BeforeDPValue = std::nullopt; 2892 2893 /// Remember whether or not the instruction had a previous instruction. 2894 bool HasPrevInstruction; 2895 2896 public: 2897 /// Record the position of \p Inst. 2898 InsertionHandler(Instruction *Inst) { 2899 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 2900 BasicBlock *BB = Inst->getParent(); 2901 2902 // Record where we would have to re-insert the instruction in the sequence 2903 // of DPValues, if we ended up reinserting. 2904 if (BB->IsNewDbgInfoFormat) 2905 BeforeDPValue = Inst->getDbgReinsertionPosition(); 2906 2907 if (HasPrevInstruction) { 2908 Point.PrevInst = &*std::prev(Inst->getIterator()); 2909 } else { 2910 Point.BB = BB; 2911 } 2912 } 2913 2914 /// Insert \p Inst at the recorded position. 2915 void insert(Instruction *Inst) { 2916 if (HasPrevInstruction) { 2917 if (Inst->getParent()) 2918 Inst->removeFromParent(); 2919 Inst->insertAfter(&*Point.PrevInst); 2920 } else { 2921 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 2922 if (Inst->getParent()) 2923 Inst->moveBefore(*Point.BB, Position); 2924 else 2925 Inst->insertBefore(*Point.BB, Position); 2926 } 2927 2928 Inst->getParent()->reinsertInstInDPValues(Inst, BeforeDPValue); 2929 } 2930 }; 2931 2932 /// Move an instruction before another. 2933 class InstructionMoveBefore : public TypePromotionAction { 2934 /// Original position of the instruction. 2935 InsertionHandler Position; 2936 2937 public: 2938 /// Move \p Inst before \p Before. 2939 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2940 : TypePromotionAction(Inst), Position(Inst) { 2941 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2942 << "\n"); 2943 Inst->moveBefore(Before); 2944 } 2945 2946 /// Move the instruction back to its original position. 2947 void undo() override { 2948 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2949 Position.insert(Inst); 2950 } 2951 }; 2952 2953 /// Set the operand of an instruction with a new value. 2954 class OperandSetter : public TypePromotionAction { 2955 /// Original operand of the instruction. 2956 Value *Origin; 2957 2958 /// Index of the modified instruction. 2959 unsigned Idx; 2960 2961 public: 2962 /// Set \p Idx operand of \p Inst with \p NewVal. 2963 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2964 : TypePromotionAction(Inst), Idx(Idx) { 2965 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2966 << "for:" << *Inst << "\n" 2967 << "with:" << *NewVal << "\n"); 2968 Origin = Inst->getOperand(Idx); 2969 Inst->setOperand(Idx, NewVal); 2970 } 2971 2972 /// Restore the original value of the instruction. 2973 void undo() override { 2974 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2975 << "for: " << *Inst << "\n" 2976 << "with: " << *Origin << "\n"); 2977 Inst->setOperand(Idx, Origin); 2978 } 2979 }; 2980 2981 /// Hide the operands of an instruction. 2982 /// Do as if this instruction was not using any of its operands. 2983 class OperandsHider : public TypePromotionAction { 2984 /// The list of original operands. 2985 SmallVector<Value *, 4> OriginalValues; 2986 2987 public: 2988 /// Remove \p Inst from the uses of the operands of \p Inst. 2989 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2990 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2991 unsigned NumOpnds = Inst->getNumOperands(); 2992 OriginalValues.reserve(NumOpnds); 2993 for (unsigned It = 0; It < NumOpnds; ++It) { 2994 // Save the current operand. 2995 Value *Val = Inst->getOperand(It); 2996 OriginalValues.push_back(Val); 2997 // Set a dummy one. 2998 // We could use OperandSetter here, but that would imply an overhead 2999 // that we are not willing to pay. 3000 Inst->setOperand(It, UndefValue::get(Val->getType())); 3001 } 3002 } 3003 3004 /// Restore the original list of uses. 3005 void undo() override { 3006 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3007 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3008 Inst->setOperand(It, OriginalValues[It]); 3009 } 3010 }; 3011 3012 /// Build a truncate instruction. 3013 class TruncBuilder : public TypePromotionAction { 3014 Value *Val; 3015 3016 public: 3017 /// Build a truncate instruction of \p Opnd producing a \p Ty 3018 /// result. 3019 /// trunc Opnd to Ty. 3020 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3021 IRBuilder<> Builder(Opnd); 3022 Builder.SetCurrentDebugLocation(DebugLoc()); 3023 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3024 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3025 } 3026 3027 /// Get the built value. 3028 Value *getBuiltValue() { return Val; } 3029 3030 /// Remove the built instruction. 3031 void undo() override { 3032 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3033 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3034 IVal->eraseFromParent(); 3035 } 3036 }; 3037 3038 /// Build a sign extension instruction. 3039 class SExtBuilder : public TypePromotionAction { 3040 Value *Val; 3041 3042 public: 3043 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3044 /// result. 3045 /// sext Opnd to Ty. 3046 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3047 : TypePromotionAction(InsertPt) { 3048 IRBuilder<> Builder(InsertPt); 3049 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3050 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3051 } 3052 3053 /// Get the built value. 3054 Value *getBuiltValue() { return Val; } 3055 3056 /// Remove the built instruction. 3057 void undo() override { 3058 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3059 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3060 IVal->eraseFromParent(); 3061 } 3062 }; 3063 3064 /// Build a zero extension instruction. 3065 class ZExtBuilder : public TypePromotionAction { 3066 Value *Val; 3067 3068 public: 3069 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3070 /// result. 3071 /// zext Opnd to Ty. 3072 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3073 : TypePromotionAction(InsertPt) { 3074 IRBuilder<> Builder(InsertPt); 3075 Builder.SetCurrentDebugLocation(DebugLoc()); 3076 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3077 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3078 } 3079 3080 /// Get the built value. 3081 Value *getBuiltValue() { return Val; } 3082 3083 /// Remove the built instruction. 3084 void undo() override { 3085 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3086 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3087 IVal->eraseFromParent(); 3088 } 3089 }; 3090 3091 /// Mutate an instruction to another type. 3092 class TypeMutator : public TypePromotionAction { 3093 /// Record the original type. 3094 Type *OrigTy; 3095 3096 public: 3097 /// Mutate the type of \p Inst into \p NewTy. 3098 TypeMutator(Instruction *Inst, Type *NewTy) 3099 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3100 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3101 << "\n"); 3102 Inst->mutateType(NewTy); 3103 } 3104 3105 /// Mutate the instruction back to its original type. 3106 void undo() override { 3107 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3108 << "\n"); 3109 Inst->mutateType(OrigTy); 3110 } 3111 }; 3112 3113 /// Replace the uses of an instruction by another instruction. 3114 class UsesReplacer : public TypePromotionAction { 3115 /// Helper structure to keep track of the replaced uses. 3116 struct InstructionAndIdx { 3117 /// The instruction using the instruction. 3118 Instruction *Inst; 3119 3120 /// The index where this instruction is used for Inst. 3121 unsigned Idx; 3122 3123 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3124 : Inst(Inst), Idx(Idx) {} 3125 }; 3126 3127 /// Keep track of the original uses (pair Instruction, Index). 3128 SmallVector<InstructionAndIdx, 4> OriginalUses; 3129 /// Keep track of the debug users. 3130 SmallVector<DbgValueInst *, 1> DbgValues; 3131 /// And non-instruction debug-users too. 3132 SmallVector<DPValue *, 1> DPValues; 3133 3134 /// Keep track of the new value so that we can undo it by replacing 3135 /// instances of the new value with the original value. 3136 Value *New; 3137 3138 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3139 3140 public: 3141 /// Replace all the use of \p Inst by \p New. 3142 UsesReplacer(Instruction *Inst, Value *New) 3143 : TypePromotionAction(Inst), New(New) { 3144 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3145 << "\n"); 3146 // Record the original uses. 3147 for (Use &U : Inst->uses()) { 3148 Instruction *UserI = cast<Instruction>(U.getUser()); 3149 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3150 } 3151 // Record the debug uses separately. They are not in the instruction's 3152 // use list, but they are replaced by RAUW. 3153 findDbgValues(DbgValues, Inst, &DPValues); 3154 3155 // Now, we can replace the uses. 3156 Inst->replaceAllUsesWith(New); 3157 } 3158 3159 /// Reassign the original uses of Inst to Inst. 3160 void undo() override { 3161 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3162 for (InstructionAndIdx &Use : OriginalUses) 3163 Use.Inst->setOperand(Use.Idx, Inst); 3164 // RAUW has replaced all original uses with references to the new value, 3165 // including the debug uses. Since we are undoing the replacements, 3166 // the original debug uses must also be reinstated to maintain the 3167 // correctness and utility of debug value instructions. 3168 for (auto *DVI : DbgValues) 3169 DVI->replaceVariableLocationOp(New, Inst); 3170 // Similar story with DPValues, the non-instruction representation of 3171 // dbg.values. 3172 for (DPValue *DPV : DPValues) // tested by transaction-test I'm adding 3173 DPV->replaceVariableLocationOp(New, Inst); 3174 } 3175 }; 3176 3177 /// Remove an instruction from the IR. 3178 class InstructionRemover : public TypePromotionAction { 3179 /// Original position of the instruction. 3180 InsertionHandler Inserter; 3181 3182 /// Helper structure to hide all the link to the instruction. In other 3183 /// words, this helps to do as if the instruction was removed. 3184 OperandsHider Hider; 3185 3186 /// Keep track of the uses replaced, if any. 3187 UsesReplacer *Replacer = nullptr; 3188 3189 /// Keep track of instructions removed. 3190 SetOfInstrs &RemovedInsts; 3191 3192 public: 3193 /// Remove all reference of \p Inst and optionally replace all its 3194 /// uses with New. 3195 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3196 /// \pre If !Inst->use_empty(), then New != nullptr 3197 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3198 Value *New = nullptr) 3199 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3200 RemovedInsts(RemovedInsts) { 3201 if (New) 3202 Replacer = new UsesReplacer(Inst, New); 3203 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3204 RemovedInsts.insert(Inst); 3205 /// The instructions removed here will be freed after completing 3206 /// optimizeBlock() for all blocks as we need to keep track of the 3207 /// removed instructions during promotion. 3208 Inst->removeFromParent(); 3209 } 3210 3211 ~InstructionRemover() override { delete Replacer; } 3212 3213 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3214 InstructionRemover(const InstructionRemover &other) = delete; 3215 3216 /// Resurrect the instruction and reassign it to the proper uses if 3217 /// new value was provided when build this action. 3218 void undo() override { 3219 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3220 Inserter.insert(Inst); 3221 if (Replacer) 3222 Replacer->undo(); 3223 Hider.undo(); 3224 RemovedInsts.erase(Inst); 3225 } 3226 }; 3227 3228 public: 3229 /// Restoration point. 3230 /// The restoration point is a pointer to an action instead of an iterator 3231 /// because the iterator may be invalidated but not the pointer. 3232 using ConstRestorationPt = const TypePromotionAction *; 3233 3234 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3235 : RemovedInsts(RemovedInsts) {} 3236 3237 /// Advocate every changes made in that transaction. Return true if any change 3238 /// happen. 3239 bool commit(); 3240 3241 /// Undo all the changes made after the given point. 3242 void rollback(ConstRestorationPt Point); 3243 3244 /// Get the current restoration point. 3245 ConstRestorationPt getRestorationPoint() const; 3246 3247 /// \name API for IR modification with state keeping to support rollback. 3248 /// @{ 3249 /// Same as Instruction::setOperand. 3250 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3251 3252 /// Same as Instruction::eraseFromParent. 3253 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3254 3255 /// Same as Value::replaceAllUsesWith. 3256 void replaceAllUsesWith(Instruction *Inst, Value *New); 3257 3258 /// Same as Value::mutateType. 3259 void mutateType(Instruction *Inst, Type *NewTy); 3260 3261 /// Same as IRBuilder::createTrunc. 3262 Value *createTrunc(Instruction *Opnd, Type *Ty); 3263 3264 /// Same as IRBuilder::createSExt. 3265 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3266 3267 /// Same as IRBuilder::createZExt. 3268 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3269 3270 private: 3271 /// The ordered list of actions made so far. 3272 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3273 3274 using CommitPt = 3275 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3276 3277 SetOfInstrs &RemovedInsts; 3278 }; 3279 3280 } // end anonymous namespace 3281 3282 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3283 Value *NewVal) { 3284 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3285 Inst, Idx, NewVal)); 3286 } 3287 3288 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3289 Value *NewVal) { 3290 Actions.push_back( 3291 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3292 Inst, RemovedInsts, NewVal)); 3293 } 3294 3295 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3296 Value *New) { 3297 Actions.push_back( 3298 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3299 } 3300 3301 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3302 Actions.push_back( 3303 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3304 } 3305 3306 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3307 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3308 Value *Val = Ptr->getBuiltValue(); 3309 Actions.push_back(std::move(Ptr)); 3310 return Val; 3311 } 3312 3313 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3314 Type *Ty) { 3315 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3316 Value *Val = Ptr->getBuiltValue(); 3317 Actions.push_back(std::move(Ptr)); 3318 return Val; 3319 } 3320 3321 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3322 Type *Ty) { 3323 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3324 Value *Val = Ptr->getBuiltValue(); 3325 Actions.push_back(std::move(Ptr)); 3326 return Val; 3327 } 3328 3329 TypePromotionTransaction::ConstRestorationPt 3330 TypePromotionTransaction::getRestorationPoint() const { 3331 return !Actions.empty() ? Actions.back().get() : nullptr; 3332 } 3333 3334 bool TypePromotionTransaction::commit() { 3335 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3336 Action->commit(); 3337 bool Modified = !Actions.empty(); 3338 Actions.clear(); 3339 return Modified; 3340 } 3341 3342 void TypePromotionTransaction::rollback( 3343 TypePromotionTransaction::ConstRestorationPt Point) { 3344 while (!Actions.empty() && Point != Actions.back().get()) { 3345 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3346 Curr->undo(); 3347 } 3348 } 3349 3350 namespace { 3351 3352 /// A helper class for matching addressing modes. 3353 /// 3354 /// This encapsulates the logic for matching the target-legal addressing modes. 3355 class AddressingModeMatcher { 3356 SmallVectorImpl<Instruction *> &AddrModeInsts; 3357 const TargetLowering &TLI; 3358 const TargetRegisterInfo &TRI; 3359 const DataLayout &DL; 3360 const LoopInfo &LI; 3361 const std::function<const DominatorTree &()> getDTFn; 3362 3363 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3364 /// the memory instruction that we're computing this address for. 3365 Type *AccessTy; 3366 unsigned AddrSpace; 3367 Instruction *MemoryInst; 3368 3369 /// This is the addressing mode that we're building up. This is 3370 /// part of the return value of this addressing mode matching stuff. 3371 ExtAddrMode &AddrMode; 3372 3373 /// The instructions inserted by other CodeGenPrepare optimizations. 3374 const SetOfInstrs &InsertedInsts; 3375 3376 /// A map from the instructions to their type before promotion. 3377 InstrToOrigTy &PromotedInsts; 3378 3379 /// The ongoing transaction where every action should be registered. 3380 TypePromotionTransaction &TPT; 3381 3382 // A GEP which has too large offset to be folded into the addressing mode. 3383 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3384 3385 /// This is set to true when we should not do profitability checks. 3386 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3387 bool IgnoreProfitability; 3388 3389 /// True if we are optimizing for size. 3390 bool OptSize = false; 3391 3392 ProfileSummaryInfo *PSI; 3393 BlockFrequencyInfo *BFI; 3394 3395 AddressingModeMatcher( 3396 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3397 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3398 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3399 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3400 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3401 TypePromotionTransaction &TPT, 3402 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3403 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3404 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3405 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3406 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3407 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3408 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3409 IgnoreProfitability = false; 3410 } 3411 3412 public: 3413 /// Find the maximal addressing mode that a load/store of V can fold, 3414 /// give an access type of AccessTy. This returns a list of involved 3415 /// instructions in AddrModeInsts. 3416 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3417 /// optimizations. 3418 /// \p PromotedInsts maps the instructions to their type before promotion. 3419 /// \p The ongoing transaction where every action should be registered. 3420 static ExtAddrMode 3421 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3422 SmallVectorImpl<Instruction *> &AddrModeInsts, 3423 const TargetLowering &TLI, const LoopInfo &LI, 3424 const std::function<const DominatorTree &()> getDTFn, 3425 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3426 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3427 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3428 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3429 ExtAddrMode Result; 3430 3431 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3432 AccessTy, AS, MemoryInst, Result, 3433 InsertedInsts, PromotedInsts, TPT, 3434 LargeOffsetGEP, OptSize, PSI, BFI) 3435 .matchAddr(V, 0); 3436 (void)Success; 3437 assert(Success && "Couldn't select *anything*?"); 3438 return Result; 3439 } 3440 3441 private: 3442 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3443 bool matchAddr(Value *Addr, unsigned Depth); 3444 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3445 bool *MovedAway = nullptr); 3446 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3447 ExtAddrMode &AMBefore, 3448 ExtAddrMode &AMAfter); 3449 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3450 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3451 Value *PromotedOperand) const; 3452 }; 3453 3454 class PhiNodeSet; 3455 3456 /// An iterator for PhiNodeSet. 3457 class PhiNodeSetIterator { 3458 PhiNodeSet *const Set; 3459 size_t CurrentIndex = 0; 3460 3461 public: 3462 /// The constructor. Start should point to either a valid element, or be equal 3463 /// to the size of the underlying SmallVector of the PhiNodeSet. 3464 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3465 PHINode *operator*() const; 3466 PhiNodeSetIterator &operator++(); 3467 bool operator==(const PhiNodeSetIterator &RHS) const; 3468 bool operator!=(const PhiNodeSetIterator &RHS) const; 3469 }; 3470 3471 /// Keeps a set of PHINodes. 3472 /// 3473 /// This is a minimal set implementation for a specific use case: 3474 /// It is very fast when there are very few elements, but also provides good 3475 /// performance when there are many. It is similar to SmallPtrSet, but also 3476 /// provides iteration by insertion order, which is deterministic and stable 3477 /// across runs. It is also similar to SmallSetVector, but provides removing 3478 /// elements in O(1) time. This is achieved by not actually removing the element 3479 /// from the underlying vector, so comes at the cost of using more memory, but 3480 /// that is fine, since PhiNodeSets are used as short lived objects. 3481 class PhiNodeSet { 3482 friend class PhiNodeSetIterator; 3483 3484 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3485 using iterator = PhiNodeSetIterator; 3486 3487 /// Keeps the elements in the order of their insertion in the underlying 3488 /// vector. To achieve constant time removal, it never deletes any element. 3489 SmallVector<PHINode *, 32> NodeList; 3490 3491 /// Keeps the elements in the underlying set implementation. This (and not the 3492 /// NodeList defined above) is the source of truth on whether an element 3493 /// is actually in the collection. 3494 MapType NodeMap; 3495 3496 /// Points to the first valid (not deleted) element when the set is not empty 3497 /// and the value is not zero. Equals to the size of the underlying vector 3498 /// when the set is empty. When the value is 0, as in the beginning, the 3499 /// first element may or may not be valid. 3500 size_t FirstValidElement = 0; 3501 3502 public: 3503 /// Inserts a new element to the collection. 3504 /// \returns true if the element is actually added, i.e. was not in the 3505 /// collection before the operation. 3506 bool insert(PHINode *Ptr) { 3507 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3508 NodeList.push_back(Ptr); 3509 return true; 3510 } 3511 return false; 3512 } 3513 3514 /// Removes the element from the collection. 3515 /// \returns whether the element is actually removed, i.e. was in the 3516 /// collection before the operation. 3517 bool erase(PHINode *Ptr) { 3518 if (NodeMap.erase(Ptr)) { 3519 SkipRemovedElements(FirstValidElement); 3520 return true; 3521 } 3522 return false; 3523 } 3524 3525 /// Removes all elements and clears the collection. 3526 void clear() { 3527 NodeMap.clear(); 3528 NodeList.clear(); 3529 FirstValidElement = 0; 3530 } 3531 3532 /// \returns an iterator that will iterate the elements in the order of 3533 /// insertion. 3534 iterator begin() { 3535 if (FirstValidElement == 0) 3536 SkipRemovedElements(FirstValidElement); 3537 return PhiNodeSetIterator(this, FirstValidElement); 3538 } 3539 3540 /// \returns an iterator that points to the end of the collection. 3541 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3542 3543 /// Returns the number of elements in the collection. 3544 size_t size() const { return NodeMap.size(); } 3545 3546 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3547 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3548 3549 private: 3550 /// Updates the CurrentIndex so that it will point to a valid element. 3551 /// 3552 /// If the element of NodeList at CurrentIndex is valid, it does not 3553 /// change it. If there are no more valid elements, it updates CurrentIndex 3554 /// to point to the end of the NodeList. 3555 void SkipRemovedElements(size_t &CurrentIndex) { 3556 while (CurrentIndex < NodeList.size()) { 3557 auto it = NodeMap.find(NodeList[CurrentIndex]); 3558 // If the element has been deleted and added again later, NodeMap will 3559 // point to a different index, so CurrentIndex will still be invalid. 3560 if (it != NodeMap.end() && it->second == CurrentIndex) 3561 break; 3562 ++CurrentIndex; 3563 } 3564 } 3565 }; 3566 3567 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3568 : Set(Set), CurrentIndex(Start) {} 3569 3570 PHINode *PhiNodeSetIterator::operator*() const { 3571 assert(CurrentIndex < Set->NodeList.size() && 3572 "PhiNodeSet access out of range"); 3573 return Set->NodeList[CurrentIndex]; 3574 } 3575 3576 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3577 assert(CurrentIndex < Set->NodeList.size() && 3578 "PhiNodeSet access out of range"); 3579 ++CurrentIndex; 3580 Set->SkipRemovedElements(CurrentIndex); 3581 return *this; 3582 } 3583 3584 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3585 return CurrentIndex == RHS.CurrentIndex; 3586 } 3587 3588 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3589 return !((*this) == RHS); 3590 } 3591 3592 /// Keep track of simplification of Phi nodes. 3593 /// Accept the set of all phi nodes and erase phi node from this set 3594 /// if it is simplified. 3595 class SimplificationTracker { 3596 DenseMap<Value *, Value *> Storage; 3597 const SimplifyQuery &SQ; 3598 // Tracks newly created Phi nodes. The elements are iterated by insertion 3599 // order. 3600 PhiNodeSet AllPhiNodes; 3601 // Tracks newly created Select nodes. 3602 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3603 3604 public: 3605 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3606 3607 Value *Get(Value *V) { 3608 do { 3609 auto SV = Storage.find(V); 3610 if (SV == Storage.end()) 3611 return V; 3612 V = SV->second; 3613 } while (true); 3614 } 3615 3616 Value *Simplify(Value *Val) { 3617 SmallVector<Value *, 32> WorkList; 3618 SmallPtrSet<Value *, 32> Visited; 3619 WorkList.push_back(Val); 3620 while (!WorkList.empty()) { 3621 auto *P = WorkList.pop_back_val(); 3622 if (!Visited.insert(P).second) 3623 continue; 3624 if (auto *PI = dyn_cast<Instruction>(P)) 3625 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3626 for (auto *U : PI->users()) 3627 WorkList.push_back(cast<Value>(U)); 3628 Put(PI, V); 3629 PI->replaceAllUsesWith(V); 3630 if (auto *PHI = dyn_cast<PHINode>(PI)) 3631 AllPhiNodes.erase(PHI); 3632 if (auto *Select = dyn_cast<SelectInst>(PI)) 3633 AllSelectNodes.erase(Select); 3634 PI->eraseFromParent(); 3635 } 3636 } 3637 return Get(Val); 3638 } 3639 3640 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3641 3642 void ReplacePhi(PHINode *From, PHINode *To) { 3643 Value *OldReplacement = Get(From); 3644 while (OldReplacement != From) { 3645 From = To; 3646 To = dyn_cast<PHINode>(OldReplacement); 3647 OldReplacement = Get(From); 3648 } 3649 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3650 Put(From, To); 3651 From->replaceAllUsesWith(To); 3652 AllPhiNodes.erase(From); 3653 From->eraseFromParent(); 3654 } 3655 3656 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3657 3658 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3659 3660 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3661 3662 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3663 3664 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3665 3666 void destroyNewNodes(Type *CommonType) { 3667 // For safe erasing, replace the uses with dummy value first. 3668 auto *Dummy = PoisonValue::get(CommonType); 3669 for (auto *I : AllPhiNodes) { 3670 I->replaceAllUsesWith(Dummy); 3671 I->eraseFromParent(); 3672 } 3673 AllPhiNodes.clear(); 3674 for (auto *I : AllSelectNodes) { 3675 I->replaceAllUsesWith(Dummy); 3676 I->eraseFromParent(); 3677 } 3678 AllSelectNodes.clear(); 3679 } 3680 }; 3681 3682 /// A helper class for combining addressing modes. 3683 class AddressingModeCombiner { 3684 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3685 typedef std::pair<PHINode *, PHINode *> PHIPair; 3686 3687 private: 3688 /// The addressing modes we've collected. 3689 SmallVector<ExtAddrMode, 16> AddrModes; 3690 3691 /// The field in which the AddrModes differ, when we have more than one. 3692 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3693 3694 /// Are the AddrModes that we have all just equal to their original values? 3695 bool AllAddrModesTrivial = true; 3696 3697 /// Common Type for all different fields in addressing modes. 3698 Type *CommonType = nullptr; 3699 3700 /// SimplifyQuery for simplifyInstruction utility. 3701 const SimplifyQuery &SQ; 3702 3703 /// Original Address. 3704 Value *Original; 3705 3706 /// Common value among addresses 3707 Value *CommonValue = nullptr; 3708 3709 public: 3710 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3711 : SQ(_SQ), Original(OriginalValue) {} 3712 3713 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 3714 3715 /// Get the combined AddrMode 3716 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3717 3718 /// Add a new AddrMode if it's compatible with the AddrModes we already 3719 /// have. 3720 /// \return True iff we succeeded in doing so. 3721 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3722 // Take note of if we have any non-trivial AddrModes, as we need to detect 3723 // when all AddrModes are trivial as then we would introduce a phi or select 3724 // which just duplicates what's already there. 3725 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3726 3727 // If this is the first addrmode then everything is fine. 3728 if (AddrModes.empty()) { 3729 AddrModes.emplace_back(NewAddrMode); 3730 return true; 3731 } 3732 3733 // Figure out how different this is from the other address modes, which we 3734 // can do just by comparing against the first one given that we only care 3735 // about the cumulative difference. 3736 ExtAddrMode::FieldName ThisDifferentField = 3737 AddrModes[0].compare(NewAddrMode); 3738 if (DifferentField == ExtAddrMode::NoField) 3739 DifferentField = ThisDifferentField; 3740 else if (DifferentField != ThisDifferentField) 3741 DifferentField = ExtAddrMode::MultipleFields; 3742 3743 // If NewAddrMode differs in more than one dimension we cannot handle it. 3744 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3745 3746 // If Scale Field is different then we reject. 3747 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3748 3749 // We also must reject the case when base offset is different and 3750 // scale reg is not null, we cannot handle this case due to merge of 3751 // different offsets will be used as ScaleReg. 3752 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3753 !NewAddrMode.ScaledReg); 3754 3755 // We also must reject the case when GV is different and BaseReg installed 3756 // due to we want to use base reg as a merge of GV values. 3757 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3758 !NewAddrMode.HasBaseReg); 3759 3760 // Even if NewAddMode is the same we still need to collect it due to 3761 // original value is different. And later we will need all original values 3762 // as anchors during finding the common Phi node. 3763 if (CanHandle) 3764 AddrModes.emplace_back(NewAddrMode); 3765 else 3766 AddrModes.clear(); 3767 3768 return CanHandle; 3769 } 3770 3771 /// Combine the addressing modes we've collected into a single 3772 /// addressing mode. 3773 /// \return True iff we successfully combined them or we only had one so 3774 /// didn't need to combine them anyway. 3775 bool combineAddrModes() { 3776 // If we have no AddrModes then they can't be combined. 3777 if (AddrModes.size() == 0) 3778 return false; 3779 3780 // A single AddrMode can trivially be combined. 3781 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3782 return true; 3783 3784 // If the AddrModes we collected are all just equal to the value they are 3785 // derived from then combining them wouldn't do anything useful. 3786 if (AllAddrModesTrivial) 3787 return false; 3788 3789 if (!addrModeCombiningAllowed()) 3790 return false; 3791 3792 // Build a map between <original value, basic block where we saw it> to 3793 // value of base register. 3794 // Bail out if there is no common type. 3795 FoldAddrToValueMapping Map; 3796 if (!initializeMap(Map)) 3797 return false; 3798 3799 CommonValue = findCommon(Map); 3800 if (CommonValue) 3801 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3802 return CommonValue != nullptr; 3803 } 3804 3805 private: 3806 /// `CommonValue` may be a placeholder inserted by us. 3807 /// If the placeholder is not used, we should remove this dead instruction. 3808 void eraseCommonValueIfDead() { 3809 if (CommonValue && CommonValue->getNumUses() == 0) 3810 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 3811 CommonInst->eraseFromParent(); 3812 } 3813 3814 /// Initialize Map with anchor values. For address seen 3815 /// we set the value of different field saw in this address. 3816 /// At the same time we find a common type for different field we will 3817 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3818 /// Return false if there is no common type found. 3819 bool initializeMap(FoldAddrToValueMapping &Map) { 3820 // Keep track of keys where the value is null. We will need to replace it 3821 // with constant null when we know the common type. 3822 SmallVector<Value *, 2> NullValue; 3823 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3824 for (auto &AM : AddrModes) { 3825 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3826 if (DV) { 3827 auto *Type = DV->getType(); 3828 if (CommonType && CommonType != Type) 3829 return false; 3830 CommonType = Type; 3831 Map[AM.OriginalValue] = DV; 3832 } else { 3833 NullValue.push_back(AM.OriginalValue); 3834 } 3835 } 3836 assert(CommonType && "At least one non-null value must be!"); 3837 for (auto *V : NullValue) 3838 Map[V] = Constant::getNullValue(CommonType); 3839 return true; 3840 } 3841 3842 /// We have mapping between value A and other value B where B was a field in 3843 /// addressing mode represented by A. Also we have an original value C 3844 /// representing an address we start with. Traversing from C through phi and 3845 /// selects we ended up with A's in a map. This utility function tries to find 3846 /// a value V which is a field in addressing mode C and traversing through phi 3847 /// nodes and selects we will end up in corresponded values B in a map. 3848 /// The utility will create a new Phi/Selects if needed. 3849 // The simple example looks as follows: 3850 // BB1: 3851 // p1 = b1 + 40 3852 // br cond BB2, BB3 3853 // BB2: 3854 // p2 = b2 + 40 3855 // br BB3 3856 // BB3: 3857 // p = phi [p1, BB1], [p2, BB2] 3858 // v = load p 3859 // Map is 3860 // p1 -> b1 3861 // p2 -> b2 3862 // Request is 3863 // p -> ? 3864 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3865 Value *findCommon(FoldAddrToValueMapping &Map) { 3866 // Tracks the simplification of newly created phi nodes. The reason we use 3867 // this mapping is because we will add new created Phi nodes in AddrToBase. 3868 // Simplification of Phi nodes is recursive, so some Phi node may 3869 // be simplified after we added it to AddrToBase. In reality this 3870 // simplification is possible only if original phi/selects were not 3871 // simplified yet. 3872 // Using this mapping we can find the current value in AddrToBase. 3873 SimplificationTracker ST(SQ); 3874 3875 // First step, DFS to create PHI nodes for all intermediate blocks. 3876 // Also fill traverse order for the second step. 3877 SmallVector<Value *, 32> TraverseOrder; 3878 InsertPlaceholders(Map, TraverseOrder, ST); 3879 3880 // Second Step, fill new nodes by merged values and simplify if possible. 3881 FillPlaceholders(Map, TraverseOrder, ST); 3882 3883 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3884 ST.destroyNewNodes(CommonType); 3885 return nullptr; 3886 } 3887 3888 // Now we'd like to match New Phi nodes to existed ones. 3889 unsigned PhiNotMatchedCount = 0; 3890 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3891 ST.destroyNewNodes(CommonType); 3892 return nullptr; 3893 } 3894 3895 auto *Result = ST.Get(Map.find(Original)->second); 3896 if (Result) { 3897 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3898 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3899 } 3900 return Result; 3901 } 3902 3903 /// Try to match PHI node to Candidate. 3904 /// Matcher tracks the matched Phi nodes. 3905 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3906 SmallSetVector<PHIPair, 8> &Matcher, 3907 PhiNodeSet &PhiNodesToMatch) { 3908 SmallVector<PHIPair, 8> WorkList; 3909 Matcher.insert({PHI, Candidate}); 3910 SmallSet<PHINode *, 8> MatchedPHIs; 3911 MatchedPHIs.insert(PHI); 3912 WorkList.push_back({PHI, Candidate}); 3913 SmallSet<PHIPair, 8> Visited; 3914 while (!WorkList.empty()) { 3915 auto Item = WorkList.pop_back_val(); 3916 if (!Visited.insert(Item).second) 3917 continue; 3918 // We iterate over all incoming values to Phi to compare them. 3919 // If values are different and both of them Phi and the first one is a 3920 // Phi we added (subject to match) and both of them is in the same basic 3921 // block then we can match our pair if values match. So we state that 3922 // these values match and add it to work list to verify that. 3923 for (auto *B : Item.first->blocks()) { 3924 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3925 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3926 if (FirstValue == SecondValue) 3927 continue; 3928 3929 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3930 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3931 3932 // One of them is not Phi or 3933 // The first one is not Phi node from the set we'd like to match or 3934 // Phi nodes from different basic blocks then 3935 // we will not be able to match. 3936 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3937 FirstPhi->getParent() != SecondPhi->getParent()) 3938 return false; 3939 3940 // If we already matched them then continue. 3941 if (Matcher.count({FirstPhi, SecondPhi})) 3942 continue; 3943 // So the values are different and does not match. So we need them to 3944 // match. (But we register no more than one match per PHI node, so that 3945 // we won't later try to replace them twice.) 3946 if (MatchedPHIs.insert(FirstPhi).second) 3947 Matcher.insert({FirstPhi, SecondPhi}); 3948 // But me must check it. 3949 WorkList.push_back({FirstPhi, SecondPhi}); 3950 } 3951 } 3952 return true; 3953 } 3954 3955 /// For the given set of PHI nodes (in the SimplificationTracker) try 3956 /// to find their equivalents. 3957 /// Returns false if this matching fails and creation of new Phi is disabled. 3958 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3959 unsigned &PhiNotMatchedCount) { 3960 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3961 // order, so the replacements (ReplacePhi) are also done in a deterministic 3962 // order. 3963 SmallSetVector<PHIPair, 8> Matched; 3964 SmallPtrSet<PHINode *, 8> WillNotMatch; 3965 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3966 while (PhiNodesToMatch.size()) { 3967 PHINode *PHI = *PhiNodesToMatch.begin(); 3968 3969 // Add us, if no Phi nodes in the basic block we do not match. 3970 WillNotMatch.clear(); 3971 WillNotMatch.insert(PHI); 3972 3973 // Traverse all Phis until we found equivalent or fail to do that. 3974 bool IsMatched = false; 3975 for (auto &P : PHI->getParent()->phis()) { 3976 // Skip new Phi nodes. 3977 if (PhiNodesToMatch.count(&P)) 3978 continue; 3979 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3980 break; 3981 // If it does not match, collect all Phi nodes from matcher. 3982 // if we end up with no match, them all these Phi nodes will not match 3983 // later. 3984 for (auto M : Matched) 3985 WillNotMatch.insert(M.first); 3986 Matched.clear(); 3987 } 3988 if (IsMatched) { 3989 // Replace all matched values and erase them. 3990 for (auto MV : Matched) 3991 ST.ReplacePhi(MV.first, MV.second); 3992 Matched.clear(); 3993 continue; 3994 } 3995 // If we are not allowed to create new nodes then bail out. 3996 if (!AllowNewPhiNodes) 3997 return false; 3998 // Just remove all seen values in matcher. They will not match anything. 3999 PhiNotMatchedCount += WillNotMatch.size(); 4000 for (auto *P : WillNotMatch) 4001 PhiNodesToMatch.erase(P); 4002 } 4003 return true; 4004 } 4005 /// Fill the placeholders with values from predecessors and simplify them. 4006 void FillPlaceholders(FoldAddrToValueMapping &Map, 4007 SmallVectorImpl<Value *> &TraverseOrder, 4008 SimplificationTracker &ST) { 4009 while (!TraverseOrder.empty()) { 4010 Value *Current = TraverseOrder.pop_back_val(); 4011 assert(Map.contains(Current) && "No node to fill!!!"); 4012 Value *V = Map[Current]; 4013 4014 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4015 // CurrentValue also must be Select. 4016 auto *CurrentSelect = cast<SelectInst>(Current); 4017 auto *TrueValue = CurrentSelect->getTrueValue(); 4018 assert(Map.contains(TrueValue) && "No True Value!"); 4019 Select->setTrueValue(ST.Get(Map[TrueValue])); 4020 auto *FalseValue = CurrentSelect->getFalseValue(); 4021 assert(Map.contains(FalseValue) && "No False Value!"); 4022 Select->setFalseValue(ST.Get(Map[FalseValue])); 4023 } else { 4024 // Must be a Phi node then. 4025 auto *PHI = cast<PHINode>(V); 4026 // Fill the Phi node with values from predecessors. 4027 for (auto *B : predecessors(PHI->getParent())) { 4028 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4029 assert(Map.contains(PV) && "No predecessor Value!"); 4030 PHI->addIncoming(ST.Get(Map[PV]), B); 4031 } 4032 } 4033 Map[Current] = ST.Simplify(V); 4034 } 4035 } 4036 4037 /// Starting from original value recursively iterates over def-use chain up to 4038 /// known ending values represented in a map. For each traversed phi/select 4039 /// inserts a placeholder Phi or Select. 4040 /// Reports all new created Phi/Select nodes by adding them to set. 4041 /// Also reports and order in what values have been traversed. 4042 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4043 SmallVectorImpl<Value *> &TraverseOrder, 4044 SimplificationTracker &ST) { 4045 SmallVector<Value *, 32> Worklist; 4046 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4047 "Address must be a Phi or Select node"); 4048 auto *Dummy = PoisonValue::get(CommonType); 4049 Worklist.push_back(Original); 4050 while (!Worklist.empty()) { 4051 Value *Current = Worklist.pop_back_val(); 4052 // if it is already visited or it is an ending value then skip it. 4053 if (Map.contains(Current)) 4054 continue; 4055 TraverseOrder.push_back(Current); 4056 4057 // CurrentValue must be a Phi node or select. All others must be covered 4058 // by anchors. 4059 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4060 // Is it OK to get metadata from OrigSelect?! 4061 // Create a Select placeholder with dummy value. 4062 SelectInst *Select = SelectInst::Create( 4063 CurrentSelect->getCondition(), Dummy, Dummy, 4064 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 4065 Map[Current] = Select; 4066 ST.insertNewSelect(Select); 4067 // We are interested in True and False values. 4068 Worklist.push_back(CurrentSelect->getTrueValue()); 4069 Worklist.push_back(CurrentSelect->getFalseValue()); 4070 } else { 4071 // It must be a Phi node then. 4072 PHINode *CurrentPhi = cast<PHINode>(Current); 4073 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4074 PHINode *PHI = 4075 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 4076 Map[Current] = PHI; 4077 ST.insertNewPhi(PHI); 4078 append_range(Worklist, CurrentPhi->incoming_values()); 4079 } 4080 } 4081 } 4082 4083 bool addrModeCombiningAllowed() { 4084 if (DisableComplexAddrModes) 4085 return false; 4086 switch (DifferentField) { 4087 default: 4088 return false; 4089 case ExtAddrMode::BaseRegField: 4090 return AddrSinkCombineBaseReg; 4091 case ExtAddrMode::BaseGVField: 4092 return AddrSinkCombineBaseGV; 4093 case ExtAddrMode::BaseOffsField: 4094 return AddrSinkCombineBaseOffs; 4095 case ExtAddrMode::ScaledRegField: 4096 return AddrSinkCombineScaledReg; 4097 } 4098 } 4099 }; 4100 } // end anonymous namespace 4101 4102 /// Try adding ScaleReg*Scale to the current addressing mode. 4103 /// Return true and update AddrMode if this addr mode is legal for the target, 4104 /// false if not. 4105 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4106 unsigned Depth) { 4107 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4108 // mode. Just process that directly. 4109 if (Scale == 1) 4110 return matchAddr(ScaleReg, Depth); 4111 4112 // If the scale is 0, it takes nothing to add this. 4113 if (Scale == 0) 4114 return true; 4115 4116 // If we already have a scale of this value, we can add to it, otherwise, we 4117 // need an available scale field. 4118 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4119 return false; 4120 4121 ExtAddrMode TestAddrMode = AddrMode; 4122 4123 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4124 // [A+B + A*7] -> [B+A*8]. 4125 TestAddrMode.Scale += Scale; 4126 TestAddrMode.ScaledReg = ScaleReg; 4127 4128 // If the new address isn't legal, bail out. 4129 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4130 return false; 4131 4132 // It was legal, so commit it. 4133 AddrMode = TestAddrMode; 4134 4135 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4136 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4137 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4138 // go any further: we can reuse it and cannot eliminate it. 4139 ConstantInt *CI = nullptr; 4140 Value *AddLHS = nullptr; 4141 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4142 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4143 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4144 TestAddrMode.InBounds = false; 4145 TestAddrMode.ScaledReg = AddLHS; 4146 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4147 4148 // If this addressing mode is legal, commit it and remember that we folded 4149 // this instruction. 4150 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4151 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4152 AddrMode = TestAddrMode; 4153 return true; 4154 } 4155 // Restore status quo. 4156 TestAddrMode = AddrMode; 4157 } 4158 4159 // If this is an add recurrence with a constant step, return the increment 4160 // instruction and the canonicalized step. 4161 auto GetConstantStep = 4162 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4163 auto *PN = dyn_cast<PHINode>(V); 4164 if (!PN) 4165 return std::nullopt; 4166 auto IVInc = getIVIncrement(PN, &LI); 4167 if (!IVInc) 4168 return std::nullopt; 4169 // TODO: The result of the intrinsics above is two-complement. However when 4170 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4171 // If it has nuw or nsw flags, we need to make sure that these flags are 4172 // inferrable at the point of memory instruction. Otherwise we are replacing 4173 // well-defined two-complement computation with poison. Currently, to avoid 4174 // potentially complex analysis needed to prove this, we reject such cases. 4175 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4176 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4177 return std::nullopt; 4178 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4179 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4180 return std::nullopt; 4181 }; 4182 4183 // Try to account for the following special case: 4184 // 1. ScaleReg is an inductive variable; 4185 // 2. We use it with non-zero offset; 4186 // 3. IV's increment is available at the point of memory instruction. 4187 // 4188 // In this case, we may reuse the IV increment instead of the IV Phi to 4189 // achieve the following advantages: 4190 // 1. If IV step matches the offset, we will have no need in the offset; 4191 // 2. Even if they don't match, we will reduce the overlap of living IV 4192 // and IV increment, that will potentially lead to better register 4193 // assignment. 4194 if (AddrMode.BaseOffs) { 4195 if (auto IVStep = GetConstantStep(ScaleReg)) { 4196 Instruction *IVInc = IVStep->first; 4197 // The following assert is important to ensure a lack of infinite loops. 4198 // This transforms is (intentionally) the inverse of the one just above. 4199 // If they don't agree on the definition of an increment, we'd alternate 4200 // back and forth indefinitely. 4201 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4202 APInt Step = IVStep->second; 4203 APInt Offset = Step * AddrMode.Scale; 4204 if (Offset.isSignedIntN(64)) { 4205 TestAddrMode.InBounds = false; 4206 TestAddrMode.ScaledReg = IVInc; 4207 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4208 // If this addressing mode is legal, commit it.. 4209 // (Note that we defer the (expensive) domtree base legality check 4210 // to the very last possible point.) 4211 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4212 getDTFn().dominates(IVInc, MemoryInst)) { 4213 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4214 AddrMode = TestAddrMode; 4215 return true; 4216 } 4217 // Restore status quo. 4218 TestAddrMode = AddrMode; 4219 } 4220 } 4221 } 4222 4223 // Otherwise, just return what we have. 4224 return true; 4225 } 4226 4227 /// This is a little filter, which returns true if an addressing computation 4228 /// involving I might be folded into a load/store accessing it. 4229 /// This doesn't need to be perfect, but needs to accept at least 4230 /// the set of instructions that MatchOperationAddr can. 4231 static bool MightBeFoldableInst(Instruction *I) { 4232 switch (I->getOpcode()) { 4233 case Instruction::BitCast: 4234 case Instruction::AddrSpaceCast: 4235 // Don't touch identity bitcasts. 4236 if (I->getType() == I->getOperand(0)->getType()) 4237 return false; 4238 return I->getType()->isIntOrPtrTy(); 4239 case Instruction::PtrToInt: 4240 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4241 return true; 4242 case Instruction::IntToPtr: 4243 // We know the input is intptr_t, so this is foldable. 4244 return true; 4245 case Instruction::Add: 4246 return true; 4247 case Instruction::Mul: 4248 case Instruction::Shl: 4249 // Can only handle X*C and X << C. 4250 return isa<ConstantInt>(I->getOperand(1)); 4251 case Instruction::GetElementPtr: 4252 return true; 4253 default: 4254 return false; 4255 } 4256 } 4257 4258 /// Check whether or not \p Val is a legal instruction for \p TLI. 4259 /// \note \p Val is assumed to be the product of some type promotion. 4260 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4261 /// to be legal, as the non-promoted value would have had the same state. 4262 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4263 const DataLayout &DL, Value *Val) { 4264 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4265 if (!PromotedInst) 4266 return false; 4267 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4268 // If the ISDOpcode is undefined, it was undefined before the promotion. 4269 if (!ISDOpcode) 4270 return true; 4271 // Otherwise, check if the promoted instruction is legal or not. 4272 return TLI.isOperationLegalOrCustom( 4273 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4274 } 4275 4276 namespace { 4277 4278 /// Hepler class to perform type promotion. 4279 class TypePromotionHelper { 4280 /// Utility function to add a promoted instruction \p ExtOpnd to 4281 /// \p PromotedInsts and record the type of extension we have seen. 4282 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4283 Instruction *ExtOpnd, bool IsSExt) { 4284 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4285 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4286 if (It != PromotedInsts.end()) { 4287 // If the new extension is same as original, the information in 4288 // PromotedInsts[ExtOpnd] is still correct. 4289 if (It->second.getInt() == ExtTy) 4290 return; 4291 4292 // Now the new extension is different from old extension, we make 4293 // the type information invalid by setting extension type to 4294 // BothExtension. 4295 ExtTy = BothExtension; 4296 } 4297 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4298 } 4299 4300 /// Utility function to query the original type of instruction \p Opnd 4301 /// with a matched extension type. If the extension doesn't match, we 4302 /// cannot use the information we had on the original type. 4303 /// BothExtension doesn't match any extension type. 4304 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4305 Instruction *Opnd, bool IsSExt) { 4306 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4307 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4308 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4309 return It->second.getPointer(); 4310 return nullptr; 4311 } 4312 4313 /// Utility function to check whether or not a sign or zero extension 4314 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4315 /// either using the operands of \p Inst or promoting \p Inst. 4316 /// The type of the extension is defined by \p IsSExt. 4317 /// In other words, check if: 4318 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4319 /// #1 Promotion applies: 4320 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4321 /// #2 Operand reuses: 4322 /// ext opnd1 to ConsideredExtType. 4323 /// \p PromotedInsts maps the instructions to their type before promotion. 4324 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4325 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4326 4327 /// Utility function to determine if \p OpIdx should be promoted when 4328 /// promoting \p Inst. 4329 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4330 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4331 } 4332 4333 /// Utility function to promote the operand of \p Ext when this 4334 /// operand is a promotable trunc or sext or zext. 4335 /// \p PromotedInsts maps the instructions to their type before promotion. 4336 /// \p CreatedInstsCost[out] contains the cost of all instructions 4337 /// created to promote the operand of Ext. 4338 /// Newly added extensions are inserted in \p Exts. 4339 /// Newly added truncates are inserted in \p Truncs. 4340 /// Should never be called directly. 4341 /// \return The promoted value which is used instead of Ext. 4342 static Value *promoteOperandForTruncAndAnyExt( 4343 Instruction *Ext, TypePromotionTransaction &TPT, 4344 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4345 SmallVectorImpl<Instruction *> *Exts, 4346 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4347 4348 /// Utility function to promote the operand of \p Ext when this 4349 /// operand is promotable and is not a supported trunc or sext. 4350 /// \p PromotedInsts maps the instructions to their type before promotion. 4351 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4352 /// created to promote the operand of Ext. 4353 /// Newly added extensions are inserted in \p Exts. 4354 /// Newly added truncates are inserted in \p Truncs. 4355 /// Should never be called directly. 4356 /// \return The promoted value which is used instead of Ext. 4357 static Value *promoteOperandForOther(Instruction *Ext, 4358 TypePromotionTransaction &TPT, 4359 InstrToOrigTy &PromotedInsts, 4360 unsigned &CreatedInstsCost, 4361 SmallVectorImpl<Instruction *> *Exts, 4362 SmallVectorImpl<Instruction *> *Truncs, 4363 const TargetLowering &TLI, bool IsSExt); 4364 4365 /// \see promoteOperandForOther. 4366 static Value *signExtendOperandForOther( 4367 Instruction *Ext, TypePromotionTransaction &TPT, 4368 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4369 SmallVectorImpl<Instruction *> *Exts, 4370 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4371 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4372 Exts, Truncs, TLI, true); 4373 } 4374 4375 /// \see promoteOperandForOther. 4376 static Value *zeroExtendOperandForOther( 4377 Instruction *Ext, TypePromotionTransaction &TPT, 4378 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4379 SmallVectorImpl<Instruction *> *Exts, 4380 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4381 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4382 Exts, Truncs, TLI, false); 4383 } 4384 4385 public: 4386 /// Type for the utility function that promotes the operand of Ext. 4387 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4388 InstrToOrigTy &PromotedInsts, 4389 unsigned &CreatedInstsCost, 4390 SmallVectorImpl<Instruction *> *Exts, 4391 SmallVectorImpl<Instruction *> *Truncs, 4392 const TargetLowering &TLI); 4393 4394 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4395 /// action to promote the operand of \p Ext instead of using Ext. 4396 /// \return NULL if no promotable action is possible with the current 4397 /// sign extension. 4398 /// \p InsertedInsts keeps track of all the instructions inserted by the 4399 /// other CodeGenPrepare optimizations. This information is important 4400 /// because we do not want to promote these instructions as CodeGenPrepare 4401 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4402 /// \p PromotedInsts maps the instructions to their type before promotion. 4403 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4404 const TargetLowering &TLI, 4405 const InstrToOrigTy &PromotedInsts); 4406 }; 4407 4408 } // end anonymous namespace 4409 4410 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4411 Type *ConsideredExtType, 4412 const InstrToOrigTy &PromotedInsts, 4413 bool IsSExt) { 4414 // The promotion helper does not know how to deal with vector types yet. 4415 // To be able to fix that, we would need to fix the places where we 4416 // statically extend, e.g., constants and such. 4417 if (Inst->getType()->isVectorTy()) 4418 return false; 4419 4420 // We can always get through zext. 4421 if (isa<ZExtInst>(Inst)) 4422 return true; 4423 4424 // sext(sext) is ok too. 4425 if (IsSExt && isa<SExtInst>(Inst)) 4426 return true; 4427 4428 // We can get through binary operator, if it is legal. In other words, the 4429 // binary operator must have a nuw or nsw flag. 4430 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4431 if (isa<OverflowingBinaryOperator>(BinOp) && 4432 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4433 (IsSExt && BinOp->hasNoSignedWrap()))) 4434 return true; 4435 4436 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4437 if ((Inst->getOpcode() == Instruction::And || 4438 Inst->getOpcode() == Instruction::Or)) 4439 return true; 4440 4441 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4442 if (Inst->getOpcode() == Instruction::Xor) { 4443 // Make sure it is not a NOT. 4444 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4445 if (!Cst->getValue().isAllOnes()) 4446 return true; 4447 } 4448 4449 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4450 // It may change a poisoned value into a regular value, like 4451 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4452 // poisoned value regular value 4453 // It should be OK since undef covers valid value. 4454 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4455 return true; 4456 4457 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4458 // It may change a poisoned value into a regular value, like 4459 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4460 // poisoned value regular value 4461 // It should be OK since undef covers valid value. 4462 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4463 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4464 if (ExtInst->hasOneUse()) { 4465 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4466 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4467 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4468 if (Cst && 4469 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4470 return true; 4471 } 4472 } 4473 } 4474 4475 // Check if we can do the following simplification. 4476 // ext(trunc(opnd)) --> ext(opnd) 4477 if (!isa<TruncInst>(Inst)) 4478 return false; 4479 4480 Value *OpndVal = Inst->getOperand(0); 4481 // Check if we can use this operand in the extension. 4482 // If the type is larger than the result type of the extension, we cannot. 4483 if (!OpndVal->getType()->isIntegerTy() || 4484 OpndVal->getType()->getIntegerBitWidth() > 4485 ConsideredExtType->getIntegerBitWidth()) 4486 return false; 4487 4488 // If the operand of the truncate is not an instruction, we will not have 4489 // any information on the dropped bits. 4490 // (Actually we could for constant but it is not worth the extra logic). 4491 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4492 if (!Opnd) 4493 return false; 4494 4495 // Check if the source of the type is narrow enough. 4496 // I.e., check that trunc just drops extended bits of the same kind of 4497 // the extension. 4498 // #1 get the type of the operand and check the kind of the extended bits. 4499 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4500 if (OpndType) 4501 ; 4502 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4503 OpndType = Opnd->getOperand(0)->getType(); 4504 else 4505 return false; 4506 4507 // #2 check that the truncate just drops extended bits. 4508 return Inst->getType()->getIntegerBitWidth() >= 4509 OpndType->getIntegerBitWidth(); 4510 } 4511 4512 TypePromotionHelper::Action TypePromotionHelper::getAction( 4513 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4514 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4515 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4516 "Unexpected instruction type"); 4517 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4518 Type *ExtTy = Ext->getType(); 4519 bool IsSExt = isa<SExtInst>(Ext); 4520 // If the operand of the extension is not an instruction, we cannot 4521 // get through. 4522 // If it, check we can get through. 4523 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4524 return nullptr; 4525 4526 // Do not promote if the operand has been added by codegenprepare. 4527 // Otherwise, it means we are undoing an optimization that is likely to be 4528 // redone, thus causing potential infinite loop. 4529 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4530 return nullptr; 4531 4532 // SExt or Trunc instructions. 4533 // Return the related handler. 4534 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4535 isa<ZExtInst>(ExtOpnd)) 4536 return promoteOperandForTruncAndAnyExt; 4537 4538 // Regular instruction. 4539 // Abort early if we will have to insert non-free instructions. 4540 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4541 return nullptr; 4542 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4543 } 4544 4545 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4546 Instruction *SExt, TypePromotionTransaction &TPT, 4547 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4548 SmallVectorImpl<Instruction *> *Exts, 4549 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4550 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4551 // get through it and this method should not be called. 4552 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4553 Value *ExtVal = SExt; 4554 bool HasMergedNonFreeExt = false; 4555 if (isa<ZExtInst>(SExtOpnd)) { 4556 // Replace s|zext(zext(opnd)) 4557 // => zext(opnd). 4558 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4559 Value *ZExt = 4560 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4561 TPT.replaceAllUsesWith(SExt, ZExt); 4562 TPT.eraseInstruction(SExt); 4563 ExtVal = ZExt; 4564 } else { 4565 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4566 // => z|sext(opnd). 4567 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4568 } 4569 CreatedInstsCost = 0; 4570 4571 // Remove dead code. 4572 if (SExtOpnd->use_empty()) 4573 TPT.eraseInstruction(SExtOpnd); 4574 4575 // Check if the extension is still needed. 4576 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4577 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4578 if (ExtInst) { 4579 if (Exts) 4580 Exts->push_back(ExtInst); 4581 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4582 } 4583 return ExtVal; 4584 } 4585 4586 // At this point we have: ext ty opnd to ty. 4587 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4588 Value *NextVal = ExtInst->getOperand(0); 4589 TPT.eraseInstruction(ExtInst, NextVal); 4590 return NextVal; 4591 } 4592 4593 Value *TypePromotionHelper::promoteOperandForOther( 4594 Instruction *Ext, TypePromotionTransaction &TPT, 4595 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4596 SmallVectorImpl<Instruction *> *Exts, 4597 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4598 bool IsSExt) { 4599 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4600 // get through it and this method should not be called. 4601 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4602 CreatedInstsCost = 0; 4603 if (!ExtOpnd->hasOneUse()) { 4604 // ExtOpnd will be promoted. 4605 // All its uses, but Ext, will need to use a truncated value of the 4606 // promoted version. 4607 // Create the truncate now. 4608 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4609 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4610 // Insert it just after the definition. 4611 ITrunc->moveAfter(ExtOpnd); 4612 if (Truncs) 4613 Truncs->push_back(ITrunc); 4614 } 4615 4616 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4617 // Restore the operand of Ext (which has been replaced by the previous call 4618 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4619 TPT.setOperand(Ext, 0, ExtOpnd); 4620 } 4621 4622 // Get through the Instruction: 4623 // 1. Update its type. 4624 // 2. Replace the uses of Ext by Inst. 4625 // 3. Extend each operand that needs to be extended. 4626 4627 // Remember the original type of the instruction before promotion. 4628 // This is useful to know that the high bits are sign extended bits. 4629 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4630 // Step #1. 4631 TPT.mutateType(ExtOpnd, Ext->getType()); 4632 // Step #2. 4633 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4634 // Step #3. 4635 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4636 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4637 ++OpIdx) { 4638 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4639 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4640 !shouldExtOperand(ExtOpnd, OpIdx)) { 4641 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4642 continue; 4643 } 4644 // Check if we can statically extend the operand. 4645 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4646 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4647 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4648 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4649 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4650 : Cst->getValue().zext(BitWidth); 4651 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4652 continue; 4653 } 4654 // UndefValue are typed, so we have to statically sign extend them. 4655 if (isa<UndefValue>(Opnd)) { 4656 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4657 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4658 continue; 4659 } 4660 4661 // Otherwise we have to explicitly sign extend the operand. 4662 Value *ValForExtOpnd = IsSExt 4663 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 4664 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 4665 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4666 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 4667 if (!InstForExtOpnd) 4668 continue; 4669 4670 if (Exts) 4671 Exts->push_back(InstForExtOpnd); 4672 4673 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 4674 } 4675 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4676 TPT.eraseInstruction(Ext); 4677 return ExtOpnd; 4678 } 4679 4680 /// Check whether or not promoting an instruction to a wider type is profitable. 4681 /// \p NewCost gives the cost of extension instructions created by the 4682 /// promotion. 4683 /// \p OldCost gives the cost of extension instructions before the promotion 4684 /// plus the number of instructions that have been 4685 /// matched in the addressing mode the promotion. 4686 /// \p PromotedOperand is the value that has been promoted. 4687 /// \return True if the promotion is profitable, false otherwise. 4688 bool AddressingModeMatcher::isPromotionProfitable( 4689 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4690 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4691 << '\n'); 4692 // The cost of the new extensions is greater than the cost of the 4693 // old extension plus what we folded. 4694 // This is not profitable. 4695 if (NewCost > OldCost) 4696 return false; 4697 if (NewCost < OldCost) 4698 return true; 4699 // The promotion is neutral but it may help folding the sign extension in 4700 // loads for instance. 4701 // Check that we did not create an illegal instruction. 4702 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4703 } 4704 4705 /// Given an instruction or constant expr, see if we can fold the operation 4706 /// into the addressing mode. If so, update the addressing mode and return 4707 /// true, otherwise return false without modifying AddrMode. 4708 /// If \p MovedAway is not NULL, it contains the information of whether or 4709 /// not AddrInst has to be folded into the addressing mode on success. 4710 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4711 /// because it has been moved away. 4712 /// Thus AddrInst must not be added in the matched instructions. 4713 /// This state can happen when AddrInst is a sext, since it may be moved away. 4714 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4715 /// not be referenced anymore. 4716 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4717 unsigned Depth, 4718 bool *MovedAway) { 4719 // Avoid exponential behavior on extremely deep expression trees. 4720 if (Depth >= 5) 4721 return false; 4722 4723 // By default, all matched instructions stay in place. 4724 if (MovedAway) 4725 *MovedAway = false; 4726 4727 switch (Opcode) { 4728 case Instruction::PtrToInt: 4729 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4730 return matchAddr(AddrInst->getOperand(0), Depth); 4731 case Instruction::IntToPtr: { 4732 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4733 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4734 // This inttoptr is a no-op if the integer type is pointer sized. 4735 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4736 return matchAddr(AddrInst->getOperand(0), Depth); 4737 return false; 4738 } 4739 case Instruction::BitCast: 4740 // BitCast is always a noop, and we can handle it as long as it is 4741 // int->int or pointer->pointer (we don't want int<->fp or something). 4742 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4743 // Don't touch identity bitcasts. These were probably put here by LSR, 4744 // and we don't want to mess around with them. Assume it knows what it 4745 // is doing. 4746 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4747 return matchAddr(AddrInst->getOperand(0), Depth); 4748 return false; 4749 case Instruction::AddrSpaceCast: { 4750 unsigned SrcAS = 4751 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4752 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4753 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4754 return matchAddr(AddrInst->getOperand(0), Depth); 4755 return false; 4756 } 4757 case Instruction::Add: { 4758 // Check to see if we can merge in one operand, then the other. If so, we 4759 // win. 4760 ExtAddrMode BackupAddrMode = AddrMode; 4761 unsigned OldSize = AddrModeInsts.size(); 4762 // Start a transaction at this point. 4763 // The LHS may match but not the RHS. 4764 // Therefore, we need a higher level restoration point to undo partially 4765 // matched operation. 4766 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4767 TPT.getRestorationPoint(); 4768 4769 // Try to match an integer constant second to increase its chance of ending 4770 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 4771 int First = 0, Second = 1; 4772 if (isa<ConstantInt>(AddrInst->getOperand(First)) 4773 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 4774 std::swap(First, Second); 4775 AddrMode.InBounds = false; 4776 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 4777 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 4778 return true; 4779 4780 // Restore the old addr mode info. 4781 AddrMode = BackupAddrMode; 4782 AddrModeInsts.resize(OldSize); 4783 TPT.rollback(LastKnownGood); 4784 4785 // Otherwise this was over-aggressive. Try merging operands in the opposite 4786 // order. 4787 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 4788 matchAddr(AddrInst->getOperand(First), Depth + 1)) 4789 return true; 4790 4791 // Otherwise we definitely can't merge the ADD in. 4792 AddrMode = BackupAddrMode; 4793 AddrModeInsts.resize(OldSize); 4794 TPT.rollback(LastKnownGood); 4795 break; 4796 } 4797 // case Instruction::Or: 4798 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4799 // break; 4800 case Instruction::Mul: 4801 case Instruction::Shl: { 4802 // Can only handle X*C and X << C. 4803 AddrMode.InBounds = false; 4804 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4805 if (!RHS || RHS->getBitWidth() > 64) 4806 return false; 4807 int64_t Scale = Opcode == Instruction::Shl 4808 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4809 : RHS->getSExtValue(); 4810 4811 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4812 } 4813 case Instruction::GetElementPtr: { 4814 // Scan the GEP. We check it if it contains constant offsets and at most 4815 // one variable offset. 4816 int VariableOperand = -1; 4817 unsigned VariableScale = 0; 4818 4819 int64_t ConstantOffset = 0; 4820 gep_type_iterator GTI = gep_type_begin(AddrInst); 4821 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4822 if (StructType *STy = GTI.getStructTypeOrNull()) { 4823 const StructLayout *SL = DL.getStructLayout(STy); 4824 unsigned Idx = 4825 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4826 ConstantOffset += SL->getElementOffset(Idx); 4827 } else { 4828 TypeSize TS = GTI.getSequentialElementStride(DL); 4829 if (TS.isNonZero()) { 4830 // The optimisations below currently only work for fixed offsets. 4831 if (TS.isScalable()) 4832 return false; 4833 int64_t TypeSize = TS.getFixedValue(); 4834 if (ConstantInt *CI = 4835 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4836 const APInt &CVal = CI->getValue(); 4837 if (CVal.getSignificantBits() <= 64) { 4838 ConstantOffset += CVal.getSExtValue() * TypeSize; 4839 continue; 4840 } 4841 } 4842 // We only allow one variable index at the moment. 4843 if (VariableOperand != -1) 4844 return false; 4845 4846 // Remember the variable index. 4847 VariableOperand = i; 4848 VariableScale = TypeSize; 4849 } 4850 } 4851 } 4852 4853 // A common case is for the GEP to only do a constant offset. In this case, 4854 // just add it to the disp field and check validity. 4855 if (VariableOperand == -1) { 4856 AddrMode.BaseOffs += ConstantOffset; 4857 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4858 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4859 AddrMode.InBounds = false; 4860 return true; 4861 } 4862 AddrMode.BaseOffs -= ConstantOffset; 4863 4864 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4865 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4866 ConstantOffset > 0) { 4867 // Record GEPs with non-zero offsets as candidates for splitting in 4868 // the event that the offset cannot fit into the r+i addressing mode. 4869 // Simple and common case that only one GEP is used in calculating the 4870 // address for the memory access. 4871 Value *Base = AddrInst->getOperand(0); 4872 auto *BaseI = dyn_cast<Instruction>(Base); 4873 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4874 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4875 (BaseI && !isa<CastInst>(BaseI) && 4876 !isa<GetElementPtrInst>(BaseI))) { 4877 // Make sure the parent block allows inserting non-PHI instructions 4878 // before the terminator. 4879 BasicBlock *Parent = BaseI ? BaseI->getParent() 4880 : &GEP->getFunction()->getEntryBlock(); 4881 if (!Parent->getTerminator()->isEHPad()) 4882 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4883 } 4884 } 4885 4886 return false; 4887 } 4888 4889 // Save the valid addressing mode in case we can't match. 4890 ExtAddrMode BackupAddrMode = AddrMode; 4891 unsigned OldSize = AddrModeInsts.size(); 4892 4893 // See if the scale and offset amount is valid for this target. 4894 AddrMode.BaseOffs += ConstantOffset; 4895 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4896 AddrMode.InBounds = false; 4897 4898 // Match the base operand of the GEP. 4899 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4900 // If it couldn't be matched, just stuff the value in a register. 4901 if (AddrMode.HasBaseReg) { 4902 AddrMode = BackupAddrMode; 4903 AddrModeInsts.resize(OldSize); 4904 return false; 4905 } 4906 AddrMode.HasBaseReg = true; 4907 AddrMode.BaseReg = AddrInst->getOperand(0); 4908 } 4909 4910 // Match the remaining variable portion of the GEP. 4911 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4912 Depth)) { 4913 // If it couldn't be matched, try stuffing the base into a register 4914 // instead of matching it, and retrying the match of the scale. 4915 AddrMode = BackupAddrMode; 4916 AddrModeInsts.resize(OldSize); 4917 if (AddrMode.HasBaseReg) 4918 return false; 4919 AddrMode.HasBaseReg = true; 4920 AddrMode.BaseReg = AddrInst->getOperand(0); 4921 AddrMode.BaseOffs += ConstantOffset; 4922 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4923 VariableScale, Depth)) { 4924 // If even that didn't work, bail. 4925 AddrMode = BackupAddrMode; 4926 AddrModeInsts.resize(OldSize); 4927 return false; 4928 } 4929 } 4930 4931 return true; 4932 } 4933 case Instruction::SExt: 4934 case Instruction::ZExt: { 4935 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4936 if (!Ext) 4937 return false; 4938 4939 // Try to move this ext out of the way of the addressing mode. 4940 // Ask for a method for doing so. 4941 TypePromotionHelper::Action TPH = 4942 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4943 if (!TPH) 4944 return false; 4945 4946 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4947 TPT.getRestorationPoint(); 4948 unsigned CreatedInstsCost = 0; 4949 unsigned ExtCost = !TLI.isExtFree(Ext); 4950 Value *PromotedOperand = 4951 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4952 // SExt has been moved away. 4953 // Thus either it will be rematched later in the recursive calls or it is 4954 // gone. Anyway, we must not fold it into the addressing mode at this point. 4955 // E.g., 4956 // op = add opnd, 1 4957 // idx = ext op 4958 // addr = gep base, idx 4959 // is now: 4960 // promotedOpnd = ext opnd <- no match here 4961 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4962 // addr = gep base, op <- match 4963 if (MovedAway) 4964 *MovedAway = true; 4965 4966 assert(PromotedOperand && 4967 "TypePromotionHelper should have filtered out those cases"); 4968 4969 ExtAddrMode BackupAddrMode = AddrMode; 4970 unsigned OldSize = AddrModeInsts.size(); 4971 4972 if (!matchAddr(PromotedOperand, Depth) || 4973 // The total of the new cost is equal to the cost of the created 4974 // instructions. 4975 // The total of the old cost is equal to the cost of the extension plus 4976 // what we have saved in the addressing mode. 4977 !isPromotionProfitable(CreatedInstsCost, 4978 ExtCost + (AddrModeInsts.size() - OldSize), 4979 PromotedOperand)) { 4980 AddrMode = BackupAddrMode; 4981 AddrModeInsts.resize(OldSize); 4982 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4983 TPT.rollback(LastKnownGood); 4984 return false; 4985 } 4986 return true; 4987 } 4988 } 4989 return false; 4990 } 4991 4992 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4993 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4994 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4995 /// for the target. 4996 /// 4997 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4998 // Start a transaction at this point that we will rollback if the matching 4999 // fails. 5000 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5001 TPT.getRestorationPoint(); 5002 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5003 if (CI->getValue().isSignedIntN(64)) { 5004 // Fold in immediates if legal for the target. 5005 AddrMode.BaseOffs += CI->getSExtValue(); 5006 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5007 return true; 5008 AddrMode.BaseOffs -= CI->getSExtValue(); 5009 } 5010 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5011 // If this is a global variable, try to fold it into the addressing mode. 5012 if (!AddrMode.BaseGV) { 5013 AddrMode.BaseGV = GV; 5014 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5015 return true; 5016 AddrMode.BaseGV = nullptr; 5017 } 5018 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5019 ExtAddrMode BackupAddrMode = AddrMode; 5020 unsigned OldSize = AddrModeInsts.size(); 5021 5022 // Check to see if it is possible to fold this operation. 5023 bool MovedAway = false; 5024 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5025 // This instruction may have been moved away. If so, there is nothing 5026 // to check here. 5027 if (MovedAway) 5028 return true; 5029 // Okay, it's possible to fold this. Check to see if it is actually 5030 // *profitable* to do so. We use a simple cost model to avoid increasing 5031 // register pressure too much. 5032 if (I->hasOneUse() || 5033 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5034 AddrModeInsts.push_back(I); 5035 return true; 5036 } 5037 5038 // It isn't profitable to do this, roll back. 5039 AddrMode = BackupAddrMode; 5040 AddrModeInsts.resize(OldSize); 5041 TPT.rollback(LastKnownGood); 5042 } 5043 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5044 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5045 return true; 5046 TPT.rollback(LastKnownGood); 5047 } else if (isa<ConstantPointerNull>(Addr)) { 5048 // Null pointer gets folded without affecting the addressing mode. 5049 return true; 5050 } 5051 5052 // Worse case, the target should support [reg] addressing modes. :) 5053 if (!AddrMode.HasBaseReg) { 5054 AddrMode.HasBaseReg = true; 5055 AddrMode.BaseReg = Addr; 5056 // Still check for legality in case the target supports [imm] but not [i+r]. 5057 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5058 return true; 5059 AddrMode.HasBaseReg = false; 5060 AddrMode.BaseReg = nullptr; 5061 } 5062 5063 // If the base register is already taken, see if we can do [r+r]. 5064 if (AddrMode.Scale == 0) { 5065 AddrMode.Scale = 1; 5066 AddrMode.ScaledReg = Addr; 5067 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5068 return true; 5069 AddrMode.Scale = 0; 5070 AddrMode.ScaledReg = nullptr; 5071 } 5072 // Couldn't match. 5073 TPT.rollback(LastKnownGood); 5074 return false; 5075 } 5076 5077 /// Check to see if all uses of OpVal by the specified inline asm call are due 5078 /// to memory operands. If so, return true, otherwise return false. 5079 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5080 const TargetLowering &TLI, 5081 const TargetRegisterInfo &TRI) { 5082 const Function *F = CI->getFunction(); 5083 TargetLowering::AsmOperandInfoVector TargetConstraints = 5084 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 5085 5086 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5087 // Compute the constraint code and ConstraintType to use. 5088 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5089 5090 // If this asm operand is our Value*, and if it isn't an indirect memory 5091 // operand, we can't fold it! TODO: Also handle C_Address? 5092 if (OpInfo.CallOperandVal == OpVal && 5093 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5094 !OpInfo.isIndirect)) 5095 return false; 5096 } 5097 5098 return true; 5099 } 5100 5101 /// Recursively walk all the uses of I until we find a memory use. 5102 /// If we find an obviously non-foldable instruction, return true. 5103 /// Add accessed addresses and types to MemoryUses. 5104 static bool FindAllMemoryUses( 5105 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5106 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5107 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5108 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5109 // If we already considered this instruction, we're done. 5110 if (!ConsideredInsts.insert(I).second) 5111 return false; 5112 5113 // If this is an obviously unfoldable instruction, bail out. 5114 if (!MightBeFoldableInst(I)) 5115 return true; 5116 5117 // Loop over all the uses, recursively processing them. 5118 for (Use &U : I->uses()) { 5119 // Conservatively return true if we're seeing a large number or a deep chain 5120 // of users. This avoids excessive compilation times in pathological cases. 5121 if (SeenInsts++ >= MaxAddressUsersToScan) 5122 return true; 5123 5124 Instruction *UserI = cast<Instruction>(U.getUser()); 5125 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5126 MemoryUses.push_back({&U, LI->getType()}); 5127 continue; 5128 } 5129 5130 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5131 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5132 return true; // Storing addr, not into addr. 5133 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5134 continue; 5135 } 5136 5137 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5138 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5139 return true; // Storing addr, not into addr. 5140 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5141 continue; 5142 } 5143 5144 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5145 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5146 return true; // Storing addr, not into addr. 5147 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5148 continue; 5149 } 5150 5151 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5152 if (CI->hasFnAttr(Attribute::Cold)) { 5153 // If this is a cold call, we can sink the addressing calculation into 5154 // the cold path. See optimizeCallInst 5155 bool OptForSize = 5156 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5157 if (!OptForSize) 5158 continue; 5159 } 5160 5161 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5162 if (!IA) 5163 return true; 5164 5165 // If this is a memory operand, we're cool, otherwise bail out. 5166 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5167 return true; 5168 continue; 5169 } 5170 5171 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5172 PSI, BFI, SeenInsts)) 5173 return true; 5174 } 5175 5176 return false; 5177 } 5178 5179 static bool FindAllMemoryUses( 5180 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5181 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5182 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5183 unsigned SeenInsts = 0; 5184 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5185 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5186 PSI, BFI, SeenInsts); 5187 } 5188 5189 5190 /// Return true if Val is already known to be live at the use site that we're 5191 /// folding it into. If so, there is no cost to include it in the addressing 5192 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5193 /// instruction already. 5194 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5195 Value *KnownLive1, 5196 Value *KnownLive2) { 5197 // If Val is either of the known-live values, we know it is live! 5198 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5199 return true; 5200 5201 // All values other than instructions and arguments (e.g. constants) are live. 5202 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5203 return true; 5204 5205 // If Val is a constant sized alloca in the entry block, it is live, this is 5206 // true because it is just a reference to the stack/frame pointer, which is 5207 // live for the whole function. 5208 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5209 if (AI->isStaticAlloca()) 5210 return true; 5211 5212 // Check to see if this value is already used in the memory instruction's 5213 // block. If so, it's already live into the block at the very least, so we 5214 // can reasonably fold it. 5215 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5216 } 5217 5218 /// It is possible for the addressing mode of the machine to fold the specified 5219 /// instruction into a load or store that ultimately uses it. 5220 /// However, the specified instruction has multiple uses. 5221 /// Given this, it may actually increase register pressure to fold it 5222 /// into the load. For example, consider this code: 5223 /// 5224 /// X = ... 5225 /// Y = X+1 5226 /// use(Y) -> nonload/store 5227 /// Z = Y+1 5228 /// load Z 5229 /// 5230 /// In this case, Y has multiple uses, and can be folded into the load of Z 5231 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5232 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5233 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5234 /// number of computations either. 5235 /// 5236 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5237 /// X was live across 'load Z' for other reasons, we actually *would* want to 5238 /// fold the addressing mode in the Z case. This would make Y die earlier. 5239 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5240 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5241 if (IgnoreProfitability) 5242 return true; 5243 5244 // AMBefore is the addressing mode before this instruction was folded into it, 5245 // and AMAfter is the addressing mode after the instruction was folded. Get 5246 // the set of registers referenced by AMAfter and subtract out those 5247 // referenced by AMBefore: this is the set of values which folding in this 5248 // address extends the lifetime of. 5249 // 5250 // Note that there are only two potential values being referenced here, 5251 // BaseReg and ScaleReg (global addresses are always available, as are any 5252 // folded immediates). 5253 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5254 5255 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5256 // lifetime wasn't extended by adding this instruction. 5257 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5258 BaseReg = nullptr; 5259 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5260 ScaledReg = nullptr; 5261 5262 // If folding this instruction (and it's subexprs) didn't extend any live 5263 // ranges, we're ok with it. 5264 if (!BaseReg && !ScaledReg) 5265 return true; 5266 5267 // If all uses of this instruction can have the address mode sunk into them, 5268 // we can remove the addressing mode and effectively trade one live register 5269 // for another (at worst.) In this context, folding an addressing mode into 5270 // the use is just a particularly nice way of sinking it. 5271 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5272 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5273 return false; // Has a non-memory, non-foldable use! 5274 5275 // Now that we know that all uses of this instruction are part of a chain of 5276 // computation involving only operations that could theoretically be folded 5277 // into a memory use, loop over each of these memory operation uses and see 5278 // if they could *actually* fold the instruction. The assumption is that 5279 // addressing modes are cheap and that duplicating the computation involved 5280 // many times is worthwhile, even on a fastpath. For sinking candidates 5281 // (i.e. cold call sites), this serves as a way to prevent excessive code 5282 // growth since most architectures have some reasonable small and fast way to 5283 // compute an effective address. (i.e LEA on x86) 5284 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5285 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5286 Value *Address = Pair.first->get(); 5287 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5288 Type *AddressAccessTy = Pair.second; 5289 unsigned AS = Address->getType()->getPointerAddressSpace(); 5290 5291 // Do a match against the root of this address, ignoring profitability. This 5292 // will tell us if the addressing mode for the memory operation will 5293 // *actually* cover the shared instruction. 5294 ExtAddrMode Result; 5295 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5296 0); 5297 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5298 TPT.getRestorationPoint(); 5299 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5300 AddressAccessTy, AS, UserI, Result, 5301 InsertedInsts, PromotedInsts, TPT, 5302 LargeOffsetGEP, OptSize, PSI, BFI); 5303 Matcher.IgnoreProfitability = true; 5304 bool Success = Matcher.matchAddr(Address, 0); 5305 (void)Success; 5306 assert(Success && "Couldn't select *anything*?"); 5307 5308 // The match was to check the profitability, the changes made are not 5309 // part of the original matcher. Therefore, they should be dropped 5310 // otherwise the original matcher will not present the right state. 5311 TPT.rollback(LastKnownGood); 5312 5313 // If the match didn't cover I, then it won't be shared by it. 5314 if (!is_contained(MatchedAddrModeInsts, I)) 5315 return false; 5316 5317 MatchedAddrModeInsts.clear(); 5318 } 5319 5320 return true; 5321 } 5322 5323 /// Return true if the specified values are defined in a 5324 /// different basic block than BB. 5325 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5326 if (Instruction *I = dyn_cast<Instruction>(V)) 5327 return I->getParent() != BB; 5328 return false; 5329 } 5330 5331 /// Sink addressing mode computation immediate before MemoryInst if doing so 5332 /// can be done without increasing register pressure. The need for the 5333 /// register pressure constraint means this can end up being an all or nothing 5334 /// decision for all uses of the same addressing computation. 5335 /// 5336 /// Load and Store Instructions often have addressing modes that can do 5337 /// significant amounts of computation. As such, instruction selection will try 5338 /// to get the load or store to do as much computation as possible for the 5339 /// program. The problem is that isel can only see within a single block. As 5340 /// such, we sink as much legal addressing mode work into the block as possible. 5341 /// 5342 /// This method is used to optimize both load/store and inline asms with memory 5343 /// operands. It's also used to sink addressing computations feeding into cold 5344 /// call sites into their (cold) basic block. 5345 /// 5346 /// The motivation for handling sinking into cold blocks is that doing so can 5347 /// both enable other address mode sinking (by satisfying the register pressure 5348 /// constraint above), and reduce register pressure globally (by removing the 5349 /// addressing mode computation from the fast path entirely.). 5350 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5351 Type *AccessTy, unsigned AddrSpace) { 5352 Value *Repl = Addr; 5353 5354 // Try to collapse single-value PHI nodes. This is necessary to undo 5355 // unprofitable PRE transformations. 5356 SmallVector<Value *, 8> worklist; 5357 SmallPtrSet<Value *, 16> Visited; 5358 worklist.push_back(Addr); 5359 5360 // Use a worklist to iteratively look through PHI and select nodes, and 5361 // ensure that the addressing mode obtained from the non-PHI/select roots of 5362 // the graph are compatible. 5363 bool PhiOrSelectSeen = false; 5364 SmallVector<Instruction *, 16> AddrModeInsts; 5365 const SimplifyQuery SQ(*DL, TLInfo); 5366 AddressingModeCombiner AddrModes(SQ, Addr); 5367 TypePromotionTransaction TPT(RemovedInsts); 5368 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5369 TPT.getRestorationPoint(); 5370 while (!worklist.empty()) { 5371 Value *V = worklist.pop_back_val(); 5372 5373 // We allow traversing cyclic Phi nodes. 5374 // In case of success after this loop we ensure that traversing through 5375 // Phi nodes ends up with all cases to compute address of the form 5376 // BaseGV + Base + Scale * Index + Offset 5377 // where Scale and Offset are constans and BaseGV, Base and Index 5378 // are exactly the same Values in all cases. 5379 // It means that BaseGV, Scale and Offset dominate our memory instruction 5380 // and have the same value as they had in address computation represented 5381 // as Phi. So we can safely sink address computation to memory instruction. 5382 if (!Visited.insert(V).second) 5383 continue; 5384 5385 // For a PHI node, push all of its incoming values. 5386 if (PHINode *P = dyn_cast<PHINode>(V)) { 5387 append_range(worklist, P->incoming_values()); 5388 PhiOrSelectSeen = true; 5389 continue; 5390 } 5391 // Similar for select. 5392 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5393 worklist.push_back(SI->getFalseValue()); 5394 worklist.push_back(SI->getTrueValue()); 5395 PhiOrSelectSeen = true; 5396 continue; 5397 } 5398 5399 // For non-PHIs, determine the addressing mode being computed. Note that 5400 // the result may differ depending on what other uses our candidate 5401 // addressing instructions might have. 5402 AddrModeInsts.clear(); 5403 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5404 0); 5405 // Defer the query (and possible computation of) the dom tree to point of 5406 // actual use. It's expected that most address matches don't actually need 5407 // the domtree. 5408 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5409 Function *F = MemoryInst->getParent()->getParent(); 5410 return this->getDT(*F); 5411 }; 5412 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5413 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5414 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5415 BFI.get()); 5416 5417 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5418 if (GEP && !NewGEPBases.count(GEP)) { 5419 // If splitting the underlying data structure can reduce the offset of a 5420 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5421 // previously split data structures. 5422 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5423 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5424 } 5425 5426 NewAddrMode.OriginalValue = V; 5427 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5428 break; 5429 } 5430 5431 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5432 // or we have multiple but either couldn't combine them or combining them 5433 // wouldn't do anything useful, bail out now. 5434 if (!AddrModes.combineAddrModes()) { 5435 TPT.rollback(LastKnownGood); 5436 return false; 5437 } 5438 bool Modified = TPT.commit(); 5439 5440 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5441 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5442 5443 // If all the instructions matched are already in this BB, don't do anything. 5444 // If we saw a Phi node then it is not local definitely, and if we saw a 5445 // select then we want to push the address calculation past it even if it's 5446 // already in this BB. 5447 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5448 return IsNonLocalValue(V, MemoryInst->getParent()); 5449 })) { 5450 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5451 << "\n"); 5452 return Modified; 5453 } 5454 5455 // Insert this computation right after this user. Since our caller is 5456 // scanning from the top of the BB to the bottom, reuse of the expr are 5457 // guaranteed to happen later. 5458 IRBuilder<> Builder(MemoryInst); 5459 5460 // Now that we determined the addressing expression we want to use and know 5461 // that we have to sink it into this block. Check to see if we have already 5462 // done this for some other load/store instr in this block. If so, reuse 5463 // the computation. Before attempting reuse, check if the address is valid 5464 // as it may have been erased. 5465 5466 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5467 5468 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5469 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5470 if (SunkAddr) { 5471 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5472 << " for " << *MemoryInst << "\n"); 5473 if (SunkAddr->getType() != Addr->getType()) { 5474 if (SunkAddr->getType()->getPointerAddressSpace() != 5475 Addr->getType()->getPointerAddressSpace() && 5476 !DL->isNonIntegralPointerType(Addr->getType())) { 5477 // There are two reasons the address spaces might not match: a no-op 5478 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5479 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5480 // TODO: allow bitcast between different address space pointers with the 5481 // same size. 5482 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5483 SunkAddr = 5484 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5485 } else 5486 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5487 } 5488 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5489 SubtargetInfo->addrSinkUsingGEPs())) { 5490 // By default, we use the GEP-based method when AA is used later. This 5491 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5492 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5493 << " for " << *MemoryInst << "\n"); 5494 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5495 5496 // First, find the pointer. 5497 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5498 ResultPtr = AddrMode.BaseReg; 5499 AddrMode.BaseReg = nullptr; 5500 } 5501 5502 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5503 // We can't add more than one pointer together, nor can we scale a 5504 // pointer (both of which seem meaningless). 5505 if (ResultPtr || AddrMode.Scale != 1) 5506 return Modified; 5507 5508 ResultPtr = AddrMode.ScaledReg; 5509 AddrMode.Scale = 0; 5510 } 5511 5512 // It is only safe to sign extend the BaseReg if we know that the math 5513 // required to create it did not overflow before we extend it. Since 5514 // the original IR value was tossed in favor of a constant back when 5515 // the AddrMode was created we need to bail out gracefully if widths 5516 // do not match instead of extending it. 5517 // 5518 // (See below for code to add the scale.) 5519 if (AddrMode.Scale) { 5520 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5521 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5522 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5523 return Modified; 5524 } 5525 5526 if (AddrMode.BaseGV) { 5527 if (ResultPtr) 5528 return Modified; 5529 5530 ResultPtr = AddrMode.BaseGV; 5531 } 5532 5533 // If the real base value actually came from an inttoptr, then the matcher 5534 // will look through it and provide only the integer value. In that case, 5535 // use it here. 5536 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5537 if (!ResultPtr && AddrMode.BaseReg) { 5538 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5539 "sunkaddr"); 5540 AddrMode.BaseReg = nullptr; 5541 } else if (!ResultPtr && AddrMode.Scale == 1) { 5542 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5543 "sunkaddr"); 5544 AddrMode.Scale = 0; 5545 } 5546 } 5547 5548 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5549 !AddrMode.BaseOffs) { 5550 SunkAddr = Constant::getNullValue(Addr->getType()); 5551 } else if (!ResultPtr) { 5552 return Modified; 5553 } else { 5554 Type *I8PtrTy = 5555 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5556 5557 // Start with the base register. Do this first so that subsequent address 5558 // matching finds it last, which will prevent it from trying to match it 5559 // as the scaled value in case it happens to be a mul. That would be 5560 // problematic if we've sunk a different mul for the scale, because then 5561 // we'd end up sinking both muls. 5562 if (AddrMode.BaseReg) { 5563 Value *V = AddrMode.BaseReg; 5564 if (V->getType() != IntPtrTy) 5565 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5566 5567 ResultIndex = V; 5568 } 5569 5570 // Add the scale value. 5571 if (AddrMode.Scale) { 5572 Value *V = AddrMode.ScaledReg; 5573 if (V->getType() == IntPtrTy) { 5574 // done. 5575 } else { 5576 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5577 cast<IntegerType>(V->getType())->getBitWidth() && 5578 "We can't transform if ScaledReg is too narrow"); 5579 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5580 } 5581 5582 if (AddrMode.Scale != 1) 5583 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5584 "sunkaddr"); 5585 if (ResultIndex) 5586 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5587 else 5588 ResultIndex = V; 5589 } 5590 5591 // Add in the Base Offset if present. 5592 if (AddrMode.BaseOffs) { 5593 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5594 if (ResultIndex) { 5595 // We need to add this separately from the scale above to help with 5596 // SDAG consecutive load/store merging. 5597 if (ResultPtr->getType() != I8PtrTy) 5598 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5599 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5600 AddrMode.InBounds); 5601 } 5602 5603 ResultIndex = V; 5604 } 5605 5606 if (!ResultIndex) { 5607 SunkAddr = ResultPtr; 5608 } else { 5609 if (ResultPtr->getType() != I8PtrTy) 5610 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5611 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5612 AddrMode.InBounds); 5613 } 5614 5615 if (SunkAddr->getType() != Addr->getType()) { 5616 if (SunkAddr->getType()->getPointerAddressSpace() != 5617 Addr->getType()->getPointerAddressSpace() && 5618 !DL->isNonIntegralPointerType(Addr->getType())) { 5619 // There are two reasons the address spaces might not match: a no-op 5620 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5621 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5622 // TODO: allow bitcast between different address space pointers with 5623 // the same size. 5624 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5625 SunkAddr = 5626 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5627 } else 5628 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5629 } 5630 } 5631 } else { 5632 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5633 // non-integral pointers, so in that case bail out now. 5634 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5635 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5636 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5637 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5638 if (DL->isNonIntegralPointerType(Addr->getType()) || 5639 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5640 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5641 (AddrMode.BaseGV && 5642 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5643 return Modified; 5644 5645 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5646 << " for " << *MemoryInst << "\n"); 5647 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5648 Value *Result = nullptr; 5649 5650 // Start with the base register. Do this first so that subsequent address 5651 // matching finds it last, which will prevent it from trying to match it 5652 // as the scaled value in case it happens to be a mul. That would be 5653 // problematic if we've sunk a different mul for the scale, because then 5654 // we'd end up sinking both muls. 5655 if (AddrMode.BaseReg) { 5656 Value *V = AddrMode.BaseReg; 5657 if (V->getType()->isPointerTy()) 5658 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5659 if (V->getType() != IntPtrTy) 5660 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5661 Result = V; 5662 } 5663 5664 // Add the scale value. 5665 if (AddrMode.Scale) { 5666 Value *V = AddrMode.ScaledReg; 5667 if (V->getType() == IntPtrTy) { 5668 // done. 5669 } else if (V->getType()->isPointerTy()) { 5670 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5671 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5672 cast<IntegerType>(V->getType())->getBitWidth()) { 5673 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5674 } else { 5675 // It is only safe to sign extend the BaseReg if we know that the math 5676 // required to create it did not overflow before we extend it. Since 5677 // the original IR value was tossed in favor of a constant back when 5678 // the AddrMode was created we need to bail out gracefully if widths 5679 // do not match instead of extending it. 5680 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5681 if (I && (Result != AddrMode.BaseReg)) 5682 I->eraseFromParent(); 5683 return Modified; 5684 } 5685 if (AddrMode.Scale != 1) 5686 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5687 "sunkaddr"); 5688 if (Result) 5689 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5690 else 5691 Result = V; 5692 } 5693 5694 // Add in the BaseGV if present. 5695 if (AddrMode.BaseGV) { 5696 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5697 if (Result) 5698 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5699 else 5700 Result = V; 5701 } 5702 5703 // Add in the Base Offset if present. 5704 if (AddrMode.BaseOffs) { 5705 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5706 if (Result) 5707 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5708 else 5709 Result = V; 5710 } 5711 5712 if (!Result) 5713 SunkAddr = Constant::getNullValue(Addr->getType()); 5714 else 5715 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5716 } 5717 5718 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5719 // Store the newly computed address into the cache. In the case we reused a 5720 // value, this should be idempotent. 5721 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5722 5723 // If we have no uses, recursively delete the value and all dead instructions 5724 // using it. 5725 if (Repl->use_empty()) { 5726 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5727 RecursivelyDeleteTriviallyDeadInstructions( 5728 Repl, TLInfo, nullptr, 5729 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5730 }); 5731 } 5732 ++NumMemoryInsts; 5733 return true; 5734 } 5735 5736 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5737 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5738 /// only handle a 2 operand GEP in the same basic block or a splat constant 5739 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5740 /// index. 5741 /// 5742 /// If the existing GEP has a vector base pointer that is splat, we can look 5743 /// through the splat to find the scalar pointer. If we can't find a scalar 5744 /// pointer there's nothing we can do. 5745 /// 5746 /// If we have a GEP with more than 2 indices where the middle indices are all 5747 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5748 /// 5749 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5750 /// followed by a GEP with an all zeroes vector index. This will enable 5751 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5752 /// zero index. 5753 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5754 Value *Ptr) { 5755 Value *NewAddr; 5756 5757 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5758 // Don't optimize GEPs that don't have indices. 5759 if (!GEP->hasIndices()) 5760 return false; 5761 5762 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5763 // FIXME: We should support this by sinking the GEP. 5764 if (MemoryInst->getParent() != GEP->getParent()) 5765 return false; 5766 5767 SmallVector<Value *, 2> Ops(GEP->operands()); 5768 5769 bool RewriteGEP = false; 5770 5771 if (Ops[0]->getType()->isVectorTy()) { 5772 Ops[0] = getSplatValue(Ops[0]); 5773 if (!Ops[0]) 5774 return false; 5775 RewriteGEP = true; 5776 } 5777 5778 unsigned FinalIndex = Ops.size() - 1; 5779 5780 // Ensure all but the last index is 0. 5781 // FIXME: This isn't strictly required. All that's required is that they are 5782 // all scalars or splats. 5783 for (unsigned i = 1; i < FinalIndex; ++i) { 5784 auto *C = dyn_cast<Constant>(Ops[i]); 5785 if (!C) 5786 return false; 5787 if (isa<VectorType>(C->getType())) 5788 C = C->getSplatValue(); 5789 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5790 if (!CI || !CI->isZero()) 5791 return false; 5792 // Scalarize the index if needed. 5793 Ops[i] = CI; 5794 } 5795 5796 // Try to scalarize the final index. 5797 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5798 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5799 auto *C = dyn_cast<ConstantInt>(V); 5800 // Don't scalarize all zeros vector. 5801 if (!C || !C->isZero()) { 5802 Ops[FinalIndex] = V; 5803 RewriteGEP = true; 5804 } 5805 } 5806 } 5807 5808 // If we made any changes or the we have extra operands, we need to generate 5809 // new instructions. 5810 if (!RewriteGEP && Ops.size() == 2) 5811 return false; 5812 5813 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5814 5815 IRBuilder<> Builder(MemoryInst); 5816 5817 Type *SourceTy = GEP->getSourceElementType(); 5818 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5819 5820 // If the final index isn't a vector, emit a scalar GEP containing all ops 5821 // and a vector GEP with all zeroes final index. 5822 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5823 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 5824 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5825 auto *SecondTy = GetElementPtrInst::getIndexedType( 5826 SourceTy, ArrayRef(Ops).drop_front()); 5827 NewAddr = 5828 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5829 } else { 5830 Value *Base = Ops[0]; 5831 Value *Index = Ops[FinalIndex]; 5832 5833 // Create a scalar GEP if there are more than 2 operands. 5834 if (Ops.size() != 2) { 5835 // Replace the last index with 0. 5836 Ops[FinalIndex] = 5837 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 5838 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 5839 SourceTy = GetElementPtrInst::getIndexedType( 5840 SourceTy, ArrayRef(Ops).drop_front()); 5841 } 5842 5843 // Now create the GEP with scalar pointer and vector index. 5844 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5845 } 5846 } else if (!isa<Constant>(Ptr)) { 5847 // Not a GEP, maybe its a splat and we can create a GEP to enable 5848 // SelectionDAGBuilder to use it as a uniform base. 5849 Value *V = getSplatValue(Ptr); 5850 if (!V) 5851 return false; 5852 5853 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5854 5855 IRBuilder<> Builder(MemoryInst); 5856 5857 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5858 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5859 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5860 Type *ScalarTy; 5861 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5862 Intrinsic::masked_gather) { 5863 ScalarTy = MemoryInst->getType()->getScalarType(); 5864 } else { 5865 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5866 Intrinsic::masked_scatter); 5867 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5868 } 5869 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5870 } else { 5871 // Constant, SelectionDAGBuilder knows to check if its a splat. 5872 return false; 5873 } 5874 5875 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5876 5877 // If we have no uses, recursively delete the value and all dead instructions 5878 // using it. 5879 if (Ptr->use_empty()) 5880 RecursivelyDeleteTriviallyDeadInstructions( 5881 Ptr, TLInfo, nullptr, 5882 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5883 5884 return true; 5885 } 5886 5887 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5888 /// address computing into the block when possible / profitable. 5889 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5890 bool MadeChange = false; 5891 5892 const TargetRegisterInfo *TRI = 5893 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5894 TargetLowering::AsmOperandInfoVector TargetConstraints = 5895 TLI->ParseConstraints(*DL, TRI, *CS); 5896 unsigned ArgNo = 0; 5897 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5898 // Compute the constraint code and ConstraintType to use. 5899 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5900 5901 // TODO: Also handle C_Address? 5902 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5903 OpInfo.isIndirect) { 5904 Value *OpVal = CS->getArgOperand(ArgNo++); 5905 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5906 } else if (OpInfo.Type == InlineAsm::isInput) 5907 ArgNo++; 5908 } 5909 5910 return MadeChange; 5911 } 5912 5913 /// Check if all the uses of \p Val are equivalent (or free) zero or 5914 /// sign extensions. 5915 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5916 assert(!Val->use_empty() && "Input must have at least one use"); 5917 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5918 bool IsSExt = isa<SExtInst>(FirstUser); 5919 Type *ExtTy = FirstUser->getType(); 5920 for (const User *U : Val->users()) { 5921 const Instruction *UI = cast<Instruction>(U); 5922 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5923 return false; 5924 Type *CurTy = UI->getType(); 5925 // Same input and output types: Same instruction after CSE. 5926 if (CurTy == ExtTy) 5927 continue; 5928 5929 // If IsSExt is true, we are in this situation: 5930 // a = Val 5931 // b = sext ty1 a to ty2 5932 // c = sext ty1 a to ty3 5933 // Assuming ty2 is shorter than ty3, this could be turned into: 5934 // a = Val 5935 // b = sext ty1 a to ty2 5936 // c = sext ty2 b to ty3 5937 // However, the last sext is not free. 5938 if (IsSExt) 5939 return false; 5940 5941 // This is a ZExt, maybe this is free to extend from one type to another. 5942 // In that case, we would not account for a different use. 5943 Type *NarrowTy; 5944 Type *LargeTy; 5945 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5946 CurTy->getScalarType()->getIntegerBitWidth()) { 5947 NarrowTy = CurTy; 5948 LargeTy = ExtTy; 5949 } else { 5950 NarrowTy = ExtTy; 5951 LargeTy = CurTy; 5952 } 5953 5954 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5955 return false; 5956 } 5957 // All uses are the same or can be derived from one another for free. 5958 return true; 5959 } 5960 5961 /// Try to speculatively promote extensions in \p Exts and continue 5962 /// promoting through newly promoted operands recursively as far as doing so is 5963 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5964 /// When some promotion happened, \p TPT contains the proper state to revert 5965 /// them. 5966 /// 5967 /// \return true if some promotion happened, false otherwise. 5968 bool CodeGenPrepare::tryToPromoteExts( 5969 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5970 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5971 unsigned CreatedInstsCost) { 5972 bool Promoted = false; 5973 5974 // Iterate over all the extensions to try to promote them. 5975 for (auto *I : Exts) { 5976 // Early check if we directly have ext(load). 5977 if (isa<LoadInst>(I->getOperand(0))) { 5978 ProfitablyMovedExts.push_back(I); 5979 continue; 5980 } 5981 5982 // Check whether or not we want to do any promotion. The reason we have 5983 // this check inside the for loop is to catch the case where an extension 5984 // is directly fed by a load because in such case the extension can be moved 5985 // up without any promotion on its operands. 5986 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5987 return false; 5988 5989 // Get the action to perform the promotion. 5990 TypePromotionHelper::Action TPH = 5991 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5992 // Check if we can promote. 5993 if (!TPH) { 5994 // Save the current extension as we cannot move up through its operand. 5995 ProfitablyMovedExts.push_back(I); 5996 continue; 5997 } 5998 5999 // Save the current state. 6000 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6001 TPT.getRestorationPoint(); 6002 SmallVector<Instruction *, 4> NewExts; 6003 unsigned NewCreatedInstsCost = 0; 6004 unsigned ExtCost = !TLI->isExtFree(I); 6005 // Promote. 6006 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6007 &NewExts, nullptr, *TLI); 6008 assert(PromotedVal && 6009 "TypePromotionHelper should have filtered out those cases"); 6010 6011 // We would be able to merge only one extension in a load. 6012 // Therefore, if we have more than 1 new extension we heuristically 6013 // cut this search path, because it means we degrade the code quality. 6014 // With exactly 2, the transformation is neutral, because we will merge 6015 // one extension but leave one. However, we optimistically keep going, 6016 // because the new extension may be removed too. Also avoid replacing a 6017 // single free extension with multiple extensions, as this increases the 6018 // number of IR instructions while not providing any savings. 6019 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6020 // FIXME: It would be possible to propagate a negative value instead of 6021 // conservatively ceiling it to 0. 6022 TotalCreatedInstsCost = 6023 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6024 if (!StressExtLdPromotion && 6025 (TotalCreatedInstsCost > 1 || 6026 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6027 (ExtCost == 0 && NewExts.size() > 1))) { 6028 // This promotion is not profitable, rollback to the previous state, and 6029 // save the current extension in ProfitablyMovedExts as the latest 6030 // speculative promotion turned out to be unprofitable. 6031 TPT.rollback(LastKnownGood); 6032 ProfitablyMovedExts.push_back(I); 6033 continue; 6034 } 6035 // Continue promoting NewExts as far as doing so is profitable. 6036 SmallVector<Instruction *, 2> NewlyMovedExts; 6037 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6038 bool NewPromoted = false; 6039 for (auto *ExtInst : NewlyMovedExts) { 6040 Instruction *MovedExt = cast<Instruction>(ExtInst); 6041 Value *ExtOperand = MovedExt->getOperand(0); 6042 // If we have reached to a load, we need this extra profitability check 6043 // as it could potentially be merged into an ext(load). 6044 if (isa<LoadInst>(ExtOperand) && 6045 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6046 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6047 continue; 6048 6049 ProfitablyMovedExts.push_back(MovedExt); 6050 NewPromoted = true; 6051 } 6052 6053 // If none of speculative promotions for NewExts is profitable, rollback 6054 // and save the current extension (I) as the last profitable extension. 6055 if (!NewPromoted) { 6056 TPT.rollback(LastKnownGood); 6057 ProfitablyMovedExts.push_back(I); 6058 continue; 6059 } 6060 // The promotion is profitable. 6061 Promoted = true; 6062 } 6063 return Promoted; 6064 } 6065 6066 /// Merging redundant sexts when one is dominating the other. 6067 bool CodeGenPrepare::mergeSExts(Function &F) { 6068 bool Changed = false; 6069 for (auto &Entry : ValToSExtendedUses) { 6070 SExts &Insts = Entry.second; 6071 SExts CurPts; 6072 for (Instruction *Inst : Insts) { 6073 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6074 Inst->getOperand(0) != Entry.first) 6075 continue; 6076 bool inserted = false; 6077 for (auto &Pt : CurPts) { 6078 if (getDT(F).dominates(Inst, Pt)) { 6079 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6080 RemovedInsts.insert(Pt); 6081 Pt->removeFromParent(); 6082 Pt = Inst; 6083 inserted = true; 6084 Changed = true; 6085 break; 6086 } 6087 if (!getDT(F).dominates(Pt, Inst)) 6088 // Give up if we need to merge in a common dominator as the 6089 // experiments show it is not profitable. 6090 continue; 6091 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6092 RemovedInsts.insert(Inst); 6093 Inst->removeFromParent(); 6094 inserted = true; 6095 Changed = true; 6096 break; 6097 } 6098 if (!inserted) 6099 CurPts.push_back(Inst); 6100 } 6101 } 6102 return Changed; 6103 } 6104 6105 // Splitting large data structures so that the GEPs accessing them can have 6106 // smaller offsets so that they can be sunk to the same blocks as their users. 6107 // For example, a large struct starting from %base is split into two parts 6108 // where the second part starts from %new_base. 6109 // 6110 // Before: 6111 // BB0: 6112 // %base = 6113 // 6114 // BB1: 6115 // %gep0 = gep %base, off0 6116 // %gep1 = gep %base, off1 6117 // %gep2 = gep %base, off2 6118 // 6119 // BB2: 6120 // %load1 = load %gep0 6121 // %load2 = load %gep1 6122 // %load3 = load %gep2 6123 // 6124 // After: 6125 // BB0: 6126 // %base = 6127 // %new_base = gep %base, off0 6128 // 6129 // BB1: 6130 // %new_gep0 = %new_base 6131 // %new_gep1 = gep %new_base, off1 - off0 6132 // %new_gep2 = gep %new_base, off2 - off0 6133 // 6134 // BB2: 6135 // %load1 = load i32, i32* %new_gep0 6136 // %load2 = load i32, i32* %new_gep1 6137 // %load3 = load i32, i32* %new_gep2 6138 // 6139 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6140 // their offsets are smaller enough to fit into the addressing mode. 6141 bool CodeGenPrepare::splitLargeGEPOffsets() { 6142 bool Changed = false; 6143 for (auto &Entry : LargeOffsetGEPMap) { 6144 Value *OldBase = Entry.first; 6145 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6146 &LargeOffsetGEPs = Entry.second; 6147 auto compareGEPOffset = 6148 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6149 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6150 if (LHS.first == RHS.first) 6151 return false; 6152 if (LHS.second != RHS.second) 6153 return LHS.second < RHS.second; 6154 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6155 }; 6156 // Sorting all the GEPs of the same data structures based on the offsets. 6157 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6158 LargeOffsetGEPs.erase( 6159 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 6160 LargeOffsetGEPs.end()); 6161 // Skip if all the GEPs have the same offsets. 6162 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6163 continue; 6164 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6165 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6166 Value *NewBaseGEP = nullptr; 6167 6168 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6169 GetElementPtrInst *GEP) { 6170 LLVMContext &Ctx = GEP->getContext(); 6171 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6172 Type *I8PtrTy = 6173 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6174 6175 BasicBlock::iterator NewBaseInsertPt; 6176 BasicBlock *NewBaseInsertBB; 6177 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6178 // If the base of the struct is an instruction, the new base will be 6179 // inserted close to it. 6180 NewBaseInsertBB = BaseI->getParent(); 6181 if (isa<PHINode>(BaseI)) 6182 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6183 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6184 NewBaseInsertBB = 6185 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6186 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6187 } else 6188 NewBaseInsertPt = std::next(BaseI->getIterator()); 6189 } else { 6190 // If the current base is an argument or global value, the new base 6191 // will be inserted to the entry block. 6192 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6193 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6194 } 6195 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6196 // Create a new base. 6197 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6198 NewBaseGEP = OldBase; 6199 if (NewBaseGEP->getType() != I8PtrTy) 6200 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6201 NewBaseGEP = 6202 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6203 NewGEPBases.insert(NewBaseGEP); 6204 return; 6205 }; 6206 6207 // Check whether all the offsets can be encoded with prefered common base. 6208 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6209 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6210 BaseOffset = PreferBase; 6211 // Create a new base if the offset of the BaseGEP can be decoded with one 6212 // instruction. 6213 createNewBase(BaseOffset, OldBase, BaseGEP); 6214 } 6215 6216 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6217 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6218 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6219 int64_t Offset = LargeOffsetGEP->second; 6220 if (Offset != BaseOffset) { 6221 TargetLowering::AddrMode AddrMode; 6222 AddrMode.HasBaseReg = true; 6223 AddrMode.BaseOffs = Offset - BaseOffset; 6224 // The result type of the GEP might not be the type of the memory 6225 // access. 6226 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6227 GEP->getResultElementType(), 6228 GEP->getAddressSpace())) { 6229 // We need to create a new base if the offset to the current base is 6230 // too large to fit into the addressing mode. So, a very large struct 6231 // may be split into several parts. 6232 BaseGEP = GEP; 6233 BaseOffset = Offset; 6234 NewBaseGEP = nullptr; 6235 } 6236 } 6237 6238 // Generate a new GEP to replace the current one. 6239 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6240 6241 if (!NewBaseGEP) { 6242 // Create a new base if we don't have one yet. Find the insertion 6243 // pointer for the new base first. 6244 createNewBase(BaseOffset, OldBase, GEP); 6245 } 6246 6247 IRBuilder<> Builder(GEP); 6248 Value *NewGEP = NewBaseGEP; 6249 if (Offset != BaseOffset) { 6250 // Calculate the new offset for the new GEP. 6251 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6252 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6253 } 6254 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6255 LargeOffsetGEPID.erase(GEP); 6256 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6257 GEP->eraseFromParent(); 6258 Changed = true; 6259 } 6260 } 6261 return Changed; 6262 } 6263 6264 bool CodeGenPrepare::optimizePhiType( 6265 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6266 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6267 // We are looking for a collection on interconnected phi nodes that together 6268 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6269 // are of the same type. Convert the whole set of nodes to the type of the 6270 // bitcast. 6271 Type *PhiTy = I->getType(); 6272 Type *ConvertTy = nullptr; 6273 if (Visited.count(I) || 6274 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6275 return false; 6276 6277 SmallVector<Instruction *, 4> Worklist; 6278 Worklist.push_back(cast<Instruction>(I)); 6279 SmallPtrSet<PHINode *, 4> PhiNodes; 6280 SmallPtrSet<ConstantData *, 4> Constants; 6281 PhiNodes.insert(I); 6282 Visited.insert(I); 6283 SmallPtrSet<Instruction *, 4> Defs; 6284 SmallPtrSet<Instruction *, 4> Uses; 6285 // This works by adding extra bitcasts between load/stores and removing 6286 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6287 // we can get in the situation where we remove a bitcast in one iteration 6288 // just to add it again in the next. We need to ensure that at least one 6289 // bitcast we remove are anchored to something that will not change back. 6290 bool AnyAnchored = false; 6291 6292 while (!Worklist.empty()) { 6293 Instruction *II = Worklist.pop_back_val(); 6294 6295 if (auto *Phi = dyn_cast<PHINode>(II)) { 6296 // Handle Defs, which might also be PHI's 6297 for (Value *V : Phi->incoming_values()) { 6298 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6299 if (!PhiNodes.count(OpPhi)) { 6300 if (!Visited.insert(OpPhi).second) 6301 return false; 6302 PhiNodes.insert(OpPhi); 6303 Worklist.push_back(OpPhi); 6304 } 6305 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6306 if (!OpLoad->isSimple()) 6307 return false; 6308 if (Defs.insert(OpLoad).second) 6309 Worklist.push_back(OpLoad); 6310 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6311 if (Defs.insert(OpEx).second) 6312 Worklist.push_back(OpEx); 6313 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6314 if (!ConvertTy) 6315 ConvertTy = OpBC->getOperand(0)->getType(); 6316 if (OpBC->getOperand(0)->getType() != ConvertTy) 6317 return false; 6318 if (Defs.insert(OpBC).second) { 6319 Worklist.push_back(OpBC); 6320 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6321 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6322 } 6323 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6324 Constants.insert(OpC); 6325 else 6326 return false; 6327 } 6328 } 6329 6330 // Handle uses which might also be phi's 6331 for (User *V : II->users()) { 6332 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6333 if (!PhiNodes.count(OpPhi)) { 6334 if (Visited.count(OpPhi)) 6335 return false; 6336 PhiNodes.insert(OpPhi); 6337 Visited.insert(OpPhi); 6338 Worklist.push_back(OpPhi); 6339 } 6340 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6341 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6342 return false; 6343 Uses.insert(OpStore); 6344 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6345 if (!ConvertTy) 6346 ConvertTy = OpBC->getType(); 6347 if (OpBC->getType() != ConvertTy) 6348 return false; 6349 Uses.insert(OpBC); 6350 AnyAnchored |= 6351 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6352 } else { 6353 return false; 6354 } 6355 } 6356 } 6357 6358 if (!ConvertTy || !AnyAnchored || 6359 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6360 return false; 6361 6362 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6363 << *ConvertTy << "\n"); 6364 6365 // Create all the new phi nodes of the new type, and bitcast any loads to the 6366 // correct type. 6367 ValueToValueMap ValMap; 6368 for (ConstantData *C : Constants) 6369 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6370 for (Instruction *D : Defs) { 6371 if (isa<BitCastInst>(D)) { 6372 ValMap[D] = D->getOperand(0); 6373 DeletedInstrs.insert(D); 6374 } else { 6375 ValMap[D] = 6376 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6377 } 6378 } 6379 for (PHINode *Phi : PhiNodes) 6380 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6381 Phi->getName() + ".tc", Phi); 6382 // Pipe together all the PhiNodes. 6383 for (PHINode *Phi : PhiNodes) { 6384 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6385 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6386 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6387 Phi->getIncomingBlock(i)); 6388 Visited.insert(NewPhi); 6389 } 6390 // And finally pipe up the stores and bitcasts 6391 for (Instruction *U : Uses) { 6392 if (isa<BitCastInst>(U)) { 6393 DeletedInstrs.insert(U); 6394 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6395 } else { 6396 U->setOperand(0, 6397 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6398 } 6399 } 6400 6401 // Save the removed phis to be deleted later. 6402 for (PHINode *Phi : PhiNodes) 6403 DeletedInstrs.insert(Phi); 6404 return true; 6405 } 6406 6407 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6408 if (!OptimizePhiTypes) 6409 return false; 6410 6411 bool Changed = false; 6412 SmallPtrSet<PHINode *, 4> Visited; 6413 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6414 6415 // Attempt to optimize all the phis in the functions to the correct type. 6416 for (auto &BB : F) 6417 for (auto &Phi : BB.phis()) 6418 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6419 6420 // Remove any old phi's that have been converted. 6421 for (auto *I : DeletedInstrs) { 6422 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6423 I->eraseFromParent(); 6424 } 6425 6426 return Changed; 6427 } 6428 6429 /// Return true, if an ext(load) can be formed from an extension in 6430 /// \p MovedExts. 6431 bool CodeGenPrepare::canFormExtLd( 6432 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6433 Instruction *&Inst, bool HasPromoted) { 6434 for (auto *MovedExtInst : MovedExts) { 6435 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6436 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6437 Inst = MovedExtInst; 6438 break; 6439 } 6440 } 6441 if (!LI) 6442 return false; 6443 6444 // If they're already in the same block, there's nothing to do. 6445 // Make the cheap checks first if we did not promote. 6446 // If we promoted, we need to check if it is indeed profitable. 6447 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6448 return false; 6449 6450 return TLI->isExtLoad(LI, Inst, *DL); 6451 } 6452 6453 /// Move a zext or sext fed by a load into the same basic block as the load, 6454 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6455 /// extend into the load. 6456 /// 6457 /// E.g., 6458 /// \code 6459 /// %ld = load i32* %addr 6460 /// %add = add nuw i32 %ld, 4 6461 /// %zext = zext i32 %add to i64 6462 // \endcode 6463 /// => 6464 /// \code 6465 /// %ld = load i32* %addr 6466 /// %zext = zext i32 %ld to i64 6467 /// %add = add nuw i64 %zext, 4 6468 /// \encode 6469 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6470 /// allow us to match zext(load i32*) to i64. 6471 /// 6472 /// Also, try to promote the computations used to obtain a sign extended 6473 /// value used into memory accesses. 6474 /// E.g., 6475 /// \code 6476 /// a = add nsw i32 b, 3 6477 /// d = sext i32 a to i64 6478 /// e = getelementptr ..., i64 d 6479 /// \endcode 6480 /// => 6481 /// \code 6482 /// f = sext i32 b to i64 6483 /// a = add nsw i64 f, 3 6484 /// e = getelementptr ..., i64 a 6485 /// \endcode 6486 /// 6487 /// \p Inst[in/out] the extension may be modified during the process if some 6488 /// promotions apply. 6489 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6490 bool AllowPromotionWithoutCommonHeader = false; 6491 /// See if it is an interesting sext operations for the address type 6492 /// promotion before trying to promote it, e.g., the ones with the right 6493 /// type and used in memory accesses. 6494 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6495 *Inst, AllowPromotionWithoutCommonHeader); 6496 TypePromotionTransaction TPT(RemovedInsts); 6497 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6498 TPT.getRestorationPoint(); 6499 SmallVector<Instruction *, 1> Exts; 6500 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6501 Exts.push_back(Inst); 6502 6503 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6504 6505 // Look for a load being extended. 6506 LoadInst *LI = nullptr; 6507 Instruction *ExtFedByLoad; 6508 6509 // Try to promote a chain of computation if it allows to form an extended 6510 // load. 6511 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6512 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6513 TPT.commit(); 6514 // Move the extend into the same block as the load. 6515 ExtFedByLoad->moveAfter(LI); 6516 ++NumExtsMoved; 6517 Inst = ExtFedByLoad; 6518 return true; 6519 } 6520 6521 // Continue promoting SExts if known as considerable depending on targets. 6522 if (ATPConsiderable && 6523 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6524 HasPromoted, TPT, SpeculativelyMovedExts)) 6525 return true; 6526 6527 TPT.rollback(LastKnownGood); 6528 return false; 6529 } 6530 6531 // Perform address type promotion if doing so is profitable. 6532 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6533 // instructions that sign extended the same initial value. However, if 6534 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6535 // extension is just profitable. 6536 bool CodeGenPrepare::performAddressTypePromotion( 6537 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6538 bool HasPromoted, TypePromotionTransaction &TPT, 6539 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6540 bool Promoted = false; 6541 SmallPtrSet<Instruction *, 1> UnhandledExts; 6542 bool AllSeenFirst = true; 6543 for (auto *I : SpeculativelyMovedExts) { 6544 Value *HeadOfChain = I->getOperand(0); 6545 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6546 SeenChainsForSExt.find(HeadOfChain); 6547 // If there is an unhandled SExt which has the same header, try to promote 6548 // it as well. 6549 if (AlreadySeen != SeenChainsForSExt.end()) { 6550 if (AlreadySeen->second != nullptr) 6551 UnhandledExts.insert(AlreadySeen->second); 6552 AllSeenFirst = false; 6553 } 6554 } 6555 6556 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6557 SpeculativelyMovedExts.size() == 1)) { 6558 TPT.commit(); 6559 if (HasPromoted) 6560 Promoted = true; 6561 for (auto *I : SpeculativelyMovedExts) { 6562 Value *HeadOfChain = I->getOperand(0); 6563 SeenChainsForSExt[HeadOfChain] = nullptr; 6564 ValToSExtendedUses[HeadOfChain].push_back(I); 6565 } 6566 // Update Inst as promotion happen. 6567 Inst = SpeculativelyMovedExts.pop_back_val(); 6568 } else { 6569 // This is the first chain visited from the header, keep the current chain 6570 // as unhandled. Defer to promote this until we encounter another SExt 6571 // chain derived from the same header. 6572 for (auto *I : SpeculativelyMovedExts) { 6573 Value *HeadOfChain = I->getOperand(0); 6574 SeenChainsForSExt[HeadOfChain] = Inst; 6575 } 6576 return false; 6577 } 6578 6579 if (!AllSeenFirst && !UnhandledExts.empty()) 6580 for (auto *VisitedSExt : UnhandledExts) { 6581 if (RemovedInsts.count(VisitedSExt)) 6582 continue; 6583 TypePromotionTransaction TPT(RemovedInsts); 6584 SmallVector<Instruction *, 1> Exts; 6585 SmallVector<Instruction *, 2> Chains; 6586 Exts.push_back(VisitedSExt); 6587 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6588 TPT.commit(); 6589 if (HasPromoted) 6590 Promoted = true; 6591 for (auto *I : Chains) { 6592 Value *HeadOfChain = I->getOperand(0); 6593 // Mark this as handled. 6594 SeenChainsForSExt[HeadOfChain] = nullptr; 6595 ValToSExtendedUses[HeadOfChain].push_back(I); 6596 } 6597 } 6598 return Promoted; 6599 } 6600 6601 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6602 BasicBlock *DefBB = I->getParent(); 6603 6604 // If the result of a {s|z}ext and its source are both live out, rewrite all 6605 // other uses of the source with result of extension. 6606 Value *Src = I->getOperand(0); 6607 if (Src->hasOneUse()) 6608 return false; 6609 6610 // Only do this xform if truncating is free. 6611 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6612 return false; 6613 6614 // Only safe to perform the optimization if the source is also defined in 6615 // this block. 6616 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6617 return false; 6618 6619 bool DefIsLiveOut = false; 6620 for (User *U : I->users()) { 6621 Instruction *UI = cast<Instruction>(U); 6622 6623 // Figure out which BB this ext is used in. 6624 BasicBlock *UserBB = UI->getParent(); 6625 if (UserBB == DefBB) 6626 continue; 6627 DefIsLiveOut = true; 6628 break; 6629 } 6630 if (!DefIsLiveOut) 6631 return false; 6632 6633 // Make sure none of the uses are PHI nodes. 6634 for (User *U : Src->users()) { 6635 Instruction *UI = cast<Instruction>(U); 6636 BasicBlock *UserBB = UI->getParent(); 6637 if (UserBB == DefBB) 6638 continue; 6639 // Be conservative. We don't want this xform to end up introducing 6640 // reloads just before load / store instructions. 6641 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6642 return false; 6643 } 6644 6645 // InsertedTruncs - Only insert one trunc in each block once. 6646 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6647 6648 bool MadeChange = false; 6649 for (Use &U : Src->uses()) { 6650 Instruction *User = cast<Instruction>(U.getUser()); 6651 6652 // Figure out which BB this ext is used in. 6653 BasicBlock *UserBB = User->getParent(); 6654 if (UserBB == DefBB) 6655 continue; 6656 6657 // Both src and def are live in this block. Rewrite the use. 6658 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6659 6660 if (!InsertedTrunc) { 6661 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6662 assert(InsertPt != UserBB->end()); 6663 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 6664 InsertedTrunc->insertBefore(*UserBB, InsertPt); 6665 InsertedInsts.insert(InsertedTrunc); 6666 } 6667 6668 // Replace a use of the {s|z}ext source with a use of the result. 6669 U = InsertedTrunc; 6670 ++NumExtUses; 6671 MadeChange = true; 6672 } 6673 6674 return MadeChange; 6675 } 6676 6677 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6678 // just after the load if the target can fold this into one extload instruction, 6679 // with the hope of eliminating some of the other later "and" instructions using 6680 // the loaded value. "and"s that are made trivially redundant by the insertion 6681 // of the new "and" are removed by this function, while others (e.g. those whose 6682 // path from the load goes through a phi) are left for isel to potentially 6683 // remove. 6684 // 6685 // For example: 6686 // 6687 // b0: 6688 // x = load i32 6689 // ... 6690 // b1: 6691 // y = and x, 0xff 6692 // z = use y 6693 // 6694 // becomes: 6695 // 6696 // b0: 6697 // x = load i32 6698 // x' = and x, 0xff 6699 // ... 6700 // b1: 6701 // z = use x' 6702 // 6703 // whereas: 6704 // 6705 // b0: 6706 // x1 = load i32 6707 // ... 6708 // b1: 6709 // x2 = load i32 6710 // ... 6711 // b2: 6712 // x = phi x1, x2 6713 // y = and x, 0xff 6714 // 6715 // becomes (after a call to optimizeLoadExt for each load): 6716 // 6717 // b0: 6718 // x1 = load i32 6719 // x1' = and x1, 0xff 6720 // ... 6721 // b1: 6722 // x2 = load i32 6723 // x2' = and x2, 0xff 6724 // ... 6725 // b2: 6726 // x = phi x1', x2' 6727 // y = and x, 0xff 6728 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6729 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6730 return false; 6731 6732 // Skip loads we've already transformed. 6733 if (Load->hasOneUse() && 6734 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6735 return false; 6736 6737 // Look at all uses of Load, looking through phis, to determine how many bits 6738 // of the loaded value are needed. 6739 SmallVector<Instruction *, 8> WorkList; 6740 SmallPtrSet<Instruction *, 16> Visited; 6741 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6742 for (auto *U : Load->users()) 6743 WorkList.push_back(cast<Instruction>(U)); 6744 6745 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6746 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6747 // If the BitWidth is 0, do not try to optimize the type 6748 if (BitWidth == 0) 6749 return false; 6750 6751 APInt DemandBits(BitWidth, 0); 6752 APInt WidestAndBits(BitWidth, 0); 6753 6754 while (!WorkList.empty()) { 6755 Instruction *I = WorkList.pop_back_val(); 6756 6757 // Break use-def graph loops. 6758 if (!Visited.insert(I).second) 6759 continue; 6760 6761 // For a PHI node, push all of its users. 6762 if (auto *Phi = dyn_cast<PHINode>(I)) { 6763 for (auto *U : Phi->users()) 6764 WorkList.push_back(cast<Instruction>(U)); 6765 continue; 6766 } 6767 6768 switch (I->getOpcode()) { 6769 case Instruction::And: { 6770 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6771 if (!AndC) 6772 return false; 6773 APInt AndBits = AndC->getValue(); 6774 DemandBits |= AndBits; 6775 // Keep track of the widest and mask we see. 6776 if (AndBits.ugt(WidestAndBits)) 6777 WidestAndBits = AndBits; 6778 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6779 AndsToMaybeRemove.push_back(I); 6780 break; 6781 } 6782 6783 case Instruction::Shl: { 6784 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6785 if (!ShlC) 6786 return false; 6787 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6788 DemandBits.setLowBits(BitWidth - ShiftAmt); 6789 break; 6790 } 6791 6792 case Instruction::Trunc: { 6793 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6794 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6795 DemandBits.setLowBits(TruncBitWidth); 6796 break; 6797 } 6798 6799 default: 6800 return false; 6801 } 6802 } 6803 6804 uint32_t ActiveBits = DemandBits.getActiveBits(); 6805 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6806 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6807 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6808 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6809 // followed by an AND. 6810 // TODO: Look into removing this restriction by fixing backends to either 6811 // return false for isLoadExtLegal for i1 or have them select this pattern to 6812 // a single instruction. 6813 // 6814 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6815 // mask, since these are the only ands that will be removed by isel. 6816 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6817 WidestAndBits != DemandBits) 6818 return false; 6819 6820 LLVMContext &Ctx = Load->getType()->getContext(); 6821 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6822 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6823 6824 // Reject cases that won't be matched as extloads. 6825 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6826 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6827 return false; 6828 6829 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 6830 auto *NewAnd = cast<Instruction>( 6831 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6832 // Mark this instruction as "inserted by CGP", so that other 6833 // optimizations don't touch it. 6834 InsertedInsts.insert(NewAnd); 6835 6836 // Replace all uses of load with new and (except for the use of load in the 6837 // new and itself). 6838 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 6839 NewAnd->setOperand(0, Load); 6840 6841 // Remove any and instructions that are now redundant. 6842 for (auto *And : AndsToMaybeRemove) 6843 // Check that the and mask is the same as the one we decided to put on the 6844 // new and. 6845 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6846 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 6847 if (&*CurInstIterator == And) 6848 CurInstIterator = std::next(And->getIterator()); 6849 And->eraseFromParent(); 6850 ++NumAndUses; 6851 } 6852 6853 ++NumAndsAdded; 6854 return true; 6855 } 6856 6857 /// Check if V (an operand of a select instruction) is an expensive instruction 6858 /// that is only used once. 6859 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6860 auto *I = dyn_cast<Instruction>(V); 6861 // If it's safe to speculatively execute, then it should not have side 6862 // effects; therefore, it's safe to sink and possibly *not* execute. 6863 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6864 TTI->isExpensiveToSpeculativelyExecute(I); 6865 } 6866 6867 /// Returns true if a SelectInst should be turned into an explicit branch. 6868 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6869 const TargetLowering *TLI, 6870 SelectInst *SI) { 6871 // If even a predictable select is cheap, then a branch can't be cheaper. 6872 if (!TLI->isPredictableSelectExpensive()) 6873 return false; 6874 6875 // FIXME: This should use the same heuristics as IfConversion to determine 6876 // whether a select is better represented as a branch. 6877 6878 // If metadata tells us that the select condition is obviously predictable, 6879 // then we want to replace the select with a branch. 6880 uint64_t TrueWeight, FalseWeight; 6881 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 6882 uint64_t Max = std::max(TrueWeight, FalseWeight); 6883 uint64_t Sum = TrueWeight + FalseWeight; 6884 if (Sum != 0) { 6885 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6886 if (Probability > TTI->getPredictableBranchThreshold()) 6887 return true; 6888 } 6889 } 6890 6891 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6892 6893 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6894 // comparison condition. If the compare has more than one use, there's 6895 // probably another cmov or setcc around, so it's not worth emitting a branch. 6896 if (!Cmp || !Cmp->hasOneUse()) 6897 return false; 6898 6899 // If either operand of the select is expensive and only needed on one side 6900 // of the select, we should form a branch. 6901 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6902 sinkSelectOperand(TTI, SI->getFalseValue())) 6903 return true; 6904 6905 return false; 6906 } 6907 6908 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6909 /// false value of \p SI. If the true/false value of \p SI is defined by any 6910 /// select instructions in \p Selects, look through the defining select 6911 /// instruction until the true/false value is not defined in \p Selects. 6912 static Value * 6913 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 6914 const SmallPtrSet<const Instruction *, 2> &Selects) { 6915 Value *V = nullptr; 6916 6917 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6918 DefSI = dyn_cast<SelectInst>(V)) { 6919 assert(DefSI->getCondition() == SI->getCondition() && 6920 "The condition of DefSI does not match with SI"); 6921 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6922 } 6923 6924 assert(V && "Failed to get select true/false value"); 6925 return V; 6926 } 6927 6928 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6929 assert(Shift->isShift() && "Expected a shift"); 6930 6931 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6932 // general vector shifts, and (3) the shift amount is a select-of-splatted 6933 // values, hoist the shifts before the select: 6934 // shift Op0, (select Cond, TVal, FVal) --> 6935 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6936 // 6937 // This is inverting a generic IR transform when we know that the cost of a 6938 // general vector shift is more than the cost of 2 shift-by-scalars. 6939 // We can't do this effectively in SDAG because we may not be able to 6940 // determine if the select operands are splats from within a basic block. 6941 Type *Ty = Shift->getType(); 6942 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6943 return false; 6944 Value *Cond, *TVal, *FVal; 6945 if (!match(Shift->getOperand(1), 6946 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6947 return false; 6948 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6949 return false; 6950 6951 IRBuilder<> Builder(Shift); 6952 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6953 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6954 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6955 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6956 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 6957 Shift->eraseFromParent(); 6958 return true; 6959 } 6960 6961 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6962 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6963 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6964 "Expected a funnel shift"); 6965 6966 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6967 // than general vector shifts, and (3) the shift amount is select-of-splatted 6968 // values, hoist the funnel shifts before the select: 6969 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6970 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6971 // 6972 // This is inverting a generic IR transform when we know that the cost of a 6973 // general vector shift is more than the cost of 2 shift-by-scalars. 6974 // We can't do this effectively in SDAG because we may not be able to 6975 // determine if the select operands are splats from within a basic block. 6976 Type *Ty = Fsh->getType(); 6977 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6978 return false; 6979 Value *Cond, *TVal, *FVal; 6980 if (!match(Fsh->getOperand(2), 6981 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6982 return false; 6983 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6984 return false; 6985 6986 IRBuilder<> Builder(Fsh); 6987 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6988 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 6989 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 6990 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6991 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 6992 Fsh->eraseFromParent(); 6993 return true; 6994 } 6995 6996 /// If we have a SelectInst that will likely profit from branch prediction, 6997 /// turn it into a branch. 6998 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6999 if (DisableSelectToBranch) 7000 return false; 7001 7002 // If the SelectOptimize pass is enabled, selects have already been optimized. 7003 if (!getCGPassBuilderOption().DisableSelectOptimize) 7004 return false; 7005 7006 // Find all consecutive select instructions that share the same condition. 7007 SmallVector<SelectInst *, 2> ASI; 7008 ASI.push_back(SI); 7009 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7010 It != SI->getParent()->end(); ++It) { 7011 SelectInst *I = dyn_cast<SelectInst>(&*It); 7012 if (I && SI->getCondition() == I->getCondition()) { 7013 ASI.push_back(I); 7014 } else { 7015 break; 7016 } 7017 } 7018 7019 SelectInst *LastSI = ASI.back(); 7020 // Increment the current iterator to skip all the rest of select instructions 7021 // because they will be either "not lowered" or "all lowered" to branch. 7022 CurInstIterator = std::next(LastSI->getIterator()); 7023 // Examine debug-info attached to the consecutive select instructions. They 7024 // won't be individually optimised by optimizeInst, so we need to perform 7025 // DPValue maintenence here instead. 7026 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7027 fixupDPValuesOnInst(*SI); 7028 7029 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7030 7031 // Can we convert the 'select' to CF ? 7032 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7033 return false; 7034 7035 TargetLowering::SelectSupportKind SelectKind; 7036 if (SI->getType()->isVectorTy()) 7037 SelectKind = TargetLowering::ScalarCondVectorVal; 7038 else 7039 SelectKind = TargetLowering::ScalarValSelect; 7040 7041 if (TLI->isSelectSupported(SelectKind) && 7042 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 7043 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7044 return false; 7045 7046 // The DominatorTree needs to be rebuilt by any consumers after this 7047 // transformation. We simply reset here rather than setting the ModifiedDT 7048 // flag to avoid restarting the function walk in runOnFunction for each 7049 // select optimized. 7050 DT.reset(); 7051 7052 // Transform a sequence like this: 7053 // start: 7054 // %cmp = cmp uge i32 %a, %b 7055 // %sel = select i1 %cmp, i32 %c, i32 %d 7056 // 7057 // Into: 7058 // start: 7059 // %cmp = cmp uge i32 %a, %b 7060 // %cmp.frozen = freeze %cmp 7061 // br i1 %cmp.frozen, label %select.true, label %select.false 7062 // select.true: 7063 // br label %select.end 7064 // select.false: 7065 // br label %select.end 7066 // select.end: 7067 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7068 // 7069 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7070 // In addition, we may sink instructions that produce %c or %d from 7071 // the entry block into the destination(s) of the new branch. 7072 // If the true or false blocks do not contain a sunken instruction, that 7073 // block and its branch may be optimized away. In that case, one side of the 7074 // first branch will point directly to select.end, and the corresponding PHI 7075 // predecessor block will be the start block. 7076 7077 // Collect values that go on the true side and the values that go on the false 7078 // side. 7079 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7080 for (SelectInst *SI : ASI) { 7081 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7082 TrueInstrs.push_back(cast<Instruction>(V)); 7083 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7084 FalseInstrs.push_back(cast<Instruction>(V)); 7085 } 7086 7087 // Split the select block, according to how many (if any) values go on each 7088 // side. 7089 BasicBlock *StartBlock = SI->getParent(); 7090 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7091 // We should split before any debug-info. 7092 SplitPt.setHeadBit(true); 7093 7094 IRBuilder<> IB(SI); 7095 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7096 7097 BasicBlock *TrueBlock = nullptr; 7098 BasicBlock *FalseBlock = nullptr; 7099 BasicBlock *EndBlock = nullptr; 7100 BranchInst *TrueBranch = nullptr; 7101 BranchInst *FalseBranch = nullptr; 7102 if (TrueInstrs.size() == 0) { 7103 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7104 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7105 FalseBlock = FalseBranch->getParent(); 7106 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7107 } else if (FalseInstrs.size() == 0) { 7108 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7109 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7110 TrueBlock = TrueBranch->getParent(); 7111 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7112 } else { 7113 Instruction *ThenTerm = nullptr; 7114 Instruction *ElseTerm = nullptr; 7115 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7116 nullptr, nullptr, LI); 7117 TrueBranch = cast<BranchInst>(ThenTerm); 7118 FalseBranch = cast<BranchInst>(ElseTerm); 7119 TrueBlock = TrueBranch->getParent(); 7120 FalseBlock = FalseBranch->getParent(); 7121 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7122 } 7123 7124 EndBlock->setName("select.end"); 7125 if (TrueBlock) 7126 TrueBlock->setName("select.true.sink"); 7127 if (FalseBlock) 7128 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7129 : "select.false.sink"); 7130 7131 if (IsHugeFunc) { 7132 if (TrueBlock) 7133 FreshBBs.insert(TrueBlock); 7134 if (FalseBlock) 7135 FreshBBs.insert(FalseBlock); 7136 FreshBBs.insert(EndBlock); 7137 } 7138 7139 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7140 7141 static const unsigned MD[] = { 7142 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7143 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7144 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7145 7146 // Sink expensive instructions into the conditional blocks to avoid executing 7147 // them speculatively. 7148 for (Instruction *I : TrueInstrs) 7149 I->moveBefore(TrueBranch); 7150 for (Instruction *I : FalseInstrs) 7151 I->moveBefore(FalseBranch); 7152 7153 // If we did not create a new block for one of the 'true' or 'false' paths 7154 // of the condition, it means that side of the branch goes to the end block 7155 // directly and the path originates from the start block from the point of 7156 // view of the new PHI. 7157 if (TrueBlock == nullptr) 7158 TrueBlock = StartBlock; 7159 else if (FalseBlock == nullptr) 7160 FalseBlock = StartBlock; 7161 7162 SmallPtrSet<const Instruction *, 2> INS; 7163 INS.insert(ASI.begin(), ASI.end()); 7164 // Use reverse iterator because later select may use the value of the 7165 // earlier select, and we need to propagate value through earlier select 7166 // to get the PHI operand. 7167 for (SelectInst *SI : llvm::reverse(ASI)) { 7168 // The select itself is replaced with a PHI Node. 7169 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7170 PN->insertBefore(EndBlock->begin()); 7171 PN->takeName(SI); 7172 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7173 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7174 PN->setDebugLoc(SI->getDebugLoc()); 7175 7176 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7177 SI->eraseFromParent(); 7178 INS.erase(SI); 7179 ++NumSelectsExpanded; 7180 } 7181 7182 // Instruct OptimizeBlock to skip to the next block. 7183 CurInstIterator = StartBlock->end(); 7184 return true; 7185 } 7186 7187 /// Some targets only accept certain types for splat inputs. For example a VDUP 7188 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7189 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7190 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7191 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7192 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7193 m_Undef(), m_ZeroMask()))) 7194 return false; 7195 Type *NewType = TLI->shouldConvertSplatType(SVI); 7196 if (!NewType) 7197 return false; 7198 7199 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7200 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7201 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7202 "Expected a type of the same size!"); 7203 auto *NewVecType = 7204 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7205 7206 // Create a bitcast (shuffle (insert (bitcast(..)))) 7207 IRBuilder<> Builder(SVI->getContext()); 7208 Builder.SetInsertPoint(SVI); 7209 Value *BC1 = Builder.CreateBitCast( 7210 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7211 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7212 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7213 7214 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7215 RecursivelyDeleteTriviallyDeadInstructions( 7216 SVI, TLInfo, nullptr, 7217 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7218 7219 // Also hoist the bitcast up to its operand if it they are not in the same 7220 // block. 7221 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7222 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7223 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7224 !Op->isTerminator() && !Op->isEHPad()) 7225 BCI->moveAfter(Op); 7226 7227 return true; 7228 } 7229 7230 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7231 // If the operands of I can be folded into a target instruction together with 7232 // I, duplicate and sink them. 7233 SmallVector<Use *, 4> OpsToSink; 7234 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7235 return false; 7236 7237 // OpsToSink can contain multiple uses in a use chain (e.g. 7238 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7239 // uses must come first, so we process the ops in reverse order so as to not 7240 // create invalid IR. 7241 BasicBlock *TargetBB = I->getParent(); 7242 bool Changed = false; 7243 SmallVector<Use *, 4> ToReplace; 7244 Instruction *InsertPoint = I; 7245 DenseMap<const Instruction *, unsigned long> InstOrdering; 7246 unsigned long InstNumber = 0; 7247 for (const auto &I : *TargetBB) 7248 InstOrdering[&I] = InstNumber++; 7249 7250 for (Use *U : reverse(OpsToSink)) { 7251 auto *UI = cast<Instruction>(U->get()); 7252 if (isa<PHINode>(UI)) 7253 continue; 7254 if (UI->getParent() == TargetBB) { 7255 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7256 InsertPoint = UI; 7257 continue; 7258 } 7259 ToReplace.push_back(U); 7260 } 7261 7262 SetVector<Instruction *> MaybeDead; 7263 DenseMap<Instruction *, Instruction *> NewInstructions; 7264 for (Use *U : ToReplace) { 7265 auto *UI = cast<Instruction>(U->get()); 7266 Instruction *NI = UI->clone(); 7267 7268 if (IsHugeFunc) { 7269 // Now we clone an instruction, its operands' defs may sink to this BB 7270 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7271 for (unsigned I = 0; I < NI->getNumOperands(); ++I) { 7272 auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I)); 7273 if (!OpDef) 7274 continue; 7275 FreshBBs.insert(OpDef->getParent()); 7276 } 7277 } 7278 7279 NewInstructions[UI] = NI; 7280 MaybeDead.insert(UI); 7281 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7282 NI->insertBefore(InsertPoint); 7283 InsertPoint = NI; 7284 InsertedInsts.insert(NI); 7285 7286 // Update the use for the new instruction, making sure that we update the 7287 // sunk instruction uses, if it is part of a chain that has already been 7288 // sunk. 7289 Instruction *OldI = cast<Instruction>(U->getUser()); 7290 if (NewInstructions.count(OldI)) 7291 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7292 else 7293 U->set(NI); 7294 Changed = true; 7295 } 7296 7297 // Remove instructions that are dead after sinking. 7298 for (auto *I : MaybeDead) { 7299 if (!I->hasNUsesOrMore(1)) { 7300 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7301 I->eraseFromParent(); 7302 } 7303 } 7304 7305 return Changed; 7306 } 7307 7308 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7309 Value *Cond = SI->getCondition(); 7310 Type *OldType = Cond->getType(); 7311 LLVMContext &Context = Cond->getContext(); 7312 EVT OldVT = TLI->getValueType(*DL, OldType); 7313 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7314 unsigned RegWidth = RegType.getSizeInBits(); 7315 7316 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7317 return false; 7318 7319 // If the register width is greater than the type width, expand the condition 7320 // of the switch instruction and each case constant to the width of the 7321 // register. By widening the type of the switch condition, subsequent 7322 // comparisons (for case comparisons) will not need to be extended to the 7323 // preferred register width, so we will potentially eliminate N-1 extends, 7324 // where N is the number of cases in the switch. 7325 auto *NewType = Type::getIntNTy(Context, RegWidth); 7326 7327 // Extend the switch condition and case constants using the target preferred 7328 // extend unless the switch condition is a function argument with an extend 7329 // attribute. In that case, we can avoid an unnecessary mask/extension by 7330 // matching the argument extension instead. 7331 Instruction::CastOps ExtType = Instruction::ZExt; 7332 // Some targets prefer SExt over ZExt. 7333 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7334 ExtType = Instruction::SExt; 7335 7336 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7337 if (Arg->hasSExtAttr()) 7338 ExtType = Instruction::SExt; 7339 if (Arg->hasZExtAttr()) 7340 ExtType = Instruction::ZExt; 7341 } 7342 7343 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7344 ExtInst->insertBefore(SI); 7345 ExtInst->setDebugLoc(SI->getDebugLoc()); 7346 SI->setCondition(ExtInst); 7347 for (auto Case : SI->cases()) { 7348 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7349 APInt WideConst = (ExtType == Instruction::ZExt) 7350 ? NarrowConst.zext(RegWidth) 7351 : NarrowConst.sext(RegWidth); 7352 Case.setValue(ConstantInt::get(Context, WideConst)); 7353 } 7354 7355 return true; 7356 } 7357 7358 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7359 // The SCCP optimization tends to produce code like this: 7360 // switch(x) { case 42: phi(42, ...) } 7361 // Materializing the constant for the phi-argument needs instructions; So we 7362 // change the code to: 7363 // switch(x) { case 42: phi(x, ...) } 7364 7365 Value *Condition = SI->getCondition(); 7366 // Avoid endless loop in degenerate case. 7367 if (isa<ConstantInt>(*Condition)) 7368 return false; 7369 7370 bool Changed = false; 7371 BasicBlock *SwitchBB = SI->getParent(); 7372 Type *ConditionType = Condition->getType(); 7373 7374 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7375 ConstantInt *CaseValue = Case.getCaseValue(); 7376 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7377 // Set to true if we previously checked that `CaseBB` is only reached by 7378 // a single case from this switch. 7379 bool CheckedForSinglePred = false; 7380 for (PHINode &PHI : CaseBB->phis()) { 7381 Type *PHIType = PHI.getType(); 7382 // If ZExt is free then we can also catch patterns like this: 7383 // switch((i32)x) { case 42: phi((i64)42, ...); } 7384 // and replace `(i64)42` with `zext i32 %x to i64`. 7385 bool TryZExt = 7386 PHIType->isIntegerTy() && 7387 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7388 TLI->isZExtFree(ConditionType, PHIType); 7389 if (PHIType == ConditionType || TryZExt) { 7390 // Set to true to skip this case because of multiple preds. 7391 bool SkipCase = false; 7392 Value *Replacement = nullptr; 7393 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7394 Value *PHIValue = PHI.getIncomingValue(I); 7395 if (PHIValue != CaseValue) { 7396 if (!TryZExt) 7397 continue; 7398 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7399 if (!PHIValueInt || 7400 PHIValueInt->getValue() != 7401 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7402 continue; 7403 } 7404 if (PHI.getIncomingBlock(I) != SwitchBB) 7405 continue; 7406 // We cannot optimize if there are multiple case labels jumping to 7407 // this block. This check may get expensive when there are many 7408 // case labels so we test for it last. 7409 if (!CheckedForSinglePred) { 7410 CheckedForSinglePred = true; 7411 if (SI->findCaseDest(CaseBB) == nullptr) { 7412 SkipCase = true; 7413 break; 7414 } 7415 } 7416 7417 if (Replacement == nullptr) { 7418 if (PHIValue == CaseValue) { 7419 Replacement = Condition; 7420 } else { 7421 IRBuilder<> Builder(SI); 7422 Replacement = Builder.CreateZExt(Condition, PHIType); 7423 } 7424 } 7425 PHI.setIncomingValue(I, Replacement); 7426 Changed = true; 7427 } 7428 if (SkipCase) 7429 break; 7430 } 7431 } 7432 } 7433 return Changed; 7434 } 7435 7436 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7437 bool Changed = optimizeSwitchType(SI); 7438 Changed |= optimizeSwitchPhiConstants(SI); 7439 return Changed; 7440 } 7441 7442 namespace { 7443 7444 /// Helper class to promote a scalar operation to a vector one. 7445 /// This class is used to move downward extractelement transition. 7446 /// E.g., 7447 /// a = vector_op <2 x i32> 7448 /// b = extractelement <2 x i32> a, i32 0 7449 /// c = scalar_op b 7450 /// store c 7451 /// 7452 /// => 7453 /// a = vector_op <2 x i32> 7454 /// c = vector_op a (equivalent to scalar_op on the related lane) 7455 /// * d = extractelement <2 x i32> c, i32 0 7456 /// * store d 7457 /// Assuming both extractelement and store can be combine, we get rid of the 7458 /// transition. 7459 class VectorPromoteHelper { 7460 /// DataLayout associated with the current module. 7461 const DataLayout &DL; 7462 7463 /// Used to perform some checks on the legality of vector operations. 7464 const TargetLowering &TLI; 7465 7466 /// Used to estimated the cost of the promoted chain. 7467 const TargetTransformInfo &TTI; 7468 7469 /// The transition being moved downwards. 7470 Instruction *Transition; 7471 7472 /// The sequence of instructions to be promoted. 7473 SmallVector<Instruction *, 4> InstsToBePromoted; 7474 7475 /// Cost of combining a store and an extract. 7476 unsigned StoreExtractCombineCost; 7477 7478 /// Instruction that will be combined with the transition. 7479 Instruction *CombineInst = nullptr; 7480 7481 /// The instruction that represents the current end of the transition. 7482 /// Since we are faking the promotion until we reach the end of the chain 7483 /// of computation, we need a way to get the current end of the transition. 7484 Instruction *getEndOfTransition() const { 7485 if (InstsToBePromoted.empty()) 7486 return Transition; 7487 return InstsToBePromoted.back(); 7488 } 7489 7490 /// Return the index of the original value in the transition. 7491 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7492 /// c, is at index 0. 7493 unsigned getTransitionOriginalValueIdx() const { 7494 assert(isa<ExtractElementInst>(Transition) && 7495 "Other kind of transitions are not supported yet"); 7496 return 0; 7497 } 7498 7499 /// Return the index of the index in the transition. 7500 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7501 /// is at index 1. 7502 unsigned getTransitionIdx() const { 7503 assert(isa<ExtractElementInst>(Transition) && 7504 "Other kind of transitions are not supported yet"); 7505 return 1; 7506 } 7507 7508 /// Get the type of the transition. 7509 /// This is the type of the original value. 7510 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7511 /// transition is <2 x i32>. 7512 Type *getTransitionType() const { 7513 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7514 } 7515 7516 /// Promote \p ToBePromoted by moving \p Def downward through. 7517 /// I.e., we have the following sequence: 7518 /// Def = Transition <ty1> a to <ty2> 7519 /// b = ToBePromoted <ty2> Def, ... 7520 /// => 7521 /// b = ToBePromoted <ty1> a, ... 7522 /// Def = Transition <ty1> ToBePromoted to <ty2> 7523 void promoteImpl(Instruction *ToBePromoted); 7524 7525 /// Check whether or not it is profitable to promote all the 7526 /// instructions enqueued to be promoted. 7527 bool isProfitableToPromote() { 7528 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7529 unsigned Index = isa<ConstantInt>(ValIdx) 7530 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7531 : -1; 7532 Type *PromotedType = getTransitionType(); 7533 7534 StoreInst *ST = cast<StoreInst>(CombineInst); 7535 unsigned AS = ST->getPointerAddressSpace(); 7536 // Check if this store is supported. 7537 if (!TLI.allowsMisalignedMemoryAccesses( 7538 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7539 ST->getAlign())) { 7540 // If this is not supported, there is no way we can combine 7541 // the extract with the store. 7542 return false; 7543 } 7544 7545 // The scalar chain of computation has to pay for the transition 7546 // scalar to vector. 7547 // The vector chain has to account for the combining cost. 7548 enum TargetTransformInfo::TargetCostKind CostKind = 7549 TargetTransformInfo::TCK_RecipThroughput; 7550 InstructionCost ScalarCost = 7551 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7552 InstructionCost VectorCost = StoreExtractCombineCost; 7553 for (const auto &Inst : InstsToBePromoted) { 7554 // Compute the cost. 7555 // By construction, all instructions being promoted are arithmetic ones. 7556 // Moreover, one argument is a constant that can be viewed as a splat 7557 // constant. 7558 Value *Arg0 = Inst->getOperand(0); 7559 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7560 isa<ConstantFP>(Arg0); 7561 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7562 if (IsArg0Constant) 7563 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7564 else 7565 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7566 7567 ScalarCost += TTI.getArithmeticInstrCost( 7568 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7569 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7570 CostKind, Arg0Info, Arg1Info); 7571 } 7572 LLVM_DEBUG( 7573 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7574 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7575 return ScalarCost > VectorCost; 7576 } 7577 7578 /// Generate a constant vector with \p Val with the same 7579 /// number of elements as the transition. 7580 /// \p UseSplat defines whether or not \p Val should be replicated 7581 /// across the whole vector. 7582 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7583 /// otherwise we generate a vector with as many undef as possible: 7584 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7585 /// used at the index of the extract. 7586 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7587 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7588 if (!UseSplat) { 7589 // If we cannot determine where the constant must be, we have to 7590 // use a splat constant. 7591 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7592 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7593 ExtractIdx = CstVal->getSExtValue(); 7594 else 7595 UseSplat = true; 7596 } 7597 7598 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7599 if (UseSplat) 7600 return ConstantVector::getSplat(EC, Val); 7601 7602 if (!EC.isScalable()) { 7603 SmallVector<Constant *, 4> ConstVec; 7604 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7605 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7606 if (Idx == ExtractIdx) 7607 ConstVec.push_back(Val); 7608 else 7609 ConstVec.push_back(UndefVal); 7610 } 7611 return ConstantVector::get(ConstVec); 7612 } else 7613 llvm_unreachable( 7614 "Generate scalable vector for non-splat is unimplemented"); 7615 } 7616 7617 /// Check if promoting to a vector type an operand at \p OperandIdx 7618 /// in \p Use can trigger undefined behavior. 7619 static bool canCauseUndefinedBehavior(const Instruction *Use, 7620 unsigned OperandIdx) { 7621 // This is not safe to introduce undef when the operand is on 7622 // the right hand side of a division-like instruction. 7623 if (OperandIdx != 1) 7624 return false; 7625 switch (Use->getOpcode()) { 7626 default: 7627 return false; 7628 case Instruction::SDiv: 7629 case Instruction::UDiv: 7630 case Instruction::SRem: 7631 case Instruction::URem: 7632 return true; 7633 case Instruction::FDiv: 7634 case Instruction::FRem: 7635 return !Use->hasNoNaNs(); 7636 } 7637 llvm_unreachable(nullptr); 7638 } 7639 7640 public: 7641 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7642 const TargetTransformInfo &TTI, Instruction *Transition, 7643 unsigned CombineCost) 7644 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7645 StoreExtractCombineCost(CombineCost) { 7646 assert(Transition && "Do not know how to promote null"); 7647 } 7648 7649 /// Check if we can promote \p ToBePromoted to \p Type. 7650 bool canPromote(const Instruction *ToBePromoted) const { 7651 // We could support CastInst too. 7652 return isa<BinaryOperator>(ToBePromoted); 7653 } 7654 7655 /// Check if it is profitable to promote \p ToBePromoted 7656 /// by moving downward the transition through. 7657 bool shouldPromote(const Instruction *ToBePromoted) const { 7658 // Promote only if all the operands can be statically expanded. 7659 // Indeed, we do not want to introduce any new kind of transitions. 7660 for (const Use &U : ToBePromoted->operands()) { 7661 const Value *Val = U.get(); 7662 if (Val == getEndOfTransition()) { 7663 // If the use is a division and the transition is on the rhs, 7664 // we cannot promote the operation, otherwise we may create a 7665 // division by zero. 7666 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7667 return false; 7668 continue; 7669 } 7670 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7671 !isa<ConstantFP>(Val)) 7672 return false; 7673 } 7674 // Check that the resulting operation is legal. 7675 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7676 if (!ISDOpcode) 7677 return false; 7678 return StressStoreExtract || 7679 TLI.isOperationLegalOrCustom( 7680 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7681 } 7682 7683 /// Check whether or not \p Use can be combined 7684 /// with the transition. 7685 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7686 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7687 7688 /// Record \p ToBePromoted as part of the chain to be promoted. 7689 void enqueueForPromotion(Instruction *ToBePromoted) { 7690 InstsToBePromoted.push_back(ToBePromoted); 7691 } 7692 7693 /// Set the instruction that will be combined with the transition. 7694 void recordCombineInstruction(Instruction *ToBeCombined) { 7695 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7696 CombineInst = ToBeCombined; 7697 } 7698 7699 /// Promote all the instructions enqueued for promotion if it is 7700 /// is profitable. 7701 /// \return True if the promotion happened, false otherwise. 7702 bool promote() { 7703 // Check if there is something to promote. 7704 // Right now, if we do not have anything to combine with, 7705 // we assume the promotion is not profitable. 7706 if (InstsToBePromoted.empty() || !CombineInst) 7707 return false; 7708 7709 // Check cost. 7710 if (!StressStoreExtract && !isProfitableToPromote()) 7711 return false; 7712 7713 // Promote. 7714 for (auto &ToBePromoted : InstsToBePromoted) 7715 promoteImpl(ToBePromoted); 7716 InstsToBePromoted.clear(); 7717 return true; 7718 } 7719 }; 7720 7721 } // end anonymous namespace 7722 7723 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7724 // At this point, we know that all the operands of ToBePromoted but Def 7725 // can be statically promoted. 7726 // For Def, we need to use its parameter in ToBePromoted: 7727 // b = ToBePromoted ty1 a 7728 // Def = Transition ty1 b to ty2 7729 // Move the transition down. 7730 // 1. Replace all uses of the promoted operation by the transition. 7731 // = ... b => = ... Def. 7732 assert(ToBePromoted->getType() == Transition->getType() && 7733 "The type of the result of the transition does not match " 7734 "the final type"); 7735 ToBePromoted->replaceAllUsesWith(Transition); 7736 // 2. Update the type of the uses. 7737 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7738 Type *TransitionTy = getTransitionType(); 7739 ToBePromoted->mutateType(TransitionTy); 7740 // 3. Update all the operands of the promoted operation with promoted 7741 // operands. 7742 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7743 for (Use &U : ToBePromoted->operands()) { 7744 Value *Val = U.get(); 7745 Value *NewVal = nullptr; 7746 if (Val == Transition) 7747 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7748 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7749 isa<ConstantFP>(Val)) { 7750 // Use a splat constant if it is not safe to use undef. 7751 NewVal = getConstantVector( 7752 cast<Constant>(Val), 7753 isa<UndefValue>(Val) || 7754 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7755 } else 7756 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7757 "this?"); 7758 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7759 } 7760 Transition->moveAfter(ToBePromoted); 7761 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7762 } 7763 7764 /// Some targets can do store(extractelement) with one instruction. 7765 /// Try to push the extractelement towards the stores when the target 7766 /// has this feature and this is profitable. 7767 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7768 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7769 if (DisableStoreExtract || 7770 (!StressStoreExtract && 7771 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7772 Inst->getOperand(1), CombineCost))) 7773 return false; 7774 7775 // At this point we know that Inst is a vector to scalar transition. 7776 // Try to move it down the def-use chain, until: 7777 // - We can combine the transition with its single use 7778 // => we got rid of the transition. 7779 // - We escape the current basic block 7780 // => we would need to check that we are moving it at a cheaper place and 7781 // we do not do that for now. 7782 BasicBlock *Parent = Inst->getParent(); 7783 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7784 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7785 // If the transition has more than one use, assume this is not going to be 7786 // beneficial. 7787 while (Inst->hasOneUse()) { 7788 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7789 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7790 7791 if (ToBePromoted->getParent() != Parent) { 7792 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7793 << ToBePromoted->getParent()->getName() 7794 << ") than the transition (" << Parent->getName() 7795 << ").\n"); 7796 return false; 7797 } 7798 7799 if (VPH.canCombine(ToBePromoted)) { 7800 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7801 << "will be combined with: " << *ToBePromoted << '\n'); 7802 VPH.recordCombineInstruction(ToBePromoted); 7803 bool Changed = VPH.promote(); 7804 NumStoreExtractExposed += Changed; 7805 return Changed; 7806 } 7807 7808 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7809 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7810 return false; 7811 7812 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7813 7814 VPH.enqueueForPromotion(ToBePromoted); 7815 Inst = ToBePromoted; 7816 } 7817 return false; 7818 } 7819 7820 /// For the instruction sequence of store below, F and I values 7821 /// are bundled together as an i64 value before being stored into memory. 7822 /// Sometimes it is more efficient to generate separate stores for F and I, 7823 /// which can remove the bitwise instructions or sink them to colder places. 7824 /// 7825 /// (store (or (zext (bitcast F to i32) to i64), 7826 /// (shl (zext I to i64), 32)), addr) --> 7827 /// (store F, addr) and (store I, addr+4) 7828 /// 7829 /// Similarly, splitting for other merged store can also be beneficial, like: 7830 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7831 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7832 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7833 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7834 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7835 /// 7836 /// We allow each target to determine specifically which kind of splitting is 7837 /// supported. 7838 /// 7839 /// The store patterns are commonly seen from the simple code snippet below 7840 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7841 /// void goo(const std::pair<int, float> &); 7842 /// hoo() { 7843 /// ... 7844 /// goo(std::make_pair(tmp, ftmp)); 7845 /// ... 7846 /// } 7847 /// 7848 /// Although we already have similar splitting in DAG Combine, we duplicate 7849 /// it in CodeGenPrepare to catch the case in which pattern is across 7850 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7851 /// during code expansion. 7852 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7853 const TargetLowering &TLI) { 7854 // Handle simple but common cases only. 7855 Type *StoreType = SI.getValueOperand()->getType(); 7856 7857 // The code below assumes shifting a value by <number of bits>, 7858 // whereas scalable vectors would have to be shifted by 7859 // <2log(vscale) + number of bits> in order to store the 7860 // low/high parts. Bailing out for now. 7861 if (StoreType->isScalableTy()) 7862 return false; 7863 7864 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7865 DL.getTypeSizeInBits(StoreType) == 0) 7866 return false; 7867 7868 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7869 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7870 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7871 return false; 7872 7873 // Don't split the store if it is volatile. 7874 if (SI.isVolatile()) 7875 return false; 7876 7877 // Match the following patterns: 7878 // (store (or (zext LValue to i64), 7879 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7880 // or 7881 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7882 // (zext LValue to i64), 7883 // Expect both operands of OR and the first operand of SHL have only 7884 // one use. 7885 Value *LValue, *HValue; 7886 if (!match(SI.getValueOperand(), 7887 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7888 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7889 m_SpecificInt(HalfValBitSize)))))) 7890 return false; 7891 7892 // Check LValue and HValue are int with size less or equal than 32. 7893 if (!LValue->getType()->isIntegerTy() || 7894 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7895 !HValue->getType()->isIntegerTy() || 7896 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7897 return false; 7898 7899 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7900 // as the input of target query. 7901 auto *LBC = dyn_cast<BitCastInst>(LValue); 7902 auto *HBC = dyn_cast<BitCastInst>(HValue); 7903 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7904 : EVT::getEVT(LValue->getType()); 7905 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7906 : EVT::getEVT(HValue->getType()); 7907 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7908 return false; 7909 7910 // Start to split store. 7911 IRBuilder<> Builder(SI.getContext()); 7912 Builder.SetInsertPoint(&SI); 7913 7914 // If LValue/HValue is a bitcast in another BB, create a new one in current 7915 // BB so it may be merged with the splitted stores by dag combiner. 7916 if (LBC && LBC->getParent() != SI.getParent()) 7917 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7918 if (HBC && HBC->getParent() != SI.getParent()) 7919 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7920 7921 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7922 auto CreateSplitStore = [&](Value *V, bool Upper) { 7923 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7924 Value *Addr = SI.getPointerOperand(); 7925 Align Alignment = SI.getAlign(); 7926 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7927 if (IsOffsetStore) { 7928 Addr = Builder.CreateGEP( 7929 SplitStoreType, Addr, 7930 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7931 7932 // When splitting the store in half, naturally one half will retain the 7933 // alignment of the original wider store, regardless of whether it was 7934 // over-aligned or not, while the other will require adjustment. 7935 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7936 } 7937 Builder.CreateAlignedStore(V, Addr, Alignment); 7938 }; 7939 7940 CreateSplitStore(LValue, false); 7941 CreateSplitStore(HValue, true); 7942 7943 // Delete the old store. 7944 SI.eraseFromParent(); 7945 return true; 7946 } 7947 7948 // Return true if the GEP has two operands, the first operand is of a sequential 7949 // type, and the second operand is a constant. 7950 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7951 gep_type_iterator I = gep_type_begin(*GEP); 7952 return GEP->getNumOperands() == 2 && I.isSequential() && 7953 isa<ConstantInt>(GEP->getOperand(1)); 7954 } 7955 7956 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7957 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7958 // reducing liveness interference across those edges benefits global register 7959 // allocation. Currently handles only certain cases. 7960 // 7961 // For example, unmerge %GEPI and %UGEPI as below. 7962 // 7963 // ---------- BEFORE ---------- 7964 // SrcBlock: 7965 // ... 7966 // %GEPIOp = ... 7967 // ... 7968 // %GEPI = gep %GEPIOp, Idx 7969 // ... 7970 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7971 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7972 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7973 // %UGEPI) 7974 // 7975 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7976 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7977 // ... 7978 // 7979 // DstBi: 7980 // ... 7981 // %UGEPI = gep %GEPIOp, UIdx 7982 // ... 7983 // --------------------------- 7984 // 7985 // ---------- AFTER ---------- 7986 // SrcBlock: 7987 // ... (same as above) 7988 // (* %GEPI is still alive on the indirectbr edges) 7989 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7990 // unmerging) 7991 // ... 7992 // 7993 // DstBi: 7994 // ... 7995 // %UGEPI = gep %GEPI, (UIdx-Idx) 7996 // ... 7997 // --------------------------- 7998 // 7999 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8000 // no longer alive on them. 8001 // 8002 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8003 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8004 // not to disable further simplications and optimizations as a result of GEP 8005 // merging. 8006 // 8007 // Note this unmerging may increase the length of the data flow critical path 8008 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8009 // between the register pressure and the length of data-flow critical 8010 // path. Restricting this to the uncommon IndirectBr case would minimize the 8011 // impact of potentially longer critical path, if any, and the impact on compile 8012 // time. 8013 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8014 const TargetTransformInfo *TTI) { 8015 BasicBlock *SrcBlock = GEPI->getParent(); 8016 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8017 // (non-IndirectBr) cases exit early here. 8018 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8019 return false; 8020 // Check that GEPI is a simple gep with a single constant index. 8021 if (!GEPSequentialConstIndexed(GEPI)) 8022 return false; 8023 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8024 // Check that GEPI is a cheap one. 8025 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8026 TargetTransformInfo::TCK_SizeAndLatency) > 8027 TargetTransformInfo::TCC_Basic) 8028 return false; 8029 Value *GEPIOp = GEPI->getOperand(0); 8030 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8031 if (!isa<Instruction>(GEPIOp)) 8032 return false; 8033 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8034 if (GEPIOpI->getParent() != SrcBlock) 8035 return false; 8036 // Check that GEP is used outside the block, meaning it's alive on the 8037 // IndirectBr edge(s). 8038 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8039 if (auto *I = dyn_cast<Instruction>(Usr)) { 8040 if (I->getParent() != SrcBlock) { 8041 return true; 8042 } 8043 } 8044 return false; 8045 })) 8046 return false; 8047 // The second elements of the GEP chains to be unmerged. 8048 std::vector<GetElementPtrInst *> UGEPIs; 8049 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8050 // on IndirectBr edges. 8051 for (User *Usr : GEPIOp->users()) { 8052 if (Usr == GEPI) 8053 continue; 8054 // Check if Usr is an Instruction. If not, give up. 8055 if (!isa<Instruction>(Usr)) 8056 return false; 8057 auto *UI = cast<Instruction>(Usr); 8058 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8059 if (UI->getParent() == SrcBlock) 8060 continue; 8061 // Check if Usr is a GEP. If not, give up. 8062 if (!isa<GetElementPtrInst>(Usr)) 8063 return false; 8064 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8065 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8066 // the pointer operand to it. If so, record it in the vector. If not, give 8067 // up. 8068 if (!GEPSequentialConstIndexed(UGEPI)) 8069 return false; 8070 if (UGEPI->getOperand(0) != GEPIOp) 8071 return false; 8072 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8073 return false; 8074 if (GEPIIdx->getType() != 8075 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8076 return false; 8077 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8078 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8079 TargetTransformInfo::TCK_SizeAndLatency) > 8080 TargetTransformInfo::TCC_Basic) 8081 return false; 8082 UGEPIs.push_back(UGEPI); 8083 } 8084 if (UGEPIs.size() == 0) 8085 return false; 8086 // Check the materializing cost of (Uidx-Idx). 8087 for (GetElementPtrInst *UGEPI : UGEPIs) { 8088 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8089 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8090 InstructionCost ImmCost = TTI->getIntImmCost( 8091 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8092 if (ImmCost > TargetTransformInfo::TCC_Basic) 8093 return false; 8094 } 8095 // Now unmerge between GEPI and UGEPIs. 8096 for (GetElementPtrInst *UGEPI : UGEPIs) { 8097 UGEPI->setOperand(0, GEPI); 8098 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8099 Constant *NewUGEPIIdx = ConstantInt::get( 8100 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8101 UGEPI->setOperand(1, NewUGEPIIdx); 8102 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8103 // inbounds to avoid UB. 8104 if (!GEPI->isInBounds()) { 8105 UGEPI->setIsInBounds(false); 8106 } 8107 } 8108 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8109 // alive on IndirectBr edges). 8110 assert(llvm::none_of(GEPIOp->users(), 8111 [&](User *Usr) { 8112 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8113 }) && 8114 "GEPIOp is used outside SrcBlock"); 8115 return true; 8116 } 8117 8118 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8119 SmallSet<BasicBlock *, 32> &FreshBBs, 8120 bool IsHugeFunc) { 8121 // Try and convert 8122 // %c = icmp ult %x, 8 8123 // br %c, bla, blb 8124 // %tc = lshr %x, 3 8125 // to 8126 // %tc = lshr %x, 3 8127 // %c = icmp eq %tc, 0 8128 // br %c, bla, blb 8129 // Creating the cmp to zero can be better for the backend, especially if the 8130 // lshr produces flags that can be used automatically. 8131 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8132 return false; 8133 8134 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8135 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8136 return false; 8137 8138 Value *X = Cmp->getOperand(0); 8139 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8140 8141 for (auto *U : X->users()) { 8142 Instruction *UI = dyn_cast<Instruction>(U); 8143 // A quick dominance check 8144 if (!UI || 8145 (UI->getParent() != Branch->getParent() && 8146 UI->getParent() != Branch->getSuccessor(0) && 8147 UI->getParent() != Branch->getSuccessor(1)) || 8148 (UI->getParent() != Branch->getParent() && 8149 !UI->getParent()->getSinglePredecessor())) 8150 continue; 8151 8152 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8153 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8154 IRBuilder<> Builder(Branch); 8155 if (UI->getParent() != Branch->getParent()) 8156 UI->moveBefore(Branch); 8157 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8158 ConstantInt::get(UI->getType(), 0)); 8159 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8160 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8161 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8162 return true; 8163 } 8164 if (Cmp->isEquality() && 8165 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8166 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8167 IRBuilder<> Builder(Branch); 8168 if (UI->getParent() != Branch->getParent()) 8169 UI->moveBefore(Branch); 8170 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8171 ConstantInt::get(UI->getType(), 0)); 8172 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8173 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8174 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8175 return true; 8176 } 8177 } 8178 return false; 8179 } 8180 8181 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8182 bool AnyChange = false; 8183 AnyChange = fixupDPValuesOnInst(*I); 8184 8185 // Bail out if we inserted the instruction to prevent optimizations from 8186 // stepping on each other's toes. 8187 if (InsertedInsts.count(I)) 8188 return AnyChange; 8189 8190 // TODO: Move into the switch on opcode below here. 8191 if (PHINode *P = dyn_cast<PHINode>(I)) { 8192 // It is possible for very late stage optimizations (such as SimplifyCFG) 8193 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8194 // trivial PHI, go ahead and zap it here. 8195 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8196 LargeOffsetGEPMap.erase(P); 8197 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8198 P->eraseFromParent(); 8199 ++NumPHIsElim; 8200 return true; 8201 } 8202 return AnyChange; 8203 } 8204 8205 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8206 // If the source of the cast is a constant, then this should have 8207 // already been constant folded. The only reason NOT to constant fold 8208 // it is if something (e.g. LSR) was careful to place the constant 8209 // evaluation in a block other than then one that uses it (e.g. to hoist 8210 // the address of globals out of a loop). If this is the case, we don't 8211 // want to forward-subst the cast. 8212 if (isa<Constant>(CI->getOperand(0))) 8213 return AnyChange; 8214 8215 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8216 return true; 8217 8218 if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) && 8219 TLI->optimizeExtendOrTruncateConversion( 8220 I, LI->getLoopFor(I->getParent()), *TTI)) 8221 return true; 8222 8223 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8224 /// Sink a zext or sext into its user blocks if the target type doesn't 8225 /// fit in one register 8226 if (TLI->getTypeAction(CI->getContext(), 8227 TLI->getValueType(*DL, CI->getType())) == 8228 TargetLowering::TypeExpandInteger) { 8229 return SinkCast(CI); 8230 } else { 8231 if (TLI->optimizeExtendOrTruncateConversion( 8232 I, LI->getLoopFor(I->getParent()), *TTI)) 8233 return true; 8234 8235 bool MadeChange = optimizeExt(I); 8236 return MadeChange | optimizeExtUses(I); 8237 } 8238 } 8239 return AnyChange; 8240 } 8241 8242 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8243 if (optimizeCmp(Cmp, ModifiedDT)) 8244 return true; 8245 8246 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8247 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8248 bool Modified = optimizeLoadExt(LI); 8249 unsigned AS = LI->getPointerAddressSpace(); 8250 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8251 return Modified; 8252 } 8253 8254 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8255 if (splitMergedValStore(*SI, *DL, *TLI)) 8256 return true; 8257 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8258 unsigned AS = SI->getPointerAddressSpace(); 8259 return optimizeMemoryInst(I, SI->getOperand(1), 8260 SI->getOperand(0)->getType(), AS); 8261 } 8262 8263 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8264 unsigned AS = RMW->getPointerAddressSpace(); 8265 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8266 } 8267 8268 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8269 unsigned AS = CmpX->getPointerAddressSpace(); 8270 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8271 CmpX->getCompareOperand()->getType(), AS); 8272 } 8273 8274 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8275 8276 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8277 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8278 return true; 8279 8280 // TODO: Move this into the switch on opcode - it handles shifts already. 8281 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8282 BinOp->getOpcode() == Instruction::LShr)) { 8283 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8284 if (CI && TLI->hasExtractBitsInsn()) 8285 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8286 return true; 8287 } 8288 8289 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8290 if (GEPI->hasAllZeroIndices()) { 8291 /// The GEP operand must be a pointer, so must its result -> BitCast 8292 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8293 GEPI->getName(), GEPI); 8294 NC->setDebugLoc(GEPI->getDebugLoc()); 8295 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8296 RecursivelyDeleteTriviallyDeadInstructions( 8297 GEPI, TLInfo, nullptr, 8298 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8299 ++NumGEPsElim; 8300 optimizeInst(NC, ModifiedDT); 8301 return true; 8302 } 8303 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8304 return true; 8305 } 8306 } 8307 8308 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8309 // freeze(icmp a, const)) -> icmp (freeze a), const 8310 // This helps generate efficient conditional jumps. 8311 Instruction *CmpI = nullptr; 8312 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8313 CmpI = II; 8314 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8315 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8316 8317 if (CmpI && CmpI->hasOneUse()) { 8318 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8319 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8320 isa<ConstantPointerNull>(Op0); 8321 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8322 isa<ConstantPointerNull>(Op1); 8323 if (Const0 || Const1) { 8324 if (!Const0 || !Const1) { 8325 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 8326 F->takeName(FI); 8327 CmpI->setOperand(Const0 ? 1 : 0, F); 8328 } 8329 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8330 FI->eraseFromParent(); 8331 return true; 8332 } 8333 } 8334 return AnyChange; 8335 } 8336 8337 if (tryToSinkFreeOperands(I)) 8338 return true; 8339 8340 switch (I->getOpcode()) { 8341 case Instruction::Shl: 8342 case Instruction::LShr: 8343 case Instruction::AShr: 8344 return optimizeShiftInst(cast<BinaryOperator>(I)); 8345 case Instruction::Call: 8346 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8347 case Instruction::Select: 8348 return optimizeSelectInst(cast<SelectInst>(I)); 8349 case Instruction::ShuffleVector: 8350 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8351 case Instruction::Switch: 8352 return optimizeSwitchInst(cast<SwitchInst>(I)); 8353 case Instruction::ExtractElement: 8354 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8355 case Instruction::Br: 8356 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8357 } 8358 8359 return AnyChange; 8360 } 8361 8362 /// Given an OR instruction, check to see if this is a bitreverse 8363 /// idiom. If so, insert the new intrinsic and return true. 8364 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8365 if (!I.getType()->isIntegerTy() || 8366 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8367 TLI->getValueType(*DL, I.getType(), true))) 8368 return false; 8369 8370 SmallVector<Instruction *, 4> Insts; 8371 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8372 return false; 8373 Instruction *LastInst = Insts.back(); 8374 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8375 RecursivelyDeleteTriviallyDeadInstructions( 8376 &I, TLInfo, nullptr, 8377 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8378 return true; 8379 } 8380 8381 // In this pass we look for GEP and cast instructions that are used 8382 // across basic blocks and rewrite them to improve basic-block-at-a-time 8383 // selection. 8384 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8385 SunkAddrs.clear(); 8386 bool MadeChange = false; 8387 8388 do { 8389 CurInstIterator = BB.begin(); 8390 ModifiedDT = ModifyDT::NotModifyDT; 8391 while (CurInstIterator != BB.end()) { 8392 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8393 if (ModifiedDT != ModifyDT::NotModifyDT) { 8394 // For huge function we tend to quickly go though the inner optmization 8395 // opportunities in the BB. So we go back to the BB head to re-optimize 8396 // each instruction instead of go back to the function head. 8397 if (IsHugeFunc) { 8398 DT.reset(); 8399 getDT(*BB.getParent()); 8400 break; 8401 } else { 8402 return true; 8403 } 8404 } 8405 } 8406 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8407 8408 bool MadeBitReverse = true; 8409 while (MadeBitReverse) { 8410 MadeBitReverse = false; 8411 for (auto &I : reverse(BB)) { 8412 if (makeBitReverse(I)) { 8413 MadeBitReverse = MadeChange = true; 8414 break; 8415 } 8416 } 8417 } 8418 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8419 8420 return MadeChange; 8421 } 8422 8423 // Some CGP optimizations may move or alter what's computed in a block. Check 8424 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8425 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8426 assert(isa<DbgValueInst>(I)); 8427 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8428 8429 // Does this dbg.value refer to a sunk address calculation? 8430 bool AnyChange = false; 8431 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8432 DVI.location_ops().end()); 8433 for (Value *Location : LocationOps) { 8434 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8435 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8436 if (SunkAddr) { 8437 // Point dbg.value at locally computed address, which should give the best 8438 // opportunity to be accurately lowered. This update may change the type 8439 // of pointer being referred to; however this makes no difference to 8440 // debugging information, and we can't generate bitcasts that may affect 8441 // codegen. 8442 DVI.replaceVariableLocationOp(Location, SunkAddr); 8443 AnyChange = true; 8444 } 8445 } 8446 return AnyChange; 8447 } 8448 8449 bool CodeGenPrepare::fixupDPValuesOnInst(Instruction &I) { 8450 bool AnyChange = false; 8451 for (DPValue &DPV : I.getDbgValueRange()) 8452 AnyChange |= fixupDPValue(DPV); 8453 return AnyChange; 8454 } 8455 8456 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8457 // which can cause a function to be reprocessed? 8458 bool CodeGenPrepare::fixupDPValue(DPValue &DPV) { 8459 if (DPV.Type != DPValue::LocationType::Value) 8460 return false; 8461 8462 // Does this DPValue refer to a sunk address calculation? 8463 bool AnyChange = false; 8464 SmallDenseSet<Value *> LocationOps(DPV.location_ops().begin(), 8465 DPV.location_ops().end()); 8466 for (Value *Location : LocationOps) { 8467 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8468 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8469 if (SunkAddr) { 8470 // Point dbg.value at locally computed address, which should give the best 8471 // opportunity to be accurately lowered. This update may change the type 8472 // of pointer being referred to; however this makes no difference to 8473 // debugging information, and we can't generate bitcasts that may affect 8474 // codegen. 8475 DPV.replaceVariableLocationOp(Location, SunkAddr); 8476 AnyChange = true; 8477 } 8478 } 8479 return AnyChange; 8480 } 8481 8482 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8483 DVI->removeFromParent(); 8484 if (isa<PHINode>(VI)) 8485 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8486 else 8487 DVI->insertAfter(VI); 8488 } 8489 8490 static void DbgInserterHelper(DPValue *DPV, Instruction *VI) { 8491 DPV->removeFromParent(); 8492 BasicBlock *VIBB = VI->getParent(); 8493 if (isa<PHINode>(VI)) 8494 VIBB->insertDPValueBefore(DPV, VIBB->getFirstInsertionPt()); 8495 else 8496 VIBB->insertDPValueAfter(DPV, VI); 8497 } 8498 8499 // A llvm.dbg.value may be using a value before its definition, due to 8500 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8501 // them by moving the dbg.value to immediately after the value definition. 8502 // FIXME: Ideally this should never be necessary, and this has the potential 8503 // to re-order dbg.value intrinsics. 8504 bool CodeGenPrepare::placeDbgValues(Function &F) { 8505 bool MadeChange = false; 8506 DominatorTree DT(F); 8507 8508 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8509 SmallVector<Instruction *, 4> VIs; 8510 for (Value *V : DbgItem->location_ops()) 8511 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8512 VIs.push_back(VI); 8513 8514 // This item may depend on multiple instructions, complicating any 8515 // potential sink. This block takes the defensive approach, opting to 8516 // "undef" the item if it has more than one instruction and any of them do 8517 // not dominate iem. 8518 for (Instruction *VI : VIs) { 8519 if (VI->isTerminator()) 8520 continue; 8521 8522 // If VI is a phi in a block with an EHPad terminator, we can't insert 8523 // after it. 8524 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8525 continue; 8526 8527 // If the defining instruction dominates the dbg.value, we do not need 8528 // to move the dbg.value. 8529 if (DT.dominates(VI, Position)) 8530 continue; 8531 8532 // If we depend on multiple instructions and any of them doesn't 8533 // dominate this DVI, we probably can't salvage it: moving it to 8534 // after any of the instructions could cause us to lose the others. 8535 if (VIs.size() > 1) { 8536 LLVM_DEBUG( 8537 dbgs() 8538 << "Unable to find valid location for Debug Value, undefing:\n" 8539 << *DbgItem); 8540 DbgItem->setKillLocation(); 8541 break; 8542 } 8543 8544 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8545 << *DbgItem << ' ' << *VI); 8546 DbgInserterHelper(DbgItem, VI); 8547 MadeChange = true; 8548 ++NumDbgValueMoved; 8549 } 8550 }; 8551 8552 for (BasicBlock &BB : F) { 8553 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8554 // Process dbg.value intrinsics. 8555 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8556 if (DVI) { 8557 DbgProcessor(DVI, DVI); 8558 continue; 8559 } 8560 8561 // If this isn't a dbg.value, process any attached DPValue records 8562 // attached to this instruction. 8563 for (DPValue &DPV : llvm::make_early_inc_range(Insn.getDbgValueRange())) { 8564 if (DPV.Type != DPValue::LocationType::Value) 8565 continue; 8566 DbgProcessor(&DPV, &Insn); 8567 } 8568 } 8569 } 8570 8571 return MadeChange; 8572 } 8573 8574 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8575 // probes can be chained dependencies of other regular DAG nodes and block DAG 8576 // combine optimizations. 8577 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8578 bool MadeChange = false; 8579 for (auto &Block : F) { 8580 // Move the rest probes to the beginning of the block. 8581 auto FirstInst = Block.getFirstInsertionPt(); 8582 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8583 ++FirstInst; 8584 BasicBlock::iterator I(FirstInst); 8585 I++; 8586 while (I != Block.end()) { 8587 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8588 II->moveBefore(&*FirstInst); 8589 MadeChange = true; 8590 } 8591 } 8592 } 8593 return MadeChange; 8594 } 8595 8596 /// Scale down both weights to fit into uint32_t. 8597 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8598 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8599 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8600 NewTrue = NewTrue / Scale; 8601 NewFalse = NewFalse / Scale; 8602 } 8603 8604 /// Some targets prefer to split a conditional branch like: 8605 /// \code 8606 /// %0 = icmp ne i32 %a, 0 8607 /// %1 = icmp ne i32 %b, 0 8608 /// %or.cond = or i1 %0, %1 8609 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8610 /// \endcode 8611 /// into multiple branch instructions like: 8612 /// \code 8613 /// bb1: 8614 /// %0 = icmp ne i32 %a, 0 8615 /// br i1 %0, label %TrueBB, label %bb2 8616 /// bb2: 8617 /// %1 = icmp ne i32 %b, 0 8618 /// br i1 %1, label %TrueBB, label %FalseBB 8619 /// \endcode 8620 /// This usually allows instruction selection to do even further optimizations 8621 /// and combine the compare with the branch instruction. Currently this is 8622 /// applied for targets which have "cheap" jump instructions. 8623 /// 8624 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8625 /// 8626 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8627 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8628 return false; 8629 8630 bool MadeChange = false; 8631 for (auto &BB : F) { 8632 // Does this BB end with the following? 8633 // %cond1 = icmp|fcmp|binary instruction ... 8634 // %cond2 = icmp|fcmp|binary instruction ... 8635 // %cond.or = or|and i1 %cond1, cond2 8636 // br i1 %cond.or label %dest1, label %dest2" 8637 Instruction *LogicOp; 8638 BasicBlock *TBB, *FBB; 8639 if (!match(BB.getTerminator(), 8640 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8641 continue; 8642 8643 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8644 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8645 continue; 8646 8647 // The merging of mostly empty BB can cause a degenerate branch. 8648 if (TBB == FBB) 8649 continue; 8650 8651 unsigned Opc; 8652 Value *Cond1, *Cond2; 8653 if (match(LogicOp, 8654 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8655 Opc = Instruction::And; 8656 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8657 m_OneUse(m_Value(Cond2))))) 8658 Opc = Instruction::Or; 8659 else 8660 continue; 8661 8662 auto IsGoodCond = [](Value *Cond) { 8663 return match( 8664 Cond, 8665 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8666 m_LogicalOr(m_Value(), m_Value())))); 8667 }; 8668 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8669 continue; 8670 8671 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8672 8673 // Create a new BB. 8674 auto *TmpBB = 8675 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8676 BB.getParent(), BB.getNextNode()); 8677 if (IsHugeFunc) 8678 FreshBBs.insert(TmpBB); 8679 8680 // Update original basic block by using the first condition directly by the 8681 // branch instruction and removing the no longer needed and/or instruction. 8682 Br1->setCondition(Cond1); 8683 LogicOp->eraseFromParent(); 8684 8685 // Depending on the condition we have to either replace the true or the 8686 // false successor of the original branch instruction. 8687 if (Opc == Instruction::And) 8688 Br1->setSuccessor(0, TmpBB); 8689 else 8690 Br1->setSuccessor(1, TmpBB); 8691 8692 // Fill in the new basic block. 8693 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8694 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8695 I->removeFromParent(); 8696 I->insertBefore(Br2); 8697 } 8698 8699 // Update PHI nodes in both successors. The original BB needs to be 8700 // replaced in one successor's PHI nodes, because the branch comes now from 8701 // the newly generated BB (NewBB). In the other successor we need to add one 8702 // incoming edge to the PHI nodes, because both branch instructions target 8703 // now the same successor. Depending on the original branch condition 8704 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8705 // we perform the correct update for the PHI nodes. 8706 // This doesn't change the successor order of the just created branch 8707 // instruction (or any other instruction). 8708 if (Opc == Instruction::Or) 8709 std::swap(TBB, FBB); 8710 8711 // Replace the old BB with the new BB. 8712 TBB->replacePhiUsesWith(&BB, TmpBB); 8713 8714 // Add another incoming edge from the new BB. 8715 for (PHINode &PN : FBB->phis()) { 8716 auto *Val = PN.getIncomingValueForBlock(&BB); 8717 PN.addIncoming(Val, TmpBB); 8718 } 8719 8720 // Update the branch weights (from SelectionDAGBuilder:: 8721 // FindMergedConditions). 8722 if (Opc == Instruction::Or) { 8723 // Codegen X | Y as: 8724 // BB1: 8725 // jmp_if_X TBB 8726 // jmp TmpBB 8727 // TmpBB: 8728 // jmp_if_Y TBB 8729 // jmp FBB 8730 // 8731 8732 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8733 // The requirement is that 8734 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8735 // = TrueProb for original BB. 8736 // Assuming the original weights are A and B, one choice is to set BB1's 8737 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8738 // assumes that 8739 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8740 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8741 // TmpBB, but the math is more complicated. 8742 uint64_t TrueWeight, FalseWeight; 8743 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8744 uint64_t NewTrueWeight = TrueWeight; 8745 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8746 scaleWeights(NewTrueWeight, NewFalseWeight); 8747 Br1->setMetadata(LLVMContext::MD_prof, 8748 MDBuilder(Br1->getContext()) 8749 .createBranchWeights(TrueWeight, FalseWeight)); 8750 8751 NewTrueWeight = TrueWeight; 8752 NewFalseWeight = 2 * FalseWeight; 8753 scaleWeights(NewTrueWeight, NewFalseWeight); 8754 Br2->setMetadata(LLVMContext::MD_prof, 8755 MDBuilder(Br2->getContext()) 8756 .createBranchWeights(TrueWeight, FalseWeight)); 8757 } 8758 } else { 8759 // Codegen X & Y as: 8760 // BB1: 8761 // jmp_if_X TmpBB 8762 // jmp FBB 8763 // TmpBB: 8764 // jmp_if_Y TBB 8765 // jmp FBB 8766 // 8767 // This requires creation of TmpBB after CurBB. 8768 8769 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8770 // The requirement is that 8771 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8772 // = FalseProb for original BB. 8773 // Assuming the original weights are A and B, one choice is to set BB1's 8774 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8775 // assumes that 8776 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8777 uint64_t TrueWeight, FalseWeight; 8778 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8779 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8780 uint64_t NewFalseWeight = FalseWeight; 8781 scaleWeights(NewTrueWeight, NewFalseWeight); 8782 Br1->setMetadata(LLVMContext::MD_prof, 8783 MDBuilder(Br1->getContext()) 8784 .createBranchWeights(TrueWeight, FalseWeight)); 8785 8786 NewTrueWeight = 2 * TrueWeight; 8787 NewFalseWeight = FalseWeight; 8788 scaleWeights(NewTrueWeight, NewFalseWeight); 8789 Br2->setMetadata(LLVMContext::MD_prof, 8790 MDBuilder(Br2->getContext()) 8791 .createBranchWeights(TrueWeight, FalseWeight)); 8792 } 8793 } 8794 8795 ModifiedDT = ModifyDT::ModifyBBDT; 8796 MadeChange = true; 8797 8798 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8799 TmpBB->dump()); 8800 } 8801 return MadeChange; 8802 } 8803