xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision b9fa1500cb2265b95927e19b9d2119ca26d65be3)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/CodeGenPrepare.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineValueType.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfo.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/IntrinsicsAArch64.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/ProfDataUtils.h"
71 #include "llvm/IR/Statepoint.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/User.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/IR/ValueHandle.h"
77 #include "llvm/IR/ValueMap.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BlockFrequency.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <optional>
103 #include <utility>
104 #include <vector>
105 
106 using namespace llvm;
107 using namespace llvm::PatternMatch;
108 
109 #define DEBUG_TYPE "codegenprepare"
110 
111 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
112 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
113 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
114 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
115                       "sunken Cmps");
116 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
117                        "of sunken Casts");
118 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
119                           "computations were sunk");
120 STATISTIC(NumMemoryInstsPhiCreated,
121           "Number of phis created when address "
122           "computations were sunk to memory instructions");
123 STATISTIC(NumMemoryInstsSelectCreated,
124           "Number of select created when address "
125           "computations were sunk to memory instructions");
126 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
127 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
128 STATISTIC(NumAndsAdded,
129           "Number of and mask instructions added to form ext loads");
130 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
131 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
132 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
133 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
134 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
135 
136 static cl::opt<bool> DisableBranchOpts(
137     "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
138     cl::desc("Disable branch optimizations in CodeGenPrepare"));
139 
140 static cl::opt<bool>
141     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
142                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
143 
144 static cl::opt<bool>
145     DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
146                           cl::init(false),
147                           cl::desc("Disable select to branch conversion."));
148 
149 static cl::opt<bool>
150     AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
151                       cl::desc("Address sinking in CGP using GEPs."));
152 
153 static cl::opt<bool>
154     EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
155                         cl::desc("Enable sinkinig and/cmp into branches."));
156 
157 static cl::opt<bool> DisableStoreExtract(
158     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
159     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
160 
161 static cl::opt<bool> StressStoreExtract(
162     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
163     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
164 
165 static cl::opt<bool> DisableExtLdPromotion(
166     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
168              "CodeGenPrepare"));
169 
170 static cl::opt<bool> StressExtLdPromotion(
171     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
172     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
173              "optimization in CodeGenPrepare"));
174 
175 static cl::opt<bool> DisablePreheaderProtect(
176     "disable-preheader-prot", cl::Hidden, cl::init(false),
177     cl::desc("Disable protection against removing loop preheaders"));
178 
179 static cl::opt<bool> ProfileGuidedSectionPrefix(
180     "profile-guided-section-prefix", cl::Hidden, cl::init(true),
181     cl::desc("Use profile info to add section prefix for hot/cold functions"));
182 
183 static cl::opt<bool> ProfileUnknownInSpecialSection(
184     "profile-unknown-in-special-section", cl::Hidden,
185     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
186              "profile, we cannot tell the function is cold for sure because "
187              "it may be a function newly added without ever being sampled. "
188              "With the flag enabled, compiler can put such profile unknown "
189              "functions into a special section, so runtime system can choose "
190              "to handle it in a different way than .text section, to save "
191              "RAM for example. "));
192 
193 static cl::opt<bool> BBSectionsGuidedSectionPrefix(
194     "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
195     cl::desc("Use the basic-block-sections profile to determine the text "
196              "section prefix for hot functions. Functions with "
197              "basic-block-sections profile will be placed in `.text.hot` "
198              "regardless of their FDO profile info. Other functions won't be "
199              "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
200              "profiles."));
201 
202 static cl::opt<uint64_t> FreqRatioToSkipMerge(
203     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
204     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
205              "(frequency of destination block) is greater than this ratio"));
206 
207 static cl::opt<bool> ForceSplitStore(
208     "force-split-store", cl::Hidden, cl::init(false),
209     cl::desc("Force store splitting no matter what the target query says."));
210 
211 static cl::opt<bool> EnableTypePromotionMerge(
212     "cgp-type-promotion-merge", cl::Hidden,
213     cl::desc("Enable merging of redundant sexts when one is dominating"
214              " the other."),
215     cl::init(true));
216 
217 static cl::opt<bool> DisableComplexAddrModes(
218     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
219     cl::desc("Disables combining addressing modes with different parts "
220              "in optimizeMemoryInst."));
221 
222 static cl::opt<bool>
223     AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
224                     cl::desc("Allow creation of Phis in Address sinking."));
225 
226 static cl::opt<bool> AddrSinkNewSelects(
227     "addr-sink-new-select", cl::Hidden, cl::init(true),
228     cl::desc("Allow creation of selects in Address sinking."));
229 
230 static cl::opt<bool> AddrSinkCombineBaseReg(
231     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
232     cl::desc("Allow combining of BaseReg field in Address sinking."));
233 
234 static cl::opt<bool> AddrSinkCombineBaseGV(
235     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
236     cl::desc("Allow combining of BaseGV field in Address sinking."));
237 
238 static cl::opt<bool> AddrSinkCombineBaseOffs(
239     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
240     cl::desc("Allow combining of BaseOffs field in Address sinking."));
241 
242 static cl::opt<bool> AddrSinkCombineScaledReg(
243     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
244     cl::desc("Allow combining of ScaledReg field in Address sinking."));
245 
246 static cl::opt<bool>
247     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
248                          cl::init(true),
249                          cl::desc("Enable splitting large offset of GEP."));
250 
251 static cl::opt<bool> EnableICMP_EQToICMP_ST(
252     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
253     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
254 
255 static cl::opt<bool>
256     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
257                      cl::desc("Enable BFI update verification for "
258                               "CodeGenPrepare."));
259 
260 static cl::opt<bool>
261     OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
262                      cl::desc("Enable converting phi types in CodeGenPrepare"));
263 
264 static cl::opt<unsigned>
265     HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
266                             cl::desc("Least BB number of huge function."));
267 
268 static cl::opt<unsigned>
269     MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
270                           cl::Hidden,
271                           cl::desc("Max number of address users to look at"));
272 
273 static cl::opt<bool>
274     DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false),
275                       cl::desc("Disable elimination of dead PHI nodes."));
276 
277 namespace {
278 
279 enum ExtType {
280   ZeroExtension, // Zero extension has been seen.
281   SignExtension, // Sign extension has been seen.
282   BothExtension  // This extension type is used if we saw sext after
283                  // ZeroExtension had been set, or if we saw zext after
284                  // SignExtension had been set. It makes the type
285                  // information of a promoted instruction invalid.
286 };
287 
288 enum ModifyDT {
289   NotModifyDT, // Not Modify any DT.
290   ModifyBBDT,  // Modify the Basic Block Dominator Tree.
291   ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
292                // This usually means we move/delete/insert instruction
293                // in a Basic Block. So we should re-iterate instructions
294                // in such Basic Block.
295 };
296 
297 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
298 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
299 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
300 using SExts = SmallVector<Instruction *, 16>;
301 using ValueToSExts = MapVector<Value *, SExts>;
302 
303 class TypePromotionTransaction;
304 
305 class CodeGenPrepare {
306   friend class CodeGenPrepareLegacyPass;
307   const TargetMachine *TM = nullptr;
308   const TargetSubtargetInfo *SubtargetInfo = nullptr;
309   const TargetLowering *TLI = nullptr;
310   const TargetRegisterInfo *TRI = nullptr;
311   const TargetTransformInfo *TTI = nullptr;
312   const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
313   const TargetLibraryInfo *TLInfo = nullptr;
314   LoopInfo *LI = nullptr;
315   std::unique_ptr<BlockFrequencyInfo> BFI;
316   std::unique_ptr<BranchProbabilityInfo> BPI;
317   ProfileSummaryInfo *PSI = nullptr;
318 
319   /// As we scan instructions optimizing them, this is the next instruction
320   /// to optimize. Transforms that can invalidate this should update it.
321   BasicBlock::iterator CurInstIterator;
322 
323   /// Keeps track of non-local addresses that have been sunk into a block.
324   /// This allows us to avoid inserting duplicate code for blocks with
325   /// multiple load/stores of the same address. The usage of WeakTrackingVH
326   /// enables SunkAddrs to be treated as a cache whose entries can be
327   /// invalidated if a sunken address computation has been erased.
328   ValueMap<Value *, WeakTrackingVH> SunkAddrs;
329 
330   /// Keeps track of all instructions inserted for the current function.
331   SetOfInstrs InsertedInsts;
332 
333   /// Keeps track of the type of the related instruction before their
334   /// promotion for the current function.
335   InstrToOrigTy PromotedInsts;
336 
337   /// Keep track of instructions removed during promotion.
338   SetOfInstrs RemovedInsts;
339 
340   /// Keep track of sext chains based on their initial value.
341   DenseMap<Value *, Instruction *> SeenChainsForSExt;
342 
343   /// Keep track of GEPs accessing the same data structures such as structs or
344   /// arrays that are candidates to be split later because of their large
345   /// size.
346   MapVector<AssertingVH<Value>,
347             SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
348       LargeOffsetGEPMap;
349 
350   /// Keep track of new GEP base after splitting the GEPs having large offset.
351   SmallSet<AssertingVH<Value>, 2> NewGEPBases;
352 
353   /// Map serial numbers to Large offset GEPs.
354   DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
355 
356   /// Keep track of SExt promoted.
357   ValueToSExts ValToSExtendedUses;
358 
359   /// True if the function has the OptSize attribute.
360   bool OptSize;
361 
362   /// DataLayout for the Function being processed.
363   const DataLayout *DL = nullptr;
364 
365   /// Building the dominator tree can be expensive, so we only build it
366   /// lazily and update it when required.
367   std::unique_ptr<DominatorTree> DT;
368 
369 public:
370   CodeGenPrepare(){};
371   CodeGenPrepare(const TargetMachine *TM) : TM(TM){};
372   /// If encounter huge function, we need to limit the build time.
373   bool IsHugeFunc = false;
374 
375   /// FreshBBs is like worklist, it collected the updated BBs which need
376   /// to be optimized again.
377   /// Note: Consider building time in this pass, when a BB updated, we need
378   /// to insert such BB into FreshBBs for huge function.
379   SmallSet<BasicBlock *, 32> FreshBBs;
380 
381   void releaseMemory() {
382     // Clear per function information.
383     InsertedInsts.clear();
384     PromotedInsts.clear();
385     FreshBBs.clear();
386     BPI.reset();
387     BFI.reset();
388   }
389 
390   bool run(Function &F, FunctionAnalysisManager &AM);
391 
392 private:
393   template <typename F>
394   void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
395     // Substituting can cause recursive simplifications, which can invalidate
396     // our iterator.  Use a WeakTrackingVH to hold onto it in case this
397     // happens.
398     Value *CurValue = &*CurInstIterator;
399     WeakTrackingVH IterHandle(CurValue);
400 
401     f();
402 
403     // If the iterator instruction was recursively deleted, start over at the
404     // start of the block.
405     if (IterHandle != CurValue) {
406       CurInstIterator = BB->begin();
407       SunkAddrs.clear();
408     }
409   }
410 
411   // Get the DominatorTree, building if necessary.
412   DominatorTree &getDT(Function &F) {
413     if (!DT)
414       DT = std::make_unique<DominatorTree>(F);
415     return *DT;
416   }
417 
418   void removeAllAssertingVHReferences(Value *V);
419   bool eliminateAssumptions(Function &F);
420   bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
421   bool eliminateMostlyEmptyBlocks(Function &F);
422   BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
423   bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
424   void eliminateMostlyEmptyBlock(BasicBlock *BB);
425   bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
426                                      bool isPreheader);
427   bool makeBitReverse(Instruction &I);
428   bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
429   bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
430   bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
431                           unsigned AddrSpace);
432   bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
433   bool optimizeInlineAsmInst(CallInst *CS);
434   bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
435   bool optimizeExt(Instruction *&I);
436   bool optimizeExtUses(Instruction *I);
437   bool optimizeLoadExt(LoadInst *Load);
438   bool optimizeShiftInst(BinaryOperator *BO);
439   bool optimizeFunnelShift(IntrinsicInst *Fsh);
440   bool optimizeSelectInst(SelectInst *SI);
441   bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
442   bool optimizeSwitchType(SwitchInst *SI);
443   bool optimizeSwitchPhiConstants(SwitchInst *SI);
444   bool optimizeSwitchInst(SwitchInst *SI);
445   bool optimizeExtractElementInst(Instruction *Inst);
446   bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
447   bool fixupDbgValue(Instruction *I);
448   bool fixupDPValue(DPValue &I);
449   bool fixupDPValuesOnInst(Instruction &I);
450   bool placeDbgValues(Function &F);
451   bool placePseudoProbes(Function &F);
452   bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
453                     LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
454   bool tryToPromoteExts(TypePromotionTransaction &TPT,
455                         const SmallVectorImpl<Instruction *> &Exts,
456                         SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
457                         unsigned CreatedInstsCost = 0);
458   bool mergeSExts(Function &F);
459   bool splitLargeGEPOffsets();
460   bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
461                        SmallPtrSetImpl<Instruction *> &DeletedInstrs);
462   bool optimizePhiTypes(Function &F);
463   bool performAddressTypePromotion(
464       Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
465       bool HasPromoted, TypePromotionTransaction &TPT,
466       SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
467   bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
468   bool simplifyOffsetableRelocate(GCStatepointInst &I);
469 
470   bool tryToSinkFreeOperands(Instruction *I);
471   bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
472                                    CmpInst *Cmp, Intrinsic::ID IID);
473   bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
474   bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
475   bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
476   void verifyBFIUpdates(Function &F);
477   bool _run(Function &F);
478 };
479 
480 class CodeGenPrepareLegacyPass : public FunctionPass {
481 public:
482   static char ID; // Pass identification, replacement for typeid
483 
484   CodeGenPrepareLegacyPass() : FunctionPass(ID) {
485     initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
486   }
487 
488   bool runOnFunction(Function &F) override;
489 
490   StringRef getPassName() const override { return "CodeGen Prepare"; }
491 
492   void getAnalysisUsage(AnalysisUsage &AU) const override {
493     // FIXME: When we can selectively preserve passes, preserve the domtree.
494     AU.addRequired<ProfileSummaryInfoWrapperPass>();
495     AU.addRequired<TargetLibraryInfoWrapperPass>();
496     AU.addRequired<TargetPassConfig>();
497     AU.addRequired<TargetTransformInfoWrapperPass>();
498     AU.addRequired<LoopInfoWrapperPass>();
499     AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
500   }
501 };
502 
503 } // end anonymous namespace
504 
505 char CodeGenPrepareLegacyPass::ID = 0;
506 
507 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) {
508   if (skipFunction(F))
509     return false;
510   auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
511   CodeGenPrepare CGP(TM);
512   CGP.DL = &F.getParent()->getDataLayout();
513   CGP.SubtargetInfo = TM->getSubtargetImpl(F);
514   CGP.TLI = CGP.SubtargetInfo->getTargetLowering();
515   CGP.TRI = CGP.SubtargetInfo->getRegisterInfo();
516   CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
517   CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
518   CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
519   CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI));
520   CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI));
521   CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
522   auto BBSPRWP =
523       getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
524   CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr;
525 
526   return CGP._run(F);
527 }
528 
529 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE,
530                       "Optimize for code generation", false, false)
531 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
532 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
533 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
534 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
535 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
536 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
537 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE,
538                     "Optimize for code generation", false, false)
539 
540 FunctionPass *llvm::createCodeGenPrepareLegacyPass() {
541   return new CodeGenPrepareLegacyPass();
542 }
543 
544 PreservedAnalyses CodeGenPreparePass::run(Function &F,
545                                           FunctionAnalysisManager &AM) {
546   CodeGenPrepare CGP(TM);
547 
548   bool Changed = CGP.run(F, AM);
549   if (!Changed)
550     return PreservedAnalyses::all();
551 
552   PreservedAnalyses PA;
553   PA.preserve<TargetLibraryAnalysis>();
554   PA.preserve<TargetIRAnalysis>();
555   PA.preserve<LoopAnalysis>();
556   return PA;
557 }
558 
559 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) {
560   DL = &F.getParent()->getDataLayout();
561   SubtargetInfo = TM->getSubtargetImpl(F);
562   TLI = SubtargetInfo->getTargetLowering();
563   TRI = SubtargetInfo->getRegisterInfo();
564   TLInfo = &AM.getResult<TargetLibraryAnalysis>(F);
565   TTI = &AM.getResult<TargetIRAnalysis>(F);
566   LI = &AM.getResult<LoopAnalysis>(F);
567   BPI.reset(new BranchProbabilityInfo(F, *LI));
568   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
569   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
570   PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
571   BBSectionsProfileReader =
572       AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F);
573   return _run(F);
574 }
575 
576 bool CodeGenPrepare::_run(Function &F) {
577   bool EverMadeChange = false;
578 
579   OptSize = F.hasOptSize();
580   // Use the basic-block-sections profile to promote hot functions to .text.hot
581   // if requested.
582   if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
583       BBSectionsProfileReader->isFunctionHot(F.getName())) {
584     F.setSectionPrefix("hot");
585   } else if (ProfileGuidedSectionPrefix) {
586     // The hot attribute overwrites profile count based hotness while profile
587     // counts based hotness overwrite the cold attribute.
588     // This is a conservative behabvior.
589     if (F.hasFnAttribute(Attribute::Hot) ||
590         PSI->isFunctionHotInCallGraph(&F, *BFI))
591       F.setSectionPrefix("hot");
592     // If PSI shows this function is not hot, we will placed the function
593     // into unlikely section if (1) PSI shows this is a cold function, or
594     // (2) the function has a attribute of cold.
595     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
596              F.hasFnAttribute(Attribute::Cold))
597       F.setSectionPrefix("unlikely");
598     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
599              PSI->isFunctionHotnessUnknown(F))
600       F.setSectionPrefix("unknown");
601   }
602 
603   /// This optimization identifies DIV instructions that can be
604   /// profitably bypassed and carried out with a shorter, faster divide.
605   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
606     const DenseMap<unsigned int, unsigned int> &BypassWidths =
607         TLI->getBypassSlowDivWidths();
608     BasicBlock *BB = &*F.begin();
609     while (BB != nullptr) {
610       // bypassSlowDivision may create new BBs, but we don't want to reapply the
611       // optimization to those blocks.
612       BasicBlock *Next = BB->getNextNode();
613       // F.hasOptSize is already checked in the outer if statement.
614       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
615         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
616       BB = Next;
617     }
618   }
619 
620   // Get rid of @llvm.assume builtins before attempting to eliminate empty
621   // blocks, since there might be blocks that only contain @llvm.assume calls
622   // (plus arguments that we can get rid of).
623   EverMadeChange |= eliminateAssumptions(F);
624 
625   // Eliminate blocks that contain only PHI nodes and an
626   // unconditional branch.
627   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
628 
629   ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
630   if (!DisableBranchOpts)
631     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
632 
633   // Split some critical edges where one of the sources is an indirect branch,
634   // to help generate sane code for PHIs involving such edges.
635   EverMadeChange |=
636       SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
637 
638   // If we are optimzing huge function, we need to consider the build time.
639   // Because the basic algorithm's complex is near O(N!).
640   IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
641 
642   // Transformations above may invalidate dominator tree and/or loop info.
643   DT.reset();
644   LI->releaseMemory();
645   LI->analyze(getDT(F));
646 
647   bool MadeChange = true;
648   bool FuncIterated = false;
649   while (MadeChange) {
650     MadeChange = false;
651 
652     for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
653       if (FuncIterated && !FreshBBs.contains(&BB))
654         continue;
655 
656       ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
657       bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
658 
659       if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
660         DT.reset();
661 
662       MadeChange |= Changed;
663       if (IsHugeFunc) {
664         // If the BB is updated, it may still has chance to be optimized.
665         // This usually happen at sink optimization.
666         // For example:
667         //
668         // bb0:
669         // %and = and i32 %a, 4
670         // %cmp = icmp eq i32 %and, 0
671         //
672         // If the %cmp sink to other BB, the %and will has chance to sink.
673         if (Changed)
674           FreshBBs.insert(&BB);
675         else if (FuncIterated)
676           FreshBBs.erase(&BB);
677       } else {
678         // For small/normal functions, we restart BB iteration if the dominator
679         // tree of the Function was changed.
680         if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
681           break;
682       }
683     }
684     // We have iterated all the BB in the (only work for huge) function.
685     FuncIterated = IsHugeFunc;
686 
687     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
688       MadeChange |= mergeSExts(F);
689     if (!LargeOffsetGEPMap.empty())
690       MadeChange |= splitLargeGEPOffsets();
691     MadeChange |= optimizePhiTypes(F);
692 
693     if (MadeChange)
694       eliminateFallThrough(F, DT.get());
695 
696 #ifndef NDEBUG
697     if (MadeChange && VerifyLoopInfo)
698       LI->verify(getDT(F));
699 #endif
700 
701     // Really free removed instructions during promotion.
702     for (Instruction *I : RemovedInsts)
703       I->deleteValue();
704 
705     EverMadeChange |= MadeChange;
706     SeenChainsForSExt.clear();
707     ValToSExtendedUses.clear();
708     RemovedInsts.clear();
709     LargeOffsetGEPMap.clear();
710     LargeOffsetGEPID.clear();
711   }
712 
713   NewGEPBases.clear();
714   SunkAddrs.clear();
715 
716   if (!DisableBranchOpts) {
717     MadeChange = false;
718     // Use a set vector to get deterministic iteration order. The order the
719     // blocks are removed may affect whether or not PHI nodes in successors
720     // are removed.
721     SmallSetVector<BasicBlock *, 8> WorkList;
722     for (BasicBlock &BB : F) {
723       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
724       MadeChange |= ConstantFoldTerminator(&BB, true);
725       if (!MadeChange)
726         continue;
727 
728       for (BasicBlock *Succ : Successors)
729         if (pred_empty(Succ))
730           WorkList.insert(Succ);
731     }
732 
733     // Delete the dead blocks and any of their dead successors.
734     MadeChange |= !WorkList.empty();
735     while (!WorkList.empty()) {
736       BasicBlock *BB = WorkList.pop_back_val();
737       SmallVector<BasicBlock *, 2> Successors(successors(BB));
738 
739       DeleteDeadBlock(BB);
740 
741       for (BasicBlock *Succ : Successors)
742         if (pred_empty(Succ))
743           WorkList.insert(Succ);
744     }
745 
746     // Merge pairs of basic blocks with unconditional branches, connected by
747     // a single edge.
748     if (EverMadeChange || MadeChange)
749       MadeChange |= eliminateFallThrough(F);
750 
751     EverMadeChange |= MadeChange;
752   }
753 
754   if (!DisableGCOpts) {
755     SmallVector<GCStatepointInst *, 2> Statepoints;
756     for (BasicBlock &BB : F)
757       for (Instruction &I : BB)
758         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
759           Statepoints.push_back(SP);
760     for (auto &I : Statepoints)
761       EverMadeChange |= simplifyOffsetableRelocate(*I);
762   }
763 
764   // Do this last to clean up use-before-def scenarios introduced by other
765   // preparatory transforms.
766   EverMadeChange |= placeDbgValues(F);
767   EverMadeChange |= placePseudoProbes(F);
768 
769 #ifndef NDEBUG
770   if (VerifyBFIUpdates)
771     verifyBFIUpdates(F);
772 #endif
773 
774   return EverMadeChange;
775 }
776 
777 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
778   bool MadeChange = false;
779   for (BasicBlock &BB : F) {
780     CurInstIterator = BB.begin();
781     while (CurInstIterator != BB.end()) {
782       Instruction *I = &*(CurInstIterator++);
783       if (auto *Assume = dyn_cast<AssumeInst>(I)) {
784         MadeChange = true;
785         Value *Operand = Assume->getOperand(0);
786         Assume->eraseFromParent();
787 
788         resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
789           RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
790         });
791       }
792     }
793   }
794   return MadeChange;
795 }
796 
797 /// An instruction is about to be deleted, so remove all references to it in our
798 /// GEP-tracking data strcutures.
799 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
800   LargeOffsetGEPMap.erase(V);
801   NewGEPBases.erase(V);
802 
803   auto GEP = dyn_cast<GetElementPtrInst>(V);
804   if (!GEP)
805     return;
806 
807   LargeOffsetGEPID.erase(GEP);
808 
809   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
810   if (VecI == LargeOffsetGEPMap.end())
811     return;
812 
813   auto &GEPVector = VecI->second;
814   llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
815 
816   if (GEPVector.empty())
817     LargeOffsetGEPMap.erase(VecI);
818 }
819 
820 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
821 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
822   DominatorTree NewDT(F);
823   LoopInfo NewLI(NewDT);
824   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
825   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
826   NewBFI.verifyMatch(*BFI);
827 }
828 
829 /// Merge basic blocks which are connected by a single edge, where one of the
830 /// basic blocks has a single successor pointing to the other basic block,
831 /// which has a single predecessor.
832 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
833   bool Changed = false;
834   // Scan all of the blocks in the function, except for the entry block.
835   // Use a temporary array to avoid iterator being invalidated when
836   // deleting blocks.
837   SmallVector<WeakTrackingVH, 16> Blocks;
838   for (auto &Block : llvm::drop_begin(F))
839     Blocks.push_back(&Block);
840 
841   SmallSet<WeakTrackingVH, 16> Preds;
842   for (auto &Block : Blocks) {
843     auto *BB = cast_or_null<BasicBlock>(Block);
844     if (!BB)
845       continue;
846     // If the destination block has a single pred, then this is a trivial
847     // edge, just collapse it.
848     BasicBlock *SinglePred = BB->getSinglePredecessor();
849 
850     // Don't merge if BB's address is taken.
851     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
852       continue;
853 
854     // Make an effort to skip unreachable blocks.
855     if (DT && !DT->isReachableFromEntry(BB))
856       continue;
857 
858     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
859     if (Term && !Term->isConditional()) {
860       Changed = true;
861       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
862 
863       // Merge BB into SinglePred and delete it.
864       MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
865                                 /* MemDep */ nullptr,
866                                 /* PredecessorWithTwoSuccessors */ false, DT);
867       Preds.insert(SinglePred);
868 
869       if (IsHugeFunc) {
870         // Update FreshBBs to optimize the merged BB.
871         FreshBBs.insert(SinglePred);
872         FreshBBs.erase(BB);
873       }
874     }
875   }
876 
877   // (Repeatedly) merging blocks into their predecessors can create redundant
878   // debug intrinsics.
879   for (const auto &Pred : Preds)
880     if (auto *BB = cast_or_null<BasicBlock>(Pred))
881       RemoveRedundantDbgInstrs(BB);
882 
883   return Changed;
884 }
885 
886 /// Find a destination block from BB if BB is mergeable empty block.
887 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
888   // If this block doesn't end with an uncond branch, ignore it.
889   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
890   if (!BI || !BI->isUnconditional())
891     return nullptr;
892 
893   // If the instruction before the branch (skipping debug info) isn't a phi
894   // node, then other stuff is happening here.
895   BasicBlock::iterator BBI = BI->getIterator();
896   if (BBI != BB->begin()) {
897     --BBI;
898     while (isa<DbgInfoIntrinsic>(BBI)) {
899       if (BBI == BB->begin())
900         break;
901       --BBI;
902     }
903     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
904       return nullptr;
905   }
906 
907   // Do not break infinite loops.
908   BasicBlock *DestBB = BI->getSuccessor(0);
909   if (DestBB == BB)
910     return nullptr;
911 
912   if (!canMergeBlocks(BB, DestBB))
913     DestBB = nullptr;
914 
915   return DestBB;
916 }
917 
918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
920 /// edges in ways that are non-optimal for isel. Start by eliminating these
921 /// blocks so we can split them the way we want them.
922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
923   SmallPtrSet<BasicBlock *, 16> Preheaders;
924   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
925   while (!LoopList.empty()) {
926     Loop *L = LoopList.pop_back_val();
927     llvm::append_range(LoopList, *L);
928     if (BasicBlock *Preheader = L->getLoopPreheader())
929       Preheaders.insert(Preheader);
930   }
931 
932   bool MadeChange = false;
933   // Copy blocks into a temporary array to avoid iterator invalidation issues
934   // as we remove them.
935   // Note that this intentionally skips the entry block.
936   SmallVector<WeakTrackingVH, 16> Blocks;
937   for (auto &Block : llvm::drop_begin(F)) {
938     // Delete phi nodes that could block deleting other empty blocks.
939     if (!DisableDeletePHIs)
940       MadeChange |= DeleteDeadPHIs(&Block, TLInfo);
941     Blocks.push_back(&Block);
942   }
943 
944   for (auto &Block : Blocks) {
945     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
946     if (!BB)
947       continue;
948     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
949     if (!DestBB ||
950         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
951       continue;
952 
953     eliminateMostlyEmptyBlock(BB);
954     MadeChange = true;
955   }
956   return MadeChange;
957 }
958 
959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
960                                                    BasicBlock *DestBB,
961                                                    bool isPreheader) {
962   // Do not delete loop preheaders if doing so would create a critical edge.
963   // Loop preheaders can be good locations to spill registers. If the
964   // preheader is deleted and we create a critical edge, registers may be
965   // spilled in the loop body instead.
966   if (!DisablePreheaderProtect && isPreheader &&
967       !(BB->getSinglePredecessor() &&
968         BB->getSinglePredecessor()->getSingleSuccessor()))
969     return false;
970 
971   // Skip merging if the block's successor is also a successor to any callbr
972   // that leads to this block.
973   // FIXME: Is this really needed? Is this a correctness issue?
974   for (BasicBlock *Pred : predecessors(BB)) {
975     if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
976       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
977         if (DestBB == CBI->getSuccessor(i))
978           return false;
979   }
980 
981   // Try to skip merging if the unique predecessor of BB is terminated by a
982   // switch or indirect branch instruction, and BB is used as an incoming block
983   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
984   // add COPY instructions in the predecessor of BB instead of BB (if it is not
985   // merged). Note that the critical edge created by merging such blocks wont be
986   // split in MachineSink because the jump table is not analyzable. By keeping
987   // such empty block (BB), ISel will place COPY instructions in BB, not in the
988   // predecessor of BB.
989   BasicBlock *Pred = BB->getUniquePredecessor();
990   if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
991                  isa<IndirectBrInst>(Pred->getTerminator())))
992     return true;
993 
994   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
995     return true;
996 
997   // We use a simple cost heuristic which determine skipping merging is
998   // profitable if the cost of skipping merging is less than the cost of
999   // merging : Cost(skipping merging) < Cost(merging BB), where the
1000   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1001   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1002   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1003   //   Freq(Pred) / Freq(BB) > 2.
1004   // Note that if there are multiple empty blocks sharing the same incoming
1005   // value for the PHIs in the DestBB, we consider them together. In such
1006   // case, Cost(merging BB) will be the sum of their frequencies.
1007 
1008   if (!isa<PHINode>(DestBB->begin()))
1009     return true;
1010 
1011   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
1012 
1013   // Find all other incoming blocks from which incoming values of all PHIs in
1014   // DestBB are the same as the ones from BB.
1015   for (BasicBlock *DestBBPred : predecessors(DestBB)) {
1016     if (DestBBPred == BB)
1017       continue;
1018 
1019     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
1020           return DestPN.getIncomingValueForBlock(BB) ==
1021                  DestPN.getIncomingValueForBlock(DestBBPred);
1022         }))
1023       SameIncomingValueBBs.insert(DestBBPred);
1024   }
1025 
1026   // See if all BB's incoming values are same as the value from Pred. In this
1027   // case, no reason to skip merging because COPYs are expected to be place in
1028   // Pred already.
1029   if (SameIncomingValueBBs.count(Pred))
1030     return true;
1031 
1032   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
1033   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
1034 
1035   for (auto *SameValueBB : SameIncomingValueBBs)
1036     if (SameValueBB->getUniquePredecessor() == Pred &&
1037         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
1038       BBFreq += BFI->getBlockFreq(SameValueBB);
1039 
1040   std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge);
1041   return !Limit || PredFreq <= *Limit;
1042 }
1043 
1044 /// Return true if we can merge BB into DestBB if there is a single
1045 /// unconditional branch between them, and BB contains no other non-phi
1046 /// instructions.
1047 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1048                                     const BasicBlock *DestBB) const {
1049   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1050   // the successor.  If there are more complex condition (e.g. preheaders),
1051   // don't mess around with them.
1052   for (const PHINode &PN : BB->phis()) {
1053     for (const User *U : PN.users()) {
1054       const Instruction *UI = cast<Instruction>(U);
1055       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1056         return false;
1057       // If User is inside DestBB block and it is a PHINode then check
1058       // incoming value. If incoming value is not from BB then this is
1059       // a complex condition (e.g. preheaders) we want to avoid here.
1060       if (UI->getParent() == DestBB) {
1061         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1062           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1063             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1064             if (Insn && Insn->getParent() == BB &&
1065                 Insn->getParent() != UPN->getIncomingBlock(I))
1066               return false;
1067           }
1068       }
1069     }
1070   }
1071 
1072   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1073   // and DestBB may have conflicting incoming values for the block.  If so, we
1074   // can't merge the block.
1075   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1076   if (!DestBBPN)
1077     return true; // no conflict.
1078 
1079   // Collect the preds of BB.
1080   SmallPtrSet<const BasicBlock *, 16> BBPreds;
1081   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1082     // It is faster to get preds from a PHI than with pred_iterator.
1083     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1084       BBPreds.insert(BBPN->getIncomingBlock(i));
1085   } else {
1086     BBPreds.insert(pred_begin(BB), pred_end(BB));
1087   }
1088 
1089   // Walk the preds of DestBB.
1090   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1091     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1092     if (BBPreds.count(Pred)) { // Common predecessor?
1093       for (const PHINode &PN : DestBB->phis()) {
1094         const Value *V1 = PN.getIncomingValueForBlock(Pred);
1095         const Value *V2 = PN.getIncomingValueForBlock(BB);
1096 
1097         // If V2 is a phi node in BB, look up what the mapped value will be.
1098         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1099           if (V2PN->getParent() == BB)
1100             V2 = V2PN->getIncomingValueForBlock(Pred);
1101 
1102         // If there is a conflict, bail out.
1103         if (V1 != V2)
1104           return false;
1105       }
1106     }
1107   }
1108 
1109   return true;
1110 }
1111 
1112 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1113 static void replaceAllUsesWith(Value *Old, Value *New,
1114                                SmallSet<BasicBlock *, 32> &FreshBBs,
1115                                bool IsHuge) {
1116   auto *OldI = dyn_cast<Instruction>(Old);
1117   if (OldI) {
1118     for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1119          UI != E; ++UI) {
1120       Instruction *User = cast<Instruction>(*UI);
1121       if (IsHuge)
1122         FreshBBs.insert(User->getParent());
1123     }
1124   }
1125   Old->replaceAllUsesWith(New);
1126 }
1127 
1128 /// Eliminate a basic block that has only phi's and an unconditional branch in
1129 /// it.
1130 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1131   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1132   BasicBlock *DestBB = BI->getSuccessor(0);
1133 
1134   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1135                     << *BB << *DestBB);
1136 
1137   // If the destination block has a single pred, then this is a trivial edge,
1138   // just collapse it.
1139   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1140     if (SinglePred != DestBB) {
1141       assert(SinglePred == BB &&
1142              "Single predecessor not the same as predecessor");
1143       // Merge DestBB into SinglePred/BB and delete it.
1144       MergeBlockIntoPredecessor(DestBB);
1145       // Note: BB(=SinglePred) will not be deleted on this path.
1146       // DestBB(=its single successor) is the one that was deleted.
1147       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1148 
1149       if (IsHugeFunc) {
1150         // Update FreshBBs to optimize the merged BB.
1151         FreshBBs.insert(SinglePred);
1152         FreshBBs.erase(DestBB);
1153       }
1154       return;
1155     }
1156   }
1157 
1158   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
1159   // to handle the new incoming edges it is about to have.
1160   for (PHINode &PN : DestBB->phis()) {
1161     // Remove the incoming value for BB, and remember it.
1162     Value *InVal = PN.removeIncomingValue(BB, false);
1163 
1164     // Two options: either the InVal is a phi node defined in BB or it is some
1165     // value that dominates BB.
1166     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1167     if (InValPhi && InValPhi->getParent() == BB) {
1168       // Add all of the input values of the input PHI as inputs of this phi.
1169       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1170         PN.addIncoming(InValPhi->getIncomingValue(i),
1171                        InValPhi->getIncomingBlock(i));
1172     } else {
1173       // Otherwise, add one instance of the dominating value for each edge that
1174       // we will be adding.
1175       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1176         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1177           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1178       } else {
1179         for (BasicBlock *Pred : predecessors(BB))
1180           PN.addIncoming(InVal, Pred);
1181       }
1182     }
1183   }
1184 
1185   // The PHIs are now updated, change everything that refers to BB to use
1186   // DestBB and remove BB.
1187   BB->replaceAllUsesWith(DestBB);
1188   BB->eraseFromParent();
1189   ++NumBlocksElim;
1190 
1191   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1192 }
1193 
1194 // Computes a map of base pointer relocation instructions to corresponding
1195 // derived pointer relocation instructions given a vector of all relocate calls
1196 static void computeBaseDerivedRelocateMap(
1197     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1198     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1199         &RelocateInstMap) {
1200   // Collect information in two maps: one primarily for locating the base object
1201   // while filling the second map; the second map is the final structure holding
1202   // a mapping between Base and corresponding Derived relocate calls
1203   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1204   for (auto *ThisRelocate : AllRelocateCalls) {
1205     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1206                             ThisRelocate->getDerivedPtrIndex());
1207     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1208   }
1209   for (auto &Item : RelocateIdxMap) {
1210     std::pair<unsigned, unsigned> Key = Item.first;
1211     if (Key.first == Key.second)
1212       // Base relocation: nothing to insert
1213       continue;
1214 
1215     GCRelocateInst *I = Item.second;
1216     auto BaseKey = std::make_pair(Key.first, Key.first);
1217 
1218     // We're iterating over RelocateIdxMap so we cannot modify it.
1219     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1220     if (MaybeBase == RelocateIdxMap.end())
1221       // TODO: We might want to insert a new base object relocate and gep off
1222       // that, if there are enough derived object relocates.
1223       continue;
1224 
1225     RelocateInstMap[MaybeBase->second].push_back(I);
1226   }
1227 }
1228 
1229 // Accepts a GEP and extracts the operands into a vector provided they're all
1230 // small integer constants
1231 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1232                                           SmallVectorImpl<Value *> &OffsetV) {
1233   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1234     // Only accept small constant integer operands
1235     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1236     if (!Op || Op->getZExtValue() > 20)
1237       return false;
1238   }
1239 
1240   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1241     OffsetV.push_back(GEP->getOperand(i));
1242   return true;
1243 }
1244 
1245 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1246 // replace, computes a replacement, and affects it.
1247 static bool
1248 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1249                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1250   bool MadeChange = false;
1251   // We must ensure the relocation of derived pointer is defined after
1252   // relocation of base pointer. If we find a relocation corresponding to base
1253   // defined earlier than relocation of base then we move relocation of base
1254   // right before found relocation. We consider only relocation in the same
1255   // basic block as relocation of base. Relocations from other basic block will
1256   // be skipped by optimization and we do not care about them.
1257   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1258        &*R != RelocatedBase; ++R)
1259     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1260       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1261         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1262           RelocatedBase->moveBefore(RI);
1263           MadeChange = true;
1264           break;
1265         }
1266 
1267   for (GCRelocateInst *ToReplace : Targets) {
1268     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1269            "Not relocating a derived object of the original base object");
1270     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1271       // A duplicate relocate call. TODO: coalesce duplicates.
1272       continue;
1273     }
1274 
1275     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1276       // Base and derived relocates are in different basic blocks.
1277       // In this case transform is only valid when base dominates derived
1278       // relocate. However it would be too expensive to check dominance
1279       // for each such relocate, so we skip the whole transformation.
1280       continue;
1281     }
1282 
1283     Value *Base = ToReplace->getBasePtr();
1284     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1285     if (!Derived || Derived->getPointerOperand() != Base)
1286       continue;
1287 
1288     SmallVector<Value *, 2> OffsetV;
1289     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1290       continue;
1291 
1292     // Create a Builder and replace the target callsite with a gep
1293     assert(RelocatedBase->getNextNode() &&
1294            "Should always have one since it's not a terminator");
1295 
1296     // Insert after RelocatedBase
1297     IRBuilder<> Builder(RelocatedBase->getNextNode());
1298     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1299 
1300     // If gc_relocate does not match the actual type, cast it to the right type.
1301     // In theory, there must be a bitcast after gc_relocate if the type does not
1302     // match, and we should reuse it to get the derived pointer. But it could be
1303     // cases like this:
1304     // bb1:
1305     //  ...
1306     //  %g1 = call coldcc i8 addrspace(1)*
1307     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1308     //
1309     // bb2:
1310     //  ...
1311     //  %g2 = call coldcc i8 addrspace(1)*
1312     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1313     //
1314     // merge:
1315     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1316     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1317     //
1318     // In this case, we can not find the bitcast any more. So we insert a new
1319     // bitcast no matter there is already one or not. In this way, we can handle
1320     // all cases, and the extra bitcast should be optimized away in later
1321     // passes.
1322     Value *ActualRelocatedBase = RelocatedBase;
1323     if (RelocatedBase->getType() != Base->getType()) {
1324       ActualRelocatedBase =
1325           Builder.CreateBitCast(RelocatedBase, Base->getType());
1326     }
1327     Value *Replacement =
1328         Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1329                           ArrayRef(OffsetV));
1330     Replacement->takeName(ToReplace);
1331     // If the newly generated derived pointer's type does not match the original
1332     // derived pointer's type, cast the new derived pointer to match it. Same
1333     // reasoning as above.
1334     Value *ActualReplacement = Replacement;
1335     if (Replacement->getType() != ToReplace->getType()) {
1336       ActualReplacement =
1337           Builder.CreateBitCast(Replacement, ToReplace->getType());
1338     }
1339     ToReplace->replaceAllUsesWith(ActualReplacement);
1340     ToReplace->eraseFromParent();
1341 
1342     MadeChange = true;
1343   }
1344   return MadeChange;
1345 }
1346 
1347 // Turns this:
1348 //
1349 // %base = ...
1350 // %ptr = gep %base + 15
1351 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1352 // %base' = relocate(%tok, i32 4, i32 4)
1353 // %ptr' = relocate(%tok, i32 4, i32 5)
1354 // %val = load %ptr'
1355 //
1356 // into this:
1357 //
1358 // %base = ...
1359 // %ptr = gep %base + 15
1360 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1361 // %base' = gc.relocate(%tok, i32 4, i32 4)
1362 // %ptr' = gep %base' + 15
1363 // %val = load %ptr'
1364 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1365   bool MadeChange = false;
1366   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1367   for (auto *U : I.users())
1368     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1369       // Collect all the relocate calls associated with a statepoint
1370       AllRelocateCalls.push_back(Relocate);
1371 
1372   // We need at least one base pointer relocation + one derived pointer
1373   // relocation to mangle
1374   if (AllRelocateCalls.size() < 2)
1375     return false;
1376 
1377   // RelocateInstMap is a mapping from the base relocate instruction to the
1378   // corresponding derived relocate instructions
1379   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1380   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1381   if (RelocateInstMap.empty())
1382     return false;
1383 
1384   for (auto &Item : RelocateInstMap)
1385     // Item.first is the RelocatedBase to offset against
1386     // Item.second is the vector of Targets to replace
1387     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1388   return MadeChange;
1389 }
1390 
1391 /// Sink the specified cast instruction into its user blocks.
1392 static bool SinkCast(CastInst *CI) {
1393   BasicBlock *DefBB = CI->getParent();
1394 
1395   /// InsertedCasts - Only insert a cast in each block once.
1396   DenseMap<BasicBlock *, CastInst *> InsertedCasts;
1397 
1398   bool MadeChange = false;
1399   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1400        UI != E;) {
1401     Use &TheUse = UI.getUse();
1402     Instruction *User = cast<Instruction>(*UI);
1403 
1404     // Figure out which BB this cast is used in.  For PHI's this is the
1405     // appropriate predecessor block.
1406     BasicBlock *UserBB = User->getParent();
1407     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1408       UserBB = PN->getIncomingBlock(TheUse);
1409     }
1410 
1411     // Preincrement use iterator so we don't invalidate it.
1412     ++UI;
1413 
1414     // The first insertion point of a block containing an EH pad is after the
1415     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1416     if (User->isEHPad())
1417       continue;
1418 
1419     // If the block selected to receive the cast is an EH pad that does not
1420     // allow non-PHI instructions before the terminator, we can't sink the
1421     // cast.
1422     if (UserBB->getTerminator()->isEHPad())
1423       continue;
1424 
1425     // If this user is in the same block as the cast, don't change the cast.
1426     if (UserBB == DefBB)
1427       continue;
1428 
1429     // If we have already inserted a cast into this block, use it.
1430     CastInst *&InsertedCast = InsertedCasts[UserBB];
1431 
1432     if (!InsertedCast) {
1433       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1434       assert(InsertPt != UserBB->end());
1435       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1436                                       CI->getType(), "");
1437       InsertedCast->insertBefore(*UserBB, InsertPt);
1438       InsertedCast->setDebugLoc(CI->getDebugLoc());
1439     }
1440 
1441     // Replace a use of the cast with a use of the new cast.
1442     TheUse = InsertedCast;
1443     MadeChange = true;
1444     ++NumCastUses;
1445   }
1446 
1447   // If we removed all uses, nuke the cast.
1448   if (CI->use_empty()) {
1449     salvageDebugInfo(*CI);
1450     CI->eraseFromParent();
1451     MadeChange = true;
1452   }
1453 
1454   return MadeChange;
1455 }
1456 
1457 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1458 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1459 /// reduce the number of virtual registers that must be created and coalesced.
1460 ///
1461 /// Return true if any changes are made.
1462 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1463                                        const DataLayout &DL) {
1464   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1465   // than sinking only nop casts, but is helpful on some platforms.
1466   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1467     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1468                                  ASC->getDestAddressSpace()))
1469       return false;
1470   }
1471 
1472   // If this is a noop copy,
1473   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1474   EVT DstVT = TLI.getValueType(DL, CI->getType());
1475 
1476   // This is an fp<->int conversion?
1477   if (SrcVT.isInteger() != DstVT.isInteger())
1478     return false;
1479 
1480   // If this is an extension, it will be a zero or sign extension, which
1481   // isn't a noop.
1482   if (SrcVT.bitsLT(DstVT))
1483     return false;
1484 
1485   // If these values will be promoted, find out what they will be promoted
1486   // to.  This helps us consider truncates on PPC as noop copies when they
1487   // are.
1488   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1489       TargetLowering::TypePromoteInteger)
1490     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1491   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1492       TargetLowering::TypePromoteInteger)
1493     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1494 
1495   // If, after promotion, these are the same types, this is a noop copy.
1496   if (SrcVT != DstVT)
1497     return false;
1498 
1499   return SinkCast(CI);
1500 }
1501 
1502 // Match a simple increment by constant operation.  Note that if a sub is
1503 // matched, the step is negated (as if the step had been canonicalized to
1504 // an add, even though we leave the instruction alone.)
1505 bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1506                     Constant *&Step) {
1507   if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1508       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1509                        m_Instruction(LHS), m_Constant(Step)))))
1510     return true;
1511   if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1512       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1513                        m_Instruction(LHS), m_Constant(Step))))) {
1514     Step = ConstantExpr::getNeg(Step);
1515     return true;
1516   }
1517   return false;
1518 }
1519 
1520 /// If given \p PN is an inductive variable with value IVInc coming from the
1521 /// backedge, and on each iteration it gets increased by Step, return pair
1522 /// <IVInc, Step>. Otherwise, return std::nullopt.
1523 static std::optional<std::pair<Instruction *, Constant *>>
1524 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1525   const Loop *L = LI->getLoopFor(PN->getParent());
1526   if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1527     return std::nullopt;
1528   auto *IVInc =
1529       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1530   if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1531     return std::nullopt;
1532   Instruction *LHS = nullptr;
1533   Constant *Step = nullptr;
1534   if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1535     return std::make_pair(IVInc, Step);
1536   return std::nullopt;
1537 }
1538 
1539 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1540   auto *I = dyn_cast<Instruction>(V);
1541   if (!I)
1542     return false;
1543   Instruction *LHS = nullptr;
1544   Constant *Step = nullptr;
1545   if (!matchIncrement(I, LHS, Step))
1546     return false;
1547   if (auto *PN = dyn_cast<PHINode>(LHS))
1548     if (auto IVInc = getIVIncrement(PN, LI))
1549       return IVInc->first == I;
1550   return false;
1551 }
1552 
1553 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1554                                                  Value *Arg0, Value *Arg1,
1555                                                  CmpInst *Cmp,
1556                                                  Intrinsic::ID IID) {
1557   auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1558     if (!isIVIncrement(BO, LI))
1559       return false;
1560     const Loop *L = LI->getLoopFor(BO->getParent());
1561     assert(L && "L should not be null after isIVIncrement()");
1562     // Do not risk on moving increment into a child loop.
1563     if (LI->getLoopFor(Cmp->getParent()) != L)
1564       return false;
1565 
1566     // Finally, we need to ensure that the insert point will dominate all
1567     // existing uses of the increment.
1568 
1569     auto &DT = getDT(*BO->getParent()->getParent());
1570     if (DT.dominates(Cmp->getParent(), BO->getParent()))
1571       // If we're moving up the dom tree, all uses are trivially dominated.
1572       // (This is the common case for code produced by LSR.)
1573       return true;
1574 
1575     // Otherwise, special case the single use in the phi recurrence.
1576     return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1577   };
1578   if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1579     // We used to use a dominator tree here to allow multi-block optimization.
1580     // But that was problematic because:
1581     // 1. It could cause a perf regression by hoisting the math op into the
1582     //    critical path.
1583     // 2. It could cause a perf regression by creating a value that was live
1584     //    across multiple blocks and increasing register pressure.
1585     // 3. Use of a dominator tree could cause large compile-time regression.
1586     //    This is because we recompute the DT on every change in the main CGP
1587     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1588     //    that was fixed, using a DT here would be ok.
1589     //
1590     // There is one important particular case we still want to handle: if BO is
1591     // the IV increment. Important properties that make it profitable:
1592     // - We can speculate IV increment anywhere in the loop (as long as the
1593     //   indvar Phi is its only user);
1594     // - Upon computing Cmp, we effectively compute something equivalent to the
1595     //   IV increment (despite it loops differently in the IR). So moving it up
1596     //   to the cmp point does not really increase register pressure.
1597     return false;
1598   }
1599 
1600   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1601   if (BO->getOpcode() == Instruction::Add &&
1602       IID == Intrinsic::usub_with_overflow) {
1603     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1604     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1605   }
1606 
1607   // Insert at the first instruction of the pair.
1608   Instruction *InsertPt = nullptr;
1609   for (Instruction &Iter : *Cmp->getParent()) {
1610     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1611     // the overflow intrinsic are defined.
1612     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1613       InsertPt = &Iter;
1614       break;
1615     }
1616   }
1617   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1618 
1619   IRBuilder<> Builder(InsertPt);
1620   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1621   if (BO->getOpcode() != Instruction::Xor) {
1622     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1623     replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1624   } else
1625     assert(BO->hasOneUse() &&
1626            "Patterns with XOr should use the BO only in the compare");
1627   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1628   replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1629   Cmp->eraseFromParent();
1630   BO->eraseFromParent();
1631   return true;
1632 }
1633 
1634 /// Match special-case patterns that check for unsigned add overflow.
1635 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1636                                                    BinaryOperator *&Add) {
1637   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1638   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1639   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1640 
1641   // We are not expecting non-canonical/degenerate code. Just bail out.
1642   if (isa<Constant>(A))
1643     return false;
1644 
1645   ICmpInst::Predicate Pred = Cmp->getPredicate();
1646   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1647     B = ConstantInt::get(B->getType(), 1);
1648   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1649     B = ConstantInt::get(B->getType(), -1);
1650   else
1651     return false;
1652 
1653   // Check the users of the variable operand of the compare looking for an add
1654   // with the adjusted constant.
1655   for (User *U : A->users()) {
1656     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1657       Add = cast<BinaryOperator>(U);
1658       return true;
1659     }
1660   }
1661   return false;
1662 }
1663 
1664 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1665 /// intrinsic. Return true if any changes were made.
1666 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1667                                                ModifyDT &ModifiedDT) {
1668   bool EdgeCase = false;
1669   Value *A, *B;
1670   BinaryOperator *Add;
1671   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1672     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1673       return false;
1674     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1675     A = Add->getOperand(0);
1676     B = Add->getOperand(1);
1677     EdgeCase = true;
1678   }
1679 
1680   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1681                                  TLI->getValueType(*DL, Add->getType()),
1682                                  Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1683     return false;
1684 
1685   // We don't want to move around uses of condition values this late, so we
1686   // check if it is legal to create the call to the intrinsic in the basic
1687   // block containing the icmp.
1688   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1689     return false;
1690 
1691   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1692                                    Intrinsic::uadd_with_overflow))
1693     return false;
1694 
1695   // Reset callers - do not crash by iterating over a dead instruction.
1696   ModifiedDT = ModifyDT::ModifyInstDT;
1697   return true;
1698 }
1699 
1700 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1701                                                ModifyDT &ModifiedDT) {
1702   // We are not expecting non-canonical/degenerate code. Just bail out.
1703   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1704   if (isa<Constant>(A) && isa<Constant>(B))
1705     return false;
1706 
1707   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1708   ICmpInst::Predicate Pred = Cmp->getPredicate();
1709   if (Pred == ICmpInst::ICMP_UGT) {
1710     std::swap(A, B);
1711     Pred = ICmpInst::ICMP_ULT;
1712   }
1713   // Convert special-case: (A == 0) is the same as (A u< 1).
1714   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1715     B = ConstantInt::get(B->getType(), 1);
1716     Pred = ICmpInst::ICMP_ULT;
1717   }
1718   // Convert special-case: (A != 0) is the same as (0 u< A).
1719   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1720     std::swap(A, B);
1721     Pred = ICmpInst::ICMP_ULT;
1722   }
1723   if (Pred != ICmpInst::ICMP_ULT)
1724     return false;
1725 
1726   // Walk the users of a variable operand of a compare looking for a subtract or
1727   // add with that same operand. Also match the 2nd operand of the compare to
1728   // the add/sub, but that may be a negated constant operand of an add.
1729   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1730   BinaryOperator *Sub = nullptr;
1731   for (User *U : CmpVariableOperand->users()) {
1732     // A - B, A u< B --> usubo(A, B)
1733     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1734       Sub = cast<BinaryOperator>(U);
1735       break;
1736     }
1737 
1738     // A + (-C), A u< C (canonicalized form of (sub A, C))
1739     const APInt *CmpC, *AddC;
1740     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1741         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1742       Sub = cast<BinaryOperator>(U);
1743       break;
1744     }
1745   }
1746   if (!Sub)
1747     return false;
1748 
1749   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1750                                  TLI->getValueType(*DL, Sub->getType()),
1751                                  Sub->hasNUsesOrMore(1)))
1752     return false;
1753 
1754   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1755                                    Cmp, Intrinsic::usub_with_overflow))
1756     return false;
1757 
1758   // Reset callers - do not crash by iterating over a dead instruction.
1759   ModifiedDT = ModifyDT::ModifyInstDT;
1760   return true;
1761 }
1762 
1763 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1764 /// registers that must be created and coalesced. This is a clear win except on
1765 /// targets with multiple condition code registers (PowerPC), where it might
1766 /// lose; some adjustment may be wanted there.
1767 ///
1768 /// Return true if any changes are made.
1769 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1770   if (TLI.hasMultipleConditionRegisters())
1771     return false;
1772 
1773   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1774   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1775     return false;
1776 
1777   // Only insert a cmp in each block once.
1778   DenseMap<BasicBlock *, CmpInst *> InsertedCmps;
1779 
1780   bool MadeChange = false;
1781   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1782        UI != E;) {
1783     Use &TheUse = UI.getUse();
1784     Instruction *User = cast<Instruction>(*UI);
1785 
1786     // Preincrement use iterator so we don't invalidate it.
1787     ++UI;
1788 
1789     // Don't bother for PHI nodes.
1790     if (isa<PHINode>(User))
1791       continue;
1792 
1793     // Figure out which BB this cmp is used in.
1794     BasicBlock *UserBB = User->getParent();
1795     BasicBlock *DefBB = Cmp->getParent();
1796 
1797     // If this user is in the same block as the cmp, don't change the cmp.
1798     if (UserBB == DefBB)
1799       continue;
1800 
1801     // If we have already inserted a cmp into this block, use it.
1802     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1803 
1804     if (!InsertedCmp) {
1805       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1806       assert(InsertPt != UserBB->end());
1807       InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1808                                     Cmp->getOperand(0), Cmp->getOperand(1), "");
1809       InsertedCmp->insertBefore(*UserBB, InsertPt);
1810       // Propagate the debug info.
1811       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1812     }
1813 
1814     // Replace a use of the cmp with a use of the new cmp.
1815     TheUse = InsertedCmp;
1816     MadeChange = true;
1817     ++NumCmpUses;
1818   }
1819 
1820   // If we removed all uses, nuke the cmp.
1821   if (Cmp->use_empty()) {
1822     Cmp->eraseFromParent();
1823     MadeChange = true;
1824   }
1825 
1826   return MadeChange;
1827 }
1828 
1829 /// For pattern like:
1830 ///
1831 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1832 ///   ...
1833 /// DomBB:
1834 ///   ...
1835 ///   br DomCond, TrueBB, CmpBB
1836 /// CmpBB: (with DomBB being the single predecessor)
1837 ///   ...
1838 ///   Cmp = icmp eq CmpOp0, CmpOp1
1839 ///   ...
1840 ///
1841 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1842 /// different from lowering of icmp eq (PowerPC). This function try to convert
1843 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1844 /// After that, DomCond and Cmp can use the same comparison so reduce one
1845 /// comparison.
1846 ///
1847 /// Return true if any changes are made.
1848 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1849                                        const TargetLowering &TLI) {
1850   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1851     return false;
1852 
1853   ICmpInst::Predicate Pred = Cmp->getPredicate();
1854   if (Pred != ICmpInst::ICMP_EQ)
1855     return false;
1856 
1857   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1858   // icmp slt/sgt would introduce more redundant LLVM IR.
1859   for (User *U : Cmp->users()) {
1860     if (isa<BranchInst>(U))
1861       continue;
1862     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1863       continue;
1864     return false;
1865   }
1866 
1867   // This is a cheap/incomplete check for dominance - just match a single
1868   // predecessor with a conditional branch.
1869   BasicBlock *CmpBB = Cmp->getParent();
1870   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1871   if (!DomBB)
1872     return false;
1873 
1874   // We want to ensure that the only way control gets to the comparison of
1875   // interest is that a less/greater than comparison on the same operands is
1876   // false.
1877   Value *DomCond;
1878   BasicBlock *TrueBB, *FalseBB;
1879   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1880     return false;
1881   if (CmpBB != FalseBB)
1882     return false;
1883 
1884   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1885   ICmpInst::Predicate DomPred;
1886   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1887     return false;
1888   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1889     return false;
1890 
1891   // Convert the equality comparison to the opposite of the dominating
1892   // comparison and swap the direction for all branch/select users.
1893   // We have conceptually converted:
1894   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1895   // to
1896   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1897   // And similarly for branches.
1898   for (User *U : Cmp->users()) {
1899     if (auto *BI = dyn_cast<BranchInst>(U)) {
1900       assert(BI->isConditional() && "Must be conditional");
1901       BI->swapSuccessors();
1902       continue;
1903     }
1904     if (auto *SI = dyn_cast<SelectInst>(U)) {
1905       // Swap operands
1906       SI->swapValues();
1907       SI->swapProfMetadata();
1908       continue;
1909     }
1910     llvm_unreachable("Must be a branch or a select");
1911   }
1912   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1913   return true;
1914 }
1915 
1916 /// Many architectures use the same instruction for both subtract and cmp. Try
1917 /// to swap cmp operands to match subtract operations to allow for CSE.
1918 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) {
1919   Value *Op0 = Cmp->getOperand(0);
1920   Value *Op1 = Cmp->getOperand(1);
1921   if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
1922       isa<Constant>(Op1) || Op0 == Op1)
1923     return false;
1924 
1925   // If a subtract already has the same operands as a compare, swapping would be
1926   // bad. If a subtract has the same operands as a compare but in reverse order,
1927   // then swapping is good.
1928   int GoodToSwap = 0;
1929   unsigned NumInspected = 0;
1930   for (const User *U : Op0->users()) {
1931     // Avoid walking many users.
1932     if (++NumInspected > 128)
1933       return false;
1934     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
1935       GoodToSwap++;
1936     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
1937       GoodToSwap--;
1938   }
1939 
1940   if (GoodToSwap > 0) {
1941     Cmp->swapOperands();
1942     return true;
1943   }
1944   return false;
1945 }
1946 
1947 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
1948   if (sinkCmpExpression(Cmp, *TLI))
1949     return true;
1950 
1951   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1952     return true;
1953 
1954   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1955     return true;
1956 
1957   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1958     return true;
1959 
1960   if (swapICmpOperandsToExposeCSEOpportunities(Cmp))
1961     return true;
1962 
1963   return false;
1964 }
1965 
1966 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1967 /// used in a compare to allow isel to generate better code for targets where
1968 /// this operation can be combined.
1969 ///
1970 /// Return true if any changes are made.
1971 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI,
1972                                   SetOfInstrs &InsertedInsts) {
1973   // Double-check that we're not trying to optimize an instruction that was
1974   // already optimized by some other part of this pass.
1975   assert(!InsertedInsts.count(AndI) &&
1976          "Attempting to optimize already optimized and instruction");
1977   (void)InsertedInsts;
1978 
1979   // Nothing to do for single use in same basic block.
1980   if (AndI->hasOneUse() &&
1981       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1982     return false;
1983 
1984   // Try to avoid cases where sinking/duplicating is likely to increase register
1985   // pressure.
1986   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1987       !isa<ConstantInt>(AndI->getOperand(1)) &&
1988       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1989     return false;
1990 
1991   for (auto *U : AndI->users()) {
1992     Instruction *User = cast<Instruction>(U);
1993 
1994     // Only sink 'and' feeding icmp with 0.
1995     if (!isa<ICmpInst>(User))
1996       return false;
1997 
1998     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1999     if (!CmpC || !CmpC->isZero())
2000       return false;
2001   }
2002 
2003   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
2004     return false;
2005 
2006   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2007   LLVM_DEBUG(AndI->getParent()->dump());
2008 
2009   // Push the 'and' into the same block as the icmp 0.  There should only be
2010   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2011   // others, so we don't need to keep track of which BBs we insert into.
2012   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
2013        UI != E;) {
2014     Use &TheUse = UI.getUse();
2015     Instruction *User = cast<Instruction>(*UI);
2016 
2017     // Preincrement use iterator so we don't invalidate it.
2018     ++UI;
2019 
2020     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
2021 
2022     // Keep the 'and' in the same place if the use is already in the same block.
2023     Instruction *InsertPt =
2024         User->getParent() == AndI->getParent() ? AndI : User;
2025     Instruction *InsertedAnd =
2026         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
2027                                AndI->getOperand(1), "", InsertPt);
2028     // Propagate the debug info.
2029     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
2030 
2031     // Replace a use of the 'and' with a use of the new 'and'.
2032     TheUse = InsertedAnd;
2033     ++NumAndUses;
2034     LLVM_DEBUG(User->getParent()->dump());
2035   }
2036 
2037   // We removed all uses, nuke the and.
2038   AndI->eraseFromParent();
2039   return true;
2040 }
2041 
2042 /// Check if the candidates could be combined with a shift instruction, which
2043 /// includes:
2044 /// 1. Truncate instruction
2045 /// 2. And instruction and the imm is a mask of the low bits:
2046 /// imm & (imm+1) == 0
2047 static bool isExtractBitsCandidateUse(Instruction *User) {
2048   if (!isa<TruncInst>(User)) {
2049     if (User->getOpcode() != Instruction::And ||
2050         !isa<ConstantInt>(User->getOperand(1)))
2051       return false;
2052 
2053     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
2054 
2055     if ((Cimm & (Cimm + 1)).getBoolValue())
2056       return false;
2057   }
2058   return true;
2059 }
2060 
2061 /// Sink both shift and truncate instruction to the use of truncate's BB.
2062 static bool
2063 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
2064                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
2065                      const TargetLowering &TLI, const DataLayout &DL) {
2066   BasicBlock *UserBB = User->getParent();
2067   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
2068   auto *TruncI = cast<TruncInst>(User);
2069   bool MadeChange = false;
2070 
2071   for (Value::user_iterator TruncUI = TruncI->user_begin(),
2072                             TruncE = TruncI->user_end();
2073        TruncUI != TruncE;) {
2074 
2075     Use &TruncTheUse = TruncUI.getUse();
2076     Instruction *TruncUser = cast<Instruction>(*TruncUI);
2077     // Preincrement use iterator so we don't invalidate it.
2078 
2079     ++TruncUI;
2080 
2081     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2082     if (!ISDOpcode)
2083       continue;
2084 
2085     // If the use is actually a legal node, there will not be an
2086     // implicit truncate.
2087     // FIXME: always querying the result type is just an
2088     // approximation; some nodes' legality is determined by the
2089     // operand or other means. There's no good way to find out though.
2090     if (TLI.isOperationLegalOrCustom(
2091             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2092       continue;
2093 
2094     // Don't bother for PHI nodes.
2095     if (isa<PHINode>(TruncUser))
2096       continue;
2097 
2098     BasicBlock *TruncUserBB = TruncUser->getParent();
2099 
2100     if (UserBB == TruncUserBB)
2101       continue;
2102 
2103     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2104     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2105 
2106     if (!InsertedShift && !InsertedTrunc) {
2107       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2108       assert(InsertPt != TruncUserBB->end());
2109       // Sink the shift
2110       if (ShiftI->getOpcode() == Instruction::AShr)
2111         InsertedShift =
2112             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2113       else
2114         InsertedShift =
2115             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2116       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2117       InsertedShift->insertBefore(*TruncUserBB, InsertPt);
2118 
2119       // Sink the trunc
2120       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2121       TruncInsertPt++;
2122       // It will go ahead of any debug-info.
2123       TruncInsertPt.setHeadBit(true);
2124       assert(TruncInsertPt != TruncUserBB->end());
2125 
2126       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2127                                        TruncI->getType(), "");
2128       InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt);
2129       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2130 
2131       MadeChange = true;
2132 
2133       TruncTheUse = InsertedTrunc;
2134     }
2135   }
2136   return MadeChange;
2137 }
2138 
2139 /// Sink the shift *right* instruction into user blocks if the uses could
2140 /// potentially be combined with this shift instruction and generate BitExtract
2141 /// instruction. It will only be applied if the architecture supports BitExtract
2142 /// instruction. Here is an example:
2143 /// BB1:
2144 ///   %x.extract.shift = lshr i64 %arg1, 32
2145 /// BB2:
2146 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
2147 /// ==>
2148 ///
2149 /// BB2:
2150 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
2151 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2152 ///
2153 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2154 /// instruction.
2155 /// Return true if any changes are made.
2156 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
2157                                 const TargetLowering &TLI,
2158                                 const DataLayout &DL) {
2159   BasicBlock *DefBB = ShiftI->getParent();
2160 
2161   /// Only insert instructions in each block once.
2162   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
2163 
2164   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2165 
2166   bool MadeChange = false;
2167   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2168        UI != E;) {
2169     Use &TheUse = UI.getUse();
2170     Instruction *User = cast<Instruction>(*UI);
2171     // Preincrement use iterator so we don't invalidate it.
2172     ++UI;
2173 
2174     // Don't bother for PHI nodes.
2175     if (isa<PHINode>(User))
2176       continue;
2177 
2178     if (!isExtractBitsCandidateUse(User))
2179       continue;
2180 
2181     BasicBlock *UserBB = User->getParent();
2182 
2183     if (UserBB == DefBB) {
2184       // If the shift and truncate instruction are in the same BB. The use of
2185       // the truncate(TruncUse) may still introduce another truncate if not
2186       // legal. In this case, we would like to sink both shift and truncate
2187       // instruction to the BB of TruncUse.
2188       // for example:
2189       // BB1:
2190       // i64 shift.result = lshr i64 opnd, imm
2191       // trunc.result = trunc shift.result to i16
2192       //
2193       // BB2:
2194       //   ----> We will have an implicit truncate here if the architecture does
2195       //   not have i16 compare.
2196       // cmp i16 trunc.result, opnd2
2197       //
2198       if (isa<TruncInst>(User) &&
2199           shiftIsLegal
2200           // If the type of the truncate is legal, no truncate will be
2201           // introduced in other basic blocks.
2202           && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2203         MadeChange =
2204             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2205 
2206       continue;
2207     }
2208     // If we have already inserted a shift into this block, use it.
2209     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2210 
2211     if (!InsertedShift) {
2212       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2213       assert(InsertPt != UserBB->end());
2214 
2215       if (ShiftI->getOpcode() == Instruction::AShr)
2216         InsertedShift =
2217             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2218       else
2219         InsertedShift =
2220             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2221       InsertedShift->insertBefore(*UserBB, InsertPt);
2222       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2223 
2224       MadeChange = true;
2225     }
2226 
2227     // Replace a use of the shift with a use of the new shift.
2228     TheUse = InsertedShift;
2229   }
2230 
2231   // If we removed all uses, or there are none, nuke the shift.
2232   if (ShiftI->use_empty()) {
2233     salvageDebugInfo(*ShiftI);
2234     ShiftI->eraseFromParent();
2235     MadeChange = true;
2236   }
2237 
2238   return MadeChange;
2239 }
2240 
2241 /// If counting leading or trailing zeros is an expensive operation and a zero
2242 /// input is defined, add a check for zero to avoid calling the intrinsic.
2243 ///
2244 /// We want to transform:
2245 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2246 ///
2247 /// into:
2248 ///   entry:
2249 ///     %cmpz = icmp eq i64 %A, 0
2250 ///     br i1 %cmpz, label %cond.end, label %cond.false
2251 ///   cond.false:
2252 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2253 ///     br label %cond.end
2254 ///   cond.end:
2255 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2256 ///
2257 /// If the transform is performed, return true and set ModifiedDT to true.
2258 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2259                                   LoopInfo &LI,
2260                                   const TargetLowering *TLI,
2261                                   const DataLayout *DL, ModifyDT &ModifiedDT,
2262                                   SmallSet<BasicBlock *, 32> &FreshBBs,
2263                                   bool IsHugeFunc) {
2264   // If a zero input is undefined, it doesn't make sense to despeculate that.
2265   if (match(CountZeros->getOperand(1), m_One()))
2266     return false;
2267 
2268   // If it's cheap to speculate, there's nothing to do.
2269   Type *Ty = CountZeros->getType();
2270   auto IntrinsicID = CountZeros->getIntrinsicID();
2271   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2272       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2273     return false;
2274 
2275   // Only handle legal scalar cases. Anything else requires too much work.
2276   unsigned SizeInBits = Ty->getScalarSizeInBits();
2277   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2278     return false;
2279 
2280   // Bail if the value is never zero.
2281   Use &Op = CountZeros->getOperandUse(0);
2282   if (isKnownNonZero(Op, *DL))
2283     return false;
2284 
2285   // The intrinsic will be sunk behind a compare against zero and branch.
2286   BasicBlock *StartBlock = CountZeros->getParent();
2287   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2288   if (IsHugeFunc)
2289     FreshBBs.insert(CallBlock);
2290 
2291   // Create another block after the count zero intrinsic. A PHI will be added
2292   // in this block to select the result of the intrinsic or the bit-width
2293   // constant if the input to the intrinsic is zero.
2294   BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros));
2295   // Any debug-info after CountZeros should not be included.
2296   SplitPt.setHeadBit(true);
2297   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2298   if (IsHugeFunc)
2299     FreshBBs.insert(EndBlock);
2300 
2301   // Update the LoopInfo. The new blocks are in the same loop as the start
2302   // block.
2303   if (Loop *L = LI.getLoopFor(StartBlock)) {
2304     L->addBasicBlockToLoop(CallBlock, LI);
2305     L->addBasicBlockToLoop(EndBlock, LI);
2306   }
2307 
2308   // Set up a builder to create a compare, conditional branch, and PHI.
2309   IRBuilder<> Builder(CountZeros->getContext());
2310   Builder.SetInsertPoint(StartBlock->getTerminator());
2311   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2312 
2313   // Replace the unconditional branch that was created by the first split with
2314   // a compare against zero and a conditional branch.
2315   Value *Zero = Constant::getNullValue(Ty);
2316   // Avoid introducing branch on poison. This also replaces the ctz operand.
2317   if (!isGuaranteedNotToBeUndefOrPoison(Op))
2318     Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2319   Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2320   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2321   StartBlock->getTerminator()->eraseFromParent();
2322 
2323   // Create a PHI in the end block to select either the output of the intrinsic
2324   // or the bit width of the operand.
2325   Builder.SetInsertPoint(EndBlock, EndBlock->begin());
2326   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2327   replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2328   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2329   PN->addIncoming(BitWidth, StartBlock);
2330   PN->addIncoming(CountZeros, CallBlock);
2331 
2332   // We are explicitly handling the zero case, so we can set the intrinsic's
2333   // undefined zero argument to 'true'. This will also prevent reprocessing the
2334   // intrinsic; we only despeculate when a zero input is defined.
2335   CountZeros->setArgOperand(1, Builder.getTrue());
2336   ModifiedDT = ModifyDT::ModifyBBDT;
2337   return true;
2338 }
2339 
2340 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2341   BasicBlock *BB = CI->getParent();
2342 
2343   // Lower inline assembly if we can.
2344   // If we found an inline asm expession, and if the target knows how to
2345   // lower it to normal LLVM code, do so now.
2346   if (CI->isInlineAsm()) {
2347     if (TLI->ExpandInlineAsm(CI)) {
2348       // Avoid invalidating the iterator.
2349       CurInstIterator = BB->begin();
2350       // Avoid processing instructions out of order, which could cause
2351       // reuse before a value is defined.
2352       SunkAddrs.clear();
2353       return true;
2354     }
2355     // Sink address computing for memory operands into the block.
2356     if (optimizeInlineAsmInst(CI))
2357       return true;
2358   }
2359 
2360   // Align the pointer arguments to this call if the target thinks it's a good
2361   // idea
2362   unsigned MinSize;
2363   Align PrefAlign;
2364   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2365     for (auto &Arg : CI->args()) {
2366       // We want to align both objects whose address is used directly and
2367       // objects whose address is used in casts and GEPs, though it only makes
2368       // sense for GEPs if the offset is a multiple of the desired alignment and
2369       // if size - offset meets the size threshold.
2370       if (!Arg->getType()->isPointerTy())
2371         continue;
2372       APInt Offset(DL->getIndexSizeInBits(
2373                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2374                    0);
2375       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2376       uint64_t Offset2 = Offset.getLimitedValue();
2377       if (!isAligned(PrefAlign, Offset2))
2378         continue;
2379       AllocaInst *AI;
2380       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2381           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2382         AI->setAlignment(PrefAlign);
2383       // Global variables can only be aligned if they are defined in this
2384       // object (i.e. they are uniquely initialized in this object), and
2385       // over-aligning global variables that have an explicit section is
2386       // forbidden.
2387       GlobalVariable *GV;
2388       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2389           GV->getPointerAlignment(*DL) < PrefAlign &&
2390           DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2391         GV->setAlignment(PrefAlign);
2392     }
2393   }
2394   // If this is a memcpy (or similar) then we may be able to improve the
2395   // alignment.
2396   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2397     Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2398     MaybeAlign MIDestAlign = MI->getDestAlign();
2399     if (!MIDestAlign || DestAlign > *MIDestAlign)
2400       MI->setDestAlignment(DestAlign);
2401     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2402       MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2403       Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2404       if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2405         MTI->setSourceAlignment(SrcAlign);
2406     }
2407   }
2408 
2409   // If we have a cold call site, try to sink addressing computation into the
2410   // cold block.  This interacts with our handling for loads and stores to
2411   // ensure that we can fold all uses of a potential addressing computation
2412   // into their uses.  TODO: generalize this to work over profiling data
2413   if (CI->hasFnAttr(Attribute::Cold) && !OptSize &&
2414       !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2415     for (auto &Arg : CI->args()) {
2416       if (!Arg->getType()->isPointerTy())
2417         continue;
2418       unsigned AS = Arg->getType()->getPointerAddressSpace();
2419       if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2420         return true;
2421     }
2422 
2423   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2424   if (II) {
2425     switch (II->getIntrinsicID()) {
2426     default:
2427       break;
2428     case Intrinsic::assume:
2429       llvm_unreachable("llvm.assume should have been removed already");
2430     case Intrinsic::experimental_widenable_condition: {
2431       // Give up on future widening oppurtunties so that we can fold away dead
2432       // paths and merge blocks before going into block-local instruction
2433       // selection.
2434       if (II->use_empty()) {
2435         II->eraseFromParent();
2436         return true;
2437       }
2438       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2439       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2440         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2441       });
2442       return true;
2443     }
2444     case Intrinsic::objectsize:
2445       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2446     case Intrinsic::is_constant:
2447       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2448     case Intrinsic::aarch64_stlxr:
2449     case Intrinsic::aarch64_stxr: {
2450       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2451       if (!ExtVal || !ExtVal->hasOneUse() ||
2452           ExtVal->getParent() == CI->getParent())
2453         return false;
2454       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2455       ExtVal->moveBefore(CI);
2456       // Mark this instruction as "inserted by CGP", so that other
2457       // optimizations don't touch it.
2458       InsertedInsts.insert(ExtVal);
2459       return true;
2460     }
2461 
2462     case Intrinsic::launder_invariant_group:
2463     case Intrinsic::strip_invariant_group: {
2464       Value *ArgVal = II->getArgOperand(0);
2465       auto it = LargeOffsetGEPMap.find(II);
2466       if (it != LargeOffsetGEPMap.end()) {
2467         // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2468         // Make sure not to have to deal with iterator invalidation
2469         // after possibly adding ArgVal to LargeOffsetGEPMap.
2470         auto GEPs = std::move(it->second);
2471         LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2472         LargeOffsetGEPMap.erase(II);
2473       }
2474 
2475       replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2476       II->eraseFromParent();
2477       return true;
2478     }
2479     case Intrinsic::cttz:
2480     case Intrinsic::ctlz:
2481       // If counting zeros is expensive, try to avoid it.
2482       return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2483                                    IsHugeFunc);
2484     case Intrinsic::fshl:
2485     case Intrinsic::fshr:
2486       return optimizeFunnelShift(II);
2487     case Intrinsic::dbg_assign:
2488     case Intrinsic::dbg_value:
2489       return fixupDbgValue(II);
2490     case Intrinsic::masked_gather:
2491       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2492     case Intrinsic::masked_scatter:
2493       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2494     }
2495 
2496     SmallVector<Value *, 2> PtrOps;
2497     Type *AccessTy;
2498     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2499       while (!PtrOps.empty()) {
2500         Value *PtrVal = PtrOps.pop_back_val();
2501         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2502         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2503           return true;
2504       }
2505   }
2506 
2507   // From here on out we're working with named functions.
2508   if (!CI->getCalledFunction())
2509     return false;
2510 
2511   // Lower all default uses of _chk calls.  This is very similar
2512   // to what InstCombineCalls does, but here we are only lowering calls
2513   // to fortified library functions (e.g. __memcpy_chk) that have the default
2514   // "don't know" as the objectsize.  Anything else should be left alone.
2515   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2516   IRBuilder<> Builder(CI);
2517   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2518     replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2519     CI->eraseFromParent();
2520     return true;
2521   }
2522 
2523   return false;
2524 }
2525 
2526 /// Look for opportunities to duplicate return instructions to the predecessor
2527 /// to enable tail call optimizations. The case it is currently looking for is:
2528 /// @code
2529 /// bb0:
2530 ///   %tmp0 = tail call i32 @f0()
2531 ///   br label %return
2532 /// bb1:
2533 ///   %tmp1 = tail call i32 @f1()
2534 ///   br label %return
2535 /// bb2:
2536 ///   %tmp2 = tail call i32 @f2()
2537 ///   br label %return
2538 /// return:
2539 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2540 ///   ret i32 %retval
2541 /// @endcode
2542 ///
2543 /// =>
2544 ///
2545 /// @code
2546 /// bb0:
2547 ///   %tmp0 = tail call i32 @f0()
2548 ///   ret i32 %tmp0
2549 /// bb1:
2550 ///   %tmp1 = tail call i32 @f1()
2551 ///   ret i32 %tmp1
2552 /// bb2:
2553 ///   %tmp2 = tail call i32 @f2()
2554 ///   ret i32 %tmp2
2555 /// @endcode
2556 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2557                                                 ModifyDT &ModifiedDT) {
2558   if (!BB->getTerminator())
2559     return false;
2560 
2561   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2562   if (!RetI)
2563     return false;
2564 
2565   assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2566 
2567   PHINode *PN = nullptr;
2568   ExtractValueInst *EVI = nullptr;
2569   BitCastInst *BCI = nullptr;
2570   Value *V = RetI->getReturnValue();
2571   if (V) {
2572     BCI = dyn_cast<BitCastInst>(V);
2573     if (BCI)
2574       V = BCI->getOperand(0);
2575 
2576     EVI = dyn_cast<ExtractValueInst>(V);
2577     if (EVI) {
2578       V = EVI->getOperand(0);
2579       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2580         return false;
2581     }
2582 
2583     PN = dyn_cast<PHINode>(V);
2584     if (!PN)
2585       return false;
2586   }
2587 
2588   if (PN && PN->getParent() != BB)
2589     return false;
2590 
2591   auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2592     const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2593     if (BC && BC->hasOneUse())
2594       Inst = BC->user_back();
2595 
2596     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2597       return II->getIntrinsicID() == Intrinsic::lifetime_end;
2598     return false;
2599   };
2600 
2601   // Make sure there are no instructions between the first instruction
2602   // and return.
2603   const Instruction *BI = BB->getFirstNonPHI();
2604   // Skip over debug and the bitcast.
2605   while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2606          isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2607     BI = BI->getNextNode();
2608   if (BI != RetI)
2609     return false;
2610 
2611   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2612   /// call.
2613   const Function *F = BB->getParent();
2614   SmallVector<BasicBlock *, 4> TailCallBBs;
2615   if (PN) {
2616     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2617       // Look through bitcasts.
2618       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2619       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2620       BasicBlock *PredBB = PN->getIncomingBlock(I);
2621       // Make sure the phi value is indeed produced by the tail call.
2622       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2623           TLI->mayBeEmittedAsTailCall(CI) &&
2624           attributesPermitTailCall(F, CI, RetI, *TLI))
2625         TailCallBBs.push_back(PredBB);
2626     }
2627   } else {
2628     SmallPtrSet<BasicBlock *, 4> VisitedBBs;
2629     for (BasicBlock *Pred : predecessors(BB)) {
2630       if (!VisitedBBs.insert(Pred).second)
2631         continue;
2632       if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2633         CallInst *CI = dyn_cast<CallInst>(I);
2634         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2635             attributesPermitTailCall(F, CI, RetI, *TLI))
2636           TailCallBBs.push_back(Pred);
2637       }
2638     }
2639   }
2640 
2641   bool Changed = false;
2642   for (auto const &TailCallBB : TailCallBBs) {
2643     // Make sure the call instruction is followed by an unconditional branch to
2644     // the return block.
2645     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2646     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2647       continue;
2648 
2649     // Duplicate the return into TailCallBB.
2650     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2651     assert(!VerifyBFIUpdates ||
2652            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2653     BFI->setBlockFreq(BB,
2654                       (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)));
2655     ModifiedDT = ModifyDT::ModifyBBDT;
2656     Changed = true;
2657     ++NumRetsDup;
2658   }
2659 
2660   // If we eliminated all predecessors of the block, delete the block now.
2661   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2662     BB->eraseFromParent();
2663 
2664   return Changed;
2665 }
2666 
2667 //===----------------------------------------------------------------------===//
2668 // Memory Optimization
2669 //===----------------------------------------------------------------------===//
2670 
2671 namespace {
2672 
2673 /// This is an extended version of TargetLowering::AddrMode
2674 /// which holds actual Value*'s for register values.
2675 struct ExtAddrMode : public TargetLowering::AddrMode {
2676   Value *BaseReg = nullptr;
2677   Value *ScaledReg = nullptr;
2678   Value *OriginalValue = nullptr;
2679   bool InBounds = true;
2680 
2681   enum FieldName {
2682     NoField = 0x00,
2683     BaseRegField = 0x01,
2684     BaseGVField = 0x02,
2685     BaseOffsField = 0x04,
2686     ScaledRegField = 0x08,
2687     ScaleField = 0x10,
2688     MultipleFields = 0xff
2689   };
2690 
2691   ExtAddrMode() = default;
2692 
2693   void print(raw_ostream &OS) const;
2694   void dump() const;
2695 
2696   FieldName compare(const ExtAddrMode &other) {
2697     // First check that the types are the same on each field, as differing types
2698     // is something we can't cope with later on.
2699     if (BaseReg && other.BaseReg &&
2700         BaseReg->getType() != other.BaseReg->getType())
2701       return MultipleFields;
2702     if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
2703       return MultipleFields;
2704     if (ScaledReg && other.ScaledReg &&
2705         ScaledReg->getType() != other.ScaledReg->getType())
2706       return MultipleFields;
2707 
2708     // Conservatively reject 'inbounds' mismatches.
2709     if (InBounds != other.InBounds)
2710       return MultipleFields;
2711 
2712     // Check each field to see if it differs.
2713     unsigned Result = NoField;
2714     if (BaseReg != other.BaseReg)
2715       Result |= BaseRegField;
2716     if (BaseGV != other.BaseGV)
2717       Result |= BaseGVField;
2718     if (BaseOffs != other.BaseOffs)
2719       Result |= BaseOffsField;
2720     if (ScaledReg != other.ScaledReg)
2721       Result |= ScaledRegField;
2722     // Don't count 0 as being a different scale, because that actually means
2723     // unscaled (which will already be counted by having no ScaledReg).
2724     if (Scale && other.Scale && Scale != other.Scale)
2725       Result |= ScaleField;
2726 
2727     if (llvm::popcount(Result) > 1)
2728       return MultipleFields;
2729     else
2730       return static_cast<FieldName>(Result);
2731   }
2732 
2733   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2734   // with no offset.
2735   bool isTrivial() {
2736     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2737     // trivial if at most one of these terms is nonzero, except that BaseGV and
2738     // BaseReg both being zero actually means a null pointer value, which we
2739     // consider to be 'non-zero' here.
2740     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2741   }
2742 
2743   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2744     switch (Field) {
2745     default:
2746       return nullptr;
2747     case BaseRegField:
2748       return BaseReg;
2749     case BaseGVField:
2750       return BaseGV;
2751     case ScaledRegField:
2752       return ScaledReg;
2753     case BaseOffsField:
2754       return ConstantInt::get(IntPtrTy, BaseOffs);
2755     }
2756   }
2757 
2758   void SetCombinedField(FieldName Field, Value *V,
2759                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2760     switch (Field) {
2761     default:
2762       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2763       break;
2764     case ExtAddrMode::BaseRegField:
2765       BaseReg = V;
2766       break;
2767     case ExtAddrMode::BaseGVField:
2768       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2769       // in the BaseReg field.
2770       assert(BaseReg == nullptr);
2771       BaseReg = V;
2772       BaseGV = nullptr;
2773       break;
2774     case ExtAddrMode::ScaledRegField:
2775       ScaledReg = V;
2776       // If we have a mix of scaled and unscaled addrmodes then we want scale
2777       // to be the scale and not zero.
2778       if (!Scale)
2779         for (const ExtAddrMode &AM : AddrModes)
2780           if (AM.Scale) {
2781             Scale = AM.Scale;
2782             break;
2783           }
2784       break;
2785     case ExtAddrMode::BaseOffsField:
2786       // The offset is no longer a constant, so it goes in ScaledReg with a
2787       // scale of 1.
2788       assert(ScaledReg == nullptr);
2789       ScaledReg = V;
2790       Scale = 1;
2791       BaseOffs = 0;
2792       break;
2793     }
2794   }
2795 };
2796 
2797 #ifndef NDEBUG
2798 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2799   AM.print(OS);
2800   return OS;
2801 }
2802 #endif
2803 
2804 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2805 void ExtAddrMode::print(raw_ostream &OS) const {
2806   bool NeedPlus = false;
2807   OS << "[";
2808   if (InBounds)
2809     OS << "inbounds ";
2810   if (BaseGV) {
2811     OS << "GV:";
2812     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2813     NeedPlus = true;
2814   }
2815 
2816   if (BaseOffs) {
2817     OS << (NeedPlus ? " + " : "") << BaseOffs;
2818     NeedPlus = true;
2819   }
2820 
2821   if (BaseReg) {
2822     OS << (NeedPlus ? " + " : "") << "Base:";
2823     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2824     NeedPlus = true;
2825   }
2826   if (Scale) {
2827     OS << (NeedPlus ? " + " : "") << Scale << "*";
2828     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2829   }
2830 
2831   OS << ']';
2832 }
2833 
2834 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2835   print(dbgs());
2836   dbgs() << '\n';
2837 }
2838 #endif
2839 
2840 } // end anonymous namespace
2841 
2842 namespace {
2843 
2844 /// This class provides transaction based operation on the IR.
2845 /// Every change made through this class is recorded in the internal state and
2846 /// can be undone (rollback) until commit is called.
2847 /// CGP does not check if instructions could be speculatively executed when
2848 /// moved. Preserving the original location would pessimize the debugging
2849 /// experience, as well as negatively impact the quality of sample PGO.
2850 class TypePromotionTransaction {
2851   /// This represents the common interface of the individual transaction.
2852   /// Each class implements the logic for doing one specific modification on
2853   /// the IR via the TypePromotionTransaction.
2854   class TypePromotionAction {
2855   protected:
2856     /// The Instruction modified.
2857     Instruction *Inst;
2858 
2859   public:
2860     /// Constructor of the action.
2861     /// The constructor performs the related action on the IR.
2862     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2863 
2864     virtual ~TypePromotionAction() = default;
2865 
2866     /// Undo the modification done by this action.
2867     /// When this method is called, the IR must be in the same state as it was
2868     /// before this action was applied.
2869     /// \pre Undoing the action works if and only if the IR is in the exact same
2870     /// state as it was directly after this action was applied.
2871     virtual void undo() = 0;
2872 
2873     /// Advocate every change made by this action.
2874     /// When the results on the IR of the action are to be kept, it is important
2875     /// to call this function, otherwise hidden information may be kept forever.
2876     virtual void commit() {
2877       // Nothing to be done, this action is not doing anything.
2878     }
2879   };
2880 
2881   /// Utility to remember the position of an instruction.
2882   class InsertionHandler {
2883     /// Position of an instruction.
2884     /// Either an instruction:
2885     /// - Is the first in a basic block: BB is used.
2886     /// - Has a previous instruction: PrevInst is used.
2887     union {
2888       Instruction *PrevInst;
2889       BasicBlock *BB;
2890     } Point;
2891     std::optional<DPValue::self_iterator> BeforeDPValue = std::nullopt;
2892 
2893     /// Remember whether or not the instruction had a previous instruction.
2894     bool HasPrevInstruction;
2895 
2896   public:
2897     /// Record the position of \p Inst.
2898     InsertionHandler(Instruction *Inst) {
2899       HasPrevInstruction = (Inst != &*(Inst->getParent()->begin()));
2900       BasicBlock *BB = Inst->getParent();
2901 
2902       // Record where we would have to re-insert the instruction in the sequence
2903       // of DPValues, if we ended up reinserting.
2904       if (BB->IsNewDbgInfoFormat)
2905         BeforeDPValue = Inst->getDbgReinsertionPosition();
2906 
2907       if (HasPrevInstruction) {
2908         Point.PrevInst = &*std::prev(Inst->getIterator());
2909       } else {
2910         Point.BB = BB;
2911       }
2912     }
2913 
2914     /// Insert \p Inst at the recorded position.
2915     void insert(Instruction *Inst) {
2916       if (HasPrevInstruction) {
2917         if (Inst->getParent())
2918           Inst->removeFromParent();
2919         Inst->insertAfter(&*Point.PrevInst);
2920       } else {
2921         BasicBlock::iterator Position = Point.BB->getFirstInsertionPt();
2922         if (Inst->getParent())
2923           Inst->moveBefore(*Point.BB, Position);
2924         else
2925           Inst->insertBefore(*Point.BB, Position);
2926       }
2927 
2928       Inst->getParent()->reinsertInstInDPValues(Inst, BeforeDPValue);
2929     }
2930   };
2931 
2932   /// Move an instruction before another.
2933   class InstructionMoveBefore : public TypePromotionAction {
2934     /// Original position of the instruction.
2935     InsertionHandler Position;
2936 
2937   public:
2938     /// Move \p Inst before \p Before.
2939     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2940         : TypePromotionAction(Inst), Position(Inst) {
2941       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2942                         << "\n");
2943       Inst->moveBefore(Before);
2944     }
2945 
2946     /// Move the instruction back to its original position.
2947     void undo() override {
2948       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2949       Position.insert(Inst);
2950     }
2951   };
2952 
2953   /// Set the operand of an instruction with a new value.
2954   class OperandSetter : public TypePromotionAction {
2955     /// Original operand of the instruction.
2956     Value *Origin;
2957 
2958     /// Index of the modified instruction.
2959     unsigned Idx;
2960 
2961   public:
2962     /// Set \p Idx operand of \p Inst with \p NewVal.
2963     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2964         : TypePromotionAction(Inst), Idx(Idx) {
2965       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2966                         << "for:" << *Inst << "\n"
2967                         << "with:" << *NewVal << "\n");
2968       Origin = Inst->getOperand(Idx);
2969       Inst->setOperand(Idx, NewVal);
2970     }
2971 
2972     /// Restore the original value of the instruction.
2973     void undo() override {
2974       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2975                         << "for: " << *Inst << "\n"
2976                         << "with: " << *Origin << "\n");
2977       Inst->setOperand(Idx, Origin);
2978     }
2979   };
2980 
2981   /// Hide the operands of an instruction.
2982   /// Do as if this instruction was not using any of its operands.
2983   class OperandsHider : public TypePromotionAction {
2984     /// The list of original operands.
2985     SmallVector<Value *, 4> OriginalValues;
2986 
2987   public:
2988     /// Remove \p Inst from the uses of the operands of \p Inst.
2989     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2990       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2991       unsigned NumOpnds = Inst->getNumOperands();
2992       OriginalValues.reserve(NumOpnds);
2993       for (unsigned It = 0; It < NumOpnds; ++It) {
2994         // Save the current operand.
2995         Value *Val = Inst->getOperand(It);
2996         OriginalValues.push_back(Val);
2997         // Set a dummy one.
2998         // We could use OperandSetter here, but that would imply an overhead
2999         // that we are not willing to pay.
3000         Inst->setOperand(It, UndefValue::get(Val->getType()));
3001       }
3002     }
3003 
3004     /// Restore the original list of uses.
3005     void undo() override {
3006       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3007       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3008         Inst->setOperand(It, OriginalValues[It]);
3009     }
3010   };
3011 
3012   /// Build a truncate instruction.
3013   class TruncBuilder : public TypePromotionAction {
3014     Value *Val;
3015 
3016   public:
3017     /// Build a truncate instruction of \p Opnd producing a \p Ty
3018     /// result.
3019     /// trunc Opnd to Ty.
3020     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3021       IRBuilder<> Builder(Opnd);
3022       Builder.SetCurrentDebugLocation(DebugLoc());
3023       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3024       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3025     }
3026 
3027     /// Get the built value.
3028     Value *getBuiltValue() { return Val; }
3029 
3030     /// Remove the built instruction.
3031     void undo() override {
3032       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3033       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3034         IVal->eraseFromParent();
3035     }
3036   };
3037 
3038   /// Build a sign extension instruction.
3039   class SExtBuilder : public TypePromotionAction {
3040     Value *Val;
3041 
3042   public:
3043     /// Build a sign extension instruction of \p Opnd producing a \p Ty
3044     /// result.
3045     /// sext Opnd to Ty.
3046     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3047         : TypePromotionAction(InsertPt) {
3048       IRBuilder<> Builder(InsertPt);
3049       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3050       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3051     }
3052 
3053     /// Get the built value.
3054     Value *getBuiltValue() { return Val; }
3055 
3056     /// Remove the built instruction.
3057     void undo() override {
3058       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3059       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3060         IVal->eraseFromParent();
3061     }
3062   };
3063 
3064   /// Build a zero extension instruction.
3065   class ZExtBuilder : public TypePromotionAction {
3066     Value *Val;
3067 
3068   public:
3069     /// Build a zero extension instruction of \p Opnd producing a \p Ty
3070     /// result.
3071     /// zext Opnd to Ty.
3072     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3073         : TypePromotionAction(InsertPt) {
3074       IRBuilder<> Builder(InsertPt);
3075       Builder.SetCurrentDebugLocation(DebugLoc());
3076       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3077       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3078     }
3079 
3080     /// Get the built value.
3081     Value *getBuiltValue() { return Val; }
3082 
3083     /// Remove the built instruction.
3084     void undo() override {
3085       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3086       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3087         IVal->eraseFromParent();
3088     }
3089   };
3090 
3091   /// Mutate an instruction to another type.
3092   class TypeMutator : public TypePromotionAction {
3093     /// Record the original type.
3094     Type *OrigTy;
3095 
3096   public:
3097     /// Mutate the type of \p Inst into \p NewTy.
3098     TypeMutator(Instruction *Inst, Type *NewTy)
3099         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3100       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3101                         << "\n");
3102       Inst->mutateType(NewTy);
3103     }
3104 
3105     /// Mutate the instruction back to its original type.
3106     void undo() override {
3107       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3108                         << "\n");
3109       Inst->mutateType(OrigTy);
3110     }
3111   };
3112 
3113   /// Replace the uses of an instruction by another instruction.
3114   class UsesReplacer : public TypePromotionAction {
3115     /// Helper structure to keep track of the replaced uses.
3116     struct InstructionAndIdx {
3117       /// The instruction using the instruction.
3118       Instruction *Inst;
3119 
3120       /// The index where this instruction is used for Inst.
3121       unsigned Idx;
3122 
3123       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3124           : Inst(Inst), Idx(Idx) {}
3125     };
3126 
3127     /// Keep track of the original uses (pair Instruction, Index).
3128     SmallVector<InstructionAndIdx, 4> OriginalUses;
3129     /// Keep track of the debug users.
3130     SmallVector<DbgValueInst *, 1> DbgValues;
3131     /// And non-instruction debug-users too.
3132     SmallVector<DPValue *, 1> DPValues;
3133 
3134     /// Keep track of the new value so that we can undo it by replacing
3135     /// instances of the new value with the original value.
3136     Value *New;
3137 
3138     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3139 
3140   public:
3141     /// Replace all the use of \p Inst by \p New.
3142     UsesReplacer(Instruction *Inst, Value *New)
3143         : TypePromotionAction(Inst), New(New) {
3144       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3145                         << "\n");
3146       // Record the original uses.
3147       for (Use &U : Inst->uses()) {
3148         Instruction *UserI = cast<Instruction>(U.getUser());
3149         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3150       }
3151       // Record the debug uses separately. They are not in the instruction's
3152       // use list, but they are replaced by RAUW.
3153       findDbgValues(DbgValues, Inst, &DPValues);
3154 
3155       // Now, we can replace the uses.
3156       Inst->replaceAllUsesWith(New);
3157     }
3158 
3159     /// Reassign the original uses of Inst to Inst.
3160     void undo() override {
3161       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3162       for (InstructionAndIdx &Use : OriginalUses)
3163         Use.Inst->setOperand(Use.Idx, Inst);
3164       // RAUW has replaced all original uses with references to the new value,
3165       // including the debug uses. Since we are undoing the replacements,
3166       // the original debug uses must also be reinstated to maintain the
3167       // correctness and utility of debug value instructions.
3168       for (auto *DVI : DbgValues)
3169         DVI->replaceVariableLocationOp(New, Inst);
3170       // Similar story with DPValues, the non-instruction representation of
3171       // dbg.values.
3172       for (DPValue *DPV : DPValues) // tested by transaction-test I'm adding
3173         DPV->replaceVariableLocationOp(New, Inst);
3174     }
3175   };
3176 
3177   /// Remove an instruction from the IR.
3178   class InstructionRemover : public TypePromotionAction {
3179     /// Original position of the instruction.
3180     InsertionHandler Inserter;
3181 
3182     /// Helper structure to hide all the link to the instruction. In other
3183     /// words, this helps to do as if the instruction was removed.
3184     OperandsHider Hider;
3185 
3186     /// Keep track of the uses replaced, if any.
3187     UsesReplacer *Replacer = nullptr;
3188 
3189     /// Keep track of instructions removed.
3190     SetOfInstrs &RemovedInsts;
3191 
3192   public:
3193     /// Remove all reference of \p Inst and optionally replace all its
3194     /// uses with New.
3195     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3196     /// \pre If !Inst->use_empty(), then New != nullptr
3197     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3198                        Value *New = nullptr)
3199         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3200           RemovedInsts(RemovedInsts) {
3201       if (New)
3202         Replacer = new UsesReplacer(Inst, New);
3203       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3204       RemovedInsts.insert(Inst);
3205       /// The instructions removed here will be freed after completing
3206       /// optimizeBlock() for all blocks as we need to keep track of the
3207       /// removed instructions during promotion.
3208       Inst->removeFromParent();
3209     }
3210 
3211     ~InstructionRemover() override { delete Replacer; }
3212 
3213     InstructionRemover &operator=(const InstructionRemover &other) = delete;
3214     InstructionRemover(const InstructionRemover &other) = delete;
3215 
3216     /// Resurrect the instruction and reassign it to the proper uses if
3217     /// new value was provided when build this action.
3218     void undo() override {
3219       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3220       Inserter.insert(Inst);
3221       if (Replacer)
3222         Replacer->undo();
3223       Hider.undo();
3224       RemovedInsts.erase(Inst);
3225     }
3226   };
3227 
3228 public:
3229   /// Restoration point.
3230   /// The restoration point is a pointer to an action instead of an iterator
3231   /// because the iterator may be invalidated but not the pointer.
3232   using ConstRestorationPt = const TypePromotionAction *;
3233 
3234   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3235       : RemovedInsts(RemovedInsts) {}
3236 
3237   /// Advocate every changes made in that transaction. Return true if any change
3238   /// happen.
3239   bool commit();
3240 
3241   /// Undo all the changes made after the given point.
3242   void rollback(ConstRestorationPt Point);
3243 
3244   /// Get the current restoration point.
3245   ConstRestorationPt getRestorationPoint() const;
3246 
3247   /// \name API for IR modification with state keeping to support rollback.
3248   /// @{
3249   /// Same as Instruction::setOperand.
3250   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3251 
3252   /// Same as Instruction::eraseFromParent.
3253   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3254 
3255   /// Same as Value::replaceAllUsesWith.
3256   void replaceAllUsesWith(Instruction *Inst, Value *New);
3257 
3258   /// Same as Value::mutateType.
3259   void mutateType(Instruction *Inst, Type *NewTy);
3260 
3261   /// Same as IRBuilder::createTrunc.
3262   Value *createTrunc(Instruction *Opnd, Type *Ty);
3263 
3264   /// Same as IRBuilder::createSExt.
3265   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3266 
3267   /// Same as IRBuilder::createZExt.
3268   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3269 
3270 private:
3271   /// The ordered list of actions made so far.
3272   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3273 
3274   using CommitPt =
3275       SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3276 
3277   SetOfInstrs &RemovedInsts;
3278 };
3279 
3280 } // end anonymous namespace
3281 
3282 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3283                                           Value *NewVal) {
3284   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3285       Inst, Idx, NewVal));
3286 }
3287 
3288 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3289                                                 Value *NewVal) {
3290   Actions.push_back(
3291       std::make_unique<TypePromotionTransaction::InstructionRemover>(
3292           Inst, RemovedInsts, NewVal));
3293 }
3294 
3295 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3296                                                   Value *New) {
3297   Actions.push_back(
3298       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3299 }
3300 
3301 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3302   Actions.push_back(
3303       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3304 }
3305 
3306 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3307   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3308   Value *Val = Ptr->getBuiltValue();
3309   Actions.push_back(std::move(Ptr));
3310   return Val;
3311 }
3312 
3313 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3314                                             Type *Ty) {
3315   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3316   Value *Val = Ptr->getBuiltValue();
3317   Actions.push_back(std::move(Ptr));
3318   return Val;
3319 }
3320 
3321 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3322                                             Type *Ty) {
3323   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3324   Value *Val = Ptr->getBuiltValue();
3325   Actions.push_back(std::move(Ptr));
3326   return Val;
3327 }
3328 
3329 TypePromotionTransaction::ConstRestorationPt
3330 TypePromotionTransaction::getRestorationPoint() const {
3331   return !Actions.empty() ? Actions.back().get() : nullptr;
3332 }
3333 
3334 bool TypePromotionTransaction::commit() {
3335   for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3336     Action->commit();
3337   bool Modified = !Actions.empty();
3338   Actions.clear();
3339   return Modified;
3340 }
3341 
3342 void TypePromotionTransaction::rollback(
3343     TypePromotionTransaction::ConstRestorationPt Point) {
3344   while (!Actions.empty() && Point != Actions.back().get()) {
3345     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3346     Curr->undo();
3347   }
3348 }
3349 
3350 namespace {
3351 
3352 /// A helper class for matching addressing modes.
3353 ///
3354 /// This encapsulates the logic for matching the target-legal addressing modes.
3355 class AddressingModeMatcher {
3356   SmallVectorImpl<Instruction *> &AddrModeInsts;
3357   const TargetLowering &TLI;
3358   const TargetRegisterInfo &TRI;
3359   const DataLayout &DL;
3360   const LoopInfo &LI;
3361   const std::function<const DominatorTree &()> getDTFn;
3362 
3363   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3364   /// the memory instruction that we're computing this address for.
3365   Type *AccessTy;
3366   unsigned AddrSpace;
3367   Instruction *MemoryInst;
3368 
3369   /// This is the addressing mode that we're building up. This is
3370   /// part of the return value of this addressing mode matching stuff.
3371   ExtAddrMode &AddrMode;
3372 
3373   /// The instructions inserted by other CodeGenPrepare optimizations.
3374   const SetOfInstrs &InsertedInsts;
3375 
3376   /// A map from the instructions to their type before promotion.
3377   InstrToOrigTy &PromotedInsts;
3378 
3379   /// The ongoing transaction where every action should be registered.
3380   TypePromotionTransaction &TPT;
3381 
3382   // A GEP which has too large offset to be folded into the addressing mode.
3383   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3384 
3385   /// This is set to true when we should not do profitability checks.
3386   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3387   bool IgnoreProfitability;
3388 
3389   /// True if we are optimizing for size.
3390   bool OptSize = false;
3391 
3392   ProfileSummaryInfo *PSI;
3393   BlockFrequencyInfo *BFI;
3394 
3395   AddressingModeMatcher(
3396       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3397       const TargetRegisterInfo &TRI, const LoopInfo &LI,
3398       const std::function<const DominatorTree &()> getDTFn, Type *AT,
3399       unsigned AS, Instruction *MI, ExtAddrMode &AM,
3400       const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3401       TypePromotionTransaction &TPT,
3402       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3403       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3404       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3405         DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3406         AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3407         InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3408         LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3409     IgnoreProfitability = false;
3410   }
3411 
3412 public:
3413   /// Find the maximal addressing mode that a load/store of V can fold,
3414   /// give an access type of AccessTy.  This returns a list of involved
3415   /// instructions in AddrModeInsts.
3416   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3417   /// optimizations.
3418   /// \p PromotedInsts maps the instructions to their type before promotion.
3419   /// \p The ongoing transaction where every action should be registered.
3420   static ExtAddrMode
3421   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3422         SmallVectorImpl<Instruction *> &AddrModeInsts,
3423         const TargetLowering &TLI, const LoopInfo &LI,
3424         const std::function<const DominatorTree &()> getDTFn,
3425         const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3426         InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3427         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3428         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3429     ExtAddrMode Result;
3430 
3431     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3432                                          AccessTy, AS, MemoryInst, Result,
3433                                          InsertedInsts, PromotedInsts, TPT,
3434                                          LargeOffsetGEP, OptSize, PSI, BFI)
3435                        .matchAddr(V, 0);
3436     (void)Success;
3437     assert(Success && "Couldn't select *anything*?");
3438     return Result;
3439   }
3440 
3441 private:
3442   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3443   bool matchAddr(Value *Addr, unsigned Depth);
3444   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3445                           bool *MovedAway = nullptr);
3446   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3447                                             ExtAddrMode &AMBefore,
3448                                             ExtAddrMode &AMAfter);
3449   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3450   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3451                              Value *PromotedOperand) const;
3452 };
3453 
3454 class PhiNodeSet;
3455 
3456 /// An iterator for PhiNodeSet.
3457 class PhiNodeSetIterator {
3458   PhiNodeSet *const Set;
3459   size_t CurrentIndex = 0;
3460 
3461 public:
3462   /// The constructor. Start should point to either a valid element, or be equal
3463   /// to the size of the underlying SmallVector of the PhiNodeSet.
3464   PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3465   PHINode *operator*() const;
3466   PhiNodeSetIterator &operator++();
3467   bool operator==(const PhiNodeSetIterator &RHS) const;
3468   bool operator!=(const PhiNodeSetIterator &RHS) const;
3469 };
3470 
3471 /// Keeps a set of PHINodes.
3472 ///
3473 /// This is a minimal set implementation for a specific use case:
3474 /// It is very fast when there are very few elements, but also provides good
3475 /// performance when there are many. It is similar to SmallPtrSet, but also
3476 /// provides iteration by insertion order, which is deterministic and stable
3477 /// across runs. It is also similar to SmallSetVector, but provides removing
3478 /// elements in O(1) time. This is achieved by not actually removing the element
3479 /// from the underlying vector, so comes at the cost of using more memory, but
3480 /// that is fine, since PhiNodeSets are used as short lived objects.
3481 class PhiNodeSet {
3482   friend class PhiNodeSetIterator;
3483 
3484   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3485   using iterator = PhiNodeSetIterator;
3486 
3487   /// Keeps the elements in the order of their insertion in the underlying
3488   /// vector. To achieve constant time removal, it never deletes any element.
3489   SmallVector<PHINode *, 32> NodeList;
3490 
3491   /// Keeps the elements in the underlying set implementation. This (and not the
3492   /// NodeList defined above) is the source of truth on whether an element
3493   /// is actually in the collection.
3494   MapType NodeMap;
3495 
3496   /// Points to the first valid (not deleted) element when the set is not empty
3497   /// and the value is not zero. Equals to the size of the underlying vector
3498   /// when the set is empty. When the value is 0, as in the beginning, the
3499   /// first element may or may not be valid.
3500   size_t FirstValidElement = 0;
3501 
3502 public:
3503   /// Inserts a new element to the collection.
3504   /// \returns true if the element is actually added, i.e. was not in the
3505   /// collection before the operation.
3506   bool insert(PHINode *Ptr) {
3507     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3508       NodeList.push_back(Ptr);
3509       return true;
3510     }
3511     return false;
3512   }
3513 
3514   /// Removes the element from the collection.
3515   /// \returns whether the element is actually removed, i.e. was in the
3516   /// collection before the operation.
3517   bool erase(PHINode *Ptr) {
3518     if (NodeMap.erase(Ptr)) {
3519       SkipRemovedElements(FirstValidElement);
3520       return true;
3521     }
3522     return false;
3523   }
3524 
3525   /// Removes all elements and clears the collection.
3526   void clear() {
3527     NodeMap.clear();
3528     NodeList.clear();
3529     FirstValidElement = 0;
3530   }
3531 
3532   /// \returns an iterator that will iterate the elements in the order of
3533   /// insertion.
3534   iterator begin() {
3535     if (FirstValidElement == 0)
3536       SkipRemovedElements(FirstValidElement);
3537     return PhiNodeSetIterator(this, FirstValidElement);
3538   }
3539 
3540   /// \returns an iterator that points to the end of the collection.
3541   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3542 
3543   /// Returns the number of elements in the collection.
3544   size_t size() const { return NodeMap.size(); }
3545 
3546   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3547   size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
3548 
3549 private:
3550   /// Updates the CurrentIndex so that it will point to a valid element.
3551   ///
3552   /// If the element of NodeList at CurrentIndex is valid, it does not
3553   /// change it. If there are no more valid elements, it updates CurrentIndex
3554   /// to point to the end of the NodeList.
3555   void SkipRemovedElements(size_t &CurrentIndex) {
3556     while (CurrentIndex < NodeList.size()) {
3557       auto it = NodeMap.find(NodeList[CurrentIndex]);
3558       // If the element has been deleted and added again later, NodeMap will
3559       // point to a different index, so CurrentIndex will still be invalid.
3560       if (it != NodeMap.end() && it->second == CurrentIndex)
3561         break;
3562       ++CurrentIndex;
3563     }
3564   }
3565 };
3566 
3567 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3568     : Set(Set), CurrentIndex(Start) {}
3569 
3570 PHINode *PhiNodeSetIterator::operator*() const {
3571   assert(CurrentIndex < Set->NodeList.size() &&
3572          "PhiNodeSet access out of range");
3573   return Set->NodeList[CurrentIndex];
3574 }
3575 
3576 PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
3577   assert(CurrentIndex < Set->NodeList.size() &&
3578          "PhiNodeSet access out of range");
3579   ++CurrentIndex;
3580   Set->SkipRemovedElements(CurrentIndex);
3581   return *this;
3582 }
3583 
3584 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3585   return CurrentIndex == RHS.CurrentIndex;
3586 }
3587 
3588 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3589   return !((*this) == RHS);
3590 }
3591 
3592 /// Keep track of simplification of Phi nodes.
3593 /// Accept the set of all phi nodes and erase phi node from this set
3594 /// if it is simplified.
3595 class SimplificationTracker {
3596   DenseMap<Value *, Value *> Storage;
3597   const SimplifyQuery &SQ;
3598   // Tracks newly created Phi nodes. The elements are iterated by insertion
3599   // order.
3600   PhiNodeSet AllPhiNodes;
3601   // Tracks newly created Select nodes.
3602   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3603 
3604 public:
3605   SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {}
3606 
3607   Value *Get(Value *V) {
3608     do {
3609       auto SV = Storage.find(V);
3610       if (SV == Storage.end())
3611         return V;
3612       V = SV->second;
3613     } while (true);
3614   }
3615 
3616   Value *Simplify(Value *Val) {
3617     SmallVector<Value *, 32> WorkList;
3618     SmallPtrSet<Value *, 32> Visited;
3619     WorkList.push_back(Val);
3620     while (!WorkList.empty()) {
3621       auto *P = WorkList.pop_back_val();
3622       if (!Visited.insert(P).second)
3623         continue;
3624       if (auto *PI = dyn_cast<Instruction>(P))
3625         if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
3626           for (auto *U : PI->users())
3627             WorkList.push_back(cast<Value>(U));
3628           Put(PI, V);
3629           PI->replaceAllUsesWith(V);
3630           if (auto *PHI = dyn_cast<PHINode>(PI))
3631             AllPhiNodes.erase(PHI);
3632           if (auto *Select = dyn_cast<SelectInst>(PI))
3633             AllSelectNodes.erase(Select);
3634           PI->eraseFromParent();
3635         }
3636     }
3637     return Get(Val);
3638   }
3639 
3640   void Put(Value *From, Value *To) { Storage.insert({From, To}); }
3641 
3642   void ReplacePhi(PHINode *From, PHINode *To) {
3643     Value *OldReplacement = Get(From);
3644     while (OldReplacement != From) {
3645       From = To;
3646       To = dyn_cast<PHINode>(OldReplacement);
3647       OldReplacement = Get(From);
3648     }
3649     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3650     Put(From, To);
3651     From->replaceAllUsesWith(To);
3652     AllPhiNodes.erase(From);
3653     From->eraseFromParent();
3654   }
3655 
3656   PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
3657 
3658   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3659 
3660   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3661 
3662   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3663 
3664   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3665 
3666   void destroyNewNodes(Type *CommonType) {
3667     // For safe erasing, replace the uses with dummy value first.
3668     auto *Dummy = PoisonValue::get(CommonType);
3669     for (auto *I : AllPhiNodes) {
3670       I->replaceAllUsesWith(Dummy);
3671       I->eraseFromParent();
3672     }
3673     AllPhiNodes.clear();
3674     for (auto *I : AllSelectNodes) {
3675       I->replaceAllUsesWith(Dummy);
3676       I->eraseFromParent();
3677     }
3678     AllSelectNodes.clear();
3679   }
3680 };
3681 
3682 /// A helper class for combining addressing modes.
3683 class AddressingModeCombiner {
3684   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3685   typedef std::pair<PHINode *, PHINode *> PHIPair;
3686 
3687 private:
3688   /// The addressing modes we've collected.
3689   SmallVector<ExtAddrMode, 16> AddrModes;
3690 
3691   /// The field in which the AddrModes differ, when we have more than one.
3692   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3693 
3694   /// Are the AddrModes that we have all just equal to their original values?
3695   bool AllAddrModesTrivial = true;
3696 
3697   /// Common Type for all different fields in addressing modes.
3698   Type *CommonType = nullptr;
3699 
3700   /// SimplifyQuery for simplifyInstruction utility.
3701   const SimplifyQuery &SQ;
3702 
3703   /// Original Address.
3704   Value *Original;
3705 
3706   /// Common value among addresses
3707   Value *CommonValue = nullptr;
3708 
3709 public:
3710   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3711       : SQ(_SQ), Original(OriginalValue) {}
3712 
3713   ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3714 
3715   /// Get the combined AddrMode
3716   const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
3717 
3718   /// Add a new AddrMode if it's compatible with the AddrModes we already
3719   /// have.
3720   /// \return True iff we succeeded in doing so.
3721   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3722     // Take note of if we have any non-trivial AddrModes, as we need to detect
3723     // when all AddrModes are trivial as then we would introduce a phi or select
3724     // which just duplicates what's already there.
3725     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3726 
3727     // If this is the first addrmode then everything is fine.
3728     if (AddrModes.empty()) {
3729       AddrModes.emplace_back(NewAddrMode);
3730       return true;
3731     }
3732 
3733     // Figure out how different this is from the other address modes, which we
3734     // can do just by comparing against the first one given that we only care
3735     // about the cumulative difference.
3736     ExtAddrMode::FieldName ThisDifferentField =
3737         AddrModes[0].compare(NewAddrMode);
3738     if (DifferentField == ExtAddrMode::NoField)
3739       DifferentField = ThisDifferentField;
3740     else if (DifferentField != ThisDifferentField)
3741       DifferentField = ExtAddrMode::MultipleFields;
3742 
3743     // If NewAddrMode differs in more than one dimension we cannot handle it.
3744     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3745 
3746     // If Scale Field is different then we reject.
3747     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3748 
3749     // We also must reject the case when base offset is different and
3750     // scale reg is not null, we cannot handle this case due to merge of
3751     // different offsets will be used as ScaleReg.
3752     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3753                               !NewAddrMode.ScaledReg);
3754 
3755     // We also must reject the case when GV is different and BaseReg installed
3756     // due to we want to use base reg as a merge of GV values.
3757     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3758                               !NewAddrMode.HasBaseReg);
3759 
3760     // Even if NewAddMode is the same we still need to collect it due to
3761     // original value is different. And later we will need all original values
3762     // as anchors during finding the common Phi node.
3763     if (CanHandle)
3764       AddrModes.emplace_back(NewAddrMode);
3765     else
3766       AddrModes.clear();
3767 
3768     return CanHandle;
3769   }
3770 
3771   /// Combine the addressing modes we've collected into a single
3772   /// addressing mode.
3773   /// \return True iff we successfully combined them or we only had one so
3774   /// didn't need to combine them anyway.
3775   bool combineAddrModes() {
3776     // If we have no AddrModes then they can't be combined.
3777     if (AddrModes.size() == 0)
3778       return false;
3779 
3780     // A single AddrMode can trivially be combined.
3781     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3782       return true;
3783 
3784     // If the AddrModes we collected are all just equal to the value they are
3785     // derived from then combining them wouldn't do anything useful.
3786     if (AllAddrModesTrivial)
3787       return false;
3788 
3789     if (!addrModeCombiningAllowed())
3790       return false;
3791 
3792     // Build a map between <original value, basic block where we saw it> to
3793     // value of base register.
3794     // Bail out if there is no common type.
3795     FoldAddrToValueMapping Map;
3796     if (!initializeMap(Map))
3797       return false;
3798 
3799     CommonValue = findCommon(Map);
3800     if (CommonValue)
3801       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3802     return CommonValue != nullptr;
3803   }
3804 
3805 private:
3806   /// `CommonValue` may be a placeholder inserted by us.
3807   /// If the placeholder is not used, we should remove this dead instruction.
3808   void eraseCommonValueIfDead() {
3809     if (CommonValue && CommonValue->getNumUses() == 0)
3810       if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
3811         CommonInst->eraseFromParent();
3812   }
3813 
3814   /// Initialize Map with anchor values. For address seen
3815   /// we set the value of different field saw in this address.
3816   /// At the same time we find a common type for different field we will
3817   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3818   /// Return false if there is no common type found.
3819   bool initializeMap(FoldAddrToValueMapping &Map) {
3820     // Keep track of keys where the value is null. We will need to replace it
3821     // with constant null when we know the common type.
3822     SmallVector<Value *, 2> NullValue;
3823     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3824     for (auto &AM : AddrModes) {
3825       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3826       if (DV) {
3827         auto *Type = DV->getType();
3828         if (CommonType && CommonType != Type)
3829           return false;
3830         CommonType = Type;
3831         Map[AM.OriginalValue] = DV;
3832       } else {
3833         NullValue.push_back(AM.OriginalValue);
3834       }
3835     }
3836     assert(CommonType && "At least one non-null value must be!");
3837     for (auto *V : NullValue)
3838       Map[V] = Constant::getNullValue(CommonType);
3839     return true;
3840   }
3841 
3842   /// We have mapping between value A and other value B where B was a field in
3843   /// addressing mode represented by A. Also we have an original value C
3844   /// representing an address we start with. Traversing from C through phi and
3845   /// selects we ended up with A's in a map. This utility function tries to find
3846   /// a value V which is a field in addressing mode C and traversing through phi
3847   /// nodes and selects we will end up in corresponded values B in a map.
3848   /// The utility will create a new Phi/Selects if needed.
3849   // The simple example looks as follows:
3850   // BB1:
3851   //   p1 = b1 + 40
3852   //   br cond BB2, BB3
3853   // BB2:
3854   //   p2 = b2 + 40
3855   //   br BB3
3856   // BB3:
3857   //   p = phi [p1, BB1], [p2, BB2]
3858   //   v = load p
3859   // Map is
3860   //   p1 -> b1
3861   //   p2 -> b2
3862   // Request is
3863   //   p -> ?
3864   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3865   Value *findCommon(FoldAddrToValueMapping &Map) {
3866     // Tracks the simplification of newly created phi nodes. The reason we use
3867     // this mapping is because we will add new created Phi nodes in AddrToBase.
3868     // Simplification of Phi nodes is recursive, so some Phi node may
3869     // be simplified after we added it to AddrToBase. In reality this
3870     // simplification is possible only if original phi/selects were not
3871     // simplified yet.
3872     // Using this mapping we can find the current value in AddrToBase.
3873     SimplificationTracker ST(SQ);
3874 
3875     // First step, DFS to create PHI nodes for all intermediate blocks.
3876     // Also fill traverse order for the second step.
3877     SmallVector<Value *, 32> TraverseOrder;
3878     InsertPlaceholders(Map, TraverseOrder, ST);
3879 
3880     // Second Step, fill new nodes by merged values and simplify if possible.
3881     FillPlaceholders(Map, TraverseOrder, ST);
3882 
3883     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3884       ST.destroyNewNodes(CommonType);
3885       return nullptr;
3886     }
3887 
3888     // Now we'd like to match New Phi nodes to existed ones.
3889     unsigned PhiNotMatchedCount = 0;
3890     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3891       ST.destroyNewNodes(CommonType);
3892       return nullptr;
3893     }
3894 
3895     auto *Result = ST.Get(Map.find(Original)->second);
3896     if (Result) {
3897       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3898       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3899     }
3900     return Result;
3901   }
3902 
3903   /// Try to match PHI node to Candidate.
3904   /// Matcher tracks the matched Phi nodes.
3905   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3906                     SmallSetVector<PHIPair, 8> &Matcher,
3907                     PhiNodeSet &PhiNodesToMatch) {
3908     SmallVector<PHIPair, 8> WorkList;
3909     Matcher.insert({PHI, Candidate});
3910     SmallSet<PHINode *, 8> MatchedPHIs;
3911     MatchedPHIs.insert(PHI);
3912     WorkList.push_back({PHI, Candidate});
3913     SmallSet<PHIPair, 8> Visited;
3914     while (!WorkList.empty()) {
3915       auto Item = WorkList.pop_back_val();
3916       if (!Visited.insert(Item).second)
3917         continue;
3918       // We iterate over all incoming values to Phi to compare them.
3919       // If values are different and both of them Phi and the first one is a
3920       // Phi we added (subject to match) and both of them is in the same basic
3921       // block then we can match our pair if values match. So we state that
3922       // these values match and add it to work list to verify that.
3923       for (auto *B : Item.first->blocks()) {
3924         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3925         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3926         if (FirstValue == SecondValue)
3927           continue;
3928 
3929         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3930         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3931 
3932         // One of them is not Phi or
3933         // The first one is not Phi node from the set we'd like to match or
3934         // Phi nodes from different basic blocks then
3935         // we will not be able to match.
3936         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3937             FirstPhi->getParent() != SecondPhi->getParent())
3938           return false;
3939 
3940         // If we already matched them then continue.
3941         if (Matcher.count({FirstPhi, SecondPhi}))
3942           continue;
3943         // So the values are different and does not match. So we need them to
3944         // match. (But we register no more than one match per PHI node, so that
3945         // we won't later try to replace them twice.)
3946         if (MatchedPHIs.insert(FirstPhi).second)
3947           Matcher.insert({FirstPhi, SecondPhi});
3948         // But me must check it.
3949         WorkList.push_back({FirstPhi, SecondPhi});
3950       }
3951     }
3952     return true;
3953   }
3954 
3955   /// For the given set of PHI nodes (in the SimplificationTracker) try
3956   /// to find their equivalents.
3957   /// Returns false if this matching fails and creation of new Phi is disabled.
3958   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3959                    unsigned &PhiNotMatchedCount) {
3960     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3961     // order, so the replacements (ReplacePhi) are also done in a deterministic
3962     // order.
3963     SmallSetVector<PHIPair, 8> Matched;
3964     SmallPtrSet<PHINode *, 8> WillNotMatch;
3965     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3966     while (PhiNodesToMatch.size()) {
3967       PHINode *PHI = *PhiNodesToMatch.begin();
3968 
3969       // Add us, if no Phi nodes in the basic block we do not match.
3970       WillNotMatch.clear();
3971       WillNotMatch.insert(PHI);
3972 
3973       // Traverse all Phis until we found equivalent or fail to do that.
3974       bool IsMatched = false;
3975       for (auto &P : PHI->getParent()->phis()) {
3976         // Skip new Phi nodes.
3977         if (PhiNodesToMatch.count(&P))
3978           continue;
3979         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3980           break;
3981         // If it does not match, collect all Phi nodes from matcher.
3982         // if we end up with no match, them all these Phi nodes will not match
3983         // later.
3984         for (auto M : Matched)
3985           WillNotMatch.insert(M.first);
3986         Matched.clear();
3987       }
3988       if (IsMatched) {
3989         // Replace all matched values and erase them.
3990         for (auto MV : Matched)
3991           ST.ReplacePhi(MV.first, MV.second);
3992         Matched.clear();
3993         continue;
3994       }
3995       // If we are not allowed to create new nodes then bail out.
3996       if (!AllowNewPhiNodes)
3997         return false;
3998       // Just remove all seen values in matcher. They will not match anything.
3999       PhiNotMatchedCount += WillNotMatch.size();
4000       for (auto *P : WillNotMatch)
4001         PhiNodesToMatch.erase(P);
4002     }
4003     return true;
4004   }
4005   /// Fill the placeholders with values from predecessors and simplify them.
4006   void FillPlaceholders(FoldAddrToValueMapping &Map,
4007                         SmallVectorImpl<Value *> &TraverseOrder,
4008                         SimplificationTracker &ST) {
4009     while (!TraverseOrder.empty()) {
4010       Value *Current = TraverseOrder.pop_back_val();
4011       assert(Map.contains(Current) && "No node to fill!!!");
4012       Value *V = Map[Current];
4013 
4014       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
4015         // CurrentValue also must be Select.
4016         auto *CurrentSelect = cast<SelectInst>(Current);
4017         auto *TrueValue = CurrentSelect->getTrueValue();
4018         assert(Map.contains(TrueValue) && "No True Value!");
4019         Select->setTrueValue(ST.Get(Map[TrueValue]));
4020         auto *FalseValue = CurrentSelect->getFalseValue();
4021         assert(Map.contains(FalseValue) && "No False Value!");
4022         Select->setFalseValue(ST.Get(Map[FalseValue]));
4023       } else {
4024         // Must be a Phi node then.
4025         auto *PHI = cast<PHINode>(V);
4026         // Fill the Phi node with values from predecessors.
4027         for (auto *B : predecessors(PHI->getParent())) {
4028           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
4029           assert(Map.contains(PV) && "No predecessor Value!");
4030           PHI->addIncoming(ST.Get(Map[PV]), B);
4031         }
4032       }
4033       Map[Current] = ST.Simplify(V);
4034     }
4035   }
4036 
4037   /// Starting from original value recursively iterates over def-use chain up to
4038   /// known ending values represented in a map. For each traversed phi/select
4039   /// inserts a placeholder Phi or Select.
4040   /// Reports all new created Phi/Select nodes by adding them to set.
4041   /// Also reports and order in what values have been traversed.
4042   void InsertPlaceholders(FoldAddrToValueMapping &Map,
4043                           SmallVectorImpl<Value *> &TraverseOrder,
4044                           SimplificationTracker &ST) {
4045     SmallVector<Value *, 32> Worklist;
4046     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
4047            "Address must be a Phi or Select node");
4048     auto *Dummy = PoisonValue::get(CommonType);
4049     Worklist.push_back(Original);
4050     while (!Worklist.empty()) {
4051       Value *Current = Worklist.pop_back_val();
4052       // if it is already visited or it is an ending value then skip it.
4053       if (Map.contains(Current))
4054         continue;
4055       TraverseOrder.push_back(Current);
4056 
4057       // CurrentValue must be a Phi node or select. All others must be covered
4058       // by anchors.
4059       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
4060         // Is it OK to get metadata from OrigSelect?!
4061         // Create a Select placeholder with dummy value.
4062         SelectInst *Select = SelectInst::Create(
4063             CurrentSelect->getCondition(), Dummy, Dummy,
4064             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
4065         Map[Current] = Select;
4066         ST.insertNewSelect(Select);
4067         // We are interested in True and False values.
4068         Worklist.push_back(CurrentSelect->getTrueValue());
4069         Worklist.push_back(CurrentSelect->getFalseValue());
4070       } else {
4071         // It must be a Phi node then.
4072         PHINode *CurrentPhi = cast<PHINode>(Current);
4073         unsigned PredCount = CurrentPhi->getNumIncomingValues();
4074         PHINode *PHI =
4075             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
4076         Map[Current] = PHI;
4077         ST.insertNewPhi(PHI);
4078         append_range(Worklist, CurrentPhi->incoming_values());
4079       }
4080     }
4081   }
4082 
4083   bool addrModeCombiningAllowed() {
4084     if (DisableComplexAddrModes)
4085       return false;
4086     switch (DifferentField) {
4087     default:
4088       return false;
4089     case ExtAddrMode::BaseRegField:
4090       return AddrSinkCombineBaseReg;
4091     case ExtAddrMode::BaseGVField:
4092       return AddrSinkCombineBaseGV;
4093     case ExtAddrMode::BaseOffsField:
4094       return AddrSinkCombineBaseOffs;
4095     case ExtAddrMode::ScaledRegField:
4096       return AddrSinkCombineScaledReg;
4097     }
4098   }
4099 };
4100 } // end anonymous namespace
4101 
4102 /// Try adding ScaleReg*Scale to the current addressing mode.
4103 /// Return true and update AddrMode if this addr mode is legal for the target,
4104 /// false if not.
4105 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4106                                              unsigned Depth) {
4107   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4108   // mode.  Just process that directly.
4109   if (Scale == 1)
4110     return matchAddr(ScaleReg, Depth);
4111 
4112   // If the scale is 0, it takes nothing to add this.
4113   if (Scale == 0)
4114     return true;
4115 
4116   // If we already have a scale of this value, we can add to it, otherwise, we
4117   // need an available scale field.
4118   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4119     return false;
4120 
4121   ExtAddrMode TestAddrMode = AddrMode;
4122 
4123   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
4124   // [A+B + A*7] -> [B+A*8].
4125   TestAddrMode.Scale += Scale;
4126   TestAddrMode.ScaledReg = ScaleReg;
4127 
4128   // If the new address isn't legal, bail out.
4129   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4130     return false;
4131 
4132   // It was legal, so commit it.
4133   AddrMode = TestAddrMode;
4134 
4135   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
4136   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
4137   // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4138   // go any further: we can reuse it and cannot eliminate it.
4139   ConstantInt *CI = nullptr;
4140   Value *AddLHS = nullptr;
4141   if (isa<Instruction>(ScaleReg) && // not a constant expr.
4142       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4143       !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4144     TestAddrMode.InBounds = false;
4145     TestAddrMode.ScaledReg = AddLHS;
4146     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4147 
4148     // If this addressing mode is legal, commit it and remember that we folded
4149     // this instruction.
4150     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4151       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4152       AddrMode = TestAddrMode;
4153       return true;
4154     }
4155     // Restore status quo.
4156     TestAddrMode = AddrMode;
4157   }
4158 
4159   // If this is an add recurrence with a constant step, return the increment
4160   // instruction and the canonicalized step.
4161   auto GetConstantStep =
4162       [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4163     auto *PN = dyn_cast<PHINode>(V);
4164     if (!PN)
4165       return std::nullopt;
4166     auto IVInc = getIVIncrement(PN, &LI);
4167     if (!IVInc)
4168       return std::nullopt;
4169     // TODO: The result of the intrinsics above is two-complement. However when
4170     // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4171     // If it has nuw or nsw flags, we need to make sure that these flags are
4172     // inferrable at the point of memory instruction. Otherwise we are replacing
4173     // well-defined two-complement computation with poison. Currently, to avoid
4174     // potentially complex analysis needed to prove this, we reject such cases.
4175     if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4176       if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4177         return std::nullopt;
4178     if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4179       return std::make_pair(IVInc->first, ConstantStep->getValue());
4180     return std::nullopt;
4181   };
4182 
4183   // Try to account for the following special case:
4184   // 1. ScaleReg is an inductive variable;
4185   // 2. We use it with non-zero offset;
4186   // 3. IV's increment is available at the point of memory instruction.
4187   //
4188   // In this case, we may reuse the IV increment instead of the IV Phi to
4189   // achieve the following advantages:
4190   // 1. If IV step matches the offset, we will have no need in the offset;
4191   // 2. Even if they don't match, we will reduce the overlap of living IV
4192   //    and IV increment, that will potentially lead to better register
4193   //    assignment.
4194   if (AddrMode.BaseOffs) {
4195     if (auto IVStep = GetConstantStep(ScaleReg)) {
4196       Instruction *IVInc = IVStep->first;
4197       // The following assert is important to ensure a lack of infinite loops.
4198       // This transforms is (intentionally) the inverse of the one just above.
4199       // If they don't agree on the definition of an increment, we'd alternate
4200       // back and forth indefinitely.
4201       assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4202       APInt Step = IVStep->second;
4203       APInt Offset = Step * AddrMode.Scale;
4204       if (Offset.isSignedIntN(64)) {
4205         TestAddrMode.InBounds = false;
4206         TestAddrMode.ScaledReg = IVInc;
4207         TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4208         // If this addressing mode is legal, commit it..
4209         // (Note that we defer the (expensive) domtree base legality check
4210         // to the very last possible point.)
4211         if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4212             getDTFn().dominates(IVInc, MemoryInst)) {
4213           AddrModeInsts.push_back(cast<Instruction>(IVInc));
4214           AddrMode = TestAddrMode;
4215           return true;
4216         }
4217         // Restore status quo.
4218         TestAddrMode = AddrMode;
4219       }
4220     }
4221   }
4222 
4223   // Otherwise, just return what we have.
4224   return true;
4225 }
4226 
4227 /// This is a little filter, which returns true if an addressing computation
4228 /// involving I might be folded into a load/store accessing it.
4229 /// This doesn't need to be perfect, but needs to accept at least
4230 /// the set of instructions that MatchOperationAddr can.
4231 static bool MightBeFoldableInst(Instruction *I) {
4232   switch (I->getOpcode()) {
4233   case Instruction::BitCast:
4234   case Instruction::AddrSpaceCast:
4235     // Don't touch identity bitcasts.
4236     if (I->getType() == I->getOperand(0)->getType())
4237       return false;
4238     return I->getType()->isIntOrPtrTy();
4239   case Instruction::PtrToInt:
4240     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4241     return true;
4242   case Instruction::IntToPtr:
4243     // We know the input is intptr_t, so this is foldable.
4244     return true;
4245   case Instruction::Add:
4246     return true;
4247   case Instruction::Mul:
4248   case Instruction::Shl:
4249     // Can only handle X*C and X << C.
4250     return isa<ConstantInt>(I->getOperand(1));
4251   case Instruction::GetElementPtr:
4252     return true;
4253   default:
4254     return false;
4255   }
4256 }
4257 
4258 /// Check whether or not \p Val is a legal instruction for \p TLI.
4259 /// \note \p Val is assumed to be the product of some type promotion.
4260 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4261 /// to be legal, as the non-promoted value would have had the same state.
4262 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4263                                        const DataLayout &DL, Value *Val) {
4264   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4265   if (!PromotedInst)
4266     return false;
4267   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4268   // If the ISDOpcode is undefined, it was undefined before the promotion.
4269   if (!ISDOpcode)
4270     return true;
4271   // Otherwise, check if the promoted instruction is legal or not.
4272   return TLI.isOperationLegalOrCustom(
4273       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4274 }
4275 
4276 namespace {
4277 
4278 /// Hepler class to perform type promotion.
4279 class TypePromotionHelper {
4280   /// Utility function to add a promoted instruction \p ExtOpnd to
4281   /// \p PromotedInsts and record the type of extension we have seen.
4282   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4283                               Instruction *ExtOpnd, bool IsSExt) {
4284     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4285     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4286     if (It != PromotedInsts.end()) {
4287       // If the new extension is same as original, the information in
4288       // PromotedInsts[ExtOpnd] is still correct.
4289       if (It->second.getInt() == ExtTy)
4290         return;
4291 
4292       // Now the new extension is different from old extension, we make
4293       // the type information invalid by setting extension type to
4294       // BothExtension.
4295       ExtTy = BothExtension;
4296     }
4297     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4298   }
4299 
4300   /// Utility function to query the original type of instruction \p Opnd
4301   /// with a matched extension type. If the extension doesn't match, we
4302   /// cannot use the information we had on the original type.
4303   /// BothExtension doesn't match any extension type.
4304   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4305                                  Instruction *Opnd, bool IsSExt) {
4306     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4307     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4308     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4309       return It->second.getPointer();
4310     return nullptr;
4311   }
4312 
4313   /// Utility function to check whether or not a sign or zero extension
4314   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4315   /// either using the operands of \p Inst or promoting \p Inst.
4316   /// The type of the extension is defined by \p IsSExt.
4317   /// In other words, check if:
4318   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4319   /// #1 Promotion applies:
4320   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4321   /// #2 Operand reuses:
4322   /// ext opnd1 to ConsideredExtType.
4323   /// \p PromotedInsts maps the instructions to their type before promotion.
4324   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4325                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
4326 
4327   /// Utility function to determine if \p OpIdx should be promoted when
4328   /// promoting \p Inst.
4329   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4330     return !(isa<SelectInst>(Inst) && OpIdx == 0);
4331   }
4332 
4333   /// Utility function to promote the operand of \p Ext when this
4334   /// operand is a promotable trunc or sext or zext.
4335   /// \p PromotedInsts maps the instructions to their type before promotion.
4336   /// \p CreatedInstsCost[out] contains the cost of all instructions
4337   /// created to promote the operand of Ext.
4338   /// Newly added extensions are inserted in \p Exts.
4339   /// Newly added truncates are inserted in \p Truncs.
4340   /// Should never be called directly.
4341   /// \return The promoted value which is used instead of Ext.
4342   static Value *promoteOperandForTruncAndAnyExt(
4343       Instruction *Ext, TypePromotionTransaction &TPT,
4344       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4345       SmallVectorImpl<Instruction *> *Exts,
4346       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4347 
4348   /// Utility function to promote the operand of \p Ext when this
4349   /// operand is promotable and is not a supported trunc or sext.
4350   /// \p PromotedInsts maps the instructions to their type before promotion.
4351   /// \p CreatedInstsCost[out] contains the cost of all the instructions
4352   /// created to promote the operand of Ext.
4353   /// Newly added extensions are inserted in \p Exts.
4354   /// Newly added truncates are inserted in \p Truncs.
4355   /// Should never be called directly.
4356   /// \return The promoted value which is used instead of Ext.
4357   static Value *promoteOperandForOther(Instruction *Ext,
4358                                        TypePromotionTransaction &TPT,
4359                                        InstrToOrigTy &PromotedInsts,
4360                                        unsigned &CreatedInstsCost,
4361                                        SmallVectorImpl<Instruction *> *Exts,
4362                                        SmallVectorImpl<Instruction *> *Truncs,
4363                                        const TargetLowering &TLI, bool IsSExt);
4364 
4365   /// \see promoteOperandForOther.
4366   static Value *signExtendOperandForOther(
4367       Instruction *Ext, TypePromotionTransaction &TPT,
4368       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4369       SmallVectorImpl<Instruction *> *Exts,
4370       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4371     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4372                                   Exts, Truncs, TLI, true);
4373   }
4374 
4375   /// \see promoteOperandForOther.
4376   static Value *zeroExtendOperandForOther(
4377       Instruction *Ext, TypePromotionTransaction &TPT,
4378       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4379       SmallVectorImpl<Instruction *> *Exts,
4380       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4381     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4382                                   Exts, Truncs, TLI, false);
4383   }
4384 
4385 public:
4386   /// Type for the utility function that promotes the operand of Ext.
4387   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4388                             InstrToOrigTy &PromotedInsts,
4389                             unsigned &CreatedInstsCost,
4390                             SmallVectorImpl<Instruction *> *Exts,
4391                             SmallVectorImpl<Instruction *> *Truncs,
4392                             const TargetLowering &TLI);
4393 
4394   /// Given a sign/zero extend instruction \p Ext, return the appropriate
4395   /// action to promote the operand of \p Ext instead of using Ext.
4396   /// \return NULL if no promotable action is possible with the current
4397   /// sign extension.
4398   /// \p InsertedInsts keeps track of all the instructions inserted by the
4399   /// other CodeGenPrepare optimizations. This information is important
4400   /// because we do not want to promote these instructions as CodeGenPrepare
4401   /// will reinsert them later. Thus creating an infinite loop: create/remove.
4402   /// \p PromotedInsts maps the instructions to their type before promotion.
4403   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4404                           const TargetLowering &TLI,
4405                           const InstrToOrigTy &PromotedInsts);
4406 };
4407 
4408 } // end anonymous namespace
4409 
4410 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4411                                         Type *ConsideredExtType,
4412                                         const InstrToOrigTy &PromotedInsts,
4413                                         bool IsSExt) {
4414   // The promotion helper does not know how to deal with vector types yet.
4415   // To be able to fix that, we would need to fix the places where we
4416   // statically extend, e.g., constants and such.
4417   if (Inst->getType()->isVectorTy())
4418     return false;
4419 
4420   // We can always get through zext.
4421   if (isa<ZExtInst>(Inst))
4422     return true;
4423 
4424   // sext(sext) is ok too.
4425   if (IsSExt && isa<SExtInst>(Inst))
4426     return true;
4427 
4428   // We can get through binary operator, if it is legal. In other words, the
4429   // binary operator must have a nuw or nsw flag.
4430   if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4431     if (isa<OverflowingBinaryOperator>(BinOp) &&
4432         ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4433          (IsSExt && BinOp->hasNoSignedWrap())))
4434       return true;
4435 
4436   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4437   if ((Inst->getOpcode() == Instruction::And ||
4438        Inst->getOpcode() == Instruction::Or))
4439     return true;
4440 
4441   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4442   if (Inst->getOpcode() == Instruction::Xor) {
4443     // Make sure it is not a NOT.
4444     if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4445       if (!Cst->getValue().isAllOnes())
4446         return true;
4447   }
4448 
4449   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4450   // It may change a poisoned value into a regular value, like
4451   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4452   //          poisoned value                    regular value
4453   // It should be OK since undef covers valid value.
4454   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4455     return true;
4456 
4457   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4458   // It may change a poisoned value into a regular value, like
4459   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4460   //          poisoned value                    regular value
4461   // It should be OK since undef covers valid value.
4462   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4463     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4464     if (ExtInst->hasOneUse()) {
4465       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4466       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4467         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4468         if (Cst &&
4469             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4470           return true;
4471       }
4472     }
4473   }
4474 
4475   // Check if we can do the following simplification.
4476   // ext(trunc(opnd)) --> ext(opnd)
4477   if (!isa<TruncInst>(Inst))
4478     return false;
4479 
4480   Value *OpndVal = Inst->getOperand(0);
4481   // Check if we can use this operand in the extension.
4482   // If the type is larger than the result type of the extension, we cannot.
4483   if (!OpndVal->getType()->isIntegerTy() ||
4484       OpndVal->getType()->getIntegerBitWidth() >
4485           ConsideredExtType->getIntegerBitWidth())
4486     return false;
4487 
4488   // If the operand of the truncate is not an instruction, we will not have
4489   // any information on the dropped bits.
4490   // (Actually we could for constant but it is not worth the extra logic).
4491   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4492   if (!Opnd)
4493     return false;
4494 
4495   // Check if the source of the type is narrow enough.
4496   // I.e., check that trunc just drops extended bits of the same kind of
4497   // the extension.
4498   // #1 get the type of the operand and check the kind of the extended bits.
4499   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4500   if (OpndType)
4501     ;
4502   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4503     OpndType = Opnd->getOperand(0)->getType();
4504   else
4505     return false;
4506 
4507   // #2 check that the truncate just drops extended bits.
4508   return Inst->getType()->getIntegerBitWidth() >=
4509          OpndType->getIntegerBitWidth();
4510 }
4511 
4512 TypePromotionHelper::Action TypePromotionHelper::getAction(
4513     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4514     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4515   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4516          "Unexpected instruction type");
4517   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4518   Type *ExtTy = Ext->getType();
4519   bool IsSExt = isa<SExtInst>(Ext);
4520   // If the operand of the extension is not an instruction, we cannot
4521   // get through.
4522   // If it, check we can get through.
4523   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4524     return nullptr;
4525 
4526   // Do not promote if the operand has been added by codegenprepare.
4527   // Otherwise, it means we are undoing an optimization that is likely to be
4528   // redone, thus causing potential infinite loop.
4529   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4530     return nullptr;
4531 
4532   // SExt or Trunc instructions.
4533   // Return the related handler.
4534   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4535       isa<ZExtInst>(ExtOpnd))
4536     return promoteOperandForTruncAndAnyExt;
4537 
4538   // Regular instruction.
4539   // Abort early if we will have to insert non-free instructions.
4540   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4541     return nullptr;
4542   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4543 }
4544 
4545 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4546     Instruction *SExt, TypePromotionTransaction &TPT,
4547     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4548     SmallVectorImpl<Instruction *> *Exts,
4549     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4550   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4551   // get through it and this method should not be called.
4552   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4553   Value *ExtVal = SExt;
4554   bool HasMergedNonFreeExt = false;
4555   if (isa<ZExtInst>(SExtOpnd)) {
4556     // Replace s|zext(zext(opnd))
4557     // => zext(opnd).
4558     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4559     Value *ZExt =
4560         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4561     TPT.replaceAllUsesWith(SExt, ZExt);
4562     TPT.eraseInstruction(SExt);
4563     ExtVal = ZExt;
4564   } else {
4565     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4566     // => z|sext(opnd).
4567     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4568   }
4569   CreatedInstsCost = 0;
4570 
4571   // Remove dead code.
4572   if (SExtOpnd->use_empty())
4573     TPT.eraseInstruction(SExtOpnd);
4574 
4575   // Check if the extension is still needed.
4576   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4577   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4578     if (ExtInst) {
4579       if (Exts)
4580         Exts->push_back(ExtInst);
4581       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4582     }
4583     return ExtVal;
4584   }
4585 
4586   // At this point we have: ext ty opnd to ty.
4587   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4588   Value *NextVal = ExtInst->getOperand(0);
4589   TPT.eraseInstruction(ExtInst, NextVal);
4590   return NextVal;
4591 }
4592 
4593 Value *TypePromotionHelper::promoteOperandForOther(
4594     Instruction *Ext, TypePromotionTransaction &TPT,
4595     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4596     SmallVectorImpl<Instruction *> *Exts,
4597     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4598     bool IsSExt) {
4599   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4600   // get through it and this method should not be called.
4601   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4602   CreatedInstsCost = 0;
4603   if (!ExtOpnd->hasOneUse()) {
4604     // ExtOpnd will be promoted.
4605     // All its uses, but Ext, will need to use a truncated value of the
4606     // promoted version.
4607     // Create the truncate now.
4608     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4609     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4610       // Insert it just after the definition.
4611       ITrunc->moveAfter(ExtOpnd);
4612       if (Truncs)
4613         Truncs->push_back(ITrunc);
4614     }
4615 
4616     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4617     // Restore the operand of Ext (which has been replaced by the previous call
4618     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4619     TPT.setOperand(Ext, 0, ExtOpnd);
4620   }
4621 
4622   // Get through the Instruction:
4623   // 1. Update its type.
4624   // 2. Replace the uses of Ext by Inst.
4625   // 3. Extend each operand that needs to be extended.
4626 
4627   // Remember the original type of the instruction before promotion.
4628   // This is useful to know that the high bits are sign extended bits.
4629   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4630   // Step #1.
4631   TPT.mutateType(ExtOpnd, Ext->getType());
4632   // Step #2.
4633   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4634   // Step #3.
4635   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4636   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4637        ++OpIdx) {
4638     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4639     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4640         !shouldExtOperand(ExtOpnd, OpIdx)) {
4641       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4642       continue;
4643     }
4644     // Check if we can statically extend the operand.
4645     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4646     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4647       LLVM_DEBUG(dbgs() << "Statically extend\n");
4648       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4649       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4650                             : Cst->getValue().zext(BitWidth);
4651       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4652       continue;
4653     }
4654     // UndefValue are typed, so we have to statically sign extend them.
4655     if (isa<UndefValue>(Opnd)) {
4656       LLVM_DEBUG(dbgs() << "Statically extend\n");
4657       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4658       continue;
4659     }
4660 
4661     // Otherwise we have to explicitly sign extend the operand.
4662     Value *ValForExtOpnd = IsSExt
4663                                ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType())
4664                                : TPT.createZExt(ExtOpnd, Opnd, Ext->getType());
4665     TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4666     Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd);
4667     if (!InstForExtOpnd)
4668       continue;
4669 
4670     if (Exts)
4671       Exts->push_back(InstForExtOpnd);
4672 
4673     CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd);
4674   }
4675   LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4676   TPT.eraseInstruction(Ext);
4677   return ExtOpnd;
4678 }
4679 
4680 /// Check whether or not promoting an instruction to a wider type is profitable.
4681 /// \p NewCost gives the cost of extension instructions created by the
4682 /// promotion.
4683 /// \p OldCost gives the cost of extension instructions before the promotion
4684 /// plus the number of instructions that have been
4685 /// matched in the addressing mode the promotion.
4686 /// \p PromotedOperand is the value that has been promoted.
4687 /// \return True if the promotion is profitable, false otherwise.
4688 bool AddressingModeMatcher::isPromotionProfitable(
4689     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4690   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4691                     << '\n');
4692   // The cost of the new extensions is greater than the cost of the
4693   // old extension plus what we folded.
4694   // This is not profitable.
4695   if (NewCost > OldCost)
4696     return false;
4697   if (NewCost < OldCost)
4698     return true;
4699   // The promotion is neutral but it may help folding the sign extension in
4700   // loads for instance.
4701   // Check that we did not create an illegal instruction.
4702   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4703 }
4704 
4705 /// Given an instruction or constant expr, see if we can fold the operation
4706 /// into the addressing mode. If so, update the addressing mode and return
4707 /// true, otherwise return false without modifying AddrMode.
4708 /// If \p MovedAway is not NULL, it contains the information of whether or
4709 /// not AddrInst has to be folded into the addressing mode on success.
4710 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4711 /// because it has been moved away.
4712 /// Thus AddrInst must not be added in the matched instructions.
4713 /// This state can happen when AddrInst is a sext, since it may be moved away.
4714 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4715 /// not be referenced anymore.
4716 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4717                                                unsigned Depth,
4718                                                bool *MovedAway) {
4719   // Avoid exponential behavior on extremely deep expression trees.
4720   if (Depth >= 5)
4721     return false;
4722 
4723   // By default, all matched instructions stay in place.
4724   if (MovedAway)
4725     *MovedAway = false;
4726 
4727   switch (Opcode) {
4728   case Instruction::PtrToInt:
4729     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4730     return matchAddr(AddrInst->getOperand(0), Depth);
4731   case Instruction::IntToPtr: {
4732     auto AS = AddrInst->getType()->getPointerAddressSpace();
4733     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4734     // This inttoptr is a no-op if the integer type is pointer sized.
4735     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4736       return matchAddr(AddrInst->getOperand(0), Depth);
4737     return false;
4738   }
4739   case Instruction::BitCast:
4740     // BitCast is always a noop, and we can handle it as long as it is
4741     // int->int or pointer->pointer (we don't want int<->fp or something).
4742     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4743         // Don't touch identity bitcasts.  These were probably put here by LSR,
4744         // and we don't want to mess around with them.  Assume it knows what it
4745         // is doing.
4746         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4747       return matchAddr(AddrInst->getOperand(0), Depth);
4748     return false;
4749   case Instruction::AddrSpaceCast: {
4750     unsigned SrcAS =
4751         AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4752     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4753     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4754       return matchAddr(AddrInst->getOperand(0), Depth);
4755     return false;
4756   }
4757   case Instruction::Add: {
4758     // Check to see if we can merge in one operand, then the other.  If so, we
4759     // win.
4760     ExtAddrMode BackupAddrMode = AddrMode;
4761     unsigned OldSize = AddrModeInsts.size();
4762     // Start a transaction at this point.
4763     // The LHS may match but not the RHS.
4764     // Therefore, we need a higher level restoration point to undo partially
4765     // matched operation.
4766     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4767         TPT.getRestorationPoint();
4768 
4769     // Try to match an integer constant second to increase its chance of ending
4770     // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4771     int First = 0, Second = 1;
4772     if (isa<ConstantInt>(AddrInst->getOperand(First))
4773       && !isa<ConstantInt>(AddrInst->getOperand(Second)))
4774         std::swap(First, Second);
4775     AddrMode.InBounds = false;
4776     if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
4777         matchAddr(AddrInst->getOperand(Second), Depth + 1))
4778       return true;
4779 
4780     // Restore the old addr mode info.
4781     AddrMode = BackupAddrMode;
4782     AddrModeInsts.resize(OldSize);
4783     TPT.rollback(LastKnownGood);
4784 
4785     // Otherwise this was over-aggressive.  Try merging operands in the opposite
4786     // order.
4787     if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
4788         matchAddr(AddrInst->getOperand(First), Depth + 1))
4789       return true;
4790 
4791     // Otherwise we definitely can't merge the ADD in.
4792     AddrMode = BackupAddrMode;
4793     AddrModeInsts.resize(OldSize);
4794     TPT.rollback(LastKnownGood);
4795     break;
4796   }
4797   // case Instruction::Or:
4798   //  TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4799   // break;
4800   case Instruction::Mul:
4801   case Instruction::Shl: {
4802     // Can only handle X*C and X << C.
4803     AddrMode.InBounds = false;
4804     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4805     if (!RHS || RHS->getBitWidth() > 64)
4806       return false;
4807     int64_t Scale = Opcode == Instruction::Shl
4808                         ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
4809                         : RHS->getSExtValue();
4810 
4811     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4812   }
4813   case Instruction::GetElementPtr: {
4814     // Scan the GEP.  We check it if it contains constant offsets and at most
4815     // one variable offset.
4816     int VariableOperand = -1;
4817     unsigned VariableScale = 0;
4818 
4819     int64_t ConstantOffset = 0;
4820     gep_type_iterator GTI = gep_type_begin(AddrInst);
4821     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4822       if (StructType *STy = GTI.getStructTypeOrNull()) {
4823         const StructLayout *SL = DL.getStructLayout(STy);
4824         unsigned Idx =
4825             cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4826         ConstantOffset += SL->getElementOffset(Idx);
4827       } else {
4828         TypeSize TS = GTI.getSequentialElementStride(DL);
4829         if (TS.isNonZero()) {
4830           // The optimisations below currently only work for fixed offsets.
4831           if (TS.isScalable())
4832             return false;
4833           int64_t TypeSize = TS.getFixedValue();
4834           if (ConstantInt *CI =
4835                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4836             const APInt &CVal = CI->getValue();
4837             if (CVal.getSignificantBits() <= 64) {
4838               ConstantOffset += CVal.getSExtValue() * TypeSize;
4839               continue;
4840             }
4841           }
4842           // We only allow one variable index at the moment.
4843           if (VariableOperand != -1)
4844             return false;
4845 
4846           // Remember the variable index.
4847           VariableOperand = i;
4848           VariableScale = TypeSize;
4849         }
4850       }
4851     }
4852 
4853     // A common case is for the GEP to only do a constant offset.  In this case,
4854     // just add it to the disp field and check validity.
4855     if (VariableOperand == -1) {
4856       AddrMode.BaseOffs += ConstantOffset;
4857       if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4858           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4859             AddrMode.InBounds = false;
4860           return true;
4861       }
4862       AddrMode.BaseOffs -= ConstantOffset;
4863 
4864       if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4865           TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4866           ConstantOffset > 0) {
4867           // Record GEPs with non-zero offsets as candidates for splitting in
4868           // the event that the offset cannot fit into the r+i addressing mode.
4869           // Simple and common case that only one GEP is used in calculating the
4870           // address for the memory access.
4871           Value *Base = AddrInst->getOperand(0);
4872           auto *BaseI = dyn_cast<Instruction>(Base);
4873           auto *GEP = cast<GetElementPtrInst>(AddrInst);
4874           if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4875               (BaseI && !isa<CastInst>(BaseI) &&
4876                !isa<GetElementPtrInst>(BaseI))) {
4877             // Make sure the parent block allows inserting non-PHI instructions
4878             // before the terminator.
4879             BasicBlock *Parent = BaseI ? BaseI->getParent()
4880                                        : &GEP->getFunction()->getEntryBlock();
4881             if (!Parent->getTerminator()->isEHPad())
4882             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4883           }
4884       }
4885 
4886       return false;
4887     }
4888 
4889     // Save the valid addressing mode in case we can't match.
4890     ExtAddrMode BackupAddrMode = AddrMode;
4891     unsigned OldSize = AddrModeInsts.size();
4892 
4893     // See if the scale and offset amount is valid for this target.
4894     AddrMode.BaseOffs += ConstantOffset;
4895     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4896       AddrMode.InBounds = false;
4897 
4898     // Match the base operand of the GEP.
4899     if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4900       // If it couldn't be matched, just stuff the value in a register.
4901       if (AddrMode.HasBaseReg) {
4902         AddrMode = BackupAddrMode;
4903         AddrModeInsts.resize(OldSize);
4904         return false;
4905       }
4906       AddrMode.HasBaseReg = true;
4907       AddrMode.BaseReg = AddrInst->getOperand(0);
4908     }
4909 
4910     // Match the remaining variable portion of the GEP.
4911     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4912                           Depth)) {
4913       // If it couldn't be matched, try stuffing the base into a register
4914       // instead of matching it, and retrying the match of the scale.
4915       AddrMode = BackupAddrMode;
4916       AddrModeInsts.resize(OldSize);
4917       if (AddrMode.HasBaseReg)
4918         return false;
4919       AddrMode.HasBaseReg = true;
4920       AddrMode.BaseReg = AddrInst->getOperand(0);
4921       AddrMode.BaseOffs += ConstantOffset;
4922       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4923                             VariableScale, Depth)) {
4924         // If even that didn't work, bail.
4925         AddrMode = BackupAddrMode;
4926         AddrModeInsts.resize(OldSize);
4927         return false;
4928       }
4929     }
4930 
4931     return true;
4932   }
4933   case Instruction::SExt:
4934   case Instruction::ZExt: {
4935     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4936     if (!Ext)
4937       return false;
4938 
4939     // Try to move this ext out of the way of the addressing mode.
4940     // Ask for a method for doing so.
4941     TypePromotionHelper::Action TPH =
4942         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4943     if (!TPH)
4944       return false;
4945 
4946     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4947         TPT.getRestorationPoint();
4948     unsigned CreatedInstsCost = 0;
4949     unsigned ExtCost = !TLI.isExtFree(Ext);
4950     Value *PromotedOperand =
4951         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4952     // SExt has been moved away.
4953     // Thus either it will be rematched later in the recursive calls or it is
4954     // gone. Anyway, we must not fold it into the addressing mode at this point.
4955     // E.g.,
4956     // op = add opnd, 1
4957     // idx = ext op
4958     // addr = gep base, idx
4959     // is now:
4960     // promotedOpnd = ext opnd            <- no match here
4961     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4962     // addr = gep base, op                <- match
4963     if (MovedAway)
4964       *MovedAway = true;
4965 
4966     assert(PromotedOperand &&
4967            "TypePromotionHelper should have filtered out those cases");
4968 
4969     ExtAddrMode BackupAddrMode = AddrMode;
4970     unsigned OldSize = AddrModeInsts.size();
4971 
4972     if (!matchAddr(PromotedOperand, Depth) ||
4973         // The total of the new cost is equal to the cost of the created
4974         // instructions.
4975         // The total of the old cost is equal to the cost of the extension plus
4976         // what we have saved in the addressing mode.
4977         !isPromotionProfitable(CreatedInstsCost,
4978                                ExtCost + (AddrModeInsts.size() - OldSize),
4979                                PromotedOperand)) {
4980       AddrMode = BackupAddrMode;
4981       AddrModeInsts.resize(OldSize);
4982       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4983       TPT.rollback(LastKnownGood);
4984       return false;
4985     }
4986     return true;
4987   }
4988   }
4989   return false;
4990 }
4991 
4992 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4993 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4994 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4995 /// for the target.
4996 ///
4997 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4998   // Start a transaction at this point that we will rollback if the matching
4999   // fails.
5000   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5001       TPT.getRestorationPoint();
5002   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
5003     if (CI->getValue().isSignedIntN(64)) {
5004       // Fold in immediates if legal for the target.
5005       AddrMode.BaseOffs += CI->getSExtValue();
5006       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5007         return true;
5008       AddrMode.BaseOffs -= CI->getSExtValue();
5009     }
5010   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
5011     // If this is a global variable, try to fold it into the addressing mode.
5012     if (!AddrMode.BaseGV) {
5013       AddrMode.BaseGV = GV;
5014       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5015         return true;
5016       AddrMode.BaseGV = nullptr;
5017     }
5018   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
5019     ExtAddrMode BackupAddrMode = AddrMode;
5020     unsigned OldSize = AddrModeInsts.size();
5021 
5022     // Check to see if it is possible to fold this operation.
5023     bool MovedAway = false;
5024     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
5025       // This instruction may have been moved away. If so, there is nothing
5026       // to check here.
5027       if (MovedAway)
5028         return true;
5029       // Okay, it's possible to fold this.  Check to see if it is actually
5030       // *profitable* to do so.  We use a simple cost model to avoid increasing
5031       // register pressure too much.
5032       if (I->hasOneUse() ||
5033           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
5034         AddrModeInsts.push_back(I);
5035         return true;
5036       }
5037 
5038       // It isn't profitable to do this, roll back.
5039       AddrMode = BackupAddrMode;
5040       AddrModeInsts.resize(OldSize);
5041       TPT.rollback(LastKnownGood);
5042     }
5043   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
5044     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
5045       return true;
5046     TPT.rollback(LastKnownGood);
5047   } else if (isa<ConstantPointerNull>(Addr)) {
5048     // Null pointer gets folded without affecting the addressing mode.
5049     return true;
5050   }
5051 
5052   // Worse case, the target should support [reg] addressing modes. :)
5053   if (!AddrMode.HasBaseReg) {
5054     AddrMode.HasBaseReg = true;
5055     AddrMode.BaseReg = Addr;
5056     // Still check for legality in case the target supports [imm] but not [i+r].
5057     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5058       return true;
5059     AddrMode.HasBaseReg = false;
5060     AddrMode.BaseReg = nullptr;
5061   }
5062 
5063   // If the base register is already taken, see if we can do [r+r].
5064   if (AddrMode.Scale == 0) {
5065     AddrMode.Scale = 1;
5066     AddrMode.ScaledReg = Addr;
5067     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5068       return true;
5069     AddrMode.Scale = 0;
5070     AddrMode.ScaledReg = nullptr;
5071   }
5072   // Couldn't match.
5073   TPT.rollback(LastKnownGood);
5074   return false;
5075 }
5076 
5077 /// Check to see if all uses of OpVal by the specified inline asm call are due
5078 /// to memory operands. If so, return true, otherwise return false.
5079 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
5080                                     const TargetLowering &TLI,
5081                                     const TargetRegisterInfo &TRI) {
5082   const Function *F = CI->getFunction();
5083   TargetLowering::AsmOperandInfoVector TargetConstraints =
5084       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
5085 
5086   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5087     // Compute the constraint code and ConstraintType to use.
5088     TLI.ComputeConstraintToUse(OpInfo, SDValue());
5089 
5090     // If this asm operand is our Value*, and if it isn't an indirect memory
5091     // operand, we can't fold it!  TODO: Also handle C_Address?
5092     if (OpInfo.CallOperandVal == OpVal &&
5093         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
5094          !OpInfo.isIndirect))
5095       return false;
5096   }
5097 
5098   return true;
5099 }
5100 
5101 /// Recursively walk all the uses of I until we find a memory use.
5102 /// If we find an obviously non-foldable instruction, return true.
5103 /// Add accessed addresses and types to MemoryUses.
5104 static bool FindAllMemoryUses(
5105     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5106     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5107     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5108     BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5109   // If we already considered this instruction, we're done.
5110   if (!ConsideredInsts.insert(I).second)
5111     return false;
5112 
5113   // If this is an obviously unfoldable instruction, bail out.
5114   if (!MightBeFoldableInst(I))
5115     return true;
5116 
5117   // Loop over all the uses, recursively processing them.
5118   for (Use &U : I->uses()) {
5119     // Conservatively return true if we're seeing a large number or a deep chain
5120     // of users. This avoids excessive compilation times in pathological cases.
5121     if (SeenInsts++ >= MaxAddressUsersToScan)
5122       return true;
5123 
5124     Instruction *UserI = cast<Instruction>(U.getUser());
5125     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5126       MemoryUses.push_back({&U, LI->getType()});
5127       continue;
5128     }
5129 
5130     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5131       if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5132         return true; // Storing addr, not into addr.
5133       MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5134       continue;
5135     }
5136 
5137     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5138       if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5139         return true; // Storing addr, not into addr.
5140       MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5141       continue;
5142     }
5143 
5144     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
5145       if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5146         return true; // Storing addr, not into addr.
5147       MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5148       continue;
5149     }
5150 
5151     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5152       if (CI->hasFnAttr(Attribute::Cold)) {
5153         // If this is a cold call, we can sink the addressing calculation into
5154         // the cold path.  See optimizeCallInst
5155         bool OptForSize =
5156             OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
5157         if (!OptForSize)
5158           continue;
5159       }
5160 
5161       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5162       if (!IA)
5163         return true;
5164 
5165       // If this is a memory operand, we're cool, otherwise bail out.
5166       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5167         return true;
5168       continue;
5169     }
5170 
5171     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5172                           PSI, BFI, SeenInsts))
5173       return true;
5174   }
5175 
5176   return false;
5177 }
5178 
5179 static bool FindAllMemoryUses(
5180     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5181     const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5182     ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
5183   unsigned SeenInsts = 0;
5184   SmallPtrSet<Instruction *, 16> ConsideredInsts;
5185   return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5186                            PSI, BFI, SeenInsts);
5187 }
5188 
5189 
5190 /// Return true if Val is already known to be live at the use site that we're
5191 /// folding it into. If so, there is no cost to include it in the addressing
5192 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5193 /// instruction already.
5194 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5195                                                    Value *KnownLive1,
5196                                                    Value *KnownLive2) {
5197   // If Val is either of the known-live values, we know it is live!
5198   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5199     return true;
5200 
5201   // All values other than instructions and arguments (e.g. constants) are live.
5202   if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5203     return true;
5204 
5205   // If Val is a constant sized alloca in the entry block, it is live, this is
5206   // true because it is just a reference to the stack/frame pointer, which is
5207   // live for the whole function.
5208   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5209     if (AI->isStaticAlloca())
5210       return true;
5211 
5212   // Check to see if this value is already used in the memory instruction's
5213   // block.  If so, it's already live into the block at the very least, so we
5214   // can reasonably fold it.
5215   return Val->isUsedInBasicBlock(MemoryInst->getParent());
5216 }
5217 
5218 /// It is possible for the addressing mode of the machine to fold the specified
5219 /// instruction into a load or store that ultimately uses it.
5220 /// However, the specified instruction has multiple uses.
5221 /// Given this, it may actually increase register pressure to fold it
5222 /// into the load. For example, consider this code:
5223 ///
5224 ///     X = ...
5225 ///     Y = X+1
5226 ///     use(Y)   -> nonload/store
5227 ///     Z = Y+1
5228 ///     load Z
5229 ///
5230 /// In this case, Y has multiple uses, and can be folded into the load of Z
5231 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
5232 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
5233 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
5234 /// number of computations either.
5235 ///
5236 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
5237 /// X was live across 'load Z' for other reasons, we actually *would* want to
5238 /// fold the addressing mode in the Z case.  This would make Y die earlier.
5239 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5240     Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5241   if (IgnoreProfitability)
5242     return true;
5243 
5244   // AMBefore is the addressing mode before this instruction was folded into it,
5245   // and AMAfter is the addressing mode after the instruction was folded.  Get
5246   // the set of registers referenced by AMAfter and subtract out those
5247   // referenced by AMBefore: this is the set of values which folding in this
5248   // address extends the lifetime of.
5249   //
5250   // Note that there are only two potential values being referenced here,
5251   // BaseReg and ScaleReg (global addresses are always available, as are any
5252   // folded immediates).
5253   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5254 
5255   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5256   // lifetime wasn't extended by adding this instruction.
5257   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5258     BaseReg = nullptr;
5259   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5260     ScaledReg = nullptr;
5261 
5262   // If folding this instruction (and it's subexprs) didn't extend any live
5263   // ranges, we're ok with it.
5264   if (!BaseReg && !ScaledReg)
5265     return true;
5266 
5267   // If all uses of this instruction can have the address mode sunk into them,
5268   // we can remove the addressing mode and effectively trade one live register
5269   // for another (at worst.)  In this context, folding an addressing mode into
5270   // the use is just a particularly nice way of sinking it.
5271   SmallVector<std::pair<Use *, Type *>, 16> MemoryUses;
5272   if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5273     return false; // Has a non-memory, non-foldable use!
5274 
5275   // Now that we know that all uses of this instruction are part of a chain of
5276   // computation involving only operations that could theoretically be folded
5277   // into a memory use, loop over each of these memory operation uses and see
5278   // if they could  *actually* fold the instruction.  The assumption is that
5279   // addressing modes are cheap and that duplicating the computation involved
5280   // many times is worthwhile, even on a fastpath. For sinking candidates
5281   // (i.e. cold call sites), this serves as a way to prevent excessive code
5282   // growth since most architectures have some reasonable small and fast way to
5283   // compute an effective address.  (i.e LEA on x86)
5284   SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5285   for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5286     Value *Address = Pair.first->get();
5287     Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5288     Type *AddressAccessTy = Pair.second;
5289     unsigned AS = Address->getType()->getPointerAddressSpace();
5290 
5291     // Do a match against the root of this address, ignoring profitability. This
5292     // will tell us if the addressing mode for the memory operation will
5293     // *actually* cover the shared instruction.
5294     ExtAddrMode Result;
5295     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5296                                                                       0);
5297     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5298         TPT.getRestorationPoint();
5299     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5300                                   AddressAccessTy, AS, UserI, Result,
5301                                   InsertedInsts, PromotedInsts, TPT,
5302                                   LargeOffsetGEP, OptSize, PSI, BFI);
5303     Matcher.IgnoreProfitability = true;
5304     bool Success = Matcher.matchAddr(Address, 0);
5305     (void)Success;
5306     assert(Success && "Couldn't select *anything*?");
5307 
5308     // The match was to check the profitability, the changes made are not
5309     // part of the original matcher. Therefore, they should be dropped
5310     // otherwise the original matcher will not present the right state.
5311     TPT.rollback(LastKnownGood);
5312 
5313     // If the match didn't cover I, then it won't be shared by it.
5314     if (!is_contained(MatchedAddrModeInsts, I))
5315       return false;
5316 
5317     MatchedAddrModeInsts.clear();
5318   }
5319 
5320   return true;
5321 }
5322 
5323 /// Return true if the specified values are defined in a
5324 /// different basic block than BB.
5325 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5326   if (Instruction *I = dyn_cast<Instruction>(V))
5327     return I->getParent() != BB;
5328   return false;
5329 }
5330 
5331 /// Sink addressing mode computation immediate before MemoryInst if doing so
5332 /// can be done without increasing register pressure.  The need for the
5333 /// register pressure constraint means this can end up being an all or nothing
5334 /// decision for all uses of the same addressing computation.
5335 ///
5336 /// Load and Store Instructions often have addressing modes that can do
5337 /// significant amounts of computation. As such, instruction selection will try
5338 /// to get the load or store to do as much computation as possible for the
5339 /// program. The problem is that isel can only see within a single block. As
5340 /// such, we sink as much legal addressing mode work into the block as possible.
5341 ///
5342 /// This method is used to optimize both load/store and inline asms with memory
5343 /// operands.  It's also used to sink addressing computations feeding into cold
5344 /// call sites into their (cold) basic block.
5345 ///
5346 /// The motivation for handling sinking into cold blocks is that doing so can
5347 /// both enable other address mode sinking (by satisfying the register pressure
5348 /// constraint above), and reduce register pressure globally (by removing the
5349 /// addressing mode computation from the fast path entirely.).
5350 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5351                                         Type *AccessTy, unsigned AddrSpace) {
5352   Value *Repl = Addr;
5353 
5354   // Try to collapse single-value PHI nodes.  This is necessary to undo
5355   // unprofitable PRE transformations.
5356   SmallVector<Value *, 8> worklist;
5357   SmallPtrSet<Value *, 16> Visited;
5358   worklist.push_back(Addr);
5359 
5360   // Use a worklist to iteratively look through PHI and select nodes, and
5361   // ensure that the addressing mode obtained from the non-PHI/select roots of
5362   // the graph are compatible.
5363   bool PhiOrSelectSeen = false;
5364   SmallVector<Instruction *, 16> AddrModeInsts;
5365   const SimplifyQuery SQ(*DL, TLInfo);
5366   AddressingModeCombiner AddrModes(SQ, Addr);
5367   TypePromotionTransaction TPT(RemovedInsts);
5368   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5369       TPT.getRestorationPoint();
5370   while (!worklist.empty()) {
5371     Value *V = worklist.pop_back_val();
5372 
5373     // We allow traversing cyclic Phi nodes.
5374     // In case of success after this loop we ensure that traversing through
5375     // Phi nodes ends up with all cases to compute address of the form
5376     //    BaseGV + Base + Scale * Index + Offset
5377     // where Scale and Offset are constans and BaseGV, Base and Index
5378     // are exactly the same Values in all cases.
5379     // It means that BaseGV, Scale and Offset dominate our memory instruction
5380     // and have the same value as they had in address computation represented
5381     // as Phi. So we can safely sink address computation to memory instruction.
5382     if (!Visited.insert(V).second)
5383       continue;
5384 
5385     // For a PHI node, push all of its incoming values.
5386     if (PHINode *P = dyn_cast<PHINode>(V)) {
5387       append_range(worklist, P->incoming_values());
5388       PhiOrSelectSeen = true;
5389       continue;
5390     }
5391     // Similar for select.
5392     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5393       worklist.push_back(SI->getFalseValue());
5394       worklist.push_back(SI->getTrueValue());
5395       PhiOrSelectSeen = true;
5396       continue;
5397     }
5398 
5399     // For non-PHIs, determine the addressing mode being computed.  Note that
5400     // the result may differ depending on what other uses our candidate
5401     // addressing instructions might have.
5402     AddrModeInsts.clear();
5403     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5404                                                                       0);
5405     // Defer the query (and possible computation of) the dom tree to point of
5406     // actual use.  It's expected that most address matches don't actually need
5407     // the domtree.
5408     auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5409       Function *F = MemoryInst->getParent()->getParent();
5410       return this->getDT(*F);
5411     };
5412     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5413         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5414         *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5415         BFI.get());
5416 
5417     GetElementPtrInst *GEP = LargeOffsetGEP.first;
5418     if (GEP && !NewGEPBases.count(GEP)) {
5419       // If splitting the underlying data structure can reduce the offset of a
5420       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5421       // previously split data structures.
5422       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5423       LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5424     }
5425 
5426     NewAddrMode.OriginalValue = V;
5427     if (!AddrModes.addNewAddrMode(NewAddrMode))
5428       break;
5429   }
5430 
5431   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5432   // or we have multiple but either couldn't combine them or combining them
5433   // wouldn't do anything useful, bail out now.
5434   if (!AddrModes.combineAddrModes()) {
5435     TPT.rollback(LastKnownGood);
5436     return false;
5437   }
5438   bool Modified = TPT.commit();
5439 
5440   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5441   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5442 
5443   // If all the instructions matched are already in this BB, don't do anything.
5444   // If we saw a Phi node then it is not local definitely, and if we saw a
5445   // select then we want to push the address calculation past it even if it's
5446   // already in this BB.
5447   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5448         return IsNonLocalValue(V, MemoryInst->getParent());
5449       })) {
5450     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5451                       << "\n");
5452     return Modified;
5453   }
5454 
5455   // Insert this computation right after this user.  Since our caller is
5456   // scanning from the top of the BB to the bottom, reuse of the expr are
5457   // guaranteed to happen later.
5458   IRBuilder<> Builder(MemoryInst);
5459 
5460   // Now that we determined the addressing expression we want to use and know
5461   // that we have to sink it into this block.  Check to see if we have already
5462   // done this for some other load/store instr in this block.  If so, reuse
5463   // the computation.  Before attempting reuse, check if the address is valid
5464   // as it may have been erased.
5465 
5466   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5467 
5468   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5469   Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5470   if (SunkAddr) {
5471     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5472                       << " for " << *MemoryInst << "\n");
5473     if (SunkAddr->getType() != Addr->getType()) {
5474       if (SunkAddr->getType()->getPointerAddressSpace() !=
5475               Addr->getType()->getPointerAddressSpace() &&
5476           !DL->isNonIntegralPointerType(Addr->getType())) {
5477         // There are two reasons the address spaces might not match: a no-op
5478         // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5479         // ptrtoint/inttoptr pair to ensure we match the original semantics.
5480         // TODO: allow bitcast between different address space pointers with the
5481         // same size.
5482         SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5483         SunkAddr =
5484             Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5485       } else
5486         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5487     }
5488   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5489                                    SubtargetInfo->addrSinkUsingGEPs())) {
5490     // By default, we use the GEP-based method when AA is used later. This
5491     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5492     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5493                       << " for " << *MemoryInst << "\n");
5494     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5495 
5496     // First, find the pointer.
5497     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5498       ResultPtr = AddrMode.BaseReg;
5499       AddrMode.BaseReg = nullptr;
5500     }
5501 
5502     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5503       // We can't add more than one pointer together, nor can we scale a
5504       // pointer (both of which seem meaningless).
5505       if (ResultPtr || AddrMode.Scale != 1)
5506         return Modified;
5507 
5508       ResultPtr = AddrMode.ScaledReg;
5509       AddrMode.Scale = 0;
5510     }
5511 
5512     // It is only safe to sign extend the BaseReg if we know that the math
5513     // required to create it did not overflow before we extend it. Since
5514     // the original IR value was tossed in favor of a constant back when
5515     // the AddrMode was created we need to bail out gracefully if widths
5516     // do not match instead of extending it.
5517     //
5518     // (See below for code to add the scale.)
5519     if (AddrMode.Scale) {
5520       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5521       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5522           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5523         return Modified;
5524     }
5525 
5526     if (AddrMode.BaseGV) {
5527       if (ResultPtr)
5528         return Modified;
5529 
5530       ResultPtr = AddrMode.BaseGV;
5531     }
5532 
5533     // If the real base value actually came from an inttoptr, then the matcher
5534     // will look through it and provide only the integer value. In that case,
5535     // use it here.
5536     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5537       if (!ResultPtr && AddrMode.BaseReg) {
5538         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5539                                            "sunkaddr");
5540         AddrMode.BaseReg = nullptr;
5541       } else if (!ResultPtr && AddrMode.Scale == 1) {
5542         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5543                                            "sunkaddr");
5544         AddrMode.Scale = 0;
5545       }
5546     }
5547 
5548     if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
5549         !AddrMode.BaseOffs) {
5550       SunkAddr = Constant::getNullValue(Addr->getType());
5551     } else if (!ResultPtr) {
5552       return Modified;
5553     } else {
5554       Type *I8PtrTy =
5555           Builder.getPtrTy(Addr->getType()->getPointerAddressSpace());
5556 
5557       // Start with the base register. Do this first so that subsequent address
5558       // matching finds it last, which will prevent it from trying to match it
5559       // as the scaled value in case it happens to be a mul. That would be
5560       // problematic if we've sunk a different mul for the scale, because then
5561       // we'd end up sinking both muls.
5562       if (AddrMode.BaseReg) {
5563         Value *V = AddrMode.BaseReg;
5564         if (V->getType() != IntPtrTy)
5565           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5566 
5567         ResultIndex = V;
5568       }
5569 
5570       // Add the scale value.
5571       if (AddrMode.Scale) {
5572         Value *V = AddrMode.ScaledReg;
5573         if (V->getType() == IntPtrTy) {
5574           // done.
5575         } else {
5576           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5577                      cast<IntegerType>(V->getType())->getBitWidth() &&
5578                  "We can't transform if ScaledReg is too narrow");
5579           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5580         }
5581 
5582         if (AddrMode.Scale != 1)
5583           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5584                                 "sunkaddr");
5585         if (ResultIndex)
5586           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5587         else
5588           ResultIndex = V;
5589       }
5590 
5591       // Add in the Base Offset if present.
5592       if (AddrMode.BaseOffs) {
5593         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5594         if (ResultIndex) {
5595           // We need to add this separately from the scale above to help with
5596           // SDAG consecutive load/store merging.
5597           if (ResultPtr->getType() != I8PtrTy)
5598             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5599           ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5600                                            AddrMode.InBounds);
5601         }
5602 
5603         ResultIndex = V;
5604       }
5605 
5606       if (!ResultIndex) {
5607         SunkAddr = ResultPtr;
5608       } else {
5609         if (ResultPtr->getType() != I8PtrTy)
5610           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5611         SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5612                                         AddrMode.InBounds);
5613       }
5614 
5615       if (SunkAddr->getType() != Addr->getType()) {
5616         if (SunkAddr->getType()->getPointerAddressSpace() !=
5617                 Addr->getType()->getPointerAddressSpace() &&
5618             !DL->isNonIntegralPointerType(Addr->getType())) {
5619           // There are two reasons the address spaces might not match: a no-op
5620           // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5621           // ptrtoint/inttoptr pair to ensure we match the original semantics.
5622           // TODO: allow bitcast between different address space pointers with
5623           // the same size.
5624           SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5625           SunkAddr =
5626               Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5627         } else
5628           SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5629       }
5630     }
5631   } else {
5632     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5633     // non-integral pointers, so in that case bail out now.
5634     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5635     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5636     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5637     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5638     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5639         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5640         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5641         (AddrMode.BaseGV &&
5642          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5643       return Modified;
5644 
5645     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5646                       << " for " << *MemoryInst << "\n");
5647     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5648     Value *Result = nullptr;
5649 
5650     // Start with the base register. Do this first so that subsequent address
5651     // matching finds it last, which will prevent it from trying to match it
5652     // as the scaled value in case it happens to be a mul. That would be
5653     // problematic if we've sunk a different mul for the scale, because then
5654     // we'd end up sinking both muls.
5655     if (AddrMode.BaseReg) {
5656       Value *V = AddrMode.BaseReg;
5657       if (V->getType()->isPointerTy())
5658         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5659       if (V->getType() != IntPtrTy)
5660         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5661       Result = V;
5662     }
5663 
5664     // Add the scale value.
5665     if (AddrMode.Scale) {
5666       Value *V = AddrMode.ScaledReg;
5667       if (V->getType() == IntPtrTy) {
5668         // done.
5669       } else if (V->getType()->isPointerTy()) {
5670         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5671       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5672                  cast<IntegerType>(V->getType())->getBitWidth()) {
5673         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5674       } else {
5675         // It is only safe to sign extend the BaseReg if we know that the math
5676         // required to create it did not overflow before we extend it. Since
5677         // the original IR value was tossed in favor of a constant back when
5678         // the AddrMode was created we need to bail out gracefully if widths
5679         // do not match instead of extending it.
5680         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5681         if (I && (Result != AddrMode.BaseReg))
5682           I->eraseFromParent();
5683         return Modified;
5684       }
5685       if (AddrMode.Scale != 1)
5686         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5687                               "sunkaddr");
5688       if (Result)
5689         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5690       else
5691         Result = V;
5692     }
5693 
5694     // Add in the BaseGV if present.
5695     if (AddrMode.BaseGV) {
5696       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5697       if (Result)
5698         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5699       else
5700         Result = V;
5701     }
5702 
5703     // Add in the Base Offset if present.
5704     if (AddrMode.BaseOffs) {
5705       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5706       if (Result)
5707         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5708       else
5709         Result = V;
5710     }
5711 
5712     if (!Result)
5713       SunkAddr = Constant::getNullValue(Addr->getType());
5714     else
5715       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5716   }
5717 
5718   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5719   // Store the newly computed address into the cache. In the case we reused a
5720   // value, this should be idempotent.
5721   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5722 
5723   // If we have no uses, recursively delete the value and all dead instructions
5724   // using it.
5725   if (Repl->use_empty()) {
5726     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5727       RecursivelyDeleteTriviallyDeadInstructions(
5728           Repl, TLInfo, nullptr,
5729           [&](Value *V) { removeAllAssertingVHReferences(V); });
5730     });
5731   }
5732   ++NumMemoryInsts;
5733   return true;
5734 }
5735 
5736 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5737 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5738 /// only handle a 2 operand GEP in the same basic block or a splat constant
5739 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5740 /// index.
5741 ///
5742 /// If the existing GEP has a vector base pointer that is splat, we can look
5743 /// through the splat to find the scalar pointer. If we can't find a scalar
5744 /// pointer there's nothing we can do.
5745 ///
5746 /// If we have a GEP with more than 2 indices where the middle indices are all
5747 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5748 ///
5749 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5750 /// followed by a GEP with an all zeroes vector index. This will enable
5751 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5752 /// zero index.
5753 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5754                                                Value *Ptr) {
5755   Value *NewAddr;
5756 
5757   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5758     // Don't optimize GEPs that don't have indices.
5759     if (!GEP->hasIndices())
5760       return false;
5761 
5762     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5763     // FIXME: We should support this by sinking the GEP.
5764     if (MemoryInst->getParent() != GEP->getParent())
5765       return false;
5766 
5767     SmallVector<Value *, 2> Ops(GEP->operands());
5768 
5769     bool RewriteGEP = false;
5770 
5771     if (Ops[0]->getType()->isVectorTy()) {
5772       Ops[0] = getSplatValue(Ops[0]);
5773       if (!Ops[0])
5774         return false;
5775       RewriteGEP = true;
5776     }
5777 
5778     unsigned FinalIndex = Ops.size() - 1;
5779 
5780     // Ensure all but the last index is 0.
5781     // FIXME: This isn't strictly required. All that's required is that they are
5782     // all scalars or splats.
5783     for (unsigned i = 1; i < FinalIndex; ++i) {
5784       auto *C = dyn_cast<Constant>(Ops[i]);
5785       if (!C)
5786         return false;
5787       if (isa<VectorType>(C->getType()))
5788         C = C->getSplatValue();
5789       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5790       if (!CI || !CI->isZero())
5791         return false;
5792       // Scalarize the index if needed.
5793       Ops[i] = CI;
5794     }
5795 
5796     // Try to scalarize the final index.
5797     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5798       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5799         auto *C = dyn_cast<ConstantInt>(V);
5800         // Don't scalarize all zeros vector.
5801         if (!C || !C->isZero()) {
5802           Ops[FinalIndex] = V;
5803           RewriteGEP = true;
5804         }
5805       }
5806     }
5807 
5808     // If we made any changes or the we have extra operands, we need to generate
5809     // new instructions.
5810     if (!RewriteGEP && Ops.size() == 2)
5811       return false;
5812 
5813     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5814 
5815     IRBuilder<> Builder(MemoryInst);
5816 
5817     Type *SourceTy = GEP->getSourceElementType();
5818     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5819 
5820     // If the final index isn't a vector, emit a scalar GEP containing all ops
5821     // and a vector GEP with all zeroes final index.
5822     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5823       NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
5824       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5825       auto *SecondTy = GetElementPtrInst::getIndexedType(
5826           SourceTy, ArrayRef(Ops).drop_front());
5827       NewAddr =
5828           Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5829     } else {
5830       Value *Base = Ops[0];
5831       Value *Index = Ops[FinalIndex];
5832 
5833       // Create a scalar GEP if there are more than 2 operands.
5834       if (Ops.size() != 2) {
5835         // Replace the last index with 0.
5836         Ops[FinalIndex] =
5837             Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
5838         Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
5839         SourceTy = GetElementPtrInst::getIndexedType(
5840             SourceTy, ArrayRef(Ops).drop_front());
5841       }
5842 
5843       // Now create the GEP with scalar pointer and vector index.
5844       NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5845     }
5846   } else if (!isa<Constant>(Ptr)) {
5847     // Not a GEP, maybe its a splat and we can create a GEP to enable
5848     // SelectionDAGBuilder to use it as a uniform base.
5849     Value *V = getSplatValue(Ptr);
5850     if (!V)
5851       return false;
5852 
5853     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5854 
5855     IRBuilder<> Builder(MemoryInst);
5856 
5857     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5858     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5859     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5860     Type *ScalarTy;
5861     if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5862         Intrinsic::masked_gather) {
5863       ScalarTy = MemoryInst->getType()->getScalarType();
5864     } else {
5865       assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5866              Intrinsic::masked_scatter);
5867       ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5868     }
5869     NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5870   } else {
5871     // Constant, SelectionDAGBuilder knows to check if its a splat.
5872     return false;
5873   }
5874 
5875   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5876 
5877   // If we have no uses, recursively delete the value and all dead instructions
5878   // using it.
5879   if (Ptr->use_empty())
5880     RecursivelyDeleteTriviallyDeadInstructions(
5881         Ptr, TLInfo, nullptr,
5882         [&](Value *V) { removeAllAssertingVHReferences(V); });
5883 
5884   return true;
5885 }
5886 
5887 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5888 /// address computing into the block when possible / profitable.
5889 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5890   bool MadeChange = false;
5891 
5892   const TargetRegisterInfo *TRI =
5893       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5894   TargetLowering::AsmOperandInfoVector TargetConstraints =
5895       TLI->ParseConstraints(*DL, TRI, *CS);
5896   unsigned ArgNo = 0;
5897   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5898     // Compute the constraint code and ConstraintType to use.
5899     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5900 
5901     // TODO: Also handle C_Address?
5902     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5903         OpInfo.isIndirect) {
5904       Value *OpVal = CS->getArgOperand(ArgNo++);
5905       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5906     } else if (OpInfo.Type == InlineAsm::isInput)
5907       ArgNo++;
5908   }
5909 
5910   return MadeChange;
5911 }
5912 
5913 /// Check if all the uses of \p Val are equivalent (or free) zero or
5914 /// sign extensions.
5915 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5916   assert(!Val->use_empty() && "Input must have at least one use");
5917   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5918   bool IsSExt = isa<SExtInst>(FirstUser);
5919   Type *ExtTy = FirstUser->getType();
5920   for (const User *U : Val->users()) {
5921     const Instruction *UI = cast<Instruction>(U);
5922     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5923       return false;
5924     Type *CurTy = UI->getType();
5925     // Same input and output types: Same instruction after CSE.
5926     if (CurTy == ExtTy)
5927       continue;
5928 
5929     // If IsSExt is true, we are in this situation:
5930     // a = Val
5931     // b = sext ty1 a to ty2
5932     // c = sext ty1 a to ty3
5933     // Assuming ty2 is shorter than ty3, this could be turned into:
5934     // a = Val
5935     // b = sext ty1 a to ty2
5936     // c = sext ty2 b to ty3
5937     // However, the last sext is not free.
5938     if (IsSExt)
5939       return false;
5940 
5941     // This is a ZExt, maybe this is free to extend from one type to another.
5942     // In that case, we would not account for a different use.
5943     Type *NarrowTy;
5944     Type *LargeTy;
5945     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5946         CurTy->getScalarType()->getIntegerBitWidth()) {
5947       NarrowTy = CurTy;
5948       LargeTy = ExtTy;
5949     } else {
5950       NarrowTy = ExtTy;
5951       LargeTy = CurTy;
5952     }
5953 
5954     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5955       return false;
5956   }
5957   // All uses are the same or can be derived from one another for free.
5958   return true;
5959 }
5960 
5961 /// Try to speculatively promote extensions in \p Exts and continue
5962 /// promoting through newly promoted operands recursively as far as doing so is
5963 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5964 /// When some promotion happened, \p TPT contains the proper state to revert
5965 /// them.
5966 ///
5967 /// \return true if some promotion happened, false otherwise.
5968 bool CodeGenPrepare::tryToPromoteExts(
5969     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5970     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5971     unsigned CreatedInstsCost) {
5972   bool Promoted = false;
5973 
5974   // Iterate over all the extensions to try to promote them.
5975   for (auto *I : Exts) {
5976     // Early check if we directly have ext(load).
5977     if (isa<LoadInst>(I->getOperand(0))) {
5978       ProfitablyMovedExts.push_back(I);
5979       continue;
5980     }
5981 
5982     // Check whether or not we want to do any promotion.  The reason we have
5983     // this check inside the for loop is to catch the case where an extension
5984     // is directly fed by a load because in such case the extension can be moved
5985     // up without any promotion on its operands.
5986     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5987       return false;
5988 
5989     // Get the action to perform the promotion.
5990     TypePromotionHelper::Action TPH =
5991         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5992     // Check if we can promote.
5993     if (!TPH) {
5994       // Save the current extension as we cannot move up through its operand.
5995       ProfitablyMovedExts.push_back(I);
5996       continue;
5997     }
5998 
5999     // Save the current state.
6000     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6001         TPT.getRestorationPoint();
6002     SmallVector<Instruction *, 4> NewExts;
6003     unsigned NewCreatedInstsCost = 0;
6004     unsigned ExtCost = !TLI->isExtFree(I);
6005     // Promote.
6006     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
6007                              &NewExts, nullptr, *TLI);
6008     assert(PromotedVal &&
6009            "TypePromotionHelper should have filtered out those cases");
6010 
6011     // We would be able to merge only one extension in a load.
6012     // Therefore, if we have more than 1 new extension we heuristically
6013     // cut this search path, because it means we degrade the code quality.
6014     // With exactly 2, the transformation is neutral, because we will merge
6015     // one extension but leave one. However, we optimistically keep going,
6016     // because the new extension may be removed too. Also avoid replacing a
6017     // single free extension with multiple extensions, as this increases the
6018     // number of IR instructions while not providing any savings.
6019     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
6020     // FIXME: It would be possible to propagate a negative value instead of
6021     // conservatively ceiling it to 0.
6022     TotalCreatedInstsCost =
6023         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
6024     if (!StressExtLdPromotion &&
6025         (TotalCreatedInstsCost > 1 ||
6026          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) ||
6027          (ExtCost == 0 && NewExts.size() > 1))) {
6028       // This promotion is not profitable, rollback to the previous state, and
6029       // save the current extension in ProfitablyMovedExts as the latest
6030       // speculative promotion turned out to be unprofitable.
6031       TPT.rollback(LastKnownGood);
6032       ProfitablyMovedExts.push_back(I);
6033       continue;
6034     }
6035     // Continue promoting NewExts as far as doing so is profitable.
6036     SmallVector<Instruction *, 2> NewlyMovedExts;
6037     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
6038     bool NewPromoted = false;
6039     for (auto *ExtInst : NewlyMovedExts) {
6040       Instruction *MovedExt = cast<Instruction>(ExtInst);
6041       Value *ExtOperand = MovedExt->getOperand(0);
6042       // If we have reached to a load, we need this extra profitability check
6043       // as it could potentially be merged into an ext(load).
6044       if (isa<LoadInst>(ExtOperand) &&
6045           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
6046             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
6047         continue;
6048 
6049       ProfitablyMovedExts.push_back(MovedExt);
6050       NewPromoted = true;
6051     }
6052 
6053     // If none of speculative promotions for NewExts is profitable, rollback
6054     // and save the current extension (I) as the last profitable extension.
6055     if (!NewPromoted) {
6056       TPT.rollback(LastKnownGood);
6057       ProfitablyMovedExts.push_back(I);
6058       continue;
6059     }
6060     // The promotion is profitable.
6061     Promoted = true;
6062   }
6063   return Promoted;
6064 }
6065 
6066 /// Merging redundant sexts when one is dominating the other.
6067 bool CodeGenPrepare::mergeSExts(Function &F) {
6068   bool Changed = false;
6069   for (auto &Entry : ValToSExtendedUses) {
6070     SExts &Insts = Entry.second;
6071     SExts CurPts;
6072     for (Instruction *Inst : Insts) {
6073       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6074           Inst->getOperand(0) != Entry.first)
6075         continue;
6076       bool inserted = false;
6077       for (auto &Pt : CurPts) {
6078         if (getDT(F).dominates(Inst, Pt)) {
6079           replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6080           RemovedInsts.insert(Pt);
6081           Pt->removeFromParent();
6082           Pt = Inst;
6083           inserted = true;
6084           Changed = true;
6085           break;
6086         }
6087         if (!getDT(F).dominates(Pt, Inst))
6088           // Give up if we need to merge in a common dominator as the
6089           // experiments show it is not profitable.
6090           continue;
6091         replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6092         RemovedInsts.insert(Inst);
6093         Inst->removeFromParent();
6094         inserted = true;
6095         Changed = true;
6096         break;
6097       }
6098       if (!inserted)
6099         CurPts.push_back(Inst);
6100     }
6101   }
6102   return Changed;
6103 }
6104 
6105 // Splitting large data structures so that the GEPs accessing them can have
6106 // smaller offsets so that they can be sunk to the same blocks as their users.
6107 // For example, a large struct starting from %base is split into two parts
6108 // where the second part starts from %new_base.
6109 //
6110 // Before:
6111 // BB0:
6112 //   %base     =
6113 //
6114 // BB1:
6115 //   %gep0     = gep %base, off0
6116 //   %gep1     = gep %base, off1
6117 //   %gep2     = gep %base, off2
6118 //
6119 // BB2:
6120 //   %load1    = load %gep0
6121 //   %load2    = load %gep1
6122 //   %load3    = load %gep2
6123 //
6124 // After:
6125 // BB0:
6126 //   %base     =
6127 //   %new_base = gep %base, off0
6128 //
6129 // BB1:
6130 //   %new_gep0 = %new_base
6131 //   %new_gep1 = gep %new_base, off1 - off0
6132 //   %new_gep2 = gep %new_base, off2 - off0
6133 //
6134 // BB2:
6135 //   %load1    = load i32, i32* %new_gep0
6136 //   %load2    = load i32, i32* %new_gep1
6137 //   %load3    = load i32, i32* %new_gep2
6138 //
6139 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6140 // their offsets are smaller enough to fit into the addressing mode.
6141 bool CodeGenPrepare::splitLargeGEPOffsets() {
6142   bool Changed = false;
6143   for (auto &Entry : LargeOffsetGEPMap) {
6144     Value *OldBase = Entry.first;
6145     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6146         &LargeOffsetGEPs = Entry.second;
6147     auto compareGEPOffset =
6148         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6149             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6150           if (LHS.first == RHS.first)
6151             return false;
6152           if (LHS.second != RHS.second)
6153             return LHS.second < RHS.second;
6154           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6155         };
6156     // Sorting all the GEPs of the same data structures based on the offsets.
6157     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6158     LargeOffsetGEPs.erase(
6159         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
6160         LargeOffsetGEPs.end());
6161     // Skip if all the GEPs have the same offsets.
6162     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6163       continue;
6164     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6165     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6166     Value *NewBaseGEP = nullptr;
6167 
6168     auto createNewBase = [&](int64_t BaseOffset, Value *OldBase,
6169                              GetElementPtrInst *GEP) {
6170       LLVMContext &Ctx = GEP->getContext();
6171       Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6172       Type *I8PtrTy =
6173           PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace());
6174 
6175       BasicBlock::iterator NewBaseInsertPt;
6176       BasicBlock *NewBaseInsertBB;
6177       if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6178         // If the base of the struct is an instruction, the new base will be
6179         // inserted close to it.
6180         NewBaseInsertBB = BaseI->getParent();
6181         if (isa<PHINode>(BaseI))
6182           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6183         else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6184           NewBaseInsertBB =
6185               SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6186           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6187         } else
6188           NewBaseInsertPt = std::next(BaseI->getIterator());
6189       } else {
6190         // If the current base is an argument or global value, the new base
6191         // will be inserted to the entry block.
6192         NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6193         NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6194       }
6195       IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6196       // Create a new base.
6197       Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6198       NewBaseGEP = OldBase;
6199       if (NewBaseGEP->getType() != I8PtrTy)
6200         NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6201       NewBaseGEP =
6202           NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep");
6203       NewGEPBases.insert(NewBaseGEP);
6204       return;
6205     };
6206 
6207     // Check whether all the offsets can be encoded with prefered common base.
6208     if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset(
6209             LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) {
6210       BaseOffset = PreferBase;
6211       // Create a new base if the offset of the BaseGEP can be decoded with one
6212       // instruction.
6213       createNewBase(BaseOffset, OldBase, BaseGEP);
6214     }
6215 
6216     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6217     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6218       GetElementPtrInst *GEP = LargeOffsetGEP->first;
6219       int64_t Offset = LargeOffsetGEP->second;
6220       if (Offset != BaseOffset) {
6221         TargetLowering::AddrMode AddrMode;
6222         AddrMode.HasBaseReg = true;
6223         AddrMode.BaseOffs = Offset - BaseOffset;
6224         // The result type of the GEP might not be the type of the memory
6225         // access.
6226         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6227                                         GEP->getResultElementType(),
6228                                         GEP->getAddressSpace())) {
6229           // We need to create a new base if the offset to the current base is
6230           // too large to fit into the addressing mode. So, a very large struct
6231           // may be split into several parts.
6232           BaseGEP = GEP;
6233           BaseOffset = Offset;
6234           NewBaseGEP = nullptr;
6235         }
6236       }
6237 
6238       // Generate a new GEP to replace the current one.
6239       Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6240 
6241       if (!NewBaseGEP) {
6242         // Create a new base if we don't have one yet.  Find the insertion
6243         // pointer for the new base first.
6244         createNewBase(BaseOffset, OldBase, GEP);
6245       }
6246 
6247       IRBuilder<> Builder(GEP);
6248       Value *NewGEP = NewBaseGEP;
6249       if (Offset != BaseOffset) {
6250         // Calculate the new offset for the new GEP.
6251         Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6252         NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index);
6253       }
6254       replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6255       LargeOffsetGEPID.erase(GEP);
6256       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6257       GEP->eraseFromParent();
6258       Changed = true;
6259     }
6260   }
6261   return Changed;
6262 }
6263 
6264 bool CodeGenPrepare::optimizePhiType(
6265     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6266     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6267   // We are looking for a collection on interconnected phi nodes that together
6268   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6269   // are of the same type. Convert the whole set of nodes to the type of the
6270   // bitcast.
6271   Type *PhiTy = I->getType();
6272   Type *ConvertTy = nullptr;
6273   if (Visited.count(I) ||
6274       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6275     return false;
6276 
6277   SmallVector<Instruction *, 4> Worklist;
6278   Worklist.push_back(cast<Instruction>(I));
6279   SmallPtrSet<PHINode *, 4> PhiNodes;
6280   SmallPtrSet<ConstantData *, 4> Constants;
6281   PhiNodes.insert(I);
6282   Visited.insert(I);
6283   SmallPtrSet<Instruction *, 4> Defs;
6284   SmallPtrSet<Instruction *, 4> Uses;
6285   // This works by adding extra bitcasts between load/stores and removing
6286   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6287   // we can get in the situation where we remove a bitcast in one iteration
6288   // just to add it again in the next. We need to ensure that at least one
6289   // bitcast we remove are anchored to something that will not change back.
6290   bool AnyAnchored = false;
6291 
6292   while (!Worklist.empty()) {
6293     Instruction *II = Worklist.pop_back_val();
6294 
6295     if (auto *Phi = dyn_cast<PHINode>(II)) {
6296       // Handle Defs, which might also be PHI's
6297       for (Value *V : Phi->incoming_values()) {
6298         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6299           if (!PhiNodes.count(OpPhi)) {
6300             if (!Visited.insert(OpPhi).second)
6301               return false;
6302             PhiNodes.insert(OpPhi);
6303             Worklist.push_back(OpPhi);
6304           }
6305         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6306           if (!OpLoad->isSimple())
6307             return false;
6308           if (Defs.insert(OpLoad).second)
6309             Worklist.push_back(OpLoad);
6310         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6311           if (Defs.insert(OpEx).second)
6312             Worklist.push_back(OpEx);
6313         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6314           if (!ConvertTy)
6315             ConvertTy = OpBC->getOperand(0)->getType();
6316           if (OpBC->getOperand(0)->getType() != ConvertTy)
6317             return false;
6318           if (Defs.insert(OpBC).second) {
6319             Worklist.push_back(OpBC);
6320             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6321                            !isa<ExtractElementInst>(OpBC->getOperand(0));
6322           }
6323         } else if (auto *OpC = dyn_cast<ConstantData>(V))
6324           Constants.insert(OpC);
6325         else
6326           return false;
6327       }
6328     }
6329 
6330     // Handle uses which might also be phi's
6331     for (User *V : II->users()) {
6332       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6333         if (!PhiNodes.count(OpPhi)) {
6334           if (Visited.count(OpPhi))
6335             return false;
6336           PhiNodes.insert(OpPhi);
6337           Visited.insert(OpPhi);
6338           Worklist.push_back(OpPhi);
6339         }
6340       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6341         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6342           return false;
6343         Uses.insert(OpStore);
6344       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6345         if (!ConvertTy)
6346           ConvertTy = OpBC->getType();
6347         if (OpBC->getType() != ConvertTy)
6348           return false;
6349         Uses.insert(OpBC);
6350         AnyAnchored |=
6351             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6352       } else {
6353         return false;
6354       }
6355     }
6356   }
6357 
6358   if (!ConvertTy || !AnyAnchored ||
6359       !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6360     return false;
6361 
6362   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
6363                     << *ConvertTy << "\n");
6364 
6365   // Create all the new phi nodes of the new type, and bitcast any loads to the
6366   // correct type.
6367   ValueToValueMap ValMap;
6368   for (ConstantData *C : Constants)
6369     ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy);
6370   for (Instruction *D : Defs) {
6371     if (isa<BitCastInst>(D)) {
6372       ValMap[D] = D->getOperand(0);
6373       DeletedInstrs.insert(D);
6374     } else {
6375       ValMap[D] =
6376           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6377     }
6378   }
6379   for (PHINode *Phi : PhiNodes)
6380     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6381                                   Phi->getName() + ".tc", Phi);
6382   // Pipe together all the PhiNodes.
6383   for (PHINode *Phi : PhiNodes) {
6384     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6385     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6386       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6387                           Phi->getIncomingBlock(i));
6388     Visited.insert(NewPhi);
6389   }
6390   // And finally pipe up the stores and bitcasts
6391   for (Instruction *U : Uses) {
6392     if (isa<BitCastInst>(U)) {
6393       DeletedInstrs.insert(U);
6394       replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
6395     } else {
6396       U->setOperand(0,
6397                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6398     }
6399   }
6400 
6401   // Save the removed phis to be deleted later.
6402   for (PHINode *Phi : PhiNodes)
6403     DeletedInstrs.insert(Phi);
6404   return true;
6405 }
6406 
6407 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6408   if (!OptimizePhiTypes)
6409     return false;
6410 
6411   bool Changed = false;
6412   SmallPtrSet<PHINode *, 4> Visited;
6413   SmallPtrSet<Instruction *, 4> DeletedInstrs;
6414 
6415   // Attempt to optimize all the phis in the functions to the correct type.
6416   for (auto &BB : F)
6417     for (auto &Phi : BB.phis())
6418       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6419 
6420   // Remove any old phi's that have been converted.
6421   for (auto *I : DeletedInstrs) {
6422     replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
6423     I->eraseFromParent();
6424   }
6425 
6426   return Changed;
6427 }
6428 
6429 /// Return true, if an ext(load) can be formed from an extension in
6430 /// \p MovedExts.
6431 bool CodeGenPrepare::canFormExtLd(
6432     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6433     Instruction *&Inst, bool HasPromoted) {
6434   for (auto *MovedExtInst : MovedExts) {
6435     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6436       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6437       Inst = MovedExtInst;
6438       break;
6439     }
6440   }
6441   if (!LI)
6442     return false;
6443 
6444   // If they're already in the same block, there's nothing to do.
6445   // Make the cheap checks first if we did not promote.
6446   // If we promoted, we need to check if it is indeed profitable.
6447   if (!HasPromoted && LI->getParent() == Inst->getParent())
6448     return false;
6449 
6450   return TLI->isExtLoad(LI, Inst, *DL);
6451 }
6452 
6453 /// Move a zext or sext fed by a load into the same basic block as the load,
6454 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6455 /// extend into the load.
6456 ///
6457 /// E.g.,
6458 /// \code
6459 /// %ld = load i32* %addr
6460 /// %add = add nuw i32 %ld, 4
6461 /// %zext = zext i32 %add to i64
6462 // \endcode
6463 /// =>
6464 /// \code
6465 /// %ld = load i32* %addr
6466 /// %zext = zext i32 %ld to i64
6467 /// %add = add nuw i64 %zext, 4
6468 /// \encode
6469 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6470 /// allow us to match zext(load i32*) to i64.
6471 ///
6472 /// Also, try to promote the computations used to obtain a sign extended
6473 /// value used into memory accesses.
6474 /// E.g.,
6475 /// \code
6476 /// a = add nsw i32 b, 3
6477 /// d = sext i32 a to i64
6478 /// e = getelementptr ..., i64 d
6479 /// \endcode
6480 /// =>
6481 /// \code
6482 /// f = sext i32 b to i64
6483 /// a = add nsw i64 f, 3
6484 /// e = getelementptr ..., i64 a
6485 /// \endcode
6486 ///
6487 /// \p Inst[in/out] the extension may be modified during the process if some
6488 /// promotions apply.
6489 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6490   bool AllowPromotionWithoutCommonHeader = false;
6491   /// See if it is an interesting sext operations for the address type
6492   /// promotion before trying to promote it, e.g., the ones with the right
6493   /// type and used in memory accesses.
6494   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6495       *Inst, AllowPromotionWithoutCommonHeader);
6496   TypePromotionTransaction TPT(RemovedInsts);
6497   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6498       TPT.getRestorationPoint();
6499   SmallVector<Instruction *, 1> Exts;
6500   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6501   Exts.push_back(Inst);
6502 
6503   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6504 
6505   // Look for a load being extended.
6506   LoadInst *LI = nullptr;
6507   Instruction *ExtFedByLoad;
6508 
6509   // Try to promote a chain of computation if it allows to form an extended
6510   // load.
6511   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6512     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6513     TPT.commit();
6514     // Move the extend into the same block as the load.
6515     ExtFedByLoad->moveAfter(LI);
6516     ++NumExtsMoved;
6517     Inst = ExtFedByLoad;
6518     return true;
6519   }
6520 
6521   // Continue promoting SExts if known as considerable depending on targets.
6522   if (ATPConsiderable &&
6523       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6524                                   HasPromoted, TPT, SpeculativelyMovedExts))
6525     return true;
6526 
6527   TPT.rollback(LastKnownGood);
6528   return false;
6529 }
6530 
6531 // Perform address type promotion if doing so is profitable.
6532 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6533 // instructions that sign extended the same initial value. However, if
6534 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6535 // extension is just profitable.
6536 bool CodeGenPrepare::performAddressTypePromotion(
6537     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6538     bool HasPromoted, TypePromotionTransaction &TPT,
6539     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6540   bool Promoted = false;
6541   SmallPtrSet<Instruction *, 1> UnhandledExts;
6542   bool AllSeenFirst = true;
6543   for (auto *I : SpeculativelyMovedExts) {
6544     Value *HeadOfChain = I->getOperand(0);
6545     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6546         SeenChainsForSExt.find(HeadOfChain);
6547     // If there is an unhandled SExt which has the same header, try to promote
6548     // it as well.
6549     if (AlreadySeen != SeenChainsForSExt.end()) {
6550       if (AlreadySeen->second != nullptr)
6551         UnhandledExts.insert(AlreadySeen->second);
6552       AllSeenFirst = false;
6553     }
6554   }
6555 
6556   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6557                         SpeculativelyMovedExts.size() == 1)) {
6558     TPT.commit();
6559     if (HasPromoted)
6560       Promoted = true;
6561     for (auto *I : SpeculativelyMovedExts) {
6562       Value *HeadOfChain = I->getOperand(0);
6563       SeenChainsForSExt[HeadOfChain] = nullptr;
6564       ValToSExtendedUses[HeadOfChain].push_back(I);
6565     }
6566     // Update Inst as promotion happen.
6567     Inst = SpeculativelyMovedExts.pop_back_val();
6568   } else {
6569     // This is the first chain visited from the header, keep the current chain
6570     // as unhandled. Defer to promote this until we encounter another SExt
6571     // chain derived from the same header.
6572     for (auto *I : SpeculativelyMovedExts) {
6573       Value *HeadOfChain = I->getOperand(0);
6574       SeenChainsForSExt[HeadOfChain] = Inst;
6575     }
6576     return false;
6577   }
6578 
6579   if (!AllSeenFirst && !UnhandledExts.empty())
6580     for (auto *VisitedSExt : UnhandledExts) {
6581       if (RemovedInsts.count(VisitedSExt))
6582         continue;
6583       TypePromotionTransaction TPT(RemovedInsts);
6584       SmallVector<Instruction *, 1> Exts;
6585       SmallVector<Instruction *, 2> Chains;
6586       Exts.push_back(VisitedSExt);
6587       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6588       TPT.commit();
6589       if (HasPromoted)
6590         Promoted = true;
6591       for (auto *I : Chains) {
6592         Value *HeadOfChain = I->getOperand(0);
6593         // Mark this as handled.
6594         SeenChainsForSExt[HeadOfChain] = nullptr;
6595         ValToSExtendedUses[HeadOfChain].push_back(I);
6596       }
6597     }
6598   return Promoted;
6599 }
6600 
6601 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6602   BasicBlock *DefBB = I->getParent();
6603 
6604   // If the result of a {s|z}ext and its source are both live out, rewrite all
6605   // other uses of the source with result of extension.
6606   Value *Src = I->getOperand(0);
6607   if (Src->hasOneUse())
6608     return false;
6609 
6610   // Only do this xform if truncating is free.
6611   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6612     return false;
6613 
6614   // Only safe to perform the optimization if the source is also defined in
6615   // this block.
6616   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6617     return false;
6618 
6619   bool DefIsLiveOut = false;
6620   for (User *U : I->users()) {
6621     Instruction *UI = cast<Instruction>(U);
6622 
6623     // Figure out which BB this ext is used in.
6624     BasicBlock *UserBB = UI->getParent();
6625     if (UserBB == DefBB)
6626       continue;
6627     DefIsLiveOut = true;
6628     break;
6629   }
6630   if (!DefIsLiveOut)
6631     return false;
6632 
6633   // Make sure none of the uses are PHI nodes.
6634   for (User *U : Src->users()) {
6635     Instruction *UI = cast<Instruction>(U);
6636     BasicBlock *UserBB = UI->getParent();
6637     if (UserBB == DefBB)
6638       continue;
6639     // Be conservative. We don't want this xform to end up introducing
6640     // reloads just before load / store instructions.
6641     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6642       return false;
6643   }
6644 
6645   // InsertedTruncs - Only insert one trunc in each block once.
6646   DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
6647 
6648   bool MadeChange = false;
6649   for (Use &U : Src->uses()) {
6650     Instruction *User = cast<Instruction>(U.getUser());
6651 
6652     // Figure out which BB this ext is used in.
6653     BasicBlock *UserBB = User->getParent();
6654     if (UserBB == DefBB)
6655       continue;
6656 
6657     // Both src and def are live in this block. Rewrite the use.
6658     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6659 
6660     if (!InsertedTrunc) {
6661       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6662       assert(InsertPt != UserBB->end());
6663       InsertedTrunc = new TruncInst(I, Src->getType(), "");
6664       InsertedTrunc->insertBefore(*UserBB, InsertPt);
6665       InsertedInsts.insert(InsertedTrunc);
6666     }
6667 
6668     // Replace a use of the {s|z}ext source with a use of the result.
6669     U = InsertedTrunc;
6670     ++NumExtUses;
6671     MadeChange = true;
6672   }
6673 
6674   return MadeChange;
6675 }
6676 
6677 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6678 // just after the load if the target can fold this into one extload instruction,
6679 // with the hope of eliminating some of the other later "and" instructions using
6680 // the loaded value.  "and"s that are made trivially redundant by the insertion
6681 // of the new "and" are removed by this function, while others (e.g. those whose
6682 // path from the load goes through a phi) are left for isel to potentially
6683 // remove.
6684 //
6685 // For example:
6686 //
6687 // b0:
6688 //   x = load i32
6689 //   ...
6690 // b1:
6691 //   y = and x, 0xff
6692 //   z = use y
6693 //
6694 // becomes:
6695 //
6696 // b0:
6697 //   x = load i32
6698 //   x' = and x, 0xff
6699 //   ...
6700 // b1:
6701 //   z = use x'
6702 //
6703 // whereas:
6704 //
6705 // b0:
6706 //   x1 = load i32
6707 //   ...
6708 // b1:
6709 //   x2 = load i32
6710 //   ...
6711 // b2:
6712 //   x = phi x1, x2
6713 //   y = and x, 0xff
6714 //
6715 // becomes (after a call to optimizeLoadExt for each load):
6716 //
6717 // b0:
6718 //   x1 = load i32
6719 //   x1' = and x1, 0xff
6720 //   ...
6721 // b1:
6722 //   x2 = load i32
6723 //   x2' = and x2, 0xff
6724 //   ...
6725 // b2:
6726 //   x = phi x1', x2'
6727 //   y = and x, 0xff
6728 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6729   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6730     return false;
6731 
6732   // Skip loads we've already transformed.
6733   if (Load->hasOneUse() &&
6734       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6735     return false;
6736 
6737   // Look at all uses of Load, looking through phis, to determine how many bits
6738   // of the loaded value are needed.
6739   SmallVector<Instruction *, 8> WorkList;
6740   SmallPtrSet<Instruction *, 16> Visited;
6741   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6742   for (auto *U : Load->users())
6743     WorkList.push_back(cast<Instruction>(U));
6744 
6745   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6746   unsigned BitWidth = LoadResultVT.getSizeInBits();
6747   // If the BitWidth is 0, do not try to optimize the type
6748   if (BitWidth == 0)
6749     return false;
6750 
6751   APInt DemandBits(BitWidth, 0);
6752   APInt WidestAndBits(BitWidth, 0);
6753 
6754   while (!WorkList.empty()) {
6755     Instruction *I = WorkList.pop_back_val();
6756 
6757     // Break use-def graph loops.
6758     if (!Visited.insert(I).second)
6759       continue;
6760 
6761     // For a PHI node, push all of its users.
6762     if (auto *Phi = dyn_cast<PHINode>(I)) {
6763       for (auto *U : Phi->users())
6764         WorkList.push_back(cast<Instruction>(U));
6765       continue;
6766     }
6767 
6768     switch (I->getOpcode()) {
6769     case Instruction::And: {
6770       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6771       if (!AndC)
6772         return false;
6773       APInt AndBits = AndC->getValue();
6774       DemandBits |= AndBits;
6775       // Keep track of the widest and mask we see.
6776       if (AndBits.ugt(WidestAndBits))
6777         WidestAndBits = AndBits;
6778       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6779         AndsToMaybeRemove.push_back(I);
6780       break;
6781     }
6782 
6783     case Instruction::Shl: {
6784       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6785       if (!ShlC)
6786         return false;
6787       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6788       DemandBits.setLowBits(BitWidth - ShiftAmt);
6789       break;
6790     }
6791 
6792     case Instruction::Trunc: {
6793       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6794       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6795       DemandBits.setLowBits(TruncBitWidth);
6796       break;
6797     }
6798 
6799     default:
6800       return false;
6801     }
6802   }
6803 
6804   uint32_t ActiveBits = DemandBits.getActiveBits();
6805   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6806   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6807   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6808   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6809   // followed by an AND.
6810   // TODO: Look into removing this restriction by fixing backends to either
6811   // return false for isLoadExtLegal for i1 or have them select this pattern to
6812   // a single instruction.
6813   //
6814   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6815   // mask, since these are the only ands that will be removed by isel.
6816   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6817       WidestAndBits != DemandBits)
6818     return false;
6819 
6820   LLVMContext &Ctx = Load->getType()->getContext();
6821   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6822   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6823 
6824   // Reject cases that won't be matched as extloads.
6825   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6826       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6827     return false;
6828 
6829   IRBuilder<> Builder(Load->getNextNonDebugInstruction());
6830   auto *NewAnd = cast<Instruction>(
6831       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6832   // Mark this instruction as "inserted by CGP", so that other
6833   // optimizations don't touch it.
6834   InsertedInsts.insert(NewAnd);
6835 
6836   // Replace all uses of load with new and (except for the use of load in the
6837   // new and itself).
6838   replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
6839   NewAnd->setOperand(0, Load);
6840 
6841   // Remove any and instructions that are now redundant.
6842   for (auto *And : AndsToMaybeRemove)
6843     // Check that the and mask is the same as the one we decided to put on the
6844     // new and.
6845     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6846       replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
6847       if (&*CurInstIterator == And)
6848         CurInstIterator = std::next(And->getIterator());
6849       And->eraseFromParent();
6850       ++NumAndUses;
6851     }
6852 
6853   ++NumAndsAdded;
6854   return true;
6855 }
6856 
6857 /// Check if V (an operand of a select instruction) is an expensive instruction
6858 /// that is only used once.
6859 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6860   auto *I = dyn_cast<Instruction>(V);
6861   // If it's safe to speculatively execute, then it should not have side
6862   // effects; therefore, it's safe to sink and possibly *not* execute.
6863   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6864          TTI->isExpensiveToSpeculativelyExecute(I);
6865 }
6866 
6867 /// Returns true if a SelectInst should be turned into an explicit branch.
6868 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6869                                                 const TargetLowering *TLI,
6870                                                 SelectInst *SI) {
6871   // If even a predictable select is cheap, then a branch can't be cheaper.
6872   if (!TLI->isPredictableSelectExpensive())
6873     return false;
6874 
6875   // FIXME: This should use the same heuristics as IfConversion to determine
6876   // whether a select is better represented as a branch.
6877 
6878   // If metadata tells us that the select condition is obviously predictable,
6879   // then we want to replace the select with a branch.
6880   uint64_t TrueWeight, FalseWeight;
6881   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
6882     uint64_t Max = std::max(TrueWeight, FalseWeight);
6883     uint64_t Sum = TrueWeight + FalseWeight;
6884     if (Sum != 0) {
6885       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6886       if (Probability > TTI->getPredictableBranchThreshold())
6887         return true;
6888     }
6889   }
6890 
6891   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6892 
6893   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6894   // comparison condition. If the compare has more than one use, there's
6895   // probably another cmov or setcc around, so it's not worth emitting a branch.
6896   if (!Cmp || !Cmp->hasOneUse())
6897     return false;
6898 
6899   // If either operand of the select is expensive and only needed on one side
6900   // of the select, we should form a branch.
6901   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6902       sinkSelectOperand(TTI, SI->getFalseValue()))
6903     return true;
6904 
6905   return false;
6906 }
6907 
6908 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6909 /// false value of \p SI. If the true/false value of \p SI is defined by any
6910 /// select instructions in \p Selects, look through the defining select
6911 /// instruction until the true/false value is not defined in \p Selects.
6912 static Value *
6913 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
6914                     const SmallPtrSet<const Instruction *, 2> &Selects) {
6915   Value *V = nullptr;
6916 
6917   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6918        DefSI = dyn_cast<SelectInst>(V)) {
6919     assert(DefSI->getCondition() == SI->getCondition() &&
6920            "The condition of DefSI does not match with SI");
6921     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6922   }
6923 
6924   assert(V && "Failed to get select true/false value");
6925   return V;
6926 }
6927 
6928 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6929   assert(Shift->isShift() && "Expected a shift");
6930 
6931   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6932   // general vector shifts, and (3) the shift amount is a select-of-splatted
6933   // values, hoist the shifts before the select:
6934   //   shift Op0, (select Cond, TVal, FVal) -->
6935   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6936   //
6937   // This is inverting a generic IR transform when we know that the cost of a
6938   // general vector shift is more than the cost of 2 shift-by-scalars.
6939   // We can't do this effectively in SDAG because we may not be able to
6940   // determine if the select operands are splats from within a basic block.
6941   Type *Ty = Shift->getType();
6942   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6943     return false;
6944   Value *Cond, *TVal, *FVal;
6945   if (!match(Shift->getOperand(1),
6946              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6947     return false;
6948   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6949     return false;
6950 
6951   IRBuilder<> Builder(Shift);
6952   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6953   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6954   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6955   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6956   replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
6957   Shift->eraseFromParent();
6958   return true;
6959 }
6960 
6961 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6962   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6963   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6964          "Expected a funnel shift");
6965 
6966   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6967   // than general vector shifts, and (3) the shift amount is select-of-splatted
6968   // values, hoist the funnel shifts before the select:
6969   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6970   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6971   //
6972   // This is inverting a generic IR transform when we know that the cost of a
6973   // general vector shift is more than the cost of 2 shift-by-scalars.
6974   // We can't do this effectively in SDAG because we may not be able to
6975   // determine if the select operands are splats from within a basic block.
6976   Type *Ty = Fsh->getType();
6977   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6978     return false;
6979   Value *Cond, *TVal, *FVal;
6980   if (!match(Fsh->getOperand(2),
6981              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6982     return false;
6983   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6984     return false;
6985 
6986   IRBuilder<> Builder(Fsh);
6987   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6988   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
6989   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
6990   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6991   replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
6992   Fsh->eraseFromParent();
6993   return true;
6994 }
6995 
6996 /// If we have a SelectInst that will likely profit from branch prediction,
6997 /// turn it into a branch.
6998 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6999   if (DisableSelectToBranch)
7000     return false;
7001 
7002   // If the SelectOptimize pass is enabled, selects have already been optimized.
7003   if (!getCGPassBuilderOption().DisableSelectOptimize)
7004     return false;
7005 
7006   // Find all consecutive select instructions that share the same condition.
7007   SmallVector<SelectInst *, 2> ASI;
7008   ASI.push_back(SI);
7009   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
7010        It != SI->getParent()->end(); ++It) {
7011     SelectInst *I = dyn_cast<SelectInst>(&*It);
7012     if (I && SI->getCondition() == I->getCondition()) {
7013       ASI.push_back(I);
7014     } else {
7015       break;
7016     }
7017   }
7018 
7019   SelectInst *LastSI = ASI.back();
7020   // Increment the current iterator to skip all the rest of select instructions
7021   // because they will be either "not lowered" or "all lowered" to branch.
7022   CurInstIterator = std::next(LastSI->getIterator());
7023   // Examine debug-info attached to the consecutive select instructions. They
7024   // won't be individually optimised by optimizeInst, so we need to perform
7025   // DPValue maintenence here instead.
7026   for (SelectInst *SI : ArrayRef(ASI).drop_front())
7027     fixupDPValuesOnInst(*SI);
7028 
7029   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
7030 
7031   // Can we convert the 'select' to CF ?
7032   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
7033     return false;
7034 
7035   TargetLowering::SelectSupportKind SelectKind;
7036   if (SI->getType()->isVectorTy())
7037     SelectKind = TargetLowering::ScalarCondVectorVal;
7038   else
7039     SelectKind = TargetLowering::ScalarValSelect;
7040 
7041   if (TLI->isSelectSupported(SelectKind) &&
7042       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
7043        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
7044     return false;
7045 
7046   // The DominatorTree needs to be rebuilt by any consumers after this
7047   // transformation. We simply reset here rather than setting the ModifiedDT
7048   // flag to avoid restarting the function walk in runOnFunction for each
7049   // select optimized.
7050   DT.reset();
7051 
7052   // Transform a sequence like this:
7053   //    start:
7054   //       %cmp = cmp uge i32 %a, %b
7055   //       %sel = select i1 %cmp, i32 %c, i32 %d
7056   //
7057   // Into:
7058   //    start:
7059   //       %cmp = cmp uge i32 %a, %b
7060   //       %cmp.frozen = freeze %cmp
7061   //       br i1 %cmp.frozen, label %select.true, label %select.false
7062   //    select.true:
7063   //       br label %select.end
7064   //    select.false:
7065   //       br label %select.end
7066   //    select.end:
7067   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7068   //
7069   // %cmp should be frozen, otherwise it may introduce undefined behavior.
7070   // In addition, we may sink instructions that produce %c or %d from
7071   // the entry block into the destination(s) of the new branch.
7072   // If the true or false blocks do not contain a sunken instruction, that
7073   // block and its branch may be optimized away. In that case, one side of the
7074   // first branch will point directly to select.end, and the corresponding PHI
7075   // predecessor block will be the start block.
7076 
7077   // Collect values that go on the true side and the values that go on the false
7078   // side.
7079   SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7080   for (SelectInst *SI : ASI) {
7081     if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7082       TrueInstrs.push_back(cast<Instruction>(V));
7083     if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7084       FalseInstrs.push_back(cast<Instruction>(V));
7085   }
7086 
7087   // Split the select block, according to how many (if any) values go on each
7088   // side.
7089   BasicBlock *StartBlock = SI->getParent();
7090   BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI));
7091   // We should split before any debug-info.
7092   SplitPt.setHeadBit(true);
7093 
7094   IRBuilder<> IB(SI);
7095   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7096 
7097   BasicBlock *TrueBlock = nullptr;
7098   BasicBlock *FalseBlock = nullptr;
7099   BasicBlock *EndBlock = nullptr;
7100   BranchInst *TrueBranch = nullptr;
7101   BranchInst *FalseBranch = nullptr;
7102   if (TrueInstrs.size() == 0) {
7103     FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse(
7104         CondFr, SplitPt, false, nullptr, nullptr, LI));
7105     FalseBlock = FalseBranch->getParent();
7106     EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7107   } else if (FalseInstrs.size() == 0) {
7108     TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen(
7109         CondFr, SplitPt, false, nullptr, nullptr, LI));
7110     TrueBlock = TrueBranch->getParent();
7111     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7112   } else {
7113     Instruction *ThenTerm = nullptr;
7114     Instruction *ElseTerm = nullptr;
7115     SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm,
7116                                   nullptr, nullptr, LI);
7117     TrueBranch = cast<BranchInst>(ThenTerm);
7118     FalseBranch = cast<BranchInst>(ElseTerm);
7119     TrueBlock = TrueBranch->getParent();
7120     FalseBlock = FalseBranch->getParent();
7121     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7122   }
7123 
7124   EndBlock->setName("select.end");
7125   if (TrueBlock)
7126     TrueBlock->setName("select.true.sink");
7127   if (FalseBlock)
7128     FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7129                                                 : "select.false.sink");
7130 
7131   if (IsHugeFunc) {
7132     if (TrueBlock)
7133       FreshBBs.insert(TrueBlock);
7134     if (FalseBlock)
7135       FreshBBs.insert(FalseBlock);
7136     FreshBBs.insert(EndBlock);
7137   }
7138 
7139   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
7140 
7141   static const unsigned MD[] = {
7142       LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7143       LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7144   StartBlock->getTerminator()->copyMetadata(*SI, MD);
7145 
7146   // Sink expensive instructions into the conditional blocks to avoid executing
7147   // them speculatively.
7148   for (Instruction *I : TrueInstrs)
7149     I->moveBefore(TrueBranch);
7150   for (Instruction *I : FalseInstrs)
7151     I->moveBefore(FalseBranch);
7152 
7153   // If we did not create a new block for one of the 'true' or 'false' paths
7154   // of the condition, it means that side of the branch goes to the end block
7155   // directly and the path originates from the start block from the point of
7156   // view of the new PHI.
7157   if (TrueBlock == nullptr)
7158     TrueBlock = StartBlock;
7159   else if (FalseBlock == nullptr)
7160     FalseBlock = StartBlock;
7161 
7162   SmallPtrSet<const Instruction *, 2> INS;
7163   INS.insert(ASI.begin(), ASI.end());
7164   // Use reverse iterator because later select may use the value of the
7165   // earlier select, and we need to propagate value through earlier select
7166   // to get the PHI operand.
7167   for (SelectInst *SI : llvm::reverse(ASI)) {
7168     // The select itself is replaced with a PHI Node.
7169     PHINode *PN = PHINode::Create(SI->getType(), 2, "");
7170     PN->insertBefore(EndBlock->begin());
7171     PN->takeName(SI);
7172     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7173     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7174     PN->setDebugLoc(SI->getDebugLoc());
7175 
7176     replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7177     SI->eraseFromParent();
7178     INS.erase(SI);
7179     ++NumSelectsExpanded;
7180   }
7181 
7182   // Instruct OptimizeBlock to skip to the next block.
7183   CurInstIterator = StartBlock->end();
7184   return true;
7185 }
7186 
7187 /// Some targets only accept certain types for splat inputs. For example a VDUP
7188 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7189 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7190 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7191   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7192   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7193                             m_Undef(), m_ZeroMask())))
7194     return false;
7195   Type *NewType = TLI->shouldConvertSplatType(SVI);
7196   if (!NewType)
7197     return false;
7198 
7199   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7200   assert(!NewType->isVectorTy() && "Expected a scalar type!");
7201   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7202          "Expected a type of the same size!");
7203   auto *NewVecType =
7204       FixedVectorType::get(NewType, SVIVecType->getNumElements());
7205 
7206   // Create a bitcast (shuffle (insert (bitcast(..))))
7207   IRBuilder<> Builder(SVI->getContext());
7208   Builder.SetInsertPoint(SVI);
7209   Value *BC1 = Builder.CreateBitCast(
7210       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7211   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7212   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7213 
7214   replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7215   RecursivelyDeleteTriviallyDeadInstructions(
7216       SVI, TLInfo, nullptr,
7217       [&](Value *V) { removeAllAssertingVHReferences(V); });
7218 
7219   // Also hoist the bitcast up to its operand if it they are not in the same
7220   // block.
7221   if (auto *BCI = dyn_cast<Instruction>(BC1))
7222     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7223       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7224           !Op->isTerminator() && !Op->isEHPad())
7225         BCI->moveAfter(Op);
7226 
7227   return true;
7228 }
7229 
7230 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7231   // If the operands of I can be folded into a target instruction together with
7232   // I, duplicate and sink them.
7233   SmallVector<Use *, 4> OpsToSink;
7234   if (!TLI->shouldSinkOperands(I, OpsToSink))
7235     return false;
7236 
7237   // OpsToSink can contain multiple uses in a use chain (e.g.
7238   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7239   // uses must come first, so we process the ops in reverse order so as to not
7240   // create invalid IR.
7241   BasicBlock *TargetBB = I->getParent();
7242   bool Changed = false;
7243   SmallVector<Use *, 4> ToReplace;
7244   Instruction *InsertPoint = I;
7245   DenseMap<const Instruction *, unsigned long> InstOrdering;
7246   unsigned long InstNumber = 0;
7247   for (const auto &I : *TargetBB)
7248     InstOrdering[&I] = InstNumber++;
7249 
7250   for (Use *U : reverse(OpsToSink)) {
7251     auto *UI = cast<Instruction>(U->get());
7252     if (isa<PHINode>(UI))
7253       continue;
7254     if (UI->getParent() == TargetBB) {
7255       if (InstOrdering[UI] < InstOrdering[InsertPoint])
7256         InsertPoint = UI;
7257       continue;
7258     }
7259     ToReplace.push_back(U);
7260   }
7261 
7262   SetVector<Instruction *> MaybeDead;
7263   DenseMap<Instruction *, Instruction *> NewInstructions;
7264   for (Use *U : ToReplace) {
7265     auto *UI = cast<Instruction>(U->get());
7266     Instruction *NI = UI->clone();
7267 
7268     if (IsHugeFunc) {
7269       // Now we clone an instruction, its operands' defs may sink to this BB
7270       // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7271       for (unsigned I = 0; I < NI->getNumOperands(); ++I) {
7272         auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I));
7273         if (!OpDef)
7274           continue;
7275         FreshBBs.insert(OpDef->getParent());
7276       }
7277     }
7278 
7279     NewInstructions[UI] = NI;
7280     MaybeDead.insert(UI);
7281     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7282     NI->insertBefore(InsertPoint);
7283     InsertPoint = NI;
7284     InsertedInsts.insert(NI);
7285 
7286     // Update the use for the new instruction, making sure that we update the
7287     // sunk instruction uses, if it is part of a chain that has already been
7288     // sunk.
7289     Instruction *OldI = cast<Instruction>(U->getUser());
7290     if (NewInstructions.count(OldI))
7291       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7292     else
7293       U->set(NI);
7294     Changed = true;
7295   }
7296 
7297   // Remove instructions that are dead after sinking.
7298   for (auto *I : MaybeDead) {
7299     if (!I->hasNUsesOrMore(1)) {
7300       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7301       I->eraseFromParent();
7302     }
7303   }
7304 
7305   return Changed;
7306 }
7307 
7308 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7309   Value *Cond = SI->getCondition();
7310   Type *OldType = Cond->getType();
7311   LLVMContext &Context = Cond->getContext();
7312   EVT OldVT = TLI->getValueType(*DL, OldType);
7313   MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7314   unsigned RegWidth = RegType.getSizeInBits();
7315 
7316   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7317     return false;
7318 
7319   // If the register width is greater than the type width, expand the condition
7320   // of the switch instruction and each case constant to the width of the
7321   // register. By widening the type of the switch condition, subsequent
7322   // comparisons (for case comparisons) will not need to be extended to the
7323   // preferred register width, so we will potentially eliminate N-1 extends,
7324   // where N is the number of cases in the switch.
7325   auto *NewType = Type::getIntNTy(Context, RegWidth);
7326 
7327   // Extend the switch condition and case constants using the target preferred
7328   // extend unless the switch condition is a function argument with an extend
7329   // attribute. In that case, we can avoid an unnecessary mask/extension by
7330   // matching the argument extension instead.
7331   Instruction::CastOps ExtType = Instruction::ZExt;
7332   // Some targets prefer SExt over ZExt.
7333   if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7334     ExtType = Instruction::SExt;
7335 
7336   if (auto *Arg = dyn_cast<Argument>(Cond)) {
7337     if (Arg->hasSExtAttr())
7338       ExtType = Instruction::SExt;
7339     if (Arg->hasZExtAttr())
7340       ExtType = Instruction::ZExt;
7341   }
7342 
7343   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7344   ExtInst->insertBefore(SI);
7345   ExtInst->setDebugLoc(SI->getDebugLoc());
7346   SI->setCondition(ExtInst);
7347   for (auto Case : SI->cases()) {
7348     const APInt &NarrowConst = Case.getCaseValue()->getValue();
7349     APInt WideConst = (ExtType == Instruction::ZExt)
7350                           ? NarrowConst.zext(RegWidth)
7351                           : NarrowConst.sext(RegWidth);
7352     Case.setValue(ConstantInt::get(Context, WideConst));
7353   }
7354 
7355   return true;
7356 }
7357 
7358 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7359   // The SCCP optimization tends to produce code like this:
7360   //   switch(x) { case 42: phi(42, ...) }
7361   // Materializing the constant for the phi-argument needs instructions; So we
7362   // change the code to:
7363   //   switch(x) { case 42: phi(x, ...) }
7364 
7365   Value *Condition = SI->getCondition();
7366   // Avoid endless loop in degenerate case.
7367   if (isa<ConstantInt>(*Condition))
7368     return false;
7369 
7370   bool Changed = false;
7371   BasicBlock *SwitchBB = SI->getParent();
7372   Type *ConditionType = Condition->getType();
7373 
7374   for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7375     ConstantInt *CaseValue = Case.getCaseValue();
7376     BasicBlock *CaseBB = Case.getCaseSuccessor();
7377     // Set to true if we previously checked that `CaseBB` is only reached by
7378     // a single case from this switch.
7379     bool CheckedForSinglePred = false;
7380     for (PHINode &PHI : CaseBB->phis()) {
7381       Type *PHIType = PHI.getType();
7382       // If ZExt is free then we can also catch patterns like this:
7383       //   switch((i32)x) { case 42: phi((i64)42, ...); }
7384       // and replace `(i64)42` with `zext i32 %x to i64`.
7385       bool TryZExt =
7386           PHIType->isIntegerTy() &&
7387           PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7388           TLI->isZExtFree(ConditionType, PHIType);
7389       if (PHIType == ConditionType || TryZExt) {
7390         // Set to true to skip this case because of multiple preds.
7391         bool SkipCase = false;
7392         Value *Replacement = nullptr;
7393         for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7394           Value *PHIValue = PHI.getIncomingValue(I);
7395           if (PHIValue != CaseValue) {
7396             if (!TryZExt)
7397               continue;
7398             ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7399             if (!PHIValueInt ||
7400                 PHIValueInt->getValue() !=
7401                     CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7402               continue;
7403           }
7404           if (PHI.getIncomingBlock(I) != SwitchBB)
7405             continue;
7406           // We cannot optimize if there are multiple case labels jumping to
7407           // this block.  This check may get expensive when there are many
7408           // case labels so we test for it last.
7409           if (!CheckedForSinglePred) {
7410             CheckedForSinglePred = true;
7411             if (SI->findCaseDest(CaseBB) == nullptr) {
7412               SkipCase = true;
7413               break;
7414             }
7415           }
7416 
7417           if (Replacement == nullptr) {
7418             if (PHIValue == CaseValue) {
7419               Replacement = Condition;
7420             } else {
7421               IRBuilder<> Builder(SI);
7422               Replacement = Builder.CreateZExt(Condition, PHIType);
7423             }
7424           }
7425           PHI.setIncomingValue(I, Replacement);
7426           Changed = true;
7427         }
7428         if (SkipCase)
7429           break;
7430       }
7431     }
7432   }
7433   return Changed;
7434 }
7435 
7436 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7437   bool Changed = optimizeSwitchType(SI);
7438   Changed |= optimizeSwitchPhiConstants(SI);
7439   return Changed;
7440 }
7441 
7442 namespace {
7443 
7444 /// Helper class to promote a scalar operation to a vector one.
7445 /// This class is used to move downward extractelement transition.
7446 /// E.g.,
7447 /// a = vector_op <2 x i32>
7448 /// b = extractelement <2 x i32> a, i32 0
7449 /// c = scalar_op b
7450 /// store c
7451 ///
7452 /// =>
7453 /// a = vector_op <2 x i32>
7454 /// c = vector_op a (equivalent to scalar_op on the related lane)
7455 /// * d = extractelement <2 x i32> c, i32 0
7456 /// * store d
7457 /// Assuming both extractelement and store can be combine, we get rid of the
7458 /// transition.
7459 class VectorPromoteHelper {
7460   /// DataLayout associated with the current module.
7461   const DataLayout &DL;
7462 
7463   /// Used to perform some checks on the legality of vector operations.
7464   const TargetLowering &TLI;
7465 
7466   /// Used to estimated the cost of the promoted chain.
7467   const TargetTransformInfo &TTI;
7468 
7469   /// The transition being moved downwards.
7470   Instruction *Transition;
7471 
7472   /// The sequence of instructions to be promoted.
7473   SmallVector<Instruction *, 4> InstsToBePromoted;
7474 
7475   /// Cost of combining a store and an extract.
7476   unsigned StoreExtractCombineCost;
7477 
7478   /// Instruction that will be combined with the transition.
7479   Instruction *CombineInst = nullptr;
7480 
7481   /// The instruction that represents the current end of the transition.
7482   /// Since we are faking the promotion until we reach the end of the chain
7483   /// of computation, we need a way to get the current end of the transition.
7484   Instruction *getEndOfTransition() const {
7485     if (InstsToBePromoted.empty())
7486       return Transition;
7487     return InstsToBePromoted.back();
7488   }
7489 
7490   /// Return the index of the original value in the transition.
7491   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7492   /// c, is at index 0.
7493   unsigned getTransitionOriginalValueIdx() const {
7494     assert(isa<ExtractElementInst>(Transition) &&
7495            "Other kind of transitions are not supported yet");
7496     return 0;
7497   }
7498 
7499   /// Return the index of the index in the transition.
7500   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7501   /// is at index 1.
7502   unsigned getTransitionIdx() const {
7503     assert(isa<ExtractElementInst>(Transition) &&
7504            "Other kind of transitions are not supported yet");
7505     return 1;
7506   }
7507 
7508   /// Get the type of the transition.
7509   /// This is the type of the original value.
7510   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7511   /// transition is <2 x i32>.
7512   Type *getTransitionType() const {
7513     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7514   }
7515 
7516   /// Promote \p ToBePromoted by moving \p Def downward through.
7517   /// I.e., we have the following sequence:
7518   /// Def = Transition <ty1> a to <ty2>
7519   /// b = ToBePromoted <ty2> Def, ...
7520   /// =>
7521   /// b = ToBePromoted <ty1> a, ...
7522   /// Def = Transition <ty1> ToBePromoted to <ty2>
7523   void promoteImpl(Instruction *ToBePromoted);
7524 
7525   /// Check whether or not it is profitable to promote all the
7526   /// instructions enqueued to be promoted.
7527   bool isProfitableToPromote() {
7528     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7529     unsigned Index = isa<ConstantInt>(ValIdx)
7530                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
7531                          : -1;
7532     Type *PromotedType = getTransitionType();
7533 
7534     StoreInst *ST = cast<StoreInst>(CombineInst);
7535     unsigned AS = ST->getPointerAddressSpace();
7536     // Check if this store is supported.
7537     if (!TLI.allowsMisalignedMemoryAccesses(
7538             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7539             ST->getAlign())) {
7540       // If this is not supported, there is no way we can combine
7541       // the extract with the store.
7542       return false;
7543     }
7544 
7545     // The scalar chain of computation has to pay for the transition
7546     // scalar to vector.
7547     // The vector chain has to account for the combining cost.
7548     enum TargetTransformInfo::TargetCostKind CostKind =
7549         TargetTransformInfo::TCK_RecipThroughput;
7550     InstructionCost ScalarCost =
7551         TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
7552     InstructionCost VectorCost = StoreExtractCombineCost;
7553     for (const auto &Inst : InstsToBePromoted) {
7554       // Compute the cost.
7555       // By construction, all instructions being promoted are arithmetic ones.
7556       // Moreover, one argument is a constant that can be viewed as a splat
7557       // constant.
7558       Value *Arg0 = Inst->getOperand(0);
7559       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7560                             isa<ConstantFP>(Arg0);
7561       TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
7562       if (IsArg0Constant)
7563         Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7564       else
7565         Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7566 
7567       ScalarCost += TTI.getArithmeticInstrCost(
7568           Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
7569       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7570                                                CostKind, Arg0Info, Arg1Info);
7571     }
7572     LLVM_DEBUG(
7573         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7574                << ScalarCost << "\nVector: " << VectorCost << '\n');
7575     return ScalarCost > VectorCost;
7576   }
7577 
7578   /// Generate a constant vector with \p Val with the same
7579   /// number of elements as the transition.
7580   /// \p UseSplat defines whether or not \p Val should be replicated
7581   /// across the whole vector.
7582   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7583   /// otherwise we generate a vector with as many undef as possible:
7584   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7585   /// used at the index of the extract.
7586   Value *getConstantVector(Constant *Val, bool UseSplat) const {
7587     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7588     if (!UseSplat) {
7589       // If we cannot determine where the constant must be, we have to
7590       // use a splat constant.
7591       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7592       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7593         ExtractIdx = CstVal->getSExtValue();
7594       else
7595         UseSplat = true;
7596     }
7597 
7598     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7599     if (UseSplat)
7600       return ConstantVector::getSplat(EC, Val);
7601 
7602     if (!EC.isScalable()) {
7603       SmallVector<Constant *, 4> ConstVec;
7604       UndefValue *UndefVal = UndefValue::get(Val->getType());
7605       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7606         if (Idx == ExtractIdx)
7607           ConstVec.push_back(Val);
7608         else
7609           ConstVec.push_back(UndefVal);
7610       }
7611       return ConstantVector::get(ConstVec);
7612     } else
7613       llvm_unreachable(
7614           "Generate scalable vector for non-splat is unimplemented");
7615   }
7616 
7617   /// Check if promoting to a vector type an operand at \p OperandIdx
7618   /// in \p Use can trigger undefined behavior.
7619   static bool canCauseUndefinedBehavior(const Instruction *Use,
7620                                         unsigned OperandIdx) {
7621     // This is not safe to introduce undef when the operand is on
7622     // the right hand side of a division-like instruction.
7623     if (OperandIdx != 1)
7624       return false;
7625     switch (Use->getOpcode()) {
7626     default:
7627       return false;
7628     case Instruction::SDiv:
7629     case Instruction::UDiv:
7630     case Instruction::SRem:
7631     case Instruction::URem:
7632       return true;
7633     case Instruction::FDiv:
7634     case Instruction::FRem:
7635       return !Use->hasNoNaNs();
7636     }
7637     llvm_unreachable(nullptr);
7638   }
7639 
7640 public:
7641   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7642                       const TargetTransformInfo &TTI, Instruction *Transition,
7643                       unsigned CombineCost)
7644       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7645         StoreExtractCombineCost(CombineCost) {
7646     assert(Transition && "Do not know how to promote null");
7647   }
7648 
7649   /// Check if we can promote \p ToBePromoted to \p Type.
7650   bool canPromote(const Instruction *ToBePromoted) const {
7651     // We could support CastInst too.
7652     return isa<BinaryOperator>(ToBePromoted);
7653   }
7654 
7655   /// Check if it is profitable to promote \p ToBePromoted
7656   /// by moving downward the transition through.
7657   bool shouldPromote(const Instruction *ToBePromoted) const {
7658     // Promote only if all the operands can be statically expanded.
7659     // Indeed, we do not want to introduce any new kind of transitions.
7660     for (const Use &U : ToBePromoted->operands()) {
7661       const Value *Val = U.get();
7662       if (Val == getEndOfTransition()) {
7663         // If the use is a division and the transition is on the rhs,
7664         // we cannot promote the operation, otherwise we may create a
7665         // division by zero.
7666         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7667           return false;
7668         continue;
7669       }
7670       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7671           !isa<ConstantFP>(Val))
7672         return false;
7673     }
7674     // Check that the resulting operation is legal.
7675     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7676     if (!ISDOpcode)
7677       return false;
7678     return StressStoreExtract ||
7679            TLI.isOperationLegalOrCustom(
7680                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7681   }
7682 
7683   /// Check whether or not \p Use can be combined
7684   /// with the transition.
7685   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7686   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7687 
7688   /// Record \p ToBePromoted as part of the chain to be promoted.
7689   void enqueueForPromotion(Instruction *ToBePromoted) {
7690     InstsToBePromoted.push_back(ToBePromoted);
7691   }
7692 
7693   /// Set the instruction that will be combined with the transition.
7694   void recordCombineInstruction(Instruction *ToBeCombined) {
7695     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7696     CombineInst = ToBeCombined;
7697   }
7698 
7699   /// Promote all the instructions enqueued for promotion if it is
7700   /// is profitable.
7701   /// \return True if the promotion happened, false otherwise.
7702   bool promote() {
7703     // Check if there is something to promote.
7704     // Right now, if we do not have anything to combine with,
7705     // we assume the promotion is not profitable.
7706     if (InstsToBePromoted.empty() || !CombineInst)
7707       return false;
7708 
7709     // Check cost.
7710     if (!StressStoreExtract && !isProfitableToPromote())
7711       return false;
7712 
7713     // Promote.
7714     for (auto &ToBePromoted : InstsToBePromoted)
7715       promoteImpl(ToBePromoted);
7716     InstsToBePromoted.clear();
7717     return true;
7718   }
7719 };
7720 
7721 } // end anonymous namespace
7722 
7723 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7724   // At this point, we know that all the operands of ToBePromoted but Def
7725   // can be statically promoted.
7726   // For Def, we need to use its parameter in ToBePromoted:
7727   // b = ToBePromoted ty1 a
7728   // Def = Transition ty1 b to ty2
7729   // Move the transition down.
7730   // 1. Replace all uses of the promoted operation by the transition.
7731   // = ... b => = ... Def.
7732   assert(ToBePromoted->getType() == Transition->getType() &&
7733          "The type of the result of the transition does not match "
7734          "the final type");
7735   ToBePromoted->replaceAllUsesWith(Transition);
7736   // 2. Update the type of the uses.
7737   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7738   Type *TransitionTy = getTransitionType();
7739   ToBePromoted->mutateType(TransitionTy);
7740   // 3. Update all the operands of the promoted operation with promoted
7741   // operands.
7742   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7743   for (Use &U : ToBePromoted->operands()) {
7744     Value *Val = U.get();
7745     Value *NewVal = nullptr;
7746     if (Val == Transition)
7747       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7748     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7749              isa<ConstantFP>(Val)) {
7750       // Use a splat constant if it is not safe to use undef.
7751       NewVal = getConstantVector(
7752           cast<Constant>(Val),
7753           isa<UndefValue>(Val) ||
7754               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7755     } else
7756       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7757                        "this?");
7758     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7759   }
7760   Transition->moveAfter(ToBePromoted);
7761   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7762 }
7763 
7764 /// Some targets can do store(extractelement) with one instruction.
7765 /// Try to push the extractelement towards the stores when the target
7766 /// has this feature and this is profitable.
7767 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7768   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7769   if (DisableStoreExtract ||
7770       (!StressStoreExtract &&
7771        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7772                                        Inst->getOperand(1), CombineCost)))
7773     return false;
7774 
7775   // At this point we know that Inst is a vector to scalar transition.
7776   // Try to move it down the def-use chain, until:
7777   // - We can combine the transition with its single use
7778   //   => we got rid of the transition.
7779   // - We escape the current basic block
7780   //   => we would need to check that we are moving it at a cheaper place and
7781   //      we do not do that for now.
7782   BasicBlock *Parent = Inst->getParent();
7783   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7784   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7785   // If the transition has more than one use, assume this is not going to be
7786   // beneficial.
7787   while (Inst->hasOneUse()) {
7788     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7789     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7790 
7791     if (ToBePromoted->getParent() != Parent) {
7792       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7793                         << ToBePromoted->getParent()->getName()
7794                         << ") than the transition (" << Parent->getName()
7795                         << ").\n");
7796       return false;
7797     }
7798 
7799     if (VPH.canCombine(ToBePromoted)) {
7800       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7801                         << "will be combined with: " << *ToBePromoted << '\n');
7802       VPH.recordCombineInstruction(ToBePromoted);
7803       bool Changed = VPH.promote();
7804       NumStoreExtractExposed += Changed;
7805       return Changed;
7806     }
7807 
7808     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7809     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7810       return false;
7811 
7812     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7813 
7814     VPH.enqueueForPromotion(ToBePromoted);
7815     Inst = ToBePromoted;
7816   }
7817   return false;
7818 }
7819 
7820 /// For the instruction sequence of store below, F and I values
7821 /// are bundled together as an i64 value before being stored into memory.
7822 /// Sometimes it is more efficient to generate separate stores for F and I,
7823 /// which can remove the bitwise instructions or sink them to colder places.
7824 ///
7825 ///   (store (or (zext (bitcast F to i32) to i64),
7826 ///              (shl (zext I to i64), 32)), addr)  -->
7827 ///   (store F, addr) and (store I, addr+4)
7828 ///
7829 /// Similarly, splitting for other merged store can also be beneficial, like:
7830 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7831 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7832 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7833 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7834 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7835 ///
7836 /// We allow each target to determine specifically which kind of splitting is
7837 /// supported.
7838 ///
7839 /// The store patterns are commonly seen from the simple code snippet below
7840 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7841 ///   void goo(const std::pair<int, float> &);
7842 ///   hoo() {
7843 ///     ...
7844 ///     goo(std::make_pair(tmp, ftmp));
7845 ///     ...
7846 ///   }
7847 ///
7848 /// Although we already have similar splitting in DAG Combine, we duplicate
7849 /// it in CodeGenPrepare to catch the case in which pattern is across
7850 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7851 /// during code expansion.
7852 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7853                                 const TargetLowering &TLI) {
7854   // Handle simple but common cases only.
7855   Type *StoreType = SI.getValueOperand()->getType();
7856 
7857   // The code below assumes shifting a value by <number of bits>,
7858   // whereas scalable vectors would have to be shifted by
7859   // <2log(vscale) + number of bits> in order to store the
7860   // low/high parts. Bailing out for now.
7861   if (StoreType->isScalableTy())
7862     return false;
7863 
7864   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7865       DL.getTypeSizeInBits(StoreType) == 0)
7866     return false;
7867 
7868   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7869   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7870   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7871     return false;
7872 
7873   // Don't split the store if it is volatile.
7874   if (SI.isVolatile())
7875     return false;
7876 
7877   // Match the following patterns:
7878   // (store (or (zext LValue to i64),
7879   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7880   //  or
7881   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7882   //            (zext LValue to i64),
7883   // Expect both operands of OR and the first operand of SHL have only
7884   // one use.
7885   Value *LValue, *HValue;
7886   if (!match(SI.getValueOperand(),
7887              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7888                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7889                                    m_SpecificInt(HalfValBitSize))))))
7890     return false;
7891 
7892   // Check LValue and HValue are int with size less or equal than 32.
7893   if (!LValue->getType()->isIntegerTy() ||
7894       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7895       !HValue->getType()->isIntegerTy() ||
7896       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7897     return false;
7898 
7899   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7900   // as the input of target query.
7901   auto *LBC = dyn_cast<BitCastInst>(LValue);
7902   auto *HBC = dyn_cast<BitCastInst>(HValue);
7903   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7904                   : EVT::getEVT(LValue->getType());
7905   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7906                    : EVT::getEVT(HValue->getType());
7907   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7908     return false;
7909 
7910   // Start to split store.
7911   IRBuilder<> Builder(SI.getContext());
7912   Builder.SetInsertPoint(&SI);
7913 
7914   // If LValue/HValue is a bitcast in another BB, create a new one in current
7915   // BB so it may be merged with the splitted stores by dag combiner.
7916   if (LBC && LBC->getParent() != SI.getParent())
7917     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7918   if (HBC && HBC->getParent() != SI.getParent())
7919     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7920 
7921   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7922   auto CreateSplitStore = [&](Value *V, bool Upper) {
7923     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7924     Value *Addr = SI.getPointerOperand();
7925     Align Alignment = SI.getAlign();
7926     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7927     if (IsOffsetStore) {
7928       Addr = Builder.CreateGEP(
7929           SplitStoreType, Addr,
7930           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7931 
7932       // When splitting the store in half, naturally one half will retain the
7933       // alignment of the original wider store, regardless of whether it was
7934       // over-aligned or not, while the other will require adjustment.
7935       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7936     }
7937     Builder.CreateAlignedStore(V, Addr, Alignment);
7938   };
7939 
7940   CreateSplitStore(LValue, false);
7941   CreateSplitStore(HValue, true);
7942 
7943   // Delete the old store.
7944   SI.eraseFromParent();
7945   return true;
7946 }
7947 
7948 // Return true if the GEP has two operands, the first operand is of a sequential
7949 // type, and the second operand is a constant.
7950 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7951   gep_type_iterator I = gep_type_begin(*GEP);
7952   return GEP->getNumOperands() == 2 && I.isSequential() &&
7953          isa<ConstantInt>(GEP->getOperand(1));
7954 }
7955 
7956 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7957 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7958 // reducing liveness interference across those edges benefits global register
7959 // allocation. Currently handles only certain cases.
7960 //
7961 // For example, unmerge %GEPI and %UGEPI as below.
7962 //
7963 // ---------- BEFORE ----------
7964 // SrcBlock:
7965 //   ...
7966 //   %GEPIOp = ...
7967 //   ...
7968 //   %GEPI = gep %GEPIOp, Idx
7969 //   ...
7970 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7971 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7972 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7973 //   %UGEPI)
7974 //
7975 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7976 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7977 // ...
7978 //
7979 // DstBi:
7980 //   ...
7981 //   %UGEPI = gep %GEPIOp, UIdx
7982 // ...
7983 // ---------------------------
7984 //
7985 // ---------- AFTER ----------
7986 // SrcBlock:
7987 //   ... (same as above)
7988 //    (* %GEPI is still alive on the indirectbr edges)
7989 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7990 //    unmerging)
7991 // ...
7992 //
7993 // DstBi:
7994 //   ...
7995 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7996 //   ...
7997 // ---------------------------
7998 //
7999 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8000 // no longer alive on them.
8001 //
8002 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8003 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8004 // not to disable further simplications and optimizations as a result of GEP
8005 // merging.
8006 //
8007 // Note this unmerging may increase the length of the data flow critical path
8008 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8009 // between the register pressure and the length of data-flow critical
8010 // path. Restricting this to the uncommon IndirectBr case would minimize the
8011 // impact of potentially longer critical path, if any, and the impact on compile
8012 // time.
8013 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
8014                                              const TargetTransformInfo *TTI) {
8015   BasicBlock *SrcBlock = GEPI->getParent();
8016   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8017   // (non-IndirectBr) cases exit early here.
8018   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
8019     return false;
8020   // Check that GEPI is a simple gep with a single constant index.
8021   if (!GEPSequentialConstIndexed(GEPI))
8022     return false;
8023   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
8024   // Check that GEPI is a cheap one.
8025   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
8026                          TargetTransformInfo::TCK_SizeAndLatency) >
8027       TargetTransformInfo::TCC_Basic)
8028     return false;
8029   Value *GEPIOp = GEPI->getOperand(0);
8030   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8031   if (!isa<Instruction>(GEPIOp))
8032     return false;
8033   auto *GEPIOpI = cast<Instruction>(GEPIOp);
8034   if (GEPIOpI->getParent() != SrcBlock)
8035     return false;
8036   // Check that GEP is used outside the block, meaning it's alive on the
8037   // IndirectBr edge(s).
8038   if (llvm::none_of(GEPI->users(), [&](User *Usr) {
8039         if (auto *I = dyn_cast<Instruction>(Usr)) {
8040           if (I->getParent() != SrcBlock) {
8041             return true;
8042           }
8043         }
8044         return false;
8045       }))
8046     return false;
8047   // The second elements of the GEP chains to be unmerged.
8048   std::vector<GetElementPtrInst *> UGEPIs;
8049   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8050   // on IndirectBr edges.
8051   for (User *Usr : GEPIOp->users()) {
8052     if (Usr == GEPI)
8053       continue;
8054     // Check if Usr is an Instruction. If not, give up.
8055     if (!isa<Instruction>(Usr))
8056       return false;
8057     auto *UI = cast<Instruction>(Usr);
8058     // Check if Usr in the same block as GEPIOp, which is fine, skip.
8059     if (UI->getParent() == SrcBlock)
8060       continue;
8061     // Check if Usr is a GEP. If not, give up.
8062     if (!isa<GetElementPtrInst>(Usr))
8063       return false;
8064     auto *UGEPI = cast<GetElementPtrInst>(Usr);
8065     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8066     // the pointer operand to it. If so, record it in the vector. If not, give
8067     // up.
8068     if (!GEPSequentialConstIndexed(UGEPI))
8069       return false;
8070     if (UGEPI->getOperand(0) != GEPIOp)
8071       return false;
8072     if (UGEPI->getSourceElementType() != GEPI->getSourceElementType())
8073       return false;
8074     if (GEPIIdx->getType() !=
8075         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
8076       return false;
8077     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8078     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
8079                            TargetTransformInfo::TCK_SizeAndLatency) >
8080         TargetTransformInfo::TCC_Basic)
8081       return false;
8082     UGEPIs.push_back(UGEPI);
8083   }
8084   if (UGEPIs.size() == 0)
8085     return false;
8086   // Check the materializing cost of (Uidx-Idx).
8087   for (GetElementPtrInst *UGEPI : UGEPIs) {
8088     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8089     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8090     InstructionCost ImmCost = TTI->getIntImmCost(
8091         NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8092     if (ImmCost > TargetTransformInfo::TCC_Basic)
8093       return false;
8094   }
8095   // Now unmerge between GEPI and UGEPIs.
8096   for (GetElementPtrInst *UGEPI : UGEPIs) {
8097     UGEPI->setOperand(0, GEPI);
8098     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8099     Constant *NewUGEPIIdx = ConstantInt::get(
8100         GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8101     UGEPI->setOperand(1, NewUGEPIIdx);
8102     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8103     // inbounds to avoid UB.
8104     if (!GEPI->isInBounds()) {
8105       UGEPI->setIsInBounds(false);
8106     }
8107   }
8108   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8109   // alive on IndirectBr edges).
8110   assert(llvm::none_of(GEPIOp->users(),
8111                        [&](User *Usr) {
8112                          return cast<Instruction>(Usr)->getParent() != SrcBlock;
8113                        }) &&
8114          "GEPIOp is used outside SrcBlock");
8115   return true;
8116 }
8117 
8118 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8119                            SmallSet<BasicBlock *, 32> &FreshBBs,
8120                            bool IsHugeFunc) {
8121   // Try and convert
8122   //  %c = icmp ult %x, 8
8123   //  br %c, bla, blb
8124   //  %tc = lshr %x, 3
8125   // to
8126   //  %tc = lshr %x, 3
8127   //  %c = icmp eq %tc, 0
8128   //  br %c, bla, blb
8129   // Creating the cmp to zero can be better for the backend, especially if the
8130   // lshr produces flags that can be used automatically.
8131   if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8132     return false;
8133 
8134   ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8135   if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8136     return false;
8137 
8138   Value *X = Cmp->getOperand(0);
8139   APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8140 
8141   for (auto *U : X->users()) {
8142     Instruction *UI = dyn_cast<Instruction>(U);
8143     // A quick dominance check
8144     if (!UI ||
8145         (UI->getParent() != Branch->getParent() &&
8146          UI->getParent() != Branch->getSuccessor(0) &&
8147          UI->getParent() != Branch->getSuccessor(1)) ||
8148         (UI->getParent() != Branch->getParent() &&
8149          !UI->getParent()->getSinglePredecessor()))
8150       continue;
8151 
8152     if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8153         match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8154       IRBuilder<> Builder(Branch);
8155       if (UI->getParent() != Branch->getParent())
8156         UI->moveBefore(Branch);
8157       Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8158                                         ConstantInt::get(UI->getType(), 0));
8159       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8160       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8161       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8162       return true;
8163     }
8164     if (Cmp->isEquality() &&
8165         (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8166          match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
8167       IRBuilder<> Builder(Branch);
8168       if (UI->getParent() != Branch->getParent())
8169         UI->moveBefore(Branch);
8170       Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8171                                         ConstantInt::get(UI->getType(), 0));
8172       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8173       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8174       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8175       return true;
8176     }
8177   }
8178   return false;
8179 }
8180 
8181 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8182   bool AnyChange = false;
8183   AnyChange = fixupDPValuesOnInst(*I);
8184 
8185   // Bail out if we inserted the instruction to prevent optimizations from
8186   // stepping on each other's toes.
8187   if (InsertedInsts.count(I))
8188     return AnyChange;
8189 
8190   // TODO: Move into the switch on opcode below here.
8191   if (PHINode *P = dyn_cast<PHINode>(I)) {
8192     // It is possible for very late stage optimizations (such as SimplifyCFG)
8193     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
8194     // trivial PHI, go ahead and zap it here.
8195     if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8196       LargeOffsetGEPMap.erase(P);
8197       replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8198       P->eraseFromParent();
8199       ++NumPHIsElim;
8200       return true;
8201     }
8202     return AnyChange;
8203   }
8204 
8205   if (CastInst *CI = dyn_cast<CastInst>(I)) {
8206     // If the source of the cast is a constant, then this should have
8207     // already been constant folded.  The only reason NOT to constant fold
8208     // it is if something (e.g. LSR) was careful to place the constant
8209     // evaluation in a block other than then one that uses it (e.g. to hoist
8210     // the address of globals out of a loop).  If this is the case, we don't
8211     // want to forward-subst the cast.
8212     if (isa<Constant>(CI->getOperand(0)))
8213       return AnyChange;
8214 
8215     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8216       return true;
8217 
8218     if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) &&
8219         TLI->optimizeExtendOrTruncateConversion(
8220             I, LI->getLoopFor(I->getParent()), *TTI))
8221       return true;
8222 
8223     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8224       /// Sink a zext or sext into its user blocks if the target type doesn't
8225       /// fit in one register
8226       if (TLI->getTypeAction(CI->getContext(),
8227                              TLI->getValueType(*DL, CI->getType())) ==
8228           TargetLowering::TypeExpandInteger) {
8229         return SinkCast(CI);
8230       } else {
8231         if (TLI->optimizeExtendOrTruncateConversion(
8232                 I, LI->getLoopFor(I->getParent()), *TTI))
8233           return true;
8234 
8235         bool MadeChange = optimizeExt(I);
8236         return MadeChange | optimizeExtUses(I);
8237       }
8238     }
8239     return AnyChange;
8240   }
8241 
8242   if (auto *Cmp = dyn_cast<CmpInst>(I))
8243     if (optimizeCmp(Cmp, ModifiedDT))
8244       return true;
8245 
8246   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8247     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8248     bool Modified = optimizeLoadExt(LI);
8249     unsigned AS = LI->getPointerAddressSpace();
8250     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8251     return Modified;
8252   }
8253 
8254   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8255     if (splitMergedValStore(*SI, *DL, *TLI))
8256       return true;
8257     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8258     unsigned AS = SI->getPointerAddressSpace();
8259     return optimizeMemoryInst(I, SI->getOperand(1),
8260                               SI->getOperand(0)->getType(), AS);
8261   }
8262 
8263   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8264     unsigned AS = RMW->getPointerAddressSpace();
8265     return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8266   }
8267 
8268   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8269     unsigned AS = CmpX->getPointerAddressSpace();
8270     return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8271                               CmpX->getCompareOperand()->getType(), AS);
8272   }
8273 
8274   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8275 
8276   if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8277       sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8278     return true;
8279 
8280   // TODO: Move this into the switch on opcode - it handles shifts already.
8281   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8282                 BinOp->getOpcode() == Instruction::LShr)) {
8283     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8284     if (CI && TLI->hasExtractBitsInsn())
8285       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8286         return true;
8287   }
8288 
8289   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8290     if (GEPI->hasAllZeroIndices()) {
8291       /// The GEP operand must be a pointer, so must its result -> BitCast
8292       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8293                                         GEPI->getName(), GEPI);
8294       NC->setDebugLoc(GEPI->getDebugLoc());
8295       replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8296       RecursivelyDeleteTriviallyDeadInstructions(
8297           GEPI, TLInfo, nullptr,
8298           [&](Value *V) { removeAllAssertingVHReferences(V); });
8299       ++NumGEPsElim;
8300       optimizeInst(NC, ModifiedDT);
8301       return true;
8302     }
8303     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8304       return true;
8305     }
8306   }
8307 
8308   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8309     // freeze(icmp a, const)) -> icmp (freeze a), const
8310     // This helps generate efficient conditional jumps.
8311     Instruction *CmpI = nullptr;
8312     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8313       CmpI = II;
8314     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8315       CmpI = F->getFastMathFlags().none() ? F : nullptr;
8316 
8317     if (CmpI && CmpI->hasOneUse()) {
8318       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8319       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8320                     isa<ConstantPointerNull>(Op0);
8321       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8322                     isa<ConstantPointerNull>(Op1);
8323       if (Const0 || Const1) {
8324         if (!Const0 || !Const1) {
8325           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
8326           F->takeName(FI);
8327           CmpI->setOperand(Const0 ? 1 : 0, F);
8328         }
8329         replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
8330         FI->eraseFromParent();
8331         return true;
8332       }
8333     }
8334     return AnyChange;
8335   }
8336 
8337   if (tryToSinkFreeOperands(I))
8338     return true;
8339 
8340   switch (I->getOpcode()) {
8341   case Instruction::Shl:
8342   case Instruction::LShr:
8343   case Instruction::AShr:
8344     return optimizeShiftInst(cast<BinaryOperator>(I));
8345   case Instruction::Call:
8346     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8347   case Instruction::Select:
8348     return optimizeSelectInst(cast<SelectInst>(I));
8349   case Instruction::ShuffleVector:
8350     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8351   case Instruction::Switch:
8352     return optimizeSwitchInst(cast<SwitchInst>(I));
8353   case Instruction::ExtractElement:
8354     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8355   case Instruction::Br:
8356     return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
8357   }
8358 
8359   return AnyChange;
8360 }
8361 
8362 /// Given an OR instruction, check to see if this is a bitreverse
8363 /// idiom. If so, insert the new intrinsic and return true.
8364 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8365   if (!I.getType()->isIntegerTy() ||
8366       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8367                                      TLI->getValueType(*DL, I.getType(), true)))
8368     return false;
8369 
8370   SmallVector<Instruction *, 4> Insts;
8371   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8372     return false;
8373   Instruction *LastInst = Insts.back();
8374   replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
8375   RecursivelyDeleteTriviallyDeadInstructions(
8376       &I, TLInfo, nullptr,
8377       [&](Value *V) { removeAllAssertingVHReferences(V); });
8378   return true;
8379 }
8380 
8381 // In this pass we look for GEP and cast instructions that are used
8382 // across basic blocks and rewrite them to improve basic-block-at-a-time
8383 // selection.
8384 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
8385   SunkAddrs.clear();
8386   bool MadeChange = false;
8387 
8388   do {
8389     CurInstIterator = BB.begin();
8390     ModifiedDT = ModifyDT::NotModifyDT;
8391     while (CurInstIterator != BB.end()) {
8392       MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8393       if (ModifiedDT != ModifyDT::NotModifyDT) {
8394         // For huge function we tend to quickly go though the inner optmization
8395         // opportunities in the BB. So we go back to the BB head to re-optimize
8396         // each instruction instead of go back to the function head.
8397         if (IsHugeFunc) {
8398           DT.reset();
8399           getDT(*BB.getParent());
8400           break;
8401         } else {
8402           return true;
8403         }
8404       }
8405     }
8406   } while (ModifiedDT == ModifyDT::ModifyInstDT);
8407 
8408   bool MadeBitReverse = true;
8409   while (MadeBitReverse) {
8410     MadeBitReverse = false;
8411     for (auto &I : reverse(BB)) {
8412       if (makeBitReverse(I)) {
8413         MadeBitReverse = MadeChange = true;
8414         break;
8415       }
8416     }
8417   }
8418   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8419 
8420   return MadeChange;
8421 }
8422 
8423 // Some CGP optimizations may move or alter what's computed in a block. Check
8424 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8425 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8426   assert(isa<DbgValueInst>(I));
8427   DbgValueInst &DVI = *cast<DbgValueInst>(I);
8428 
8429   // Does this dbg.value refer to a sunk address calculation?
8430   bool AnyChange = false;
8431   SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8432                                      DVI.location_ops().end());
8433   for (Value *Location : LocationOps) {
8434     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8435     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8436     if (SunkAddr) {
8437       // Point dbg.value at locally computed address, which should give the best
8438       // opportunity to be accurately lowered. This update may change the type
8439       // of pointer being referred to; however this makes no difference to
8440       // debugging information, and we can't generate bitcasts that may affect
8441       // codegen.
8442       DVI.replaceVariableLocationOp(Location, SunkAddr);
8443       AnyChange = true;
8444     }
8445   }
8446   return AnyChange;
8447 }
8448 
8449 bool CodeGenPrepare::fixupDPValuesOnInst(Instruction &I) {
8450   bool AnyChange = false;
8451   for (DPValue &DPV : I.getDbgValueRange())
8452     AnyChange |= fixupDPValue(DPV);
8453   return AnyChange;
8454 }
8455 
8456 // FIXME: should updating debug-info really cause the "changed" flag to fire,
8457 // which can cause a function to be reprocessed?
8458 bool CodeGenPrepare::fixupDPValue(DPValue &DPV) {
8459   if (DPV.Type != DPValue::LocationType::Value)
8460     return false;
8461 
8462   // Does this DPValue refer to a sunk address calculation?
8463   bool AnyChange = false;
8464   SmallDenseSet<Value *> LocationOps(DPV.location_ops().begin(),
8465                                      DPV.location_ops().end());
8466   for (Value *Location : LocationOps) {
8467     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8468     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8469     if (SunkAddr) {
8470       // Point dbg.value at locally computed address, which should give the best
8471       // opportunity to be accurately lowered. This update may change the type
8472       // of pointer being referred to; however this makes no difference to
8473       // debugging information, and we can't generate bitcasts that may affect
8474       // codegen.
8475       DPV.replaceVariableLocationOp(Location, SunkAddr);
8476       AnyChange = true;
8477     }
8478   }
8479   return AnyChange;
8480 }
8481 
8482 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) {
8483   DVI->removeFromParent();
8484   if (isa<PHINode>(VI))
8485     DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8486   else
8487     DVI->insertAfter(VI);
8488 }
8489 
8490 static void DbgInserterHelper(DPValue *DPV, Instruction *VI) {
8491   DPV->removeFromParent();
8492   BasicBlock *VIBB = VI->getParent();
8493   if (isa<PHINode>(VI))
8494     VIBB->insertDPValueBefore(DPV, VIBB->getFirstInsertionPt());
8495   else
8496     VIBB->insertDPValueAfter(DPV, VI);
8497 }
8498 
8499 // A llvm.dbg.value may be using a value before its definition, due to
8500 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8501 // them by moving the dbg.value to immediately after the value definition.
8502 // FIXME: Ideally this should never be necessary, and this has the potential
8503 // to re-order dbg.value intrinsics.
8504 bool CodeGenPrepare::placeDbgValues(Function &F) {
8505   bool MadeChange = false;
8506   DominatorTree DT(F);
8507 
8508   auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) {
8509     SmallVector<Instruction *, 4> VIs;
8510     for (Value *V : DbgItem->location_ops())
8511       if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8512         VIs.push_back(VI);
8513 
8514     // This item may depend on multiple instructions, complicating any
8515     // potential sink. This block takes the defensive approach, opting to
8516     // "undef" the item if it has more than one instruction and any of them do
8517     // not dominate iem.
8518     for (Instruction *VI : VIs) {
8519       if (VI->isTerminator())
8520         continue;
8521 
8522       // If VI is a phi in a block with an EHPad terminator, we can't insert
8523       // after it.
8524       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8525         continue;
8526 
8527       // If the defining instruction dominates the dbg.value, we do not need
8528       // to move the dbg.value.
8529       if (DT.dominates(VI, Position))
8530         continue;
8531 
8532       // If we depend on multiple instructions and any of them doesn't
8533       // dominate this DVI, we probably can't salvage it: moving it to
8534       // after any of the instructions could cause us to lose the others.
8535       if (VIs.size() > 1) {
8536         LLVM_DEBUG(
8537             dbgs()
8538             << "Unable to find valid location for Debug Value, undefing:\n"
8539             << *DbgItem);
8540         DbgItem->setKillLocation();
8541         break;
8542       }
8543 
8544       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8545                         << *DbgItem << ' ' << *VI);
8546       DbgInserterHelper(DbgItem, VI);
8547       MadeChange = true;
8548       ++NumDbgValueMoved;
8549     }
8550   };
8551 
8552   for (BasicBlock &BB : F) {
8553     for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8554       // Process dbg.value intrinsics.
8555       DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8556       if (DVI) {
8557         DbgProcessor(DVI, DVI);
8558         continue;
8559       }
8560 
8561       // If this isn't a dbg.value, process any attached DPValue records
8562       // attached to this instruction.
8563       for (DPValue &DPV : llvm::make_early_inc_range(Insn.getDbgValueRange())) {
8564         if (DPV.Type != DPValue::LocationType::Value)
8565           continue;
8566         DbgProcessor(&DPV, &Insn);
8567       }
8568     }
8569   }
8570 
8571   return MadeChange;
8572 }
8573 
8574 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8575 // probes can be chained dependencies of other regular DAG nodes and block DAG
8576 // combine optimizations.
8577 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8578   bool MadeChange = false;
8579   for (auto &Block : F) {
8580     // Move the rest probes to the beginning of the block.
8581     auto FirstInst = Block.getFirstInsertionPt();
8582     while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8583       ++FirstInst;
8584     BasicBlock::iterator I(FirstInst);
8585     I++;
8586     while (I != Block.end()) {
8587       if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8588         II->moveBefore(&*FirstInst);
8589         MadeChange = true;
8590       }
8591     }
8592   }
8593   return MadeChange;
8594 }
8595 
8596 /// Scale down both weights to fit into uint32_t.
8597 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8598   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8599   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8600   NewTrue = NewTrue / Scale;
8601   NewFalse = NewFalse / Scale;
8602 }
8603 
8604 /// Some targets prefer to split a conditional branch like:
8605 /// \code
8606 ///   %0 = icmp ne i32 %a, 0
8607 ///   %1 = icmp ne i32 %b, 0
8608 ///   %or.cond = or i1 %0, %1
8609 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
8610 /// \endcode
8611 /// into multiple branch instructions like:
8612 /// \code
8613 ///   bb1:
8614 ///     %0 = icmp ne i32 %a, 0
8615 ///     br i1 %0, label %TrueBB, label %bb2
8616 ///   bb2:
8617 ///     %1 = icmp ne i32 %b, 0
8618 ///     br i1 %1, label %TrueBB, label %FalseBB
8619 /// \endcode
8620 /// This usually allows instruction selection to do even further optimizations
8621 /// and combine the compare with the branch instruction. Currently this is
8622 /// applied for targets which have "cheap" jump instructions.
8623 ///
8624 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8625 ///
8626 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
8627   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8628     return false;
8629 
8630   bool MadeChange = false;
8631   for (auto &BB : F) {
8632     // Does this BB end with the following?
8633     //   %cond1 = icmp|fcmp|binary instruction ...
8634     //   %cond2 = icmp|fcmp|binary instruction ...
8635     //   %cond.or = or|and i1 %cond1, cond2
8636     //   br i1 %cond.or label %dest1, label %dest2"
8637     Instruction *LogicOp;
8638     BasicBlock *TBB, *FBB;
8639     if (!match(BB.getTerminator(),
8640                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8641       continue;
8642 
8643     auto *Br1 = cast<BranchInst>(BB.getTerminator());
8644     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8645       continue;
8646 
8647     // The merging of mostly empty BB can cause a degenerate branch.
8648     if (TBB == FBB)
8649       continue;
8650 
8651     unsigned Opc;
8652     Value *Cond1, *Cond2;
8653     if (match(LogicOp,
8654               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8655       Opc = Instruction::And;
8656     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8657                                         m_OneUse(m_Value(Cond2)))))
8658       Opc = Instruction::Or;
8659     else
8660       continue;
8661 
8662     auto IsGoodCond = [](Value *Cond) {
8663       return match(
8664           Cond,
8665           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8666                                            m_LogicalOr(m_Value(), m_Value()))));
8667     };
8668     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8669       continue;
8670 
8671     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8672 
8673     // Create a new BB.
8674     auto *TmpBB =
8675         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8676                            BB.getParent(), BB.getNextNode());
8677     if (IsHugeFunc)
8678       FreshBBs.insert(TmpBB);
8679 
8680     // Update original basic block by using the first condition directly by the
8681     // branch instruction and removing the no longer needed and/or instruction.
8682     Br1->setCondition(Cond1);
8683     LogicOp->eraseFromParent();
8684 
8685     // Depending on the condition we have to either replace the true or the
8686     // false successor of the original branch instruction.
8687     if (Opc == Instruction::And)
8688       Br1->setSuccessor(0, TmpBB);
8689     else
8690       Br1->setSuccessor(1, TmpBB);
8691 
8692     // Fill in the new basic block.
8693     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8694     if (auto *I = dyn_cast<Instruction>(Cond2)) {
8695       I->removeFromParent();
8696       I->insertBefore(Br2);
8697     }
8698 
8699     // Update PHI nodes in both successors. The original BB needs to be
8700     // replaced in one successor's PHI nodes, because the branch comes now from
8701     // the newly generated BB (NewBB). In the other successor we need to add one
8702     // incoming edge to the PHI nodes, because both branch instructions target
8703     // now the same successor. Depending on the original branch condition
8704     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8705     // we perform the correct update for the PHI nodes.
8706     // This doesn't change the successor order of the just created branch
8707     // instruction (or any other instruction).
8708     if (Opc == Instruction::Or)
8709       std::swap(TBB, FBB);
8710 
8711     // Replace the old BB with the new BB.
8712     TBB->replacePhiUsesWith(&BB, TmpBB);
8713 
8714     // Add another incoming edge from the new BB.
8715     for (PHINode &PN : FBB->phis()) {
8716       auto *Val = PN.getIncomingValueForBlock(&BB);
8717       PN.addIncoming(Val, TmpBB);
8718     }
8719 
8720     // Update the branch weights (from SelectionDAGBuilder::
8721     // FindMergedConditions).
8722     if (Opc == Instruction::Or) {
8723       // Codegen X | Y as:
8724       // BB1:
8725       //   jmp_if_X TBB
8726       //   jmp TmpBB
8727       // TmpBB:
8728       //   jmp_if_Y TBB
8729       //   jmp FBB
8730       //
8731 
8732       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8733       // The requirement is that
8734       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8735       //     = TrueProb for original BB.
8736       // Assuming the original weights are A and B, one choice is to set BB1's
8737       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8738       // assumes that
8739       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8740       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8741       // TmpBB, but the math is more complicated.
8742       uint64_t TrueWeight, FalseWeight;
8743       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8744         uint64_t NewTrueWeight = TrueWeight;
8745         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8746         scaleWeights(NewTrueWeight, NewFalseWeight);
8747         Br1->setMetadata(LLVMContext::MD_prof,
8748                          MDBuilder(Br1->getContext())
8749                              .createBranchWeights(TrueWeight, FalseWeight));
8750 
8751         NewTrueWeight = TrueWeight;
8752         NewFalseWeight = 2 * FalseWeight;
8753         scaleWeights(NewTrueWeight, NewFalseWeight);
8754         Br2->setMetadata(LLVMContext::MD_prof,
8755                          MDBuilder(Br2->getContext())
8756                              .createBranchWeights(TrueWeight, FalseWeight));
8757       }
8758     } else {
8759       // Codegen X & Y as:
8760       // BB1:
8761       //   jmp_if_X TmpBB
8762       //   jmp FBB
8763       // TmpBB:
8764       //   jmp_if_Y TBB
8765       //   jmp FBB
8766       //
8767       //  This requires creation of TmpBB after CurBB.
8768 
8769       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8770       // The requirement is that
8771       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8772       //     = FalseProb for original BB.
8773       // Assuming the original weights are A and B, one choice is to set BB1's
8774       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8775       // assumes that
8776       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8777       uint64_t TrueWeight, FalseWeight;
8778       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8779         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8780         uint64_t NewFalseWeight = FalseWeight;
8781         scaleWeights(NewTrueWeight, NewFalseWeight);
8782         Br1->setMetadata(LLVMContext::MD_prof,
8783                          MDBuilder(Br1->getContext())
8784                              .createBranchWeights(TrueWeight, FalseWeight));
8785 
8786         NewTrueWeight = 2 * TrueWeight;
8787         NewFalseWeight = FalseWeight;
8788         scaleWeights(NewTrueWeight, NewFalseWeight);
8789         Br2->setMetadata(LLVMContext::MD_prof,
8790                          MDBuilder(Br2->getContext())
8791                              .createBranchWeights(TrueWeight, FalseWeight));
8792       }
8793     }
8794 
8795     ModifiedDT = ModifyDT::ModifyBBDT;
8796     MadeChange = true;
8797 
8798     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8799                TmpBB->dump());
8800   }
8801   return MadeChange;
8802 }
8803