1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/CodeGenPrepare.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/CodeGenTypes/MachineValueType.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Argument.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfo.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/IntrinsicsAArch64.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/ProfDataUtils.h" 71 #include "llvm/IR/Statepoint.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/User.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/IR/ValueHandle.h" 77 #include "llvm/IR/ValueMap.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/BlockFrequency.h" 81 #include "llvm/Support/BranchProbability.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <optional> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define DEBUG_TYPE "codegenprepare" 110 111 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 112 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 113 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 114 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 115 "sunken Cmps"); 116 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 117 "of sunken Casts"); 118 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 119 "computations were sunk"); 120 STATISTIC(NumMemoryInstsPhiCreated, 121 "Number of phis created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumMemoryInstsSelectCreated, 124 "Number of select created when address " 125 "computations were sunk to memory instructions"); 126 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 127 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 128 STATISTIC(NumAndsAdded, 129 "Number of and mask instructions added to form ext loads"); 130 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 131 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 132 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 133 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 134 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 135 136 static cl::opt<bool> DisableBranchOpts( 137 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable branch optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> 141 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 142 cl::desc("Disable GC optimizations in CodeGenPrepare")); 143 144 static cl::opt<bool> 145 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 146 cl::init(false), 147 cl::desc("Disable select to branch conversion.")); 148 149 static cl::opt<bool> 150 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 151 cl::desc("Address sinking in CGP using GEPs.")); 152 153 static cl::opt<bool> 154 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 155 cl::desc("Enable sinkinig and/cmp into branches.")); 156 157 static cl::opt<bool> DisableStoreExtract( 158 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> StressStoreExtract( 162 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 163 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 164 165 static cl::opt<bool> DisableExtLdPromotion( 166 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 168 "CodeGenPrepare")); 169 170 static cl::opt<bool> StressExtLdPromotion( 171 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 172 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 173 "optimization in CodeGenPrepare")); 174 175 static cl::opt<bool> DisablePreheaderProtect( 176 "disable-preheader-prot", cl::Hidden, cl::init(false), 177 cl::desc("Disable protection against removing loop preheaders")); 178 179 static cl::opt<bool> ProfileGuidedSectionPrefix( 180 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 181 cl::desc("Use profile info to add section prefix for hot/cold functions")); 182 183 static cl::opt<bool> ProfileUnknownInSpecialSection( 184 "profile-unknown-in-special-section", cl::Hidden, 185 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 186 "profile, we cannot tell the function is cold for sure because " 187 "it may be a function newly added without ever being sampled. " 188 "With the flag enabled, compiler can put such profile unknown " 189 "functions into a special section, so runtime system can choose " 190 "to handle it in a different way than .text section, to save " 191 "RAM for example. ")); 192 193 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 194 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 195 cl::desc("Use the basic-block-sections profile to determine the text " 196 "section prefix for hot functions. Functions with " 197 "basic-block-sections profile will be placed in `.text.hot` " 198 "regardless of their FDO profile info. Other functions won't be " 199 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 200 "profiles.")); 201 202 static cl::opt<uint64_t> FreqRatioToSkipMerge( 203 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 204 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 205 "(frequency of destination block) is greater than this ratio")); 206 207 static cl::opt<bool> ForceSplitStore( 208 "force-split-store", cl::Hidden, cl::init(false), 209 cl::desc("Force store splitting no matter what the target query says.")); 210 211 static cl::opt<bool> EnableTypePromotionMerge( 212 "cgp-type-promotion-merge", cl::Hidden, 213 cl::desc("Enable merging of redundant sexts when one is dominating" 214 " the other."), 215 cl::init(true)); 216 217 static cl::opt<bool> DisableComplexAddrModes( 218 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 219 cl::desc("Disables combining addressing modes with different parts " 220 "in optimizeMemoryInst.")); 221 222 static cl::opt<bool> 223 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 224 cl::desc("Allow creation of Phis in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkNewSelects( 227 "addr-sink-new-select", cl::Hidden, cl::init(true), 228 cl::desc("Allow creation of selects in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineBaseReg( 231 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of BaseReg field in Address sinking.")); 233 234 static cl::opt<bool> AddrSinkCombineBaseGV( 235 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 236 cl::desc("Allow combining of BaseGV field in Address sinking.")); 237 238 static cl::opt<bool> AddrSinkCombineBaseOffs( 239 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 240 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 241 242 static cl::opt<bool> AddrSinkCombineScaledReg( 243 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 244 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 245 246 static cl::opt<bool> 247 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 248 cl::init(true), 249 cl::desc("Enable splitting large offset of GEP.")); 250 251 static cl::opt<bool> EnableICMP_EQToICMP_ST( 252 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 253 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 254 255 static cl::opt<bool> 256 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 257 cl::desc("Enable BFI update verification for " 258 "CodeGenPrepare.")); 259 260 static cl::opt<bool> 261 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 262 cl::desc("Enable converting phi types in CodeGenPrepare")); 263 264 static cl::opt<unsigned> 265 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 266 cl::desc("Least BB number of huge function.")); 267 268 static cl::opt<unsigned> 269 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 270 cl::Hidden, 271 cl::desc("Max number of address users to look at")); 272 273 static cl::opt<bool> 274 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 275 cl::desc("Disable elimination of dead PHI nodes.")); 276 277 namespace { 278 279 enum ExtType { 280 ZeroExtension, // Zero extension has been seen. 281 SignExtension, // Sign extension has been seen. 282 BothExtension // This extension type is used if we saw sext after 283 // ZeroExtension had been set, or if we saw zext after 284 // SignExtension had been set. It makes the type 285 // information of a promoted instruction invalid. 286 }; 287 288 enum ModifyDT { 289 NotModifyDT, // Not Modify any DT. 290 ModifyBBDT, // Modify the Basic Block Dominator Tree. 291 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 292 // This usually means we move/delete/insert instruction 293 // in a Basic Block. So we should re-iterate instructions 294 // in such Basic Block. 295 }; 296 297 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 298 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 299 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 300 using SExts = SmallVector<Instruction *, 16>; 301 using ValueToSExts = MapVector<Value *, SExts>; 302 303 class TypePromotionTransaction; 304 305 class CodeGenPrepare { 306 friend class CodeGenPrepareLegacyPass; 307 const TargetMachine *TM = nullptr; 308 const TargetSubtargetInfo *SubtargetInfo = nullptr; 309 const TargetLowering *TLI = nullptr; 310 const TargetRegisterInfo *TRI = nullptr; 311 const TargetTransformInfo *TTI = nullptr; 312 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 313 const TargetLibraryInfo *TLInfo = nullptr; 314 LoopInfo *LI = nullptr; 315 std::unique_ptr<BlockFrequencyInfo> BFI; 316 std::unique_ptr<BranchProbabilityInfo> BPI; 317 ProfileSummaryInfo *PSI = nullptr; 318 319 /// As we scan instructions optimizing them, this is the next instruction 320 /// to optimize. Transforms that can invalidate this should update it. 321 BasicBlock::iterator CurInstIterator; 322 323 /// Keeps track of non-local addresses that have been sunk into a block. 324 /// This allows us to avoid inserting duplicate code for blocks with 325 /// multiple load/stores of the same address. The usage of WeakTrackingVH 326 /// enables SunkAddrs to be treated as a cache whose entries can be 327 /// invalidated if a sunken address computation has been erased. 328 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 329 330 /// Keeps track of all instructions inserted for the current function. 331 SetOfInstrs InsertedInsts; 332 333 /// Keeps track of the type of the related instruction before their 334 /// promotion for the current function. 335 InstrToOrigTy PromotedInsts; 336 337 /// Keep track of instructions removed during promotion. 338 SetOfInstrs RemovedInsts; 339 340 /// Keep track of sext chains based on their initial value. 341 DenseMap<Value *, Instruction *> SeenChainsForSExt; 342 343 /// Keep track of GEPs accessing the same data structures such as structs or 344 /// arrays that are candidates to be split later because of their large 345 /// size. 346 MapVector<AssertingVH<Value>, 347 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 348 LargeOffsetGEPMap; 349 350 /// Keep track of new GEP base after splitting the GEPs having large offset. 351 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 352 353 /// Map serial numbers to Large offset GEPs. 354 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 355 356 /// Keep track of SExt promoted. 357 ValueToSExts ValToSExtendedUses; 358 359 /// True if the function has the OptSize attribute. 360 bool OptSize; 361 362 /// DataLayout for the Function being processed. 363 const DataLayout *DL = nullptr; 364 365 /// Building the dominator tree can be expensive, so we only build it 366 /// lazily and update it when required. 367 std::unique_ptr<DominatorTree> DT; 368 369 public: 370 CodeGenPrepare(){}; 371 CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; 372 /// If encounter huge function, we need to limit the build time. 373 bool IsHugeFunc = false; 374 375 /// FreshBBs is like worklist, it collected the updated BBs which need 376 /// to be optimized again. 377 /// Note: Consider building time in this pass, when a BB updated, we need 378 /// to insert such BB into FreshBBs for huge function. 379 SmallSet<BasicBlock *, 32> FreshBBs; 380 381 void releaseMemory() { 382 // Clear per function information. 383 InsertedInsts.clear(); 384 PromotedInsts.clear(); 385 FreshBBs.clear(); 386 BPI.reset(); 387 BFI.reset(); 388 } 389 390 bool run(Function &F, FunctionAnalysisManager &AM); 391 392 private: 393 template <typename F> 394 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 395 // Substituting can cause recursive simplifications, which can invalidate 396 // our iterator. Use a WeakTrackingVH to hold onto it in case this 397 // happens. 398 Value *CurValue = &*CurInstIterator; 399 WeakTrackingVH IterHandle(CurValue); 400 401 f(); 402 403 // If the iterator instruction was recursively deleted, start over at the 404 // start of the block. 405 if (IterHandle != CurValue) { 406 CurInstIterator = BB->begin(); 407 SunkAddrs.clear(); 408 } 409 } 410 411 // Get the DominatorTree, building if necessary. 412 DominatorTree &getDT(Function &F) { 413 if (!DT) 414 DT = std::make_unique<DominatorTree>(F); 415 return *DT; 416 } 417 418 void removeAllAssertingVHReferences(Value *V); 419 bool eliminateAssumptions(Function &F); 420 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 421 bool eliminateMostlyEmptyBlocks(Function &F); 422 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 423 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 424 void eliminateMostlyEmptyBlock(BasicBlock *BB); 425 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 426 bool isPreheader); 427 bool makeBitReverse(Instruction &I); 428 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 429 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 430 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 431 unsigned AddrSpace); 432 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 433 bool optimizeInlineAsmInst(CallInst *CS); 434 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 435 bool optimizeExt(Instruction *&I); 436 bool optimizeExtUses(Instruction *I); 437 bool optimizeLoadExt(LoadInst *Load); 438 bool optimizeShiftInst(BinaryOperator *BO); 439 bool optimizeFunnelShift(IntrinsicInst *Fsh); 440 bool optimizeSelectInst(SelectInst *SI); 441 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 442 bool optimizeSwitchType(SwitchInst *SI); 443 bool optimizeSwitchPhiConstants(SwitchInst *SI); 444 bool optimizeSwitchInst(SwitchInst *SI); 445 bool optimizeExtractElementInst(Instruction *Inst); 446 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 447 bool fixupDbgValue(Instruction *I); 448 bool fixupDbgVariableRecord(DbgVariableRecord &I); 449 bool fixupDbgVariableRecordsOnInst(Instruction &I); 450 bool placeDbgValues(Function &F); 451 bool placePseudoProbes(Function &F); 452 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 453 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 454 bool tryToPromoteExts(TypePromotionTransaction &TPT, 455 const SmallVectorImpl<Instruction *> &Exts, 456 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 457 unsigned CreatedInstsCost = 0); 458 bool mergeSExts(Function &F); 459 bool splitLargeGEPOffsets(); 460 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 461 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 462 bool optimizePhiTypes(Function &F); 463 bool performAddressTypePromotion( 464 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 465 bool HasPromoted, TypePromotionTransaction &TPT, 466 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 467 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 468 bool simplifyOffsetableRelocate(GCStatepointInst &I); 469 470 bool tryToSinkFreeOperands(Instruction *I); 471 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 472 CmpInst *Cmp, Intrinsic::ID IID); 473 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 474 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 475 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 476 void verifyBFIUpdates(Function &F); 477 bool _run(Function &F); 478 }; 479 480 class CodeGenPrepareLegacyPass : public FunctionPass { 481 public: 482 static char ID; // Pass identification, replacement for typeid 483 484 CodeGenPrepareLegacyPass() : FunctionPass(ID) { 485 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); 486 } 487 488 bool runOnFunction(Function &F) override; 489 490 StringRef getPassName() const override { return "CodeGen Prepare"; } 491 492 void getAnalysisUsage(AnalysisUsage &AU) const override { 493 // FIXME: When we can selectively preserve passes, preserve the domtree. 494 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 495 AU.addRequired<TargetLibraryInfoWrapperPass>(); 496 AU.addRequired<TargetPassConfig>(); 497 AU.addRequired<TargetTransformInfoWrapperPass>(); 498 AU.addRequired<LoopInfoWrapperPass>(); 499 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 500 } 501 }; 502 503 } // end anonymous namespace 504 505 char CodeGenPrepareLegacyPass::ID = 0; 506 507 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { 508 if (skipFunction(F)) 509 return false; 510 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 511 CodeGenPrepare CGP(TM); 512 CGP.DL = &F.getDataLayout(); 513 CGP.SubtargetInfo = TM->getSubtargetImpl(F); 514 CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); 515 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); 516 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 517 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 518 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 519 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); 520 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); 521 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 522 auto BBSPRWP = 523 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); 524 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; 525 526 return CGP._run(F); 527 } 528 529 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, 530 "Optimize for code generation", false, false) 531 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 532 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 533 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 534 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 535 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 536 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 537 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, 538 "Optimize for code generation", false, false) 539 540 FunctionPass *llvm::createCodeGenPrepareLegacyPass() { 541 return new CodeGenPrepareLegacyPass(); 542 } 543 544 PreservedAnalyses CodeGenPreparePass::run(Function &F, 545 FunctionAnalysisManager &AM) { 546 CodeGenPrepare CGP(TM); 547 548 bool Changed = CGP.run(F, AM); 549 if (!Changed) 550 return PreservedAnalyses::all(); 551 552 PreservedAnalyses PA; 553 PA.preserve<TargetLibraryAnalysis>(); 554 PA.preserve<TargetIRAnalysis>(); 555 PA.preserve<LoopAnalysis>(); 556 return PA; 557 } 558 559 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { 560 DL = &F.getDataLayout(); 561 SubtargetInfo = TM->getSubtargetImpl(F); 562 TLI = SubtargetInfo->getTargetLowering(); 563 TRI = SubtargetInfo->getRegisterInfo(); 564 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); 565 TTI = &AM.getResult<TargetIRAnalysis>(F); 566 LI = &AM.getResult<LoopAnalysis>(F); 567 BPI.reset(new BranchProbabilityInfo(F, *LI)); 568 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 569 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 570 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 571 BBSectionsProfileReader = 572 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); 573 return _run(F); 574 } 575 576 bool CodeGenPrepare::_run(Function &F) { 577 bool EverMadeChange = false; 578 579 OptSize = F.hasOptSize(); 580 // Use the basic-block-sections profile to promote hot functions to .text.hot 581 // if requested. 582 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 583 BBSectionsProfileReader->isFunctionHot(F.getName())) { 584 F.setSectionPrefix("hot"); 585 } else if (ProfileGuidedSectionPrefix) { 586 // The hot attribute overwrites profile count based hotness while profile 587 // counts based hotness overwrite the cold attribute. 588 // This is a conservative behabvior. 589 if (F.hasFnAttribute(Attribute::Hot) || 590 PSI->isFunctionHotInCallGraph(&F, *BFI)) 591 F.setSectionPrefix("hot"); 592 // If PSI shows this function is not hot, we will placed the function 593 // into unlikely section if (1) PSI shows this is a cold function, or 594 // (2) the function has a attribute of cold. 595 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 596 F.hasFnAttribute(Attribute::Cold)) 597 F.setSectionPrefix("unlikely"); 598 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 599 PSI->isFunctionHotnessUnknown(F)) 600 F.setSectionPrefix("unknown"); 601 } 602 603 /// This optimization identifies DIV instructions that can be 604 /// profitably bypassed and carried out with a shorter, faster divide. 605 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 606 const DenseMap<unsigned int, unsigned int> &BypassWidths = 607 TLI->getBypassSlowDivWidths(); 608 BasicBlock *BB = &*F.begin(); 609 while (BB != nullptr) { 610 // bypassSlowDivision may create new BBs, but we don't want to reapply the 611 // optimization to those blocks. 612 BasicBlock *Next = BB->getNextNode(); 613 // F.hasOptSize is already checked in the outer if statement. 614 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 615 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 616 BB = Next; 617 } 618 } 619 620 // Get rid of @llvm.assume builtins before attempting to eliminate empty 621 // blocks, since there might be blocks that only contain @llvm.assume calls 622 // (plus arguments that we can get rid of). 623 EverMadeChange |= eliminateAssumptions(F); 624 625 // Eliminate blocks that contain only PHI nodes and an 626 // unconditional branch. 627 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 628 629 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 630 if (!DisableBranchOpts) 631 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 632 633 // Split some critical edges where one of the sources is an indirect branch, 634 // to help generate sane code for PHIs involving such edges. 635 EverMadeChange |= 636 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 637 638 // If we are optimzing huge function, we need to consider the build time. 639 // Because the basic algorithm's complex is near O(N!). 640 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 641 642 // Transformations above may invalidate dominator tree and/or loop info. 643 DT.reset(); 644 LI->releaseMemory(); 645 LI->analyze(getDT(F)); 646 647 bool MadeChange = true; 648 bool FuncIterated = false; 649 while (MadeChange) { 650 MadeChange = false; 651 652 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 653 if (FuncIterated && !FreshBBs.contains(&BB)) 654 continue; 655 656 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 657 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 658 659 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 660 DT.reset(); 661 662 MadeChange |= Changed; 663 if (IsHugeFunc) { 664 // If the BB is updated, it may still has chance to be optimized. 665 // This usually happen at sink optimization. 666 // For example: 667 // 668 // bb0: 669 // %and = and i32 %a, 4 670 // %cmp = icmp eq i32 %and, 0 671 // 672 // If the %cmp sink to other BB, the %and will has chance to sink. 673 if (Changed) 674 FreshBBs.insert(&BB); 675 else if (FuncIterated) 676 FreshBBs.erase(&BB); 677 } else { 678 // For small/normal functions, we restart BB iteration if the dominator 679 // tree of the Function was changed. 680 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 681 break; 682 } 683 } 684 // We have iterated all the BB in the (only work for huge) function. 685 FuncIterated = IsHugeFunc; 686 687 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 688 MadeChange |= mergeSExts(F); 689 if (!LargeOffsetGEPMap.empty()) 690 MadeChange |= splitLargeGEPOffsets(); 691 MadeChange |= optimizePhiTypes(F); 692 693 if (MadeChange) 694 eliminateFallThrough(F, DT.get()); 695 696 #ifndef NDEBUG 697 if (MadeChange && VerifyLoopInfo) 698 LI->verify(getDT(F)); 699 #endif 700 701 // Really free removed instructions during promotion. 702 for (Instruction *I : RemovedInsts) 703 I->deleteValue(); 704 705 EverMadeChange |= MadeChange; 706 SeenChainsForSExt.clear(); 707 ValToSExtendedUses.clear(); 708 RemovedInsts.clear(); 709 LargeOffsetGEPMap.clear(); 710 LargeOffsetGEPID.clear(); 711 } 712 713 NewGEPBases.clear(); 714 SunkAddrs.clear(); 715 716 if (!DisableBranchOpts) { 717 MadeChange = false; 718 // Use a set vector to get deterministic iteration order. The order the 719 // blocks are removed may affect whether or not PHI nodes in successors 720 // are removed. 721 SmallSetVector<BasicBlock *, 8> WorkList; 722 for (BasicBlock &BB : F) { 723 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 724 MadeChange |= ConstantFoldTerminator(&BB, true); 725 if (!MadeChange) 726 continue; 727 728 for (BasicBlock *Succ : Successors) 729 if (pred_empty(Succ)) 730 WorkList.insert(Succ); 731 } 732 733 // Delete the dead blocks and any of their dead successors. 734 MadeChange |= !WorkList.empty(); 735 while (!WorkList.empty()) { 736 BasicBlock *BB = WorkList.pop_back_val(); 737 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 738 739 DeleteDeadBlock(BB); 740 741 for (BasicBlock *Succ : Successors) 742 if (pred_empty(Succ)) 743 WorkList.insert(Succ); 744 } 745 746 // Merge pairs of basic blocks with unconditional branches, connected by 747 // a single edge. 748 if (EverMadeChange || MadeChange) 749 MadeChange |= eliminateFallThrough(F); 750 751 EverMadeChange |= MadeChange; 752 } 753 754 if (!DisableGCOpts) { 755 SmallVector<GCStatepointInst *, 2> Statepoints; 756 for (BasicBlock &BB : F) 757 for (Instruction &I : BB) 758 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 759 Statepoints.push_back(SP); 760 for (auto &I : Statepoints) 761 EverMadeChange |= simplifyOffsetableRelocate(*I); 762 } 763 764 // Do this last to clean up use-before-def scenarios introduced by other 765 // preparatory transforms. 766 EverMadeChange |= placeDbgValues(F); 767 EverMadeChange |= placePseudoProbes(F); 768 769 #ifndef NDEBUG 770 if (VerifyBFIUpdates) 771 verifyBFIUpdates(F); 772 #endif 773 774 return EverMadeChange; 775 } 776 777 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 778 bool MadeChange = false; 779 for (BasicBlock &BB : F) { 780 CurInstIterator = BB.begin(); 781 while (CurInstIterator != BB.end()) { 782 Instruction *I = &*(CurInstIterator++); 783 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 784 MadeChange = true; 785 Value *Operand = Assume->getOperand(0); 786 Assume->eraseFromParent(); 787 788 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 789 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 790 }); 791 } 792 } 793 } 794 return MadeChange; 795 } 796 797 /// An instruction is about to be deleted, so remove all references to it in our 798 /// GEP-tracking data strcutures. 799 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 800 LargeOffsetGEPMap.erase(V); 801 NewGEPBases.erase(V); 802 803 auto GEP = dyn_cast<GetElementPtrInst>(V); 804 if (!GEP) 805 return; 806 807 LargeOffsetGEPID.erase(GEP); 808 809 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 810 if (VecI == LargeOffsetGEPMap.end()) 811 return; 812 813 auto &GEPVector = VecI->second; 814 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 815 816 if (GEPVector.empty()) 817 LargeOffsetGEPMap.erase(VecI); 818 } 819 820 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 821 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 822 DominatorTree NewDT(F); 823 LoopInfo NewLI(NewDT); 824 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 825 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 826 NewBFI.verifyMatch(*BFI); 827 } 828 829 /// Merge basic blocks which are connected by a single edge, where one of the 830 /// basic blocks has a single successor pointing to the other basic block, 831 /// which has a single predecessor. 832 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 833 bool Changed = false; 834 // Scan all of the blocks in the function, except for the entry block. 835 // Use a temporary array to avoid iterator being invalidated when 836 // deleting blocks. 837 SmallVector<WeakTrackingVH, 16> Blocks; 838 for (auto &Block : llvm::drop_begin(F)) 839 Blocks.push_back(&Block); 840 841 SmallSet<WeakTrackingVH, 16> Preds; 842 for (auto &Block : Blocks) { 843 auto *BB = cast_or_null<BasicBlock>(Block); 844 if (!BB) 845 continue; 846 // If the destination block has a single pred, then this is a trivial 847 // edge, just collapse it. 848 BasicBlock *SinglePred = BB->getSinglePredecessor(); 849 850 // Don't merge if BB's address is taken. 851 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 852 continue; 853 854 // Make an effort to skip unreachable blocks. 855 if (DT && !DT->isReachableFromEntry(BB)) 856 continue; 857 858 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 859 if (Term && !Term->isConditional()) { 860 Changed = true; 861 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 862 863 // Merge BB into SinglePred and delete it. 864 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 865 /* MemDep */ nullptr, 866 /* PredecessorWithTwoSuccessors */ false, DT); 867 Preds.insert(SinglePred); 868 869 if (IsHugeFunc) { 870 // Update FreshBBs to optimize the merged BB. 871 FreshBBs.insert(SinglePred); 872 FreshBBs.erase(BB); 873 } 874 } 875 } 876 877 // (Repeatedly) merging blocks into their predecessors can create redundant 878 // debug intrinsics. 879 for (const auto &Pred : Preds) 880 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 881 RemoveRedundantDbgInstrs(BB); 882 883 return Changed; 884 } 885 886 /// Find a destination block from BB if BB is mergeable empty block. 887 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 888 // If this block doesn't end with an uncond branch, ignore it. 889 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 890 if (!BI || !BI->isUnconditional()) 891 return nullptr; 892 893 // If the instruction before the branch (skipping debug info) isn't a phi 894 // node, then other stuff is happening here. 895 BasicBlock::iterator BBI = BI->getIterator(); 896 if (BBI != BB->begin()) { 897 --BBI; 898 while (isa<DbgInfoIntrinsic>(BBI)) { 899 if (BBI == BB->begin()) 900 break; 901 --BBI; 902 } 903 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 904 return nullptr; 905 } 906 907 // Do not break infinite loops. 908 BasicBlock *DestBB = BI->getSuccessor(0); 909 if (DestBB == BB) 910 return nullptr; 911 912 if (!canMergeBlocks(BB, DestBB)) 913 DestBB = nullptr; 914 915 return DestBB; 916 } 917 918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 920 /// edges in ways that are non-optimal for isel. Start by eliminating these 921 /// blocks so we can split them the way we want them. 922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 923 SmallPtrSet<BasicBlock *, 16> Preheaders; 924 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 925 while (!LoopList.empty()) { 926 Loop *L = LoopList.pop_back_val(); 927 llvm::append_range(LoopList, *L); 928 if (BasicBlock *Preheader = L->getLoopPreheader()) 929 Preheaders.insert(Preheader); 930 } 931 932 bool MadeChange = false; 933 // Copy blocks into a temporary array to avoid iterator invalidation issues 934 // as we remove them. 935 // Note that this intentionally skips the entry block. 936 SmallVector<WeakTrackingVH, 16> Blocks; 937 for (auto &Block : llvm::drop_begin(F)) { 938 // Delete phi nodes that could block deleting other empty blocks. 939 if (!DisableDeletePHIs) 940 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 941 Blocks.push_back(&Block); 942 } 943 944 for (auto &Block : Blocks) { 945 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 946 if (!BB) 947 continue; 948 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 949 if (!DestBB || 950 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 951 continue; 952 953 eliminateMostlyEmptyBlock(BB); 954 MadeChange = true; 955 } 956 return MadeChange; 957 } 958 959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 960 BasicBlock *DestBB, 961 bool isPreheader) { 962 // Do not delete loop preheaders if doing so would create a critical edge. 963 // Loop preheaders can be good locations to spill registers. If the 964 // preheader is deleted and we create a critical edge, registers may be 965 // spilled in the loop body instead. 966 if (!DisablePreheaderProtect && isPreheader && 967 !(BB->getSinglePredecessor() && 968 BB->getSinglePredecessor()->getSingleSuccessor())) 969 return false; 970 971 // Skip merging if the block's successor is also a successor to any callbr 972 // that leads to this block. 973 // FIXME: Is this really needed? Is this a correctness issue? 974 for (BasicBlock *Pred : predecessors(BB)) { 975 if (isa<CallBrInst>(Pred->getTerminator()) && 976 llvm::is_contained(successors(Pred), DestBB)) 977 return false; 978 } 979 980 // Try to skip merging if the unique predecessor of BB is terminated by a 981 // switch or indirect branch instruction, and BB is used as an incoming block 982 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 983 // add COPY instructions in the predecessor of BB instead of BB (if it is not 984 // merged). Note that the critical edge created by merging such blocks wont be 985 // split in MachineSink because the jump table is not analyzable. By keeping 986 // such empty block (BB), ISel will place COPY instructions in BB, not in the 987 // predecessor of BB. 988 BasicBlock *Pred = BB->getUniquePredecessor(); 989 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 990 isa<IndirectBrInst>(Pred->getTerminator()))) 991 return true; 992 993 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 994 return true; 995 996 // We use a simple cost heuristic which determine skipping merging is 997 // profitable if the cost of skipping merging is less than the cost of 998 // merging : Cost(skipping merging) < Cost(merging BB), where the 999 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 1000 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 1001 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 1002 // Freq(Pred) / Freq(BB) > 2. 1003 // Note that if there are multiple empty blocks sharing the same incoming 1004 // value for the PHIs in the DestBB, we consider them together. In such 1005 // case, Cost(merging BB) will be the sum of their frequencies. 1006 1007 if (!isa<PHINode>(DestBB->begin())) 1008 return true; 1009 1010 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 1011 1012 // Find all other incoming blocks from which incoming values of all PHIs in 1013 // DestBB are the same as the ones from BB. 1014 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 1015 if (DestBBPred == BB) 1016 continue; 1017 1018 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 1019 return DestPN.getIncomingValueForBlock(BB) == 1020 DestPN.getIncomingValueForBlock(DestBBPred); 1021 })) 1022 SameIncomingValueBBs.insert(DestBBPred); 1023 } 1024 1025 // See if all BB's incoming values are same as the value from Pred. In this 1026 // case, no reason to skip merging because COPYs are expected to be place in 1027 // Pred already. 1028 if (SameIncomingValueBBs.count(Pred)) 1029 return true; 1030 1031 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 1032 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 1033 1034 for (auto *SameValueBB : SameIncomingValueBBs) 1035 if (SameValueBB->getUniquePredecessor() == Pred && 1036 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 1037 BBFreq += BFI->getBlockFreq(SameValueBB); 1038 1039 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 1040 return !Limit || PredFreq <= *Limit; 1041 } 1042 1043 /// Return true if we can merge BB into DestBB if there is a single 1044 /// unconditional branch between them, and BB contains no other non-phi 1045 /// instructions. 1046 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 1047 const BasicBlock *DestBB) const { 1048 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1049 // the successor. If there are more complex condition (e.g. preheaders), 1050 // don't mess around with them. 1051 for (const PHINode &PN : BB->phis()) { 1052 for (const User *U : PN.users()) { 1053 const Instruction *UI = cast<Instruction>(U); 1054 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1055 return false; 1056 // If User is inside DestBB block and it is a PHINode then check 1057 // incoming value. If incoming value is not from BB then this is 1058 // a complex condition (e.g. preheaders) we want to avoid here. 1059 if (UI->getParent() == DestBB) { 1060 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1061 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1062 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1063 if (Insn && Insn->getParent() == BB && 1064 Insn->getParent() != UPN->getIncomingBlock(I)) 1065 return false; 1066 } 1067 } 1068 } 1069 } 1070 1071 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1072 // and DestBB may have conflicting incoming values for the block. If so, we 1073 // can't merge the block. 1074 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1075 if (!DestBBPN) 1076 return true; // no conflict. 1077 1078 // Collect the preds of BB. 1079 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1080 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1081 // It is faster to get preds from a PHI than with pred_iterator. 1082 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1083 BBPreds.insert(BBPN->getIncomingBlock(i)); 1084 } else { 1085 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1086 } 1087 1088 // Walk the preds of DestBB. 1089 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1090 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1091 if (BBPreds.count(Pred)) { // Common predecessor? 1092 for (const PHINode &PN : DestBB->phis()) { 1093 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1094 const Value *V2 = PN.getIncomingValueForBlock(BB); 1095 1096 // If V2 is a phi node in BB, look up what the mapped value will be. 1097 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1098 if (V2PN->getParent() == BB) 1099 V2 = V2PN->getIncomingValueForBlock(Pred); 1100 1101 // If there is a conflict, bail out. 1102 if (V1 != V2) 1103 return false; 1104 } 1105 } 1106 } 1107 1108 return true; 1109 } 1110 1111 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1112 static void replaceAllUsesWith(Value *Old, Value *New, 1113 SmallSet<BasicBlock *, 32> &FreshBBs, 1114 bool IsHuge) { 1115 auto *OldI = dyn_cast<Instruction>(Old); 1116 if (OldI) { 1117 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1118 UI != E; ++UI) { 1119 Instruction *User = cast<Instruction>(*UI); 1120 if (IsHuge) 1121 FreshBBs.insert(User->getParent()); 1122 } 1123 } 1124 Old->replaceAllUsesWith(New); 1125 } 1126 1127 /// Eliminate a basic block that has only phi's and an unconditional branch in 1128 /// it. 1129 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1130 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1131 BasicBlock *DestBB = BI->getSuccessor(0); 1132 1133 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1134 << *BB << *DestBB); 1135 1136 // If the destination block has a single pred, then this is a trivial edge, 1137 // just collapse it. 1138 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1139 if (SinglePred != DestBB) { 1140 assert(SinglePred == BB && 1141 "Single predecessor not the same as predecessor"); 1142 // Merge DestBB into SinglePred/BB and delete it. 1143 MergeBlockIntoPredecessor(DestBB); 1144 // Note: BB(=SinglePred) will not be deleted on this path. 1145 // DestBB(=its single successor) is the one that was deleted. 1146 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1147 1148 if (IsHugeFunc) { 1149 // Update FreshBBs to optimize the merged BB. 1150 FreshBBs.insert(SinglePred); 1151 FreshBBs.erase(DestBB); 1152 } 1153 return; 1154 } 1155 } 1156 1157 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1158 // to handle the new incoming edges it is about to have. 1159 for (PHINode &PN : DestBB->phis()) { 1160 // Remove the incoming value for BB, and remember it. 1161 Value *InVal = PN.removeIncomingValue(BB, false); 1162 1163 // Two options: either the InVal is a phi node defined in BB or it is some 1164 // value that dominates BB. 1165 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1166 if (InValPhi && InValPhi->getParent() == BB) { 1167 // Add all of the input values of the input PHI as inputs of this phi. 1168 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1169 PN.addIncoming(InValPhi->getIncomingValue(i), 1170 InValPhi->getIncomingBlock(i)); 1171 } else { 1172 // Otherwise, add one instance of the dominating value for each edge that 1173 // we will be adding. 1174 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1175 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1176 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1177 } else { 1178 for (BasicBlock *Pred : predecessors(BB)) 1179 PN.addIncoming(InVal, Pred); 1180 } 1181 } 1182 } 1183 1184 // The PHIs are now updated, change everything that refers to BB to use 1185 // DestBB and remove BB. 1186 BB->replaceAllUsesWith(DestBB); 1187 BB->eraseFromParent(); 1188 ++NumBlocksElim; 1189 1190 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1191 } 1192 1193 // Computes a map of base pointer relocation instructions to corresponding 1194 // derived pointer relocation instructions given a vector of all relocate calls 1195 static void computeBaseDerivedRelocateMap( 1196 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1197 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> 1198 &RelocateInstMap) { 1199 // Collect information in two maps: one primarily for locating the base object 1200 // while filling the second map; the second map is the final structure holding 1201 // a mapping between Base and corresponding Derived relocate calls 1202 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1203 for (auto *ThisRelocate : AllRelocateCalls) { 1204 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1205 ThisRelocate->getDerivedPtrIndex()); 1206 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1207 } 1208 for (auto &Item : RelocateIdxMap) { 1209 std::pair<unsigned, unsigned> Key = Item.first; 1210 if (Key.first == Key.second) 1211 // Base relocation: nothing to insert 1212 continue; 1213 1214 GCRelocateInst *I = Item.second; 1215 auto BaseKey = std::make_pair(Key.first, Key.first); 1216 1217 // We're iterating over RelocateIdxMap so we cannot modify it. 1218 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1219 if (MaybeBase == RelocateIdxMap.end()) 1220 // TODO: We might want to insert a new base object relocate and gep off 1221 // that, if there are enough derived object relocates. 1222 continue; 1223 1224 RelocateInstMap[MaybeBase->second].push_back(I); 1225 } 1226 } 1227 1228 // Accepts a GEP and extracts the operands into a vector provided they're all 1229 // small integer constants 1230 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1231 SmallVectorImpl<Value *> &OffsetV) { 1232 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1233 // Only accept small constant integer operands 1234 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1235 if (!Op || Op->getZExtValue() > 20) 1236 return false; 1237 } 1238 1239 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1240 OffsetV.push_back(GEP->getOperand(i)); 1241 return true; 1242 } 1243 1244 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1245 // replace, computes a replacement, and affects it. 1246 static bool 1247 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1248 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1249 bool MadeChange = false; 1250 // We must ensure the relocation of derived pointer is defined after 1251 // relocation of base pointer. If we find a relocation corresponding to base 1252 // defined earlier than relocation of base then we move relocation of base 1253 // right before found relocation. We consider only relocation in the same 1254 // basic block as relocation of base. Relocations from other basic block will 1255 // be skipped by optimization and we do not care about them. 1256 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1257 &*R != RelocatedBase; ++R) 1258 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1259 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1260 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1261 RelocatedBase->moveBefore(RI); 1262 MadeChange = true; 1263 break; 1264 } 1265 1266 for (GCRelocateInst *ToReplace : Targets) { 1267 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1268 "Not relocating a derived object of the original base object"); 1269 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1270 // A duplicate relocate call. TODO: coalesce duplicates. 1271 continue; 1272 } 1273 1274 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1275 // Base and derived relocates are in different basic blocks. 1276 // In this case transform is only valid when base dominates derived 1277 // relocate. However it would be too expensive to check dominance 1278 // for each such relocate, so we skip the whole transformation. 1279 continue; 1280 } 1281 1282 Value *Base = ToReplace->getBasePtr(); 1283 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1284 if (!Derived || Derived->getPointerOperand() != Base) 1285 continue; 1286 1287 SmallVector<Value *, 2> OffsetV; 1288 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1289 continue; 1290 1291 // Create a Builder and replace the target callsite with a gep 1292 assert(RelocatedBase->getNextNode() && 1293 "Should always have one since it's not a terminator"); 1294 1295 // Insert after RelocatedBase 1296 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1297 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1298 1299 // If gc_relocate does not match the actual type, cast it to the right type. 1300 // In theory, there must be a bitcast after gc_relocate if the type does not 1301 // match, and we should reuse it to get the derived pointer. But it could be 1302 // cases like this: 1303 // bb1: 1304 // ... 1305 // %g1 = call coldcc i8 addrspace(1)* 1306 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1307 // 1308 // bb2: 1309 // ... 1310 // %g2 = call coldcc i8 addrspace(1)* 1311 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1312 // 1313 // merge: 1314 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1315 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1316 // 1317 // In this case, we can not find the bitcast any more. So we insert a new 1318 // bitcast no matter there is already one or not. In this way, we can handle 1319 // all cases, and the extra bitcast should be optimized away in later 1320 // passes. 1321 Value *ActualRelocatedBase = RelocatedBase; 1322 if (RelocatedBase->getType() != Base->getType()) { 1323 ActualRelocatedBase = 1324 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1325 } 1326 Value *Replacement = 1327 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1328 ArrayRef(OffsetV)); 1329 Replacement->takeName(ToReplace); 1330 // If the newly generated derived pointer's type does not match the original 1331 // derived pointer's type, cast the new derived pointer to match it. Same 1332 // reasoning as above. 1333 Value *ActualReplacement = Replacement; 1334 if (Replacement->getType() != ToReplace->getType()) { 1335 ActualReplacement = 1336 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1337 } 1338 ToReplace->replaceAllUsesWith(ActualReplacement); 1339 ToReplace->eraseFromParent(); 1340 1341 MadeChange = true; 1342 } 1343 return MadeChange; 1344 } 1345 1346 // Turns this: 1347 // 1348 // %base = ... 1349 // %ptr = gep %base + 15 1350 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1351 // %base' = relocate(%tok, i32 4, i32 4) 1352 // %ptr' = relocate(%tok, i32 4, i32 5) 1353 // %val = load %ptr' 1354 // 1355 // into this: 1356 // 1357 // %base = ... 1358 // %ptr = gep %base + 15 1359 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1360 // %base' = gc.relocate(%tok, i32 4, i32 4) 1361 // %ptr' = gep %base' + 15 1362 // %val = load %ptr' 1363 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1364 bool MadeChange = false; 1365 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1366 for (auto *U : I.users()) 1367 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1368 // Collect all the relocate calls associated with a statepoint 1369 AllRelocateCalls.push_back(Relocate); 1370 1371 // We need at least one base pointer relocation + one derived pointer 1372 // relocation to mangle 1373 if (AllRelocateCalls.size() < 2) 1374 return false; 1375 1376 // RelocateInstMap is a mapping from the base relocate instruction to the 1377 // corresponding derived relocate instructions 1378 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; 1379 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1380 if (RelocateInstMap.empty()) 1381 return false; 1382 1383 for (auto &Item : RelocateInstMap) 1384 // Item.first is the RelocatedBase to offset against 1385 // Item.second is the vector of Targets to replace 1386 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1387 return MadeChange; 1388 } 1389 1390 /// Sink the specified cast instruction into its user blocks. 1391 static bool SinkCast(CastInst *CI) { 1392 BasicBlock *DefBB = CI->getParent(); 1393 1394 /// InsertedCasts - Only insert a cast in each block once. 1395 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1396 1397 bool MadeChange = false; 1398 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1399 UI != E;) { 1400 Use &TheUse = UI.getUse(); 1401 Instruction *User = cast<Instruction>(*UI); 1402 1403 // Figure out which BB this cast is used in. For PHI's this is the 1404 // appropriate predecessor block. 1405 BasicBlock *UserBB = User->getParent(); 1406 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1407 UserBB = PN->getIncomingBlock(TheUse); 1408 } 1409 1410 // Preincrement use iterator so we don't invalidate it. 1411 ++UI; 1412 1413 // The first insertion point of a block containing an EH pad is after the 1414 // pad. If the pad is the user, we cannot sink the cast past the pad. 1415 if (User->isEHPad()) 1416 continue; 1417 1418 // If the block selected to receive the cast is an EH pad that does not 1419 // allow non-PHI instructions before the terminator, we can't sink the 1420 // cast. 1421 if (UserBB->getTerminator()->isEHPad()) 1422 continue; 1423 1424 // If this user is in the same block as the cast, don't change the cast. 1425 if (UserBB == DefBB) 1426 continue; 1427 1428 // If we have already inserted a cast into this block, use it. 1429 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1430 1431 if (!InsertedCast) { 1432 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1433 assert(InsertPt != UserBB->end()); 1434 InsertedCast = cast<CastInst>(CI->clone()); 1435 InsertedCast->insertBefore(*UserBB, InsertPt); 1436 } 1437 1438 // Replace a use of the cast with a use of the new cast. 1439 TheUse = InsertedCast; 1440 MadeChange = true; 1441 ++NumCastUses; 1442 } 1443 1444 // If we removed all uses, nuke the cast. 1445 if (CI->use_empty()) { 1446 salvageDebugInfo(*CI); 1447 CI->eraseFromParent(); 1448 MadeChange = true; 1449 } 1450 1451 return MadeChange; 1452 } 1453 1454 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1455 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1456 /// reduce the number of virtual registers that must be created and coalesced. 1457 /// 1458 /// Return true if any changes are made. 1459 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1460 const DataLayout &DL) { 1461 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1462 // than sinking only nop casts, but is helpful on some platforms. 1463 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1464 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1465 ASC->getDestAddressSpace())) 1466 return false; 1467 } 1468 1469 // If this is a noop copy, 1470 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1471 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1472 1473 // This is an fp<->int conversion? 1474 if (SrcVT.isInteger() != DstVT.isInteger()) 1475 return false; 1476 1477 // If this is an extension, it will be a zero or sign extension, which 1478 // isn't a noop. 1479 if (SrcVT.bitsLT(DstVT)) 1480 return false; 1481 1482 // If these values will be promoted, find out what they will be promoted 1483 // to. This helps us consider truncates on PPC as noop copies when they 1484 // are. 1485 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1486 TargetLowering::TypePromoteInteger) 1487 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1488 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1489 TargetLowering::TypePromoteInteger) 1490 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1491 1492 // If, after promotion, these are the same types, this is a noop copy. 1493 if (SrcVT != DstVT) 1494 return false; 1495 1496 return SinkCast(CI); 1497 } 1498 1499 // Match a simple increment by constant operation. Note that if a sub is 1500 // matched, the step is negated (as if the step had been canonicalized to 1501 // an add, even though we leave the instruction alone.) 1502 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1503 Constant *&Step) { 1504 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1505 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1506 m_Instruction(LHS), m_Constant(Step))))) 1507 return true; 1508 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1509 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1510 m_Instruction(LHS), m_Constant(Step))))) { 1511 Step = ConstantExpr::getNeg(Step); 1512 return true; 1513 } 1514 return false; 1515 } 1516 1517 /// If given \p PN is an inductive variable with value IVInc coming from the 1518 /// backedge, and on each iteration it gets increased by Step, return pair 1519 /// <IVInc, Step>. Otherwise, return std::nullopt. 1520 static std::optional<std::pair<Instruction *, Constant *>> 1521 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1522 const Loop *L = LI->getLoopFor(PN->getParent()); 1523 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1524 return std::nullopt; 1525 auto *IVInc = 1526 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1527 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1528 return std::nullopt; 1529 Instruction *LHS = nullptr; 1530 Constant *Step = nullptr; 1531 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1532 return std::make_pair(IVInc, Step); 1533 return std::nullopt; 1534 } 1535 1536 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1537 auto *I = dyn_cast<Instruction>(V); 1538 if (!I) 1539 return false; 1540 Instruction *LHS = nullptr; 1541 Constant *Step = nullptr; 1542 if (!matchIncrement(I, LHS, Step)) 1543 return false; 1544 if (auto *PN = dyn_cast<PHINode>(LHS)) 1545 if (auto IVInc = getIVIncrement(PN, LI)) 1546 return IVInc->first == I; 1547 return false; 1548 } 1549 1550 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1551 Value *Arg0, Value *Arg1, 1552 CmpInst *Cmp, 1553 Intrinsic::ID IID) { 1554 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1555 if (!isIVIncrement(BO, LI)) 1556 return false; 1557 const Loop *L = LI->getLoopFor(BO->getParent()); 1558 assert(L && "L should not be null after isIVIncrement()"); 1559 // Do not risk on moving increment into a child loop. 1560 if (LI->getLoopFor(Cmp->getParent()) != L) 1561 return false; 1562 1563 // Finally, we need to ensure that the insert point will dominate all 1564 // existing uses of the increment. 1565 1566 auto &DT = getDT(*BO->getParent()->getParent()); 1567 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1568 // If we're moving up the dom tree, all uses are trivially dominated. 1569 // (This is the common case for code produced by LSR.) 1570 return true; 1571 1572 // Otherwise, special case the single use in the phi recurrence. 1573 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1574 }; 1575 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1576 // We used to use a dominator tree here to allow multi-block optimization. 1577 // But that was problematic because: 1578 // 1. It could cause a perf regression by hoisting the math op into the 1579 // critical path. 1580 // 2. It could cause a perf regression by creating a value that was live 1581 // across multiple blocks and increasing register pressure. 1582 // 3. Use of a dominator tree could cause large compile-time regression. 1583 // This is because we recompute the DT on every change in the main CGP 1584 // run-loop. The recomputing is probably unnecessary in many cases, so if 1585 // that was fixed, using a DT here would be ok. 1586 // 1587 // There is one important particular case we still want to handle: if BO is 1588 // the IV increment. Important properties that make it profitable: 1589 // - We can speculate IV increment anywhere in the loop (as long as the 1590 // indvar Phi is its only user); 1591 // - Upon computing Cmp, we effectively compute something equivalent to the 1592 // IV increment (despite it loops differently in the IR). So moving it up 1593 // to the cmp point does not really increase register pressure. 1594 return false; 1595 } 1596 1597 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1598 if (BO->getOpcode() == Instruction::Add && 1599 IID == Intrinsic::usub_with_overflow) { 1600 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1601 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1602 } 1603 1604 // Insert at the first instruction of the pair. 1605 Instruction *InsertPt = nullptr; 1606 for (Instruction &Iter : *Cmp->getParent()) { 1607 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1608 // the overflow intrinsic are defined. 1609 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1610 InsertPt = &Iter; 1611 break; 1612 } 1613 } 1614 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1615 1616 IRBuilder<> Builder(InsertPt); 1617 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1618 if (BO->getOpcode() != Instruction::Xor) { 1619 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1620 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1621 } else 1622 assert(BO->hasOneUse() && 1623 "Patterns with XOr should use the BO only in the compare"); 1624 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1625 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1626 Cmp->eraseFromParent(); 1627 BO->eraseFromParent(); 1628 return true; 1629 } 1630 1631 /// Match special-case patterns that check for unsigned add overflow. 1632 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1633 BinaryOperator *&Add) { 1634 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1635 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1636 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1637 1638 // We are not expecting non-canonical/degenerate code. Just bail out. 1639 if (isa<Constant>(A)) 1640 return false; 1641 1642 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1643 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1644 B = ConstantInt::get(B->getType(), 1); 1645 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1646 B = ConstantInt::get(B->getType(), -1); 1647 else 1648 return false; 1649 1650 // Check the users of the variable operand of the compare looking for an add 1651 // with the adjusted constant. 1652 for (User *U : A->users()) { 1653 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1654 Add = cast<BinaryOperator>(U); 1655 return true; 1656 } 1657 } 1658 return false; 1659 } 1660 1661 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1662 /// intrinsic. Return true if any changes were made. 1663 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1664 ModifyDT &ModifiedDT) { 1665 bool EdgeCase = false; 1666 Value *A, *B; 1667 BinaryOperator *Add; 1668 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1669 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1670 return false; 1671 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1672 A = Add->getOperand(0); 1673 B = Add->getOperand(1); 1674 EdgeCase = true; 1675 } 1676 1677 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1678 TLI->getValueType(*DL, Add->getType()), 1679 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1680 return false; 1681 1682 // We don't want to move around uses of condition values this late, so we 1683 // check if it is legal to create the call to the intrinsic in the basic 1684 // block containing the icmp. 1685 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1686 return false; 1687 1688 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1689 Intrinsic::uadd_with_overflow)) 1690 return false; 1691 1692 // Reset callers - do not crash by iterating over a dead instruction. 1693 ModifiedDT = ModifyDT::ModifyInstDT; 1694 return true; 1695 } 1696 1697 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1698 ModifyDT &ModifiedDT) { 1699 // We are not expecting non-canonical/degenerate code. Just bail out. 1700 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1701 if (isa<Constant>(A) && isa<Constant>(B)) 1702 return false; 1703 1704 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1705 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1706 if (Pred == ICmpInst::ICMP_UGT) { 1707 std::swap(A, B); 1708 Pred = ICmpInst::ICMP_ULT; 1709 } 1710 // Convert special-case: (A == 0) is the same as (A u< 1). 1711 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1712 B = ConstantInt::get(B->getType(), 1); 1713 Pred = ICmpInst::ICMP_ULT; 1714 } 1715 // Convert special-case: (A != 0) is the same as (0 u< A). 1716 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1717 std::swap(A, B); 1718 Pred = ICmpInst::ICMP_ULT; 1719 } 1720 if (Pred != ICmpInst::ICMP_ULT) 1721 return false; 1722 1723 // Walk the users of a variable operand of a compare looking for a subtract or 1724 // add with that same operand. Also match the 2nd operand of the compare to 1725 // the add/sub, but that may be a negated constant operand of an add. 1726 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1727 BinaryOperator *Sub = nullptr; 1728 for (User *U : CmpVariableOperand->users()) { 1729 // A - B, A u< B --> usubo(A, B) 1730 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1731 Sub = cast<BinaryOperator>(U); 1732 break; 1733 } 1734 1735 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1736 const APInt *CmpC, *AddC; 1737 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1738 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1739 Sub = cast<BinaryOperator>(U); 1740 break; 1741 } 1742 } 1743 if (!Sub) 1744 return false; 1745 1746 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1747 TLI->getValueType(*DL, Sub->getType()), 1748 Sub->hasNUsesOrMore(1))) 1749 return false; 1750 1751 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1752 Cmp, Intrinsic::usub_with_overflow)) 1753 return false; 1754 1755 // Reset callers - do not crash by iterating over a dead instruction. 1756 ModifiedDT = ModifyDT::ModifyInstDT; 1757 return true; 1758 } 1759 1760 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1761 /// registers that must be created and coalesced. This is a clear win except on 1762 /// targets with multiple condition code registers (PowerPC), where it might 1763 /// lose; some adjustment may be wanted there. 1764 /// 1765 /// Return true if any changes are made. 1766 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1767 if (TLI.hasMultipleConditionRegisters()) 1768 return false; 1769 1770 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1771 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1772 return false; 1773 1774 // Only insert a cmp in each block once. 1775 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1776 1777 bool MadeChange = false; 1778 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1779 UI != E;) { 1780 Use &TheUse = UI.getUse(); 1781 Instruction *User = cast<Instruction>(*UI); 1782 1783 // Preincrement use iterator so we don't invalidate it. 1784 ++UI; 1785 1786 // Don't bother for PHI nodes. 1787 if (isa<PHINode>(User)) 1788 continue; 1789 1790 // Figure out which BB this cmp is used in. 1791 BasicBlock *UserBB = User->getParent(); 1792 BasicBlock *DefBB = Cmp->getParent(); 1793 1794 // If this user is in the same block as the cmp, don't change the cmp. 1795 if (UserBB == DefBB) 1796 continue; 1797 1798 // If we have already inserted a cmp into this block, use it. 1799 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1800 1801 if (!InsertedCmp) { 1802 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1803 assert(InsertPt != UserBB->end()); 1804 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1805 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1806 InsertedCmp->insertBefore(*UserBB, InsertPt); 1807 // Propagate the debug info. 1808 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1809 } 1810 1811 // Replace a use of the cmp with a use of the new cmp. 1812 TheUse = InsertedCmp; 1813 MadeChange = true; 1814 ++NumCmpUses; 1815 } 1816 1817 // If we removed all uses, nuke the cmp. 1818 if (Cmp->use_empty()) { 1819 Cmp->eraseFromParent(); 1820 MadeChange = true; 1821 } 1822 1823 return MadeChange; 1824 } 1825 1826 /// For pattern like: 1827 /// 1828 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1829 /// ... 1830 /// DomBB: 1831 /// ... 1832 /// br DomCond, TrueBB, CmpBB 1833 /// CmpBB: (with DomBB being the single predecessor) 1834 /// ... 1835 /// Cmp = icmp eq CmpOp0, CmpOp1 1836 /// ... 1837 /// 1838 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1839 /// different from lowering of icmp eq (PowerPC). This function try to convert 1840 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1841 /// After that, DomCond and Cmp can use the same comparison so reduce one 1842 /// comparison. 1843 /// 1844 /// Return true if any changes are made. 1845 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1846 const TargetLowering &TLI) { 1847 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1848 return false; 1849 1850 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1851 if (Pred != ICmpInst::ICMP_EQ) 1852 return false; 1853 1854 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1855 // icmp slt/sgt would introduce more redundant LLVM IR. 1856 for (User *U : Cmp->users()) { 1857 if (isa<BranchInst>(U)) 1858 continue; 1859 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1860 continue; 1861 return false; 1862 } 1863 1864 // This is a cheap/incomplete check for dominance - just match a single 1865 // predecessor with a conditional branch. 1866 BasicBlock *CmpBB = Cmp->getParent(); 1867 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1868 if (!DomBB) 1869 return false; 1870 1871 // We want to ensure that the only way control gets to the comparison of 1872 // interest is that a less/greater than comparison on the same operands is 1873 // false. 1874 Value *DomCond; 1875 BasicBlock *TrueBB, *FalseBB; 1876 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1877 return false; 1878 if (CmpBB != FalseBB) 1879 return false; 1880 1881 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1882 ICmpInst::Predicate DomPred; 1883 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1884 return false; 1885 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1886 return false; 1887 1888 // Convert the equality comparison to the opposite of the dominating 1889 // comparison and swap the direction for all branch/select users. 1890 // We have conceptually converted: 1891 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1892 // to 1893 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1894 // And similarly for branches. 1895 for (User *U : Cmp->users()) { 1896 if (auto *BI = dyn_cast<BranchInst>(U)) { 1897 assert(BI->isConditional() && "Must be conditional"); 1898 BI->swapSuccessors(); 1899 continue; 1900 } 1901 if (auto *SI = dyn_cast<SelectInst>(U)) { 1902 // Swap operands 1903 SI->swapValues(); 1904 SI->swapProfMetadata(); 1905 continue; 1906 } 1907 llvm_unreachable("Must be a branch or a select"); 1908 } 1909 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1910 return true; 1911 } 1912 1913 /// Many architectures use the same instruction for both subtract and cmp. Try 1914 /// to swap cmp operands to match subtract operations to allow for CSE. 1915 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1916 Value *Op0 = Cmp->getOperand(0); 1917 Value *Op1 = Cmp->getOperand(1); 1918 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1919 isa<Constant>(Op1) || Op0 == Op1) 1920 return false; 1921 1922 // If a subtract already has the same operands as a compare, swapping would be 1923 // bad. If a subtract has the same operands as a compare but in reverse order, 1924 // then swapping is good. 1925 int GoodToSwap = 0; 1926 unsigned NumInspected = 0; 1927 for (const User *U : Op0->users()) { 1928 // Avoid walking many users. 1929 if (++NumInspected > 128) 1930 return false; 1931 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1932 GoodToSwap++; 1933 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1934 GoodToSwap--; 1935 } 1936 1937 if (GoodToSwap > 0) { 1938 Cmp->swapOperands(); 1939 return true; 1940 } 1941 return false; 1942 } 1943 1944 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, 1945 const DataLayout &DL) { 1946 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); 1947 if (!FCmp) 1948 return false; 1949 1950 // Don't fold if the target offers free fabs and the predicate is legal. 1951 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); 1952 if (TLI.isFAbsFree(VT) && 1953 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), 1954 VT.getSimpleVT())) 1955 return false; 1956 1957 // Reverse the canonicalization if it is a FP class test 1958 auto ShouldReverseTransform = [](FPClassTest ClassTest) { 1959 return ClassTest == fcInf || ClassTest == (fcInf | fcNan); 1960 }; 1961 auto [ClassVal, ClassTest] = 1962 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1963 FCmp->getOperand(0), FCmp->getOperand(1)); 1964 if (!ClassVal) 1965 return false; 1966 1967 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) 1968 return false; 1969 1970 IRBuilder<> Builder(Cmp); 1971 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); 1972 Cmp->replaceAllUsesWith(IsFPClass); 1973 RecursivelyDeleteTriviallyDeadInstructions(Cmp); 1974 return true; 1975 } 1976 1977 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 1978 if (sinkCmpExpression(Cmp, *TLI)) 1979 return true; 1980 1981 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1982 return true; 1983 1984 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1985 return true; 1986 1987 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1988 return true; 1989 1990 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 1991 return true; 1992 1993 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) 1994 return true; 1995 1996 return false; 1997 } 1998 1999 /// Duplicate and sink the given 'and' instruction into user blocks where it is 2000 /// used in a compare to allow isel to generate better code for targets where 2001 /// this operation can be combined. 2002 /// 2003 /// Return true if any changes are made. 2004 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 2005 SetOfInstrs &InsertedInsts) { 2006 // Double-check that we're not trying to optimize an instruction that was 2007 // already optimized by some other part of this pass. 2008 assert(!InsertedInsts.count(AndI) && 2009 "Attempting to optimize already optimized and instruction"); 2010 (void)InsertedInsts; 2011 2012 // Nothing to do for single use in same basic block. 2013 if (AndI->hasOneUse() && 2014 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 2015 return false; 2016 2017 // Try to avoid cases where sinking/duplicating is likely to increase register 2018 // pressure. 2019 if (!isa<ConstantInt>(AndI->getOperand(0)) && 2020 !isa<ConstantInt>(AndI->getOperand(1)) && 2021 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 2022 return false; 2023 2024 for (auto *U : AndI->users()) { 2025 Instruction *User = cast<Instruction>(U); 2026 2027 // Only sink 'and' feeding icmp with 0. 2028 if (!isa<ICmpInst>(User)) 2029 return false; 2030 2031 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 2032 if (!CmpC || !CmpC->isZero()) 2033 return false; 2034 } 2035 2036 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 2037 return false; 2038 2039 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 2040 LLVM_DEBUG(AndI->getParent()->dump()); 2041 2042 // Push the 'and' into the same block as the icmp 0. There should only be 2043 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 2044 // others, so we don't need to keep track of which BBs we insert into. 2045 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 2046 UI != E;) { 2047 Use &TheUse = UI.getUse(); 2048 Instruction *User = cast<Instruction>(*UI); 2049 2050 // Preincrement use iterator so we don't invalidate it. 2051 ++UI; 2052 2053 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 2054 2055 // Keep the 'and' in the same place if the use is already in the same block. 2056 Instruction *InsertPt = 2057 User->getParent() == AndI->getParent() ? AndI : User; 2058 Instruction *InsertedAnd = BinaryOperator::Create( 2059 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", 2060 InsertPt->getIterator()); 2061 // Propagate the debug info. 2062 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 2063 2064 // Replace a use of the 'and' with a use of the new 'and'. 2065 TheUse = InsertedAnd; 2066 ++NumAndUses; 2067 LLVM_DEBUG(User->getParent()->dump()); 2068 } 2069 2070 // We removed all uses, nuke the and. 2071 AndI->eraseFromParent(); 2072 return true; 2073 } 2074 2075 /// Check if the candidates could be combined with a shift instruction, which 2076 /// includes: 2077 /// 1. Truncate instruction 2078 /// 2. And instruction and the imm is a mask of the low bits: 2079 /// imm & (imm+1) == 0 2080 static bool isExtractBitsCandidateUse(Instruction *User) { 2081 if (!isa<TruncInst>(User)) { 2082 if (User->getOpcode() != Instruction::And || 2083 !isa<ConstantInt>(User->getOperand(1))) 2084 return false; 2085 2086 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2087 2088 if ((Cimm & (Cimm + 1)).getBoolValue()) 2089 return false; 2090 } 2091 return true; 2092 } 2093 2094 /// Sink both shift and truncate instruction to the use of truncate's BB. 2095 static bool 2096 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2097 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2098 const TargetLowering &TLI, const DataLayout &DL) { 2099 BasicBlock *UserBB = User->getParent(); 2100 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2101 auto *TruncI = cast<TruncInst>(User); 2102 bool MadeChange = false; 2103 2104 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2105 TruncE = TruncI->user_end(); 2106 TruncUI != TruncE;) { 2107 2108 Use &TruncTheUse = TruncUI.getUse(); 2109 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2110 // Preincrement use iterator so we don't invalidate it. 2111 2112 ++TruncUI; 2113 2114 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2115 if (!ISDOpcode) 2116 continue; 2117 2118 // If the use is actually a legal node, there will not be an 2119 // implicit truncate. 2120 // FIXME: always querying the result type is just an 2121 // approximation; some nodes' legality is determined by the 2122 // operand or other means. There's no good way to find out though. 2123 if (TLI.isOperationLegalOrCustom( 2124 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2125 continue; 2126 2127 // Don't bother for PHI nodes. 2128 if (isa<PHINode>(TruncUser)) 2129 continue; 2130 2131 BasicBlock *TruncUserBB = TruncUser->getParent(); 2132 2133 if (UserBB == TruncUserBB) 2134 continue; 2135 2136 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2137 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2138 2139 if (!InsertedShift && !InsertedTrunc) { 2140 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2141 assert(InsertPt != TruncUserBB->end()); 2142 // Sink the shift 2143 if (ShiftI->getOpcode() == Instruction::AShr) 2144 InsertedShift = 2145 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2146 else 2147 InsertedShift = 2148 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2149 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2150 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2151 2152 // Sink the trunc 2153 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2154 TruncInsertPt++; 2155 // It will go ahead of any debug-info. 2156 TruncInsertPt.setHeadBit(true); 2157 assert(TruncInsertPt != TruncUserBB->end()); 2158 2159 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2160 TruncI->getType(), ""); 2161 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2162 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2163 2164 MadeChange = true; 2165 2166 TruncTheUse = InsertedTrunc; 2167 } 2168 } 2169 return MadeChange; 2170 } 2171 2172 /// Sink the shift *right* instruction into user blocks if the uses could 2173 /// potentially be combined with this shift instruction and generate BitExtract 2174 /// instruction. It will only be applied if the architecture supports BitExtract 2175 /// instruction. Here is an example: 2176 /// BB1: 2177 /// %x.extract.shift = lshr i64 %arg1, 32 2178 /// BB2: 2179 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2180 /// ==> 2181 /// 2182 /// BB2: 2183 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2184 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2185 /// 2186 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2187 /// instruction. 2188 /// Return true if any changes are made. 2189 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2190 const TargetLowering &TLI, 2191 const DataLayout &DL) { 2192 BasicBlock *DefBB = ShiftI->getParent(); 2193 2194 /// Only insert instructions in each block once. 2195 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2196 2197 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2198 2199 bool MadeChange = false; 2200 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2201 UI != E;) { 2202 Use &TheUse = UI.getUse(); 2203 Instruction *User = cast<Instruction>(*UI); 2204 // Preincrement use iterator so we don't invalidate it. 2205 ++UI; 2206 2207 // Don't bother for PHI nodes. 2208 if (isa<PHINode>(User)) 2209 continue; 2210 2211 if (!isExtractBitsCandidateUse(User)) 2212 continue; 2213 2214 BasicBlock *UserBB = User->getParent(); 2215 2216 if (UserBB == DefBB) { 2217 // If the shift and truncate instruction are in the same BB. The use of 2218 // the truncate(TruncUse) may still introduce another truncate if not 2219 // legal. In this case, we would like to sink both shift and truncate 2220 // instruction to the BB of TruncUse. 2221 // for example: 2222 // BB1: 2223 // i64 shift.result = lshr i64 opnd, imm 2224 // trunc.result = trunc shift.result to i16 2225 // 2226 // BB2: 2227 // ----> We will have an implicit truncate here if the architecture does 2228 // not have i16 compare. 2229 // cmp i16 trunc.result, opnd2 2230 // 2231 if (isa<TruncInst>(User) && 2232 shiftIsLegal 2233 // If the type of the truncate is legal, no truncate will be 2234 // introduced in other basic blocks. 2235 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2236 MadeChange = 2237 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2238 2239 continue; 2240 } 2241 // If we have already inserted a shift into this block, use it. 2242 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2243 2244 if (!InsertedShift) { 2245 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2246 assert(InsertPt != UserBB->end()); 2247 2248 if (ShiftI->getOpcode() == Instruction::AShr) 2249 InsertedShift = 2250 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2251 else 2252 InsertedShift = 2253 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2254 InsertedShift->insertBefore(*UserBB, InsertPt); 2255 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2256 2257 MadeChange = true; 2258 } 2259 2260 // Replace a use of the shift with a use of the new shift. 2261 TheUse = InsertedShift; 2262 } 2263 2264 // If we removed all uses, or there are none, nuke the shift. 2265 if (ShiftI->use_empty()) { 2266 salvageDebugInfo(*ShiftI); 2267 ShiftI->eraseFromParent(); 2268 MadeChange = true; 2269 } 2270 2271 return MadeChange; 2272 } 2273 2274 /// If counting leading or trailing zeros is an expensive operation and a zero 2275 /// input is defined, add a check for zero to avoid calling the intrinsic. 2276 /// 2277 /// We want to transform: 2278 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2279 /// 2280 /// into: 2281 /// entry: 2282 /// %cmpz = icmp eq i64 %A, 0 2283 /// br i1 %cmpz, label %cond.end, label %cond.false 2284 /// cond.false: 2285 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2286 /// br label %cond.end 2287 /// cond.end: 2288 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2289 /// 2290 /// If the transform is performed, return true and set ModifiedDT to true. 2291 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2292 LoopInfo &LI, 2293 const TargetLowering *TLI, 2294 const DataLayout *DL, ModifyDT &ModifiedDT, 2295 SmallSet<BasicBlock *, 32> &FreshBBs, 2296 bool IsHugeFunc) { 2297 // If a zero input is undefined, it doesn't make sense to despeculate that. 2298 if (match(CountZeros->getOperand(1), m_One())) 2299 return false; 2300 2301 // If it's cheap to speculate, there's nothing to do. 2302 Type *Ty = CountZeros->getType(); 2303 auto IntrinsicID = CountZeros->getIntrinsicID(); 2304 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2305 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2306 return false; 2307 2308 // Only handle legal scalar cases. Anything else requires too much work. 2309 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2310 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2311 return false; 2312 2313 // Bail if the value is never zero. 2314 Use &Op = CountZeros->getOperandUse(0); 2315 if (isKnownNonZero(Op, *DL)) 2316 return false; 2317 2318 // The intrinsic will be sunk behind a compare against zero and branch. 2319 BasicBlock *StartBlock = CountZeros->getParent(); 2320 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2321 if (IsHugeFunc) 2322 FreshBBs.insert(CallBlock); 2323 2324 // Create another block after the count zero intrinsic. A PHI will be added 2325 // in this block to select the result of the intrinsic or the bit-width 2326 // constant if the input to the intrinsic is zero. 2327 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2328 // Any debug-info after CountZeros should not be included. 2329 SplitPt.setHeadBit(true); 2330 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2331 if (IsHugeFunc) 2332 FreshBBs.insert(EndBlock); 2333 2334 // Update the LoopInfo. The new blocks are in the same loop as the start 2335 // block. 2336 if (Loop *L = LI.getLoopFor(StartBlock)) { 2337 L->addBasicBlockToLoop(CallBlock, LI); 2338 L->addBasicBlockToLoop(EndBlock, LI); 2339 } 2340 2341 // Set up a builder to create a compare, conditional branch, and PHI. 2342 IRBuilder<> Builder(CountZeros->getContext()); 2343 Builder.SetInsertPoint(StartBlock->getTerminator()); 2344 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2345 2346 // Replace the unconditional branch that was created by the first split with 2347 // a compare against zero and a conditional branch. 2348 Value *Zero = Constant::getNullValue(Ty); 2349 // Avoid introducing branch on poison. This also replaces the ctz operand. 2350 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2351 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2352 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2353 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2354 StartBlock->getTerminator()->eraseFromParent(); 2355 2356 // Create a PHI in the end block to select either the output of the intrinsic 2357 // or the bit width of the operand. 2358 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2359 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2360 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2361 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2362 PN->addIncoming(BitWidth, StartBlock); 2363 PN->addIncoming(CountZeros, CallBlock); 2364 2365 // We are explicitly handling the zero case, so we can set the intrinsic's 2366 // undefined zero argument to 'true'. This will also prevent reprocessing the 2367 // intrinsic; we only despeculate when a zero input is defined. 2368 CountZeros->setArgOperand(1, Builder.getTrue()); 2369 ModifiedDT = ModifyDT::ModifyBBDT; 2370 return true; 2371 } 2372 2373 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2374 BasicBlock *BB = CI->getParent(); 2375 2376 // Lower inline assembly if we can. 2377 // If we found an inline asm expession, and if the target knows how to 2378 // lower it to normal LLVM code, do so now. 2379 if (CI->isInlineAsm()) { 2380 if (TLI->ExpandInlineAsm(CI)) { 2381 // Avoid invalidating the iterator. 2382 CurInstIterator = BB->begin(); 2383 // Avoid processing instructions out of order, which could cause 2384 // reuse before a value is defined. 2385 SunkAddrs.clear(); 2386 return true; 2387 } 2388 // Sink address computing for memory operands into the block. 2389 if (optimizeInlineAsmInst(CI)) 2390 return true; 2391 } 2392 2393 // Align the pointer arguments to this call if the target thinks it's a good 2394 // idea 2395 unsigned MinSize; 2396 Align PrefAlign; 2397 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2398 for (auto &Arg : CI->args()) { 2399 // We want to align both objects whose address is used directly and 2400 // objects whose address is used in casts and GEPs, though it only makes 2401 // sense for GEPs if the offset is a multiple of the desired alignment and 2402 // if size - offset meets the size threshold. 2403 if (!Arg->getType()->isPointerTy()) 2404 continue; 2405 APInt Offset(DL->getIndexSizeInBits( 2406 cast<PointerType>(Arg->getType())->getAddressSpace()), 2407 0); 2408 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2409 uint64_t Offset2 = Offset.getLimitedValue(); 2410 if (!isAligned(PrefAlign, Offset2)) 2411 continue; 2412 AllocaInst *AI; 2413 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2414 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2415 AI->setAlignment(PrefAlign); 2416 // Global variables can only be aligned if they are defined in this 2417 // object (i.e. they are uniquely initialized in this object), and 2418 // over-aligning global variables that have an explicit section is 2419 // forbidden. 2420 GlobalVariable *GV; 2421 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2422 GV->getPointerAlignment(*DL) < PrefAlign && 2423 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2424 GV->setAlignment(PrefAlign); 2425 } 2426 } 2427 // If this is a memcpy (or similar) then we may be able to improve the 2428 // alignment. 2429 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2430 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2431 MaybeAlign MIDestAlign = MI->getDestAlign(); 2432 if (!MIDestAlign || DestAlign > *MIDestAlign) 2433 MI->setDestAlignment(DestAlign); 2434 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2435 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2436 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2437 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2438 MTI->setSourceAlignment(SrcAlign); 2439 } 2440 } 2441 2442 // If we have a cold call site, try to sink addressing computation into the 2443 // cold block. This interacts with our handling for loads and stores to 2444 // ensure that we can fold all uses of a potential addressing computation 2445 // into their uses. TODO: generalize this to work over profiling data 2446 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2447 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2448 for (auto &Arg : CI->args()) { 2449 if (!Arg->getType()->isPointerTy()) 2450 continue; 2451 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2452 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2453 return true; 2454 } 2455 2456 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2457 if (II) { 2458 switch (II->getIntrinsicID()) { 2459 default: 2460 break; 2461 case Intrinsic::assume: 2462 llvm_unreachable("llvm.assume should have been removed already"); 2463 case Intrinsic::allow_runtime_check: 2464 case Intrinsic::allow_ubsan_check: 2465 case Intrinsic::experimental_widenable_condition: { 2466 // Give up on future widening opportunities so that we can fold away dead 2467 // paths and merge blocks before going into block-local instruction 2468 // selection. 2469 if (II->use_empty()) { 2470 II->eraseFromParent(); 2471 return true; 2472 } 2473 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2474 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2475 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2476 }); 2477 return true; 2478 } 2479 case Intrinsic::objectsize: 2480 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2481 case Intrinsic::is_constant: 2482 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2483 case Intrinsic::aarch64_stlxr: 2484 case Intrinsic::aarch64_stxr: { 2485 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2486 if (!ExtVal || !ExtVal->hasOneUse() || 2487 ExtVal->getParent() == CI->getParent()) 2488 return false; 2489 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2490 ExtVal->moveBefore(CI); 2491 // Mark this instruction as "inserted by CGP", so that other 2492 // optimizations don't touch it. 2493 InsertedInsts.insert(ExtVal); 2494 return true; 2495 } 2496 2497 case Intrinsic::launder_invariant_group: 2498 case Intrinsic::strip_invariant_group: { 2499 Value *ArgVal = II->getArgOperand(0); 2500 auto it = LargeOffsetGEPMap.find(II); 2501 if (it != LargeOffsetGEPMap.end()) { 2502 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2503 // Make sure not to have to deal with iterator invalidation 2504 // after possibly adding ArgVal to LargeOffsetGEPMap. 2505 auto GEPs = std::move(it->second); 2506 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2507 LargeOffsetGEPMap.erase(II); 2508 } 2509 2510 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2511 II->eraseFromParent(); 2512 return true; 2513 } 2514 case Intrinsic::cttz: 2515 case Intrinsic::ctlz: 2516 // If counting zeros is expensive, try to avoid it. 2517 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2518 IsHugeFunc); 2519 case Intrinsic::fshl: 2520 case Intrinsic::fshr: 2521 return optimizeFunnelShift(II); 2522 case Intrinsic::dbg_assign: 2523 case Intrinsic::dbg_value: 2524 return fixupDbgValue(II); 2525 case Intrinsic::masked_gather: 2526 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2527 case Intrinsic::masked_scatter: 2528 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2529 } 2530 2531 SmallVector<Value *, 2> PtrOps; 2532 Type *AccessTy; 2533 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2534 while (!PtrOps.empty()) { 2535 Value *PtrVal = PtrOps.pop_back_val(); 2536 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2537 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2538 return true; 2539 } 2540 } 2541 2542 // From here on out we're working with named functions. 2543 if (!CI->getCalledFunction()) 2544 return false; 2545 2546 // Lower all default uses of _chk calls. This is very similar 2547 // to what InstCombineCalls does, but here we are only lowering calls 2548 // to fortified library functions (e.g. __memcpy_chk) that have the default 2549 // "don't know" as the objectsize. Anything else should be left alone. 2550 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2551 IRBuilder<> Builder(CI); 2552 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2553 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2554 CI->eraseFromParent(); 2555 return true; 2556 } 2557 2558 return false; 2559 } 2560 2561 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, 2562 const CallInst *CI) { 2563 assert(CI && CI->use_empty()); 2564 2565 if (const auto *II = dyn_cast<IntrinsicInst>(CI)) 2566 switch (II->getIntrinsicID()) { 2567 case Intrinsic::memset: 2568 case Intrinsic::memcpy: 2569 case Intrinsic::memmove: 2570 return true; 2571 default: 2572 return false; 2573 } 2574 2575 LibFunc LF; 2576 Function *Callee = CI->getCalledFunction(); 2577 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) 2578 switch (LF) { 2579 case LibFunc_strcpy: 2580 case LibFunc_strncpy: 2581 case LibFunc_strcat: 2582 case LibFunc_strncat: 2583 return true; 2584 default: 2585 return false; 2586 } 2587 2588 return false; 2589 } 2590 2591 /// Look for opportunities to duplicate return instructions to the predecessor 2592 /// to enable tail call optimizations. The case it is currently looking for is 2593 /// the following one. Known intrinsics or library function that may be tail 2594 /// called are taken into account as well. 2595 /// @code 2596 /// bb0: 2597 /// %tmp0 = tail call i32 @f0() 2598 /// br label %return 2599 /// bb1: 2600 /// %tmp1 = tail call i32 @f1() 2601 /// br label %return 2602 /// bb2: 2603 /// %tmp2 = tail call i32 @f2() 2604 /// br label %return 2605 /// return: 2606 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2607 /// ret i32 %retval 2608 /// @endcode 2609 /// 2610 /// => 2611 /// 2612 /// @code 2613 /// bb0: 2614 /// %tmp0 = tail call i32 @f0() 2615 /// ret i32 %tmp0 2616 /// bb1: 2617 /// %tmp1 = tail call i32 @f1() 2618 /// ret i32 %tmp1 2619 /// bb2: 2620 /// %tmp2 = tail call i32 @f2() 2621 /// ret i32 %tmp2 2622 /// @endcode 2623 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2624 ModifyDT &ModifiedDT) { 2625 if (!BB->getTerminator()) 2626 return false; 2627 2628 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2629 if (!RetI) 2630 return false; 2631 2632 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2633 2634 PHINode *PN = nullptr; 2635 ExtractValueInst *EVI = nullptr; 2636 BitCastInst *BCI = nullptr; 2637 Value *V = RetI->getReturnValue(); 2638 if (V) { 2639 BCI = dyn_cast<BitCastInst>(V); 2640 if (BCI) 2641 V = BCI->getOperand(0); 2642 2643 EVI = dyn_cast<ExtractValueInst>(V); 2644 if (EVI) { 2645 V = EVI->getOperand(0); 2646 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2647 return false; 2648 } 2649 2650 PN = dyn_cast<PHINode>(V); 2651 } 2652 2653 if (PN && PN->getParent() != BB) 2654 return false; 2655 2656 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2657 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2658 if (BC && BC->hasOneUse()) 2659 Inst = BC->user_back(); 2660 2661 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2662 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2663 return false; 2664 }; 2665 2666 // Make sure there are no instructions between the first instruction 2667 // and return. 2668 const Instruction *BI = BB->getFirstNonPHI(); 2669 // Skip over debug and the bitcast. 2670 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2671 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2672 BI = BI->getNextNode(); 2673 if (BI != RetI) 2674 return false; 2675 2676 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2677 /// call. 2678 const Function *F = BB->getParent(); 2679 SmallVector<BasicBlock *, 4> TailCallBBs; 2680 if (PN) { 2681 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2682 // Look through bitcasts. 2683 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2684 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2685 BasicBlock *PredBB = PN->getIncomingBlock(I); 2686 // Make sure the phi value is indeed produced by the tail call. 2687 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2688 TLI->mayBeEmittedAsTailCall(CI) && 2689 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2690 TailCallBBs.push_back(PredBB); 2691 } else { 2692 // Consider the cases in which the phi value is indirectly produced by 2693 // the tail call, for example when encountering memset(), memmove(), 2694 // strcpy(), whose return value may have been optimized out. In such 2695 // cases, the value needs to be the first function argument. 2696 // 2697 // bb0: 2698 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) 2699 // br label %return 2700 // return: 2701 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] 2702 if (PredBB && PredBB->getSingleSuccessor() == BB) 2703 CI = dyn_cast_or_null<CallInst>( 2704 PredBB->getTerminator()->getPrevNonDebugInstruction(true)); 2705 2706 if (CI && CI->use_empty() && 2707 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2708 IncomingVal == CI->getArgOperand(0) && 2709 TLI->mayBeEmittedAsTailCall(CI) && 2710 attributesPermitTailCall(F, CI, RetI, *TLI)) 2711 TailCallBBs.push_back(PredBB); 2712 } 2713 } 2714 } else { 2715 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2716 for (BasicBlock *Pred : predecessors(BB)) { 2717 if (!VisitedBBs.insert(Pred).second) 2718 continue; 2719 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2720 CallInst *CI = dyn_cast<CallInst>(I); 2721 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2722 attributesPermitTailCall(F, CI, RetI, *TLI)) { 2723 // Either we return void or the return value must be the first 2724 // argument of a known intrinsic or library function. 2725 if (!V || isa<UndefValue>(V) || 2726 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && 2727 V == CI->getArgOperand(0))) { 2728 TailCallBBs.push_back(Pred); 2729 } 2730 } 2731 } 2732 } 2733 } 2734 2735 bool Changed = false; 2736 for (auto const &TailCallBB : TailCallBBs) { 2737 // Make sure the call instruction is followed by an unconditional branch to 2738 // the return block. 2739 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2740 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2741 continue; 2742 2743 // Duplicate the return into TailCallBB. 2744 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2745 assert(!VerifyBFIUpdates || 2746 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2747 BFI->setBlockFreq(BB, 2748 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2749 ModifiedDT = ModifyDT::ModifyBBDT; 2750 Changed = true; 2751 ++NumRetsDup; 2752 } 2753 2754 // If we eliminated all predecessors of the block, delete the block now. 2755 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2756 BB->eraseFromParent(); 2757 2758 return Changed; 2759 } 2760 2761 //===----------------------------------------------------------------------===// 2762 // Memory Optimization 2763 //===----------------------------------------------------------------------===// 2764 2765 namespace { 2766 2767 /// This is an extended version of TargetLowering::AddrMode 2768 /// which holds actual Value*'s for register values. 2769 struct ExtAddrMode : public TargetLowering::AddrMode { 2770 Value *BaseReg = nullptr; 2771 Value *ScaledReg = nullptr; 2772 Value *OriginalValue = nullptr; 2773 bool InBounds = true; 2774 2775 enum FieldName { 2776 NoField = 0x00, 2777 BaseRegField = 0x01, 2778 BaseGVField = 0x02, 2779 BaseOffsField = 0x04, 2780 ScaledRegField = 0x08, 2781 ScaleField = 0x10, 2782 MultipleFields = 0xff 2783 }; 2784 2785 ExtAddrMode() = default; 2786 2787 void print(raw_ostream &OS) const; 2788 void dump() const; 2789 2790 FieldName compare(const ExtAddrMode &other) { 2791 // First check that the types are the same on each field, as differing types 2792 // is something we can't cope with later on. 2793 if (BaseReg && other.BaseReg && 2794 BaseReg->getType() != other.BaseReg->getType()) 2795 return MultipleFields; 2796 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2797 return MultipleFields; 2798 if (ScaledReg && other.ScaledReg && 2799 ScaledReg->getType() != other.ScaledReg->getType()) 2800 return MultipleFields; 2801 2802 // Conservatively reject 'inbounds' mismatches. 2803 if (InBounds != other.InBounds) 2804 return MultipleFields; 2805 2806 // Check each field to see if it differs. 2807 unsigned Result = NoField; 2808 if (BaseReg != other.BaseReg) 2809 Result |= BaseRegField; 2810 if (BaseGV != other.BaseGV) 2811 Result |= BaseGVField; 2812 if (BaseOffs != other.BaseOffs) 2813 Result |= BaseOffsField; 2814 if (ScaledReg != other.ScaledReg) 2815 Result |= ScaledRegField; 2816 // Don't count 0 as being a different scale, because that actually means 2817 // unscaled (which will already be counted by having no ScaledReg). 2818 if (Scale && other.Scale && Scale != other.Scale) 2819 Result |= ScaleField; 2820 2821 if (llvm::popcount(Result) > 1) 2822 return MultipleFields; 2823 else 2824 return static_cast<FieldName>(Result); 2825 } 2826 2827 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2828 // with no offset. 2829 bool isTrivial() { 2830 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2831 // trivial if at most one of these terms is nonzero, except that BaseGV and 2832 // BaseReg both being zero actually means a null pointer value, which we 2833 // consider to be 'non-zero' here. 2834 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2835 } 2836 2837 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2838 switch (Field) { 2839 default: 2840 return nullptr; 2841 case BaseRegField: 2842 return BaseReg; 2843 case BaseGVField: 2844 return BaseGV; 2845 case ScaledRegField: 2846 return ScaledReg; 2847 case BaseOffsField: 2848 return ConstantInt::get(IntPtrTy, BaseOffs); 2849 } 2850 } 2851 2852 void SetCombinedField(FieldName Field, Value *V, 2853 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2854 switch (Field) { 2855 default: 2856 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2857 break; 2858 case ExtAddrMode::BaseRegField: 2859 BaseReg = V; 2860 break; 2861 case ExtAddrMode::BaseGVField: 2862 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2863 // in the BaseReg field. 2864 assert(BaseReg == nullptr); 2865 BaseReg = V; 2866 BaseGV = nullptr; 2867 break; 2868 case ExtAddrMode::ScaledRegField: 2869 ScaledReg = V; 2870 // If we have a mix of scaled and unscaled addrmodes then we want scale 2871 // to be the scale and not zero. 2872 if (!Scale) 2873 for (const ExtAddrMode &AM : AddrModes) 2874 if (AM.Scale) { 2875 Scale = AM.Scale; 2876 break; 2877 } 2878 break; 2879 case ExtAddrMode::BaseOffsField: 2880 // The offset is no longer a constant, so it goes in ScaledReg with a 2881 // scale of 1. 2882 assert(ScaledReg == nullptr); 2883 ScaledReg = V; 2884 Scale = 1; 2885 BaseOffs = 0; 2886 break; 2887 } 2888 } 2889 }; 2890 2891 #ifndef NDEBUG 2892 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2893 AM.print(OS); 2894 return OS; 2895 } 2896 #endif 2897 2898 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2899 void ExtAddrMode::print(raw_ostream &OS) const { 2900 bool NeedPlus = false; 2901 OS << "["; 2902 if (InBounds) 2903 OS << "inbounds "; 2904 if (BaseGV) { 2905 OS << "GV:"; 2906 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2907 NeedPlus = true; 2908 } 2909 2910 if (BaseOffs) { 2911 OS << (NeedPlus ? " + " : "") << BaseOffs; 2912 NeedPlus = true; 2913 } 2914 2915 if (BaseReg) { 2916 OS << (NeedPlus ? " + " : "") << "Base:"; 2917 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2918 NeedPlus = true; 2919 } 2920 if (Scale) { 2921 OS << (NeedPlus ? " + " : "") << Scale << "*"; 2922 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2923 } 2924 2925 OS << ']'; 2926 } 2927 2928 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2929 print(dbgs()); 2930 dbgs() << '\n'; 2931 } 2932 #endif 2933 2934 } // end anonymous namespace 2935 2936 namespace { 2937 2938 /// This class provides transaction based operation on the IR. 2939 /// Every change made through this class is recorded in the internal state and 2940 /// can be undone (rollback) until commit is called. 2941 /// CGP does not check if instructions could be speculatively executed when 2942 /// moved. Preserving the original location would pessimize the debugging 2943 /// experience, as well as negatively impact the quality of sample PGO. 2944 class TypePromotionTransaction { 2945 /// This represents the common interface of the individual transaction. 2946 /// Each class implements the logic for doing one specific modification on 2947 /// the IR via the TypePromotionTransaction. 2948 class TypePromotionAction { 2949 protected: 2950 /// The Instruction modified. 2951 Instruction *Inst; 2952 2953 public: 2954 /// Constructor of the action. 2955 /// The constructor performs the related action on the IR. 2956 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2957 2958 virtual ~TypePromotionAction() = default; 2959 2960 /// Undo the modification done by this action. 2961 /// When this method is called, the IR must be in the same state as it was 2962 /// before this action was applied. 2963 /// \pre Undoing the action works if and only if the IR is in the exact same 2964 /// state as it was directly after this action was applied. 2965 virtual void undo() = 0; 2966 2967 /// Advocate every change made by this action. 2968 /// When the results on the IR of the action are to be kept, it is important 2969 /// to call this function, otherwise hidden information may be kept forever. 2970 virtual void commit() { 2971 // Nothing to be done, this action is not doing anything. 2972 } 2973 }; 2974 2975 /// Utility to remember the position of an instruction. 2976 class InsertionHandler { 2977 /// Position of an instruction. 2978 /// Either an instruction: 2979 /// - Is the first in a basic block: BB is used. 2980 /// - Has a previous instruction: PrevInst is used. 2981 union { 2982 Instruction *PrevInst; 2983 BasicBlock *BB; 2984 } Point; 2985 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; 2986 2987 /// Remember whether or not the instruction had a previous instruction. 2988 bool HasPrevInstruction; 2989 2990 public: 2991 /// Record the position of \p Inst. 2992 InsertionHandler(Instruction *Inst) { 2993 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 2994 BasicBlock *BB = Inst->getParent(); 2995 2996 // Record where we would have to re-insert the instruction in the sequence 2997 // of DbgRecords, if we ended up reinserting. 2998 if (BB->IsNewDbgInfoFormat) 2999 BeforeDbgRecord = Inst->getDbgReinsertionPosition(); 3000 3001 if (HasPrevInstruction) { 3002 Point.PrevInst = &*std::prev(Inst->getIterator()); 3003 } else { 3004 Point.BB = BB; 3005 } 3006 } 3007 3008 /// Insert \p Inst at the recorded position. 3009 void insert(Instruction *Inst) { 3010 if (HasPrevInstruction) { 3011 if (Inst->getParent()) 3012 Inst->removeFromParent(); 3013 Inst->insertAfter(&*Point.PrevInst); 3014 } else { 3015 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 3016 if (Inst->getParent()) 3017 Inst->moveBefore(*Point.BB, Position); 3018 else 3019 Inst->insertBefore(*Point.BB, Position); 3020 } 3021 3022 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); 3023 } 3024 }; 3025 3026 /// Move an instruction before another. 3027 class InstructionMoveBefore : public TypePromotionAction { 3028 /// Original position of the instruction. 3029 InsertionHandler Position; 3030 3031 public: 3032 /// Move \p Inst before \p Before. 3033 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 3034 : TypePromotionAction(Inst), Position(Inst) { 3035 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 3036 << "\n"); 3037 Inst->moveBefore(Before); 3038 } 3039 3040 /// Move the instruction back to its original position. 3041 void undo() override { 3042 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 3043 Position.insert(Inst); 3044 } 3045 }; 3046 3047 /// Set the operand of an instruction with a new value. 3048 class OperandSetter : public TypePromotionAction { 3049 /// Original operand of the instruction. 3050 Value *Origin; 3051 3052 /// Index of the modified instruction. 3053 unsigned Idx; 3054 3055 public: 3056 /// Set \p Idx operand of \p Inst with \p NewVal. 3057 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 3058 : TypePromotionAction(Inst), Idx(Idx) { 3059 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 3060 << "for:" << *Inst << "\n" 3061 << "with:" << *NewVal << "\n"); 3062 Origin = Inst->getOperand(Idx); 3063 Inst->setOperand(Idx, NewVal); 3064 } 3065 3066 /// Restore the original value of the instruction. 3067 void undo() override { 3068 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 3069 << "for: " << *Inst << "\n" 3070 << "with: " << *Origin << "\n"); 3071 Inst->setOperand(Idx, Origin); 3072 } 3073 }; 3074 3075 /// Hide the operands of an instruction. 3076 /// Do as if this instruction was not using any of its operands. 3077 class OperandsHider : public TypePromotionAction { 3078 /// The list of original operands. 3079 SmallVector<Value *, 4> OriginalValues; 3080 3081 public: 3082 /// Remove \p Inst from the uses of the operands of \p Inst. 3083 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 3084 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 3085 unsigned NumOpnds = Inst->getNumOperands(); 3086 OriginalValues.reserve(NumOpnds); 3087 for (unsigned It = 0; It < NumOpnds; ++It) { 3088 // Save the current operand. 3089 Value *Val = Inst->getOperand(It); 3090 OriginalValues.push_back(Val); 3091 // Set a dummy one. 3092 // We could use OperandSetter here, but that would imply an overhead 3093 // that we are not willing to pay. 3094 Inst->setOperand(It, UndefValue::get(Val->getType())); 3095 } 3096 } 3097 3098 /// Restore the original list of uses. 3099 void undo() override { 3100 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 3101 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 3102 Inst->setOperand(It, OriginalValues[It]); 3103 } 3104 }; 3105 3106 /// Build a truncate instruction. 3107 class TruncBuilder : public TypePromotionAction { 3108 Value *Val; 3109 3110 public: 3111 /// Build a truncate instruction of \p Opnd producing a \p Ty 3112 /// result. 3113 /// trunc Opnd to Ty. 3114 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 3115 IRBuilder<> Builder(Opnd); 3116 Builder.SetCurrentDebugLocation(DebugLoc()); 3117 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 3118 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 3119 } 3120 3121 /// Get the built value. 3122 Value *getBuiltValue() { return Val; } 3123 3124 /// Remove the built instruction. 3125 void undo() override { 3126 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 3127 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3128 IVal->eraseFromParent(); 3129 } 3130 }; 3131 3132 /// Build a sign extension instruction. 3133 class SExtBuilder : public TypePromotionAction { 3134 Value *Val; 3135 3136 public: 3137 /// Build a sign extension instruction of \p Opnd producing a \p Ty 3138 /// result. 3139 /// sext Opnd to Ty. 3140 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3141 : TypePromotionAction(InsertPt) { 3142 IRBuilder<> Builder(InsertPt); 3143 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3144 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3145 } 3146 3147 /// Get the built value. 3148 Value *getBuiltValue() { return Val; } 3149 3150 /// Remove the built instruction. 3151 void undo() override { 3152 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3153 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3154 IVal->eraseFromParent(); 3155 } 3156 }; 3157 3158 /// Build a zero extension instruction. 3159 class ZExtBuilder : public TypePromotionAction { 3160 Value *Val; 3161 3162 public: 3163 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3164 /// result. 3165 /// zext Opnd to Ty. 3166 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3167 : TypePromotionAction(InsertPt) { 3168 IRBuilder<> Builder(InsertPt); 3169 Builder.SetCurrentDebugLocation(DebugLoc()); 3170 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3171 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3172 } 3173 3174 /// Get the built value. 3175 Value *getBuiltValue() { return Val; } 3176 3177 /// Remove the built instruction. 3178 void undo() override { 3179 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3180 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3181 IVal->eraseFromParent(); 3182 } 3183 }; 3184 3185 /// Mutate an instruction to another type. 3186 class TypeMutator : public TypePromotionAction { 3187 /// Record the original type. 3188 Type *OrigTy; 3189 3190 public: 3191 /// Mutate the type of \p Inst into \p NewTy. 3192 TypeMutator(Instruction *Inst, Type *NewTy) 3193 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3194 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3195 << "\n"); 3196 Inst->mutateType(NewTy); 3197 } 3198 3199 /// Mutate the instruction back to its original type. 3200 void undo() override { 3201 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3202 << "\n"); 3203 Inst->mutateType(OrigTy); 3204 } 3205 }; 3206 3207 /// Replace the uses of an instruction by another instruction. 3208 class UsesReplacer : public TypePromotionAction { 3209 /// Helper structure to keep track of the replaced uses. 3210 struct InstructionAndIdx { 3211 /// The instruction using the instruction. 3212 Instruction *Inst; 3213 3214 /// The index where this instruction is used for Inst. 3215 unsigned Idx; 3216 3217 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3218 : Inst(Inst), Idx(Idx) {} 3219 }; 3220 3221 /// Keep track of the original uses (pair Instruction, Index). 3222 SmallVector<InstructionAndIdx, 4> OriginalUses; 3223 /// Keep track of the debug users. 3224 SmallVector<DbgValueInst *, 1> DbgValues; 3225 /// And non-instruction debug-users too. 3226 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 3227 3228 /// Keep track of the new value so that we can undo it by replacing 3229 /// instances of the new value with the original value. 3230 Value *New; 3231 3232 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3233 3234 public: 3235 /// Replace all the use of \p Inst by \p New. 3236 UsesReplacer(Instruction *Inst, Value *New) 3237 : TypePromotionAction(Inst), New(New) { 3238 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3239 << "\n"); 3240 // Record the original uses. 3241 for (Use &U : Inst->uses()) { 3242 Instruction *UserI = cast<Instruction>(U.getUser()); 3243 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3244 } 3245 // Record the debug uses separately. They are not in the instruction's 3246 // use list, but they are replaced by RAUW. 3247 findDbgValues(DbgValues, Inst, &DbgVariableRecords); 3248 3249 // Now, we can replace the uses. 3250 Inst->replaceAllUsesWith(New); 3251 } 3252 3253 /// Reassign the original uses of Inst to Inst. 3254 void undo() override { 3255 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3256 for (InstructionAndIdx &Use : OriginalUses) 3257 Use.Inst->setOperand(Use.Idx, Inst); 3258 // RAUW has replaced all original uses with references to the new value, 3259 // including the debug uses. Since we are undoing the replacements, 3260 // the original debug uses must also be reinstated to maintain the 3261 // correctness and utility of debug value instructions. 3262 for (auto *DVI : DbgValues) 3263 DVI->replaceVariableLocationOp(New, Inst); 3264 // Similar story with DbgVariableRecords, the non-instruction 3265 // representation of dbg.values. 3266 for (DbgVariableRecord *DVR : DbgVariableRecords) 3267 DVR->replaceVariableLocationOp(New, Inst); 3268 } 3269 }; 3270 3271 /// Remove an instruction from the IR. 3272 class InstructionRemover : public TypePromotionAction { 3273 /// Original position of the instruction. 3274 InsertionHandler Inserter; 3275 3276 /// Helper structure to hide all the link to the instruction. In other 3277 /// words, this helps to do as if the instruction was removed. 3278 OperandsHider Hider; 3279 3280 /// Keep track of the uses replaced, if any. 3281 UsesReplacer *Replacer = nullptr; 3282 3283 /// Keep track of instructions removed. 3284 SetOfInstrs &RemovedInsts; 3285 3286 public: 3287 /// Remove all reference of \p Inst and optionally replace all its 3288 /// uses with New. 3289 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3290 /// \pre If !Inst->use_empty(), then New != nullptr 3291 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3292 Value *New = nullptr) 3293 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3294 RemovedInsts(RemovedInsts) { 3295 if (New) 3296 Replacer = new UsesReplacer(Inst, New); 3297 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3298 RemovedInsts.insert(Inst); 3299 /// The instructions removed here will be freed after completing 3300 /// optimizeBlock() for all blocks as we need to keep track of the 3301 /// removed instructions during promotion. 3302 Inst->removeFromParent(); 3303 } 3304 3305 ~InstructionRemover() override { delete Replacer; } 3306 3307 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3308 InstructionRemover(const InstructionRemover &other) = delete; 3309 3310 /// Resurrect the instruction and reassign it to the proper uses if 3311 /// new value was provided when build this action. 3312 void undo() override { 3313 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3314 Inserter.insert(Inst); 3315 if (Replacer) 3316 Replacer->undo(); 3317 Hider.undo(); 3318 RemovedInsts.erase(Inst); 3319 } 3320 }; 3321 3322 public: 3323 /// Restoration point. 3324 /// The restoration point is a pointer to an action instead of an iterator 3325 /// because the iterator may be invalidated but not the pointer. 3326 using ConstRestorationPt = const TypePromotionAction *; 3327 3328 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3329 : RemovedInsts(RemovedInsts) {} 3330 3331 /// Advocate every changes made in that transaction. Return true if any change 3332 /// happen. 3333 bool commit(); 3334 3335 /// Undo all the changes made after the given point. 3336 void rollback(ConstRestorationPt Point); 3337 3338 /// Get the current restoration point. 3339 ConstRestorationPt getRestorationPoint() const; 3340 3341 /// \name API for IR modification with state keeping to support rollback. 3342 /// @{ 3343 /// Same as Instruction::setOperand. 3344 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3345 3346 /// Same as Instruction::eraseFromParent. 3347 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3348 3349 /// Same as Value::replaceAllUsesWith. 3350 void replaceAllUsesWith(Instruction *Inst, Value *New); 3351 3352 /// Same as Value::mutateType. 3353 void mutateType(Instruction *Inst, Type *NewTy); 3354 3355 /// Same as IRBuilder::createTrunc. 3356 Value *createTrunc(Instruction *Opnd, Type *Ty); 3357 3358 /// Same as IRBuilder::createSExt. 3359 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3360 3361 /// Same as IRBuilder::createZExt. 3362 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3363 3364 private: 3365 /// The ordered list of actions made so far. 3366 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3367 3368 using CommitPt = 3369 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3370 3371 SetOfInstrs &RemovedInsts; 3372 }; 3373 3374 } // end anonymous namespace 3375 3376 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3377 Value *NewVal) { 3378 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3379 Inst, Idx, NewVal)); 3380 } 3381 3382 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3383 Value *NewVal) { 3384 Actions.push_back( 3385 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3386 Inst, RemovedInsts, NewVal)); 3387 } 3388 3389 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3390 Value *New) { 3391 Actions.push_back( 3392 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3393 } 3394 3395 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3396 Actions.push_back( 3397 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3398 } 3399 3400 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3401 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3402 Value *Val = Ptr->getBuiltValue(); 3403 Actions.push_back(std::move(Ptr)); 3404 return Val; 3405 } 3406 3407 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3408 Type *Ty) { 3409 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3410 Value *Val = Ptr->getBuiltValue(); 3411 Actions.push_back(std::move(Ptr)); 3412 return Val; 3413 } 3414 3415 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3416 Type *Ty) { 3417 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3418 Value *Val = Ptr->getBuiltValue(); 3419 Actions.push_back(std::move(Ptr)); 3420 return Val; 3421 } 3422 3423 TypePromotionTransaction::ConstRestorationPt 3424 TypePromotionTransaction::getRestorationPoint() const { 3425 return !Actions.empty() ? Actions.back().get() : nullptr; 3426 } 3427 3428 bool TypePromotionTransaction::commit() { 3429 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3430 Action->commit(); 3431 bool Modified = !Actions.empty(); 3432 Actions.clear(); 3433 return Modified; 3434 } 3435 3436 void TypePromotionTransaction::rollback( 3437 TypePromotionTransaction::ConstRestorationPt Point) { 3438 while (!Actions.empty() && Point != Actions.back().get()) { 3439 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3440 Curr->undo(); 3441 } 3442 } 3443 3444 namespace { 3445 3446 /// A helper class for matching addressing modes. 3447 /// 3448 /// This encapsulates the logic for matching the target-legal addressing modes. 3449 class AddressingModeMatcher { 3450 SmallVectorImpl<Instruction *> &AddrModeInsts; 3451 const TargetLowering &TLI; 3452 const TargetRegisterInfo &TRI; 3453 const DataLayout &DL; 3454 const LoopInfo &LI; 3455 const std::function<const DominatorTree &()> getDTFn; 3456 3457 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3458 /// the memory instruction that we're computing this address for. 3459 Type *AccessTy; 3460 unsigned AddrSpace; 3461 Instruction *MemoryInst; 3462 3463 /// This is the addressing mode that we're building up. This is 3464 /// part of the return value of this addressing mode matching stuff. 3465 ExtAddrMode &AddrMode; 3466 3467 /// The instructions inserted by other CodeGenPrepare optimizations. 3468 const SetOfInstrs &InsertedInsts; 3469 3470 /// A map from the instructions to their type before promotion. 3471 InstrToOrigTy &PromotedInsts; 3472 3473 /// The ongoing transaction where every action should be registered. 3474 TypePromotionTransaction &TPT; 3475 3476 // A GEP which has too large offset to be folded into the addressing mode. 3477 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3478 3479 /// This is set to true when we should not do profitability checks. 3480 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3481 bool IgnoreProfitability; 3482 3483 /// True if we are optimizing for size. 3484 bool OptSize = false; 3485 3486 ProfileSummaryInfo *PSI; 3487 BlockFrequencyInfo *BFI; 3488 3489 AddressingModeMatcher( 3490 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3491 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3492 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3493 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3494 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3495 TypePromotionTransaction &TPT, 3496 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3497 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3498 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3499 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), 3500 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3501 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3502 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3503 IgnoreProfitability = false; 3504 } 3505 3506 public: 3507 /// Find the maximal addressing mode that a load/store of V can fold, 3508 /// give an access type of AccessTy. This returns a list of involved 3509 /// instructions in AddrModeInsts. 3510 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3511 /// optimizations. 3512 /// \p PromotedInsts maps the instructions to their type before promotion. 3513 /// \p The ongoing transaction where every action should be registered. 3514 static ExtAddrMode 3515 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3516 SmallVectorImpl<Instruction *> &AddrModeInsts, 3517 const TargetLowering &TLI, const LoopInfo &LI, 3518 const std::function<const DominatorTree &()> getDTFn, 3519 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3520 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3521 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3522 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3523 ExtAddrMode Result; 3524 3525 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3526 AccessTy, AS, MemoryInst, Result, 3527 InsertedInsts, PromotedInsts, TPT, 3528 LargeOffsetGEP, OptSize, PSI, BFI) 3529 .matchAddr(V, 0); 3530 (void)Success; 3531 assert(Success && "Couldn't select *anything*?"); 3532 return Result; 3533 } 3534 3535 private: 3536 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3537 bool matchAddr(Value *Addr, unsigned Depth); 3538 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3539 bool *MovedAway = nullptr); 3540 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3541 ExtAddrMode &AMBefore, 3542 ExtAddrMode &AMAfter); 3543 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3544 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3545 Value *PromotedOperand) const; 3546 }; 3547 3548 class PhiNodeSet; 3549 3550 /// An iterator for PhiNodeSet. 3551 class PhiNodeSetIterator { 3552 PhiNodeSet *const Set; 3553 size_t CurrentIndex = 0; 3554 3555 public: 3556 /// The constructor. Start should point to either a valid element, or be equal 3557 /// to the size of the underlying SmallVector of the PhiNodeSet. 3558 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3559 PHINode *operator*() const; 3560 PhiNodeSetIterator &operator++(); 3561 bool operator==(const PhiNodeSetIterator &RHS) const; 3562 bool operator!=(const PhiNodeSetIterator &RHS) const; 3563 }; 3564 3565 /// Keeps a set of PHINodes. 3566 /// 3567 /// This is a minimal set implementation for a specific use case: 3568 /// It is very fast when there are very few elements, but also provides good 3569 /// performance when there are many. It is similar to SmallPtrSet, but also 3570 /// provides iteration by insertion order, which is deterministic and stable 3571 /// across runs. It is also similar to SmallSetVector, but provides removing 3572 /// elements in O(1) time. This is achieved by not actually removing the element 3573 /// from the underlying vector, so comes at the cost of using more memory, but 3574 /// that is fine, since PhiNodeSets are used as short lived objects. 3575 class PhiNodeSet { 3576 friend class PhiNodeSetIterator; 3577 3578 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3579 using iterator = PhiNodeSetIterator; 3580 3581 /// Keeps the elements in the order of their insertion in the underlying 3582 /// vector. To achieve constant time removal, it never deletes any element. 3583 SmallVector<PHINode *, 32> NodeList; 3584 3585 /// Keeps the elements in the underlying set implementation. This (and not the 3586 /// NodeList defined above) is the source of truth on whether an element 3587 /// is actually in the collection. 3588 MapType NodeMap; 3589 3590 /// Points to the first valid (not deleted) element when the set is not empty 3591 /// and the value is not zero. Equals to the size of the underlying vector 3592 /// when the set is empty. When the value is 0, as in the beginning, the 3593 /// first element may or may not be valid. 3594 size_t FirstValidElement = 0; 3595 3596 public: 3597 /// Inserts a new element to the collection. 3598 /// \returns true if the element is actually added, i.e. was not in the 3599 /// collection before the operation. 3600 bool insert(PHINode *Ptr) { 3601 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3602 NodeList.push_back(Ptr); 3603 return true; 3604 } 3605 return false; 3606 } 3607 3608 /// Removes the element from the collection. 3609 /// \returns whether the element is actually removed, i.e. was in the 3610 /// collection before the operation. 3611 bool erase(PHINode *Ptr) { 3612 if (NodeMap.erase(Ptr)) { 3613 SkipRemovedElements(FirstValidElement); 3614 return true; 3615 } 3616 return false; 3617 } 3618 3619 /// Removes all elements and clears the collection. 3620 void clear() { 3621 NodeMap.clear(); 3622 NodeList.clear(); 3623 FirstValidElement = 0; 3624 } 3625 3626 /// \returns an iterator that will iterate the elements in the order of 3627 /// insertion. 3628 iterator begin() { 3629 if (FirstValidElement == 0) 3630 SkipRemovedElements(FirstValidElement); 3631 return PhiNodeSetIterator(this, FirstValidElement); 3632 } 3633 3634 /// \returns an iterator that points to the end of the collection. 3635 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3636 3637 /// Returns the number of elements in the collection. 3638 size_t size() const { return NodeMap.size(); } 3639 3640 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3641 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3642 3643 private: 3644 /// Updates the CurrentIndex so that it will point to a valid element. 3645 /// 3646 /// If the element of NodeList at CurrentIndex is valid, it does not 3647 /// change it. If there are no more valid elements, it updates CurrentIndex 3648 /// to point to the end of the NodeList. 3649 void SkipRemovedElements(size_t &CurrentIndex) { 3650 while (CurrentIndex < NodeList.size()) { 3651 auto it = NodeMap.find(NodeList[CurrentIndex]); 3652 // If the element has been deleted and added again later, NodeMap will 3653 // point to a different index, so CurrentIndex will still be invalid. 3654 if (it != NodeMap.end() && it->second == CurrentIndex) 3655 break; 3656 ++CurrentIndex; 3657 } 3658 } 3659 }; 3660 3661 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3662 : Set(Set), CurrentIndex(Start) {} 3663 3664 PHINode *PhiNodeSetIterator::operator*() const { 3665 assert(CurrentIndex < Set->NodeList.size() && 3666 "PhiNodeSet access out of range"); 3667 return Set->NodeList[CurrentIndex]; 3668 } 3669 3670 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3671 assert(CurrentIndex < Set->NodeList.size() && 3672 "PhiNodeSet access out of range"); 3673 ++CurrentIndex; 3674 Set->SkipRemovedElements(CurrentIndex); 3675 return *this; 3676 } 3677 3678 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3679 return CurrentIndex == RHS.CurrentIndex; 3680 } 3681 3682 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3683 return !((*this) == RHS); 3684 } 3685 3686 /// Keep track of simplification of Phi nodes. 3687 /// Accept the set of all phi nodes and erase phi node from this set 3688 /// if it is simplified. 3689 class SimplificationTracker { 3690 DenseMap<Value *, Value *> Storage; 3691 const SimplifyQuery &SQ; 3692 // Tracks newly created Phi nodes. The elements are iterated by insertion 3693 // order. 3694 PhiNodeSet AllPhiNodes; 3695 // Tracks newly created Select nodes. 3696 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3697 3698 public: 3699 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3700 3701 Value *Get(Value *V) { 3702 do { 3703 auto SV = Storage.find(V); 3704 if (SV == Storage.end()) 3705 return V; 3706 V = SV->second; 3707 } while (true); 3708 } 3709 3710 Value *Simplify(Value *Val) { 3711 SmallVector<Value *, 32> WorkList; 3712 SmallPtrSet<Value *, 32> Visited; 3713 WorkList.push_back(Val); 3714 while (!WorkList.empty()) { 3715 auto *P = WorkList.pop_back_val(); 3716 if (!Visited.insert(P).second) 3717 continue; 3718 if (auto *PI = dyn_cast<Instruction>(P)) 3719 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3720 for (auto *U : PI->users()) 3721 WorkList.push_back(cast<Value>(U)); 3722 Put(PI, V); 3723 PI->replaceAllUsesWith(V); 3724 if (auto *PHI = dyn_cast<PHINode>(PI)) 3725 AllPhiNodes.erase(PHI); 3726 if (auto *Select = dyn_cast<SelectInst>(PI)) 3727 AllSelectNodes.erase(Select); 3728 PI->eraseFromParent(); 3729 } 3730 } 3731 return Get(Val); 3732 } 3733 3734 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3735 3736 void ReplacePhi(PHINode *From, PHINode *To) { 3737 Value *OldReplacement = Get(From); 3738 while (OldReplacement != From) { 3739 From = To; 3740 To = dyn_cast<PHINode>(OldReplacement); 3741 OldReplacement = Get(From); 3742 } 3743 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3744 Put(From, To); 3745 From->replaceAllUsesWith(To); 3746 AllPhiNodes.erase(From); 3747 From->eraseFromParent(); 3748 } 3749 3750 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3751 3752 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3753 3754 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3755 3756 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3757 3758 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3759 3760 void destroyNewNodes(Type *CommonType) { 3761 // For safe erasing, replace the uses with dummy value first. 3762 auto *Dummy = PoisonValue::get(CommonType); 3763 for (auto *I : AllPhiNodes) { 3764 I->replaceAllUsesWith(Dummy); 3765 I->eraseFromParent(); 3766 } 3767 AllPhiNodes.clear(); 3768 for (auto *I : AllSelectNodes) { 3769 I->replaceAllUsesWith(Dummy); 3770 I->eraseFromParent(); 3771 } 3772 AllSelectNodes.clear(); 3773 } 3774 }; 3775 3776 /// A helper class for combining addressing modes. 3777 class AddressingModeCombiner { 3778 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3779 typedef std::pair<PHINode *, PHINode *> PHIPair; 3780 3781 private: 3782 /// The addressing modes we've collected. 3783 SmallVector<ExtAddrMode, 16> AddrModes; 3784 3785 /// The field in which the AddrModes differ, when we have more than one. 3786 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3787 3788 /// Are the AddrModes that we have all just equal to their original values? 3789 bool AllAddrModesTrivial = true; 3790 3791 /// Common Type for all different fields in addressing modes. 3792 Type *CommonType = nullptr; 3793 3794 /// SimplifyQuery for simplifyInstruction utility. 3795 const SimplifyQuery &SQ; 3796 3797 /// Original Address. 3798 Value *Original; 3799 3800 /// Common value among addresses 3801 Value *CommonValue = nullptr; 3802 3803 public: 3804 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3805 : SQ(_SQ), Original(OriginalValue) {} 3806 3807 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 3808 3809 /// Get the combined AddrMode 3810 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3811 3812 /// Add a new AddrMode if it's compatible with the AddrModes we already 3813 /// have. 3814 /// \return True iff we succeeded in doing so. 3815 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3816 // Take note of if we have any non-trivial AddrModes, as we need to detect 3817 // when all AddrModes are trivial as then we would introduce a phi or select 3818 // which just duplicates what's already there. 3819 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3820 3821 // If this is the first addrmode then everything is fine. 3822 if (AddrModes.empty()) { 3823 AddrModes.emplace_back(NewAddrMode); 3824 return true; 3825 } 3826 3827 // Figure out how different this is from the other address modes, which we 3828 // can do just by comparing against the first one given that we only care 3829 // about the cumulative difference. 3830 ExtAddrMode::FieldName ThisDifferentField = 3831 AddrModes[0].compare(NewAddrMode); 3832 if (DifferentField == ExtAddrMode::NoField) 3833 DifferentField = ThisDifferentField; 3834 else if (DifferentField != ThisDifferentField) 3835 DifferentField = ExtAddrMode::MultipleFields; 3836 3837 // If NewAddrMode differs in more than one dimension we cannot handle it. 3838 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3839 3840 // If Scale Field is different then we reject. 3841 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3842 3843 // We also must reject the case when base offset is different and 3844 // scale reg is not null, we cannot handle this case due to merge of 3845 // different offsets will be used as ScaleReg. 3846 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3847 !NewAddrMode.ScaledReg); 3848 3849 // We also must reject the case when GV is different and BaseReg installed 3850 // due to we want to use base reg as a merge of GV values. 3851 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3852 !NewAddrMode.HasBaseReg); 3853 3854 // Even if NewAddMode is the same we still need to collect it due to 3855 // original value is different. And later we will need all original values 3856 // as anchors during finding the common Phi node. 3857 if (CanHandle) 3858 AddrModes.emplace_back(NewAddrMode); 3859 else 3860 AddrModes.clear(); 3861 3862 return CanHandle; 3863 } 3864 3865 /// Combine the addressing modes we've collected into a single 3866 /// addressing mode. 3867 /// \return True iff we successfully combined them or we only had one so 3868 /// didn't need to combine them anyway. 3869 bool combineAddrModes() { 3870 // If we have no AddrModes then they can't be combined. 3871 if (AddrModes.size() == 0) 3872 return false; 3873 3874 // A single AddrMode can trivially be combined. 3875 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3876 return true; 3877 3878 // If the AddrModes we collected are all just equal to the value they are 3879 // derived from then combining them wouldn't do anything useful. 3880 if (AllAddrModesTrivial) 3881 return false; 3882 3883 if (!addrModeCombiningAllowed()) 3884 return false; 3885 3886 // Build a map between <original value, basic block where we saw it> to 3887 // value of base register. 3888 // Bail out if there is no common type. 3889 FoldAddrToValueMapping Map; 3890 if (!initializeMap(Map)) 3891 return false; 3892 3893 CommonValue = findCommon(Map); 3894 if (CommonValue) 3895 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3896 return CommonValue != nullptr; 3897 } 3898 3899 private: 3900 /// `CommonValue` may be a placeholder inserted by us. 3901 /// If the placeholder is not used, we should remove this dead instruction. 3902 void eraseCommonValueIfDead() { 3903 if (CommonValue && CommonValue->getNumUses() == 0) 3904 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 3905 CommonInst->eraseFromParent(); 3906 } 3907 3908 /// Initialize Map with anchor values. For address seen 3909 /// we set the value of different field saw in this address. 3910 /// At the same time we find a common type for different field we will 3911 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3912 /// Return false if there is no common type found. 3913 bool initializeMap(FoldAddrToValueMapping &Map) { 3914 // Keep track of keys where the value is null. We will need to replace it 3915 // with constant null when we know the common type. 3916 SmallVector<Value *, 2> NullValue; 3917 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3918 for (auto &AM : AddrModes) { 3919 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3920 if (DV) { 3921 auto *Type = DV->getType(); 3922 if (CommonType && CommonType != Type) 3923 return false; 3924 CommonType = Type; 3925 Map[AM.OriginalValue] = DV; 3926 } else { 3927 NullValue.push_back(AM.OriginalValue); 3928 } 3929 } 3930 assert(CommonType && "At least one non-null value must be!"); 3931 for (auto *V : NullValue) 3932 Map[V] = Constant::getNullValue(CommonType); 3933 return true; 3934 } 3935 3936 /// We have mapping between value A and other value B where B was a field in 3937 /// addressing mode represented by A. Also we have an original value C 3938 /// representing an address we start with. Traversing from C through phi and 3939 /// selects we ended up with A's in a map. This utility function tries to find 3940 /// a value V which is a field in addressing mode C and traversing through phi 3941 /// nodes and selects we will end up in corresponded values B in a map. 3942 /// The utility will create a new Phi/Selects if needed. 3943 // The simple example looks as follows: 3944 // BB1: 3945 // p1 = b1 + 40 3946 // br cond BB2, BB3 3947 // BB2: 3948 // p2 = b2 + 40 3949 // br BB3 3950 // BB3: 3951 // p = phi [p1, BB1], [p2, BB2] 3952 // v = load p 3953 // Map is 3954 // p1 -> b1 3955 // p2 -> b2 3956 // Request is 3957 // p -> ? 3958 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3959 Value *findCommon(FoldAddrToValueMapping &Map) { 3960 // Tracks the simplification of newly created phi nodes. The reason we use 3961 // this mapping is because we will add new created Phi nodes in AddrToBase. 3962 // Simplification of Phi nodes is recursive, so some Phi node may 3963 // be simplified after we added it to AddrToBase. In reality this 3964 // simplification is possible only if original phi/selects were not 3965 // simplified yet. 3966 // Using this mapping we can find the current value in AddrToBase. 3967 SimplificationTracker ST(SQ); 3968 3969 // First step, DFS to create PHI nodes for all intermediate blocks. 3970 // Also fill traverse order for the second step. 3971 SmallVector<Value *, 32> TraverseOrder; 3972 InsertPlaceholders(Map, TraverseOrder, ST); 3973 3974 // Second Step, fill new nodes by merged values and simplify if possible. 3975 FillPlaceholders(Map, TraverseOrder, ST); 3976 3977 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3978 ST.destroyNewNodes(CommonType); 3979 return nullptr; 3980 } 3981 3982 // Now we'd like to match New Phi nodes to existed ones. 3983 unsigned PhiNotMatchedCount = 0; 3984 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3985 ST.destroyNewNodes(CommonType); 3986 return nullptr; 3987 } 3988 3989 auto *Result = ST.Get(Map.find(Original)->second); 3990 if (Result) { 3991 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3992 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3993 } 3994 return Result; 3995 } 3996 3997 /// Try to match PHI node to Candidate. 3998 /// Matcher tracks the matched Phi nodes. 3999 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 4000 SmallSetVector<PHIPair, 8> &Matcher, 4001 PhiNodeSet &PhiNodesToMatch) { 4002 SmallVector<PHIPair, 8> WorkList; 4003 Matcher.insert({PHI, Candidate}); 4004 SmallSet<PHINode *, 8> MatchedPHIs; 4005 MatchedPHIs.insert(PHI); 4006 WorkList.push_back({PHI, Candidate}); 4007 SmallSet<PHIPair, 8> Visited; 4008 while (!WorkList.empty()) { 4009 auto Item = WorkList.pop_back_val(); 4010 if (!Visited.insert(Item).second) 4011 continue; 4012 // We iterate over all incoming values to Phi to compare them. 4013 // If values are different and both of them Phi and the first one is a 4014 // Phi we added (subject to match) and both of them is in the same basic 4015 // block then we can match our pair if values match. So we state that 4016 // these values match and add it to work list to verify that. 4017 for (auto *B : Item.first->blocks()) { 4018 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 4019 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 4020 if (FirstValue == SecondValue) 4021 continue; 4022 4023 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 4024 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 4025 4026 // One of them is not Phi or 4027 // The first one is not Phi node from the set we'd like to match or 4028 // Phi nodes from different basic blocks then 4029 // we will not be able to match. 4030 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 4031 FirstPhi->getParent() != SecondPhi->getParent()) 4032 return false; 4033 4034 // If we already matched them then continue. 4035 if (Matcher.count({FirstPhi, SecondPhi})) 4036 continue; 4037 // So the values are different and does not match. So we need them to 4038 // match. (But we register no more than one match per PHI node, so that 4039 // we won't later try to replace them twice.) 4040 if (MatchedPHIs.insert(FirstPhi).second) 4041 Matcher.insert({FirstPhi, SecondPhi}); 4042 // But me must check it. 4043 WorkList.push_back({FirstPhi, SecondPhi}); 4044 } 4045 } 4046 return true; 4047 } 4048 4049 /// For the given set of PHI nodes (in the SimplificationTracker) try 4050 /// to find their equivalents. 4051 /// Returns false if this matching fails and creation of new Phi is disabled. 4052 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 4053 unsigned &PhiNotMatchedCount) { 4054 // Matched and PhiNodesToMatch iterate their elements in a deterministic 4055 // order, so the replacements (ReplacePhi) are also done in a deterministic 4056 // order. 4057 SmallSetVector<PHIPair, 8> Matched; 4058 SmallPtrSet<PHINode *, 8> WillNotMatch; 4059 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 4060 while (PhiNodesToMatch.size()) { 4061 PHINode *PHI = *PhiNodesToMatch.begin(); 4062 4063 // Add us, if no Phi nodes in the basic block we do not match. 4064 WillNotMatch.clear(); 4065 WillNotMatch.insert(PHI); 4066 4067 // Traverse all Phis until we found equivalent or fail to do that. 4068 bool IsMatched = false; 4069 for (auto &P : PHI->getParent()->phis()) { 4070 // Skip new Phi nodes. 4071 if (PhiNodesToMatch.count(&P)) 4072 continue; 4073 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 4074 break; 4075 // If it does not match, collect all Phi nodes from matcher. 4076 // if we end up with no match, them all these Phi nodes will not match 4077 // later. 4078 for (auto M : Matched) 4079 WillNotMatch.insert(M.first); 4080 Matched.clear(); 4081 } 4082 if (IsMatched) { 4083 // Replace all matched values and erase them. 4084 for (auto MV : Matched) 4085 ST.ReplacePhi(MV.first, MV.second); 4086 Matched.clear(); 4087 continue; 4088 } 4089 // If we are not allowed to create new nodes then bail out. 4090 if (!AllowNewPhiNodes) 4091 return false; 4092 // Just remove all seen values in matcher. They will not match anything. 4093 PhiNotMatchedCount += WillNotMatch.size(); 4094 for (auto *P : WillNotMatch) 4095 PhiNodesToMatch.erase(P); 4096 } 4097 return true; 4098 } 4099 /// Fill the placeholders with values from predecessors and simplify them. 4100 void FillPlaceholders(FoldAddrToValueMapping &Map, 4101 SmallVectorImpl<Value *> &TraverseOrder, 4102 SimplificationTracker &ST) { 4103 while (!TraverseOrder.empty()) { 4104 Value *Current = TraverseOrder.pop_back_val(); 4105 assert(Map.contains(Current) && "No node to fill!!!"); 4106 Value *V = Map[Current]; 4107 4108 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 4109 // CurrentValue also must be Select. 4110 auto *CurrentSelect = cast<SelectInst>(Current); 4111 auto *TrueValue = CurrentSelect->getTrueValue(); 4112 assert(Map.contains(TrueValue) && "No True Value!"); 4113 Select->setTrueValue(ST.Get(Map[TrueValue])); 4114 auto *FalseValue = CurrentSelect->getFalseValue(); 4115 assert(Map.contains(FalseValue) && "No False Value!"); 4116 Select->setFalseValue(ST.Get(Map[FalseValue])); 4117 } else { 4118 // Must be a Phi node then. 4119 auto *PHI = cast<PHINode>(V); 4120 // Fill the Phi node with values from predecessors. 4121 for (auto *B : predecessors(PHI->getParent())) { 4122 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 4123 assert(Map.contains(PV) && "No predecessor Value!"); 4124 PHI->addIncoming(ST.Get(Map[PV]), B); 4125 } 4126 } 4127 Map[Current] = ST.Simplify(V); 4128 } 4129 } 4130 4131 /// Starting from original value recursively iterates over def-use chain up to 4132 /// known ending values represented in a map. For each traversed phi/select 4133 /// inserts a placeholder Phi or Select. 4134 /// Reports all new created Phi/Select nodes by adding them to set. 4135 /// Also reports and order in what values have been traversed. 4136 void InsertPlaceholders(FoldAddrToValueMapping &Map, 4137 SmallVectorImpl<Value *> &TraverseOrder, 4138 SimplificationTracker &ST) { 4139 SmallVector<Value *, 32> Worklist; 4140 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 4141 "Address must be a Phi or Select node"); 4142 auto *Dummy = PoisonValue::get(CommonType); 4143 Worklist.push_back(Original); 4144 while (!Worklist.empty()) { 4145 Value *Current = Worklist.pop_back_val(); 4146 // if it is already visited or it is an ending value then skip it. 4147 if (Map.contains(Current)) 4148 continue; 4149 TraverseOrder.push_back(Current); 4150 4151 // CurrentValue must be a Phi node or select. All others must be covered 4152 // by anchors. 4153 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4154 // Is it OK to get metadata from OrigSelect?! 4155 // Create a Select placeholder with dummy value. 4156 SelectInst *Select = 4157 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, 4158 CurrentSelect->getName(), 4159 CurrentSelect->getIterator(), CurrentSelect); 4160 Map[Current] = Select; 4161 ST.insertNewSelect(Select); 4162 // We are interested in True and False values. 4163 Worklist.push_back(CurrentSelect->getTrueValue()); 4164 Worklist.push_back(CurrentSelect->getFalseValue()); 4165 } else { 4166 // It must be a Phi node then. 4167 PHINode *CurrentPhi = cast<PHINode>(Current); 4168 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4169 PHINode *PHI = 4170 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); 4171 Map[Current] = PHI; 4172 ST.insertNewPhi(PHI); 4173 append_range(Worklist, CurrentPhi->incoming_values()); 4174 } 4175 } 4176 } 4177 4178 bool addrModeCombiningAllowed() { 4179 if (DisableComplexAddrModes) 4180 return false; 4181 switch (DifferentField) { 4182 default: 4183 return false; 4184 case ExtAddrMode::BaseRegField: 4185 return AddrSinkCombineBaseReg; 4186 case ExtAddrMode::BaseGVField: 4187 return AddrSinkCombineBaseGV; 4188 case ExtAddrMode::BaseOffsField: 4189 return AddrSinkCombineBaseOffs; 4190 case ExtAddrMode::ScaledRegField: 4191 return AddrSinkCombineScaledReg; 4192 } 4193 } 4194 }; 4195 } // end anonymous namespace 4196 4197 /// Try adding ScaleReg*Scale to the current addressing mode. 4198 /// Return true and update AddrMode if this addr mode is legal for the target, 4199 /// false if not. 4200 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4201 unsigned Depth) { 4202 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4203 // mode. Just process that directly. 4204 if (Scale == 1) 4205 return matchAddr(ScaleReg, Depth); 4206 4207 // If the scale is 0, it takes nothing to add this. 4208 if (Scale == 0) 4209 return true; 4210 4211 // If we already have a scale of this value, we can add to it, otherwise, we 4212 // need an available scale field. 4213 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4214 return false; 4215 4216 ExtAddrMode TestAddrMode = AddrMode; 4217 4218 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4219 // [A+B + A*7] -> [B+A*8]. 4220 TestAddrMode.Scale += Scale; 4221 TestAddrMode.ScaledReg = ScaleReg; 4222 4223 // If the new address isn't legal, bail out. 4224 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4225 return false; 4226 4227 // It was legal, so commit it. 4228 AddrMode = TestAddrMode; 4229 4230 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4231 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4232 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4233 // go any further: we can reuse it and cannot eliminate it. 4234 ConstantInt *CI = nullptr; 4235 Value *AddLHS = nullptr; 4236 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4237 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4238 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4239 TestAddrMode.InBounds = false; 4240 TestAddrMode.ScaledReg = AddLHS; 4241 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4242 4243 // If this addressing mode is legal, commit it and remember that we folded 4244 // this instruction. 4245 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4246 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4247 AddrMode = TestAddrMode; 4248 return true; 4249 } 4250 // Restore status quo. 4251 TestAddrMode = AddrMode; 4252 } 4253 4254 // If this is an add recurrence with a constant step, return the increment 4255 // instruction and the canonicalized step. 4256 auto GetConstantStep = 4257 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4258 auto *PN = dyn_cast<PHINode>(V); 4259 if (!PN) 4260 return std::nullopt; 4261 auto IVInc = getIVIncrement(PN, &LI); 4262 if (!IVInc) 4263 return std::nullopt; 4264 // TODO: The result of the intrinsics above is two-complement. However when 4265 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4266 // If it has nuw or nsw flags, we need to make sure that these flags are 4267 // inferrable at the point of memory instruction. Otherwise we are replacing 4268 // well-defined two-complement computation with poison. Currently, to avoid 4269 // potentially complex analysis needed to prove this, we reject such cases. 4270 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4271 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4272 return std::nullopt; 4273 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4274 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4275 return std::nullopt; 4276 }; 4277 4278 // Try to account for the following special case: 4279 // 1. ScaleReg is an inductive variable; 4280 // 2. We use it with non-zero offset; 4281 // 3. IV's increment is available at the point of memory instruction. 4282 // 4283 // In this case, we may reuse the IV increment instead of the IV Phi to 4284 // achieve the following advantages: 4285 // 1. If IV step matches the offset, we will have no need in the offset; 4286 // 2. Even if they don't match, we will reduce the overlap of living IV 4287 // and IV increment, that will potentially lead to better register 4288 // assignment. 4289 if (AddrMode.BaseOffs) { 4290 if (auto IVStep = GetConstantStep(ScaleReg)) { 4291 Instruction *IVInc = IVStep->first; 4292 // The following assert is important to ensure a lack of infinite loops. 4293 // This transforms is (intentionally) the inverse of the one just above. 4294 // If they don't agree on the definition of an increment, we'd alternate 4295 // back and forth indefinitely. 4296 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4297 APInt Step = IVStep->second; 4298 APInt Offset = Step * AddrMode.Scale; 4299 if (Offset.isSignedIntN(64)) { 4300 TestAddrMode.InBounds = false; 4301 TestAddrMode.ScaledReg = IVInc; 4302 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4303 // If this addressing mode is legal, commit it.. 4304 // (Note that we defer the (expensive) domtree base legality check 4305 // to the very last possible point.) 4306 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4307 getDTFn().dominates(IVInc, MemoryInst)) { 4308 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4309 AddrMode = TestAddrMode; 4310 return true; 4311 } 4312 // Restore status quo. 4313 TestAddrMode = AddrMode; 4314 } 4315 } 4316 } 4317 4318 // Otherwise, just return what we have. 4319 return true; 4320 } 4321 4322 /// This is a little filter, which returns true if an addressing computation 4323 /// involving I might be folded into a load/store accessing it. 4324 /// This doesn't need to be perfect, but needs to accept at least 4325 /// the set of instructions that MatchOperationAddr can. 4326 static bool MightBeFoldableInst(Instruction *I) { 4327 switch (I->getOpcode()) { 4328 case Instruction::BitCast: 4329 case Instruction::AddrSpaceCast: 4330 // Don't touch identity bitcasts. 4331 if (I->getType() == I->getOperand(0)->getType()) 4332 return false; 4333 return I->getType()->isIntOrPtrTy(); 4334 case Instruction::PtrToInt: 4335 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4336 return true; 4337 case Instruction::IntToPtr: 4338 // We know the input is intptr_t, so this is foldable. 4339 return true; 4340 case Instruction::Add: 4341 return true; 4342 case Instruction::Mul: 4343 case Instruction::Shl: 4344 // Can only handle X*C and X << C. 4345 return isa<ConstantInt>(I->getOperand(1)); 4346 case Instruction::GetElementPtr: 4347 return true; 4348 default: 4349 return false; 4350 } 4351 } 4352 4353 /// Check whether or not \p Val is a legal instruction for \p TLI. 4354 /// \note \p Val is assumed to be the product of some type promotion. 4355 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4356 /// to be legal, as the non-promoted value would have had the same state. 4357 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4358 const DataLayout &DL, Value *Val) { 4359 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4360 if (!PromotedInst) 4361 return false; 4362 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4363 // If the ISDOpcode is undefined, it was undefined before the promotion. 4364 if (!ISDOpcode) 4365 return true; 4366 // Otherwise, check if the promoted instruction is legal or not. 4367 return TLI.isOperationLegalOrCustom( 4368 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4369 } 4370 4371 namespace { 4372 4373 /// Hepler class to perform type promotion. 4374 class TypePromotionHelper { 4375 /// Utility function to add a promoted instruction \p ExtOpnd to 4376 /// \p PromotedInsts and record the type of extension we have seen. 4377 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4378 Instruction *ExtOpnd, bool IsSExt) { 4379 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4380 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4381 if (It != PromotedInsts.end()) { 4382 // If the new extension is same as original, the information in 4383 // PromotedInsts[ExtOpnd] is still correct. 4384 if (It->second.getInt() == ExtTy) 4385 return; 4386 4387 // Now the new extension is different from old extension, we make 4388 // the type information invalid by setting extension type to 4389 // BothExtension. 4390 ExtTy = BothExtension; 4391 } 4392 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4393 } 4394 4395 /// Utility function to query the original type of instruction \p Opnd 4396 /// with a matched extension type. If the extension doesn't match, we 4397 /// cannot use the information we had on the original type. 4398 /// BothExtension doesn't match any extension type. 4399 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4400 Instruction *Opnd, bool IsSExt) { 4401 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4402 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4403 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4404 return It->second.getPointer(); 4405 return nullptr; 4406 } 4407 4408 /// Utility function to check whether or not a sign or zero extension 4409 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4410 /// either using the operands of \p Inst or promoting \p Inst. 4411 /// The type of the extension is defined by \p IsSExt. 4412 /// In other words, check if: 4413 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4414 /// #1 Promotion applies: 4415 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4416 /// #2 Operand reuses: 4417 /// ext opnd1 to ConsideredExtType. 4418 /// \p PromotedInsts maps the instructions to their type before promotion. 4419 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4420 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4421 4422 /// Utility function to determine if \p OpIdx should be promoted when 4423 /// promoting \p Inst. 4424 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4425 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4426 } 4427 4428 /// Utility function to promote the operand of \p Ext when this 4429 /// operand is a promotable trunc or sext or zext. 4430 /// \p PromotedInsts maps the instructions to their type before promotion. 4431 /// \p CreatedInstsCost[out] contains the cost of all instructions 4432 /// created to promote the operand of Ext. 4433 /// Newly added extensions are inserted in \p Exts. 4434 /// Newly added truncates are inserted in \p Truncs. 4435 /// Should never be called directly. 4436 /// \return The promoted value which is used instead of Ext. 4437 static Value *promoteOperandForTruncAndAnyExt( 4438 Instruction *Ext, TypePromotionTransaction &TPT, 4439 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4440 SmallVectorImpl<Instruction *> *Exts, 4441 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4442 4443 /// Utility function to promote the operand of \p Ext when this 4444 /// operand is promotable and is not a supported trunc or sext. 4445 /// \p PromotedInsts maps the instructions to their type before promotion. 4446 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4447 /// created to promote the operand of Ext. 4448 /// Newly added extensions are inserted in \p Exts. 4449 /// Newly added truncates are inserted in \p Truncs. 4450 /// Should never be called directly. 4451 /// \return The promoted value which is used instead of Ext. 4452 static Value *promoteOperandForOther(Instruction *Ext, 4453 TypePromotionTransaction &TPT, 4454 InstrToOrigTy &PromotedInsts, 4455 unsigned &CreatedInstsCost, 4456 SmallVectorImpl<Instruction *> *Exts, 4457 SmallVectorImpl<Instruction *> *Truncs, 4458 const TargetLowering &TLI, bool IsSExt); 4459 4460 /// \see promoteOperandForOther. 4461 static Value *signExtendOperandForOther( 4462 Instruction *Ext, TypePromotionTransaction &TPT, 4463 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4464 SmallVectorImpl<Instruction *> *Exts, 4465 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4466 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4467 Exts, Truncs, TLI, true); 4468 } 4469 4470 /// \see promoteOperandForOther. 4471 static Value *zeroExtendOperandForOther( 4472 Instruction *Ext, TypePromotionTransaction &TPT, 4473 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4474 SmallVectorImpl<Instruction *> *Exts, 4475 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4476 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4477 Exts, Truncs, TLI, false); 4478 } 4479 4480 public: 4481 /// Type for the utility function that promotes the operand of Ext. 4482 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4483 InstrToOrigTy &PromotedInsts, 4484 unsigned &CreatedInstsCost, 4485 SmallVectorImpl<Instruction *> *Exts, 4486 SmallVectorImpl<Instruction *> *Truncs, 4487 const TargetLowering &TLI); 4488 4489 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4490 /// action to promote the operand of \p Ext instead of using Ext. 4491 /// \return NULL if no promotable action is possible with the current 4492 /// sign extension. 4493 /// \p InsertedInsts keeps track of all the instructions inserted by the 4494 /// other CodeGenPrepare optimizations. This information is important 4495 /// because we do not want to promote these instructions as CodeGenPrepare 4496 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4497 /// \p PromotedInsts maps the instructions to their type before promotion. 4498 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4499 const TargetLowering &TLI, 4500 const InstrToOrigTy &PromotedInsts); 4501 }; 4502 4503 } // end anonymous namespace 4504 4505 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4506 Type *ConsideredExtType, 4507 const InstrToOrigTy &PromotedInsts, 4508 bool IsSExt) { 4509 // The promotion helper does not know how to deal with vector types yet. 4510 // To be able to fix that, we would need to fix the places where we 4511 // statically extend, e.g., constants and such. 4512 if (Inst->getType()->isVectorTy()) 4513 return false; 4514 4515 // We can always get through zext. 4516 if (isa<ZExtInst>(Inst)) 4517 return true; 4518 4519 // sext(sext) is ok too. 4520 if (IsSExt && isa<SExtInst>(Inst)) 4521 return true; 4522 4523 // We can get through binary operator, if it is legal. In other words, the 4524 // binary operator must have a nuw or nsw flag. 4525 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4526 if (isa<OverflowingBinaryOperator>(BinOp) && 4527 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4528 (IsSExt && BinOp->hasNoSignedWrap()))) 4529 return true; 4530 4531 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4532 if ((Inst->getOpcode() == Instruction::And || 4533 Inst->getOpcode() == Instruction::Or)) 4534 return true; 4535 4536 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4537 if (Inst->getOpcode() == Instruction::Xor) { 4538 // Make sure it is not a NOT. 4539 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4540 if (!Cst->getValue().isAllOnes()) 4541 return true; 4542 } 4543 4544 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4545 // It may change a poisoned value into a regular value, like 4546 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4547 // poisoned value regular value 4548 // It should be OK since undef covers valid value. 4549 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4550 return true; 4551 4552 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4553 // It may change a poisoned value into a regular value, like 4554 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4555 // poisoned value regular value 4556 // It should be OK since undef covers valid value. 4557 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4558 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4559 if (ExtInst->hasOneUse()) { 4560 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4561 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4562 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4563 if (Cst && 4564 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4565 return true; 4566 } 4567 } 4568 } 4569 4570 // Check if we can do the following simplification. 4571 // ext(trunc(opnd)) --> ext(opnd) 4572 if (!isa<TruncInst>(Inst)) 4573 return false; 4574 4575 Value *OpndVal = Inst->getOperand(0); 4576 // Check if we can use this operand in the extension. 4577 // If the type is larger than the result type of the extension, we cannot. 4578 if (!OpndVal->getType()->isIntegerTy() || 4579 OpndVal->getType()->getIntegerBitWidth() > 4580 ConsideredExtType->getIntegerBitWidth()) 4581 return false; 4582 4583 // If the operand of the truncate is not an instruction, we will not have 4584 // any information on the dropped bits. 4585 // (Actually we could for constant but it is not worth the extra logic). 4586 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4587 if (!Opnd) 4588 return false; 4589 4590 // Check if the source of the type is narrow enough. 4591 // I.e., check that trunc just drops extended bits of the same kind of 4592 // the extension. 4593 // #1 get the type of the operand and check the kind of the extended bits. 4594 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4595 if (OpndType) 4596 ; 4597 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4598 OpndType = Opnd->getOperand(0)->getType(); 4599 else 4600 return false; 4601 4602 // #2 check that the truncate just drops extended bits. 4603 return Inst->getType()->getIntegerBitWidth() >= 4604 OpndType->getIntegerBitWidth(); 4605 } 4606 4607 TypePromotionHelper::Action TypePromotionHelper::getAction( 4608 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4609 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4610 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4611 "Unexpected instruction type"); 4612 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4613 Type *ExtTy = Ext->getType(); 4614 bool IsSExt = isa<SExtInst>(Ext); 4615 // If the operand of the extension is not an instruction, we cannot 4616 // get through. 4617 // If it, check we can get through. 4618 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4619 return nullptr; 4620 4621 // Do not promote if the operand has been added by codegenprepare. 4622 // Otherwise, it means we are undoing an optimization that is likely to be 4623 // redone, thus causing potential infinite loop. 4624 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4625 return nullptr; 4626 4627 // SExt or Trunc instructions. 4628 // Return the related handler. 4629 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4630 isa<ZExtInst>(ExtOpnd)) 4631 return promoteOperandForTruncAndAnyExt; 4632 4633 // Regular instruction. 4634 // Abort early if we will have to insert non-free instructions. 4635 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4636 return nullptr; 4637 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4638 } 4639 4640 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4641 Instruction *SExt, TypePromotionTransaction &TPT, 4642 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4643 SmallVectorImpl<Instruction *> *Exts, 4644 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4645 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4646 // get through it and this method should not be called. 4647 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4648 Value *ExtVal = SExt; 4649 bool HasMergedNonFreeExt = false; 4650 if (isa<ZExtInst>(SExtOpnd)) { 4651 // Replace s|zext(zext(opnd)) 4652 // => zext(opnd). 4653 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4654 Value *ZExt = 4655 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4656 TPT.replaceAllUsesWith(SExt, ZExt); 4657 TPT.eraseInstruction(SExt); 4658 ExtVal = ZExt; 4659 } else { 4660 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4661 // => z|sext(opnd). 4662 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4663 } 4664 CreatedInstsCost = 0; 4665 4666 // Remove dead code. 4667 if (SExtOpnd->use_empty()) 4668 TPT.eraseInstruction(SExtOpnd); 4669 4670 // Check if the extension is still needed. 4671 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4672 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4673 if (ExtInst) { 4674 if (Exts) 4675 Exts->push_back(ExtInst); 4676 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4677 } 4678 return ExtVal; 4679 } 4680 4681 // At this point we have: ext ty opnd to ty. 4682 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4683 Value *NextVal = ExtInst->getOperand(0); 4684 TPT.eraseInstruction(ExtInst, NextVal); 4685 return NextVal; 4686 } 4687 4688 Value *TypePromotionHelper::promoteOperandForOther( 4689 Instruction *Ext, TypePromotionTransaction &TPT, 4690 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4691 SmallVectorImpl<Instruction *> *Exts, 4692 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4693 bool IsSExt) { 4694 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4695 // get through it and this method should not be called. 4696 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4697 CreatedInstsCost = 0; 4698 if (!ExtOpnd->hasOneUse()) { 4699 // ExtOpnd will be promoted. 4700 // All its uses, but Ext, will need to use a truncated value of the 4701 // promoted version. 4702 // Create the truncate now. 4703 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4704 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4705 // Insert it just after the definition. 4706 ITrunc->moveAfter(ExtOpnd); 4707 if (Truncs) 4708 Truncs->push_back(ITrunc); 4709 } 4710 4711 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4712 // Restore the operand of Ext (which has been replaced by the previous call 4713 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4714 TPT.setOperand(Ext, 0, ExtOpnd); 4715 } 4716 4717 // Get through the Instruction: 4718 // 1. Update its type. 4719 // 2. Replace the uses of Ext by Inst. 4720 // 3. Extend each operand that needs to be extended. 4721 4722 // Remember the original type of the instruction before promotion. 4723 // This is useful to know that the high bits are sign extended bits. 4724 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4725 // Step #1. 4726 TPT.mutateType(ExtOpnd, Ext->getType()); 4727 // Step #2. 4728 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4729 // Step #3. 4730 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4731 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4732 ++OpIdx) { 4733 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4734 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4735 !shouldExtOperand(ExtOpnd, OpIdx)) { 4736 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4737 continue; 4738 } 4739 // Check if we can statically extend the operand. 4740 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4741 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4742 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4743 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4744 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4745 : Cst->getValue().zext(BitWidth); 4746 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4747 continue; 4748 } 4749 // UndefValue are typed, so we have to statically sign extend them. 4750 if (isa<UndefValue>(Opnd)) { 4751 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4752 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4753 continue; 4754 } 4755 4756 // Otherwise we have to explicitly sign extend the operand. 4757 Value *ValForExtOpnd = IsSExt 4758 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 4759 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 4760 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4761 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 4762 if (!InstForExtOpnd) 4763 continue; 4764 4765 if (Exts) 4766 Exts->push_back(InstForExtOpnd); 4767 4768 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 4769 } 4770 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4771 TPT.eraseInstruction(Ext); 4772 return ExtOpnd; 4773 } 4774 4775 /// Check whether or not promoting an instruction to a wider type is profitable. 4776 /// \p NewCost gives the cost of extension instructions created by the 4777 /// promotion. 4778 /// \p OldCost gives the cost of extension instructions before the promotion 4779 /// plus the number of instructions that have been 4780 /// matched in the addressing mode the promotion. 4781 /// \p PromotedOperand is the value that has been promoted. 4782 /// \return True if the promotion is profitable, false otherwise. 4783 bool AddressingModeMatcher::isPromotionProfitable( 4784 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4785 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4786 << '\n'); 4787 // The cost of the new extensions is greater than the cost of the 4788 // old extension plus what we folded. 4789 // This is not profitable. 4790 if (NewCost > OldCost) 4791 return false; 4792 if (NewCost < OldCost) 4793 return true; 4794 // The promotion is neutral but it may help folding the sign extension in 4795 // loads for instance. 4796 // Check that we did not create an illegal instruction. 4797 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4798 } 4799 4800 /// Given an instruction or constant expr, see if we can fold the operation 4801 /// into the addressing mode. If so, update the addressing mode and return 4802 /// true, otherwise return false without modifying AddrMode. 4803 /// If \p MovedAway is not NULL, it contains the information of whether or 4804 /// not AddrInst has to be folded into the addressing mode on success. 4805 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4806 /// because it has been moved away. 4807 /// Thus AddrInst must not be added in the matched instructions. 4808 /// This state can happen when AddrInst is a sext, since it may be moved away. 4809 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4810 /// not be referenced anymore. 4811 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4812 unsigned Depth, 4813 bool *MovedAway) { 4814 // Avoid exponential behavior on extremely deep expression trees. 4815 if (Depth >= 5) 4816 return false; 4817 4818 // By default, all matched instructions stay in place. 4819 if (MovedAway) 4820 *MovedAway = false; 4821 4822 switch (Opcode) { 4823 case Instruction::PtrToInt: 4824 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4825 return matchAddr(AddrInst->getOperand(0), Depth); 4826 case Instruction::IntToPtr: { 4827 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4828 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4829 // This inttoptr is a no-op if the integer type is pointer sized. 4830 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4831 return matchAddr(AddrInst->getOperand(0), Depth); 4832 return false; 4833 } 4834 case Instruction::BitCast: 4835 // BitCast is always a noop, and we can handle it as long as it is 4836 // int->int or pointer->pointer (we don't want int<->fp or something). 4837 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4838 // Don't touch identity bitcasts. These were probably put here by LSR, 4839 // and we don't want to mess around with them. Assume it knows what it 4840 // is doing. 4841 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4842 return matchAddr(AddrInst->getOperand(0), Depth); 4843 return false; 4844 case Instruction::AddrSpaceCast: { 4845 unsigned SrcAS = 4846 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4847 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4848 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4849 return matchAddr(AddrInst->getOperand(0), Depth); 4850 return false; 4851 } 4852 case Instruction::Add: { 4853 // Check to see if we can merge in one operand, then the other. If so, we 4854 // win. 4855 ExtAddrMode BackupAddrMode = AddrMode; 4856 unsigned OldSize = AddrModeInsts.size(); 4857 // Start a transaction at this point. 4858 // The LHS may match but not the RHS. 4859 // Therefore, we need a higher level restoration point to undo partially 4860 // matched operation. 4861 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4862 TPT.getRestorationPoint(); 4863 4864 // Try to match an integer constant second to increase its chance of ending 4865 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 4866 int First = 0, Second = 1; 4867 if (isa<ConstantInt>(AddrInst->getOperand(First)) 4868 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 4869 std::swap(First, Second); 4870 AddrMode.InBounds = false; 4871 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 4872 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 4873 return true; 4874 4875 // Restore the old addr mode info. 4876 AddrMode = BackupAddrMode; 4877 AddrModeInsts.resize(OldSize); 4878 TPT.rollback(LastKnownGood); 4879 4880 // Otherwise this was over-aggressive. Try merging operands in the opposite 4881 // order. 4882 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 4883 matchAddr(AddrInst->getOperand(First), Depth + 1)) 4884 return true; 4885 4886 // Otherwise we definitely can't merge the ADD in. 4887 AddrMode = BackupAddrMode; 4888 AddrModeInsts.resize(OldSize); 4889 TPT.rollback(LastKnownGood); 4890 break; 4891 } 4892 // case Instruction::Or: 4893 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4894 // break; 4895 case Instruction::Mul: 4896 case Instruction::Shl: { 4897 // Can only handle X*C and X << C. 4898 AddrMode.InBounds = false; 4899 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4900 if (!RHS || RHS->getBitWidth() > 64) 4901 return false; 4902 int64_t Scale = Opcode == Instruction::Shl 4903 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4904 : RHS->getSExtValue(); 4905 4906 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4907 } 4908 case Instruction::GetElementPtr: { 4909 // Scan the GEP. We check it if it contains constant offsets and at most 4910 // one variable offset. 4911 int VariableOperand = -1; 4912 unsigned VariableScale = 0; 4913 4914 int64_t ConstantOffset = 0; 4915 gep_type_iterator GTI = gep_type_begin(AddrInst); 4916 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4917 if (StructType *STy = GTI.getStructTypeOrNull()) { 4918 const StructLayout *SL = DL.getStructLayout(STy); 4919 unsigned Idx = 4920 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4921 ConstantOffset += SL->getElementOffset(Idx); 4922 } else { 4923 TypeSize TS = GTI.getSequentialElementStride(DL); 4924 if (TS.isNonZero()) { 4925 // The optimisations below currently only work for fixed offsets. 4926 if (TS.isScalable()) 4927 return false; 4928 int64_t TypeSize = TS.getFixedValue(); 4929 if (ConstantInt *CI = 4930 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4931 const APInt &CVal = CI->getValue(); 4932 if (CVal.getSignificantBits() <= 64) { 4933 ConstantOffset += CVal.getSExtValue() * TypeSize; 4934 continue; 4935 } 4936 } 4937 // We only allow one variable index at the moment. 4938 if (VariableOperand != -1) 4939 return false; 4940 4941 // Remember the variable index. 4942 VariableOperand = i; 4943 VariableScale = TypeSize; 4944 } 4945 } 4946 } 4947 4948 // A common case is for the GEP to only do a constant offset. In this case, 4949 // just add it to the disp field and check validity. 4950 if (VariableOperand == -1) { 4951 AddrMode.BaseOffs += ConstantOffset; 4952 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4953 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4954 AddrMode.InBounds = false; 4955 return true; 4956 } 4957 AddrMode.BaseOffs -= ConstantOffset; 4958 4959 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4960 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4961 ConstantOffset > 0) { 4962 // Record GEPs with non-zero offsets as candidates for splitting in 4963 // the event that the offset cannot fit into the r+i addressing mode. 4964 // Simple and common case that only one GEP is used in calculating the 4965 // address for the memory access. 4966 Value *Base = AddrInst->getOperand(0); 4967 auto *BaseI = dyn_cast<Instruction>(Base); 4968 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4969 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4970 (BaseI && !isa<CastInst>(BaseI) && 4971 !isa<GetElementPtrInst>(BaseI))) { 4972 // Make sure the parent block allows inserting non-PHI instructions 4973 // before the terminator. 4974 BasicBlock *Parent = BaseI ? BaseI->getParent() 4975 : &GEP->getFunction()->getEntryBlock(); 4976 if (!Parent->getTerminator()->isEHPad()) 4977 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4978 } 4979 } 4980 4981 return false; 4982 } 4983 4984 // Save the valid addressing mode in case we can't match. 4985 ExtAddrMode BackupAddrMode = AddrMode; 4986 unsigned OldSize = AddrModeInsts.size(); 4987 4988 // See if the scale and offset amount is valid for this target. 4989 AddrMode.BaseOffs += ConstantOffset; 4990 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4991 AddrMode.InBounds = false; 4992 4993 // Match the base operand of the GEP. 4994 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4995 // If it couldn't be matched, just stuff the value in a register. 4996 if (AddrMode.HasBaseReg) { 4997 AddrMode = BackupAddrMode; 4998 AddrModeInsts.resize(OldSize); 4999 return false; 5000 } 5001 AddrMode.HasBaseReg = true; 5002 AddrMode.BaseReg = AddrInst->getOperand(0); 5003 } 5004 5005 // Match the remaining variable portion of the GEP. 5006 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 5007 Depth)) { 5008 // If it couldn't be matched, try stuffing the base into a register 5009 // instead of matching it, and retrying the match of the scale. 5010 AddrMode = BackupAddrMode; 5011 AddrModeInsts.resize(OldSize); 5012 if (AddrMode.HasBaseReg) 5013 return false; 5014 AddrMode.HasBaseReg = true; 5015 AddrMode.BaseReg = AddrInst->getOperand(0); 5016 AddrMode.BaseOffs += ConstantOffset; 5017 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 5018 VariableScale, Depth)) { 5019 // If even that didn't work, bail. 5020 AddrMode = BackupAddrMode; 5021 AddrModeInsts.resize(OldSize); 5022 return false; 5023 } 5024 } 5025 5026 return true; 5027 } 5028 case Instruction::SExt: 5029 case Instruction::ZExt: { 5030 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 5031 if (!Ext) 5032 return false; 5033 5034 // Try to move this ext out of the way of the addressing mode. 5035 // Ask for a method for doing so. 5036 TypePromotionHelper::Action TPH = 5037 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 5038 if (!TPH) 5039 return false; 5040 5041 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5042 TPT.getRestorationPoint(); 5043 unsigned CreatedInstsCost = 0; 5044 unsigned ExtCost = !TLI.isExtFree(Ext); 5045 Value *PromotedOperand = 5046 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 5047 // SExt has been moved away. 5048 // Thus either it will be rematched later in the recursive calls or it is 5049 // gone. Anyway, we must not fold it into the addressing mode at this point. 5050 // E.g., 5051 // op = add opnd, 1 5052 // idx = ext op 5053 // addr = gep base, idx 5054 // is now: 5055 // promotedOpnd = ext opnd <- no match here 5056 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 5057 // addr = gep base, op <- match 5058 if (MovedAway) 5059 *MovedAway = true; 5060 5061 assert(PromotedOperand && 5062 "TypePromotionHelper should have filtered out those cases"); 5063 5064 ExtAddrMode BackupAddrMode = AddrMode; 5065 unsigned OldSize = AddrModeInsts.size(); 5066 5067 if (!matchAddr(PromotedOperand, Depth) || 5068 // The total of the new cost is equal to the cost of the created 5069 // instructions. 5070 // The total of the old cost is equal to the cost of the extension plus 5071 // what we have saved in the addressing mode. 5072 !isPromotionProfitable(CreatedInstsCost, 5073 ExtCost + (AddrModeInsts.size() - OldSize), 5074 PromotedOperand)) { 5075 AddrMode = BackupAddrMode; 5076 AddrModeInsts.resize(OldSize); 5077 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 5078 TPT.rollback(LastKnownGood); 5079 return false; 5080 } 5081 return true; 5082 } 5083 case Instruction::Call: 5084 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { 5085 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { 5086 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); 5087 if (TLI.addressingModeSupportsTLS(GV)) 5088 return matchAddr(AddrInst->getOperand(0), Depth); 5089 } 5090 } 5091 break; 5092 } 5093 return false; 5094 } 5095 5096 /// If we can, try to add the value of 'Addr' into the current addressing mode. 5097 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 5098 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 5099 /// for the target. 5100 /// 5101 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 5102 // Start a transaction at this point that we will rollback if the matching 5103 // fails. 5104 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5105 TPT.getRestorationPoint(); 5106 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 5107 if (CI->getValue().isSignedIntN(64)) { 5108 // Fold in immediates if legal for the target. 5109 AddrMode.BaseOffs += CI->getSExtValue(); 5110 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5111 return true; 5112 AddrMode.BaseOffs -= CI->getSExtValue(); 5113 } 5114 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 5115 // If this is a global variable, try to fold it into the addressing mode. 5116 if (!AddrMode.BaseGV) { 5117 AddrMode.BaseGV = GV; 5118 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5119 return true; 5120 AddrMode.BaseGV = nullptr; 5121 } 5122 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 5123 ExtAddrMode BackupAddrMode = AddrMode; 5124 unsigned OldSize = AddrModeInsts.size(); 5125 5126 // Check to see if it is possible to fold this operation. 5127 bool MovedAway = false; 5128 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 5129 // This instruction may have been moved away. If so, there is nothing 5130 // to check here. 5131 if (MovedAway) 5132 return true; 5133 // Okay, it's possible to fold this. Check to see if it is actually 5134 // *profitable* to do so. We use a simple cost model to avoid increasing 5135 // register pressure too much. 5136 if (I->hasOneUse() || 5137 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 5138 AddrModeInsts.push_back(I); 5139 return true; 5140 } 5141 5142 // It isn't profitable to do this, roll back. 5143 AddrMode = BackupAddrMode; 5144 AddrModeInsts.resize(OldSize); 5145 TPT.rollback(LastKnownGood); 5146 } 5147 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 5148 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 5149 return true; 5150 TPT.rollback(LastKnownGood); 5151 } else if (isa<ConstantPointerNull>(Addr)) { 5152 // Null pointer gets folded without affecting the addressing mode. 5153 return true; 5154 } 5155 5156 // Worse case, the target should support [reg] addressing modes. :) 5157 if (!AddrMode.HasBaseReg) { 5158 AddrMode.HasBaseReg = true; 5159 AddrMode.BaseReg = Addr; 5160 // Still check for legality in case the target supports [imm] but not [i+r]. 5161 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5162 return true; 5163 AddrMode.HasBaseReg = false; 5164 AddrMode.BaseReg = nullptr; 5165 } 5166 5167 // If the base register is already taken, see if we can do [r+r]. 5168 if (AddrMode.Scale == 0) { 5169 AddrMode.Scale = 1; 5170 AddrMode.ScaledReg = Addr; 5171 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5172 return true; 5173 AddrMode.Scale = 0; 5174 AddrMode.ScaledReg = nullptr; 5175 } 5176 // Couldn't match. 5177 TPT.rollback(LastKnownGood); 5178 return false; 5179 } 5180 5181 /// Check to see if all uses of OpVal by the specified inline asm call are due 5182 /// to memory operands. If so, return true, otherwise return false. 5183 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5184 const TargetLowering &TLI, 5185 const TargetRegisterInfo &TRI) { 5186 const Function *F = CI->getFunction(); 5187 TargetLowering::AsmOperandInfoVector TargetConstraints = 5188 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); 5189 5190 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5191 // Compute the constraint code and ConstraintType to use. 5192 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5193 5194 // If this asm operand is our Value*, and if it isn't an indirect memory 5195 // operand, we can't fold it! TODO: Also handle C_Address? 5196 if (OpInfo.CallOperandVal == OpVal && 5197 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5198 !OpInfo.isIndirect)) 5199 return false; 5200 } 5201 5202 return true; 5203 } 5204 5205 /// Recursively walk all the uses of I until we find a memory use. 5206 /// If we find an obviously non-foldable instruction, return true. 5207 /// Add accessed addresses and types to MemoryUses. 5208 static bool FindAllMemoryUses( 5209 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5210 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5211 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5212 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5213 // If we already considered this instruction, we're done. 5214 if (!ConsideredInsts.insert(I).second) 5215 return false; 5216 5217 // If this is an obviously unfoldable instruction, bail out. 5218 if (!MightBeFoldableInst(I)) 5219 return true; 5220 5221 // Loop over all the uses, recursively processing them. 5222 for (Use &U : I->uses()) { 5223 // Conservatively return true if we're seeing a large number or a deep chain 5224 // of users. This avoids excessive compilation times in pathological cases. 5225 if (SeenInsts++ >= MaxAddressUsersToScan) 5226 return true; 5227 5228 Instruction *UserI = cast<Instruction>(U.getUser()); 5229 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5230 MemoryUses.push_back({&U, LI->getType()}); 5231 continue; 5232 } 5233 5234 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5235 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5236 return true; // Storing addr, not into addr. 5237 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5238 continue; 5239 } 5240 5241 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5242 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5243 return true; // Storing addr, not into addr. 5244 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5245 continue; 5246 } 5247 5248 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5249 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5250 return true; // Storing addr, not into addr. 5251 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5252 continue; 5253 } 5254 5255 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5256 if (CI->hasFnAttr(Attribute::Cold)) { 5257 // If this is a cold call, we can sink the addressing calculation into 5258 // the cold path. See optimizeCallInst 5259 bool OptForSize = 5260 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5261 if (!OptForSize) 5262 continue; 5263 } 5264 5265 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5266 if (!IA) 5267 return true; 5268 5269 // If this is a memory operand, we're cool, otherwise bail out. 5270 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5271 return true; 5272 continue; 5273 } 5274 5275 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5276 PSI, BFI, SeenInsts)) 5277 return true; 5278 } 5279 5280 return false; 5281 } 5282 5283 static bool FindAllMemoryUses( 5284 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5285 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5286 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5287 unsigned SeenInsts = 0; 5288 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5289 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5290 PSI, BFI, SeenInsts); 5291 } 5292 5293 5294 /// Return true if Val is already known to be live at the use site that we're 5295 /// folding it into. If so, there is no cost to include it in the addressing 5296 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5297 /// instruction already. 5298 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5299 Value *KnownLive1, 5300 Value *KnownLive2) { 5301 // If Val is either of the known-live values, we know it is live! 5302 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5303 return true; 5304 5305 // All values other than instructions and arguments (e.g. constants) are live. 5306 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5307 return true; 5308 5309 // If Val is a constant sized alloca in the entry block, it is live, this is 5310 // true because it is just a reference to the stack/frame pointer, which is 5311 // live for the whole function. 5312 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5313 if (AI->isStaticAlloca()) 5314 return true; 5315 5316 // Check to see if this value is already used in the memory instruction's 5317 // block. If so, it's already live into the block at the very least, so we 5318 // can reasonably fold it. 5319 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5320 } 5321 5322 /// It is possible for the addressing mode of the machine to fold the specified 5323 /// instruction into a load or store that ultimately uses it. 5324 /// However, the specified instruction has multiple uses. 5325 /// Given this, it may actually increase register pressure to fold it 5326 /// into the load. For example, consider this code: 5327 /// 5328 /// X = ... 5329 /// Y = X+1 5330 /// use(Y) -> nonload/store 5331 /// Z = Y+1 5332 /// load Z 5333 /// 5334 /// In this case, Y has multiple uses, and can be folded into the load of Z 5335 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5336 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5337 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5338 /// number of computations either. 5339 /// 5340 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5341 /// X was live across 'load Z' for other reasons, we actually *would* want to 5342 /// fold the addressing mode in the Z case. This would make Y die earlier. 5343 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5344 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5345 if (IgnoreProfitability) 5346 return true; 5347 5348 // AMBefore is the addressing mode before this instruction was folded into it, 5349 // and AMAfter is the addressing mode after the instruction was folded. Get 5350 // the set of registers referenced by AMAfter and subtract out those 5351 // referenced by AMBefore: this is the set of values which folding in this 5352 // address extends the lifetime of. 5353 // 5354 // Note that there are only two potential values being referenced here, 5355 // BaseReg and ScaleReg (global addresses are always available, as are any 5356 // folded immediates). 5357 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5358 5359 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5360 // lifetime wasn't extended by adding this instruction. 5361 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5362 BaseReg = nullptr; 5363 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5364 ScaledReg = nullptr; 5365 5366 // If folding this instruction (and it's subexprs) didn't extend any live 5367 // ranges, we're ok with it. 5368 if (!BaseReg && !ScaledReg) 5369 return true; 5370 5371 // If all uses of this instruction can have the address mode sunk into them, 5372 // we can remove the addressing mode and effectively trade one live register 5373 // for another (at worst.) In this context, folding an addressing mode into 5374 // the use is just a particularly nice way of sinking it. 5375 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5376 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5377 return false; // Has a non-memory, non-foldable use! 5378 5379 // Now that we know that all uses of this instruction are part of a chain of 5380 // computation involving only operations that could theoretically be folded 5381 // into a memory use, loop over each of these memory operation uses and see 5382 // if they could *actually* fold the instruction. The assumption is that 5383 // addressing modes are cheap and that duplicating the computation involved 5384 // many times is worthwhile, even on a fastpath. For sinking candidates 5385 // (i.e. cold call sites), this serves as a way to prevent excessive code 5386 // growth since most architectures have some reasonable small and fast way to 5387 // compute an effective address. (i.e LEA on x86) 5388 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5389 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5390 Value *Address = Pair.first->get(); 5391 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5392 Type *AddressAccessTy = Pair.second; 5393 unsigned AS = Address->getType()->getPointerAddressSpace(); 5394 5395 // Do a match against the root of this address, ignoring profitability. This 5396 // will tell us if the addressing mode for the memory operation will 5397 // *actually* cover the shared instruction. 5398 ExtAddrMode Result; 5399 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5400 0); 5401 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5402 TPT.getRestorationPoint(); 5403 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5404 AddressAccessTy, AS, UserI, Result, 5405 InsertedInsts, PromotedInsts, TPT, 5406 LargeOffsetGEP, OptSize, PSI, BFI); 5407 Matcher.IgnoreProfitability = true; 5408 bool Success = Matcher.matchAddr(Address, 0); 5409 (void)Success; 5410 assert(Success && "Couldn't select *anything*?"); 5411 5412 // The match was to check the profitability, the changes made are not 5413 // part of the original matcher. Therefore, they should be dropped 5414 // otherwise the original matcher will not present the right state. 5415 TPT.rollback(LastKnownGood); 5416 5417 // If the match didn't cover I, then it won't be shared by it. 5418 if (!is_contained(MatchedAddrModeInsts, I)) 5419 return false; 5420 5421 MatchedAddrModeInsts.clear(); 5422 } 5423 5424 return true; 5425 } 5426 5427 /// Return true if the specified values are defined in a 5428 /// different basic block than BB. 5429 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5430 if (Instruction *I = dyn_cast<Instruction>(V)) 5431 return I->getParent() != BB; 5432 return false; 5433 } 5434 5435 /// Sink addressing mode computation immediate before MemoryInst if doing so 5436 /// can be done without increasing register pressure. The need for the 5437 /// register pressure constraint means this can end up being an all or nothing 5438 /// decision for all uses of the same addressing computation. 5439 /// 5440 /// Load and Store Instructions often have addressing modes that can do 5441 /// significant amounts of computation. As such, instruction selection will try 5442 /// to get the load or store to do as much computation as possible for the 5443 /// program. The problem is that isel can only see within a single block. As 5444 /// such, we sink as much legal addressing mode work into the block as possible. 5445 /// 5446 /// This method is used to optimize both load/store and inline asms with memory 5447 /// operands. It's also used to sink addressing computations feeding into cold 5448 /// call sites into their (cold) basic block. 5449 /// 5450 /// The motivation for handling sinking into cold blocks is that doing so can 5451 /// both enable other address mode sinking (by satisfying the register pressure 5452 /// constraint above), and reduce register pressure globally (by removing the 5453 /// addressing mode computation from the fast path entirely.). 5454 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5455 Type *AccessTy, unsigned AddrSpace) { 5456 Value *Repl = Addr; 5457 5458 // Try to collapse single-value PHI nodes. This is necessary to undo 5459 // unprofitable PRE transformations. 5460 SmallVector<Value *, 8> worklist; 5461 SmallPtrSet<Value *, 16> Visited; 5462 worklist.push_back(Addr); 5463 5464 // Use a worklist to iteratively look through PHI and select nodes, and 5465 // ensure that the addressing mode obtained from the non-PHI/select roots of 5466 // the graph are compatible. 5467 bool PhiOrSelectSeen = false; 5468 SmallVector<Instruction *, 16> AddrModeInsts; 5469 const SimplifyQuery SQ(*DL, TLInfo); 5470 AddressingModeCombiner AddrModes(SQ, Addr); 5471 TypePromotionTransaction TPT(RemovedInsts); 5472 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5473 TPT.getRestorationPoint(); 5474 while (!worklist.empty()) { 5475 Value *V = worklist.pop_back_val(); 5476 5477 // We allow traversing cyclic Phi nodes. 5478 // In case of success after this loop we ensure that traversing through 5479 // Phi nodes ends up with all cases to compute address of the form 5480 // BaseGV + Base + Scale * Index + Offset 5481 // where Scale and Offset are constans and BaseGV, Base and Index 5482 // are exactly the same Values in all cases. 5483 // It means that BaseGV, Scale and Offset dominate our memory instruction 5484 // and have the same value as they had in address computation represented 5485 // as Phi. So we can safely sink address computation to memory instruction. 5486 if (!Visited.insert(V).second) 5487 continue; 5488 5489 // For a PHI node, push all of its incoming values. 5490 if (PHINode *P = dyn_cast<PHINode>(V)) { 5491 append_range(worklist, P->incoming_values()); 5492 PhiOrSelectSeen = true; 5493 continue; 5494 } 5495 // Similar for select. 5496 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5497 worklist.push_back(SI->getFalseValue()); 5498 worklist.push_back(SI->getTrueValue()); 5499 PhiOrSelectSeen = true; 5500 continue; 5501 } 5502 5503 // For non-PHIs, determine the addressing mode being computed. Note that 5504 // the result may differ depending on what other uses our candidate 5505 // addressing instructions might have. 5506 AddrModeInsts.clear(); 5507 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5508 0); 5509 // Defer the query (and possible computation of) the dom tree to point of 5510 // actual use. It's expected that most address matches don't actually need 5511 // the domtree. 5512 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5513 Function *F = MemoryInst->getParent()->getParent(); 5514 return this->getDT(*F); 5515 }; 5516 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5517 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5518 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5519 BFI.get()); 5520 5521 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5522 if (GEP && !NewGEPBases.count(GEP)) { 5523 // If splitting the underlying data structure can reduce the offset of a 5524 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5525 // previously split data structures. 5526 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5527 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5528 } 5529 5530 NewAddrMode.OriginalValue = V; 5531 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5532 break; 5533 } 5534 5535 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5536 // or we have multiple but either couldn't combine them or combining them 5537 // wouldn't do anything useful, bail out now. 5538 if (!AddrModes.combineAddrModes()) { 5539 TPT.rollback(LastKnownGood); 5540 return false; 5541 } 5542 bool Modified = TPT.commit(); 5543 5544 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5545 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5546 5547 // If all the instructions matched are already in this BB, don't do anything. 5548 // If we saw a Phi node then it is not local definitely, and if we saw a 5549 // select then we want to push the address calculation past it even if it's 5550 // already in this BB. 5551 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5552 return IsNonLocalValue(V, MemoryInst->getParent()); 5553 })) { 5554 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5555 << "\n"); 5556 return Modified; 5557 } 5558 5559 // Insert this computation right after this user. Since our caller is 5560 // scanning from the top of the BB to the bottom, reuse of the expr are 5561 // guaranteed to happen later. 5562 IRBuilder<> Builder(MemoryInst); 5563 5564 // Now that we determined the addressing expression we want to use and know 5565 // that we have to sink it into this block. Check to see if we have already 5566 // done this for some other load/store instr in this block. If so, reuse 5567 // the computation. Before attempting reuse, check if the address is valid 5568 // as it may have been erased. 5569 5570 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5571 5572 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5573 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5574 if (SunkAddr) { 5575 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5576 << " for " << *MemoryInst << "\n"); 5577 if (SunkAddr->getType() != Addr->getType()) { 5578 if (SunkAddr->getType()->getPointerAddressSpace() != 5579 Addr->getType()->getPointerAddressSpace() && 5580 !DL->isNonIntegralPointerType(Addr->getType())) { 5581 // There are two reasons the address spaces might not match: a no-op 5582 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5583 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5584 // TODO: allow bitcast between different address space pointers with the 5585 // same size. 5586 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5587 SunkAddr = 5588 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5589 } else 5590 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5591 } 5592 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5593 SubtargetInfo->addrSinkUsingGEPs())) { 5594 // By default, we use the GEP-based method when AA is used later. This 5595 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5596 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5597 << " for " << *MemoryInst << "\n"); 5598 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5599 5600 // First, find the pointer. 5601 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5602 ResultPtr = AddrMode.BaseReg; 5603 AddrMode.BaseReg = nullptr; 5604 } 5605 5606 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5607 // We can't add more than one pointer together, nor can we scale a 5608 // pointer (both of which seem meaningless). 5609 if (ResultPtr || AddrMode.Scale != 1) 5610 return Modified; 5611 5612 ResultPtr = AddrMode.ScaledReg; 5613 AddrMode.Scale = 0; 5614 } 5615 5616 // It is only safe to sign extend the BaseReg if we know that the math 5617 // required to create it did not overflow before we extend it. Since 5618 // the original IR value was tossed in favor of a constant back when 5619 // the AddrMode was created we need to bail out gracefully if widths 5620 // do not match instead of extending it. 5621 // 5622 // (See below for code to add the scale.) 5623 if (AddrMode.Scale) { 5624 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5625 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5626 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5627 return Modified; 5628 } 5629 5630 GlobalValue *BaseGV = AddrMode.BaseGV; 5631 if (BaseGV != nullptr) { 5632 if (ResultPtr) 5633 return Modified; 5634 5635 if (BaseGV->isThreadLocal()) { 5636 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); 5637 } else { 5638 ResultPtr = BaseGV; 5639 } 5640 } 5641 5642 // If the real base value actually came from an inttoptr, then the matcher 5643 // will look through it and provide only the integer value. In that case, 5644 // use it here. 5645 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5646 if (!ResultPtr && AddrMode.BaseReg) { 5647 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5648 "sunkaddr"); 5649 AddrMode.BaseReg = nullptr; 5650 } else if (!ResultPtr && AddrMode.Scale == 1) { 5651 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5652 "sunkaddr"); 5653 AddrMode.Scale = 0; 5654 } 5655 } 5656 5657 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5658 !AddrMode.BaseOffs) { 5659 SunkAddr = Constant::getNullValue(Addr->getType()); 5660 } else if (!ResultPtr) { 5661 return Modified; 5662 } else { 5663 Type *I8PtrTy = 5664 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5665 5666 // Start with the base register. Do this first so that subsequent address 5667 // matching finds it last, which will prevent it from trying to match it 5668 // as the scaled value in case it happens to be a mul. That would be 5669 // problematic if we've sunk a different mul for the scale, because then 5670 // we'd end up sinking both muls. 5671 if (AddrMode.BaseReg) { 5672 Value *V = AddrMode.BaseReg; 5673 if (V->getType() != IntPtrTy) 5674 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5675 5676 ResultIndex = V; 5677 } 5678 5679 // Add the scale value. 5680 if (AddrMode.Scale) { 5681 Value *V = AddrMode.ScaledReg; 5682 if (V->getType() == IntPtrTy) { 5683 // done. 5684 } else { 5685 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5686 cast<IntegerType>(V->getType())->getBitWidth() && 5687 "We can't transform if ScaledReg is too narrow"); 5688 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5689 } 5690 5691 if (AddrMode.Scale != 1) 5692 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5693 "sunkaddr"); 5694 if (ResultIndex) 5695 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5696 else 5697 ResultIndex = V; 5698 } 5699 5700 // Add in the Base Offset if present. 5701 if (AddrMode.BaseOffs) { 5702 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5703 if (ResultIndex) { 5704 // We need to add this separately from the scale above to help with 5705 // SDAG consecutive load/store merging. 5706 if (ResultPtr->getType() != I8PtrTy) 5707 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5708 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5709 AddrMode.InBounds); 5710 } 5711 5712 ResultIndex = V; 5713 } 5714 5715 if (!ResultIndex) { 5716 SunkAddr = ResultPtr; 5717 } else { 5718 if (ResultPtr->getType() != I8PtrTy) 5719 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5720 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", 5721 AddrMode.InBounds); 5722 } 5723 5724 if (SunkAddr->getType() != Addr->getType()) { 5725 if (SunkAddr->getType()->getPointerAddressSpace() != 5726 Addr->getType()->getPointerAddressSpace() && 5727 !DL->isNonIntegralPointerType(Addr->getType())) { 5728 // There are two reasons the address spaces might not match: a no-op 5729 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5730 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5731 // TODO: allow bitcast between different address space pointers with 5732 // the same size. 5733 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5734 SunkAddr = 5735 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5736 } else 5737 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5738 } 5739 } 5740 } else { 5741 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5742 // non-integral pointers, so in that case bail out now. 5743 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5744 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5745 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5746 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5747 if (DL->isNonIntegralPointerType(Addr->getType()) || 5748 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5749 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5750 (AddrMode.BaseGV && 5751 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5752 return Modified; 5753 5754 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5755 << " for " << *MemoryInst << "\n"); 5756 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5757 Value *Result = nullptr; 5758 5759 // Start with the base register. Do this first so that subsequent address 5760 // matching finds it last, which will prevent it from trying to match it 5761 // as the scaled value in case it happens to be a mul. That would be 5762 // problematic if we've sunk a different mul for the scale, because then 5763 // we'd end up sinking both muls. 5764 if (AddrMode.BaseReg) { 5765 Value *V = AddrMode.BaseReg; 5766 if (V->getType()->isPointerTy()) 5767 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5768 if (V->getType() != IntPtrTy) 5769 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5770 Result = V; 5771 } 5772 5773 // Add the scale value. 5774 if (AddrMode.Scale) { 5775 Value *V = AddrMode.ScaledReg; 5776 if (V->getType() == IntPtrTy) { 5777 // done. 5778 } else if (V->getType()->isPointerTy()) { 5779 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5780 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5781 cast<IntegerType>(V->getType())->getBitWidth()) { 5782 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5783 } else { 5784 // It is only safe to sign extend the BaseReg if we know that the math 5785 // required to create it did not overflow before we extend it. Since 5786 // the original IR value was tossed in favor of a constant back when 5787 // the AddrMode was created we need to bail out gracefully if widths 5788 // do not match instead of extending it. 5789 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5790 if (I && (Result != AddrMode.BaseReg)) 5791 I->eraseFromParent(); 5792 return Modified; 5793 } 5794 if (AddrMode.Scale != 1) 5795 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5796 "sunkaddr"); 5797 if (Result) 5798 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5799 else 5800 Result = V; 5801 } 5802 5803 // Add in the BaseGV if present. 5804 GlobalValue *BaseGV = AddrMode.BaseGV; 5805 if (BaseGV != nullptr) { 5806 Value *BaseGVPtr; 5807 if (BaseGV->isThreadLocal()) { 5808 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); 5809 } else { 5810 BaseGVPtr = BaseGV; 5811 } 5812 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); 5813 if (Result) 5814 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5815 else 5816 Result = V; 5817 } 5818 5819 // Add in the Base Offset if present. 5820 if (AddrMode.BaseOffs) { 5821 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5822 if (Result) 5823 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5824 else 5825 Result = V; 5826 } 5827 5828 if (!Result) 5829 SunkAddr = Constant::getNullValue(Addr->getType()); 5830 else 5831 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5832 } 5833 5834 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5835 // Store the newly computed address into the cache. In the case we reused a 5836 // value, this should be idempotent. 5837 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5838 5839 // If we have no uses, recursively delete the value and all dead instructions 5840 // using it. 5841 if (Repl->use_empty()) { 5842 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5843 RecursivelyDeleteTriviallyDeadInstructions( 5844 Repl, TLInfo, nullptr, 5845 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5846 }); 5847 } 5848 ++NumMemoryInsts; 5849 return true; 5850 } 5851 5852 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5853 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5854 /// only handle a 2 operand GEP in the same basic block or a splat constant 5855 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5856 /// index. 5857 /// 5858 /// If the existing GEP has a vector base pointer that is splat, we can look 5859 /// through the splat to find the scalar pointer. If we can't find a scalar 5860 /// pointer there's nothing we can do. 5861 /// 5862 /// If we have a GEP with more than 2 indices where the middle indices are all 5863 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5864 /// 5865 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5866 /// followed by a GEP with an all zeroes vector index. This will enable 5867 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5868 /// zero index. 5869 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5870 Value *Ptr) { 5871 Value *NewAddr; 5872 5873 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5874 // Don't optimize GEPs that don't have indices. 5875 if (!GEP->hasIndices()) 5876 return false; 5877 5878 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5879 // FIXME: We should support this by sinking the GEP. 5880 if (MemoryInst->getParent() != GEP->getParent()) 5881 return false; 5882 5883 SmallVector<Value *, 2> Ops(GEP->operands()); 5884 5885 bool RewriteGEP = false; 5886 5887 if (Ops[0]->getType()->isVectorTy()) { 5888 Ops[0] = getSplatValue(Ops[0]); 5889 if (!Ops[0]) 5890 return false; 5891 RewriteGEP = true; 5892 } 5893 5894 unsigned FinalIndex = Ops.size() - 1; 5895 5896 // Ensure all but the last index is 0. 5897 // FIXME: This isn't strictly required. All that's required is that they are 5898 // all scalars or splats. 5899 for (unsigned i = 1; i < FinalIndex; ++i) { 5900 auto *C = dyn_cast<Constant>(Ops[i]); 5901 if (!C) 5902 return false; 5903 if (isa<VectorType>(C->getType())) 5904 C = C->getSplatValue(); 5905 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5906 if (!CI || !CI->isZero()) 5907 return false; 5908 // Scalarize the index if needed. 5909 Ops[i] = CI; 5910 } 5911 5912 // Try to scalarize the final index. 5913 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5914 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5915 auto *C = dyn_cast<ConstantInt>(V); 5916 // Don't scalarize all zeros vector. 5917 if (!C || !C->isZero()) { 5918 Ops[FinalIndex] = V; 5919 RewriteGEP = true; 5920 } 5921 } 5922 } 5923 5924 // If we made any changes or the we have extra operands, we need to generate 5925 // new instructions. 5926 if (!RewriteGEP && Ops.size() == 2) 5927 return false; 5928 5929 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5930 5931 IRBuilder<> Builder(MemoryInst); 5932 5933 Type *SourceTy = GEP->getSourceElementType(); 5934 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5935 5936 // If the final index isn't a vector, emit a scalar GEP containing all ops 5937 // and a vector GEP with all zeroes final index. 5938 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5939 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 5940 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5941 auto *SecondTy = GetElementPtrInst::getIndexedType( 5942 SourceTy, ArrayRef(Ops).drop_front()); 5943 NewAddr = 5944 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5945 } else { 5946 Value *Base = Ops[0]; 5947 Value *Index = Ops[FinalIndex]; 5948 5949 // Create a scalar GEP if there are more than 2 operands. 5950 if (Ops.size() != 2) { 5951 // Replace the last index with 0. 5952 Ops[FinalIndex] = 5953 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 5954 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 5955 SourceTy = GetElementPtrInst::getIndexedType( 5956 SourceTy, ArrayRef(Ops).drop_front()); 5957 } 5958 5959 // Now create the GEP with scalar pointer and vector index. 5960 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5961 } 5962 } else if (!isa<Constant>(Ptr)) { 5963 // Not a GEP, maybe its a splat and we can create a GEP to enable 5964 // SelectionDAGBuilder to use it as a uniform base. 5965 Value *V = getSplatValue(Ptr); 5966 if (!V) 5967 return false; 5968 5969 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5970 5971 IRBuilder<> Builder(MemoryInst); 5972 5973 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5974 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5975 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5976 Type *ScalarTy; 5977 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5978 Intrinsic::masked_gather) { 5979 ScalarTy = MemoryInst->getType()->getScalarType(); 5980 } else { 5981 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5982 Intrinsic::masked_scatter); 5983 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5984 } 5985 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5986 } else { 5987 // Constant, SelectionDAGBuilder knows to check if its a splat. 5988 return false; 5989 } 5990 5991 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5992 5993 // If we have no uses, recursively delete the value and all dead instructions 5994 // using it. 5995 if (Ptr->use_empty()) 5996 RecursivelyDeleteTriviallyDeadInstructions( 5997 Ptr, TLInfo, nullptr, 5998 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5999 6000 return true; 6001 } 6002 6003 /// If there are any memory operands, use OptimizeMemoryInst to sink their 6004 /// address computing into the block when possible / profitable. 6005 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 6006 bool MadeChange = false; 6007 6008 const TargetRegisterInfo *TRI = 6009 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 6010 TargetLowering::AsmOperandInfoVector TargetConstraints = 6011 TLI->ParseConstraints(*DL, TRI, *CS); 6012 unsigned ArgNo = 0; 6013 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 6014 // Compute the constraint code and ConstraintType to use. 6015 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6016 6017 // TODO: Also handle C_Address? 6018 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6019 OpInfo.isIndirect) { 6020 Value *OpVal = CS->getArgOperand(ArgNo++); 6021 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 6022 } else if (OpInfo.Type == InlineAsm::isInput) 6023 ArgNo++; 6024 } 6025 6026 return MadeChange; 6027 } 6028 6029 /// Check if all the uses of \p Val are equivalent (or free) zero or 6030 /// sign extensions. 6031 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 6032 assert(!Val->use_empty() && "Input must have at least one use"); 6033 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 6034 bool IsSExt = isa<SExtInst>(FirstUser); 6035 Type *ExtTy = FirstUser->getType(); 6036 for (const User *U : Val->users()) { 6037 const Instruction *UI = cast<Instruction>(U); 6038 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 6039 return false; 6040 Type *CurTy = UI->getType(); 6041 // Same input and output types: Same instruction after CSE. 6042 if (CurTy == ExtTy) 6043 continue; 6044 6045 // If IsSExt is true, we are in this situation: 6046 // a = Val 6047 // b = sext ty1 a to ty2 6048 // c = sext ty1 a to ty3 6049 // Assuming ty2 is shorter than ty3, this could be turned into: 6050 // a = Val 6051 // b = sext ty1 a to ty2 6052 // c = sext ty2 b to ty3 6053 // However, the last sext is not free. 6054 if (IsSExt) 6055 return false; 6056 6057 // This is a ZExt, maybe this is free to extend from one type to another. 6058 // In that case, we would not account for a different use. 6059 Type *NarrowTy; 6060 Type *LargeTy; 6061 if (ExtTy->getScalarType()->getIntegerBitWidth() > 6062 CurTy->getScalarType()->getIntegerBitWidth()) { 6063 NarrowTy = CurTy; 6064 LargeTy = ExtTy; 6065 } else { 6066 NarrowTy = ExtTy; 6067 LargeTy = CurTy; 6068 } 6069 6070 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 6071 return false; 6072 } 6073 // All uses are the same or can be derived from one another for free. 6074 return true; 6075 } 6076 6077 /// Try to speculatively promote extensions in \p Exts and continue 6078 /// promoting through newly promoted operands recursively as far as doing so is 6079 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 6080 /// When some promotion happened, \p TPT contains the proper state to revert 6081 /// them. 6082 /// 6083 /// \return true if some promotion happened, false otherwise. 6084 bool CodeGenPrepare::tryToPromoteExts( 6085 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 6086 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 6087 unsigned CreatedInstsCost) { 6088 bool Promoted = false; 6089 6090 // Iterate over all the extensions to try to promote them. 6091 for (auto *I : Exts) { 6092 // Early check if we directly have ext(load). 6093 if (isa<LoadInst>(I->getOperand(0))) { 6094 ProfitablyMovedExts.push_back(I); 6095 continue; 6096 } 6097 6098 // Check whether or not we want to do any promotion. The reason we have 6099 // this check inside the for loop is to catch the case where an extension 6100 // is directly fed by a load because in such case the extension can be moved 6101 // up without any promotion on its operands. 6102 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 6103 return false; 6104 6105 // Get the action to perform the promotion. 6106 TypePromotionHelper::Action TPH = 6107 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 6108 // Check if we can promote. 6109 if (!TPH) { 6110 // Save the current extension as we cannot move up through its operand. 6111 ProfitablyMovedExts.push_back(I); 6112 continue; 6113 } 6114 6115 // Save the current state. 6116 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6117 TPT.getRestorationPoint(); 6118 SmallVector<Instruction *, 4> NewExts; 6119 unsigned NewCreatedInstsCost = 0; 6120 unsigned ExtCost = !TLI->isExtFree(I); 6121 // Promote. 6122 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 6123 &NewExts, nullptr, *TLI); 6124 assert(PromotedVal && 6125 "TypePromotionHelper should have filtered out those cases"); 6126 6127 // We would be able to merge only one extension in a load. 6128 // Therefore, if we have more than 1 new extension we heuristically 6129 // cut this search path, because it means we degrade the code quality. 6130 // With exactly 2, the transformation is neutral, because we will merge 6131 // one extension but leave one. However, we optimistically keep going, 6132 // because the new extension may be removed too. Also avoid replacing a 6133 // single free extension with multiple extensions, as this increases the 6134 // number of IR instructions while not providing any savings. 6135 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 6136 // FIXME: It would be possible to propagate a negative value instead of 6137 // conservatively ceiling it to 0. 6138 TotalCreatedInstsCost = 6139 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 6140 if (!StressExtLdPromotion && 6141 (TotalCreatedInstsCost > 1 || 6142 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || 6143 (ExtCost == 0 && NewExts.size() > 1))) { 6144 // This promotion is not profitable, rollback to the previous state, and 6145 // save the current extension in ProfitablyMovedExts as the latest 6146 // speculative promotion turned out to be unprofitable. 6147 TPT.rollback(LastKnownGood); 6148 ProfitablyMovedExts.push_back(I); 6149 continue; 6150 } 6151 // Continue promoting NewExts as far as doing so is profitable. 6152 SmallVector<Instruction *, 2> NewlyMovedExts; 6153 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 6154 bool NewPromoted = false; 6155 for (auto *ExtInst : NewlyMovedExts) { 6156 Instruction *MovedExt = cast<Instruction>(ExtInst); 6157 Value *ExtOperand = MovedExt->getOperand(0); 6158 // If we have reached to a load, we need this extra profitability check 6159 // as it could potentially be merged into an ext(load). 6160 if (isa<LoadInst>(ExtOperand) && 6161 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 6162 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 6163 continue; 6164 6165 ProfitablyMovedExts.push_back(MovedExt); 6166 NewPromoted = true; 6167 } 6168 6169 // If none of speculative promotions for NewExts is profitable, rollback 6170 // and save the current extension (I) as the last profitable extension. 6171 if (!NewPromoted) { 6172 TPT.rollback(LastKnownGood); 6173 ProfitablyMovedExts.push_back(I); 6174 continue; 6175 } 6176 // The promotion is profitable. 6177 Promoted = true; 6178 } 6179 return Promoted; 6180 } 6181 6182 /// Merging redundant sexts when one is dominating the other. 6183 bool CodeGenPrepare::mergeSExts(Function &F) { 6184 bool Changed = false; 6185 for (auto &Entry : ValToSExtendedUses) { 6186 SExts &Insts = Entry.second; 6187 SExts CurPts; 6188 for (Instruction *Inst : Insts) { 6189 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6190 Inst->getOperand(0) != Entry.first) 6191 continue; 6192 bool inserted = false; 6193 for (auto &Pt : CurPts) { 6194 if (getDT(F).dominates(Inst, Pt)) { 6195 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6196 RemovedInsts.insert(Pt); 6197 Pt->removeFromParent(); 6198 Pt = Inst; 6199 inserted = true; 6200 Changed = true; 6201 break; 6202 } 6203 if (!getDT(F).dominates(Pt, Inst)) 6204 // Give up if we need to merge in a common dominator as the 6205 // experiments show it is not profitable. 6206 continue; 6207 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6208 RemovedInsts.insert(Inst); 6209 Inst->removeFromParent(); 6210 inserted = true; 6211 Changed = true; 6212 break; 6213 } 6214 if (!inserted) 6215 CurPts.push_back(Inst); 6216 } 6217 } 6218 return Changed; 6219 } 6220 6221 // Splitting large data structures so that the GEPs accessing them can have 6222 // smaller offsets so that they can be sunk to the same blocks as their users. 6223 // For example, a large struct starting from %base is split into two parts 6224 // where the second part starts from %new_base. 6225 // 6226 // Before: 6227 // BB0: 6228 // %base = 6229 // 6230 // BB1: 6231 // %gep0 = gep %base, off0 6232 // %gep1 = gep %base, off1 6233 // %gep2 = gep %base, off2 6234 // 6235 // BB2: 6236 // %load1 = load %gep0 6237 // %load2 = load %gep1 6238 // %load3 = load %gep2 6239 // 6240 // After: 6241 // BB0: 6242 // %base = 6243 // %new_base = gep %base, off0 6244 // 6245 // BB1: 6246 // %new_gep0 = %new_base 6247 // %new_gep1 = gep %new_base, off1 - off0 6248 // %new_gep2 = gep %new_base, off2 - off0 6249 // 6250 // BB2: 6251 // %load1 = load i32, i32* %new_gep0 6252 // %load2 = load i32, i32* %new_gep1 6253 // %load3 = load i32, i32* %new_gep2 6254 // 6255 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6256 // their offsets are smaller enough to fit into the addressing mode. 6257 bool CodeGenPrepare::splitLargeGEPOffsets() { 6258 bool Changed = false; 6259 for (auto &Entry : LargeOffsetGEPMap) { 6260 Value *OldBase = Entry.first; 6261 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6262 &LargeOffsetGEPs = Entry.second; 6263 auto compareGEPOffset = 6264 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6265 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6266 if (LHS.first == RHS.first) 6267 return false; 6268 if (LHS.second != RHS.second) 6269 return LHS.second < RHS.second; 6270 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6271 }; 6272 // Sorting all the GEPs of the same data structures based on the offsets. 6273 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6274 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); 6275 // Skip if all the GEPs have the same offsets. 6276 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6277 continue; 6278 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6279 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6280 Value *NewBaseGEP = nullptr; 6281 6282 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6283 GetElementPtrInst *GEP) { 6284 LLVMContext &Ctx = GEP->getContext(); 6285 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6286 Type *I8PtrTy = 6287 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6288 6289 BasicBlock::iterator NewBaseInsertPt; 6290 BasicBlock *NewBaseInsertBB; 6291 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6292 // If the base of the struct is an instruction, the new base will be 6293 // inserted close to it. 6294 NewBaseInsertBB = BaseI->getParent(); 6295 if (isa<PHINode>(BaseI)) 6296 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6297 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6298 NewBaseInsertBB = 6299 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6300 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6301 } else 6302 NewBaseInsertPt = std::next(BaseI->getIterator()); 6303 } else { 6304 // If the current base is an argument or global value, the new base 6305 // will be inserted to the entry block. 6306 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6307 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6308 } 6309 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6310 // Create a new base. 6311 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6312 NewBaseGEP = OldBase; 6313 if (NewBaseGEP->getType() != I8PtrTy) 6314 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6315 NewBaseGEP = 6316 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); 6317 NewGEPBases.insert(NewBaseGEP); 6318 return; 6319 }; 6320 6321 // Check whether all the offsets can be encoded with prefered common base. 6322 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6323 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6324 BaseOffset = PreferBase; 6325 // Create a new base if the offset of the BaseGEP can be decoded with one 6326 // instruction. 6327 createNewBase(BaseOffset, OldBase, BaseGEP); 6328 } 6329 6330 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6331 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6332 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6333 int64_t Offset = LargeOffsetGEP->second; 6334 if (Offset != BaseOffset) { 6335 TargetLowering::AddrMode AddrMode; 6336 AddrMode.HasBaseReg = true; 6337 AddrMode.BaseOffs = Offset - BaseOffset; 6338 // The result type of the GEP might not be the type of the memory 6339 // access. 6340 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6341 GEP->getResultElementType(), 6342 GEP->getAddressSpace())) { 6343 // We need to create a new base if the offset to the current base is 6344 // too large to fit into the addressing mode. So, a very large struct 6345 // may be split into several parts. 6346 BaseGEP = GEP; 6347 BaseOffset = Offset; 6348 NewBaseGEP = nullptr; 6349 } 6350 } 6351 6352 // Generate a new GEP to replace the current one. 6353 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6354 6355 if (!NewBaseGEP) { 6356 // Create a new base if we don't have one yet. Find the insertion 6357 // pointer for the new base first. 6358 createNewBase(BaseOffset, OldBase, GEP); 6359 } 6360 6361 IRBuilder<> Builder(GEP); 6362 Value *NewGEP = NewBaseGEP; 6363 if (Offset != BaseOffset) { 6364 // Calculate the new offset for the new GEP. 6365 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6366 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); 6367 } 6368 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6369 LargeOffsetGEPID.erase(GEP); 6370 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6371 GEP->eraseFromParent(); 6372 Changed = true; 6373 } 6374 } 6375 return Changed; 6376 } 6377 6378 bool CodeGenPrepare::optimizePhiType( 6379 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6380 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6381 // We are looking for a collection on interconnected phi nodes that together 6382 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6383 // are of the same type. Convert the whole set of nodes to the type of the 6384 // bitcast. 6385 Type *PhiTy = I->getType(); 6386 Type *ConvertTy = nullptr; 6387 if (Visited.count(I) || 6388 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6389 return false; 6390 6391 SmallVector<Instruction *, 4> Worklist; 6392 Worklist.push_back(cast<Instruction>(I)); 6393 SmallPtrSet<PHINode *, 4> PhiNodes; 6394 SmallPtrSet<ConstantData *, 4> Constants; 6395 PhiNodes.insert(I); 6396 Visited.insert(I); 6397 SmallPtrSet<Instruction *, 4> Defs; 6398 SmallPtrSet<Instruction *, 4> Uses; 6399 // This works by adding extra bitcasts between load/stores and removing 6400 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6401 // we can get in the situation where we remove a bitcast in one iteration 6402 // just to add it again in the next. We need to ensure that at least one 6403 // bitcast we remove are anchored to something that will not change back. 6404 bool AnyAnchored = false; 6405 6406 while (!Worklist.empty()) { 6407 Instruction *II = Worklist.pop_back_val(); 6408 6409 if (auto *Phi = dyn_cast<PHINode>(II)) { 6410 // Handle Defs, which might also be PHI's 6411 for (Value *V : Phi->incoming_values()) { 6412 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6413 if (!PhiNodes.count(OpPhi)) { 6414 if (!Visited.insert(OpPhi).second) 6415 return false; 6416 PhiNodes.insert(OpPhi); 6417 Worklist.push_back(OpPhi); 6418 } 6419 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6420 if (!OpLoad->isSimple()) 6421 return false; 6422 if (Defs.insert(OpLoad).second) 6423 Worklist.push_back(OpLoad); 6424 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6425 if (Defs.insert(OpEx).second) 6426 Worklist.push_back(OpEx); 6427 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6428 if (!ConvertTy) 6429 ConvertTy = OpBC->getOperand(0)->getType(); 6430 if (OpBC->getOperand(0)->getType() != ConvertTy) 6431 return false; 6432 if (Defs.insert(OpBC).second) { 6433 Worklist.push_back(OpBC); 6434 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6435 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6436 } 6437 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6438 Constants.insert(OpC); 6439 else 6440 return false; 6441 } 6442 } 6443 6444 // Handle uses which might also be phi's 6445 for (User *V : II->users()) { 6446 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6447 if (!PhiNodes.count(OpPhi)) { 6448 if (Visited.count(OpPhi)) 6449 return false; 6450 PhiNodes.insert(OpPhi); 6451 Visited.insert(OpPhi); 6452 Worklist.push_back(OpPhi); 6453 } 6454 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6455 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6456 return false; 6457 Uses.insert(OpStore); 6458 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6459 if (!ConvertTy) 6460 ConvertTy = OpBC->getType(); 6461 if (OpBC->getType() != ConvertTy) 6462 return false; 6463 Uses.insert(OpBC); 6464 AnyAnchored |= 6465 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6466 } else { 6467 return false; 6468 } 6469 } 6470 } 6471 6472 if (!ConvertTy || !AnyAnchored || 6473 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6474 return false; 6475 6476 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6477 << *ConvertTy << "\n"); 6478 6479 // Create all the new phi nodes of the new type, and bitcast any loads to the 6480 // correct type. 6481 ValueToValueMap ValMap; 6482 for (ConstantData *C : Constants) 6483 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6484 for (Instruction *D : Defs) { 6485 if (isa<BitCastInst>(D)) { 6486 ValMap[D] = D->getOperand(0); 6487 DeletedInstrs.insert(D); 6488 } else { 6489 BasicBlock::iterator insertPt = std::next(D->getIterator()); 6490 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); 6491 } 6492 } 6493 for (PHINode *Phi : PhiNodes) 6494 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6495 Phi->getName() + ".tc", Phi->getIterator()); 6496 // Pipe together all the PhiNodes. 6497 for (PHINode *Phi : PhiNodes) { 6498 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6499 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6500 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6501 Phi->getIncomingBlock(i)); 6502 Visited.insert(NewPhi); 6503 } 6504 // And finally pipe up the stores and bitcasts 6505 for (Instruction *U : Uses) { 6506 if (isa<BitCastInst>(U)) { 6507 DeletedInstrs.insert(U); 6508 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6509 } else { 6510 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", 6511 U->getIterator())); 6512 } 6513 } 6514 6515 // Save the removed phis to be deleted later. 6516 for (PHINode *Phi : PhiNodes) 6517 DeletedInstrs.insert(Phi); 6518 return true; 6519 } 6520 6521 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6522 if (!OptimizePhiTypes) 6523 return false; 6524 6525 bool Changed = false; 6526 SmallPtrSet<PHINode *, 4> Visited; 6527 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6528 6529 // Attempt to optimize all the phis in the functions to the correct type. 6530 for (auto &BB : F) 6531 for (auto &Phi : BB.phis()) 6532 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6533 6534 // Remove any old phi's that have been converted. 6535 for (auto *I : DeletedInstrs) { 6536 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6537 I->eraseFromParent(); 6538 } 6539 6540 return Changed; 6541 } 6542 6543 /// Return true, if an ext(load) can be formed from an extension in 6544 /// \p MovedExts. 6545 bool CodeGenPrepare::canFormExtLd( 6546 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6547 Instruction *&Inst, bool HasPromoted) { 6548 for (auto *MovedExtInst : MovedExts) { 6549 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6550 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6551 Inst = MovedExtInst; 6552 break; 6553 } 6554 } 6555 if (!LI) 6556 return false; 6557 6558 // If they're already in the same block, there's nothing to do. 6559 // Make the cheap checks first if we did not promote. 6560 // If we promoted, we need to check if it is indeed profitable. 6561 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6562 return false; 6563 6564 return TLI->isExtLoad(LI, Inst, *DL); 6565 } 6566 6567 /// Move a zext or sext fed by a load into the same basic block as the load, 6568 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6569 /// extend into the load. 6570 /// 6571 /// E.g., 6572 /// \code 6573 /// %ld = load i32* %addr 6574 /// %add = add nuw i32 %ld, 4 6575 /// %zext = zext i32 %add to i64 6576 // \endcode 6577 /// => 6578 /// \code 6579 /// %ld = load i32* %addr 6580 /// %zext = zext i32 %ld to i64 6581 /// %add = add nuw i64 %zext, 4 6582 /// \encode 6583 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6584 /// allow us to match zext(load i32*) to i64. 6585 /// 6586 /// Also, try to promote the computations used to obtain a sign extended 6587 /// value used into memory accesses. 6588 /// E.g., 6589 /// \code 6590 /// a = add nsw i32 b, 3 6591 /// d = sext i32 a to i64 6592 /// e = getelementptr ..., i64 d 6593 /// \endcode 6594 /// => 6595 /// \code 6596 /// f = sext i32 b to i64 6597 /// a = add nsw i64 f, 3 6598 /// e = getelementptr ..., i64 a 6599 /// \endcode 6600 /// 6601 /// \p Inst[in/out] the extension may be modified during the process if some 6602 /// promotions apply. 6603 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6604 bool AllowPromotionWithoutCommonHeader = false; 6605 /// See if it is an interesting sext operations for the address type 6606 /// promotion before trying to promote it, e.g., the ones with the right 6607 /// type and used in memory accesses. 6608 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6609 *Inst, AllowPromotionWithoutCommonHeader); 6610 TypePromotionTransaction TPT(RemovedInsts); 6611 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6612 TPT.getRestorationPoint(); 6613 SmallVector<Instruction *, 1> Exts; 6614 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6615 Exts.push_back(Inst); 6616 6617 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6618 6619 // Look for a load being extended. 6620 LoadInst *LI = nullptr; 6621 Instruction *ExtFedByLoad; 6622 6623 // Try to promote a chain of computation if it allows to form an extended 6624 // load. 6625 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6626 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6627 TPT.commit(); 6628 // Move the extend into the same block as the load. 6629 ExtFedByLoad->moveAfter(LI); 6630 ++NumExtsMoved; 6631 Inst = ExtFedByLoad; 6632 return true; 6633 } 6634 6635 // Continue promoting SExts if known as considerable depending on targets. 6636 if (ATPConsiderable && 6637 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6638 HasPromoted, TPT, SpeculativelyMovedExts)) 6639 return true; 6640 6641 TPT.rollback(LastKnownGood); 6642 return false; 6643 } 6644 6645 // Perform address type promotion if doing so is profitable. 6646 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6647 // instructions that sign extended the same initial value. However, if 6648 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6649 // extension is just profitable. 6650 bool CodeGenPrepare::performAddressTypePromotion( 6651 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6652 bool HasPromoted, TypePromotionTransaction &TPT, 6653 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6654 bool Promoted = false; 6655 SmallPtrSet<Instruction *, 1> UnhandledExts; 6656 bool AllSeenFirst = true; 6657 for (auto *I : SpeculativelyMovedExts) { 6658 Value *HeadOfChain = I->getOperand(0); 6659 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6660 SeenChainsForSExt.find(HeadOfChain); 6661 // If there is an unhandled SExt which has the same header, try to promote 6662 // it as well. 6663 if (AlreadySeen != SeenChainsForSExt.end()) { 6664 if (AlreadySeen->second != nullptr) 6665 UnhandledExts.insert(AlreadySeen->second); 6666 AllSeenFirst = false; 6667 } 6668 } 6669 6670 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6671 SpeculativelyMovedExts.size() == 1)) { 6672 TPT.commit(); 6673 if (HasPromoted) 6674 Promoted = true; 6675 for (auto *I : SpeculativelyMovedExts) { 6676 Value *HeadOfChain = I->getOperand(0); 6677 SeenChainsForSExt[HeadOfChain] = nullptr; 6678 ValToSExtendedUses[HeadOfChain].push_back(I); 6679 } 6680 // Update Inst as promotion happen. 6681 Inst = SpeculativelyMovedExts.pop_back_val(); 6682 } else { 6683 // This is the first chain visited from the header, keep the current chain 6684 // as unhandled. Defer to promote this until we encounter another SExt 6685 // chain derived from the same header. 6686 for (auto *I : SpeculativelyMovedExts) { 6687 Value *HeadOfChain = I->getOperand(0); 6688 SeenChainsForSExt[HeadOfChain] = Inst; 6689 } 6690 return false; 6691 } 6692 6693 if (!AllSeenFirst && !UnhandledExts.empty()) 6694 for (auto *VisitedSExt : UnhandledExts) { 6695 if (RemovedInsts.count(VisitedSExt)) 6696 continue; 6697 TypePromotionTransaction TPT(RemovedInsts); 6698 SmallVector<Instruction *, 1> Exts; 6699 SmallVector<Instruction *, 2> Chains; 6700 Exts.push_back(VisitedSExt); 6701 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6702 TPT.commit(); 6703 if (HasPromoted) 6704 Promoted = true; 6705 for (auto *I : Chains) { 6706 Value *HeadOfChain = I->getOperand(0); 6707 // Mark this as handled. 6708 SeenChainsForSExt[HeadOfChain] = nullptr; 6709 ValToSExtendedUses[HeadOfChain].push_back(I); 6710 } 6711 } 6712 return Promoted; 6713 } 6714 6715 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6716 BasicBlock *DefBB = I->getParent(); 6717 6718 // If the result of a {s|z}ext and its source are both live out, rewrite all 6719 // other uses of the source with result of extension. 6720 Value *Src = I->getOperand(0); 6721 if (Src->hasOneUse()) 6722 return false; 6723 6724 // Only do this xform if truncating is free. 6725 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6726 return false; 6727 6728 // Only safe to perform the optimization if the source is also defined in 6729 // this block. 6730 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6731 return false; 6732 6733 bool DefIsLiveOut = false; 6734 for (User *U : I->users()) { 6735 Instruction *UI = cast<Instruction>(U); 6736 6737 // Figure out which BB this ext is used in. 6738 BasicBlock *UserBB = UI->getParent(); 6739 if (UserBB == DefBB) 6740 continue; 6741 DefIsLiveOut = true; 6742 break; 6743 } 6744 if (!DefIsLiveOut) 6745 return false; 6746 6747 // Make sure none of the uses are PHI nodes. 6748 for (User *U : Src->users()) { 6749 Instruction *UI = cast<Instruction>(U); 6750 BasicBlock *UserBB = UI->getParent(); 6751 if (UserBB == DefBB) 6752 continue; 6753 // Be conservative. We don't want this xform to end up introducing 6754 // reloads just before load / store instructions. 6755 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6756 return false; 6757 } 6758 6759 // InsertedTruncs - Only insert one trunc in each block once. 6760 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6761 6762 bool MadeChange = false; 6763 for (Use &U : Src->uses()) { 6764 Instruction *User = cast<Instruction>(U.getUser()); 6765 6766 // Figure out which BB this ext is used in. 6767 BasicBlock *UserBB = User->getParent(); 6768 if (UserBB == DefBB) 6769 continue; 6770 6771 // Both src and def are live in this block. Rewrite the use. 6772 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6773 6774 if (!InsertedTrunc) { 6775 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6776 assert(InsertPt != UserBB->end()); 6777 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 6778 InsertedTrunc->insertBefore(*UserBB, InsertPt); 6779 InsertedInsts.insert(InsertedTrunc); 6780 } 6781 6782 // Replace a use of the {s|z}ext source with a use of the result. 6783 U = InsertedTrunc; 6784 ++NumExtUses; 6785 MadeChange = true; 6786 } 6787 6788 return MadeChange; 6789 } 6790 6791 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6792 // just after the load if the target can fold this into one extload instruction, 6793 // with the hope of eliminating some of the other later "and" instructions using 6794 // the loaded value. "and"s that are made trivially redundant by the insertion 6795 // of the new "and" are removed by this function, while others (e.g. those whose 6796 // path from the load goes through a phi) are left for isel to potentially 6797 // remove. 6798 // 6799 // For example: 6800 // 6801 // b0: 6802 // x = load i32 6803 // ... 6804 // b1: 6805 // y = and x, 0xff 6806 // z = use y 6807 // 6808 // becomes: 6809 // 6810 // b0: 6811 // x = load i32 6812 // x' = and x, 0xff 6813 // ... 6814 // b1: 6815 // z = use x' 6816 // 6817 // whereas: 6818 // 6819 // b0: 6820 // x1 = load i32 6821 // ... 6822 // b1: 6823 // x2 = load i32 6824 // ... 6825 // b2: 6826 // x = phi x1, x2 6827 // y = and x, 0xff 6828 // 6829 // becomes (after a call to optimizeLoadExt for each load): 6830 // 6831 // b0: 6832 // x1 = load i32 6833 // x1' = and x1, 0xff 6834 // ... 6835 // b1: 6836 // x2 = load i32 6837 // x2' = and x2, 0xff 6838 // ... 6839 // b2: 6840 // x = phi x1', x2' 6841 // y = and x, 0xff 6842 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6843 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6844 return false; 6845 6846 // Skip loads we've already transformed. 6847 if (Load->hasOneUse() && 6848 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6849 return false; 6850 6851 // Look at all uses of Load, looking through phis, to determine how many bits 6852 // of the loaded value are needed. 6853 SmallVector<Instruction *, 8> WorkList; 6854 SmallPtrSet<Instruction *, 16> Visited; 6855 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6856 for (auto *U : Load->users()) 6857 WorkList.push_back(cast<Instruction>(U)); 6858 6859 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6860 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6861 // If the BitWidth is 0, do not try to optimize the type 6862 if (BitWidth == 0) 6863 return false; 6864 6865 APInt DemandBits(BitWidth, 0); 6866 APInt WidestAndBits(BitWidth, 0); 6867 6868 while (!WorkList.empty()) { 6869 Instruction *I = WorkList.pop_back_val(); 6870 6871 // Break use-def graph loops. 6872 if (!Visited.insert(I).second) 6873 continue; 6874 6875 // For a PHI node, push all of its users. 6876 if (auto *Phi = dyn_cast<PHINode>(I)) { 6877 for (auto *U : Phi->users()) 6878 WorkList.push_back(cast<Instruction>(U)); 6879 continue; 6880 } 6881 6882 switch (I->getOpcode()) { 6883 case Instruction::And: { 6884 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6885 if (!AndC) 6886 return false; 6887 APInt AndBits = AndC->getValue(); 6888 DemandBits |= AndBits; 6889 // Keep track of the widest and mask we see. 6890 if (AndBits.ugt(WidestAndBits)) 6891 WidestAndBits = AndBits; 6892 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6893 AndsToMaybeRemove.push_back(I); 6894 break; 6895 } 6896 6897 case Instruction::Shl: { 6898 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6899 if (!ShlC) 6900 return false; 6901 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6902 DemandBits.setLowBits(BitWidth - ShiftAmt); 6903 break; 6904 } 6905 6906 case Instruction::Trunc: { 6907 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6908 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6909 DemandBits.setLowBits(TruncBitWidth); 6910 break; 6911 } 6912 6913 default: 6914 return false; 6915 } 6916 } 6917 6918 uint32_t ActiveBits = DemandBits.getActiveBits(); 6919 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6920 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6921 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6922 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6923 // followed by an AND. 6924 // TODO: Look into removing this restriction by fixing backends to either 6925 // return false for isLoadExtLegal for i1 or have them select this pattern to 6926 // a single instruction. 6927 // 6928 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6929 // mask, since these are the only ands that will be removed by isel. 6930 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6931 WidestAndBits != DemandBits) 6932 return false; 6933 6934 LLVMContext &Ctx = Load->getType()->getContext(); 6935 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6936 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6937 6938 // Reject cases that won't be matched as extloads. 6939 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6940 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6941 return false; 6942 6943 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 6944 auto *NewAnd = cast<Instruction>( 6945 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6946 // Mark this instruction as "inserted by CGP", so that other 6947 // optimizations don't touch it. 6948 InsertedInsts.insert(NewAnd); 6949 6950 // Replace all uses of load with new and (except for the use of load in the 6951 // new and itself). 6952 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 6953 NewAnd->setOperand(0, Load); 6954 6955 // Remove any and instructions that are now redundant. 6956 for (auto *And : AndsToMaybeRemove) 6957 // Check that the and mask is the same as the one we decided to put on the 6958 // new and. 6959 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6960 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 6961 if (&*CurInstIterator == And) 6962 CurInstIterator = std::next(And->getIterator()); 6963 And->eraseFromParent(); 6964 ++NumAndUses; 6965 } 6966 6967 ++NumAndsAdded; 6968 return true; 6969 } 6970 6971 /// Check if V (an operand of a select instruction) is an expensive instruction 6972 /// that is only used once. 6973 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6974 auto *I = dyn_cast<Instruction>(V); 6975 // If it's safe to speculatively execute, then it should not have side 6976 // effects; therefore, it's safe to sink and possibly *not* execute. 6977 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6978 TTI->isExpensiveToSpeculativelyExecute(I); 6979 } 6980 6981 /// Returns true if a SelectInst should be turned into an explicit branch. 6982 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6983 const TargetLowering *TLI, 6984 SelectInst *SI) { 6985 // If even a predictable select is cheap, then a branch can't be cheaper. 6986 if (!TLI->isPredictableSelectExpensive()) 6987 return false; 6988 6989 // FIXME: This should use the same heuristics as IfConversion to determine 6990 // whether a select is better represented as a branch. 6991 6992 // If metadata tells us that the select condition is obviously predictable, 6993 // then we want to replace the select with a branch. 6994 uint64_t TrueWeight, FalseWeight; 6995 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 6996 uint64_t Max = std::max(TrueWeight, FalseWeight); 6997 uint64_t Sum = TrueWeight + FalseWeight; 6998 if (Sum != 0) { 6999 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 7000 if (Probability > TTI->getPredictableBranchThreshold()) 7001 return true; 7002 } 7003 } 7004 7005 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 7006 7007 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 7008 // comparison condition. If the compare has more than one use, there's 7009 // probably another cmov or setcc around, so it's not worth emitting a branch. 7010 if (!Cmp || !Cmp->hasOneUse()) 7011 return false; 7012 7013 // If either operand of the select is expensive and only needed on one side 7014 // of the select, we should form a branch. 7015 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 7016 sinkSelectOperand(TTI, SI->getFalseValue())) 7017 return true; 7018 7019 return false; 7020 } 7021 7022 /// If \p isTrue is true, return the true value of \p SI, otherwise return 7023 /// false value of \p SI. If the true/false value of \p SI is defined by any 7024 /// select instructions in \p Selects, look through the defining select 7025 /// instruction until the true/false value is not defined in \p Selects. 7026 static Value * 7027 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 7028 const SmallPtrSet<const Instruction *, 2> &Selects) { 7029 Value *V = nullptr; 7030 7031 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 7032 DefSI = dyn_cast<SelectInst>(V)) { 7033 assert(DefSI->getCondition() == SI->getCondition() && 7034 "The condition of DefSI does not match with SI"); 7035 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 7036 } 7037 7038 assert(V && "Failed to get select true/false value"); 7039 return V; 7040 } 7041 7042 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 7043 assert(Shift->isShift() && "Expected a shift"); 7044 7045 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 7046 // general vector shifts, and (3) the shift amount is a select-of-splatted 7047 // values, hoist the shifts before the select: 7048 // shift Op0, (select Cond, TVal, FVal) --> 7049 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 7050 // 7051 // This is inverting a generic IR transform when we know that the cost of a 7052 // general vector shift is more than the cost of 2 shift-by-scalars. 7053 // We can't do this effectively in SDAG because we may not be able to 7054 // determine if the select operands are splats from within a basic block. 7055 Type *Ty = Shift->getType(); 7056 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7057 return false; 7058 Value *Cond, *TVal, *FVal; 7059 if (!match(Shift->getOperand(1), 7060 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7061 return false; 7062 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7063 return false; 7064 7065 IRBuilder<> Builder(Shift); 7066 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 7067 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 7068 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 7069 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7070 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 7071 Shift->eraseFromParent(); 7072 return true; 7073 } 7074 7075 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 7076 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 7077 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 7078 "Expected a funnel shift"); 7079 7080 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 7081 // than general vector shifts, and (3) the shift amount is select-of-splatted 7082 // values, hoist the funnel shifts before the select: 7083 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 7084 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 7085 // 7086 // This is inverting a generic IR transform when we know that the cost of a 7087 // general vector shift is more than the cost of 2 shift-by-scalars. 7088 // We can't do this effectively in SDAG because we may not be able to 7089 // determine if the select operands are splats from within a basic block. 7090 Type *Ty = Fsh->getType(); 7091 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 7092 return false; 7093 Value *Cond, *TVal, *FVal; 7094 if (!match(Fsh->getOperand(2), 7095 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 7096 return false; 7097 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 7098 return false; 7099 7100 IRBuilder<> Builder(Fsh); 7101 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 7102 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 7103 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 7104 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 7105 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 7106 Fsh->eraseFromParent(); 7107 return true; 7108 } 7109 7110 /// If we have a SelectInst that will likely profit from branch prediction, 7111 /// turn it into a branch. 7112 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 7113 if (DisableSelectToBranch) 7114 return false; 7115 7116 // If the SelectOptimize pass is enabled, selects have already been optimized. 7117 if (!getCGPassBuilderOption().DisableSelectOptimize) 7118 return false; 7119 7120 // Find all consecutive select instructions that share the same condition. 7121 SmallVector<SelectInst *, 2> ASI; 7122 ASI.push_back(SI); 7123 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 7124 It != SI->getParent()->end(); ++It) { 7125 SelectInst *I = dyn_cast<SelectInst>(&*It); 7126 if (I && SI->getCondition() == I->getCondition()) { 7127 ASI.push_back(I); 7128 } else { 7129 break; 7130 } 7131 } 7132 7133 SelectInst *LastSI = ASI.back(); 7134 // Increment the current iterator to skip all the rest of select instructions 7135 // because they will be either "not lowered" or "all lowered" to branch. 7136 CurInstIterator = std::next(LastSI->getIterator()); 7137 // Examine debug-info attached to the consecutive select instructions. They 7138 // won't be individually optimised by optimizeInst, so we need to perform 7139 // DbgVariableRecord maintenence here instead. 7140 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 7141 fixupDbgVariableRecordsOnInst(*SI); 7142 7143 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 7144 7145 // Can we convert the 'select' to CF ? 7146 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 7147 return false; 7148 7149 TargetLowering::SelectSupportKind SelectKind; 7150 if (SI->getType()->isVectorTy()) 7151 SelectKind = TargetLowering::ScalarCondVectorVal; 7152 else 7153 SelectKind = TargetLowering::ScalarValSelect; 7154 7155 if (TLI->isSelectSupported(SelectKind) && 7156 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 7157 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 7158 return false; 7159 7160 // The DominatorTree needs to be rebuilt by any consumers after this 7161 // transformation. We simply reset here rather than setting the ModifiedDT 7162 // flag to avoid restarting the function walk in runOnFunction for each 7163 // select optimized. 7164 DT.reset(); 7165 7166 // Transform a sequence like this: 7167 // start: 7168 // %cmp = cmp uge i32 %a, %b 7169 // %sel = select i1 %cmp, i32 %c, i32 %d 7170 // 7171 // Into: 7172 // start: 7173 // %cmp = cmp uge i32 %a, %b 7174 // %cmp.frozen = freeze %cmp 7175 // br i1 %cmp.frozen, label %select.true, label %select.false 7176 // select.true: 7177 // br label %select.end 7178 // select.false: 7179 // br label %select.end 7180 // select.end: 7181 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7182 // 7183 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7184 // In addition, we may sink instructions that produce %c or %d from 7185 // the entry block into the destination(s) of the new branch. 7186 // If the true or false blocks do not contain a sunken instruction, that 7187 // block and its branch may be optimized away. In that case, one side of the 7188 // first branch will point directly to select.end, and the corresponding PHI 7189 // predecessor block will be the start block. 7190 7191 // Collect values that go on the true side and the values that go on the false 7192 // side. 7193 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7194 for (SelectInst *SI : ASI) { 7195 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7196 TrueInstrs.push_back(cast<Instruction>(V)); 7197 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7198 FalseInstrs.push_back(cast<Instruction>(V)); 7199 } 7200 7201 // Split the select block, according to how many (if any) values go on each 7202 // side. 7203 BasicBlock *StartBlock = SI->getParent(); 7204 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7205 // We should split before any debug-info. 7206 SplitPt.setHeadBit(true); 7207 7208 IRBuilder<> IB(SI); 7209 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7210 7211 BasicBlock *TrueBlock = nullptr; 7212 BasicBlock *FalseBlock = nullptr; 7213 BasicBlock *EndBlock = nullptr; 7214 BranchInst *TrueBranch = nullptr; 7215 BranchInst *FalseBranch = nullptr; 7216 if (TrueInstrs.size() == 0) { 7217 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7218 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7219 FalseBlock = FalseBranch->getParent(); 7220 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7221 } else if (FalseInstrs.size() == 0) { 7222 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7223 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7224 TrueBlock = TrueBranch->getParent(); 7225 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7226 } else { 7227 Instruction *ThenTerm = nullptr; 7228 Instruction *ElseTerm = nullptr; 7229 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7230 nullptr, nullptr, LI); 7231 TrueBranch = cast<BranchInst>(ThenTerm); 7232 FalseBranch = cast<BranchInst>(ElseTerm); 7233 TrueBlock = TrueBranch->getParent(); 7234 FalseBlock = FalseBranch->getParent(); 7235 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7236 } 7237 7238 EndBlock->setName("select.end"); 7239 if (TrueBlock) 7240 TrueBlock->setName("select.true.sink"); 7241 if (FalseBlock) 7242 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7243 : "select.false.sink"); 7244 7245 if (IsHugeFunc) { 7246 if (TrueBlock) 7247 FreshBBs.insert(TrueBlock); 7248 if (FalseBlock) 7249 FreshBBs.insert(FalseBlock); 7250 FreshBBs.insert(EndBlock); 7251 } 7252 7253 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7254 7255 static const unsigned MD[] = { 7256 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7257 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7258 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7259 7260 // Sink expensive instructions into the conditional blocks to avoid executing 7261 // them speculatively. 7262 for (Instruction *I : TrueInstrs) 7263 I->moveBefore(TrueBranch); 7264 for (Instruction *I : FalseInstrs) 7265 I->moveBefore(FalseBranch); 7266 7267 // If we did not create a new block for one of the 'true' or 'false' paths 7268 // of the condition, it means that side of the branch goes to the end block 7269 // directly and the path originates from the start block from the point of 7270 // view of the new PHI. 7271 if (TrueBlock == nullptr) 7272 TrueBlock = StartBlock; 7273 else if (FalseBlock == nullptr) 7274 FalseBlock = StartBlock; 7275 7276 SmallPtrSet<const Instruction *, 2> INS; 7277 INS.insert(ASI.begin(), ASI.end()); 7278 // Use reverse iterator because later select may use the value of the 7279 // earlier select, and we need to propagate value through earlier select 7280 // to get the PHI operand. 7281 for (SelectInst *SI : llvm::reverse(ASI)) { 7282 // The select itself is replaced with a PHI Node. 7283 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7284 PN->insertBefore(EndBlock->begin()); 7285 PN->takeName(SI); 7286 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7287 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7288 PN->setDebugLoc(SI->getDebugLoc()); 7289 7290 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7291 SI->eraseFromParent(); 7292 INS.erase(SI); 7293 ++NumSelectsExpanded; 7294 } 7295 7296 // Instruct OptimizeBlock to skip to the next block. 7297 CurInstIterator = StartBlock->end(); 7298 return true; 7299 } 7300 7301 /// Some targets only accept certain types for splat inputs. For example a VDUP 7302 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7303 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7304 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7305 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7306 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7307 m_Undef(), m_ZeroMask()))) 7308 return false; 7309 Type *NewType = TLI->shouldConvertSplatType(SVI); 7310 if (!NewType) 7311 return false; 7312 7313 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7314 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7315 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7316 "Expected a type of the same size!"); 7317 auto *NewVecType = 7318 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7319 7320 // Create a bitcast (shuffle (insert (bitcast(..)))) 7321 IRBuilder<> Builder(SVI->getContext()); 7322 Builder.SetInsertPoint(SVI); 7323 Value *BC1 = Builder.CreateBitCast( 7324 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7325 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7326 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7327 7328 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7329 RecursivelyDeleteTriviallyDeadInstructions( 7330 SVI, TLInfo, nullptr, 7331 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7332 7333 // Also hoist the bitcast up to its operand if it they are not in the same 7334 // block. 7335 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7336 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7337 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7338 !Op->isTerminator() && !Op->isEHPad()) 7339 BCI->moveAfter(Op); 7340 7341 return true; 7342 } 7343 7344 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7345 // If the operands of I can be folded into a target instruction together with 7346 // I, duplicate and sink them. 7347 SmallVector<Use *, 4> OpsToSink; 7348 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7349 return false; 7350 7351 // OpsToSink can contain multiple uses in a use chain (e.g. 7352 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7353 // uses must come first, so we process the ops in reverse order so as to not 7354 // create invalid IR. 7355 BasicBlock *TargetBB = I->getParent(); 7356 bool Changed = false; 7357 SmallVector<Use *, 4> ToReplace; 7358 Instruction *InsertPoint = I; 7359 DenseMap<const Instruction *, unsigned long> InstOrdering; 7360 unsigned long InstNumber = 0; 7361 for (const auto &I : *TargetBB) 7362 InstOrdering[&I] = InstNumber++; 7363 7364 for (Use *U : reverse(OpsToSink)) { 7365 auto *UI = cast<Instruction>(U->get()); 7366 if (isa<PHINode>(UI)) 7367 continue; 7368 if (UI->getParent() == TargetBB) { 7369 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7370 InsertPoint = UI; 7371 continue; 7372 } 7373 ToReplace.push_back(U); 7374 } 7375 7376 SetVector<Instruction *> MaybeDead; 7377 DenseMap<Instruction *, Instruction *> NewInstructions; 7378 for (Use *U : ToReplace) { 7379 auto *UI = cast<Instruction>(U->get()); 7380 Instruction *NI = UI->clone(); 7381 7382 if (IsHugeFunc) { 7383 // Now we clone an instruction, its operands' defs may sink to this BB 7384 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7385 for (unsigned I = 0; I < NI->getNumOperands(); ++I) { 7386 auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I)); 7387 if (!OpDef) 7388 continue; 7389 FreshBBs.insert(OpDef->getParent()); 7390 } 7391 } 7392 7393 NewInstructions[UI] = NI; 7394 MaybeDead.insert(UI); 7395 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7396 NI->insertBefore(InsertPoint); 7397 InsertPoint = NI; 7398 InsertedInsts.insert(NI); 7399 7400 // Update the use for the new instruction, making sure that we update the 7401 // sunk instruction uses, if it is part of a chain that has already been 7402 // sunk. 7403 Instruction *OldI = cast<Instruction>(U->getUser()); 7404 if (NewInstructions.count(OldI)) 7405 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7406 else 7407 U->set(NI); 7408 Changed = true; 7409 } 7410 7411 // Remove instructions that are dead after sinking. 7412 for (auto *I : MaybeDead) { 7413 if (!I->hasNUsesOrMore(1)) { 7414 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7415 I->eraseFromParent(); 7416 } 7417 } 7418 7419 return Changed; 7420 } 7421 7422 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7423 Value *Cond = SI->getCondition(); 7424 Type *OldType = Cond->getType(); 7425 LLVMContext &Context = Cond->getContext(); 7426 EVT OldVT = TLI->getValueType(*DL, OldType); 7427 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7428 unsigned RegWidth = RegType.getSizeInBits(); 7429 7430 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7431 return false; 7432 7433 // If the register width is greater than the type width, expand the condition 7434 // of the switch instruction and each case constant to the width of the 7435 // register. By widening the type of the switch condition, subsequent 7436 // comparisons (for case comparisons) will not need to be extended to the 7437 // preferred register width, so we will potentially eliminate N-1 extends, 7438 // where N is the number of cases in the switch. 7439 auto *NewType = Type::getIntNTy(Context, RegWidth); 7440 7441 // Extend the switch condition and case constants using the target preferred 7442 // extend unless the switch condition is a function argument with an extend 7443 // attribute. In that case, we can avoid an unnecessary mask/extension by 7444 // matching the argument extension instead. 7445 Instruction::CastOps ExtType = Instruction::ZExt; 7446 // Some targets prefer SExt over ZExt. 7447 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7448 ExtType = Instruction::SExt; 7449 7450 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7451 if (Arg->hasSExtAttr()) 7452 ExtType = Instruction::SExt; 7453 if (Arg->hasZExtAttr()) 7454 ExtType = Instruction::ZExt; 7455 } 7456 7457 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7458 ExtInst->insertBefore(SI); 7459 ExtInst->setDebugLoc(SI->getDebugLoc()); 7460 SI->setCondition(ExtInst); 7461 for (auto Case : SI->cases()) { 7462 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7463 APInt WideConst = (ExtType == Instruction::ZExt) 7464 ? NarrowConst.zext(RegWidth) 7465 : NarrowConst.sext(RegWidth); 7466 Case.setValue(ConstantInt::get(Context, WideConst)); 7467 } 7468 7469 return true; 7470 } 7471 7472 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7473 // The SCCP optimization tends to produce code like this: 7474 // switch(x) { case 42: phi(42, ...) } 7475 // Materializing the constant for the phi-argument needs instructions; So we 7476 // change the code to: 7477 // switch(x) { case 42: phi(x, ...) } 7478 7479 Value *Condition = SI->getCondition(); 7480 // Avoid endless loop in degenerate case. 7481 if (isa<ConstantInt>(*Condition)) 7482 return false; 7483 7484 bool Changed = false; 7485 BasicBlock *SwitchBB = SI->getParent(); 7486 Type *ConditionType = Condition->getType(); 7487 7488 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7489 ConstantInt *CaseValue = Case.getCaseValue(); 7490 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7491 // Set to true if we previously checked that `CaseBB` is only reached by 7492 // a single case from this switch. 7493 bool CheckedForSinglePred = false; 7494 for (PHINode &PHI : CaseBB->phis()) { 7495 Type *PHIType = PHI.getType(); 7496 // If ZExt is free then we can also catch patterns like this: 7497 // switch((i32)x) { case 42: phi((i64)42, ...); } 7498 // and replace `(i64)42` with `zext i32 %x to i64`. 7499 bool TryZExt = 7500 PHIType->isIntegerTy() && 7501 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7502 TLI->isZExtFree(ConditionType, PHIType); 7503 if (PHIType == ConditionType || TryZExt) { 7504 // Set to true to skip this case because of multiple preds. 7505 bool SkipCase = false; 7506 Value *Replacement = nullptr; 7507 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7508 Value *PHIValue = PHI.getIncomingValue(I); 7509 if (PHIValue != CaseValue) { 7510 if (!TryZExt) 7511 continue; 7512 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7513 if (!PHIValueInt || 7514 PHIValueInt->getValue() != 7515 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7516 continue; 7517 } 7518 if (PHI.getIncomingBlock(I) != SwitchBB) 7519 continue; 7520 // We cannot optimize if there are multiple case labels jumping to 7521 // this block. This check may get expensive when there are many 7522 // case labels so we test for it last. 7523 if (!CheckedForSinglePred) { 7524 CheckedForSinglePred = true; 7525 if (SI->findCaseDest(CaseBB) == nullptr) { 7526 SkipCase = true; 7527 break; 7528 } 7529 } 7530 7531 if (Replacement == nullptr) { 7532 if (PHIValue == CaseValue) { 7533 Replacement = Condition; 7534 } else { 7535 IRBuilder<> Builder(SI); 7536 Replacement = Builder.CreateZExt(Condition, PHIType); 7537 } 7538 } 7539 PHI.setIncomingValue(I, Replacement); 7540 Changed = true; 7541 } 7542 if (SkipCase) 7543 break; 7544 } 7545 } 7546 } 7547 return Changed; 7548 } 7549 7550 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7551 bool Changed = optimizeSwitchType(SI); 7552 Changed |= optimizeSwitchPhiConstants(SI); 7553 return Changed; 7554 } 7555 7556 namespace { 7557 7558 /// Helper class to promote a scalar operation to a vector one. 7559 /// This class is used to move downward extractelement transition. 7560 /// E.g., 7561 /// a = vector_op <2 x i32> 7562 /// b = extractelement <2 x i32> a, i32 0 7563 /// c = scalar_op b 7564 /// store c 7565 /// 7566 /// => 7567 /// a = vector_op <2 x i32> 7568 /// c = vector_op a (equivalent to scalar_op on the related lane) 7569 /// * d = extractelement <2 x i32> c, i32 0 7570 /// * store d 7571 /// Assuming both extractelement and store can be combine, we get rid of the 7572 /// transition. 7573 class VectorPromoteHelper { 7574 /// DataLayout associated with the current module. 7575 const DataLayout &DL; 7576 7577 /// Used to perform some checks on the legality of vector operations. 7578 const TargetLowering &TLI; 7579 7580 /// Used to estimated the cost of the promoted chain. 7581 const TargetTransformInfo &TTI; 7582 7583 /// The transition being moved downwards. 7584 Instruction *Transition; 7585 7586 /// The sequence of instructions to be promoted. 7587 SmallVector<Instruction *, 4> InstsToBePromoted; 7588 7589 /// Cost of combining a store and an extract. 7590 unsigned StoreExtractCombineCost; 7591 7592 /// Instruction that will be combined with the transition. 7593 Instruction *CombineInst = nullptr; 7594 7595 /// The instruction that represents the current end of the transition. 7596 /// Since we are faking the promotion until we reach the end of the chain 7597 /// of computation, we need a way to get the current end of the transition. 7598 Instruction *getEndOfTransition() const { 7599 if (InstsToBePromoted.empty()) 7600 return Transition; 7601 return InstsToBePromoted.back(); 7602 } 7603 7604 /// Return the index of the original value in the transition. 7605 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7606 /// c, is at index 0. 7607 unsigned getTransitionOriginalValueIdx() const { 7608 assert(isa<ExtractElementInst>(Transition) && 7609 "Other kind of transitions are not supported yet"); 7610 return 0; 7611 } 7612 7613 /// Return the index of the index in the transition. 7614 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7615 /// is at index 1. 7616 unsigned getTransitionIdx() const { 7617 assert(isa<ExtractElementInst>(Transition) && 7618 "Other kind of transitions are not supported yet"); 7619 return 1; 7620 } 7621 7622 /// Get the type of the transition. 7623 /// This is the type of the original value. 7624 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7625 /// transition is <2 x i32>. 7626 Type *getTransitionType() const { 7627 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7628 } 7629 7630 /// Promote \p ToBePromoted by moving \p Def downward through. 7631 /// I.e., we have the following sequence: 7632 /// Def = Transition <ty1> a to <ty2> 7633 /// b = ToBePromoted <ty2> Def, ... 7634 /// => 7635 /// b = ToBePromoted <ty1> a, ... 7636 /// Def = Transition <ty1> ToBePromoted to <ty2> 7637 void promoteImpl(Instruction *ToBePromoted); 7638 7639 /// Check whether or not it is profitable to promote all the 7640 /// instructions enqueued to be promoted. 7641 bool isProfitableToPromote() { 7642 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7643 unsigned Index = isa<ConstantInt>(ValIdx) 7644 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7645 : -1; 7646 Type *PromotedType = getTransitionType(); 7647 7648 StoreInst *ST = cast<StoreInst>(CombineInst); 7649 unsigned AS = ST->getPointerAddressSpace(); 7650 // Check if this store is supported. 7651 if (!TLI.allowsMisalignedMemoryAccesses( 7652 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7653 ST->getAlign())) { 7654 // If this is not supported, there is no way we can combine 7655 // the extract with the store. 7656 return false; 7657 } 7658 7659 // The scalar chain of computation has to pay for the transition 7660 // scalar to vector. 7661 // The vector chain has to account for the combining cost. 7662 enum TargetTransformInfo::TargetCostKind CostKind = 7663 TargetTransformInfo::TCK_RecipThroughput; 7664 InstructionCost ScalarCost = 7665 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7666 InstructionCost VectorCost = StoreExtractCombineCost; 7667 for (const auto &Inst : InstsToBePromoted) { 7668 // Compute the cost. 7669 // By construction, all instructions being promoted are arithmetic ones. 7670 // Moreover, one argument is a constant that can be viewed as a splat 7671 // constant. 7672 Value *Arg0 = Inst->getOperand(0); 7673 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7674 isa<ConstantFP>(Arg0); 7675 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7676 if (IsArg0Constant) 7677 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7678 else 7679 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7680 7681 ScalarCost += TTI.getArithmeticInstrCost( 7682 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7683 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7684 CostKind, Arg0Info, Arg1Info); 7685 } 7686 LLVM_DEBUG( 7687 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7688 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7689 return ScalarCost > VectorCost; 7690 } 7691 7692 /// Generate a constant vector with \p Val with the same 7693 /// number of elements as the transition. 7694 /// \p UseSplat defines whether or not \p Val should be replicated 7695 /// across the whole vector. 7696 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7697 /// otherwise we generate a vector with as many undef as possible: 7698 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7699 /// used at the index of the extract. 7700 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7701 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7702 if (!UseSplat) { 7703 // If we cannot determine where the constant must be, we have to 7704 // use a splat constant. 7705 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7706 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7707 ExtractIdx = CstVal->getSExtValue(); 7708 else 7709 UseSplat = true; 7710 } 7711 7712 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7713 if (UseSplat) 7714 return ConstantVector::getSplat(EC, Val); 7715 7716 if (!EC.isScalable()) { 7717 SmallVector<Constant *, 4> ConstVec; 7718 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7719 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7720 if (Idx == ExtractIdx) 7721 ConstVec.push_back(Val); 7722 else 7723 ConstVec.push_back(UndefVal); 7724 } 7725 return ConstantVector::get(ConstVec); 7726 } else 7727 llvm_unreachable( 7728 "Generate scalable vector for non-splat is unimplemented"); 7729 } 7730 7731 /// Check if promoting to a vector type an operand at \p OperandIdx 7732 /// in \p Use can trigger undefined behavior. 7733 static bool canCauseUndefinedBehavior(const Instruction *Use, 7734 unsigned OperandIdx) { 7735 // This is not safe to introduce undef when the operand is on 7736 // the right hand side of a division-like instruction. 7737 if (OperandIdx != 1) 7738 return false; 7739 switch (Use->getOpcode()) { 7740 default: 7741 return false; 7742 case Instruction::SDiv: 7743 case Instruction::UDiv: 7744 case Instruction::SRem: 7745 case Instruction::URem: 7746 return true; 7747 case Instruction::FDiv: 7748 case Instruction::FRem: 7749 return !Use->hasNoNaNs(); 7750 } 7751 llvm_unreachable(nullptr); 7752 } 7753 7754 public: 7755 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7756 const TargetTransformInfo &TTI, Instruction *Transition, 7757 unsigned CombineCost) 7758 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7759 StoreExtractCombineCost(CombineCost) { 7760 assert(Transition && "Do not know how to promote null"); 7761 } 7762 7763 /// Check if we can promote \p ToBePromoted to \p Type. 7764 bool canPromote(const Instruction *ToBePromoted) const { 7765 // We could support CastInst too. 7766 return isa<BinaryOperator>(ToBePromoted); 7767 } 7768 7769 /// Check if it is profitable to promote \p ToBePromoted 7770 /// by moving downward the transition through. 7771 bool shouldPromote(const Instruction *ToBePromoted) const { 7772 // Promote only if all the operands can be statically expanded. 7773 // Indeed, we do not want to introduce any new kind of transitions. 7774 for (const Use &U : ToBePromoted->operands()) { 7775 const Value *Val = U.get(); 7776 if (Val == getEndOfTransition()) { 7777 // If the use is a division and the transition is on the rhs, 7778 // we cannot promote the operation, otherwise we may create a 7779 // division by zero. 7780 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7781 return false; 7782 continue; 7783 } 7784 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7785 !isa<ConstantFP>(Val)) 7786 return false; 7787 } 7788 // Check that the resulting operation is legal. 7789 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7790 if (!ISDOpcode) 7791 return false; 7792 return StressStoreExtract || 7793 TLI.isOperationLegalOrCustom( 7794 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7795 } 7796 7797 /// Check whether or not \p Use can be combined 7798 /// with the transition. 7799 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7800 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7801 7802 /// Record \p ToBePromoted as part of the chain to be promoted. 7803 void enqueueForPromotion(Instruction *ToBePromoted) { 7804 InstsToBePromoted.push_back(ToBePromoted); 7805 } 7806 7807 /// Set the instruction that will be combined with the transition. 7808 void recordCombineInstruction(Instruction *ToBeCombined) { 7809 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7810 CombineInst = ToBeCombined; 7811 } 7812 7813 /// Promote all the instructions enqueued for promotion if it is 7814 /// is profitable. 7815 /// \return True if the promotion happened, false otherwise. 7816 bool promote() { 7817 // Check if there is something to promote. 7818 // Right now, if we do not have anything to combine with, 7819 // we assume the promotion is not profitable. 7820 if (InstsToBePromoted.empty() || !CombineInst) 7821 return false; 7822 7823 // Check cost. 7824 if (!StressStoreExtract && !isProfitableToPromote()) 7825 return false; 7826 7827 // Promote. 7828 for (auto &ToBePromoted : InstsToBePromoted) 7829 promoteImpl(ToBePromoted); 7830 InstsToBePromoted.clear(); 7831 return true; 7832 } 7833 }; 7834 7835 } // end anonymous namespace 7836 7837 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7838 // At this point, we know that all the operands of ToBePromoted but Def 7839 // can be statically promoted. 7840 // For Def, we need to use its parameter in ToBePromoted: 7841 // b = ToBePromoted ty1 a 7842 // Def = Transition ty1 b to ty2 7843 // Move the transition down. 7844 // 1. Replace all uses of the promoted operation by the transition. 7845 // = ... b => = ... Def. 7846 assert(ToBePromoted->getType() == Transition->getType() && 7847 "The type of the result of the transition does not match " 7848 "the final type"); 7849 ToBePromoted->replaceAllUsesWith(Transition); 7850 // 2. Update the type of the uses. 7851 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7852 Type *TransitionTy = getTransitionType(); 7853 ToBePromoted->mutateType(TransitionTy); 7854 // 3. Update all the operands of the promoted operation with promoted 7855 // operands. 7856 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7857 for (Use &U : ToBePromoted->operands()) { 7858 Value *Val = U.get(); 7859 Value *NewVal = nullptr; 7860 if (Val == Transition) 7861 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7862 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7863 isa<ConstantFP>(Val)) { 7864 // Use a splat constant if it is not safe to use undef. 7865 NewVal = getConstantVector( 7866 cast<Constant>(Val), 7867 isa<UndefValue>(Val) || 7868 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7869 } else 7870 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7871 "this?"); 7872 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7873 } 7874 Transition->moveAfter(ToBePromoted); 7875 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7876 } 7877 7878 /// Some targets can do store(extractelement) with one instruction. 7879 /// Try to push the extractelement towards the stores when the target 7880 /// has this feature and this is profitable. 7881 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7882 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7883 if (DisableStoreExtract || 7884 (!StressStoreExtract && 7885 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7886 Inst->getOperand(1), CombineCost))) 7887 return false; 7888 7889 // At this point we know that Inst is a vector to scalar transition. 7890 // Try to move it down the def-use chain, until: 7891 // - We can combine the transition with its single use 7892 // => we got rid of the transition. 7893 // - We escape the current basic block 7894 // => we would need to check that we are moving it at a cheaper place and 7895 // we do not do that for now. 7896 BasicBlock *Parent = Inst->getParent(); 7897 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7898 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7899 // If the transition has more than one use, assume this is not going to be 7900 // beneficial. 7901 while (Inst->hasOneUse()) { 7902 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7903 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7904 7905 if (ToBePromoted->getParent() != Parent) { 7906 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7907 << ToBePromoted->getParent()->getName() 7908 << ") than the transition (" << Parent->getName() 7909 << ").\n"); 7910 return false; 7911 } 7912 7913 if (VPH.canCombine(ToBePromoted)) { 7914 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7915 << "will be combined with: " << *ToBePromoted << '\n'); 7916 VPH.recordCombineInstruction(ToBePromoted); 7917 bool Changed = VPH.promote(); 7918 NumStoreExtractExposed += Changed; 7919 return Changed; 7920 } 7921 7922 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7923 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7924 return false; 7925 7926 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7927 7928 VPH.enqueueForPromotion(ToBePromoted); 7929 Inst = ToBePromoted; 7930 } 7931 return false; 7932 } 7933 7934 /// For the instruction sequence of store below, F and I values 7935 /// are bundled together as an i64 value before being stored into memory. 7936 /// Sometimes it is more efficient to generate separate stores for F and I, 7937 /// which can remove the bitwise instructions or sink them to colder places. 7938 /// 7939 /// (store (or (zext (bitcast F to i32) to i64), 7940 /// (shl (zext I to i64), 32)), addr) --> 7941 /// (store F, addr) and (store I, addr+4) 7942 /// 7943 /// Similarly, splitting for other merged store can also be beneficial, like: 7944 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7945 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7946 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7947 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7948 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7949 /// 7950 /// We allow each target to determine specifically which kind of splitting is 7951 /// supported. 7952 /// 7953 /// The store patterns are commonly seen from the simple code snippet below 7954 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7955 /// void goo(const std::pair<int, float> &); 7956 /// hoo() { 7957 /// ... 7958 /// goo(std::make_pair(tmp, ftmp)); 7959 /// ... 7960 /// } 7961 /// 7962 /// Although we already have similar splitting in DAG Combine, we duplicate 7963 /// it in CodeGenPrepare to catch the case in which pattern is across 7964 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7965 /// during code expansion. 7966 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7967 const TargetLowering &TLI) { 7968 // Handle simple but common cases only. 7969 Type *StoreType = SI.getValueOperand()->getType(); 7970 7971 // The code below assumes shifting a value by <number of bits>, 7972 // whereas scalable vectors would have to be shifted by 7973 // <2log(vscale) + number of bits> in order to store the 7974 // low/high parts. Bailing out for now. 7975 if (StoreType->isScalableTy()) 7976 return false; 7977 7978 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7979 DL.getTypeSizeInBits(StoreType) == 0) 7980 return false; 7981 7982 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7983 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7984 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7985 return false; 7986 7987 // Don't split the store if it is volatile. 7988 if (SI.isVolatile()) 7989 return false; 7990 7991 // Match the following patterns: 7992 // (store (or (zext LValue to i64), 7993 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7994 // or 7995 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7996 // (zext LValue to i64), 7997 // Expect both operands of OR and the first operand of SHL have only 7998 // one use. 7999 Value *LValue, *HValue; 8000 if (!match(SI.getValueOperand(), 8001 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 8002 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 8003 m_SpecificInt(HalfValBitSize)))))) 8004 return false; 8005 8006 // Check LValue and HValue are int with size less or equal than 32. 8007 if (!LValue->getType()->isIntegerTy() || 8008 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 8009 !HValue->getType()->isIntegerTy() || 8010 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 8011 return false; 8012 8013 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 8014 // as the input of target query. 8015 auto *LBC = dyn_cast<BitCastInst>(LValue); 8016 auto *HBC = dyn_cast<BitCastInst>(HValue); 8017 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 8018 : EVT::getEVT(LValue->getType()); 8019 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 8020 : EVT::getEVT(HValue->getType()); 8021 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 8022 return false; 8023 8024 // Start to split store. 8025 IRBuilder<> Builder(SI.getContext()); 8026 Builder.SetInsertPoint(&SI); 8027 8028 // If LValue/HValue is a bitcast in another BB, create a new one in current 8029 // BB so it may be merged with the splitted stores by dag combiner. 8030 if (LBC && LBC->getParent() != SI.getParent()) 8031 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 8032 if (HBC && HBC->getParent() != SI.getParent()) 8033 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 8034 8035 bool IsLE = SI.getDataLayout().isLittleEndian(); 8036 auto CreateSplitStore = [&](Value *V, bool Upper) { 8037 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 8038 Value *Addr = SI.getPointerOperand(); 8039 Align Alignment = SI.getAlign(); 8040 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 8041 if (IsOffsetStore) { 8042 Addr = Builder.CreateGEP( 8043 SplitStoreType, Addr, 8044 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 8045 8046 // When splitting the store in half, naturally one half will retain the 8047 // alignment of the original wider store, regardless of whether it was 8048 // over-aligned or not, while the other will require adjustment. 8049 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 8050 } 8051 Builder.CreateAlignedStore(V, Addr, Alignment); 8052 }; 8053 8054 CreateSplitStore(LValue, false); 8055 CreateSplitStore(HValue, true); 8056 8057 // Delete the old store. 8058 SI.eraseFromParent(); 8059 return true; 8060 } 8061 8062 // Return true if the GEP has two operands, the first operand is of a sequential 8063 // type, and the second operand is a constant. 8064 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 8065 gep_type_iterator I = gep_type_begin(*GEP); 8066 return GEP->getNumOperands() == 2 && I.isSequential() && 8067 isa<ConstantInt>(GEP->getOperand(1)); 8068 } 8069 8070 // Try unmerging GEPs to reduce liveness interference (register pressure) across 8071 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 8072 // reducing liveness interference across those edges benefits global register 8073 // allocation. Currently handles only certain cases. 8074 // 8075 // For example, unmerge %GEPI and %UGEPI as below. 8076 // 8077 // ---------- BEFORE ---------- 8078 // SrcBlock: 8079 // ... 8080 // %GEPIOp = ... 8081 // ... 8082 // %GEPI = gep %GEPIOp, Idx 8083 // ... 8084 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 8085 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 8086 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 8087 // %UGEPI) 8088 // 8089 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 8090 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 8091 // ... 8092 // 8093 // DstBi: 8094 // ... 8095 // %UGEPI = gep %GEPIOp, UIdx 8096 // ... 8097 // --------------------------- 8098 // 8099 // ---------- AFTER ---------- 8100 // SrcBlock: 8101 // ... (same as above) 8102 // (* %GEPI is still alive on the indirectbr edges) 8103 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 8104 // unmerging) 8105 // ... 8106 // 8107 // DstBi: 8108 // ... 8109 // %UGEPI = gep %GEPI, (UIdx-Idx) 8110 // ... 8111 // --------------------------- 8112 // 8113 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 8114 // no longer alive on them. 8115 // 8116 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 8117 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 8118 // not to disable further simplications and optimizations as a result of GEP 8119 // merging. 8120 // 8121 // Note this unmerging may increase the length of the data flow critical path 8122 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 8123 // between the register pressure and the length of data-flow critical 8124 // path. Restricting this to the uncommon IndirectBr case would minimize the 8125 // impact of potentially longer critical path, if any, and the impact on compile 8126 // time. 8127 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 8128 const TargetTransformInfo *TTI) { 8129 BasicBlock *SrcBlock = GEPI->getParent(); 8130 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 8131 // (non-IndirectBr) cases exit early here. 8132 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 8133 return false; 8134 // Check that GEPI is a simple gep with a single constant index. 8135 if (!GEPSequentialConstIndexed(GEPI)) 8136 return false; 8137 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 8138 // Check that GEPI is a cheap one. 8139 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 8140 TargetTransformInfo::TCK_SizeAndLatency) > 8141 TargetTransformInfo::TCC_Basic) 8142 return false; 8143 Value *GEPIOp = GEPI->getOperand(0); 8144 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 8145 if (!isa<Instruction>(GEPIOp)) 8146 return false; 8147 auto *GEPIOpI = cast<Instruction>(GEPIOp); 8148 if (GEPIOpI->getParent() != SrcBlock) 8149 return false; 8150 // Check that GEP is used outside the block, meaning it's alive on the 8151 // IndirectBr edge(s). 8152 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 8153 if (auto *I = dyn_cast<Instruction>(Usr)) { 8154 if (I->getParent() != SrcBlock) { 8155 return true; 8156 } 8157 } 8158 return false; 8159 })) 8160 return false; 8161 // The second elements of the GEP chains to be unmerged. 8162 std::vector<GetElementPtrInst *> UGEPIs; 8163 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8164 // on IndirectBr edges. 8165 for (User *Usr : GEPIOp->users()) { 8166 if (Usr == GEPI) 8167 continue; 8168 // Check if Usr is an Instruction. If not, give up. 8169 if (!isa<Instruction>(Usr)) 8170 return false; 8171 auto *UI = cast<Instruction>(Usr); 8172 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8173 if (UI->getParent() == SrcBlock) 8174 continue; 8175 // Check if Usr is a GEP. If not, give up. 8176 if (!isa<GetElementPtrInst>(Usr)) 8177 return false; 8178 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8179 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8180 // the pointer operand to it. If so, record it in the vector. If not, give 8181 // up. 8182 if (!GEPSequentialConstIndexed(UGEPI)) 8183 return false; 8184 if (UGEPI->getOperand(0) != GEPIOp) 8185 return false; 8186 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8187 return false; 8188 if (GEPIIdx->getType() != 8189 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8190 return false; 8191 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8192 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8193 TargetTransformInfo::TCK_SizeAndLatency) > 8194 TargetTransformInfo::TCC_Basic) 8195 return false; 8196 UGEPIs.push_back(UGEPI); 8197 } 8198 if (UGEPIs.size() == 0) 8199 return false; 8200 // Check the materializing cost of (Uidx-Idx). 8201 for (GetElementPtrInst *UGEPI : UGEPIs) { 8202 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8203 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8204 InstructionCost ImmCost = TTI->getIntImmCost( 8205 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8206 if (ImmCost > TargetTransformInfo::TCC_Basic) 8207 return false; 8208 } 8209 // Now unmerge between GEPI and UGEPIs. 8210 for (GetElementPtrInst *UGEPI : UGEPIs) { 8211 UGEPI->setOperand(0, GEPI); 8212 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8213 Constant *NewUGEPIIdx = ConstantInt::get( 8214 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8215 UGEPI->setOperand(1, NewUGEPIIdx); 8216 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8217 // inbounds to avoid UB. 8218 if (!GEPI->isInBounds()) { 8219 UGEPI->setIsInBounds(false); 8220 } 8221 } 8222 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8223 // alive on IndirectBr edges). 8224 assert(llvm::none_of(GEPIOp->users(), 8225 [&](User *Usr) { 8226 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8227 }) && 8228 "GEPIOp is used outside SrcBlock"); 8229 return true; 8230 } 8231 8232 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8233 SmallSet<BasicBlock *, 32> &FreshBBs, 8234 bool IsHugeFunc) { 8235 // Try and convert 8236 // %c = icmp ult %x, 8 8237 // br %c, bla, blb 8238 // %tc = lshr %x, 3 8239 // to 8240 // %tc = lshr %x, 3 8241 // %c = icmp eq %tc, 0 8242 // br %c, bla, blb 8243 // Creating the cmp to zero can be better for the backend, especially if the 8244 // lshr produces flags that can be used automatically. 8245 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8246 return false; 8247 8248 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8249 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8250 return false; 8251 8252 Value *X = Cmp->getOperand(0); 8253 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8254 8255 for (auto *U : X->users()) { 8256 Instruction *UI = dyn_cast<Instruction>(U); 8257 // A quick dominance check 8258 if (!UI || 8259 (UI->getParent() != Branch->getParent() && 8260 UI->getParent() != Branch->getSuccessor(0) && 8261 UI->getParent() != Branch->getSuccessor(1)) || 8262 (UI->getParent() != Branch->getParent() && 8263 !UI->getParent()->getSinglePredecessor())) 8264 continue; 8265 8266 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8267 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8268 IRBuilder<> Builder(Branch); 8269 if (UI->getParent() != Branch->getParent()) 8270 UI->moveBefore(Branch); 8271 UI->dropPoisonGeneratingFlags(); 8272 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8273 ConstantInt::get(UI->getType(), 0)); 8274 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8275 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8276 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8277 return true; 8278 } 8279 if (Cmp->isEquality() && 8280 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8281 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8282 IRBuilder<> Builder(Branch); 8283 if (UI->getParent() != Branch->getParent()) 8284 UI->moveBefore(Branch); 8285 UI->dropPoisonGeneratingFlags(); 8286 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8287 ConstantInt::get(UI->getType(), 0)); 8288 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8289 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8290 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8291 return true; 8292 } 8293 } 8294 return false; 8295 } 8296 8297 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8298 bool AnyChange = false; 8299 AnyChange = fixupDbgVariableRecordsOnInst(*I); 8300 8301 // Bail out if we inserted the instruction to prevent optimizations from 8302 // stepping on each other's toes. 8303 if (InsertedInsts.count(I)) 8304 return AnyChange; 8305 8306 // TODO: Move into the switch on opcode below here. 8307 if (PHINode *P = dyn_cast<PHINode>(I)) { 8308 // It is possible for very late stage optimizations (such as SimplifyCFG) 8309 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8310 // trivial PHI, go ahead and zap it here. 8311 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8312 LargeOffsetGEPMap.erase(P); 8313 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8314 P->eraseFromParent(); 8315 ++NumPHIsElim; 8316 return true; 8317 } 8318 return AnyChange; 8319 } 8320 8321 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8322 // If the source of the cast is a constant, then this should have 8323 // already been constant folded. The only reason NOT to constant fold 8324 // it is if something (e.g. LSR) was careful to place the constant 8325 // evaluation in a block other than then one that uses it (e.g. to hoist 8326 // the address of globals out of a loop). If this is the case, we don't 8327 // want to forward-subst the cast. 8328 if (isa<Constant>(CI->getOperand(0))) 8329 return AnyChange; 8330 8331 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8332 return true; 8333 8334 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || 8335 isa<TruncInst>(I)) && 8336 TLI->optimizeExtendOrTruncateConversion( 8337 I, LI->getLoopFor(I->getParent()), *TTI)) 8338 return true; 8339 8340 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8341 /// Sink a zext or sext into its user blocks if the target type doesn't 8342 /// fit in one register 8343 if (TLI->getTypeAction(CI->getContext(), 8344 TLI->getValueType(*DL, CI->getType())) == 8345 TargetLowering::TypeExpandInteger) { 8346 return SinkCast(CI); 8347 } else { 8348 if (TLI->optimizeExtendOrTruncateConversion( 8349 I, LI->getLoopFor(I->getParent()), *TTI)) 8350 return true; 8351 8352 bool MadeChange = optimizeExt(I); 8353 return MadeChange | optimizeExtUses(I); 8354 } 8355 } 8356 return AnyChange; 8357 } 8358 8359 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8360 if (optimizeCmp(Cmp, ModifiedDT)) 8361 return true; 8362 8363 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8364 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8365 bool Modified = optimizeLoadExt(LI); 8366 unsigned AS = LI->getPointerAddressSpace(); 8367 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8368 return Modified; 8369 } 8370 8371 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8372 if (splitMergedValStore(*SI, *DL, *TLI)) 8373 return true; 8374 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8375 unsigned AS = SI->getPointerAddressSpace(); 8376 return optimizeMemoryInst(I, SI->getOperand(1), 8377 SI->getOperand(0)->getType(), AS); 8378 } 8379 8380 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8381 unsigned AS = RMW->getPointerAddressSpace(); 8382 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8383 } 8384 8385 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8386 unsigned AS = CmpX->getPointerAddressSpace(); 8387 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8388 CmpX->getCompareOperand()->getType(), AS); 8389 } 8390 8391 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8392 8393 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8394 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8395 return true; 8396 8397 // TODO: Move this into the switch on opcode - it handles shifts already. 8398 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8399 BinOp->getOpcode() == Instruction::LShr)) { 8400 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8401 if (CI && TLI->hasExtractBitsInsn()) 8402 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8403 return true; 8404 } 8405 8406 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8407 if (GEPI->hasAllZeroIndices()) { 8408 /// The GEP operand must be a pointer, so must its result -> BitCast 8409 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8410 GEPI->getName(), GEPI->getIterator()); 8411 NC->setDebugLoc(GEPI->getDebugLoc()); 8412 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8413 RecursivelyDeleteTriviallyDeadInstructions( 8414 GEPI, TLInfo, nullptr, 8415 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8416 ++NumGEPsElim; 8417 optimizeInst(NC, ModifiedDT); 8418 return true; 8419 } 8420 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8421 return true; 8422 } 8423 } 8424 8425 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8426 // freeze(icmp a, const)) -> icmp (freeze a), const 8427 // This helps generate efficient conditional jumps. 8428 Instruction *CmpI = nullptr; 8429 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8430 CmpI = II; 8431 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8432 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8433 8434 if (CmpI && CmpI->hasOneUse()) { 8435 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8436 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8437 isa<ConstantPointerNull>(Op0); 8438 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8439 isa<ConstantPointerNull>(Op1); 8440 if (Const0 || Const1) { 8441 if (!Const0 || !Const1) { 8442 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); 8443 F->takeName(FI); 8444 CmpI->setOperand(Const0 ? 1 : 0, F); 8445 } 8446 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8447 FI->eraseFromParent(); 8448 return true; 8449 } 8450 } 8451 return AnyChange; 8452 } 8453 8454 if (tryToSinkFreeOperands(I)) 8455 return true; 8456 8457 switch (I->getOpcode()) { 8458 case Instruction::Shl: 8459 case Instruction::LShr: 8460 case Instruction::AShr: 8461 return optimizeShiftInst(cast<BinaryOperator>(I)); 8462 case Instruction::Call: 8463 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8464 case Instruction::Select: 8465 return optimizeSelectInst(cast<SelectInst>(I)); 8466 case Instruction::ShuffleVector: 8467 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8468 case Instruction::Switch: 8469 return optimizeSwitchInst(cast<SwitchInst>(I)); 8470 case Instruction::ExtractElement: 8471 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8472 case Instruction::Br: 8473 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8474 } 8475 8476 return AnyChange; 8477 } 8478 8479 /// Given an OR instruction, check to see if this is a bitreverse 8480 /// idiom. If so, insert the new intrinsic and return true. 8481 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8482 if (!I.getType()->isIntegerTy() || 8483 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8484 TLI->getValueType(*DL, I.getType(), true))) 8485 return false; 8486 8487 SmallVector<Instruction *, 4> Insts; 8488 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8489 return false; 8490 Instruction *LastInst = Insts.back(); 8491 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8492 RecursivelyDeleteTriviallyDeadInstructions( 8493 &I, TLInfo, nullptr, 8494 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8495 return true; 8496 } 8497 8498 // In this pass we look for GEP and cast instructions that are used 8499 // across basic blocks and rewrite them to improve basic-block-at-a-time 8500 // selection. 8501 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8502 SunkAddrs.clear(); 8503 bool MadeChange = false; 8504 8505 do { 8506 CurInstIterator = BB.begin(); 8507 ModifiedDT = ModifyDT::NotModifyDT; 8508 while (CurInstIterator != BB.end()) { 8509 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8510 if (ModifiedDT != ModifyDT::NotModifyDT) { 8511 // For huge function we tend to quickly go though the inner optmization 8512 // opportunities in the BB. So we go back to the BB head to re-optimize 8513 // each instruction instead of go back to the function head. 8514 if (IsHugeFunc) { 8515 DT.reset(); 8516 getDT(*BB.getParent()); 8517 break; 8518 } else { 8519 return true; 8520 } 8521 } 8522 } 8523 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8524 8525 bool MadeBitReverse = true; 8526 while (MadeBitReverse) { 8527 MadeBitReverse = false; 8528 for (auto &I : reverse(BB)) { 8529 if (makeBitReverse(I)) { 8530 MadeBitReverse = MadeChange = true; 8531 break; 8532 } 8533 } 8534 } 8535 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8536 8537 return MadeChange; 8538 } 8539 8540 // Some CGP optimizations may move or alter what's computed in a block. Check 8541 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8542 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8543 assert(isa<DbgValueInst>(I)); 8544 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8545 8546 // Does this dbg.value refer to a sunk address calculation? 8547 bool AnyChange = false; 8548 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8549 DVI.location_ops().end()); 8550 for (Value *Location : LocationOps) { 8551 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8552 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8553 if (SunkAddr) { 8554 // Point dbg.value at locally computed address, which should give the best 8555 // opportunity to be accurately lowered. This update may change the type 8556 // of pointer being referred to; however this makes no difference to 8557 // debugging information, and we can't generate bitcasts that may affect 8558 // codegen. 8559 DVI.replaceVariableLocationOp(Location, SunkAddr); 8560 AnyChange = true; 8561 } 8562 } 8563 return AnyChange; 8564 } 8565 8566 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { 8567 bool AnyChange = false; 8568 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 8569 AnyChange |= fixupDbgVariableRecord(DVR); 8570 return AnyChange; 8571 } 8572 8573 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8574 // which can cause a function to be reprocessed? 8575 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { 8576 if (DVR.Type != DbgVariableRecord::LocationType::Value && 8577 DVR.Type != DbgVariableRecord::LocationType::Assign) 8578 return false; 8579 8580 // Does this DbgVariableRecord refer to a sunk address calculation? 8581 bool AnyChange = false; 8582 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), 8583 DVR.location_ops().end()); 8584 for (Value *Location : LocationOps) { 8585 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8586 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8587 if (SunkAddr) { 8588 // Point dbg.value at locally computed address, which should give the best 8589 // opportunity to be accurately lowered. This update may change the type 8590 // of pointer being referred to; however this makes no difference to 8591 // debugging information, and we can't generate bitcasts that may affect 8592 // codegen. 8593 DVR.replaceVariableLocationOp(Location, SunkAddr); 8594 AnyChange = true; 8595 } 8596 } 8597 return AnyChange; 8598 } 8599 8600 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8601 DVI->removeFromParent(); 8602 if (isa<PHINode>(VI)) 8603 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8604 else 8605 DVI->insertAfter(VI); 8606 } 8607 8608 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { 8609 DVR->removeFromParent(); 8610 BasicBlock *VIBB = VI->getParent(); 8611 if (isa<PHINode>(VI)) 8612 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); 8613 else 8614 VIBB->insertDbgRecordAfter(DVR, VI); 8615 } 8616 8617 // A llvm.dbg.value may be using a value before its definition, due to 8618 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8619 // them by moving the dbg.value to immediately after the value definition. 8620 // FIXME: Ideally this should never be necessary, and this has the potential 8621 // to re-order dbg.value intrinsics. 8622 bool CodeGenPrepare::placeDbgValues(Function &F) { 8623 bool MadeChange = false; 8624 DominatorTree DT(F); 8625 8626 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8627 SmallVector<Instruction *, 4> VIs; 8628 for (Value *V : DbgItem->location_ops()) 8629 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8630 VIs.push_back(VI); 8631 8632 // This item may depend on multiple instructions, complicating any 8633 // potential sink. This block takes the defensive approach, opting to 8634 // "undef" the item if it has more than one instruction and any of them do 8635 // not dominate iem. 8636 for (Instruction *VI : VIs) { 8637 if (VI->isTerminator()) 8638 continue; 8639 8640 // If VI is a phi in a block with an EHPad terminator, we can't insert 8641 // after it. 8642 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8643 continue; 8644 8645 // If the defining instruction dominates the dbg.value, we do not need 8646 // to move the dbg.value. 8647 if (DT.dominates(VI, Position)) 8648 continue; 8649 8650 // If we depend on multiple instructions and any of them doesn't 8651 // dominate this DVI, we probably can't salvage it: moving it to 8652 // after any of the instructions could cause us to lose the others. 8653 if (VIs.size() > 1) { 8654 LLVM_DEBUG( 8655 dbgs() 8656 << "Unable to find valid location for Debug Value, undefing:\n" 8657 << *DbgItem); 8658 DbgItem->setKillLocation(); 8659 break; 8660 } 8661 8662 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8663 << *DbgItem << ' ' << *VI); 8664 DbgInserterHelper(DbgItem, VI); 8665 MadeChange = true; 8666 ++NumDbgValueMoved; 8667 } 8668 }; 8669 8670 for (BasicBlock &BB : F) { 8671 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8672 // Process dbg.value intrinsics. 8673 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8674 if (DVI) { 8675 DbgProcessor(DVI, DVI); 8676 continue; 8677 } 8678 8679 // If this isn't a dbg.value, process any attached DbgVariableRecord 8680 // records attached to this instruction. 8681 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 8682 filterDbgVars(Insn.getDbgRecordRange()))) { 8683 if (DVR.Type != DbgVariableRecord::LocationType::Value) 8684 continue; 8685 DbgProcessor(&DVR, &Insn); 8686 } 8687 } 8688 } 8689 8690 return MadeChange; 8691 } 8692 8693 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8694 // probes can be chained dependencies of other regular DAG nodes and block DAG 8695 // combine optimizations. 8696 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8697 bool MadeChange = false; 8698 for (auto &Block : F) { 8699 // Move the rest probes to the beginning of the block. 8700 auto FirstInst = Block.getFirstInsertionPt(); 8701 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8702 ++FirstInst; 8703 BasicBlock::iterator I(FirstInst); 8704 I++; 8705 while (I != Block.end()) { 8706 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8707 II->moveBefore(&*FirstInst); 8708 MadeChange = true; 8709 } 8710 } 8711 } 8712 return MadeChange; 8713 } 8714 8715 /// Scale down both weights to fit into uint32_t. 8716 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8717 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8718 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8719 NewTrue = NewTrue / Scale; 8720 NewFalse = NewFalse / Scale; 8721 } 8722 8723 /// Some targets prefer to split a conditional branch like: 8724 /// \code 8725 /// %0 = icmp ne i32 %a, 0 8726 /// %1 = icmp ne i32 %b, 0 8727 /// %or.cond = or i1 %0, %1 8728 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8729 /// \endcode 8730 /// into multiple branch instructions like: 8731 /// \code 8732 /// bb1: 8733 /// %0 = icmp ne i32 %a, 0 8734 /// br i1 %0, label %TrueBB, label %bb2 8735 /// bb2: 8736 /// %1 = icmp ne i32 %b, 0 8737 /// br i1 %1, label %TrueBB, label %FalseBB 8738 /// \endcode 8739 /// This usually allows instruction selection to do even further optimizations 8740 /// and combine the compare with the branch instruction. Currently this is 8741 /// applied for targets which have "cheap" jump instructions. 8742 /// 8743 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8744 /// 8745 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8746 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8747 return false; 8748 8749 bool MadeChange = false; 8750 for (auto &BB : F) { 8751 // Does this BB end with the following? 8752 // %cond1 = icmp|fcmp|binary instruction ... 8753 // %cond2 = icmp|fcmp|binary instruction ... 8754 // %cond.or = or|and i1 %cond1, cond2 8755 // br i1 %cond.or label %dest1, label %dest2" 8756 Instruction *LogicOp; 8757 BasicBlock *TBB, *FBB; 8758 if (!match(BB.getTerminator(), 8759 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8760 continue; 8761 8762 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8763 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8764 continue; 8765 8766 // The merging of mostly empty BB can cause a degenerate branch. 8767 if (TBB == FBB) 8768 continue; 8769 8770 unsigned Opc; 8771 Value *Cond1, *Cond2; 8772 if (match(LogicOp, 8773 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8774 Opc = Instruction::And; 8775 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8776 m_OneUse(m_Value(Cond2))))) 8777 Opc = Instruction::Or; 8778 else 8779 continue; 8780 8781 auto IsGoodCond = [](Value *Cond) { 8782 return match( 8783 Cond, 8784 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8785 m_LogicalOr(m_Value(), m_Value())))); 8786 }; 8787 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8788 continue; 8789 8790 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8791 8792 // Create a new BB. 8793 auto *TmpBB = 8794 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8795 BB.getParent(), BB.getNextNode()); 8796 if (IsHugeFunc) 8797 FreshBBs.insert(TmpBB); 8798 8799 // Update original basic block by using the first condition directly by the 8800 // branch instruction and removing the no longer needed and/or instruction. 8801 Br1->setCondition(Cond1); 8802 LogicOp->eraseFromParent(); 8803 8804 // Depending on the condition we have to either replace the true or the 8805 // false successor of the original branch instruction. 8806 if (Opc == Instruction::And) 8807 Br1->setSuccessor(0, TmpBB); 8808 else 8809 Br1->setSuccessor(1, TmpBB); 8810 8811 // Fill in the new basic block. 8812 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8813 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8814 I->removeFromParent(); 8815 I->insertBefore(Br2); 8816 } 8817 8818 // Update PHI nodes in both successors. The original BB needs to be 8819 // replaced in one successor's PHI nodes, because the branch comes now from 8820 // the newly generated BB (NewBB). In the other successor we need to add one 8821 // incoming edge to the PHI nodes, because both branch instructions target 8822 // now the same successor. Depending on the original branch condition 8823 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8824 // we perform the correct update for the PHI nodes. 8825 // This doesn't change the successor order of the just created branch 8826 // instruction (or any other instruction). 8827 if (Opc == Instruction::Or) 8828 std::swap(TBB, FBB); 8829 8830 // Replace the old BB with the new BB. 8831 TBB->replacePhiUsesWith(&BB, TmpBB); 8832 8833 // Add another incoming edge from the new BB. 8834 for (PHINode &PN : FBB->phis()) { 8835 auto *Val = PN.getIncomingValueForBlock(&BB); 8836 PN.addIncoming(Val, TmpBB); 8837 } 8838 8839 // Update the branch weights (from SelectionDAGBuilder:: 8840 // FindMergedConditions). 8841 if (Opc == Instruction::Or) { 8842 // Codegen X | Y as: 8843 // BB1: 8844 // jmp_if_X TBB 8845 // jmp TmpBB 8846 // TmpBB: 8847 // jmp_if_Y TBB 8848 // jmp FBB 8849 // 8850 8851 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8852 // The requirement is that 8853 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8854 // = TrueProb for original BB. 8855 // Assuming the original weights are A and B, one choice is to set BB1's 8856 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8857 // assumes that 8858 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8859 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8860 // TmpBB, but the math is more complicated. 8861 uint64_t TrueWeight, FalseWeight; 8862 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8863 uint64_t NewTrueWeight = TrueWeight; 8864 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8865 scaleWeights(NewTrueWeight, NewFalseWeight); 8866 Br1->setMetadata(LLVMContext::MD_prof, 8867 MDBuilder(Br1->getContext()) 8868 .createBranchWeights(TrueWeight, FalseWeight, 8869 hasBranchWeightOrigin(*Br1))); 8870 8871 NewTrueWeight = TrueWeight; 8872 NewFalseWeight = 2 * FalseWeight; 8873 scaleWeights(NewTrueWeight, NewFalseWeight); 8874 Br2->setMetadata(LLVMContext::MD_prof, 8875 MDBuilder(Br2->getContext()) 8876 .createBranchWeights(TrueWeight, FalseWeight)); 8877 } 8878 } else { 8879 // Codegen X & Y as: 8880 // BB1: 8881 // jmp_if_X TmpBB 8882 // jmp FBB 8883 // TmpBB: 8884 // jmp_if_Y TBB 8885 // jmp FBB 8886 // 8887 // This requires creation of TmpBB after CurBB. 8888 8889 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8890 // The requirement is that 8891 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8892 // = FalseProb for original BB. 8893 // Assuming the original weights are A and B, one choice is to set BB1's 8894 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8895 // assumes that 8896 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8897 uint64_t TrueWeight, FalseWeight; 8898 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8899 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8900 uint64_t NewFalseWeight = FalseWeight; 8901 scaleWeights(NewTrueWeight, NewFalseWeight); 8902 Br1->setMetadata(LLVMContext::MD_prof, 8903 MDBuilder(Br1->getContext()) 8904 .createBranchWeights(TrueWeight, FalseWeight)); 8905 8906 NewTrueWeight = 2 * TrueWeight; 8907 NewFalseWeight = FalseWeight; 8908 scaleWeights(NewTrueWeight, NewFalseWeight); 8909 Br2->setMetadata(LLVMContext::MD_prof, 8910 MDBuilder(Br2->getContext()) 8911 .createBranchWeights(TrueWeight, FalseWeight)); 8912 } 8913 } 8914 8915 ModifiedDT = ModifyDT::ModifyBBDT; 8916 MadeChange = true; 8917 8918 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8919 TmpBB->dump()); 8920 } 8921 return MadeChange; 8922 } 8923