xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 
104 #define DEBUG_TYPE "codegenprepare"
105 
106 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
107 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
108 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
110                       "sunken Cmps");
111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
112                        "of sunken Casts");
113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
114                           "computations were sunk");
115 STATISTIC(NumMemoryInstsPhiCreated,
116           "Number of phis created when address "
117           "computations were sunk to memory instructions");
118 STATISTIC(NumMemoryInstsSelectCreated,
119           "Number of select created when address "
120           "computations were sunk to memory instructions");
121 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
122 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
123 STATISTIC(NumAndsAdded,
124           "Number of and mask instructions added to form ext loads");
125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
126 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
130 
131 static cl::opt<bool> DisableBranchOpts(
132   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
133   cl::desc("Disable branch optimizations in CodeGenPrepare"));
134 
135 static cl::opt<bool>
136     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
137                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
138 
139 static cl::opt<bool> DisableSelectToBranch(
140   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
141   cl::desc("Disable select to branch conversion."));
142 
143 static cl::opt<bool> AddrSinkUsingGEPs(
144   "addr-sink-using-gep", cl::Hidden, cl::init(true),
145   cl::desc("Address sinking in CGP using GEPs."));
146 
147 static cl::opt<bool> EnableAndCmpSinking(
148    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
149    cl::desc("Enable sinkinig and/cmp into branches."));
150 
151 static cl::opt<bool> DisableStoreExtract(
152     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
153     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
154 
155 static cl::opt<bool> StressStoreExtract(
156     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
157     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
158 
159 static cl::opt<bool> DisableExtLdPromotion(
160     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
161     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162              "CodeGenPrepare"));
163 
164 static cl::opt<bool> StressExtLdPromotion(
165     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
166     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
167              "optimization in CodeGenPrepare"));
168 
169 static cl::opt<bool> DisablePreheaderProtect(
170     "disable-preheader-prot", cl::Hidden, cl::init(false),
171     cl::desc("Disable protection against removing loop preheaders"));
172 
173 static cl::opt<bool> ProfileGuidedSectionPrefix(
174     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
175     cl::desc("Use profile info to add section prefix for hot/cold functions"));
176 
177 static cl::opt<unsigned> FreqRatioToSkipMerge(
178     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
179     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
180              "(frequency of destination block) is greater than this ratio"));
181 
182 static cl::opt<bool> ForceSplitStore(
183     "force-split-store", cl::Hidden, cl::init(false),
184     cl::desc("Force store splitting no matter what the target query says."));
185 
186 static cl::opt<bool>
187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
188     cl::desc("Enable merging of redundant sexts when one is dominating"
189     " the other."), cl::init(true));
190 
191 static cl::opt<bool> DisableComplexAddrModes(
192     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
193     cl::desc("Disables combining addressing modes with different parts "
194              "in optimizeMemoryInst."));
195 
196 static cl::opt<bool>
197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
198                 cl::desc("Allow creation of Phis in Address sinking."));
199 
200 static cl::opt<bool>
201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
202                    cl::desc("Allow creation of selects in Address sinking."));
203 
204 static cl::opt<bool> AddrSinkCombineBaseReg(
205     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
206     cl::desc("Allow combining of BaseReg field in Address sinking."));
207 
208 static cl::opt<bool> AddrSinkCombineBaseGV(
209     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
210     cl::desc("Allow combining of BaseGV field in Address sinking."));
211 
212 static cl::opt<bool> AddrSinkCombineBaseOffs(
213     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
214     cl::desc("Allow combining of BaseOffs field in Address sinking."));
215 
216 static cl::opt<bool> AddrSinkCombineScaledReg(
217     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
218     cl::desc("Allow combining of ScaledReg field in Address sinking."));
219 
220 static cl::opt<bool>
221     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
222                          cl::init(true),
223                          cl::desc("Enable splitting large offset of GEP."));
224 
225 namespace {
226 
227 enum ExtType {
228   ZeroExtension,   // Zero extension has been seen.
229   SignExtension,   // Sign extension has been seen.
230   BothExtension    // This extension type is used if we saw sext after
231                    // ZeroExtension had been set, or if we saw zext after
232                    // SignExtension had been set. It makes the type
233                    // information of a promoted instruction invalid.
234 };
235 
236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
239 using SExts = SmallVector<Instruction *, 16>;
240 using ValueToSExts = DenseMap<Value *, SExts>;
241 
242 class TypePromotionTransaction;
243 
244   class CodeGenPrepare : public FunctionPass {
245     const TargetMachine *TM = nullptr;
246     const TargetSubtargetInfo *SubtargetInfo;
247     const TargetLowering *TLI = nullptr;
248     const TargetRegisterInfo *TRI;
249     const TargetTransformInfo *TTI = nullptr;
250     const TargetLibraryInfo *TLInfo;
251     const LoopInfo *LI;
252     std::unique_ptr<BlockFrequencyInfo> BFI;
253     std::unique_ptr<BranchProbabilityInfo> BPI;
254 
255     /// As we scan instructions optimizing them, this is the next instruction
256     /// to optimize. Transforms that can invalidate this should update it.
257     BasicBlock::iterator CurInstIterator;
258 
259     /// Keeps track of non-local addresses that have been sunk into a block.
260     /// This allows us to avoid inserting duplicate code for blocks with
261     /// multiple load/stores of the same address. The usage of WeakTrackingVH
262     /// enables SunkAddrs to be treated as a cache whose entries can be
263     /// invalidated if a sunken address computation has been erased.
264     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
265 
266     /// Keeps track of all instructions inserted for the current function.
267     SetOfInstrs InsertedInsts;
268 
269     /// Keeps track of the type of the related instruction before their
270     /// promotion for the current function.
271     InstrToOrigTy PromotedInsts;
272 
273     /// Keep track of instructions removed during promotion.
274     SetOfInstrs RemovedInsts;
275 
276     /// Keep track of sext chains based on their initial value.
277     DenseMap<Value *, Instruction *> SeenChainsForSExt;
278 
279     /// Keep track of GEPs accessing the same data structures such as structs or
280     /// arrays that are candidates to be split later because of their large
281     /// size.
282     MapVector<
283         AssertingVH<Value>,
284         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
285         LargeOffsetGEPMap;
286 
287     /// Keep track of new GEP base after splitting the GEPs having large offset.
288     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
289 
290     /// Map serial numbers to Large offset GEPs.
291     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
292 
293     /// Keep track of SExt promoted.
294     ValueToSExts ValToSExtendedUses;
295 
296     /// True if optimizing for size.
297     bool OptSize;
298 
299     /// DataLayout for the Function being processed.
300     const DataLayout *DL = nullptr;
301 
302     /// Building the dominator tree can be expensive, so we only build it
303     /// lazily and update it when required.
304     std::unique_ptr<DominatorTree> DT;
305 
306   public:
307     static char ID; // Pass identification, replacement for typeid
308 
309     CodeGenPrepare() : FunctionPass(ID) {
310       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
311     }
312 
313     bool runOnFunction(Function &F) override;
314 
315     StringRef getPassName() const override { return "CodeGen Prepare"; }
316 
317     void getAnalysisUsage(AnalysisUsage &AU) const override {
318       // FIXME: When we can selectively preserve passes, preserve the domtree.
319       AU.addRequired<ProfileSummaryInfoWrapperPass>();
320       AU.addRequired<TargetLibraryInfoWrapperPass>();
321       AU.addRequired<TargetTransformInfoWrapperPass>();
322       AU.addRequired<LoopInfoWrapperPass>();
323     }
324 
325   private:
326     template <typename F>
327     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
328       // Substituting can cause recursive simplifications, which can invalidate
329       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
330       // happens.
331       Value *CurValue = &*CurInstIterator;
332       WeakTrackingVH IterHandle(CurValue);
333 
334       f();
335 
336       // If the iterator instruction was recursively deleted, start over at the
337       // start of the block.
338       if (IterHandle != CurValue) {
339         CurInstIterator = BB->begin();
340         SunkAddrs.clear();
341       }
342     }
343 
344     // Get the DominatorTree, building if necessary.
345     DominatorTree &getDT(Function &F) {
346       if (!DT)
347         DT = std::make_unique<DominatorTree>(F);
348       return *DT;
349     }
350 
351     bool eliminateFallThrough(Function &F);
352     bool eliminateMostlyEmptyBlocks(Function &F);
353     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
354     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
355     void eliminateMostlyEmptyBlock(BasicBlock *BB);
356     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
357                                        bool isPreheader);
358     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
359     bool optimizeInst(Instruction *I, bool &ModifiedDT);
360     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
361                             Type *AccessTy, unsigned AddrSpace);
362     bool optimizeInlineAsmInst(CallInst *CS);
363     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
364     bool optimizeExt(Instruction *&I);
365     bool optimizeExtUses(Instruction *I);
366     bool optimizeLoadExt(LoadInst *Load);
367     bool optimizeShiftInst(BinaryOperator *BO);
368     bool optimizeSelectInst(SelectInst *SI);
369     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
370     bool optimizeSwitchInst(SwitchInst *SI);
371     bool optimizeExtractElementInst(Instruction *Inst);
372     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
373     bool placeDbgValues(Function &F);
374     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
375                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
376     bool tryToPromoteExts(TypePromotionTransaction &TPT,
377                           const SmallVectorImpl<Instruction *> &Exts,
378                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
379                           unsigned CreatedInstsCost = 0);
380     bool mergeSExts(Function &F);
381     bool splitLargeGEPOffsets();
382     bool performAddressTypePromotion(
383         Instruction *&Inst,
384         bool AllowPromotionWithoutCommonHeader,
385         bool HasPromoted, TypePromotionTransaction &TPT,
386         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
387     bool splitBranchCondition(Function &F, bool &ModifiedDT);
388     bool simplifyOffsetableRelocate(Instruction &I);
389 
390     bool tryToSinkFreeOperands(Instruction *I);
391     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
392                                      Intrinsic::ID IID);
393     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
394     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
395     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
396   };
397 
398 } // end anonymous namespace
399 
400 char CodeGenPrepare::ID = 0;
401 
402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
403                       "Optimize for code generation", false, false)
404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
406                     "Optimize for code generation", false, false)
407 
408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
409 
410 bool CodeGenPrepare::runOnFunction(Function &F) {
411   if (skipFunction(F))
412     return false;
413 
414   DL = &F.getParent()->getDataLayout();
415 
416   bool EverMadeChange = false;
417   // Clear per function information.
418   InsertedInsts.clear();
419   PromotedInsts.clear();
420 
421   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
422     TM = &TPC->getTM<TargetMachine>();
423     SubtargetInfo = TM->getSubtargetImpl(F);
424     TLI = SubtargetInfo->getTargetLowering();
425     TRI = SubtargetInfo->getRegisterInfo();
426   }
427   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
428   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
429   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
430   BPI.reset(new BranchProbabilityInfo(F, *LI));
431   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
432   OptSize = F.hasOptSize();
433 
434   ProfileSummaryInfo *PSI =
435       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
436   if (ProfileGuidedSectionPrefix) {
437     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
438       F.setSectionPrefix(".hot");
439     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
440       F.setSectionPrefix(".unlikely");
441   }
442 
443   /// This optimization identifies DIV instructions that can be
444   /// profitably bypassed and carried out with a shorter, faster divide.
445   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
446       TLI->isSlowDivBypassed()) {
447     const DenseMap<unsigned int, unsigned int> &BypassWidths =
448        TLI->getBypassSlowDivWidths();
449     BasicBlock* BB = &*F.begin();
450     while (BB != nullptr) {
451       // bypassSlowDivision may create new BBs, but we don't want to reapply the
452       // optimization to those blocks.
453       BasicBlock* Next = BB->getNextNode();
454       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
455       BB = Next;
456     }
457   }
458 
459   // Eliminate blocks that contain only PHI nodes and an
460   // unconditional branch.
461   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
462 
463   bool ModifiedDT = false;
464   if (!DisableBranchOpts)
465     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
466 
467   // Split some critical edges where one of the sources is an indirect branch,
468   // to help generate sane code for PHIs involving such edges.
469   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
470 
471   bool MadeChange = true;
472   while (MadeChange) {
473     MadeChange = false;
474     DT.reset();
475     for (Function::iterator I = F.begin(); I != F.end(); ) {
476       BasicBlock *BB = &*I++;
477       bool ModifiedDTOnIteration = false;
478       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
479 
480       // Restart BB iteration if the dominator tree of the Function was changed
481       if (ModifiedDTOnIteration)
482         break;
483     }
484     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
485       MadeChange |= mergeSExts(F);
486     if (!LargeOffsetGEPMap.empty())
487       MadeChange |= splitLargeGEPOffsets();
488 
489     // Really free removed instructions during promotion.
490     for (Instruction *I : RemovedInsts)
491       I->deleteValue();
492 
493     EverMadeChange |= MadeChange;
494     SeenChainsForSExt.clear();
495     ValToSExtendedUses.clear();
496     RemovedInsts.clear();
497     LargeOffsetGEPMap.clear();
498     LargeOffsetGEPID.clear();
499   }
500 
501   SunkAddrs.clear();
502 
503   if (!DisableBranchOpts) {
504     MadeChange = false;
505     // Use a set vector to get deterministic iteration order. The order the
506     // blocks are removed may affect whether or not PHI nodes in successors
507     // are removed.
508     SmallSetVector<BasicBlock*, 8> WorkList;
509     for (BasicBlock &BB : F) {
510       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
511       MadeChange |= ConstantFoldTerminator(&BB, true);
512       if (!MadeChange) continue;
513 
514       for (SmallVectorImpl<BasicBlock*>::iterator
515              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
516         if (pred_begin(*II) == pred_end(*II))
517           WorkList.insert(*II);
518     }
519 
520     // Delete the dead blocks and any of their dead successors.
521     MadeChange |= !WorkList.empty();
522     while (!WorkList.empty()) {
523       BasicBlock *BB = WorkList.pop_back_val();
524       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
525 
526       DeleteDeadBlock(BB);
527 
528       for (SmallVectorImpl<BasicBlock*>::iterator
529              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
530         if (pred_begin(*II) == pred_end(*II))
531           WorkList.insert(*II);
532     }
533 
534     // Merge pairs of basic blocks with unconditional branches, connected by
535     // a single edge.
536     if (EverMadeChange || MadeChange)
537       MadeChange |= eliminateFallThrough(F);
538 
539     EverMadeChange |= MadeChange;
540   }
541 
542   if (!DisableGCOpts) {
543     SmallVector<Instruction *, 2> Statepoints;
544     for (BasicBlock &BB : F)
545       for (Instruction &I : BB)
546         if (isStatepoint(I))
547           Statepoints.push_back(&I);
548     for (auto &I : Statepoints)
549       EverMadeChange |= simplifyOffsetableRelocate(*I);
550   }
551 
552   // Do this last to clean up use-before-def scenarios introduced by other
553   // preparatory transforms.
554   EverMadeChange |= placeDbgValues(F);
555 
556   return EverMadeChange;
557 }
558 
559 /// Merge basic blocks which are connected by a single edge, where one of the
560 /// basic blocks has a single successor pointing to the other basic block,
561 /// which has a single predecessor.
562 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
563   bool Changed = false;
564   // Scan all of the blocks in the function, except for the entry block.
565   // Use a temporary array to avoid iterator being invalidated when
566   // deleting blocks.
567   SmallVector<WeakTrackingVH, 16> Blocks;
568   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
569     Blocks.push_back(&Block);
570 
571   for (auto &Block : Blocks) {
572     auto *BB = cast_or_null<BasicBlock>(Block);
573     if (!BB)
574       continue;
575     // If the destination block has a single pred, then this is a trivial
576     // edge, just collapse it.
577     BasicBlock *SinglePred = BB->getSinglePredecessor();
578 
579     // Don't merge if BB's address is taken.
580     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
581 
582     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
583     if (Term && !Term->isConditional()) {
584       Changed = true;
585       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
586 
587       // Merge BB into SinglePred and delete it.
588       MergeBlockIntoPredecessor(BB);
589     }
590   }
591   return Changed;
592 }
593 
594 /// Find a destination block from BB if BB is mergeable empty block.
595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
596   // If this block doesn't end with an uncond branch, ignore it.
597   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
598   if (!BI || !BI->isUnconditional())
599     return nullptr;
600 
601   // If the instruction before the branch (skipping debug info) isn't a phi
602   // node, then other stuff is happening here.
603   BasicBlock::iterator BBI = BI->getIterator();
604   if (BBI != BB->begin()) {
605     --BBI;
606     while (isa<DbgInfoIntrinsic>(BBI)) {
607       if (BBI == BB->begin())
608         break;
609       --BBI;
610     }
611     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
612       return nullptr;
613   }
614 
615   // Do not break infinite loops.
616   BasicBlock *DestBB = BI->getSuccessor(0);
617   if (DestBB == BB)
618     return nullptr;
619 
620   if (!canMergeBlocks(BB, DestBB))
621     DestBB = nullptr;
622 
623   return DestBB;
624 }
625 
626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
628 /// edges in ways that are non-optimal for isel. Start by eliminating these
629 /// blocks so we can split them the way we want them.
630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
631   SmallPtrSet<BasicBlock *, 16> Preheaders;
632   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
633   while (!LoopList.empty()) {
634     Loop *L = LoopList.pop_back_val();
635     LoopList.insert(LoopList.end(), L->begin(), L->end());
636     if (BasicBlock *Preheader = L->getLoopPreheader())
637       Preheaders.insert(Preheader);
638   }
639 
640   bool MadeChange = false;
641   // Copy blocks into a temporary array to avoid iterator invalidation issues
642   // as we remove them.
643   // Note that this intentionally skips the entry block.
644   SmallVector<WeakTrackingVH, 16> Blocks;
645   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
646     Blocks.push_back(&Block);
647 
648   for (auto &Block : Blocks) {
649     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
650     if (!BB)
651       continue;
652     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
653     if (!DestBB ||
654         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
655       continue;
656 
657     eliminateMostlyEmptyBlock(BB);
658     MadeChange = true;
659   }
660   return MadeChange;
661 }
662 
663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
664                                                    BasicBlock *DestBB,
665                                                    bool isPreheader) {
666   // Do not delete loop preheaders if doing so would create a critical edge.
667   // Loop preheaders can be good locations to spill registers. If the
668   // preheader is deleted and we create a critical edge, registers may be
669   // spilled in the loop body instead.
670   if (!DisablePreheaderProtect && isPreheader &&
671       !(BB->getSinglePredecessor() &&
672         BB->getSinglePredecessor()->getSingleSuccessor()))
673     return false;
674 
675   // Skip merging if the block's successor is also a successor to any callbr
676   // that leads to this block.
677   // FIXME: Is this really needed? Is this a correctness issue?
678   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
679     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
680       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
681         if (DestBB == CBI->getSuccessor(i))
682           return false;
683   }
684 
685   // Try to skip merging if the unique predecessor of BB is terminated by a
686   // switch or indirect branch instruction, and BB is used as an incoming block
687   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
688   // add COPY instructions in the predecessor of BB instead of BB (if it is not
689   // merged). Note that the critical edge created by merging such blocks wont be
690   // split in MachineSink because the jump table is not analyzable. By keeping
691   // such empty block (BB), ISel will place COPY instructions in BB, not in the
692   // predecessor of BB.
693   BasicBlock *Pred = BB->getUniquePredecessor();
694   if (!Pred ||
695       !(isa<SwitchInst>(Pred->getTerminator()) ||
696         isa<IndirectBrInst>(Pred->getTerminator())))
697     return true;
698 
699   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
700     return true;
701 
702   // We use a simple cost heuristic which determine skipping merging is
703   // profitable if the cost of skipping merging is less than the cost of
704   // merging : Cost(skipping merging) < Cost(merging BB), where the
705   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
706   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
707   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
708   //   Freq(Pred) / Freq(BB) > 2.
709   // Note that if there are multiple empty blocks sharing the same incoming
710   // value for the PHIs in the DestBB, we consider them together. In such
711   // case, Cost(merging BB) will be the sum of their frequencies.
712 
713   if (!isa<PHINode>(DestBB->begin()))
714     return true;
715 
716   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
717 
718   // Find all other incoming blocks from which incoming values of all PHIs in
719   // DestBB are the same as the ones from BB.
720   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
721        ++PI) {
722     BasicBlock *DestBBPred = *PI;
723     if (DestBBPred == BB)
724       continue;
725 
726     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
727           return DestPN.getIncomingValueForBlock(BB) ==
728                  DestPN.getIncomingValueForBlock(DestBBPred);
729         }))
730       SameIncomingValueBBs.insert(DestBBPred);
731   }
732 
733   // See if all BB's incoming values are same as the value from Pred. In this
734   // case, no reason to skip merging because COPYs are expected to be place in
735   // Pred already.
736   if (SameIncomingValueBBs.count(Pred))
737     return true;
738 
739   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
740   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
741 
742   for (auto SameValueBB : SameIncomingValueBBs)
743     if (SameValueBB->getUniquePredecessor() == Pred &&
744         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
745       BBFreq += BFI->getBlockFreq(SameValueBB);
746 
747   return PredFreq.getFrequency() <=
748          BBFreq.getFrequency() * FreqRatioToSkipMerge;
749 }
750 
751 /// Return true if we can merge BB into DestBB if there is a single
752 /// unconditional branch between them, and BB contains no other non-phi
753 /// instructions.
754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
755                                     const BasicBlock *DestBB) const {
756   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
757   // the successor.  If there are more complex condition (e.g. preheaders),
758   // don't mess around with them.
759   for (const PHINode &PN : BB->phis()) {
760     for (const User *U : PN.users()) {
761       const Instruction *UI = cast<Instruction>(U);
762       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
763         return false;
764       // If User is inside DestBB block and it is a PHINode then check
765       // incoming value. If incoming value is not from BB then this is
766       // a complex condition (e.g. preheaders) we want to avoid here.
767       if (UI->getParent() == DestBB) {
768         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
769           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
770             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
771             if (Insn && Insn->getParent() == BB &&
772                 Insn->getParent() != UPN->getIncomingBlock(I))
773               return false;
774           }
775       }
776     }
777   }
778 
779   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
780   // and DestBB may have conflicting incoming values for the block.  If so, we
781   // can't merge the block.
782   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
783   if (!DestBBPN) return true;  // no conflict.
784 
785   // Collect the preds of BB.
786   SmallPtrSet<const BasicBlock*, 16> BBPreds;
787   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
788     // It is faster to get preds from a PHI than with pred_iterator.
789     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
790       BBPreds.insert(BBPN->getIncomingBlock(i));
791   } else {
792     BBPreds.insert(pred_begin(BB), pred_end(BB));
793   }
794 
795   // Walk the preds of DestBB.
796   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
797     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
798     if (BBPreds.count(Pred)) {   // Common predecessor?
799       for (const PHINode &PN : DestBB->phis()) {
800         const Value *V1 = PN.getIncomingValueForBlock(Pred);
801         const Value *V2 = PN.getIncomingValueForBlock(BB);
802 
803         // If V2 is a phi node in BB, look up what the mapped value will be.
804         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
805           if (V2PN->getParent() == BB)
806             V2 = V2PN->getIncomingValueForBlock(Pred);
807 
808         // If there is a conflict, bail out.
809         if (V1 != V2) return false;
810       }
811     }
812   }
813 
814   return true;
815 }
816 
817 /// Eliminate a basic block that has only phi's and an unconditional branch in
818 /// it.
819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
820   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
821   BasicBlock *DestBB = BI->getSuccessor(0);
822 
823   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
824                     << *BB << *DestBB);
825 
826   // If the destination block has a single pred, then this is a trivial edge,
827   // just collapse it.
828   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
829     if (SinglePred != DestBB) {
830       assert(SinglePred == BB &&
831              "Single predecessor not the same as predecessor");
832       // Merge DestBB into SinglePred/BB and delete it.
833       MergeBlockIntoPredecessor(DestBB);
834       // Note: BB(=SinglePred) will not be deleted on this path.
835       // DestBB(=its single successor) is the one that was deleted.
836       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
837       return;
838     }
839   }
840 
841   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
842   // to handle the new incoming edges it is about to have.
843   for (PHINode &PN : DestBB->phis()) {
844     // Remove the incoming value for BB, and remember it.
845     Value *InVal = PN.removeIncomingValue(BB, false);
846 
847     // Two options: either the InVal is a phi node defined in BB or it is some
848     // value that dominates BB.
849     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
850     if (InValPhi && InValPhi->getParent() == BB) {
851       // Add all of the input values of the input PHI as inputs of this phi.
852       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
853         PN.addIncoming(InValPhi->getIncomingValue(i),
854                        InValPhi->getIncomingBlock(i));
855     } else {
856       // Otherwise, add one instance of the dominating value for each edge that
857       // we will be adding.
858       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
859         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
860           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
861       } else {
862         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
863           PN.addIncoming(InVal, *PI);
864       }
865     }
866   }
867 
868   // The PHIs are now updated, change everything that refers to BB to use
869   // DestBB and remove BB.
870   BB->replaceAllUsesWith(DestBB);
871   BB->eraseFromParent();
872   ++NumBlocksElim;
873 
874   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
875 }
876 
877 // Computes a map of base pointer relocation instructions to corresponding
878 // derived pointer relocation instructions given a vector of all relocate calls
879 static void computeBaseDerivedRelocateMap(
880     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
881     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
882         &RelocateInstMap) {
883   // Collect information in two maps: one primarily for locating the base object
884   // while filling the second map; the second map is the final structure holding
885   // a mapping between Base and corresponding Derived relocate calls
886   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
887   for (auto *ThisRelocate : AllRelocateCalls) {
888     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
889                             ThisRelocate->getDerivedPtrIndex());
890     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
891   }
892   for (auto &Item : RelocateIdxMap) {
893     std::pair<unsigned, unsigned> Key = Item.first;
894     if (Key.first == Key.second)
895       // Base relocation: nothing to insert
896       continue;
897 
898     GCRelocateInst *I = Item.second;
899     auto BaseKey = std::make_pair(Key.first, Key.first);
900 
901     // We're iterating over RelocateIdxMap so we cannot modify it.
902     auto MaybeBase = RelocateIdxMap.find(BaseKey);
903     if (MaybeBase == RelocateIdxMap.end())
904       // TODO: We might want to insert a new base object relocate and gep off
905       // that, if there are enough derived object relocates.
906       continue;
907 
908     RelocateInstMap[MaybeBase->second].push_back(I);
909   }
910 }
911 
912 // Accepts a GEP and extracts the operands into a vector provided they're all
913 // small integer constants
914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
915                                           SmallVectorImpl<Value *> &OffsetV) {
916   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
917     // Only accept small constant integer operands
918     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
919     if (!Op || Op->getZExtValue() > 20)
920       return false;
921   }
922 
923   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
924     OffsetV.push_back(GEP->getOperand(i));
925   return true;
926 }
927 
928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
929 // replace, computes a replacement, and affects it.
930 static bool
931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
932                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
933   bool MadeChange = false;
934   // We must ensure the relocation of derived pointer is defined after
935   // relocation of base pointer. If we find a relocation corresponding to base
936   // defined earlier than relocation of base then we move relocation of base
937   // right before found relocation. We consider only relocation in the same
938   // basic block as relocation of base. Relocations from other basic block will
939   // be skipped by optimization and we do not care about them.
940   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
941        &*R != RelocatedBase; ++R)
942     if (auto RI = dyn_cast<GCRelocateInst>(R))
943       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
944         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
945           RelocatedBase->moveBefore(RI);
946           break;
947         }
948 
949   for (GCRelocateInst *ToReplace : Targets) {
950     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
951            "Not relocating a derived object of the original base object");
952     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
953       // A duplicate relocate call. TODO: coalesce duplicates.
954       continue;
955     }
956 
957     if (RelocatedBase->getParent() != ToReplace->getParent()) {
958       // Base and derived relocates are in different basic blocks.
959       // In this case transform is only valid when base dominates derived
960       // relocate. However it would be too expensive to check dominance
961       // for each such relocate, so we skip the whole transformation.
962       continue;
963     }
964 
965     Value *Base = ToReplace->getBasePtr();
966     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
967     if (!Derived || Derived->getPointerOperand() != Base)
968       continue;
969 
970     SmallVector<Value *, 2> OffsetV;
971     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
972       continue;
973 
974     // Create a Builder and replace the target callsite with a gep
975     assert(RelocatedBase->getNextNode() &&
976            "Should always have one since it's not a terminator");
977 
978     // Insert after RelocatedBase
979     IRBuilder<> Builder(RelocatedBase->getNextNode());
980     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
981 
982     // If gc_relocate does not match the actual type, cast it to the right type.
983     // In theory, there must be a bitcast after gc_relocate if the type does not
984     // match, and we should reuse it to get the derived pointer. But it could be
985     // cases like this:
986     // bb1:
987     //  ...
988     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
989     //  br label %merge
990     //
991     // bb2:
992     //  ...
993     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
994     //  br label %merge
995     //
996     // merge:
997     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
998     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
999     //
1000     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1001     // no matter there is already one or not. In this way, we can handle all cases, and
1002     // the extra bitcast should be optimized away in later passes.
1003     Value *ActualRelocatedBase = RelocatedBase;
1004     if (RelocatedBase->getType() != Base->getType()) {
1005       ActualRelocatedBase =
1006           Builder.CreateBitCast(RelocatedBase, Base->getType());
1007     }
1008     Value *Replacement = Builder.CreateGEP(
1009         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1010     Replacement->takeName(ToReplace);
1011     // If the newly generated derived pointer's type does not match the original derived
1012     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1013     Value *ActualReplacement = Replacement;
1014     if (Replacement->getType() != ToReplace->getType()) {
1015       ActualReplacement =
1016           Builder.CreateBitCast(Replacement, ToReplace->getType());
1017     }
1018     ToReplace->replaceAllUsesWith(ActualReplacement);
1019     ToReplace->eraseFromParent();
1020 
1021     MadeChange = true;
1022   }
1023   return MadeChange;
1024 }
1025 
1026 // Turns this:
1027 //
1028 // %base = ...
1029 // %ptr = gep %base + 15
1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1031 // %base' = relocate(%tok, i32 4, i32 4)
1032 // %ptr' = relocate(%tok, i32 4, i32 5)
1033 // %val = load %ptr'
1034 //
1035 // into this:
1036 //
1037 // %base = ...
1038 // %ptr = gep %base + 15
1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1040 // %base' = gc.relocate(%tok, i32 4, i32 4)
1041 // %ptr' = gep %base' + 15
1042 // %val = load %ptr'
1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1044   bool MadeChange = false;
1045   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1046 
1047   for (auto *U : I.users())
1048     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1049       // Collect all the relocate calls associated with a statepoint
1050       AllRelocateCalls.push_back(Relocate);
1051 
1052   // We need atleast one base pointer relocation + one derived pointer
1053   // relocation to mangle
1054   if (AllRelocateCalls.size() < 2)
1055     return false;
1056 
1057   // RelocateInstMap is a mapping from the base relocate instruction to the
1058   // corresponding derived relocate instructions
1059   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1060   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1061   if (RelocateInstMap.empty())
1062     return false;
1063 
1064   for (auto &Item : RelocateInstMap)
1065     // Item.first is the RelocatedBase to offset against
1066     // Item.second is the vector of Targets to replace
1067     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1068   return MadeChange;
1069 }
1070 
1071 /// Sink the specified cast instruction into its user blocks.
1072 static bool SinkCast(CastInst *CI) {
1073   BasicBlock *DefBB = CI->getParent();
1074 
1075   /// InsertedCasts - Only insert a cast in each block once.
1076   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1077 
1078   bool MadeChange = false;
1079   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1080        UI != E; ) {
1081     Use &TheUse = UI.getUse();
1082     Instruction *User = cast<Instruction>(*UI);
1083 
1084     // Figure out which BB this cast is used in.  For PHI's this is the
1085     // appropriate predecessor block.
1086     BasicBlock *UserBB = User->getParent();
1087     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1088       UserBB = PN->getIncomingBlock(TheUse);
1089     }
1090 
1091     // Preincrement use iterator so we don't invalidate it.
1092     ++UI;
1093 
1094     // The first insertion point of a block containing an EH pad is after the
1095     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1096     if (User->isEHPad())
1097       continue;
1098 
1099     // If the block selected to receive the cast is an EH pad that does not
1100     // allow non-PHI instructions before the terminator, we can't sink the
1101     // cast.
1102     if (UserBB->getTerminator()->isEHPad())
1103       continue;
1104 
1105     // If this user is in the same block as the cast, don't change the cast.
1106     if (UserBB == DefBB) continue;
1107 
1108     // If we have already inserted a cast into this block, use it.
1109     CastInst *&InsertedCast = InsertedCasts[UserBB];
1110 
1111     if (!InsertedCast) {
1112       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1113       assert(InsertPt != UserBB->end());
1114       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1115                                       CI->getType(), "", &*InsertPt);
1116       InsertedCast->setDebugLoc(CI->getDebugLoc());
1117     }
1118 
1119     // Replace a use of the cast with a use of the new cast.
1120     TheUse = InsertedCast;
1121     MadeChange = true;
1122     ++NumCastUses;
1123   }
1124 
1125   // If we removed all uses, nuke the cast.
1126   if (CI->use_empty()) {
1127     salvageDebugInfo(*CI);
1128     CI->eraseFromParent();
1129     MadeChange = true;
1130   }
1131 
1132   return MadeChange;
1133 }
1134 
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1138 ///
1139 /// Return true if any changes are made.
1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1141                                        const DataLayout &DL) {
1142   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1143   // than sinking only nop casts, but is helpful on some platforms.
1144   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1145     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1146                                  ASC->getDestAddressSpace()))
1147       return false;
1148   }
1149 
1150   // If this is a noop copy,
1151   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1152   EVT DstVT = TLI.getValueType(DL, CI->getType());
1153 
1154   // This is an fp<->int conversion?
1155   if (SrcVT.isInteger() != DstVT.isInteger())
1156     return false;
1157 
1158   // If this is an extension, it will be a zero or sign extension, which
1159   // isn't a noop.
1160   if (SrcVT.bitsLT(DstVT)) return false;
1161 
1162   // If these values will be promoted, find out what they will be promoted
1163   // to.  This helps us consider truncates on PPC as noop copies when they
1164   // are.
1165   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1166       TargetLowering::TypePromoteInteger)
1167     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1168   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1169       TargetLowering::TypePromoteInteger)
1170     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1171 
1172   // If, after promotion, these are the same types, this is a noop copy.
1173   if (SrcVT != DstVT)
1174     return false;
1175 
1176   return SinkCast(CI);
1177 }
1178 
1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1180                                                  CmpInst *Cmp,
1181                                                  Intrinsic::ID IID) {
1182   if (BO->getParent() != Cmp->getParent()) {
1183     // We used to use a dominator tree here to allow multi-block optimization.
1184     // But that was problematic because:
1185     // 1. It could cause a perf regression by hoisting the math op into the
1186     //    critical path.
1187     // 2. It could cause a perf regression by creating a value that was live
1188     //    across multiple blocks and increasing register pressure.
1189     // 3. Use of a dominator tree could cause large compile-time regression.
1190     //    This is because we recompute the DT on every change in the main CGP
1191     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1192     //    that was fixed, using a DT here would be ok.
1193     return false;
1194   }
1195 
1196   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1197   Value *Arg0 = BO->getOperand(0);
1198   Value *Arg1 = BO->getOperand(1);
1199   if (BO->getOpcode() == Instruction::Add &&
1200       IID == Intrinsic::usub_with_overflow) {
1201     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1202     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1203   }
1204 
1205   // Insert at the first instruction of the pair.
1206   Instruction *InsertPt = nullptr;
1207   for (Instruction &Iter : *Cmp->getParent()) {
1208     if (&Iter == BO || &Iter == Cmp) {
1209       InsertPt = &Iter;
1210       break;
1211     }
1212   }
1213   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1214 
1215   IRBuilder<> Builder(InsertPt);
1216   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1217   Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1218   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1219   BO->replaceAllUsesWith(Math);
1220   Cmp->replaceAllUsesWith(OV);
1221   BO->eraseFromParent();
1222   Cmp->eraseFromParent();
1223   return true;
1224 }
1225 
1226 /// Match special-case patterns that check for unsigned add overflow.
1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1228                                                    BinaryOperator *&Add) {
1229   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1230   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1231   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1232 
1233   // We are not expecting non-canonical/degenerate code. Just bail out.
1234   if (isa<Constant>(A))
1235     return false;
1236 
1237   ICmpInst::Predicate Pred = Cmp->getPredicate();
1238   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1239     B = ConstantInt::get(B->getType(), 1);
1240   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1241     B = ConstantInt::get(B->getType(), -1);
1242   else
1243     return false;
1244 
1245   // Check the users of the variable operand of the compare looking for an add
1246   // with the adjusted constant.
1247   for (User *U : A->users()) {
1248     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1249       Add = cast<BinaryOperator>(U);
1250       return true;
1251     }
1252   }
1253   return false;
1254 }
1255 
1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1257 /// intrinsic. Return true if any changes were made.
1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1259                                                bool &ModifiedDT) {
1260   Value *A, *B;
1261   BinaryOperator *Add;
1262   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1263     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1264       return false;
1265 
1266   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1267                                  TLI->getValueType(*DL, Add->getType())))
1268     return false;
1269 
1270   // We don't want to move around uses of condition values this late, so we
1271   // check if it is legal to create the call to the intrinsic in the basic
1272   // block containing the icmp.
1273   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1274     return false;
1275 
1276   if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1277     return false;
1278 
1279   // Reset callers - do not crash by iterating over a dead instruction.
1280   ModifiedDT = true;
1281   return true;
1282 }
1283 
1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1285                                                bool &ModifiedDT) {
1286   // We are not expecting non-canonical/degenerate code. Just bail out.
1287   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1288   if (isa<Constant>(A) && isa<Constant>(B))
1289     return false;
1290 
1291   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1292   ICmpInst::Predicate Pred = Cmp->getPredicate();
1293   if (Pred == ICmpInst::ICMP_UGT) {
1294     std::swap(A, B);
1295     Pred = ICmpInst::ICMP_ULT;
1296   }
1297   // Convert special-case: (A == 0) is the same as (A u< 1).
1298   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1299     B = ConstantInt::get(B->getType(), 1);
1300     Pred = ICmpInst::ICMP_ULT;
1301   }
1302   // Convert special-case: (A != 0) is the same as (0 u< A).
1303   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1304     std::swap(A, B);
1305     Pred = ICmpInst::ICMP_ULT;
1306   }
1307   if (Pred != ICmpInst::ICMP_ULT)
1308     return false;
1309 
1310   // Walk the users of a variable operand of a compare looking for a subtract or
1311   // add with that same operand. Also match the 2nd operand of the compare to
1312   // the add/sub, but that may be a negated constant operand of an add.
1313   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1314   BinaryOperator *Sub = nullptr;
1315   for (User *U : CmpVariableOperand->users()) {
1316     // A - B, A u< B --> usubo(A, B)
1317     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1318       Sub = cast<BinaryOperator>(U);
1319       break;
1320     }
1321 
1322     // A + (-C), A u< C (canonicalized form of (sub A, C))
1323     const APInt *CmpC, *AddC;
1324     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1325         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1326       Sub = cast<BinaryOperator>(U);
1327       break;
1328     }
1329   }
1330   if (!Sub)
1331     return false;
1332 
1333   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1334                                  TLI->getValueType(*DL, Sub->getType())))
1335     return false;
1336 
1337   if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1338     return false;
1339 
1340   // Reset callers - do not crash by iterating over a dead instruction.
1341   ModifiedDT = true;
1342   return true;
1343 }
1344 
1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1346 /// registers that must be created and coalesced. This is a clear win except on
1347 /// targets with multiple condition code registers (PowerPC), where it might
1348 /// lose; some adjustment may be wanted there.
1349 ///
1350 /// Return true if any changes are made.
1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1352   if (TLI.hasMultipleConditionRegisters())
1353     return false;
1354 
1355   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1356   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1357     return false;
1358 
1359   // Only insert a cmp in each block once.
1360   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1361 
1362   bool MadeChange = false;
1363   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1364        UI != E; ) {
1365     Use &TheUse = UI.getUse();
1366     Instruction *User = cast<Instruction>(*UI);
1367 
1368     // Preincrement use iterator so we don't invalidate it.
1369     ++UI;
1370 
1371     // Don't bother for PHI nodes.
1372     if (isa<PHINode>(User))
1373       continue;
1374 
1375     // Figure out which BB this cmp is used in.
1376     BasicBlock *UserBB = User->getParent();
1377     BasicBlock *DefBB = Cmp->getParent();
1378 
1379     // If this user is in the same block as the cmp, don't change the cmp.
1380     if (UserBB == DefBB) continue;
1381 
1382     // If we have already inserted a cmp into this block, use it.
1383     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1384 
1385     if (!InsertedCmp) {
1386       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1387       assert(InsertPt != UserBB->end());
1388       InsertedCmp =
1389           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1390                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1391                           &*InsertPt);
1392       // Propagate the debug info.
1393       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1394     }
1395 
1396     // Replace a use of the cmp with a use of the new cmp.
1397     TheUse = InsertedCmp;
1398     MadeChange = true;
1399     ++NumCmpUses;
1400   }
1401 
1402   // If we removed all uses, nuke the cmp.
1403   if (Cmp->use_empty()) {
1404     Cmp->eraseFromParent();
1405     MadeChange = true;
1406   }
1407 
1408   return MadeChange;
1409 }
1410 
1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1412   if (sinkCmpExpression(Cmp, *TLI))
1413     return true;
1414 
1415   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1416     return true;
1417 
1418   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1419     return true;
1420 
1421   return false;
1422 }
1423 
1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1425 /// used in a compare to allow isel to generate better code for targets where
1426 /// this operation can be combined.
1427 ///
1428 /// Return true if any changes are made.
1429 static bool sinkAndCmp0Expression(Instruction *AndI,
1430                                   const TargetLowering &TLI,
1431                                   SetOfInstrs &InsertedInsts) {
1432   // Double-check that we're not trying to optimize an instruction that was
1433   // already optimized by some other part of this pass.
1434   assert(!InsertedInsts.count(AndI) &&
1435          "Attempting to optimize already optimized and instruction");
1436   (void) InsertedInsts;
1437 
1438   // Nothing to do for single use in same basic block.
1439   if (AndI->hasOneUse() &&
1440       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1441     return false;
1442 
1443   // Try to avoid cases where sinking/duplicating is likely to increase register
1444   // pressure.
1445   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1446       !isa<ConstantInt>(AndI->getOperand(1)) &&
1447       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1448     return false;
1449 
1450   for (auto *U : AndI->users()) {
1451     Instruction *User = cast<Instruction>(U);
1452 
1453     // Only sink 'and' feeding icmp with 0.
1454     if (!isa<ICmpInst>(User))
1455       return false;
1456 
1457     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1458     if (!CmpC || !CmpC->isZero())
1459       return false;
1460   }
1461 
1462   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1463     return false;
1464 
1465   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1466   LLVM_DEBUG(AndI->getParent()->dump());
1467 
1468   // Push the 'and' into the same block as the icmp 0.  There should only be
1469   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1470   // others, so we don't need to keep track of which BBs we insert into.
1471   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1472        UI != E; ) {
1473     Use &TheUse = UI.getUse();
1474     Instruction *User = cast<Instruction>(*UI);
1475 
1476     // Preincrement use iterator so we don't invalidate it.
1477     ++UI;
1478 
1479     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1480 
1481     // Keep the 'and' in the same place if the use is already in the same block.
1482     Instruction *InsertPt =
1483         User->getParent() == AndI->getParent() ? AndI : User;
1484     Instruction *InsertedAnd =
1485         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1486                                AndI->getOperand(1), "", InsertPt);
1487     // Propagate the debug info.
1488     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1489 
1490     // Replace a use of the 'and' with a use of the new 'and'.
1491     TheUse = InsertedAnd;
1492     ++NumAndUses;
1493     LLVM_DEBUG(User->getParent()->dump());
1494   }
1495 
1496   // We removed all uses, nuke the and.
1497   AndI->eraseFromParent();
1498   return true;
1499 }
1500 
1501 /// Check if the candidates could be combined with a shift instruction, which
1502 /// includes:
1503 /// 1. Truncate instruction
1504 /// 2. And instruction and the imm is a mask of the low bits:
1505 /// imm & (imm+1) == 0
1506 static bool isExtractBitsCandidateUse(Instruction *User) {
1507   if (!isa<TruncInst>(User)) {
1508     if (User->getOpcode() != Instruction::And ||
1509         !isa<ConstantInt>(User->getOperand(1)))
1510       return false;
1511 
1512     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1513 
1514     if ((Cimm & (Cimm + 1)).getBoolValue())
1515       return false;
1516   }
1517   return true;
1518 }
1519 
1520 /// Sink both shift and truncate instruction to the use of truncate's BB.
1521 static bool
1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1523                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1524                      const TargetLowering &TLI, const DataLayout &DL) {
1525   BasicBlock *UserBB = User->getParent();
1526   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1527   auto *TruncI = cast<TruncInst>(User);
1528   bool MadeChange = false;
1529 
1530   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1531                             TruncE = TruncI->user_end();
1532        TruncUI != TruncE;) {
1533 
1534     Use &TruncTheUse = TruncUI.getUse();
1535     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1536     // Preincrement use iterator so we don't invalidate it.
1537 
1538     ++TruncUI;
1539 
1540     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1541     if (!ISDOpcode)
1542       continue;
1543 
1544     // If the use is actually a legal node, there will not be an
1545     // implicit truncate.
1546     // FIXME: always querying the result type is just an
1547     // approximation; some nodes' legality is determined by the
1548     // operand or other means. There's no good way to find out though.
1549     if (TLI.isOperationLegalOrCustom(
1550             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1551       continue;
1552 
1553     // Don't bother for PHI nodes.
1554     if (isa<PHINode>(TruncUser))
1555       continue;
1556 
1557     BasicBlock *TruncUserBB = TruncUser->getParent();
1558 
1559     if (UserBB == TruncUserBB)
1560       continue;
1561 
1562     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1563     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1564 
1565     if (!InsertedShift && !InsertedTrunc) {
1566       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1567       assert(InsertPt != TruncUserBB->end());
1568       // Sink the shift
1569       if (ShiftI->getOpcode() == Instruction::AShr)
1570         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1571                                                    "", &*InsertPt);
1572       else
1573         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1574                                                    "", &*InsertPt);
1575       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1576 
1577       // Sink the trunc
1578       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1579       TruncInsertPt++;
1580       assert(TruncInsertPt != TruncUserBB->end());
1581 
1582       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1583                                        TruncI->getType(), "", &*TruncInsertPt);
1584       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1585 
1586       MadeChange = true;
1587 
1588       TruncTheUse = InsertedTrunc;
1589     }
1590   }
1591   return MadeChange;
1592 }
1593 
1594 /// Sink the shift *right* instruction into user blocks if the uses could
1595 /// potentially be combined with this shift instruction and generate BitExtract
1596 /// instruction. It will only be applied if the architecture supports BitExtract
1597 /// instruction. Here is an example:
1598 /// BB1:
1599 ///   %x.extract.shift = lshr i64 %arg1, 32
1600 /// BB2:
1601 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1602 /// ==>
1603 ///
1604 /// BB2:
1605 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1606 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1607 ///
1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1609 /// instruction.
1610 /// Return true if any changes are made.
1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1612                                 const TargetLowering &TLI,
1613                                 const DataLayout &DL) {
1614   BasicBlock *DefBB = ShiftI->getParent();
1615 
1616   /// Only insert instructions in each block once.
1617   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1618 
1619   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1620 
1621   bool MadeChange = false;
1622   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1623        UI != E;) {
1624     Use &TheUse = UI.getUse();
1625     Instruction *User = cast<Instruction>(*UI);
1626     // Preincrement use iterator so we don't invalidate it.
1627     ++UI;
1628 
1629     // Don't bother for PHI nodes.
1630     if (isa<PHINode>(User))
1631       continue;
1632 
1633     if (!isExtractBitsCandidateUse(User))
1634       continue;
1635 
1636     BasicBlock *UserBB = User->getParent();
1637 
1638     if (UserBB == DefBB) {
1639       // If the shift and truncate instruction are in the same BB. The use of
1640       // the truncate(TruncUse) may still introduce another truncate if not
1641       // legal. In this case, we would like to sink both shift and truncate
1642       // instruction to the BB of TruncUse.
1643       // for example:
1644       // BB1:
1645       // i64 shift.result = lshr i64 opnd, imm
1646       // trunc.result = trunc shift.result to i16
1647       //
1648       // BB2:
1649       //   ----> We will have an implicit truncate here if the architecture does
1650       //   not have i16 compare.
1651       // cmp i16 trunc.result, opnd2
1652       //
1653       if (isa<TruncInst>(User) && shiftIsLegal
1654           // If the type of the truncate is legal, no truncate will be
1655           // introduced in other basic blocks.
1656           &&
1657           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1658         MadeChange =
1659             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1660 
1661       continue;
1662     }
1663     // If we have already inserted a shift into this block, use it.
1664     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1665 
1666     if (!InsertedShift) {
1667       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1668       assert(InsertPt != UserBB->end());
1669 
1670       if (ShiftI->getOpcode() == Instruction::AShr)
1671         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1672                                                    "", &*InsertPt);
1673       else
1674         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1675                                                    "", &*InsertPt);
1676       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1677 
1678       MadeChange = true;
1679     }
1680 
1681     // Replace a use of the shift with a use of the new shift.
1682     TheUse = InsertedShift;
1683   }
1684 
1685   // If we removed all uses, or there are none, nuke the shift.
1686   if (ShiftI->use_empty()) {
1687     salvageDebugInfo(*ShiftI);
1688     ShiftI->eraseFromParent();
1689     MadeChange = true;
1690   }
1691 
1692   return MadeChange;
1693 }
1694 
1695 /// If counting leading or trailing zeros is an expensive operation and a zero
1696 /// input is defined, add a check for zero to avoid calling the intrinsic.
1697 ///
1698 /// We want to transform:
1699 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1700 ///
1701 /// into:
1702 ///   entry:
1703 ///     %cmpz = icmp eq i64 %A, 0
1704 ///     br i1 %cmpz, label %cond.end, label %cond.false
1705 ///   cond.false:
1706 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1707 ///     br label %cond.end
1708 ///   cond.end:
1709 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1710 ///
1711 /// If the transform is performed, return true and set ModifiedDT to true.
1712 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1713                                   const TargetLowering *TLI,
1714                                   const DataLayout *DL,
1715                                   bool &ModifiedDT) {
1716   if (!TLI || !DL)
1717     return false;
1718 
1719   // If a zero input is undefined, it doesn't make sense to despeculate that.
1720   if (match(CountZeros->getOperand(1), m_One()))
1721     return false;
1722 
1723   // If it's cheap to speculate, there's nothing to do.
1724   auto IntrinsicID = CountZeros->getIntrinsicID();
1725   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1726       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1727     return false;
1728 
1729   // Only handle legal scalar cases. Anything else requires too much work.
1730   Type *Ty = CountZeros->getType();
1731   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1732   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1733     return false;
1734 
1735   // The intrinsic will be sunk behind a compare against zero and branch.
1736   BasicBlock *StartBlock = CountZeros->getParent();
1737   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1738 
1739   // Create another block after the count zero intrinsic. A PHI will be added
1740   // in this block to select the result of the intrinsic or the bit-width
1741   // constant if the input to the intrinsic is zero.
1742   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1743   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1744 
1745   // Set up a builder to create a compare, conditional branch, and PHI.
1746   IRBuilder<> Builder(CountZeros->getContext());
1747   Builder.SetInsertPoint(StartBlock->getTerminator());
1748   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1749 
1750   // Replace the unconditional branch that was created by the first split with
1751   // a compare against zero and a conditional branch.
1752   Value *Zero = Constant::getNullValue(Ty);
1753   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1754   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1755   StartBlock->getTerminator()->eraseFromParent();
1756 
1757   // Create a PHI in the end block to select either the output of the intrinsic
1758   // or the bit width of the operand.
1759   Builder.SetInsertPoint(&EndBlock->front());
1760   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1761   CountZeros->replaceAllUsesWith(PN);
1762   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1763   PN->addIncoming(BitWidth, StartBlock);
1764   PN->addIncoming(CountZeros, CallBlock);
1765 
1766   // We are explicitly handling the zero case, so we can set the intrinsic's
1767   // undefined zero argument to 'true'. This will also prevent reprocessing the
1768   // intrinsic; we only despeculate when a zero input is defined.
1769   CountZeros->setArgOperand(1, Builder.getTrue());
1770   ModifiedDT = true;
1771   return true;
1772 }
1773 
1774 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1775   BasicBlock *BB = CI->getParent();
1776 
1777   // Lower inline assembly if we can.
1778   // If we found an inline asm expession, and if the target knows how to
1779   // lower it to normal LLVM code, do so now.
1780   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1781     if (TLI->ExpandInlineAsm(CI)) {
1782       // Avoid invalidating the iterator.
1783       CurInstIterator = BB->begin();
1784       // Avoid processing instructions out of order, which could cause
1785       // reuse before a value is defined.
1786       SunkAddrs.clear();
1787       return true;
1788     }
1789     // Sink address computing for memory operands into the block.
1790     if (optimizeInlineAsmInst(CI))
1791       return true;
1792   }
1793 
1794   // Align the pointer arguments to this call if the target thinks it's a good
1795   // idea
1796   unsigned MinSize, PrefAlign;
1797   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1798     for (auto &Arg : CI->arg_operands()) {
1799       // We want to align both objects whose address is used directly and
1800       // objects whose address is used in casts and GEPs, though it only makes
1801       // sense for GEPs if the offset is a multiple of the desired alignment and
1802       // if size - offset meets the size threshold.
1803       if (!Arg->getType()->isPointerTy())
1804         continue;
1805       APInt Offset(DL->getIndexSizeInBits(
1806                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1807                    0);
1808       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1809       uint64_t Offset2 = Offset.getLimitedValue();
1810       if ((Offset2 & (PrefAlign-1)) != 0)
1811         continue;
1812       AllocaInst *AI;
1813       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1814           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1815         AI->setAlignment(MaybeAlign(PrefAlign));
1816       // Global variables can only be aligned if they are defined in this
1817       // object (i.e. they are uniquely initialized in this object), and
1818       // over-aligning global variables that have an explicit section is
1819       // forbidden.
1820       GlobalVariable *GV;
1821       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1822           GV->getPointerAlignment(*DL) < PrefAlign &&
1823           DL->getTypeAllocSize(GV->getValueType()) >=
1824               MinSize + Offset2)
1825         GV->setAlignment(MaybeAlign(PrefAlign));
1826     }
1827     // If this is a memcpy (or similar) then we may be able to improve the
1828     // alignment
1829     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1830       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1831       if (DestAlign > MI->getDestAlignment())
1832         MI->setDestAlignment(DestAlign);
1833       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1834         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1835         if (SrcAlign > MTI->getSourceAlignment())
1836           MTI->setSourceAlignment(SrcAlign);
1837       }
1838     }
1839   }
1840 
1841   // If we have a cold call site, try to sink addressing computation into the
1842   // cold block.  This interacts with our handling for loads and stores to
1843   // ensure that we can fold all uses of a potential addressing computation
1844   // into their uses.  TODO: generalize this to work over profiling data
1845   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1846     for (auto &Arg : CI->arg_operands()) {
1847       if (!Arg->getType()->isPointerTy())
1848         continue;
1849       unsigned AS = Arg->getType()->getPointerAddressSpace();
1850       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1851     }
1852 
1853   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1854   if (II) {
1855     switch (II->getIntrinsicID()) {
1856     default: break;
1857     case Intrinsic::experimental_widenable_condition: {
1858       // Give up on future widening oppurtunties so that we can fold away dead
1859       // paths and merge blocks before going into block-local instruction
1860       // selection.
1861       if (II->use_empty()) {
1862         II->eraseFromParent();
1863         return true;
1864       }
1865       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1866       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1867         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1868       });
1869       return true;
1870     }
1871     case Intrinsic::objectsize:
1872       llvm_unreachable("llvm.objectsize.* should have been lowered already");
1873     case Intrinsic::is_constant:
1874       llvm_unreachable("llvm.is.constant.* should have been lowered already");
1875     case Intrinsic::aarch64_stlxr:
1876     case Intrinsic::aarch64_stxr: {
1877       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1878       if (!ExtVal || !ExtVal->hasOneUse() ||
1879           ExtVal->getParent() == CI->getParent())
1880         return false;
1881       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1882       ExtVal->moveBefore(CI);
1883       // Mark this instruction as "inserted by CGP", so that other
1884       // optimizations don't touch it.
1885       InsertedInsts.insert(ExtVal);
1886       return true;
1887     }
1888 
1889     case Intrinsic::launder_invariant_group:
1890     case Intrinsic::strip_invariant_group: {
1891       Value *ArgVal = II->getArgOperand(0);
1892       auto it = LargeOffsetGEPMap.find(II);
1893       if (it != LargeOffsetGEPMap.end()) {
1894           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1895           // Make sure not to have to deal with iterator invalidation
1896           // after possibly adding ArgVal to LargeOffsetGEPMap.
1897           auto GEPs = std::move(it->second);
1898           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1899           LargeOffsetGEPMap.erase(II);
1900       }
1901 
1902       II->replaceAllUsesWith(ArgVal);
1903       II->eraseFromParent();
1904       return true;
1905     }
1906     case Intrinsic::cttz:
1907     case Intrinsic::ctlz:
1908       // If counting zeros is expensive, try to avoid it.
1909       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1910     }
1911 
1912     if (TLI) {
1913       SmallVector<Value*, 2> PtrOps;
1914       Type *AccessTy;
1915       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1916         while (!PtrOps.empty()) {
1917           Value *PtrVal = PtrOps.pop_back_val();
1918           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1919           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1920             return true;
1921         }
1922     }
1923   }
1924 
1925   // From here on out we're working with named functions.
1926   if (!CI->getCalledFunction()) return false;
1927 
1928   // Lower all default uses of _chk calls.  This is very similar
1929   // to what InstCombineCalls does, but here we are only lowering calls
1930   // to fortified library functions (e.g. __memcpy_chk) that have the default
1931   // "don't know" as the objectsize.  Anything else should be left alone.
1932   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1933   if (Value *V = Simplifier.optimizeCall(CI)) {
1934     CI->replaceAllUsesWith(V);
1935     CI->eraseFromParent();
1936     return true;
1937   }
1938 
1939   return false;
1940 }
1941 
1942 /// Look for opportunities to duplicate return instructions to the predecessor
1943 /// to enable tail call optimizations. The case it is currently looking for is:
1944 /// @code
1945 /// bb0:
1946 ///   %tmp0 = tail call i32 @f0()
1947 ///   br label %return
1948 /// bb1:
1949 ///   %tmp1 = tail call i32 @f1()
1950 ///   br label %return
1951 /// bb2:
1952 ///   %tmp2 = tail call i32 @f2()
1953 ///   br label %return
1954 /// return:
1955 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1956 ///   ret i32 %retval
1957 /// @endcode
1958 ///
1959 /// =>
1960 ///
1961 /// @code
1962 /// bb0:
1963 ///   %tmp0 = tail call i32 @f0()
1964 ///   ret i32 %tmp0
1965 /// bb1:
1966 ///   %tmp1 = tail call i32 @f1()
1967 ///   ret i32 %tmp1
1968 /// bb2:
1969 ///   %tmp2 = tail call i32 @f2()
1970 ///   ret i32 %tmp2
1971 /// @endcode
1972 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
1973   if (!TLI)
1974     return false;
1975 
1976   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1977   if (!RetI)
1978     return false;
1979 
1980   PHINode *PN = nullptr;
1981   BitCastInst *BCI = nullptr;
1982   Value *V = RetI->getReturnValue();
1983   if (V) {
1984     BCI = dyn_cast<BitCastInst>(V);
1985     if (BCI)
1986       V = BCI->getOperand(0);
1987 
1988     PN = dyn_cast<PHINode>(V);
1989     if (!PN)
1990       return false;
1991   }
1992 
1993   if (PN && PN->getParent() != BB)
1994     return false;
1995 
1996   // Make sure there are no instructions between the PHI and return, or that the
1997   // return is the first instruction in the block.
1998   if (PN) {
1999     BasicBlock::iterator BI = BB->begin();
2000     // Skip over debug and the bitcast.
2001     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2002     if (&*BI != RetI)
2003       return false;
2004   } else {
2005     BasicBlock::iterator BI = BB->begin();
2006     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2007     if (&*BI != RetI)
2008       return false;
2009   }
2010 
2011   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2012   /// call.
2013   const Function *F = BB->getParent();
2014   SmallVector<BasicBlock*, 4> TailCallBBs;
2015   if (PN) {
2016     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2017       // Look through bitcasts.
2018       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2019       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2020       BasicBlock *PredBB = PN->getIncomingBlock(I);
2021       // Make sure the phi value is indeed produced by the tail call.
2022       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2023           TLI->mayBeEmittedAsTailCall(CI) &&
2024           attributesPermitTailCall(F, CI, RetI, *TLI))
2025         TailCallBBs.push_back(PredBB);
2026     }
2027   } else {
2028     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2029     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2030       if (!VisitedBBs.insert(*PI).second)
2031         continue;
2032 
2033       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2034       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2035       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2036       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2037       if (RI == RE)
2038         continue;
2039 
2040       CallInst *CI = dyn_cast<CallInst>(&*RI);
2041       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2042           attributesPermitTailCall(F, CI, RetI, *TLI))
2043         TailCallBBs.push_back(*PI);
2044     }
2045   }
2046 
2047   bool Changed = false;
2048   for (auto const &TailCallBB : TailCallBBs) {
2049     // Make sure the call instruction is followed by an unconditional branch to
2050     // the return block.
2051     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2052     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2053       continue;
2054 
2055     // Duplicate the return into TailCallBB.
2056     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2057     ModifiedDT = Changed = true;
2058     ++NumRetsDup;
2059   }
2060 
2061   // If we eliminated all predecessors of the block, delete the block now.
2062   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2063     BB->eraseFromParent();
2064 
2065   return Changed;
2066 }
2067 
2068 //===----------------------------------------------------------------------===//
2069 // Memory Optimization
2070 //===----------------------------------------------------------------------===//
2071 
2072 namespace {
2073 
2074 /// This is an extended version of TargetLowering::AddrMode
2075 /// which holds actual Value*'s for register values.
2076 struct ExtAddrMode : public TargetLowering::AddrMode {
2077   Value *BaseReg = nullptr;
2078   Value *ScaledReg = nullptr;
2079   Value *OriginalValue = nullptr;
2080   bool InBounds = true;
2081 
2082   enum FieldName {
2083     NoField        = 0x00,
2084     BaseRegField   = 0x01,
2085     BaseGVField    = 0x02,
2086     BaseOffsField  = 0x04,
2087     ScaledRegField = 0x08,
2088     ScaleField     = 0x10,
2089     MultipleFields = 0xff
2090   };
2091 
2092 
2093   ExtAddrMode() = default;
2094 
2095   void print(raw_ostream &OS) const;
2096   void dump() const;
2097 
2098   FieldName compare(const ExtAddrMode &other) {
2099     // First check that the types are the same on each field, as differing types
2100     // is something we can't cope with later on.
2101     if (BaseReg && other.BaseReg &&
2102         BaseReg->getType() != other.BaseReg->getType())
2103       return MultipleFields;
2104     if (BaseGV && other.BaseGV &&
2105         BaseGV->getType() != other.BaseGV->getType())
2106       return MultipleFields;
2107     if (ScaledReg && other.ScaledReg &&
2108         ScaledReg->getType() != other.ScaledReg->getType())
2109       return MultipleFields;
2110 
2111     // Conservatively reject 'inbounds' mismatches.
2112     if (InBounds != other.InBounds)
2113       return MultipleFields;
2114 
2115     // Check each field to see if it differs.
2116     unsigned Result = NoField;
2117     if (BaseReg != other.BaseReg)
2118       Result |= BaseRegField;
2119     if (BaseGV != other.BaseGV)
2120       Result |= BaseGVField;
2121     if (BaseOffs != other.BaseOffs)
2122       Result |= BaseOffsField;
2123     if (ScaledReg != other.ScaledReg)
2124       Result |= ScaledRegField;
2125     // Don't count 0 as being a different scale, because that actually means
2126     // unscaled (which will already be counted by having no ScaledReg).
2127     if (Scale && other.Scale && Scale != other.Scale)
2128       Result |= ScaleField;
2129 
2130     if (countPopulation(Result) > 1)
2131       return MultipleFields;
2132     else
2133       return static_cast<FieldName>(Result);
2134   }
2135 
2136   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2137   // with no offset.
2138   bool isTrivial() {
2139     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2140     // trivial if at most one of these terms is nonzero, except that BaseGV and
2141     // BaseReg both being zero actually means a null pointer value, which we
2142     // consider to be 'non-zero' here.
2143     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2144   }
2145 
2146   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2147     switch (Field) {
2148     default:
2149       return nullptr;
2150     case BaseRegField:
2151       return BaseReg;
2152     case BaseGVField:
2153       return BaseGV;
2154     case ScaledRegField:
2155       return ScaledReg;
2156     case BaseOffsField:
2157       return ConstantInt::get(IntPtrTy, BaseOffs);
2158     }
2159   }
2160 
2161   void SetCombinedField(FieldName Field, Value *V,
2162                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2163     switch (Field) {
2164     default:
2165       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2166       break;
2167     case ExtAddrMode::BaseRegField:
2168       BaseReg = V;
2169       break;
2170     case ExtAddrMode::BaseGVField:
2171       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2172       // in the BaseReg field.
2173       assert(BaseReg == nullptr);
2174       BaseReg = V;
2175       BaseGV = nullptr;
2176       break;
2177     case ExtAddrMode::ScaledRegField:
2178       ScaledReg = V;
2179       // If we have a mix of scaled and unscaled addrmodes then we want scale
2180       // to be the scale and not zero.
2181       if (!Scale)
2182         for (const ExtAddrMode &AM : AddrModes)
2183           if (AM.Scale) {
2184             Scale = AM.Scale;
2185             break;
2186           }
2187       break;
2188     case ExtAddrMode::BaseOffsField:
2189       // The offset is no longer a constant, so it goes in ScaledReg with a
2190       // scale of 1.
2191       assert(ScaledReg == nullptr);
2192       ScaledReg = V;
2193       Scale = 1;
2194       BaseOffs = 0;
2195       break;
2196     }
2197   }
2198 };
2199 
2200 } // end anonymous namespace
2201 
2202 #ifndef NDEBUG
2203 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2204   AM.print(OS);
2205   return OS;
2206 }
2207 #endif
2208 
2209 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2210 void ExtAddrMode::print(raw_ostream &OS) const {
2211   bool NeedPlus = false;
2212   OS << "[";
2213   if (InBounds)
2214     OS << "inbounds ";
2215   if (BaseGV) {
2216     OS << (NeedPlus ? " + " : "")
2217        << "GV:";
2218     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2219     NeedPlus = true;
2220   }
2221 
2222   if (BaseOffs) {
2223     OS << (NeedPlus ? " + " : "")
2224        << BaseOffs;
2225     NeedPlus = true;
2226   }
2227 
2228   if (BaseReg) {
2229     OS << (NeedPlus ? " + " : "")
2230        << "Base:";
2231     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2232     NeedPlus = true;
2233   }
2234   if (Scale) {
2235     OS << (NeedPlus ? " + " : "")
2236        << Scale << "*";
2237     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2238   }
2239 
2240   OS << ']';
2241 }
2242 
2243 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2244   print(dbgs());
2245   dbgs() << '\n';
2246 }
2247 #endif
2248 
2249 namespace {
2250 
2251 /// This class provides transaction based operation on the IR.
2252 /// Every change made through this class is recorded in the internal state and
2253 /// can be undone (rollback) until commit is called.
2254 class TypePromotionTransaction {
2255   /// This represents the common interface of the individual transaction.
2256   /// Each class implements the logic for doing one specific modification on
2257   /// the IR via the TypePromotionTransaction.
2258   class TypePromotionAction {
2259   protected:
2260     /// The Instruction modified.
2261     Instruction *Inst;
2262 
2263   public:
2264     /// Constructor of the action.
2265     /// The constructor performs the related action on the IR.
2266     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2267 
2268     virtual ~TypePromotionAction() = default;
2269 
2270     /// Undo the modification done by this action.
2271     /// When this method is called, the IR must be in the same state as it was
2272     /// before this action was applied.
2273     /// \pre Undoing the action works if and only if the IR is in the exact same
2274     /// state as it was directly after this action was applied.
2275     virtual void undo() = 0;
2276 
2277     /// Advocate every change made by this action.
2278     /// When the results on the IR of the action are to be kept, it is important
2279     /// to call this function, otherwise hidden information may be kept forever.
2280     virtual void commit() {
2281       // Nothing to be done, this action is not doing anything.
2282     }
2283   };
2284 
2285   /// Utility to remember the position of an instruction.
2286   class InsertionHandler {
2287     /// Position of an instruction.
2288     /// Either an instruction:
2289     /// - Is the first in a basic block: BB is used.
2290     /// - Has a previous instruction: PrevInst is used.
2291     union {
2292       Instruction *PrevInst;
2293       BasicBlock *BB;
2294     } Point;
2295 
2296     /// Remember whether or not the instruction had a previous instruction.
2297     bool HasPrevInstruction;
2298 
2299   public:
2300     /// Record the position of \p Inst.
2301     InsertionHandler(Instruction *Inst) {
2302       BasicBlock::iterator It = Inst->getIterator();
2303       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2304       if (HasPrevInstruction)
2305         Point.PrevInst = &*--It;
2306       else
2307         Point.BB = Inst->getParent();
2308     }
2309 
2310     /// Insert \p Inst at the recorded position.
2311     void insert(Instruction *Inst) {
2312       if (HasPrevInstruction) {
2313         if (Inst->getParent())
2314           Inst->removeFromParent();
2315         Inst->insertAfter(Point.PrevInst);
2316       } else {
2317         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2318         if (Inst->getParent())
2319           Inst->moveBefore(Position);
2320         else
2321           Inst->insertBefore(Position);
2322       }
2323     }
2324   };
2325 
2326   /// Move an instruction before another.
2327   class InstructionMoveBefore : public TypePromotionAction {
2328     /// Original position of the instruction.
2329     InsertionHandler Position;
2330 
2331   public:
2332     /// Move \p Inst before \p Before.
2333     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2334         : TypePromotionAction(Inst), Position(Inst) {
2335       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2336                         << "\n");
2337       Inst->moveBefore(Before);
2338     }
2339 
2340     /// Move the instruction back to its original position.
2341     void undo() override {
2342       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2343       Position.insert(Inst);
2344     }
2345   };
2346 
2347   /// Set the operand of an instruction with a new value.
2348   class OperandSetter : public TypePromotionAction {
2349     /// Original operand of the instruction.
2350     Value *Origin;
2351 
2352     /// Index of the modified instruction.
2353     unsigned Idx;
2354 
2355   public:
2356     /// Set \p Idx operand of \p Inst with \p NewVal.
2357     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2358         : TypePromotionAction(Inst), Idx(Idx) {
2359       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2360                         << "for:" << *Inst << "\n"
2361                         << "with:" << *NewVal << "\n");
2362       Origin = Inst->getOperand(Idx);
2363       Inst->setOperand(Idx, NewVal);
2364     }
2365 
2366     /// Restore the original value of the instruction.
2367     void undo() override {
2368       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2369                         << "for: " << *Inst << "\n"
2370                         << "with: " << *Origin << "\n");
2371       Inst->setOperand(Idx, Origin);
2372     }
2373   };
2374 
2375   /// Hide the operands of an instruction.
2376   /// Do as if this instruction was not using any of its operands.
2377   class OperandsHider : public TypePromotionAction {
2378     /// The list of original operands.
2379     SmallVector<Value *, 4> OriginalValues;
2380 
2381   public:
2382     /// Remove \p Inst from the uses of the operands of \p Inst.
2383     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2384       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2385       unsigned NumOpnds = Inst->getNumOperands();
2386       OriginalValues.reserve(NumOpnds);
2387       for (unsigned It = 0; It < NumOpnds; ++It) {
2388         // Save the current operand.
2389         Value *Val = Inst->getOperand(It);
2390         OriginalValues.push_back(Val);
2391         // Set a dummy one.
2392         // We could use OperandSetter here, but that would imply an overhead
2393         // that we are not willing to pay.
2394         Inst->setOperand(It, UndefValue::get(Val->getType()));
2395       }
2396     }
2397 
2398     /// Restore the original list of uses.
2399     void undo() override {
2400       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2401       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2402         Inst->setOperand(It, OriginalValues[It]);
2403     }
2404   };
2405 
2406   /// Build a truncate instruction.
2407   class TruncBuilder : public TypePromotionAction {
2408     Value *Val;
2409 
2410   public:
2411     /// Build a truncate instruction of \p Opnd producing a \p Ty
2412     /// result.
2413     /// trunc Opnd to Ty.
2414     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2415       IRBuilder<> Builder(Opnd);
2416       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2417       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2418     }
2419 
2420     /// Get the built value.
2421     Value *getBuiltValue() { return Val; }
2422 
2423     /// Remove the built instruction.
2424     void undo() override {
2425       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2426       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2427         IVal->eraseFromParent();
2428     }
2429   };
2430 
2431   /// Build a sign extension instruction.
2432   class SExtBuilder : public TypePromotionAction {
2433     Value *Val;
2434 
2435   public:
2436     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2437     /// result.
2438     /// sext Opnd to Ty.
2439     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2440         : TypePromotionAction(InsertPt) {
2441       IRBuilder<> Builder(InsertPt);
2442       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2443       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2444     }
2445 
2446     /// Get the built value.
2447     Value *getBuiltValue() { return Val; }
2448 
2449     /// Remove the built instruction.
2450     void undo() override {
2451       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2452       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2453         IVal->eraseFromParent();
2454     }
2455   };
2456 
2457   /// Build a zero extension instruction.
2458   class ZExtBuilder : public TypePromotionAction {
2459     Value *Val;
2460 
2461   public:
2462     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2463     /// result.
2464     /// zext Opnd to Ty.
2465     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2466         : TypePromotionAction(InsertPt) {
2467       IRBuilder<> Builder(InsertPt);
2468       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2469       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2470     }
2471 
2472     /// Get the built value.
2473     Value *getBuiltValue() { return Val; }
2474 
2475     /// Remove the built instruction.
2476     void undo() override {
2477       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2478       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2479         IVal->eraseFromParent();
2480     }
2481   };
2482 
2483   /// Mutate an instruction to another type.
2484   class TypeMutator : public TypePromotionAction {
2485     /// Record the original type.
2486     Type *OrigTy;
2487 
2488   public:
2489     /// Mutate the type of \p Inst into \p NewTy.
2490     TypeMutator(Instruction *Inst, Type *NewTy)
2491         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2492       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2493                         << "\n");
2494       Inst->mutateType(NewTy);
2495     }
2496 
2497     /// Mutate the instruction back to its original type.
2498     void undo() override {
2499       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2500                         << "\n");
2501       Inst->mutateType(OrigTy);
2502     }
2503   };
2504 
2505   /// Replace the uses of an instruction by another instruction.
2506   class UsesReplacer : public TypePromotionAction {
2507     /// Helper structure to keep track of the replaced uses.
2508     struct InstructionAndIdx {
2509       /// The instruction using the instruction.
2510       Instruction *Inst;
2511 
2512       /// The index where this instruction is used for Inst.
2513       unsigned Idx;
2514 
2515       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2516           : Inst(Inst), Idx(Idx) {}
2517     };
2518 
2519     /// Keep track of the original uses (pair Instruction, Index).
2520     SmallVector<InstructionAndIdx, 4> OriginalUses;
2521     /// Keep track of the debug users.
2522     SmallVector<DbgValueInst *, 1> DbgValues;
2523 
2524     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2525 
2526   public:
2527     /// Replace all the use of \p Inst by \p New.
2528     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2529       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2530                         << "\n");
2531       // Record the original uses.
2532       for (Use &U : Inst->uses()) {
2533         Instruction *UserI = cast<Instruction>(U.getUser());
2534         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2535       }
2536       // Record the debug uses separately. They are not in the instruction's
2537       // use list, but they are replaced by RAUW.
2538       findDbgValues(DbgValues, Inst);
2539 
2540       // Now, we can replace the uses.
2541       Inst->replaceAllUsesWith(New);
2542     }
2543 
2544     /// Reassign the original uses of Inst to Inst.
2545     void undo() override {
2546       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2547       for (use_iterator UseIt = OriginalUses.begin(),
2548                         EndIt = OriginalUses.end();
2549            UseIt != EndIt; ++UseIt) {
2550         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2551       }
2552       // RAUW has replaced all original uses with references to the new value,
2553       // including the debug uses. Since we are undoing the replacements,
2554       // the original debug uses must also be reinstated to maintain the
2555       // correctness and utility of debug value instructions.
2556       for (auto *DVI: DbgValues) {
2557         LLVMContext &Ctx = Inst->getType()->getContext();
2558         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2559         DVI->setOperand(0, MV);
2560       }
2561     }
2562   };
2563 
2564   /// Remove an instruction from the IR.
2565   class InstructionRemover : public TypePromotionAction {
2566     /// Original position of the instruction.
2567     InsertionHandler Inserter;
2568 
2569     /// Helper structure to hide all the link to the instruction. In other
2570     /// words, this helps to do as if the instruction was removed.
2571     OperandsHider Hider;
2572 
2573     /// Keep track of the uses replaced, if any.
2574     UsesReplacer *Replacer = nullptr;
2575 
2576     /// Keep track of instructions removed.
2577     SetOfInstrs &RemovedInsts;
2578 
2579   public:
2580     /// Remove all reference of \p Inst and optionally replace all its
2581     /// uses with New.
2582     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2583     /// \pre If !Inst->use_empty(), then New != nullptr
2584     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2585                        Value *New = nullptr)
2586         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2587           RemovedInsts(RemovedInsts) {
2588       if (New)
2589         Replacer = new UsesReplacer(Inst, New);
2590       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2591       RemovedInsts.insert(Inst);
2592       /// The instructions removed here will be freed after completing
2593       /// optimizeBlock() for all blocks as we need to keep track of the
2594       /// removed instructions during promotion.
2595       Inst->removeFromParent();
2596     }
2597 
2598     ~InstructionRemover() override { delete Replacer; }
2599 
2600     /// Resurrect the instruction and reassign it to the proper uses if
2601     /// new value was provided when build this action.
2602     void undo() override {
2603       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2604       Inserter.insert(Inst);
2605       if (Replacer)
2606         Replacer->undo();
2607       Hider.undo();
2608       RemovedInsts.erase(Inst);
2609     }
2610   };
2611 
2612 public:
2613   /// Restoration point.
2614   /// The restoration point is a pointer to an action instead of an iterator
2615   /// because the iterator may be invalidated but not the pointer.
2616   using ConstRestorationPt = const TypePromotionAction *;
2617 
2618   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2619       : RemovedInsts(RemovedInsts) {}
2620 
2621   /// Advocate every changes made in that transaction.
2622   void commit();
2623 
2624   /// Undo all the changes made after the given point.
2625   void rollback(ConstRestorationPt Point);
2626 
2627   /// Get the current restoration point.
2628   ConstRestorationPt getRestorationPoint() const;
2629 
2630   /// \name API for IR modification with state keeping to support rollback.
2631   /// @{
2632   /// Same as Instruction::setOperand.
2633   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2634 
2635   /// Same as Instruction::eraseFromParent.
2636   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2637 
2638   /// Same as Value::replaceAllUsesWith.
2639   void replaceAllUsesWith(Instruction *Inst, Value *New);
2640 
2641   /// Same as Value::mutateType.
2642   void mutateType(Instruction *Inst, Type *NewTy);
2643 
2644   /// Same as IRBuilder::createTrunc.
2645   Value *createTrunc(Instruction *Opnd, Type *Ty);
2646 
2647   /// Same as IRBuilder::createSExt.
2648   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2649 
2650   /// Same as IRBuilder::createZExt.
2651   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2652 
2653   /// Same as Instruction::moveBefore.
2654   void moveBefore(Instruction *Inst, Instruction *Before);
2655   /// @}
2656 
2657 private:
2658   /// The ordered list of actions made so far.
2659   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2660 
2661   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2662 
2663   SetOfInstrs &RemovedInsts;
2664 };
2665 
2666 } // end anonymous namespace
2667 
2668 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2669                                           Value *NewVal) {
2670   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2671       Inst, Idx, NewVal));
2672 }
2673 
2674 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2675                                                 Value *NewVal) {
2676   Actions.push_back(
2677       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2678           Inst, RemovedInsts, NewVal));
2679 }
2680 
2681 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2682                                                   Value *New) {
2683   Actions.push_back(
2684       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2685 }
2686 
2687 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2688   Actions.push_back(
2689       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2690 }
2691 
2692 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2693                                              Type *Ty) {
2694   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2695   Value *Val = Ptr->getBuiltValue();
2696   Actions.push_back(std::move(Ptr));
2697   return Val;
2698 }
2699 
2700 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2701                                             Value *Opnd, Type *Ty) {
2702   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2703   Value *Val = Ptr->getBuiltValue();
2704   Actions.push_back(std::move(Ptr));
2705   return Val;
2706 }
2707 
2708 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2709                                             Value *Opnd, Type *Ty) {
2710   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2711   Value *Val = Ptr->getBuiltValue();
2712   Actions.push_back(std::move(Ptr));
2713   return Val;
2714 }
2715 
2716 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2717                                           Instruction *Before) {
2718   Actions.push_back(
2719       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2720           Inst, Before));
2721 }
2722 
2723 TypePromotionTransaction::ConstRestorationPt
2724 TypePromotionTransaction::getRestorationPoint() const {
2725   return !Actions.empty() ? Actions.back().get() : nullptr;
2726 }
2727 
2728 void TypePromotionTransaction::commit() {
2729   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2730        ++It)
2731     (*It)->commit();
2732   Actions.clear();
2733 }
2734 
2735 void TypePromotionTransaction::rollback(
2736     TypePromotionTransaction::ConstRestorationPt Point) {
2737   while (!Actions.empty() && Point != Actions.back().get()) {
2738     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2739     Curr->undo();
2740   }
2741 }
2742 
2743 namespace {
2744 
2745 /// A helper class for matching addressing modes.
2746 ///
2747 /// This encapsulates the logic for matching the target-legal addressing modes.
2748 class AddressingModeMatcher {
2749   SmallVectorImpl<Instruction*> &AddrModeInsts;
2750   const TargetLowering &TLI;
2751   const TargetRegisterInfo &TRI;
2752   const DataLayout &DL;
2753 
2754   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2755   /// the memory instruction that we're computing this address for.
2756   Type *AccessTy;
2757   unsigned AddrSpace;
2758   Instruction *MemoryInst;
2759 
2760   /// This is the addressing mode that we're building up. This is
2761   /// part of the return value of this addressing mode matching stuff.
2762   ExtAddrMode &AddrMode;
2763 
2764   /// The instructions inserted by other CodeGenPrepare optimizations.
2765   const SetOfInstrs &InsertedInsts;
2766 
2767   /// A map from the instructions to their type before promotion.
2768   InstrToOrigTy &PromotedInsts;
2769 
2770   /// The ongoing transaction where every action should be registered.
2771   TypePromotionTransaction &TPT;
2772 
2773   // A GEP which has too large offset to be folded into the addressing mode.
2774   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2775 
2776   /// This is set to true when we should not do profitability checks.
2777   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2778   bool IgnoreProfitability;
2779 
2780   AddressingModeMatcher(
2781       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2782       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2783       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2784       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2785       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2786       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2787         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2788         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2789         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2790     IgnoreProfitability = false;
2791   }
2792 
2793 public:
2794   /// Find the maximal addressing mode that a load/store of V can fold,
2795   /// give an access type of AccessTy.  This returns a list of involved
2796   /// instructions in AddrModeInsts.
2797   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2798   /// optimizations.
2799   /// \p PromotedInsts maps the instructions to their type before promotion.
2800   /// \p The ongoing transaction where every action should be registered.
2801   static ExtAddrMode
2802   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2803         SmallVectorImpl<Instruction *> &AddrModeInsts,
2804         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2805         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2806         TypePromotionTransaction &TPT,
2807         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2808     ExtAddrMode Result;
2809 
2810     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2811                                          MemoryInst, Result, InsertedInsts,
2812                                          PromotedInsts, TPT, LargeOffsetGEP)
2813                        .matchAddr(V, 0);
2814     (void)Success; assert(Success && "Couldn't select *anything*?");
2815     return Result;
2816   }
2817 
2818 private:
2819   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2820   bool matchAddr(Value *Addr, unsigned Depth);
2821   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2822                           bool *MovedAway = nullptr);
2823   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2824                                             ExtAddrMode &AMBefore,
2825                                             ExtAddrMode &AMAfter);
2826   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2827   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2828                              Value *PromotedOperand) const;
2829 };
2830 
2831 class PhiNodeSet;
2832 
2833 /// An iterator for PhiNodeSet.
2834 class PhiNodeSetIterator {
2835   PhiNodeSet * const Set;
2836   size_t CurrentIndex = 0;
2837 
2838 public:
2839   /// The constructor. Start should point to either a valid element, or be equal
2840   /// to the size of the underlying SmallVector of the PhiNodeSet.
2841   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2842   PHINode * operator*() const;
2843   PhiNodeSetIterator& operator++();
2844   bool operator==(const PhiNodeSetIterator &RHS) const;
2845   bool operator!=(const PhiNodeSetIterator &RHS) const;
2846 };
2847 
2848 /// Keeps a set of PHINodes.
2849 ///
2850 /// This is a minimal set implementation for a specific use case:
2851 /// It is very fast when there are very few elements, but also provides good
2852 /// performance when there are many. It is similar to SmallPtrSet, but also
2853 /// provides iteration by insertion order, which is deterministic and stable
2854 /// across runs. It is also similar to SmallSetVector, but provides removing
2855 /// elements in O(1) time. This is achieved by not actually removing the element
2856 /// from the underlying vector, so comes at the cost of using more memory, but
2857 /// that is fine, since PhiNodeSets are used as short lived objects.
2858 class PhiNodeSet {
2859   friend class PhiNodeSetIterator;
2860 
2861   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2862   using iterator =  PhiNodeSetIterator;
2863 
2864   /// Keeps the elements in the order of their insertion in the underlying
2865   /// vector. To achieve constant time removal, it never deletes any element.
2866   SmallVector<PHINode *, 32> NodeList;
2867 
2868   /// Keeps the elements in the underlying set implementation. This (and not the
2869   /// NodeList defined above) is the source of truth on whether an element
2870   /// is actually in the collection.
2871   MapType NodeMap;
2872 
2873   /// Points to the first valid (not deleted) element when the set is not empty
2874   /// and the value is not zero. Equals to the size of the underlying vector
2875   /// when the set is empty. When the value is 0, as in the beginning, the
2876   /// first element may or may not be valid.
2877   size_t FirstValidElement = 0;
2878 
2879 public:
2880   /// Inserts a new element to the collection.
2881   /// \returns true if the element is actually added, i.e. was not in the
2882   /// collection before the operation.
2883   bool insert(PHINode *Ptr) {
2884     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2885       NodeList.push_back(Ptr);
2886       return true;
2887     }
2888     return false;
2889   }
2890 
2891   /// Removes the element from the collection.
2892   /// \returns whether the element is actually removed, i.e. was in the
2893   /// collection before the operation.
2894   bool erase(PHINode *Ptr) {
2895     auto it = NodeMap.find(Ptr);
2896     if (it != NodeMap.end()) {
2897       NodeMap.erase(Ptr);
2898       SkipRemovedElements(FirstValidElement);
2899       return true;
2900     }
2901     return false;
2902   }
2903 
2904   /// Removes all elements and clears the collection.
2905   void clear() {
2906     NodeMap.clear();
2907     NodeList.clear();
2908     FirstValidElement = 0;
2909   }
2910 
2911   /// \returns an iterator that will iterate the elements in the order of
2912   /// insertion.
2913   iterator begin() {
2914     if (FirstValidElement == 0)
2915       SkipRemovedElements(FirstValidElement);
2916     return PhiNodeSetIterator(this, FirstValidElement);
2917   }
2918 
2919   /// \returns an iterator that points to the end of the collection.
2920   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2921 
2922   /// Returns the number of elements in the collection.
2923   size_t size() const {
2924     return NodeMap.size();
2925   }
2926 
2927   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2928   size_t count(PHINode *Ptr) const {
2929     return NodeMap.count(Ptr);
2930   }
2931 
2932 private:
2933   /// Updates the CurrentIndex so that it will point to a valid element.
2934   ///
2935   /// If the element of NodeList at CurrentIndex is valid, it does not
2936   /// change it. If there are no more valid elements, it updates CurrentIndex
2937   /// to point to the end of the NodeList.
2938   void SkipRemovedElements(size_t &CurrentIndex) {
2939     while (CurrentIndex < NodeList.size()) {
2940       auto it = NodeMap.find(NodeList[CurrentIndex]);
2941       // If the element has been deleted and added again later, NodeMap will
2942       // point to a different index, so CurrentIndex will still be invalid.
2943       if (it != NodeMap.end() && it->second == CurrentIndex)
2944         break;
2945       ++CurrentIndex;
2946     }
2947   }
2948 };
2949 
2950 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2951     : Set(Set), CurrentIndex(Start) {}
2952 
2953 PHINode * PhiNodeSetIterator::operator*() const {
2954   assert(CurrentIndex < Set->NodeList.size() &&
2955          "PhiNodeSet access out of range");
2956   return Set->NodeList[CurrentIndex];
2957 }
2958 
2959 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2960   assert(CurrentIndex < Set->NodeList.size() &&
2961          "PhiNodeSet access out of range");
2962   ++CurrentIndex;
2963   Set->SkipRemovedElements(CurrentIndex);
2964   return *this;
2965 }
2966 
2967 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2968   return CurrentIndex == RHS.CurrentIndex;
2969 }
2970 
2971 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2972   return !((*this) == RHS);
2973 }
2974 
2975 /// Keep track of simplification of Phi nodes.
2976 /// Accept the set of all phi nodes and erase phi node from this set
2977 /// if it is simplified.
2978 class SimplificationTracker {
2979   DenseMap<Value *, Value *> Storage;
2980   const SimplifyQuery &SQ;
2981   // Tracks newly created Phi nodes. The elements are iterated by insertion
2982   // order.
2983   PhiNodeSet AllPhiNodes;
2984   // Tracks newly created Select nodes.
2985   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2986 
2987 public:
2988   SimplificationTracker(const SimplifyQuery &sq)
2989       : SQ(sq) {}
2990 
2991   Value *Get(Value *V) {
2992     do {
2993       auto SV = Storage.find(V);
2994       if (SV == Storage.end())
2995         return V;
2996       V = SV->second;
2997     } while (true);
2998   }
2999 
3000   Value *Simplify(Value *Val) {
3001     SmallVector<Value *, 32> WorkList;
3002     SmallPtrSet<Value *, 32> Visited;
3003     WorkList.push_back(Val);
3004     while (!WorkList.empty()) {
3005       auto P = WorkList.pop_back_val();
3006       if (!Visited.insert(P).second)
3007         continue;
3008       if (auto *PI = dyn_cast<Instruction>(P))
3009         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3010           for (auto *U : PI->users())
3011             WorkList.push_back(cast<Value>(U));
3012           Put(PI, V);
3013           PI->replaceAllUsesWith(V);
3014           if (auto *PHI = dyn_cast<PHINode>(PI))
3015             AllPhiNodes.erase(PHI);
3016           if (auto *Select = dyn_cast<SelectInst>(PI))
3017             AllSelectNodes.erase(Select);
3018           PI->eraseFromParent();
3019         }
3020     }
3021     return Get(Val);
3022   }
3023 
3024   void Put(Value *From, Value *To) {
3025     Storage.insert({ From, To });
3026   }
3027 
3028   void ReplacePhi(PHINode *From, PHINode *To) {
3029     Value* OldReplacement = Get(From);
3030     while (OldReplacement != From) {
3031       From = To;
3032       To = dyn_cast<PHINode>(OldReplacement);
3033       OldReplacement = Get(From);
3034     }
3035     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3036     Put(From, To);
3037     From->replaceAllUsesWith(To);
3038     AllPhiNodes.erase(From);
3039     From->eraseFromParent();
3040   }
3041 
3042   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3043 
3044   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3045 
3046   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3047 
3048   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3049 
3050   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3051 
3052   void destroyNewNodes(Type *CommonType) {
3053     // For safe erasing, replace the uses with dummy value first.
3054     auto Dummy = UndefValue::get(CommonType);
3055     for (auto I : AllPhiNodes) {
3056       I->replaceAllUsesWith(Dummy);
3057       I->eraseFromParent();
3058     }
3059     AllPhiNodes.clear();
3060     for (auto I : AllSelectNodes) {
3061       I->replaceAllUsesWith(Dummy);
3062       I->eraseFromParent();
3063     }
3064     AllSelectNodes.clear();
3065   }
3066 };
3067 
3068 /// A helper class for combining addressing modes.
3069 class AddressingModeCombiner {
3070   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3071   typedef std::pair<PHINode *, PHINode *> PHIPair;
3072 
3073 private:
3074   /// The addressing modes we've collected.
3075   SmallVector<ExtAddrMode, 16> AddrModes;
3076 
3077   /// The field in which the AddrModes differ, when we have more than one.
3078   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3079 
3080   /// Are the AddrModes that we have all just equal to their original values?
3081   bool AllAddrModesTrivial = true;
3082 
3083   /// Common Type for all different fields in addressing modes.
3084   Type *CommonType;
3085 
3086   /// SimplifyQuery for simplifyInstruction utility.
3087   const SimplifyQuery &SQ;
3088 
3089   /// Original Address.
3090   Value *Original;
3091 
3092 public:
3093   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3094       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3095 
3096   /// Get the combined AddrMode
3097   const ExtAddrMode &getAddrMode() const {
3098     return AddrModes[0];
3099   }
3100 
3101   /// Add a new AddrMode if it's compatible with the AddrModes we already
3102   /// have.
3103   /// \return True iff we succeeded in doing so.
3104   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3105     // Take note of if we have any non-trivial AddrModes, as we need to detect
3106     // when all AddrModes are trivial as then we would introduce a phi or select
3107     // which just duplicates what's already there.
3108     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3109 
3110     // If this is the first addrmode then everything is fine.
3111     if (AddrModes.empty()) {
3112       AddrModes.emplace_back(NewAddrMode);
3113       return true;
3114     }
3115 
3116     // Figure out how different this is from the other address modes, which we
3117     // can do just by comparing against the first one given that we only care
3118     // about the cumulative difference.
3119     ExtAddrMode::FieldName ThisDifferentField =
3120       AddrModes[0].compare(NewAddrMode);
3121     if (DifferentField == ExtAddrMode::NoField)
3122       DifferentField = ThisDifferentField;
3123     else if (DifferentField != ThisDifferentField)
3124       DifferentField = ExtAddrMode::MultipleFields;
3125 
3126     // If NewAddrMode differs in more than one dimension we cannot handle it.
3127     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3128 
3129     // If Scale Field is different then we reject.
3130     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3131 
3132     // We also must reject the case when base offset is different and
3133     // scale reg is not null, we cannot handle this case due to merge of
3134     // different offsets will be used as ScaleReg.
3135     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3136                               !NewAddrMode.ScaledReg);
3137 
3138     // We also must reject the case when GV is different and BaseReg installed
3139     // due to we want to use base reg as a merge of GV values.
3140     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3141                               !NewAddrMode.HasBaseReg);
3142 
3143     // Even if NewAddMode is the same we still need to collect it due to
3144     // original value is different. And later we will need all original values
3145     // as anchors during finding the common Phi node.
3146     if (CanHandle)
3147       AddrModes.emplace_back(NewAddrMode);
3148     else
3149       AddrModes.clear();
3150 
3151     return CanHandle;
3152   }
3153 
3154   /// Combine the addressing modes we've collected into a single
3155   /// addressing mode.
3156   /// \return True iff we successfully combined them or we only had one so
3157   /// didn't need to combine them anyway.
3158   bool combineAddrModes() {
3159     // If we have no AddrModes then they can't be combined.
3160     if (AddrModes.size() == 0)
3161       return false;
3162 
3163     // A single AddrMode can trivially be combined.
3164     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3165       return true;
3166 
3167     // If the AddrModes we collected are all just equal to the value they are
3168     // derived from then combining them wouldn't do anything useful.
3169     if (AllAddrModesTrivial)
3170       return false;
3171 
3172     if (!addrModeCombiningAllowed())
3173       return false;
3174 
3175     // Build a map between <original value, basic block where we saw it> to
3176     // value of base register.
3177     // Bail out if there is no common type.
3178     FoldAddrToValueMapping Map;
3179     if (!initializeMap(Map))
3180       return false;
3181 
3182     Value *CommonValue = findCommon(Map);
3183     if (CommonValue)
3184       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3185     return CommonValue != nullptr;
3186   }
3187 
3188 private:
3189   /// Initialize Map with anchor values. For address seen
3190   /// we set the value of different field saw in this address.
3191   /// At the same time we find a common type for different field we will
3192   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3193   /// Return false if there is no common type found.
3194   bool initializeMap(FoldAddrToValueMapping &Map) {
3195     // Keep track of keys where the value is null. We will need to replace it
3196     // with constant null when we know the common type.
3197     SmallVector<Value *, 2> NullValue;
3198     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3199     for (auto &AM : AddrModes) {
3200       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3201       if (DV) {
3202         auto *Type = DV->getType();
3203         if (CommonType && CommonType != Type)
3204           return false;
3205         CommonType = Type;
3206         Map[AM.OriginalValue] = DV;
3207       } else {
3208         NullValue.push_back(AM.OriginalValue);
3209       }
3210     }
3211     assert(CommonType && "At least one non-null value must be!");
3212     for (auto *V : NullValue)
3213       Map[V] = Constant::getNullValue(CommonType);
3214     return true;
3215   }
3216 
3217   /// We have mapping between value A and other value B where B was a field in
3218   /// addressing mode represented by A. Also we have an original value C
3219   /// representing an address we start with. Traversing from C through phi and
3220   /// selects we ended up with A's in a map. This utility function tries to find
3221   /// a value V which is a field in addressing mode C and traversing through phi
3222   /// nodes and selects we will end up in corresponded values B in a map.
3223   /// The utility will create a new Phi/Selects if needed.
3224   // The simple example looks as follows:
3225   // BB1:
3226   //   p1 = b1 + 40
3227   //   br cond BB2, BB3
3228   // BB2:
3229   //   p2 = b2 + 40
3230   //   br BB3
3231   // BB3:
3232   //   p = phi [p1, BB1], [p2, BB2]
3233   //   v = load p
3234   // Map is
3235   //   p1 -> b1
3236   //   p2 -> b2
3237   // Request is
3238   //   p -> ?
3239   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3240   Value *findCommon(FoldAddrToValueMapping &Map) {
3241     // Tracks the simplification of newly created phi nodes. The reason we use
3242     // this mapping is because we will add new created Phi nodes in AddrToBase.
3243     // Simplification of Phi nodes is recursive, so some Phi node may
3244     // be simplified after we added it to AddrToBase. In reality this
3245     // simplification is possible only if original phi/selects were not
3246     // simplified yet.
3247     // Using this mapping we can find the current value in AddrToBase.
3248     SimplificationTracker ST(SQ);
3249 
3250     // First step, DFS to create PHI nodes for all intermediate blocks.
3251     // Also fill traverse order for the second step.
3252     SmallVector<Value *, 32> TraverseOrder;
3253     InsertPlaceholders(Map, TraverseOrder, ST);
3254 
3255     // Second Step, fill new nodes by merged values and simplify if possible.
3256     FillPlaceholders(Map, TraverseOrder, ST);
3257 
3258     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3259       ST.destroyNewNodes(CommonType);
3260       return nullptr;
3261     }
3262 
3263     // Now we'd like to match New Phi nodes to existed ones.
3264     unsigned PhiNotMatchedCount = 0;
3265     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3266       ST.destroyNewNodes(CommonType);
3267       return nullptr;
3268     }
3269 
3270     auto *Result = ST.Get(Map.find(Original)->second);
3271     if (Result) {
3272       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3273       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3274     }
3275     return Result;
3276   }
3277 
3278   /// Try to match PHI node to Candidate.
3279   /// Matcher tracks the matched Phi nodes.
3280   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3281                     SmallSetVector<PHIPair, 8> &Matcher,
3282                     PhiNodeSet &PhiNodesToMatch) {
3283     SmallVector<PHIPair, 8> WorkList;
3284     Matcher.insert({ PHI, Candidate });
3285     SmallSet<PHINode *, 8> MatchedPHIs;
3286     MatchedPHIs.insert(PHI);
3287     WorkList.push_back({ PHI, Candidate });
3288     SmallSet<PHIPair, 8> Visited;
3289     while (!WorkList.empty()) {
3290       auto Item = WorkList.pop_back_val();
3291       if (!Visited.insert(Item).second)
3292         continue;
3293       // We iterate over all incoming values to Phi to compare them.
3294       // If values are different and both of them Phi and the first one is a
3295       // Phi we added (subject to match) and both of them is in the same basic
3296       // block then we can match our pair if values match. So we state that
3297       // these values match and add it to work list to verify that.
3298       for (auto B : Item.first->blocks()) {
3299         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3300         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3301         if (FirstValue == SecondValue)
3302           continue;
3303 
3304         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3305         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3306 
3307         // One of them is not Phi or
3308         // The first one is not Phi node from the set we'd like to match or
3309         // Phi nodes from different basic blocks then
3310         // we will not be able to match.
3311         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3312             FirstPhi->getParent() != SecondPhi->getParent())
3313           return false;
3314 
3315         // If we already matched them then continue.
3316         if (Matcher.count({ FirstPhi, SecondPhi }))
3317           continue;
3318         // So the values are different and does not match. So we need them to
3319         // match. (But we register no more than one match per PHI node, so that
3320         // we won't later try to replace them twice.)
3321         if (MatchedPHIs.insert(FirstPhi).second)
3322           Matcher.insert({ FirstPhi, SecondPhi });
3323         // But me must check it.
3324         WorkList.push_back({ FirstPhi, SecondPhi });
3325       }
3326     }
3327     return true;
3328   }
3329 
3330   /// For the given set of PHI nodes (in the SimplificationTracker) try
3331   /// to find their equivalents.
3332   /// Returns false if this matching fails and creation of new Phi is disabled.
3333   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3334                    unsigned &PhiNotMatchedCount) {
3335     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3336     // order, so the replacements (ReplacePhi) are also done in a deterministic
3337     // order.
3338     SmallSetVector<PHIPair, 8> Matched;
3339     SmallPtrSet<PHINode *, 8> WillNotMatch;
3340     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3341     while (PhiNodesToMatch.size()) {
3342       PHINode *PHI = *PhiNodesToMatch.begin();
3343 
3344       // Add us, if no Phi nodes in the basic block we do not match.
3345       WillNotMatch.clear();
3346       WillNotMatch.insert(PHI);
3347 
3348       // Traverse all Phis until we found equivalent or fail to do that.
3349       bool IsMatched = false;
3350       for (auto &P : PHI->getParent()->phis()) {
3351         if (&P == PHI)
3352           continue;
3353         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3354           break;
3355         // If it does not match, collect all Phi nodes from matcher.
3356         // if we end up with no match, them all these Phi nodes will not match
3357         // later.
3358         for (auto M : Matched)
3359           WillNotMatch.insert(M.first);
3360         Matched.clear();
3361       }
3362       if (IsMatched) {
3363         // Replace all matched values and erase them.
3364         for (auto MV : Matched)
3365           ST.ReplacePhi(MV.first, MV.second);
3366         Matched.clear();
3367         continue;
3368       }
3369       // If we are not allowed to create new nodes then bail out.
3370       if (!AllowNewPhiNodes)
3371         return false;
3372       // Just remove all seen values in matcher. They will not match anything.
3373       PhiNotMatchedCount += WillNotMatch.size();
3374       for (auto *P : WillNotMatch)
3375         PhiNodesToMatch.erase(P);
3376     }
3377     return true;
3378   }
3379   /// Fill the placeholders with values from predecessors and simplify them.
3380   void FillPlaceholders(FoldAddrToValueMapping &Map,
3381                         SmallVectorImpl<Value *> &TraverseOrder,
3382                         SimplificationTracker &ST) {
3383     while (!TraverseOrder.empty()) {
3384       Value *Current = TraverseOrder.pop_back_val();
3385       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3386       Value *V = Map[Current];
3387 
3388       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3389         // CurrentValue also must be Select.
3390         auto *CurrentSelect = cast<SelectInst>(Current);
3391         auto *TrueValue = CurrentSelect->getTrueValue();
3392         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3393         Select->setTrueValue(ST.Get(Map[TrueValue]));
3394         auto *FalseValue = CurrentSelect->getFalseValue();
3395         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3396         Select->setFalseValue(ST.Get(Map[FalseValue]));
3397       } else {
3398         // Must be a Phi node then.
3399         auto *PHI = cast<PHINode>(V);
3400         // Fill the Phi node with values from predecessors.
3401         for (auto B : predecessors(PHI->getParent())) {
3402           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3403           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3404           PHI->addIncoming(ST.Get(Map[PV]), B);
3405         }
3406       }
3407       Map[Current] = ST.Simplify(V);
3408     }
3409   }
3410 
3411   /// Starting from original value recursively iterates over def-use chain up to
3412   /// known ending values represented in a map. For each traversed phi/select
3413   /// inserts a placeholder Phi or Select.
3414   /// Reports all new created Phi/Select nodes by adding them to set.
3415   /// Also reports and order in what values have been traversed.
3416   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3417                           SmallVectorImpl<Value *> &TraverseOrder,
3418                           SimplificationTracker &ST) {
3419     SmallVector<Value *, 32> Worklist;
3420     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3421            "Address must be a Phi or Select node");
3422     auto *Dummy = UndefValue::get(CommonType);
3423     Worklist.push_back(Original);
3424     while (!Worklist.empty()) {
3425       Value *Current = Worklist.pop_back_val();
3426       // if it is already visited or it is an ending value then skip it.
3427       if (Map.find(Current) != Map.end())
3428         continue;
3429       TraverseOrder.push_back(Current);
3430 
3431       // CurrentValue must be a Phi node or select. All others must be covered
3432       // by anchors.
3433       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3434         // Is it OK to get metadata from OrigSelect?!
3435         // Create a Select placeholder with dummy value.
3436         SelectInst *Select = SelectInst::Create(
3437             CurrentSelect->getCondition(), Dummy, Dummy,
3438             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3439         Map[Current] = Select;
3440         ST.insertNewSelect(Select);
3441         // We are interested in True and False values.
3442         Worklist.push_back(CurrentSelect->getTrueValue());
3443         Worklist.push_back(CurrentSelect->getFalseValue());
3444       } else {
3445         // It must be a Phi node then.
3446         PHINode *CurrentPhi = cast<PHINode>(Current);
3447         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3448         PHINode *PHI =
3449             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3450         Map[Current] = PHI;
3451         ST.insertNewPhi(PHI);
3452         for (Value *P : CurrentPhi->incoming_values())
3453           Worklist.push_back(P);
3454       }
3455     }
3456   }
3457 
3458   bool addrModeCombiningAllowed() {
3459     if (DisableComplexAddrModes)
3460       return false;
3461     switch (DifferentField) {
3462     default:
3463       return false;
3464     case ExtAddrMode::BaseRegField:
3465       return AddrSinkCombineBaseReg;
3466     case ExtAddrMode::BaseGVField:
3467       return AddrSinkCombineBaseGV;
3468     case ExtAddrMode::BaseOffsField:
3469       return AddrSinkCombineBaseOffs;
3470     case ExtAddrMode::ScaledRegField:
3471       return AddrSinkCombineScaledReg;
3472     }
3473   }
3474 };
3475 } // end anonymous namespace
3476 
3477 /// Try adding ScaleReg*Scale to the current addressing mode.
3478 /// Return true and update AddrMode if this addr mode is legal for the target,
3479 /// false if not.
3480 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3481                                              unsigned Depth) {
3482   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3483   // mode.  Just process that directly.
3484   if (Scale == 1)
3485     return matchAddr(ScaleReg, Depth);
3486 
3487   // If the scale is 0, it takes nothing to add this.
3488   if (Scale == 0)
3489     return true;
3490 
3491   // If we already have a scale of this value, we can add to it, otherwise, we
3492   // need an available scale field.
3493   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3494     return false;
3495 
3496   ExtAddrMode TestAddrMode = AddrMode;
3497 
3498   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3499   // [A+B + A*7] -> [B+A*8].
3500   TestAddrMode.Scale += Scale;
3501   TestAddrMode.ScaledReg = ScaleReg;
3502 
3503   // If the new address isn't legal, bail out.
3504   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3505     return false;
3506 
3507   // It was legal, so commit it.
3508   AddrMode = TestAddrMode;
3509 
3510   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3511   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3512   // X*Scale + C*Scale to addr mode.
3513   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3514   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3515       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3516     TestAddrMode.InBounds = false;
3517     TestAddrMode.ScaledReg = AddLHS;
3518     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3519 
3520     // If this addressing mode is legal, commit it and remember that we folded
3521     // this instruction.
3522     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3523       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3524       AddrMode = TestAddrMode;
3525       return true;
3526     }
3527   }
3528 
3529   // Otherwise, not (x+c)*scale, just return what we have.
3530   return true;
3531 }
3532 
3533 /// This is a little filter, which returns true if an addressing computation
3534 /// involving I might be folded into a load/store accessing it.
3535 /// This doesn't need to be perfect, but needs to accept at least
3536 /// the set of instructions that MatchOperationAddr can.
3537 static bool MightBeFoldableInst(Instruction *I) {
3538   switch (I->getOpcode()) {
3539   case Instruction::BitCast:
3540   case Instruction::AddrSpaceCast:
3541     // Don't touch identity bitcasts.
3542     if (I->getType() == I->getOperand(0)->getType())
3543       return false;
3544     return I->getType()->isIntOrPtrTy();
3545   case Instruction::PtrToInt:
3546     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3547     return true;
3548   case Instruction::IntToPtr:
3549     // We know the input is intptr_t, so this is foldable.
3550     return true;
3551   case Instruction::Add:
3552     return true;
3553   case Instruction::Mul:
3554   case Instruction::Shl:
3555     // Can only handle X*C and X << C.
3556     return isa<ConstantInt>(I->getOperand(1));
3557   case Instruction::GetElementPtr:
3558     return true;
3559   default:
3560     return false;
3561   }
3562 }
3563 
3564 /// Check whether or not \p Val is a legal instruction for \p TLI.
3565 /// \note \p Val is assumed to be the product of some type promotion.
3566 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3567 /// to be legal, as the non-promoted value would have had the same state.
3568 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3569                                        const DataLayout &DL, Value *Val) {
3570   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3571   if (!PromotedInst)
3572     return false;
3573   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3574   // If the ISDOpcode is undefined, it was undefined before the promotion.
3575   if (!ISDOpcode)
3576     return true;
3577   // Otherwise, check if the promoted instruction is legal or not.
3578   return TLI.isOperationLegalOrCustom(
3579       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3580 }
3581 
3582 namespace {
3583 
3584 /// Hepler class to perform type promotion.
3585 class TypePromotionHelper {
3586   /// Utility function to add a promoted instruction \p ExtOpnd to
3587   /// \p PromotedInsts and record the type of extension we have seen.
3588   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3589                               Instruction *ExtOpnd,
3590                               bool IsSExt) {
3591     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3592     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3593     if (It != PromotedInsts.end()) {
3594       // If the new extension is same as original, the information in
3595       // PromotedInsts[ExtOpnd] is still correct.
3596       if (It->second.getInt() == ExtTy)
3597         return;
3598 
3599       // Now the new extension is different from old extension, we make
3600       // the type information invalid by setting extension type to
3601       // BothExtension.
3602       ExtTy = BothExtension;
3603     }
3604     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3605   }
3606 
3607   /// Utility function to query the original type of instruction \p Opnd
3608   /// with a matched extension type. If the extension doesn't match, we
3609   /// cannot use the information we had on the original type.
3610   /// BothExtension doesn't match any extension type.
3611   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3612                                  Instruction *Opnd,
3613                                  bool IsSExt) {
3614     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3615     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3616     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3617       return It->second.getPointer();
3618     return nullptr;
3619   }
3620 
3621   /// Utility function to check whether or not a sign or zero extension
3622   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3623   /// either using the operands of \p Inst or promoting \p Inst.
3624   /// The type of the extension is defined by \p IsSExt.
3625   /// In other words, check if:
3626   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3627   /// #1 Promotion applies:
3628   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3629   /// #2 Operand reuses:
3630   /// ext opnd1 to ConsideredExtType.
3631   /// \p PromotedInsts maps the instructions to their type before promotion.
3632   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3633                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3634 
3635   /// Utility function to determine if \p OpIdx should be promoted when
3636   /// promoting \p Inst.
3637   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3638     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3639   }
3640 
3641   /// Utility function to promote the operand of \p Ext when this
3642   /// operand is a promotable trunc or sext or zext.
3643   /// \p PromotedInsts maps the instructions to their type before promotion.
3644   /// \p CreatedInstsCost[out] contains the cost of all instructions
3645   /// created to promote the operand of Ext.
3646   /// Newly added extensions are inserted in \p Exts.
3647   /// Newly added truncates are inserted in \p Truncs.
3648   /// Should never be called directly.
3649   /// \return The promoted value which is used instead of Ext.
3650   static Value *promoteOperandForTruncAndAnyExt(
3651       Instruction *Ext, TypePromotionTransaction &TPT,
3652       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3653       SmallVectorImpl<Instruction *> *Exts,
3654       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3655 
3656   /// Utility function to promote the operand of \p Ext when this
3657   /// operand is promotable and is not a supported trunc or sext.
3658   /// \p PromotedInsts maps the instructions to their type before promotion.
3659   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3660   /// created to promote the operand of Ext.
3661   /// Newly added extensions are inserted in \p Exts.
3662   /// Newly added truncates are inserted in \p Truncs.
3663   /// Should never be called directly.
3664   /// \return The promoted value which is used instead of Ext.
3665   static Value *promoteOperandForOther(Instruction *Ext,
3666                                        TypePromotionTransaction &TPT,
3667                                        InstrToOrigTy &PromotedInsts,
3668                                        unsigned &CreatedInstsCost,
3669                                        SmallVectorImpl<Instruction *> *Exts,
3670                                        SmallVectorImpl<Instruction *> *Truncs,
3671                                        const TargetLowering &TLI, bool IsSExt);
3672 
3673   /// \see promoteOperandForOther.
3674   static Value *signExtendOperandForOther(
3675       Instruction *Ext, TypePromotionTransaction &TPT,
3676       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3677       SmallVectorImpl<Instruction *> *Exts,
3678       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3679     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3680                                   Exts, Truncs, TLI, true);
3681   }
3682 
3683   /// \see promoteOperandForOther.
3684   static Value *zeroExtendOperandForOther(
3685       Instruction *Ext, TypePromotionTransaction &TPT,
3686       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3687       SmallVectorImpl<Instruction *> *Exts,
3688       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3689     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3690                                   Exts, Truncs, TLI, false);
3691   }
3692 
3693 public:
3694   /// Type for the utility function that promotes the operand of Ext.
3695   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3696                             InstrToOrigTy &PromotedInsts,
3697                             unsigned &CreatedInstsCost,
3698                             SmallVectorImpl<Instruction *> *Exts,
3699                             SmallVectorImpl<Instruction *> *Truncs,
3700                             const TargetLowering &TLI);
3701 
3702   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3703   /// action to promote the operand of \p Ext instead of using Ext.
3704   /// \return NULL if no promotable action is possible with the current
3705   /// sign extension.
3706   /// \p InsertedInsts keeps track of all the instructions inserted by the
3707   /// other CodeGenPrepare optimizations. This information is important
3708   /// because we do not want to promote these instructions as CodeGenPrepare
3709   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3710   /// \p PromotedInsts maps the instructions to their type before promotion.
3711   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3712                           const TargetLowering &TLI,
3713                           const InstrToOrigTy &PromotedInsts);
3714 };
3715 
3716 } // end anonymous namespace
3717 
3718 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3719                                         Type *ConsideredExtType,
3720                                         const InstrToOrigTy &PromotedInsts,
3721                                         bool IsSExt) {
3722   // The promotion helper does not know how to deal with vector types yet.
3723   // To be able to fix that, we would need to fix the places where we
3724   // statically extend, e.g., constants and such.
3725   if (Inst->getType()->isVectorTy())
3726     return false;
3727 
3728   // We can always get through zext.
3729   if (isa<ZExtInst>(Inst))
3730     return true;
3731 
3732   // sext(sext) is ok too.
3733   if (IsSExt && isa<SExtInst>(Inst))
3734     return true;
3735 
3736   // We can get through binary operator, if it is legal. In other words, the
3737   // binary operator must have a nuw or nsw flag.
3738   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3739   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3740       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3741        (IsSExt && BinOp->hasNoSignedWrap())))
3742     return true;
3743 
3744   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3745   if ((Inst->getOpcode() == Instruction::And ||
3746        Inst->getOpcode() == Instruction::Or))
3747     return true;
3748 
3749   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3750   if (Inst->getOpcode() == Instruction::Xor) {
3751     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3752     // Make sure it is not a NOT.
3753     if (Cst && !Cst->getValue().isAllOnesValue())
3754       return true;
3755   }
3756 
3757   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3758   // It may change a poisoned value into a regular value, like
3759   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3760   //          poisoned value                    regular value
3761   // It should be OK since undef covers valid value.
3762   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3763     return true;
3764 
3765   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3766   // It may change a poisoned value into a regular value, like
3767   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3768   //          poisoned value                    regular value
3769   // It should be OK since undef covers valid value.
3770   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3771     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
3772     if (ExtInst->hasOneUse()) {
3773       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
3774       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3775         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3776         if (Cst &&
3777             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3778           return true;
3779       }
3780     }
3781   }
3782 
3783   // Check if we can do the following simplification.
3784   // ext(trunc(opnd)) --> ext(opnd)
3785   if (!isa<TruncInst>(Inst))
3786     return false;
3787 
3788   Value *OpndVal = Inst->getOperand(0);
3789   // Check if we can use this operand in the extension.
3790   // If the type is larger than the result type of the extension, we cannot.
3791   if (!OpndVal->getType()->isIntegerTy() ||
3792       OpndVal->getType()->getIntegerBitWidth() >
3793           ConsideredExtType->getIntegerBitWidth())
3794     return false;
3795 
3796   // If the operand of the truncate is not an instruction, we will not have
3797   // any information on the dropped bits.
3798   // (Actually we could for constant but it is not worth the extra logic).
3799   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3800   if (!Opnd)
3801     return false;
3802 
3803   // Check if the source of the type is narrow enough.
3804   // I.e., check that trunc just drops extended bits of the same kind of
3805   // the extension.
3806   // #1 get the type of the operand and check the kind of the extended bits.
3807   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3808   if (OpndType)
3809     ;
3810   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3811     OpndType = Opnd->getOperand(0)->getType();
3812   else
3813     return false;
3814 
3815   // #2 check that the truncate just drops extended bits.
3816   return Inst->getType()->getIntegerBitWidth() >=
3817          OpndType->getIntegerBitWidth();
3818 }
3819 
3820 TypePromotionHelper::Action TypePromotionHelper::getAction(
3821     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3822     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3823   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3824          "Unexpected instruction type");
3825   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3826   Type *ExtTy = Ext->getType();
3827   bool IsSExt = isa<SExtInst>(Ext);
3828   // If the operand of the extension is not an instruction, we cannot
3829   // get through.
3830   // If it, check we can get through.
3831   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3832     return nullptr;
3833 
3834   // Do not promote if the operand has been added by codegenprepare.
3835   // Otherwise, it means we are undoing an optimization that is likely to be
3836   // redone, thus causing potential infinite loop.
3837   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3838     return nullptr;
3839 
3840   // SExt or Trunc instructions.
3841   // Return the related handler.
3842   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3843       isa<ZExtInst>(ExtOpnd))
3844     return promoteOperandForTruncAndAnyExt;
3845 
3846   // Regular instruction.
3847   // Abort early if we will have to insert non-free instructions.
3848   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3849     return nullptr;
3850   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3851 }
3852 
3853 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3854     Instruction *SExt, TypePromotionTransaction &TPT,
3855     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3856     SmallVectorImpl<Instruction *> *Exts,
3857     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3858   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3859   // get through it and this method should not be called.
3860   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3861   Value *ExtVal = SExt;
3862   bool HasMergedNonFreeExt = false;
3863   if (isa<ZExtInst>(SExtOpnd)) {
3864     // Replace s|zext(zext(opnd))
3865     // => zext(opnd).
3866     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3867     Value *ZExt =
3868         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3869     TPT.replaceAllUsesWith(SExt, ZExt);
3870     TPT.eraseInstruction(SExt);
3871     ExtVal = ZExt;
3872   } else {
3873     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3874     // => z|sext(opnd).
3875     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3876   }
3877   CreatedInstsCost = 0;
3878 
3879   // Remove dead code.
3880   if (SExtOpnd->use_empty())
3881     TPT.eraseInstruction(SExtOpnd);
3882 
3883   // Check if the extension is still needed.
3884   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3885   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3886     if (ExtInst) {
3887       if (Exts)
3888         Exts->push_back(ExtInst);
3889       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3890     }
3891     return ExtVal;
3892   }
3893 
3894   // At this point we have: ext ty opnd to ty.
3895   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3896   Value *NextVal = ExtInst->getOperand(0);
3897   TPT.eraseInstruction(ExtInst, NextVal);
3898   return NextVal;
3899 }
3900 
3901 Value *TypePromotionHelper::promoteOperandForOther(
3902     Instruction *Ext, TypePromotionTransaction &TPT,
3903     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3904     SmallVectorImpl<Instruction *> *Exts,
3905     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3906     bool IsSExt) {
3907   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3908   // get through it and this method should not be called.
3909   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3910   CreatedInstsCost = 0;
3911   if (!ExtOpnd->hasOneUse()) {
3912     // ExtOpnd will be promoted.
3913     // All its uses, but Ext, will need to use a truncated value of the
3914     // promoted version.
3915     // Create the truncate now.
3916     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3917     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3918       // Insert it just after the definition.
3919       ITrunc->moveAfter(ExtOpnd);
3920       if (Truncs)
3921         Truncs->push_back(ITrunc);
3922     }
3923 
3924     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3925     // Restore the operand of Ext (which has been replaced by the previous call
3926     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3927     TPT.setOperand(Ext, 0, ExtOpnd);
3928   }
3929 
3930   // Get through the Instruction:
3931   // 1. Update its type.
3932   // 2. Replace the uses of Ext by Inst.
3933   // 3. Extend each operand that needs to be extended.
3934 
3935   // Remember the original type of the instruction before promotion.
3936   // This is useful to know that the high bits are sign extended bits.
3937   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3938   // Step #1.
3939   TPT.mutateType(ExtOpnd, Ext->getType());
3940   // Step #2.
3941   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3942   // Step #3.
3943   Instruction *ExtForOpnd = Ext;
3944 
3945   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3946   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3947        ++OpIdx) {
3948     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3949     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3950         !shouldExtOperand(ExtOpnd, OpIdx)) {
3951       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3952       continue;
3953     }
3954     // Check if we can statically extend the operand.
3955     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3956     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3957       LLVM_DEBUG(dbgs() << "Statically extend\n");
3958       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3959       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3960                             : Cst->getValue().zext(BitWidth);
3961       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3962       continue;
3963     }
3964     // UndefValue are typed, so we have to statically sign extend them.
3965     if (isa<UndefValue>(Opnd)) {
3966       LLVM_DEBUG(dbgs() << "Statically extend\n");
3967       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3968       continue;
3969     }
3970 
3971     // Otherwise we have to explicitly sign extend the operand.
3972     // Check if Ext was reused to extend an operand.
3973     if (!ExtForOpnd) {
3974       // If yes, create a new one.
3975       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3976       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3977         : TPT.createZExt(Ext, Opnd, Ext->getType());
3978       if (!isa<Instruction>(ValForExtOpnd)) {
3979         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3980         continue;
3981       }
3982       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3983     }
3984     if (Exts)
3985       Exts->push_back(ExtForOpnd);
3986     TPT.setOperand(ExtForOpnd, 0, Opnd);
3987 
3988     // Move the sign extension before the insertion point.
3989     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3990     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3991     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3992     // If more sext are required, new instructions will have to be created.
3993     ExtForOpnd = nullptr;
3994   }
3995   if (ExtForOpnd == Ext) {
3996     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3997     TPT.eraseInstruction(Ext);
3998   }
3999   return ExtOpnd;
4000 }
4001 
4002 /// Check whether or not promoting an instruction to a wider type is profitable.
4003 /// \p NewCost gives the cost of extension instructions created by the
4004 /// promotion.
4005 /// \p OldCost gives the cost of extension instructions before the promotion
4006 /// plus the number of instructions that have been
4007 /// matched in the addressing mode the promotion.
4008 /// \p PromotedOperand is the value that has been promoted.
4009 /// \return True if the promotion is profitable, false otherwise.
4010 bool AddressingModeMatcher::isPromotionProfitable(
4011     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4012   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4013                     << '\n');
4014   // The cost of the new extensions is greater than the cost of the
4015   // old extension plus what we folded.
4016   // This is not profitable.
4017   if (NewCost > OldCost)
4018     return false;
4019   if (NewCost < OldCost)
4020     return true;
4021   // The promotion is neutral but it may help folding the sign extension in
4022   // loads for instance.
4023   // Check that we did not create an illegal instruction.
4024   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4025 }
4026 
4027 /// Given an instruction or constant expr, see if we can fold the operation
4028 /// into the addressing mode. If so, update the addressing mode and return
4029 /// true, otherwise return false without modifying AddrMode.
4030 /// If \p MovedAway is not NULL, it contains the information of whether or
4031 /// not AddrInst has to be folded into the addressing mode on success.
4032 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4033 /// because it has been moved away.
4034 /// Thus AddrInst must not be added in the matched instructions.
4035 /// This state can happen when AddrInst is a sext, since it may be moved away.
4036 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4037 /// not be referenced anymore.
4038 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4039                                                unsigned Depth,
4040                                                bool *MovedAway) {
4041   // Avoid exponential behavior on extremely deep expression trees.
4042   if (Depth >= 5) return false;
4043 
4044   // By default, all matched instructions stay in place.
4045   if (MovedAway)
4046     *MovedAway = false;
4047 
4048   switch (Opcode) {
4049   case Instruction::PtrToInt:
4050     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4051     return matchAddr(AddrInst->getOperand(0), Depth);
4052   case Instruction::IntToPtr: {
4053     auto AS = AddrInst->getType()->getPointerAddressSpace();
4054     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4055     // This inttoptr is a no-op if the integer type is pointer sized.
4056     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4057       return matchAddr(AddrInst->getOperand(0), Depth);
4058     return false;
4059   }
4060   case Instruction::BitCast:
4061     // BitCast is always a noop, and we can handle it as long as it is
4062     // int->int or pointer->pointer (we don't want int<->fp or something).
4063     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4064         // Don't touch identity bitcasts.  These were probably put here by LSR,
4065         // and we don't want to mess around with them.  Assume it knows what it
4066         // is doing.
4067         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4068       return matchAddr(AddrInst->getOperand(0), Depth);
4069     return false;
4070   case Instruction::AddrSpaceCast: {
4071     unsigned SrcAS
4072       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4073     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4074     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4075       return matchAddr(AddrInst->getOperand(0), Depth);
4076     return false;
4077   }
4078   case Instruction::Add: {
4079     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4080     ExtAddrMode BackupAddrMode = AddrMode;
4081     unsigned OldSize = AddrModeInsts.size();
4082     // Start a transaction at this point.
4083     // The LHS may match but not the RHS.
4084     // Therefore, we need a higher level restoration point to undo partially
4085     // matched operation.
4086     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4087         TPT.getRestorationPoint();
4088 
4089     AddrMode.InBounds = false;
4090     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4091         matchAddr(AddrInst->getOperand(0), Depth+1))
4092       return true;
4093 
4094     // Restore the old addr mode info.
4095     AddrMode = BackupAddrMode;
4096     AddrModeInsts.resize(OldSize);
4097     TPT.rollback(LastKnownGood);
4098 
4099     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4100     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4101         matchAddr(AddrInst->getOperand(1), Depth+1))
4102       return true;
4103 
4104     // Otherwise we definitely can't merge the ADD in.
4105     AddrMode = BackupAddrMode;
4106     AddrModeInsts.resize(OldSize);
4107     TPT.rollback(LastKnownGood);
4108     break;
4109   }
4110   //case Instruction::Or:
4111   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4112   //break;
4113   case Instruction::Mul:
4114   case Instruction::Shl: {
4115     // Can only handle X*C and X << C.
4116     AddrMode.InBounds = false;
4117     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4118     if (!RHS || RHS->getBitWidth() > 64)
4119       return false;
4120     int64_t Scale = RHS->getSExtValue();
4121     if (Opcode == Instruction::Shl)
4122       Scale = 1LL << Scale;
4123 
4124     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4125   }
4126   case Instruction::GetElementPtr: {
4127     // Scan the GEP.  We check it if it contains constant offsets and at most
4128     // one variable offset.
4129     int VariableOperand = -1;
4130     unsigned VariableScale = 0;
4131 
4132     int64_t ConstantOffset = 0;
4133     gep_type_iterator GTI = gep_type_begin(AddrInst);
4134     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4135       if (StructType *STy = GTI.getStructTypeOrNull()) {
4136         const StructLayout *SL = DL.getStructLayout(STy);
4137         unsigned Idx =
4138           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4139         ConstantOffset += SL->getElementOffset(Idx);
4140       } else {
4141         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4142         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4143           const APInt &CVal = CI->getValue();
4144           if (CVal.getMinSignedBits() <= 64) {
4145             ConstantOffset += CVal.getSExtValue() * TypeSize;
4146             continue;
4147           }
4148         }
4149         if (TypeSize) {  // Scales of zero don't do anything.
4150           // We only allow one variable index at the moment.
4151           if (VariableOperand != -1)
4152             return false;
4153 
4154           // Remember the variable index.
4155           VariableOperand = i;
4156           VariableScale = TypeSize;
4157         }
4158       }
4159     }
4160 
4161     // A common case is for the GEP to only do a constant offset.  In this case,
4162     // just add it to the disp field and check validity.
4163     if (VariableOperand == -1) {
4164       AddrMode.BaseOffs += ConstantOffset;
4165       if (ConstantOffset == 0 ||
4166           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4167         // Check to see if we can fold the base pointer in too.
4168         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4169           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4170             AddrMode.InBounds = false;
4171           return true;
4172         }
4173       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4174                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4175                  ConstantOffset > 0) {
4176         // Record GEPs with non-zero offsets as candidates for splitting in the
4177         // event that the offset cannot fit into the r+i addressing mode.
4178         // Simple and common case that only one GEP is used in calculating the
4179         // address for the memory access.
4180         Value *Base = AddrInst->getOperand(0);
4181         auto *BaseI = dyn_cast<Instruction>(Base);
4182         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4183         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4184             (BaseI && !isa<CastInst>(BaseI) &&
4185              !isa<GetElementPtrInst>(BaseI))) {
4186           // Make sure the parent block allows inserting non-PHI instructions
4187           // before the terminator.
4188           BasicBlock *Parent =
4189               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4190           if (!Parent->getTerminator()->isEHPad())
4191             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4192         }
4193       }
4194       AddrMode.BaseOffs -= ConstantOffset;
4195       return false;
4196     }
4197 
4198     // Save the valid addressing mode in case we can't match.
4199     ExtAddrMode BackupAddrMode = AddrMode;
4200     unsigned OldSize = AddrModeInsts.size();
4201 
4202     // See if the scale and offset amount is valid for this target.
4203     AddrMode.BaseOffs += ConstantOffset;
4204     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4205       AddrMode.InBounds = false;
4206 
4207     // Match the base operand of the GEP.
4208     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4209       // If it couldn't be matched, just stuff the value in a register.
4210       if (AddrMode.HasBaseReg) {
4211         AddrMode = BackupAddrMode;
4212         AddrModeInsts.resize(OldSize);
4213         return false;
4214       }
4215       AddrMode.HasBaseReg = true;
4216       AddrMode.BaseReg = AddrInst->getOperand(0);
4217     }
4218 
4219     // Match the remaining variable portion of the GEP.
4220     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4221                           Depth)) {
4222       // If it couldn't be matched, try stuffing the base into a register
4223       // instead of matching it, and retrying the match of the scale.
4224       AddrMode = BackupAddrMode;
4225       AddrModeInsts.resize(OldSize);
4226       if (AddrMode.HasBaseReg)
4227         return false;
4228       AddrMode.HasBaseReg = true;
4229       AddrMode.BaseReg = AddrInst->getOperand(0);
4230       AddrMode.BaseOffs += ConstantOffset;
4231       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4232                             VariableScale, Depth)) {
4233         // If even that didn't work, bail.
4234         AddrMode = BackupAddrMode;
4235         AddrModeInsts.resize(OldSize);
4236         return false;
4237       }
4238     }
4239 
4240     return true;
4241   }
4242   case Instruction::SExt:
4243   case Instruction::ZExt: {
4244     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4245     if (!Ext)
4246       return false;
4247 
4248     // Try to move this ext out of the way of the addressing mode.
4249     // Ask for a method for doing so.
4250     TypePromotionHelper::Action TPH =
4251         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4252     if (!TPH)
4253       return false;
4254 
4255     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4256         TPT.getRestorationPoint();
4257     unsigned CreatedInstsCost = 0;
4258     unsigned ExtCost = !TLI.isExtFree(Ext);
4259     Value *PromotedOperand =
4260         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4261     // SExt has been moved away.
4262     // Thus either it will be rematched later in the recursive calls or it is
4263     // gone. Anyway, we must not fold it into the addressing mode at this point.
4264     // E.g.,
4265     // op = add opnd, 1
4266     // idx = ext op
4267     // addr = gep base, idx
4268     // is now:
4269     // promotedOpnd = ext opnd            <- no match here
4270     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4271     // addr = gep base, op                <- match
4272     if (MovedAway)
4273       *MovedAway = true;
4274 
4275     assert(PromotedOperand &&
4276            "TypePromotionHelper should have filtered out those cases");
4277 
4278     ExtAddrMode BackupAddrMode = AddrMode;
4279     unsigned OldSize = AddrModeInsts.size();
4280 
4281     if (!matchAddr(PromotedOperand, Depth) ||
4282         // The total of the new cost is equal to the cost of the created
4283         // instructions.
4284         // The total of the old cost is equal to the cost of the extension plus
4285         // what we have saved in the addressing mode.
4286         !isPromotionProfitable(CreatedInstsCost,
4287                                ExtCost + (AddrModeInsts.size() - OldSize),
4288                                PromotedOperand)) {
4289       AddrMode = BackupAddrMode;
4290       AddrModeInsts.resize(OldSize);
4291       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4292       TPT.rollback(LastKnownGood);
4293       return false;
4294     }
4295     return true;
4296   }
4297   }
4298   return false;
4299 }
4300 
4301 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4302 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4303 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4304 /// for the target.
4305 ///
4306 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4307   // Start a transaction at this point that we will rollback if the matching
4308   // fails.
4309   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4310       TPT.getRestorationPoint();
4311   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4312     // Fold in immediates if legal for the target.
4313     AddrMode.BaseOffs += CI->getSExtValue();
4314     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4315       return true;
4316     AddrMode.BaseOffs -= CI->getSExtValue();
4317   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4318     // If this is a global variable, try to fold it into the addressing mode.
4319     if (!AddrMode.BaseGV) {
4320       AddrMode.BaseGV = GV;
4321       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4322         return true;
4323       AddrMode.BaseGV = nullptr;
4324     }
4325   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4326     ExtAddrMode BackupAddrMode = AddrMode;
4327     unsigned OldSize = AddrModeInsts.size();
4328 
4329     // Check to see if it is possible to fold this operation.
4330     bool MovedAway = false;
4331     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4332       // This instruction may have been moved away. If so, there is nothing
4333       // to check here.
4334       if (MovedAway)
4335         return true;
4336       // Okay, it's possible to fold this.  Check to see if it is actually
4337       // *profitable* to do so.  We use a simple cost model to avoid increasing
4338       // register pressure too much.
4339       if (I->hasOneUse() ||
4340           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4341         AddrModeInsts.push_back(I);
4342         return true;
4343       }
4344 
4345       // It isn't profitable to do this, roll back.
4346       //cerr << "NOT FOLDING: " << *I;
4347       AddrMode = BackupAddrMode;
4348       AddrModeInsts.resize(OldSize);
4349       TPT.rollback(LastKnownGood);
4350     }
4351   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4352     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4353       return true;
4354     TPT.rollback(LastKnownGood);
4355   } else if (isa<ConstantPointerNull>(Addr)) {
4356     // Null pointer gets folded without affecting the addressing mode.
4357     return true;
4358   }
4359 
4360   // Worse case, the target should support [reg] addressing modes. :)
4361   if (!AddrMode.HasBaseReg) {
4362     AddrMode.HasBaseReg = true;
4363     AddrMode.BaseReg = Addr;
4364     // Still check for legality in case the target supports [imm] but not [i+r].
4365     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4366       return true;
4367     AddrMode.HasBaseReg = false;
4368     AddrMode.BaseReg = nullptr;
4369   }
4370 
4371   // If the base register is already taken, see if we can do [r+r].
4372   if (AddrMode.Scale == 0) {
4373     AddrMode.Scale = 1;
4374     AddrMode.ScaledReg = Addr;
4375     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4376       return true;
4377     AddrMode.Scale = 0;
4378     AddrMode.ScaledReg = nullptr;
4379   }
4380   // Couldn't match.
4381   TPT.rollback(LastKnownGood);
4382   return false;
4383 }
4384 
4385 /// Check to see if all uses of OpVal by the specified inline asm call are due
4386 /// to memory operands. If so, return true, otherwise return false.
4387 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4388                                     const TargetLowering &TLI,
4389                                     const TargetRegisterInfo &TRI) {
4390   const Function *F = CI->getFunction();
4391   TargetLowering::AsmOperandInfoVector TargetConstraints =
4392       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4393                             ImmutableCallSite(CI));
4394 
4395   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4396     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4397 
4398     // Compute the constraint code and ConstraintType to use.
4399     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4400 
4401     // If this asm operand is our Value*, and if it isn't an indirect memory
4402     // operand, we can't fold it!
4403     if (OpInfo.CallOperandVal == OpVal &&
4404         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4405          !OpInfo.isIndirect))
4406       return false;
4407   }
4408 
4409   return true;
4410 }
4411 
4412 // Max number of memory uses to look at before aborting the search to conserve
4413 // compile time.
4414 static constexpr int MaxMemoryUsesToScan = 20;
4415 
4416 /// Recursively walk all the uses of I until we find a memory use.
4417 /// If we find an obviously non-foldable instruction, return true.
4418 /// Add the ultimately found memory instructions to MemoryUses.
4419 static bool FindAllMemoryUses(
4420     Instruction *I,
4421     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4422     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4423     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4424   // If we already considered this instruction, we're done.
4425   if (!ConsideredInsts.insert(I).second)
4426     return false;
4427 
4428   // If this is an obviously unfoldable instruction, bail out.
4429   if (!MightBeFoldableInst(I))
4430     return true;
4431 
4432   const bool OptSize = I->getFunction()->hasOptSize();
4433 
4434   // Loop over all the uses, recursively processing them.
4435   for (Use &U : I->uses()) {
4436     // Conservatively return true if we're seeing a large number or a deep chain
4437     // of users. This avoids excessive compilation times in pathological cases.
4438     if (SeenInsts++ >= MaxMemoryUsesToScan)
4439       return true;
4440 
4441     Instruction *UserI = cast<Instruction>(U.getUser());
4442     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4443       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4444       continue;
4445     }
4446 
4447     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4448       unsigned opNo = U.getOperandNo();
4449       if (opNo != StoreInst::getPointerOperandIndex())
4450         return true; // Storing addr, not into addr.
4451       MemoryUses.push_back(std::make_pair(SI, opNo));
4452       continue;
4453     }
4454 
4455     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4456       unsigned opNo = U.getOperandNo();
4457       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4458         return true; // Storing addr, not into addr.
4459       MemoryUses.push_back(std::make_pair(RMW, opNo));
4460       continue;
4461     }
4462 
4463     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4464       unsigned opNo = U.getOperandNo();
4465       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4466         return true; // Storing addr, not into addr.
4467       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4468       continue;
4469     }
4470 
4471     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4472       // If this is a cold call, we can sink the addressing calculation into
4473       // the cold path.  See optimizeCallInst
4474       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4475         continue;
4476 
4477       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4478       if (!IA) return true;
4479 
4480       // If this is a memory operand, we're cool, otherwise bail out.
4481       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4482         return true;
4483       continue;
4484     }
4485 
4486     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4487                           SeenInsts))
4488       return true;
4489   }
4490 
4491   return false;
4492 }
4493 
4494 /// Return true if Val is already known to be live at the use site that we're
4495 /// folding it into. If so, there is no cost to include it in the addressing
4496 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4497 /// instruction already.
4498 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4499                                                    Value *KnownLive2) {
4500   // If Val is either of the known-live values, we know it is live!
4501   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4502     return true;
4503 
4504   // All values other than instructions and arguments (e.g. constants) are live.
4505   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4506 
4507   // If Val is a constant sized alloca in the entry block, it is live, this is
4508   // true because it is just a reference to the stack/frame pointer, which is
4509   // live for the whole function.
4510   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4511     if (AI->isStaticAlloca())
4512       return true;
4513 
4514   // Check to see if this value is already used in the memory instruction's
4515   // block.  If so, it's already live into the block at the very least, so we
4516   // can reasonably fold it.
4517   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4518 }
4519 
4520 /// It is possible for the addressing mode of the machine to fold the specified
4521 /// instruction into a load or store that ultimately uses it.
4522 /// However, the specified instruction has multiple uses.
4523 /// Given this, it may actually increase register pressure to fold it
4524 /// into the load. For example, consider this code:
4525 ///
4526 ///     X = ...
4527 ///     Y = X+1
4528 ///     use(Y)   -> nonload/store
4529 ///     Z = Y+1
4530 ///     load Z
4531 ///
4532 /// In this case, Y has multiple uses, and can be folded into the load of Z
4533 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4534 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4535 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4536 /// number of computations either.
4537 ///
4538 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4539 /// X was live across 'load Z' for other reasons, we actually *would* want to
4540 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4541 bool AddressingModeMatcher::
4542 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4543                                      ExtAddrMode &AMAfter) {
4544   if (IgnoreProfitability) return true;
4545 
4546   // AMBefore is the addressing mode before this instruction was folded into it,
4547   // and AMAfter is the addressing mode after the instruction was folded.  Get
4548   // the set of registers referenced by AMAfter and subtract out those
4549   // referenced by AMBefore: this is the set of values which folding in this
4550   // address extends the lifetime of.
4551   //
4552   // Note that there are only two potential values being referenced here,
4553   // BaseReg and ScaleReg (global addresses are always available, as are any
4554   // folded immediates).
4555   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4556 
4557   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4558   // lifetime wasn't extended by adding this instruction.
4559   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4560     BaseReg = nullptr;
4561   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4562     ScaledReg = nullptr;
4563 
4564   // If folding this instruction (and it's subexprs) didn't extend any live
4565   // ranges, we're ok with it.
4566   if (!BaseReg && !ScaledReg)
4567     return true;
4568 
4569   // If all uses of this instruction can have the address mode sunk into them,
4570   // we can remove the addressing mode and effectively trade one live register
4571   // for another (at worst.)  In this context, folding an addressing mode into
4572   // the use is just a particularly nice way of sinking it.
4573   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4574   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4575   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4576     return false;  // Has a non-memory, non-foldable use!
4577 
4578   // Now that we know that all uses of this instruction are part of a chain of
4579   // computation involving only operations that could theoretically be folded
4580   // into a memory use, loop over each of these memory operation uses and see
4581   // if they could  *actually* fold the instruction.  The assumption is that
4582   // addressing modes are cheap and that duplicating the computation involved
4583   // many times is worthwhile, even on a fastpath. For sinking candidates
4584   // (i.e. cold call sites), this serves as a way to prevent excessive code
4585   // growth since most architectures have some reasonable small and fast way to
4586   // compute an effective address.  (i.e LEA on x86)
4587   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4588   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4589     Instruction *User = MemoryUses[i].first;
4590     unsigned OpNo = MemoryUses[i].second;
4591 
4592     // Get the access type of this use.  If the use isn't a pointer, we don't
4593     // know what it accesses.
4594     Value *Address = User->getOperand(OpNo);
4595     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4596     if (!AddrTy)
4597       return false;
4598     Type *AddressAccessTy = AddrTy->getElementType();
4599     unsigned AS = AddrTy->getAddressSpace();
4600 
4601     // Do a match against the root of this address, ignoring profitability. This
4602     // will tell us if the addressing mode for the memory operation will
4603     // *actually* cover the shared instruction.
4604     ExtAddrMode Result;
4605     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4606                                                                       0);
4607     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4608         TPT.getRestorationPoint();
4609     AddressingModeMatcher Matcher(
4610         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4611         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4612     Matcher.IgnoreProfitability = true;
4613     bool Success = Matcher.matchAddr(Address, 0);
4614     (void)Success; assert(Success && "Couldn't select *anything*?");
4615 
4616     // The match was to check the profitability, the changes made are not
4617     // part of the original matcher. Therefore, they should be dropped
4618     // otherwise the original matcher will not present the right state.
4619     TPT.rollback(LastKnownGood);
4620 
4621     // If the match didn't cover I, then it won't be shared by it.
4622     if (!is_contained(MatchedAddrModeInsts, I))
4623       return false;
4624 
4625     MatchedAddrModeInsts.clear();
4626   }
4627 
4628   return true;
4629 }
4630 
4631 /// Return true if the specified values are defined in a
4632 /// different basic block than BB.
4633 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4634   if (Instruction *I = dyn_cast<Instruction>(V))
4635     return I->getParent() != BB;
4636   return false;
4637 }
4638 
4639 /// Sink addressing mode computation immediate before MemoryInst if doing so
4640 /// can be done without increasing register pressure.  The need for the
4641 /// register pressure constraint means this can end up being an all or nothing
4642 /// decision for all uses of the same addressing computation.
4643 ///
4644 /// Load and Store Instructions often have addressing modes that can do
4645 /// significant amounts of computation. As such, instruction selection will try
4646 /// to get the load or store to do as much computation as possible for the
4647 /// program. The problem is that isel can only see within a single block. As
4648 /// such, we sink as much legal addressing mode work into the block as possible.
4649 ///
4650 /// This method is used to optimize both load/store and inline asms with memory
4651 /// operands.  It's also used to sink addressing computations feeding into cold
4652 /// call sites into their (cold) basic block.
4653 ///
4654 /// The motivation for handling sinking into cold blocks is that doing so can
4655 /// both enable other address mode sinking (by satisfying the register pressure
4656 /// constraint above), and reduce register pressure globally (by removing the
4657 /// addressing mode computation from the fast path entirely.).
4658 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4659                                         Type *AccessTy, unsigned AddrSpace) {
4660   Value *Repl = Addr;
4661 
4662   // Try to collapse single-value PHI nodes.  This is necessary to undo
4663   // unprofitable PRE transformations.
4664   SmallVector<Value*, 8> worklist;
4665   SmallPtrSet<Value*, 16> Visited;
4666   worklist.push_back(Addr);
4667 
4668   // Use a worklist to iteratively look through PHI and select nodes, and
4669   // ensure that the addressing mode obtained from the non-PHI/select roots of
4670   // the graph are compatible.
4671   bool PhiOrSelectSeen = false;
4672   SmallVector<Instruction*, 16> AddrModeInsts;
4673   const SimplifyQuery SQ(*DL, TLInfo);
4674   AddressingModeCombiner AddrModes(SQ, Addr);
4675   TypePromotionTransaction TPT(RemovedInsts);
4676   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4677       TPT.getRestorationPoint();
4678   while (!worklist.empty()) {
4679     Value *V = worklist.back();
4680     worklist.pop_back();
4681 
4682     // We allow traversing cyclic Phi nodes.
4683     // In case of success after this loop we ensure that traversing through
4684     // Phi nodes ends up with all cases to compute address of the form
4685     //    BaseGV + Base + Scale * Index + Offset
4686     // where Scale and Offset are constans and BaseGV, Base and Index
4687     // are exactly the same Values in all cases.
4688     // It means that BaseGV, Scale and Offset dominate our memory instruction
4689     // and have the same value as they had in address computation represented
4690     // as Phi. So we can safely sink address computation to memory instruction.
4691     if (!Visited.insert(V).second)
4692       continue;
4693 
4694     // For a PHI node, push all of its incoming values.
4695     if (PHINode *P = dyn_cast<PHINode>(V)) {
4696       for (Value *IncValue : P->incoming_values())
4697         worklist.push_back(IncValue);
4698       PhiOrSelectSeen = true;
4699       continue;
4700     }
4701     // Similar for select.
4702     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4703       worklist.push_back(SI->getFalseValue());
4704       worklist.push_back(SI->getTrueValue());
4705       PhiOrSelectSeen = true;
4706       continue;
4707     }
4708 
4709     // For non-PHIs, determine the addressing mode being computed.  Note that
4710     // the result may differ depending on what other uses our candidate
4711     // addressing instructions might have.
4712     AddrModeInsts.clear();
4713     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4714                                                                       0);
4715     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4716         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4717         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4718 
4719     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4720     if (GEP && !NewGEPBases.count(GEP)) {
4721       // If splitting the underlying data structure can reduce the offset of a
4722       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4723       // previously split data structures.
4724       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4725       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4726         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4727     }
4728 
4729     NewAddrMode.OriginalValue = V;
4730     if (!AddrModes.addNewAddrMode(NewAddrMode))
4731       break;
4732   }
4733 
4734   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4735   // or we have multiple but either couldn't combine them or combining them
4736   // wouldn't do anything useful, bail out now.
4737   if (!AddrModes.combineAddrModes()) {
4738     TPT.rollback(LastKnownGood);
4739     return false;
4740   }
4741   TPT.commit();
4742 
4743   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4744   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4745 
4746   // If all the instructions matched are already in this BB, don't do anything.
4747   // If we saw a Phi node then it is not local definitely, and if we saw a select
4748   // then we want to push the address calculation past it even if it's already
4749   // in this BB.
4750   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4751         return IsNonLocalValue(V, MemoryInst->getParent());
4752                   })) {
4753     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4754                       << "\n");
4755     return false;
4756   }
4757 
4758   // Insert this computation right after this user.  Since our caller is
4759   // scanning from the top of the BB to the bottom, reuse of the expr are
4760   // guaranteed to happen later.
4761   IRBuilder<> Builder(MemoryInst);
4762 
4763   // Now that we determined the addressing expression we want to use and know
4764   // that we have to sink it into this block.  Check to see if we have already
4765   // done this for some other load/store instr in this block.  If so, reuse
4766   // the computation.  Before attempting reuse, check if the address is valid
4767   // as it may have been erased.
4768 
4769   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4770 
4771   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4772   if (SunkAddr) {
4773     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4774                       << " for " << *MemoryInst << "\n");
4775     if (SunkAddr->getType() != Addr->getType())
4776       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4777   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4778                                    TM && SubtargetInfo->addrSinkUsingGEPs())) {
4779     // By default, we use the GEP-based method when AA is used later. This
4780     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4781     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4782                       << " for " << *MemoryInst << "\n");
4783     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4784     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4785 
4786     // First, find the pointer.
4787     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4788       ResultPtr = AddrMode.BaseReg;
4789       AddrMode.BaseReg = nullptr;
4790     }
4791 
4792     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4793       // We can't add more than one pointer together, nor can we scale a
4794       // pointer (both of which seem meaningless).
4795       if (ResultPtr || AddrMode.Scale != 1)
4796         return false;
4797 
4798       ResultPtr = AddrMode.ScaledReg;
4799       AddrMode.Scale = 0;
4800     }
4801 
4802     // It is only safe to sign extend the BaseReg if we know that the math
4803     // required to create it did not overflow before we extend it. Since
4804     // the original IR value was tossed in favor of a constant back when
4805     // the AddrMode was created we need to bail out gracefully if widths
4806     // do not match instead of extending it.
4807     //
4808     // (See below for code to add the scale.)
4809     if (AddrMode.Scale) {
4810       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4811       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4812           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4813         return false;
4814     }
4815 
4816     if (AddrMode.BaseGV) {
4817       if (ResultPtr)
4818         return false;
4819 
4820       ResultPtr = AddrMode.BaseGV;
4821     }
4822 
4823     // If the real base value actually came from an inttoptr, then the matcher
4824     // will look through it and provide only the integer value. In that case,
4825     // use it here.
4826     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4827       if (!ResultPtr && AddrMode.BaseReg) {
4828         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4829                                            "sunkaddr");
4830         AddrMode.BaseReg = nullptr;
4831       } else if (!ResultPtr && AddrMode.Scale == 1) {
4832         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4833                                            "sunkaddr");
4834         AddrMode.Scale = 0;
4835       }
4836     }
4837 
4838     if (!ResultPtr &&
4839         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4840       SunkAddr = Constant::getNullValue(Addr->getType());
4841     } else if (!ResultPtr) {
4842       return false;
4843     } else {
4844       Type *I8PtrTy =
4845           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4846       Type *I8Ty = Builder.getInt8Ty();
4847 
4848       // Start with the base register. Do this first so that subsequent address
4849       // matching finds it last, which will prevent it from trying to match it
4850       // as the scaled value in case it happens to be a mul. That would be
4851       // problematic if we've sunk a different mul for the scale, because then
4852       // we'd end up sinking both muls.
4853       if (AddrMode.BaseReg) {
4854         Value *V = AddrMode.BaseReg;
4855         if (V->getType() != IntPtrTy)
4856           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4857 
4858         ResultIndex = V;
4859       }
4860 
4861       // Add the scale value.
4862       if (AddrMode.Scale) {
4863         Value *V = AddrMode.ScaledReg;
4864         if (V->getType() == IntPtrTy) {
4865           // done.
4866         } else {
4867           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4868                  cast<IntegerType>(V->getType())->getBitWidth() &&
4869                  "We can't transform if ScaledReg is too narrow");
4870           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4871         }
4872 
4873         if (AddrMode.Scale != 1)
4874           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4875                                 "sunkaddr");
4876         if (ResultIndex)
4877           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4878         else
4879           ResultIndex = V;
4880       }
4881 
4882       // Add in the Base Offset if present.
4883       if (AddrMode.BaseOffs) {
4884         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4885         if (ResultIndex) {
4886           // We need to add this separately from the scale above to help with
4887           // SDAG consecutive load/store merging.
4888           if (ResultPtr->getType() != I8PtrTy)
4889             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4890           ResultPtr =
4891               AddrMode.InBounds
4892                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4893                                               "sunkaddr")
4894                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4895         }
4896 
4897         ResultIndex = V;
4898       }
4899 
4900       if (!ResultIndex) {
4901         SunkAddr = ResultPtr;
4902       } else {
4903         if (ResultPtr->getType() != I8PtrTy)
4904           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4905         SunkAddr =
4906             AddrMode.InBounds
4907                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4908                                             "sunkaddr")
4909                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4910       }
4911 
4912       if (SunkAddr->getType() != Addr->getType())
4913         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4914     }
4915   } else {
4916     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4917     // non-integral pointers, so in that case bail out now.
4918     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4919     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4920     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4921     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4922     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4923         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4924         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4925         (AddrMode.BaseGV &&
4926          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4927       return false;
4928 
4929     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4930                       << " for " << *MemoryInst << "\n");
4931     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4932     Value *Result = nullptr;
4933 
4934     // Start with the base register. Do this first so that subsequent address
4935     // matching finds it last, which will prevent it from trying to match it
4936     // as the scaled value in case it happens to be a mul. That would be
4937     // problematic if we've sunk a different mul for the scale, because then
4938     // we'd end up sinking both muls.
4939     if (AddrMode.BaseReg) {
4940       Value *V = AddrMode.BaseReg;
4941       if (V->getType()->isPointerTy())
4942         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4943       if (V->getType() != IntPtrTy)
4944         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4945       Result = V;
4946     }
4947 
4948     // Add the scale value.
4949     if (AddrMode.Scale) {
4950       Value *V = AddrMode.ScaledReg;
4951       if (V->getType() == IntPtrTy) {
4952         // done.
4953       } else if (V->getType()->isPointerTy()) {
4954         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4955       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4956                  cast<IntegerType>(V->getType())->getBitWidth()) {
4957         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4958       } else {
4959         // It is only safe to sign extend the BaseReg if we know that the math
4960         // required to create it did not overflow before we extend it. Since
4961         // the original IR value was tossed in favor of a constant back when
4962         // the AddrMode was created we need to bail out gracefully if widths
4963         // do not match instead of extending it.
4964         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4965         if (I && (Result != AddrMode.BaseReg))
4966           I->eraseFromParent();
4967         return false;
4968       }
4969       if (AddrMode.Scale != 1)
4970         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4971                               "sunkaddr");
4972       if (Result)
4973         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4974       else
4975         Result = V;
4976     }
4977 
4978     // Add in the BaseGV if present.
4979     if (AddrMode.BaseGV) {
4980       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4981       if (Result)
4982         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4983       else
4984         Result = V;
4985     }
4986 
4987     // Add in the Base Offset if present.
4988     if (AddrMode.BaseOffs) {
4989       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4990       if (Result)
4991         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4992       else
4993         Result = V;
4994     }
4995 
4996     if (!Result)
4997       SunkAddr = Constant::getNullValue(Addr->getType());
4998     else
4999       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5000   }
5001 
5002   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5003   // Store the newly computed address into the cache. In the case we reused a
5004   // value, this should be idempotent.
5005   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5006 
5007   // If we have no uses, recursively delete the value and all dead instructions
5008   // using it.
5009   if (Repl->use_empty()) {
5010     // This can cause recursive deletion, which can invalidate our iterator.
5011     // Use a WeakTrackingVH to hold onto it in case this happens.
5012     Value *CurValue = &*CurInstIterator;
5013     WeakTrackingVH IterHandle(CurValue);
5014     BasicBlock *BB = CurInstIterator->getParent();
5015 
5016     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5017 
5018     if (IterHandle != CurValue) {
5019       // If the iterator instruction was recursively deleted, start over at the
5020       // start of the block.
5021       CurInstIterator = BB->begin();
5022       SunkAddrs.clear();
5023     }
5024   }
5025   ++NumMemoryInsts;
5026   return true;
5027 }
5028 
5029 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5030 /// address computing into the block when possible / profitable.
5031 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5032   bool MadeChange = false;
5033 
5034   const TargetRegisterInfo *TRI =
5035       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5036   TargetLowering::AsmOperandInfoVector TargetConstraints =
5037       TLI->ParseConstraints(*DL, TRI, CS);
5038   unsigned ArgNo = 0;
5039   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5040     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5041 
5042     // Compute the constraint code and ConstraintType to use.
5043     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5044 
5045     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5046         OpInfo.isIndirect) {
5047       Value *OpVal = CS->getArgOperand(ArgNo++);
5048       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5049     } else if (OpInfo.Type == InlineAsm::isInput)
5050       ArgNo++;
5051   }
5052 
5053   return MadeChange;
5054 }
5055 
5056 /// Check if all the uses of \p Val are equivalent (or free) zero or
5057 /// sign extensions.
5058 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5059   assert(!Val->use_empty() && "Input must have at least one use");
5060   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5061   bool IsSExt = isa<SExtInst>(FirstUser);
5062   Type *ExtTy = FirstUser->getType();
5063   for (const User *U : Val->users()) {
5064     const Instruction *UI = cast<Instruction>(U);
5065     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5066       return false;
5067     Type *CurTy = UI->getType();
5068     // Same input and output types: Same instruction after CSE.
5069     if (CurTy == ExtTy)
5070       continue;
5071 
5072     // If IsSExt is true, we are in this situation:
5073     // a = Val
5074     // b = sext ty1 a to ty2
5075     // c = sext ty1 a to ty3
5076     // Assuming ty2 is shorter than ty3, this could be turned into:
5077     // a = Val
5078     // b = sext ty1 a to ty2
5079     // c = sext ty2 b to ty3
5080     // However, the last sext is not free.
5081     if (IsSExt)
5082       return false;
5083 
5084     // This is a ZExt, maybe this is free to extend from one type to another.
5085     // In that case, we would not account for a different use.
5086     Type *NarrowTy;
5087     Type *LargeTy;
5088     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5089         CurTy->getScalarType()->getIntegerBitWidth()) {
5090       NarrowTy = CurTy;
5091       LargeTy = ExtTy;
5092     } else {
5093       NarrowTy = ExtTy;
5094       LargeTy = CurTy;
5095     }
5096 
5097     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5098       return false;
5099   }
5100   // All uses are the same or can be derived from one another for free.
5101   return true;
5102 }
5103 
5104 /// Try to speculatively promote extensions in \p Exts and continue
5105 /// promoting through newly promoted operands recursively as far as doing so is
5106 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5107 /// When some promotion happened, \p TPT contains the proper state to revert
5108 /// them.
5109 ///
5110 /// \return true if some promotion happened, false otherwise.
5111 bool CodeGenPrepare::tryToPromoteExts(
5112     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5113     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5114     unsigned CreatedInstsCost) {
5115   bool Promoted = false;
5116 
5117   // Iterate over all the extensions to try to promote them.
5118   for (auto I : Exts) {
5119     // Early check if we directly have ext(load).
5120     if (isa<LoadInst>(I->getOperand(0))) {
5121       ProfitablyMovedExts.push_back(I);
5122       continue;
5123     }
5124 
5125     // Check whether or not we want to do any promotion.  The reason we have
5126     // this check inside the for loop is to catch the case where an extension
5127     // is directly fed by a load because in such case the extension can be moved
5128     // up without any promotion on its operands.
5129     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5130       return false;
5131 
5132     // Get the action to perform the promotion.
5133     TypePromotionHelper::Action TPH =
5134         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5135     // Check if we can promote.
5136     if (!TPH) {
5137       // Save the current extension as we cannot move up through its operand.
5138       ProfitablyMovedExts.push_back(I);
5139       continue;
5140     }
5141 
5142     // Save the current state.
5143     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5144         TPT.getRestorationPoint();
5145     SmallVector<Instruction *, 4> NewExts;
5146     unsigned NewCreatedInstsCost = 0;
5147     unsigned ExtCost = !TLI->isExtFree(I);
5148     // Promote.
5149     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5150                              &NewExts, nullptr, *TLI);
5151     assert(PromotedVal &&
5152            "TypePromotionHelper should have filtered out those cases");
5153 
5154     // We would be able to merge only one extension in a load.
5155     // Therefore, if we have more than 1 new extension we heuristically
5156     // cut this search path, because it means we degrade the code quality.
5157     // With exactly 2, the transformation is neutral, because we will merge
5158     // one extension but leave one. However, we optimistically keep going,
5159     // because the new extension may be removed too.
5160     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5161     // FIXME: It would be possible to propagate a negative value instead of
5162     // conservatively ceiling it to 0.
5163     TotalCreatedInstsCost =
5164         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5165     if (!StressExtLdPromotion &&
5166         (TotalCreatedInstsCost > 1 ||
5167          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5168       // This promotion is not profitable, rollback to the previous state, and
5169       // save the current extension in ProfitablyMovedExts as the latest
5170       // speculative promotion turned out to be unprofitable.
5171       TPT.rollback(LastKnownGood);
5172       ProfitablyMovedExts.push_back(I);
5173       continue;
5174     }
5175     // Continue promoting NewExts as far as doing so is profitable.
5176     SmallVector<Instruction *, 2> NewlyMovedExts;
5177     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5178     bool NewPromoted = false;
5179     for (auto ExtInst : NewlyMovedExts) {
5180       Instruction *MovedExt = cast<Instruction>(ExtInst);
5181       Value *ExtOperand = MovedExt->getOperand(0);
5182       // If we have reached to a load, we need this extra profitability check
5183       // as it could potentially be merged into an ext(load).
5184       if (isa<LoadInst>(ExtOperand) &&
5185           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5186             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5187         continue;
5188 
5189       ProfitablyMovedExts.push_back(MovedExt);
5190       NewPromoted = true;
5191     }
5192 
5193     // If none of speculative promotions for NewExts is profitable, rollback
5194     // and save the current extension (I) as the last profitable extension.
5195     if (!NewPromoted) {
5196       TPT.rollback(LastKnownGood);
5197       ProfitablyMovedExts.push_back(I);
5198       continue;
5199     }
5200     // The promotion is profitable.
5201     Promoted = true;
5202   }
5203   return Promoted;
5204 }
5205 
5206 /// Merging redundant sexts when one is dominating the other.
5207 bool CodeGenPrepare::mergeSExts(Function &F) {
5208   bool Changed = false;
5209   for (auto &Entry : ValToSExtendedUses) {
5210     SExts &Insts = Entry.second;
5211     SExts CurPts;
5212     for (Instruction *Inst : Insts) {
5213       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5214           Inst->getOperand(0) != Entry.first)
5215         continue;
5216       bool inserted = false;
5217       for (auto &Pt : CurPts) {
5218         if (getDT(F).dominates(Inst, Pt)) {
5219           Pt->replaceAllUsesWith(Inst);
5220           RemovedInsts.insert(Pt);
5221           Pt->removeFromParent();
5222           Pt = Inst;
5223           inserted = true;
5224           Changed = true;
5225           break;
5226         }
5227         if (!getDT(F).dominates(Pt, Inst))
5228           // Give up if we need to merge in a common dominator as the
5229           // experiments show it is not profitable.
5230           continue;
5231         Inst->replaceAllUsesWith(Pt);
5232         RemovedInsts.insert(Inst);
5233         Inst->removeFromParent();
5234         inserted = true;
5235         Changed = true;
5236         break;
5237       }
5238       if (!inserted)
5239         CurPts.push_back(Inst);
5240     }
5241   }
5242   return Changed;
5243 }
5244 
5245 // Spliting large data structures so that the GEPs accessing them can have
5246 // smaller offsets so that they can be sunk to the same blocks as their users.
5247 // For example, a large struct starting from %base is splitted into two parts
5248 // where the second part starts from %new_base.
5249 //
5250 // Before:
5251 // BB0:
5252 //   %base     =
5253 //
5254 // BB1:
5255 //   %gep0     = gep %base, off0
5256 //   %gep1     = gep %base, off1
5257 //   %gep2     = gep %base, off2
5258 //
5259 // BB2:
5260 //   %load1    = load %gep0
5261 //   %load2    = load %gep1
5262 //   %load3    = load %gep2
5263 //
5264 // After:
5265 // BB0:
5266 //   %base     =
5267 //   %new_base = gep %base, off0
5268 //
5269 // BB1:
5270 //   %new_gep0 = %new_base
5271 //   %new_gep1 = gep %new_base, off1 - off0
5272 //   %new_gep2 = gep %new_base, off2 - off0
5273 //
5274 // BB2:
5275 //   %load1    = load i32, i32* %new_gep0
5276 //   %load2    = load i32, i32* %new_gep1
5277 //   %load3    = load i32, i32* %new_gep2
5278 //
5279 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5280 // their offsets are smaller enough to fit into the addressing mode.
5281 bool CodeGenPrepare::splitLargeGEPOffsets() {
5282   bool Changed = false;
5283   for (auto &Entry : LargeOffsetGEPMap) {
5284     Value *OldBase = Entry.first;
5285     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5286         &LargeOffsetGEPs = Entry.second;
5287     auto compareGEPOffset =
5288         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5289             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5290           if (LHS.first == RHS.first)
5291             return false;
5292           if (LHS.second != RHS.second)
5293             return LHS.second < RHS.second;
5294           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5295         };
5296     // Sorting all the GEPs of the same data structures based on the offsets.
5297     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5298     LargeOffsetGEPs.erase(
5299         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5300         LargeOffsetGEPs.end());
5301     // Skip if all the GEPs have the same offsets.
5302     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5303       continue;
5304     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5305     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5306     Value *NewBaseGEP = nullptr;
5307 
5308     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5309     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5310       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5311       int64_t Offset = LargeOffsetGEP->second;
5312       if (Offset != BaseOffset) {
5313         TargetLowering::AddrMode AddrMode;
5314         AddrMode.BaseOffs = Offset - BaseOffset;
5315         // The result type of the GEP might not be the type of the memory
5316         // access.
5317         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5318                                         GEP->getResultElementType(),
5319                                         GEP->getAddressSpace())) {
5320           // We need to create a new base if the offset to the current base is
5321           // too large to fit into the addressing mode. So, a very large struct
5322           // may be splitted into several parts.
5323           BaseGEP = GEP;
5324           BaseOffset = Offset;
5325           NewBaseGEP = nullptr;
5326         }
5327       }
5328 
5329       // Generate a new GEP to replace the current one.
5330       LLVMContext &Ctx = GEP->getContext();
5331       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5332       Type *I8PtrTy =
5333           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5334       Type *I8Ty = Type::getInt8Ty(Ctx);
5335 
5336       if (!NewBaseGEP) {
5337         // Create a new base if we don't have one yet.  Find the insertion
5338         // pointer for the new base first.
5339         BasicBlock::iterator NewBaseInsertPt;
5340         BasicBlock *NewBaseInsertBB;
5341         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5342           // If the base of the struct is an instruction, the new base will be
5343           // inserted close to it.
5344           NewBaseInsertBB = BaseI->getParent();
5345           if (isa<PHINode>(BaseI))
5346             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5347           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5348             NewBaseInsertBB =
5349                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5350             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5351           } else
5352             NewBaseInsertPt = std::next(BaseI->getIterator());
5353         } else {
5354           // If the current base is an argument or global value, the new base
5355           // will be inserted to the entry block.
5356           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5357           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5358         }
5359         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5360         // Create a new base.
5361         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5362         NewBaseGEP = OldBase;
5363         if (NewBaseGEP->getType() != I8PtrTy)
5364           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5365         NewBaseGEP =
5366             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5367         NewGEPBases.insert(NewBaseGEP);
5368       }
5369 
5370       IRBuilder<> Builder(GEP);
5371       Value *NewGEP = NewBaseGEP;
5372       if (Offset == BaseOffset) {
5373         if (GEP->getType() != I8PtrTy)
5374           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5375       } else {
5376         // Calculate the new offset for the new GEP.
5377         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5378         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5379 
5380         if (GEP->getType() != I8PtrTy)
5381           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5382       }
5383       GEP->replaceAllUsesWith(NewGEP);
5384       LargeOffsetGEPID.erase(GEP);
5385       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5386       GEP->eraseFromParent();
5387       Changed = true;
5388     }
5389   }
5390   return Changed;
5391 }
5392 
5393 /// Return true, if an ext(load) can be formed from an extension in
5394 /// \p MovedExts.
5395 bool CodeGenPrepare::canFormExtLd(
5396     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5397     Instruction *&Inst, bool HasPromoted) {
5398   for (auto *MovedExtInst : MovedExts) {
5399     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5400       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5401       Inst = MovedExtInst;
5402       break;
5403     }
5404   }
5405   if (!LI)
5406     return false;
5407 
5408   // If they're already in the same block, there's nothing to do.
5409   // Make the cheap checks first if we did not promote.
5410   // If we promoted, we need to check if it is indeed profitable.
5411   if (!HasPromoted && LI->getParent() == Inst->getParent())
5412     return false;
5413 
5414   return TLI->isExtLoad(LI, Inst, *DL);
5415 }
5416 
5417 /// Move a zext or sext fed by a load into the same basic block as the load,
5418 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5419 /// extend into the load.
5420 ///
5421 /// E.g.,
5422 /// \code
5423 /// %ld = load i32* %addr
5424 /// %add = add nuw i32 %ld, 4
5425 /// %zext = zext i32 %add to i64
5426 // \endcode
5427 /// =>
5428 /// \code
5429 /// %ld = load i32* %addr
5430 /// %zext = zext i32 %ld to i64
5431 /// %add = add nuw i64 %zext, 4
5432 /// \encode
5433 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5434 /// allow us to match zext(load i32*) to i64.
5435 ///
5436 /// Also, try to promote the computations used to obtain a sign extended
5437 /// value used into memory accesses.
5438 /// E.g.,
5439 /// \code
5440 /// a = add nsw i32 b, 3
5441 /// d = sext i32 a to i64
5442 /// e = getelementptr ..., i64 d
5443 /// \endcode
5444 /// =>
5445 /// \code
5446 /// f = sext i32 b to i64
5447 /// a = add nsw i64 f, 3
5448 /// e = getelementptr ..., i64 a
5449 /// \endcode
5450 ///
5451 /// \p Inst[in/out] the extension may be modified during the process if some
5452 /// promotions apply.
5453 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5454   // ExtLoad formation and address type promotion infrastructure requires TLI to
5455   // be effective.
5456   if (!TLI)
5457     return false;
5458 
5459   bool AllowPromotionWithoutCommonHeader = false;
5460   /// See if it is an interesting sext operations for the address type
5461   /// promotion before trying to promote it, e.g., the ones with the right
5462   /// type and used in memory accesses.
5463   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5464       *Inst, AllowPromotionWithoutCommonHeader);
5465   TypePromotionTransaction TPT(RemovedInsts);
5466   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5467       TPT.getRestorationPoint();
5468   SmallVector<Instruction *, 1> Exts;
5469   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5470   Exts.push_back(Inst);
5471 
5472   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5473 
5474   // Look for a load being extended.
5475   LoadInst *LI = nullptr;
5476   Instruction *ExtFedByLoad;
5477 
5478   // Try to promote a chain of computation if it allows to form an extended
5479   // load.
5480   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5481     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5482     TPT.commit();
5483     // Move the extend into the same block as the load
5484     ExtFedByLoad->moveAfter(LI);
5485     // CGP does not check if the zext would be speculatively executed when moved
5486     // to the same basic block as the load. Preserving its original location
5487     // would pessimize the debugging experience, as well as negatively impact
5488     // the quality of sample pgo. We don't want to use "line 0" as that has a
5489     // size cost in the line-table section and logically the zext can be seen as
5490     // part of the load. Therefore we conservatively reuse the same debug
5491     // location for the load and the zext.
5492     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5493     ++NumExtsMoved;
5494     Inst = ExtFedByLoad;
5495     return true;
5496   }
5497 
5498   // Continue promoting SExts if known as considerable depending on targets.
5499   if (ATPConsiderable &&
5500       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5501                                   HasPromoted, TPT, SpeculativelyMovedExts))
5502     return true;
5503 
5504   TPT.rollback(LastKnownGood);
5505   return false;
5506 }
5507 
5508 // Perform address type promotion if doing so is profitable.
5509 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5510 // instructions that sign extended the same initial value. However, if
5511 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5512 // extension is just profitable.
5513 bool CodeGenPrepare::performAddressTypePromotion(
5514     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5515     bool HasPromoted, TypePromotionTransaction &TPT,
5516     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5517   bool Promoted = false;
5518   SmallPtrSet<Instruction *, 1> UnhandledExts;
5519   bool AllSeenFirst = true;
5520   for (auto I : SpeculativelyMovedExts) {
5521     Value *HeadOfChain = I->getOperand(0);
5522     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5523         SeenChainsForSExt.find(HeadOfChain);
5524     // If there is an unhandled SExt which has the same header, try to promote
5525     // it as well.
5526     if (AlreadySeen != SeenChainsForSExt.end()) {
5527       if (AlreadySeen->second != nullptr)
5528         UnhandledExts.insert(AlreadySeen->second);
5529       AllSeenFirst = false;
5530     }
5531   }
5532 
5533   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5534                         SpeculativelyMovedExts.size() == 1)) {
5535     TPT.commit();
5536     if (HasPromoted)
5537       Promoted = true;
5538     for (auto I : SpeculativelyMovedExts) {
5539       Value *HeadOfChain = I->getOperand(0);
5540       SeenChainsForSExt[HeadOfChain] = nullptr;
5541       ValToSExtendedUses[HeadOfChain].push_back(I);
5542     }
5543     // Update Inst as promotion happen.
5544     Inst = SpeculativelyMovedExts.pop_back_val();
5545   } else {
5546     // This is the first chain visited from the header, keep the current chain
5547     // as unhandled. Defer to promote this until we encounter another SExt
5548     // chain derived from the same header.
5549     for (auto I : SpeculativelyMovedExts) {
5550       Value *HeadOfChain = I->getOperand(0);
5551       SeenChainsForSExt[HeadOfChain] = Inst;
5552     }
5553     return false;
5554   }
5555 
5556   if (!AllSeenFirst && !UnhandledExts.empty())
5557     for (auto VisitedSExt : UnhandledExts) {
5558       if (RemovedInsts.count(VisitedSExt))
5559         continue;
5560       TypePromotionTransaction TPT(RemovedInsts);
5561       SmallVector<Instruction *, 1> Exts;
5562       SmallVector<Instruction *, 2> Chains;
5563       Exts.push_back(VisitedSExt);
5564       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5565       TPT.commit();
5566       if (HasPromoted)
5567         Promoted = true;
5568       for (auto I : Chains) {
5569         Value *HeadOfChain = I->getOperand(0);
5570         // Mark this as handled.
5571         SeenChainsForSExt[HeadOfChain] = nullptr;
5572         ValToSExtendedUses[HeadOfChain].push_back(I);
5573       }
5574     }
5575   return Promoted;
5576 }
5577 
5578 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5579   BasicBlock *DefBB = I->getParent();
5580 
5581   // If the result of a {s|z}ext and its source are both live out, rewrite all
5582   // other uses of the source with result of extension.
5583   Value *Src = I->getOperand(0);
5584   if (Src->hasOneUse())
5585     return false;
5586 
5587   // Only do this xform if truncating is free.
5588   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5589     return false;
5590 
5591   // Only safe to perform the optimization if the source is also defined in
5592   // this block.
5593   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5594     return false;
5595 
5596   bool DefIsLiveOut = false;
5597   for (User *U : I->users()) {
5598     Instruction *UI = cast<Instruction>(U);
5599 
5600     // Figure out which BB this ext is used in.
5601     BasicBlock *UserBB = UI->getParent();
5602     if (UserBB == DefBB) continue;
5603     DefIsLiveOut = true;
5604     break;
5605   }
5606   if (!DefIsLiveOut)
5607     return false;
5608 
5609   // Make sure none of the uses are PHI nodes.
5610   for (User *U : Src->users()) {
5611     Instruction *UI = cast<Instruction>(U);
5612     BasicBlock *UserBB = UI->getParent();
5613     if (UserBB == DefBB) continue;
5614     // Be conservative. We don't want this xform to end up introducing
5615     // reloads just before load / store instructions.
5616     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5617       return false;
5618   }
5619 
5620   // InsertedTruncs - Only insert one trunc in each block once.
5621   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5622 
5623   bool MadeChange = false;
5624   for (Use &U : Src->uses()) {
5625     Instruction *User = cast<Instruction>(U.getUser());
5626 
5627     // Figure out which BB this ext is used in.
5628     BasicBlock *UserBB = User->getParent();
5629     if (UserBB == DefBB) continue;
5630 
5631     // Both src and def are live in this block. Rewrite the use.
5632     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5633 
5634     if (!InsertedTrunc) {
5635       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5636       assert(InsertPt != UserBB->end());
5637       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5638       InsertedInsts.insert(InsertedTrunc);
5639     }
5640 
5641     // Replace a use of the {s|z}ext source with a use of the result.
5642     U = InsertedTrunc;
5643     ++NumExtUses;
5644     MadeChange = true;
5645   }
5646 
5647   return MadeChange;
5648 }
5649 
5650 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5651 // just after the load if the target can fold this into one extload instruction,
5652 // with the hope of eliminating some of the other later "and" instructions using
5653 // the loaded value.  "and"s that are made trivially redundant by the insertion
5654 // of the new "and" are removed by this function, while others (e.g. those whose
5655 // path from the load goes through a phi) are left for isel to potentially
5656 // remove.
5657 //
5658 // For example:
5659 //
5660 // b0:
5661 //   x = load i32
5662 //   ...
5663 // b1:
5664 //   y = and x, 0xff
5665 //   z = use y
5666 //
5667 // becomes:
5668 //
5669 // b0:
5670 //   x = load i32
5671 //   x' = and x, 0xff
5672 //   ...
5673 // b1:
5674 //   z = use x'
5675 //
5676 // whereas:
5677 //
5678 // b0:
5679 //   x1 = load i32
5680 //   ...
5681 // b1:
5682 //   x2 = load i32
5683 //   ...
5684 // b2:
5685 //   x = phi x1, x2
5686 //   y = and x, 0xff
5687 //
5688 // becomes (after a call to optimizeLoadExt for each load):
5689 //
5690 // b0:
5691 //   x1 = load i32
5692 //   x1' = and x1, 0xff
5693 //   ...
5694 // b1:
5695 //   x2 = load i32
5696 //   x2' = and x2, 0xff
5697 //   ...
5698 // b2:
5699 //   x = phi x1', x2'
5700 //   y = and x, 0xff
5701 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5702   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5703     return false;
5704 
5705   // Skip loads we've already transformed.
5706   if (Load->hasOneUse() &&
5707       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5708     return false;
5709 
5710   // Look at all uses of Load, looking through phis, to determine how many bits
5711   // of the loaded value are needed.
5712   SmallVector<Instruction *, 8> WorkList;
5713   SmallPtrSet<Instruction *, 16> Visited;
5714   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5715   for (auto *U : Load->users())
5716     WorkList.push_back(cast<Instruction>(U));
5717 
5718   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5719   unsigned BitWidth = LoadResultVT.getSizeInBits();
5720   APInt DemandBits(BitWidth, 0);
5721   APInt WidestAndBits(BitWidth, 0);
5722 
5723   while (!WorkList.empty()) {
5724     Instruction *I = WorkList.back();
5725     WorkList.pop_back();
5726 
5727     // Break use-def graph loops.
5728     if (!Visited.insert(I).second)
5729       continue;
5730 
5731     // For a PHI node, push all of its users.
5732     if (auto *Phi = dyn_cast<PHINode>(I)) {
5733       for (auto *U : Phi->users())
5734         WorkList.push_back(cast<Instruction>(U));
5735       continue;
5736     }
5737 
5738     switch (I->getOpcode()) {
5739     case Instruction::And: {
5740       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5741       if (!AndC)
5742         return false;
5743       APInt AndBits = AndC->getValue();
5744       DemandBits |= AndBits;
5745       // Keep track of the widest and mask we see.
5746       if (AndBits.ugt(WidestAndBits))
5747         WidestAndBits = AndBits;
5748       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5749         AndsToMaybeRemove.push_back(I);
5750       break;
5751     }
5752 
5753     case Instruction::Shl: {
5754       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5755       if (!ShlC)
5756         return false;
5757       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5758       DemandBits.setLowBits(BitWidth - ShiftAmt);
5759       break;
5760     }
5761 
5762     case Instruction::Trunc: {
5763       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5764       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5765       DemandBits.setLowBits(TruncBitWidth);
5766       break;
5767     }
5768 
5769     default:
5770       return false;
5771     }
5772   }
5773 
5774   uint32_t ActiveBits = DemandBits.getActiveBits();
5775   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5776   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5777   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5778   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5779   // followed by an AND.
5780   // TODO: Look into removing this restriction by fixing backends to either
5781   // return false for isLoadExtLegal for i1 or have them select this pattern to
5782   // a single instruction.
5783   //
5784   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5785   // mask, since these are the only ands that will be removed by isel.
5786   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5787       WidestAndBits != DemandBits)
5788     return false;
5789 
5790   LLVMContext &Ctx = Load->getType()->getContext();
5791   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5792   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5793 
5794   // Reject cases that won't be matched as extloads.
5795   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5796       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5797     return false;
5798 
5799   IRBuilder<> Builder(Load->getNextNode());
5800   auto *NewAnd = cast<Instruction>(
5801       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5802   // Mark this instruction as "inserted by CGP", so that other
5803   // optimizations don't touch it.
5804   InsertedInsts.insert(NewAnd);
5805 
5806   // Replace all uses of load with new and (except for the use of load in the
5807   // new and itself).
5808   Load->replaceAllUsesWith(NewAnd);
5809   NewAnd->setOperand(0, Load);
5810 
5811   // Remove any and instructions that are now redundant.
5812   for (auto *And : AndsToMaybeRemove)
5813     // Check that the and mask is the same as the one we decided to put on the
5814     // new and.
5815     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5816       And->replaceAllUsesWith(NewAnd);
5817       if (&*CurInstIterator == And)
5818         CurInstIterator = std::next(And->getIterator());
5819       And->eraseFromParent();
5820       ++NumAndUses;
5821     }
5822 
5823   ++NumAndsAdded;
5824   return true;
5825 }
5826 
5827 /// Check if V (an operand of a select instruction) is an expensive instruction
5828 /// that is only used once.
5829 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5830   auto *I = dyn_cast<Instruction>(V);
5831   // If it's safe to speculatively execute, then it should not have side
5832   // effects; therefore, it's safe to sink and possibly *not* execute.
5833   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5834          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5835 }
5836 
5837 /// Returns true if a SelectInst should be turned into an explicit branch.
5838 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5839                                                 const TargetLowering *TLI,
5840                                                 SelectInst *SI) {
5841   // If even a predictable select is cheap, then a branch can't be cheaper.
5842   if (!TLI->isPredictableSelectExpensive())
5843     return false;
5844 
5845   // FIXME: This should use the same heuristics as IfConversion to determine
5846   // whether a select is better represented as a branch.
5847 
5848   // If metadata tells us that the select condition is obviously predictable,
5849   // then we want to replace the select with a branch.
5850   uint64_t TrueWeight, FalseWeight;
5851   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5852     uint64_t Max = std::max(TrueWeight, FalseWeight);
5853     uint64_t Sum = TrueWeight + FalseWeight;
5854     if (Sum != 0) {
5855       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5856       if (Probability > TLI->getPredictableBranchThreshold())
5857         return true;
5858     }
5859   }
5860 
5861   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5862 
5863   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5864   // comparison condition. If the compare has more than one use, there's
5865   // probably another cmov or setcc around, so it's not worth emitting a branch.
5866   if (!Cmp || !Cmp->hasOneUse())
5867     return false;
5868 
5869   // If either operand of the select is expensive and only needed on one side
5870   // of the select, we should form a branch.
5871   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5872       sinkSelectOperand(TTI, SI->getFalseValue()))
5873     return true;
5874 
5875   return false;
5876 }
5877 
5878 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5879 /// false value of \p SI. If the true/false value of \p SI is defined by any
5880 /// select instructions in \p Selects, look through the defining select
5881 /// instruction until the true/false value is not defined in \p Selects.
5882 static Value *getTrueOrFalseValue(
5883     SelectInst *SI, bool isTrue,
5884     const SmallPtrSet<const Instruction *, 2> &Selects) {
5885   Value *V = nullptr;
5886 
5887   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5888        DefSI = dyn_cast<SelectInst>(V)) {
5889     assert(DefSI->getCondition() == SI->getCondition() &&
5890            "The condition of DefSI does not match with SI");
5891     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5892   }
5893 
5894   assert(V && "Failed to get select true/false value");
5895   return V;
5896 }
5897 
5898 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
5899   assert(Shift->isShift() && "Expected a shift");
5900 
5901   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
5902   // general vector shifts, and (3) the shift amount is a select-of-splatted
5903   // values, hoist the shifts before the select:
5904   //   shift Op0, (select Cond, TVal, FVal) -->
5905   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
5906   //
5907   // This is inverting a generic IR transform when we know that the cost of a
5908   // general vector shift is more than the cost of 2 shift-by-scalars.
5909   // We can't do this effectively in SDAG because we may not be able to
5910   // determine if the select operands are splats from within a basic block.
5911   Type *Ty = Shift->getType();
5912   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
5913     return false;
5914   Value *Cond, *TVal, *FVal;
5915   if (!match(Shift->getOperand(1),
5916              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
5917     return false;
5918   if (!isSplatValue(TVal) || !isSplatValue(FVal))
5919     return false;
5920 
5921   IRBuilder<> Builder(Shift);
5922   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
5923   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
5924   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
5925   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
5926   Shift->replaceAllUsesWith(NewSel);
5927   Shift->eraseFromParent();
5928   return true;
5929 }
5930 
5931 /// If we have a SelectInst that will likely profit from branch prediction,
5932 /// turn it into a branch.
5933 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5934   // If branch conversion isn't desirable, exit early.
5935   if (DisableSelectToBranch || OptSize || !TLI)
5936     return false;
5937 
5938   // Find all consecutive select instructions that share the same condition.
5939   SmallVector<SelectInst *, 2> ASI;
5940   ASI.push_back(SI);
5941   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5942        It != SI->getParent()->end(); ++It) {
5943     SelectInst *I = dyn_cast<SelectInst>(&*It);
5944     if (I && SI->getCondition() == I->getCondition()) {
5945       ASI.push_back(I);
5946     } else {
5947       break;
5948     }
5949   }
5950 
5951   SelectInst *LastSI = ASI.back();
5952   // Increment the current iterator to skip all the rest of select instructions
5953   // because they will be either "not lowered" or "all lowered" to branch.
5954   CurInstIterator = std::next(LastSI->getIterator());
5955 
5956   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5957 
5958   // Can we convert the 'select' to CF ?
5959   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5960     return false;
5961 
5962   TargetLowering::SelectSupportKind SelectKind;
5963   if (VectorCond)
5964     SelectKind = TargetLowering::VectorMaskSelect;
5965   else if (SI->getType()->isVectorTy())
5966     SelectKind = TargetLowering::ScalarCondVectorVal;
5967   else
5968     SelectKind = TargetLowering::ScalarValSelect;
5969 
5970   if (TLI->isSelectSupported(SelectKind) &&
5971       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5972     return false;
5973 
5974   // The DominatorTree needs to be rebuilt by any consumers after this
5975   // transformation. We simply reset here rather than setting the ModifiedDT
5976   // flag to avoid restarting the function walk in runOnFunction for each
5977   // select optimized.
5978   DT.reset();
5979 
5980   // Transform a sequence like this:
5981   //    start:
5982   //       %cmp = cmp uge i32 %a, %b
5983   //       %sel = select i1 %cmp, i32 %c, i32 %d
5984   //
5985   // Into:
5986   //    start:
5987   //       %cmp = cmp uge i32 %a, %b
5988   //       br i1 %cmp, label %select.true, label %select.false
5989   //    select.true:
5990   //       br label %select.end
5991   //    select.false:
5992   //       br label %select.end
5993   //    select.end:
5994   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5995   //
5996   // In addition, we may sink instructions that produce %c or %d from
5997   // the entry block into the destination(s) of the new branch.
5998   // If the true or false blocks do not contain a sunken instruction, that
5999   // block and its branch may be optimized away. In that case, one side of the
6000   // first branch will point directly to select.end, and the corresponding PHI
6001   // predecessor block will be the start block.
6002 
6003   // First, we split the block containing the select into 2 blocks.
6004   BasicBlock *StartBlock = SI->getParent();
6005   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6006   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6007 
6008   // Delete the unconditional branch that was just created by the split.
6009   StartBlock->getTerminator()->eraseFromParent();
6010 
6011   // These are the new basic blocks for the conditional branch.
6012   // At least one will become an actual new basic block.
6013   BasicBlock *TrueBlock = nullptr;
6014   BasicBlock *FalseBlock = nullptr;
6015   BranchInst *TrueBranch = nullptr;
6016   BranchInst *FalseBranch = nullptr;
6017 
6018   // Sink expensive instructions into the conditional blocks to avoid executing
6019   // them speculatively.
6020   for (SelectInst *SI : ASI) {
6021     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6022       if (TrueBlock == nullptr) {
6023         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6024                                        EndBlock->getParent(), EndBlock);
6025         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6026         TrueBranch->setDebugLoc(SI->getDebugLoc());
6027       }
6028       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6029       TrueInst->moveBefore(TrueBranch);
6030     }
6031     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6032       if (FalseBlock == nullptr) {
6033         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6034                                         EndBlock->getParent(), EndBlock);
6035         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6036         FalseBranch->setDebugLoc(SI->getDebugLoc());
6037       }
6038       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6039       FalseInst->moveBefore(FalseBranch);
6040     }
6041   }
6042 
6043   // If there was nothing to sink, then arbitrarily choose the 'false' side
6044   // for a new input value to the PHI.
6045   if (TrueBlock == FalseBlock) {
6046     assert(TrueBlock == nullptr &&
6047            "Unexpected basic block transform while optimizing select");
6048 
6049     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6050                                     EndBlock->getParent(), EndBlock);
6051     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6052     FalseBranch->setDebugLoc(SI->getDebugLoc());
6053   }
6054 
6055   // Insert the real conditional branch based on the original condition.
6056   // If we did not create a new block for one of the 'true' or 'false' paths
6057   // of the condition, it means that side of the branch goes to the end block
6058   // directly and the path originates from the start block from the point of
6059   // view of the new PHI.
6060   BasicBlock *TT, *FT;
6061   if (TrueBlock == nullptr) {
6062     TT = EndBlock;
6063     FT = FalseBlock;
6064     TrueBlock = StartBlock;
6065   } else if (FalseBlock == nullptr) {
6066     TT = TrueBlock;
6067     FT = EndBlock;
6068     FalseBlock = StartBlock;
6069   } else {
6070     TT = TrueBlock;
6071     FT = FalseBlock;
6072   }
6073   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6074 
6075   SmallPtrSet<const Instruction *, 2> INS;
6076   INS.insert(ASI.begin(), ASI.end());
6077   // Use reverse iterator because later select may use the value of the
6078   // earlier select, and we need to propagate value through earlier select
6079   // to get the PHI operand.
6080   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6081     SelectInst *SI = *It;
6082     // The select itself is replaced with a PHI Node.
6083     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6084     PN->takeName(SI);
6085     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6086     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6087     PN->setDebugLoc(SI->getDebugLoc());
6088 
6089     SI->replaceAllUsesWith(PN);
6090     SI->eraseFromParent();
6091     INS.erase(SI);
6092     ++NumSelectsExpanded;
6093   }
6094 
6095   // Instruct OptimizeBlock to skip to the next block.
6096   CurInstIterator = StartBlock->end();
6097   return true;
6098 }
6099 
6100 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6101   SmallVector<int, 16> Mask(SVI->getShuffleMask());
6102   int SplatElem = -1;
6103   for (unsigned i = 0; i < Mask.size(); ++i) {
6104     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6105       return false;
6106     SplatElem = Mask[i];
6107   }
6108 
6109   return true;
6110 }
6111 
6112 /// Some targets have expensive vector shifts if the lanes aren't all the same
6113 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6114 /// it's often worth sinking a shufflevector splat down to its use so that
6115 /// codegen can spot all lanes are identical.
6116 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6117   BasicBlock *DefBB = SVI->getParent();
6118 
6119   // Only do this xform if variable vector shifts are particularly expensive.
6120   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6121     return false;
6122 
6123   // We only expect better codegen by sinking a shuffle if we can recognise a
6124   // constant splat.
6125   if (!isBroadcastShuffle(SVI))
6126     return false;
6127 
6128   // InsertedShuffles - Only insert a shuffle in each block once.
6129   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6130 
6131   bool MadeChange = false;
6132   for (User *U : SVI->users()) {
6133     Instruction *UI = cast<Instruction>(U);
6134 
6135     // Figure out which BB this ext is used in.
6136     BasicBlock *UserBB = UI->getParent();
6137     if (UserBB == DefBB) continue;
6138 
6139     // For now only apply this when the splat is used by a shift instruction.
6140     if (!UI->isShift()) continue;
6141 
6142     // Everything checks out, sink the shuffle if the user's block doesn't
6143     // already have a copy.
6144     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6145 
6146     if (!InsertedShuffle) {
6147       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6148       assert(InsertPt != UserBB->end());
6149       InsertedShuffle =
6150           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6151                                 SVI->getOperand(2), "", &*InsertPt);
6152       InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6153     }
6154 
6155     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6156     MadeChange = true;
6157   }
6158 
6159   // If we removed all uses, nuke the shuffle.
6160   if (SVI->use_empty()) {
6161     SVI->eraseFromParent();
6162     MadeChange = true;
6163   }
6164 
6165   return MadeChange;
6166 }
6167 
6168 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6169   // If the operands of I can be folded into a target instruction together with
6170   // I, duplicate and sink them.
6171   SmallVector<Use *, 4> OpsToSink;
6172   if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6173     return false;
6174 
6175   // OpsToSink can contain multiple uses in a use chain (e.g.
6176   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6177   // uses must come first, so we process the ops in reverse order so as to not
6178   // create invalid IR.
6179   BasicBlock *TargetBB = I->getParent();
6180   bool Changed = false;
6181   SmallVector<Use *, 4> ToReplace;
6182   for (Use *U : reverse(OpsToSink)) {
6183     auto *UI = cast<Instruction>(U->get());
6184     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6185       continue;
6186     ToReplace.push_back(U);
6187   }
6188 
6189   SetVector<Instruction *> MaybeDead;
6190   DenseMap<Instruction *, Instruction *> NewInstructions;
6191   Instruction *InsertPoint = I;
6192   for (Use *U : ToReplace) {
6193     auto *UI = cast<Instruction>(U->get());
6194     Instruction *NI = UI->clone();
6195     NewInstructions[UI] = NI;
6196     MaybeDead.insert(UI);
6197     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6198     NI->insertBefore(InsertPoint);
6199     InsertPoint = NI;
6200     InsertedInsts.insert(NI);
6201 
6202     // Update the use for the new instruction, making sure that we update the
6203     // sunk instruction uses, if it is part of a chain that has already been
6204     // sunk.
6205     Instruction *OldI = cast<Instruction>(U->getUser());
6206     if (NewInstructions.count(OldI))
6207       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6208     else
6209       U->set(NI);
6210     Changed = true;
6211   }
6212 
6213   // Remove instructions that are dead after sinking.
6214   for (auto *I : MaybeDead) {
6215     if (!I->hasNUsesOrMore(1)) {
6216       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6217       I->eraseFromParent();
6218     }
6219   }
6220 
6221   return Changed;
6222 }
6223 
6224 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6225   if (!TLI || !DL)
6226     return false;
6227 
6228   Value *Cond = SI->getCondition();
6229   Type *OldType = Cond->getType();
6230   LLVMContext &Context = Cond->getContext();
6231   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6232   unsigned RegWidth = RegType.getSizeInBits();
6233 
6234   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6235     return false;
6236 
6237   // If the register width is greater than the type width, expand the condition
6238   // of the switch instruction and each case constant to the width of the
6239   // register. By widening the type of the switch condition, subsequent
6240   // comparisons (for case comparisons) will not need to be extended to the
6241   // preferred register width, so we will potentially eliminate N-1 extends,
6242   // where N is the number of cases in the switch.
6243   auto *NewType = Type::getIntNTy(Context, RegWidth);
6244 
6245   // Zero-extend the switch condition and case constants unless the switch
6246   // condition is a function argument that is already being sign-extended.
6247   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6248   // everything instead.
6249   Instruction::CastOps ExtType = Instruction::ZExt;
6250   if (auto *Arg = dyn_cast<Argument>(Cond))
6251     if (Arg->hasSExtAttr())
6252       ExtType = Instruction::SExt;
6253 
6254   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6255   ExtInst->insertBefore(SI);
6256   ExtInst->setDebugLoc(SI->getDebugLoc());
6257   SI->setCondition(ExtInst);
6258   for (auto Case : SI->cases()) {
6259     APInt NarrowConst = Case.getCaseValue()->getValue();
6260     APInt WideConst = (ExtType == Instruction::ZExt) ?
6261                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6262     Case.setValue(ConstantInt::get(Context, WideConst));
6263   }
6264 
6265   return true;
6266 }
6267 
6268 
6269 namespace {
6270 
6271 /// Helper class to promote a scalar operation to a vector one.
6272 /// This class is used to move downward extractelement transition.
6273 /// E.g.,
6274 /// a = vector_op <2 x i32>
6275 /// b = extractelement <2 x i32> a, i32 0
6276 /// c = scalar_op b
6277 /// store c
6278 ///
6279 /// =>
6280 /// a = vector_op <2 x i32>
6281 /// c = vector_op a (equivalent to scalar_op on the related lane)
6282 /// * d = extractelement <2 x i32> c, i32 0
6283 /// * store d
6284 /// Assuming both extractelement and store can be combine, we get rid of the
6285 /// transition.
6286 class VectorPromoteHelper {
6287   /// DataLayout associated with the current module.
6288   const DataLayout &DL;
6289 
6290   /// Used to perform some checks on the legality of vector operations.
6291   const TargetLowering &TLI;
6292 
6293   /// Used to estimated the cost of the promoted chain.
6294   const TargetTransformInfo &TTI;
6295 
6296   /// The transition being moved downwards.
6297   Instruction *Transition;
6298 
6299   /// The sequence of instructions to be promoted.
6300   SmallVector<Instruction *, 4> InstsToBePromoted;
6301 
6302   /// Cost of combining a store and an extract.
6303   unsigned StoreExtractCombineCost;
6304 
6305   /// Instruction that will be combined with the transition.
6306   Instruction *CombineInst = nullptr;
6307 
6308   /// The instruction that represents the current end of the transition.
6309   /// Since we are faking the promotion until we reach the end of the chain
6310   /// of computation, we need a way to get the current end of the transition.
6311   Instruction *getEndOfTransition() const {
6312     if (InstsToBePromoted.empty())
6313       return Transition;
6314     return InstsToBePromoted.back();
6315   }
6316 
6317   /// Return the index of the original value in the transition.
6318   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6319   /// c, is at index 0.
6320   unsigned getTransitionOriginalValueIdx() const {
6321     assert(isa<ExtractElementInst>(Transition) &&
6322            "Other kind of transitions are not supported yet");
6323     return 0;
6324   }
6325 
6326   /// Return the index of the index in the transition.
6327   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6328   /// is at index 1.
6329   unsigned getTransitionIdx() const {
6330     assert(isa<ExtractElementInst>(Transition) &&
6331            "Other kind of transitions are not supported yet");
6332     return 1;
6333   }
6334 
6335   /// Get the type of the transition.
6336   /// This is the type of the original value.
6337   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6338   /// transition is <2 x i32>.
6339   Type *getTransitionType() const {
6340     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6341   }
6342 
6343   /// Promote \p ToBePromoted by moving \p Def downward through.
6344   /// I.e., we have the following sequence:
6345   /// Def = Transition <ty1> a to <ty2>
6346   /// b = ToBePromoted <ty2> Def, ...
6347   /// =>
6348   /// b = ToBePromoted <ty1> a, ...
6349   /// Def = Transition <ty1> ToBePromoted to <ty2>
6350   void promoteImpl(Instruction *ToBePromoted);
6351 
6352   /// Check whether or not it is profitable to promote all the
6353   /// instructions enqueued to be promoted.
6354   bool isProfitableToPromote() {
6355     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6356     unsigned Index = isa<ConstantInt>(ValIdx)
6357                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6358                          : -1;
6359     Type *PromotedType = getTransitionType();
6360 
6361     StoreInst *ST = cast<StoreInst>(CombineInst);
6362     unsigned AS = ST->getPointerAddressSpace();
6363     unsigned Align = ST->getAlignment();
6364     // Check if this store is supported.
6365     if (!TLI.allowsMisalignedMemoryAccesses(
6366             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6367             Align)) {
6368       // If this is not supported, there is no way we can combine
6369       // the extract with the store.
6370       return false;
6371     }
6372 
6373     // The scalar chain of computation has to pay for the transition
6374     // scalar to vector.
6375     // The vector chain has to account for the combining cost.
6376     uint64_t ScalarCost =
6377         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6378     uint64_t VectorCost = StoreExtractCombineCost;
6379     for (const auto &Inst : InstsToBePromoted) {
6380       // Compute the cost.
6381       // By construction, all instructions being promoted are arithmetic ones.
6382       // Moreover, one argument is a constant that can be viewed as a splat
6383       // constant.
6384       Value *Arg0 = Inst->getOperand(0);
6385       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6386                             isa<ConstantFP>(Arg0);
6387       TargetTransformInfo::OperandValueKind Arg0OVK =
6388           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6389                          : TargetTransformInfo::OK_AnyValue;
6390       TargetTransformInfo::OperandValueKind Arg1OVK =
6391           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6392                           : TargetTransformInfo::OK_AnyValue;
6393       ScalarCost += TTI.getArithmeticInstrCost(
6394           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6395       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6396                                                Arg0OVK, Arg1OVK);
6397     }
6398     LLVM_DEBUG(
6399         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6400                << ScalarCost << "\nVector: " << VectorCost << '\n');
6401     return ScalarCost > VectorCost;
6402   }
6403 
6404   /// Generate a constant vector with \p Val with the same
6405   /// number of elements as the transition.
6406   /// \p UseSplat defines whether or not \p Val should be replicated
6407   /// across the whole vector.
6408   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6409   /// otherwise we generate a vector with as many undef as possible:
6410   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6411   /// used at the index of the extract.
6412   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6413     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6414     if (!UseSplat) {
6415       // If we cannot determine where the constant must be, we have to
6416       // use a splat constant.
6417       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6418       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6419         ExtractIdx = CstVal->getSExtValue();
6420       else
6421         UseSplat = true;
6422     }
6423 
6424     unsigned End = getTransitionType()->getVectorNumElements();
6425     if (UseSplat)
6426       return ConstantVector::getSplat(End, Val);
6427 
6428     SmallVector<Constant *, 4> ConstVec;
6429     UndefValue *UndefVal = UndefValue::get(Val->getType());
6430     for (unsigned Idx = 0; Idx != End; ++Idx) {
6431       if (Idx == ExtractIdx)
6432         ConstVec.push_back(Val);
6433       else
6434         ConstVec.push_back(UndefVal);
6435     }
6436     return ConstantVector::get(ConstVec);
6437   }
6438 
6439   /// Check if promoting to a vector type an operand at \p OperandIdx
6440   /// in \p Use can trigger undefined behavior.
6441   static bool canCauseUndefinedBehavior(const Instruction *Use,
6442                                         unsigned OperandIdx) {
6443     // This is not safe to introduce undef when the operand is on
6444     // the right hand side of a division-like instruction.
6445     if (OperandIdx != 1)
6446       return false;
6447     switch (Use->getOpcode()) {
6448     default:
6449       return false;
6450     case Instruction::SDiv:
6451     case Instruction::UDiv:
6452     case Instruction::SRem:
6453     case Instruction::URem:
6454       return true;
6455     case Instruction::FDiv:
6456     case Instruction::FRem:
6457       return !Use->hasNoNaNs();
6458     }
6459     llvm_unreachable(nullptr);
6460   }
6461 
6462 public:
6463   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6464                       const TargetTransformInfo &TTI, Instruction *Transition,
6465                       unsigned CombineCost)
6466       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6467         StoreExtractCombineCost(CombineCost) {
6468     assert(Transition && "Do not know how to promote null");
6469   }
6470 
6471   /// Check if we can promote \p ToBePromoted to \p Type.
6472   bool canPromote(const Instruction *ToBePromoted) const {
6473     // We could support CastInst too.
6474     return isa<BinaryOperator>(ToBePromoted);
6475   }
6476 
6477   /// Check if it is profitable to promote \p ToBePromoted
6478   /// by moving downward the transition through.
6479   bool shouldPromote(const Instruction *ToBePromoted) const {
6480     // Promote only if all the operands can be statically expanded.
6481     // Indeed, we do not want to introduce any new kind of transitions.
6482     for (const Use &U : ToBePromoted->operands()) {
6483       const Value *Val = U.get();
6484       if (Val == getEndOfTransition()) {
6485         // If the use is a division and the transition is on the rhs,
6486         // we cannot promote the operation, otherwise we may create a
6487         // division by zero.
6488         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6489           return false;
6490         continue;
6491       }
6492       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6493           !isa<ConstantFP>(Val))
6494         return false;
6495     }
6496     // Check that the resulting operation is legal.
6497     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6498     if (!ISDOpcode)
6499       return false;
6500     return StressStoreExtract ||
6501            TLI.isOperationLegalOrCustom(
6502                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6503   }
6504 
6505   /// Check whether or not \p Use can be combined
6506   /// with the transition.
6507   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6508   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6509 
6510   /// Record \p ToBePromoted as part of the chain to be promoted.
6511   void enqueueForPromotion(Instruction *ToBePromoted) {
6512     InstsToBePromoted.push_back(ToBePromoted);
6513   }
6514 
6515   /// Set the instruction that will be combined with the transition.
6516   void recordCombineInstruction(Instruction *ToBeCombined) {
6517     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6518     CombineInst = ToBeCombined;
6519   }
6520 
6521   /// Promote all the instructions enqueued for promotion if it is
6522   /// is profitable.
6523   /// \return True if the promotion happened, false otherwise.
6524   bool promote() {
6525     // Check if there is something to promote.
6526     // Right now, if we do not have anything to combine with,
6527     // we assume the promotion is not profitable.
6528     if (InstsToBePromoted.empty() || !CombineInst)
6529       return false;
6530 
6531     // Check cost.
6532     if (!StressStoreExtract && !isProfitableToPromote())
6533       return false;
6534 
6535     // Promote.
6536     for (auto &ToBePromoted : InstsToBePromoted)
6537       promoteImpl(ToBePromoted);
6538     InstsToBePromoted.clear();
6539     return true;
6540   }
6541 };
6542 
6543 } // end anonymous namespace
6544 
6545 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6546   // At this point, we know that all the operands of ToBePromoted but Def
6547   // can be statically promoted.
6548   // For Def, we need to use its parameter in ToBePromoted:
6549   // b = ToBePromoted ty1 a
6550   // Def = Transition ty1 b to ty2
6551   // Move the transition down.
6552   // 1. Replace all uses of the promoted operation by the transition.
6553   // = ... b => = ... Def.
6554   assert(ToBePromoted->getType() == Transition->getType() &&
6555          "The type of the result of the transition does not match "
6556          "the final type");
6557   ToBePromoted->replaceAllUsesWith(Transition);
6558   // 2. Update the type of the uses.
6559   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6560   Type *TransitionTy = getTransitionType();
6561   ToBePromoted->mutateType(TransitionTy);
6562   // 3. Update all the operands of the promoted operation with promoted
6563   // operands.
6564   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6565   for (Use &U : ToBePromoted->operands()) {
6566     Value *Val = U.get();
6567     Value *NewVal = nullptr;
6568     if (Val == Transition)
6569       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6570     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6571              isa<ConstantFP>(Val)) {
6572       // Use a splat constant if it is not safe to use undef.
6573       NewVal = getConstantVector(
6574           cast<Constant>(Val),
6575           isa<UndefValue>(Val) ||
6576               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6577     } else
6578       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6579                        "this?");
6580     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6581   }
6582   Transition->moveAfter(ToBePromoted);
6583   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6584 }
6585 
6586 /// Some targets can do store(extractelement) with one instruction.
6587 /// Try to push the extractelement towards the stores when the target
6588 /// has this feature and this is profitable.
6589 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6590   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6591   if (DisableStoreExtract || !TLI ||
6592       (!StressStoreExtract &&
6593        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6594                                        Inst->getOperand(1), CombineCost)))
6595     return false;
6596 
6597   // At this point we know that Inst is a vector to scalar transition.
6598   // Try to move it down the def-use chain, until:
6599   // - We can combine the transition with its single use
6600   //   => we got rid of the transition.
6601   // - We escape the current basic block
6602   //   => we would need to check that we are moving it at a cheaper place and
6603   //      we do not do that for now.
6604   BasicBlock *Parent = Inst->getParent();
6605   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6606   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6607   // If the transition has more than one use, assume this is not going to be
6608   // beneficial.
6609   while (Inst->hasOneUse()) {
6610     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6611     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6612 
6613     if (ToBePromoted->getParent() != Parent) {
6614       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6615                         << ToBePromoted->getParent()->getName()
6616                         << ") than the transition (" << Parent->getName()
6617                         << ").\n");
6618       return false;
6619     }
6620 
6621     if (VPH.canCombine(ToBePromoted)) {
6622       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6623                         << "will be combined with: " << *ToBePromoted << '\n');
6624       VPH.recordCombineInstruction(ToBePromoted);
6625       bool Changed = VPH.promote();
6626       NumStoreExtractExposed += Changed;
6627       return Changed;
6628     }
6629 
6630     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6631     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6632       return false;
6633 
6634     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6635 
6636     VPH.enqueueForPromotion(ToBePromoted);
6637     Inst = ToBePromoted;
6638   }
6639   return false;
6640 }
6641 
6642 /// For the instruction sequence of store below, F and I values
6643 /// are bundled together as an i64 value before being stored into memory.
6644 /// Sometimes it is more efficient to generate separate stores for F and I,
6645 /// which can remove the bitwise instructions or sink them to colder places.
6646 ///
6647 ///   (store (or (zext (bitcast F to i32) to i64),
6648 ///              (shl (zext I to i64), 32)), addr)  -->
6649 ///   (store F, addr) and (store I, addr+4)
6650 ///
6651 /// Similarly, splitting for other merged store can also be beneficial, like:
6652 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6653 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6654 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6655 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6656 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6657 ///
6658 /// We allow each target to determine specifically which kind of splitting is
6659 /// supported.
6660 ///
6661 /// The store patterns are commonly seen from the simple code snippet below
6662 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6663 ///   void goo(const std::pair<int, float> &);
6664 ///   hoo() {
6665 ///     ...
6666 ///     goo(std::make_pair(tmp, ftmp));
6667 ///     ...
6668 ///   }
6669 ///
6670 /// Although we already have similar splitting in DAG Combine, we duplicate
6671 /// it in CodeGenPrepare to catch the case in which pattern is across
6672 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6673 /// during code expansion.
6674 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6675                                 const TargetLowering &TLI) {
6676   // Handle simple but common cases only.
6677   Type *StoreType = SI.getValueOperand()->getType();
6678   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6679       DL.getTypeSizeInBits(StoreType) == 0)
6680     return false;
6681 
6682   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6683   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6684   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6685     return false;
6686 
6687   // Don't split the store if it is volatile.
6688   if (SI.isVolatile())
6689     return false;
6690 
6691   // Match the following patterns:
6692   // (store (or (zext LValue to i64),
6693   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6694   //  or
6695   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6696   //            (zext LValue to i64),
6697   // Expect both operands of OR and the first operand of SHL have only
6698   // one use.
6699   Value *LValue, *HValue;
6700   if (!match(SI.getValueOperand(),
6701              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6702                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6703                                    m_SpecificInt(HalfValBitSize))))))
6704     return false;
6705 
6706   // Check LValue and HValue are int with size less or equal than 32.
6707   if (!LValue->getType()->isIntegerTy() ||
6708       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6709       !HValue->getType()->isIntegerTy() ||
6710       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6711     return false;
6712 
6713   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6714   // as the input of target query.
6715   auto *LBC = dyn_cast<BitCastInst>(LValue);
6716   auto *HBC = dyn_cast<BitCastInst>(HValue);
6717   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6718                   : EVT::getEVT(LValue->getType());
6719   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6720                    : EVT::getEVT(HValue->getType());
6721   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6722     return false;
6723 
6724   // Start to split store.
6725   IRBuilder<> Builder(SI.getContext());
6726   Builder.SetInsertPoint(&SI);
6727 
6728   // If LValue/HValue is a bitcast in another BB, create a new one in current
6729   // BB so it may be merged with the splitted stores by dag combiner.
6730   if (LBC && LBC->getParent() != SI.getParent())
6731     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6732   if (HBC && HBC->getParent() != SI.getParent())
6733     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6734 
6735   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6736   auto CreateSplitStore = [&](Value *V, bool Upper) {
6737     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6738     Value *Addr = Builder.CreateBitCast(
6739         SI.getOperand(1),
6740         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6741     if ((IsLE && Upper) || (!IsLE && !Upper))
6742       Addr = Builder.CreateGEP(
6743           SplitStoreType, Addr,
6744           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6745     Builder.CreateAlignedStore(
6746         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6747   };
6748 
6749   CreateSplitStore(LValue, false);
6750   CreateSplitStore(HValue, true);
6751 
6752   // Delete the old store.
6753   SI.eraseFromParent();
6754   return true;
6755 }
6756 
6757 // Return true if the GEP has two operands, the first operand is of a sequential
6758 // type, and the second operand is a constant.
6759 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6760   gep_type_iterator I = gep_type_begin(*GEP);
6761   return GEP->getNumOperands() == 2 &&
6762       I.isSequential() &&
6763       isa<ConstantInt>(GEP->getOperand(1));
6764 }
6765 
6766 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6767 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6768 // reducing liveness interference across those edges benefits global register
6769 // allocation. Currently handles only certain cases.
6770 //
6771 // For example, unmerge %GEPI and %UGEPI as below.
6772 //
6773 // ---------- BEFORE ----------
6774 // SrcBlock:
6775 //   ...
6776 //   %GEPIOp = ...
6777 //   ...
6778 //   %GEPI = gep %GEPIOp, Idx
6779 //   ...
6780 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6781 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6782 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6783 //   %UGEPI)
6784 //
6785 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6786 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6787 // ...
6788 //
6789 // DstBi:
6790 //   ...
6791 //   %UGEPI = gep %GEPIOp, UIdx
6792 // ...
6793 // ---------------------------
6794 //
6795 // ---------- AFTER ----------
6796 // SrcBlock:
6797 //   ... (same as above)
6798 //    (* %GEPI is still alive on the indirectbr edges)
6799 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6800 //    unmerging)
6801 // ...
6802 //
6803 // DstBi:
6804 //   ...
6805 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6806 //   ...
6807 // ---------------------------
6808 //
6809 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6810 // no longer alive on them.
6811 //
6812 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6813 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6814 // not to disable further simplications and optimizations as a result of GEP
6815 // merging.
6816 //
6817 // Note this unmerging may increase the length of the data flow critical path
6818 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6819 // between the register pressure and the length of data-flow critical
6820 // path. Restricting this to the uncommon IndirectBr case would minimize the
6821 // impact of potentially longer critical path, if any, and the impact on compile
6822 // time.
6823 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6824                                              const TargetTransformInfo *TTI) {
6825   BasicBlock *SrcBlock = GEPI->getParent();
6826   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6827   // (non-IndirectBr) cases exit early here.
6828   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6829     return false;
6830   // Check that GEPI is a simple gep with a single constant index.
6831   if (!GEPSequentialConstIndexed(GEPI))
6832     return false;
6833   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6834   // Check that GEPI is a cheap one.
6835   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6836       > TargetTransformInfo::TCC_Basic)
6837     return false;
6838   Value *GEPIOp = GEPI->getOperand(0);
6839   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6840   if (!isa<Instruction>(GEPIOp))
6841     return false;
6842   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6843   if (GEPIOpI->getParent() != SrcBlock)
6844     return false;
6845   // Check that GEP is used outside the block, meaning it's alive on the
6846   // IndirectBr edge(s).
6847   if (find_if(GEPI->users(), [&](User *Usr) {
6848         if (auto *I = dyn_cast<Instruction>(Usr)) {
6849           if (I->getParent() != SrcBlock) {
6850             return true;
6851           }
6852         }
6853         return false;
6854       }) == GEPI->users().end())
6855     return false;
6856   // The second elements of the GEP chains to be unmerged.
6857   std::vector<GetElementPtrInst *> UGEPIs;
6858   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6859   // on IndirectBr edges.
6860   for (User *Usr : GEPIOp->users()) {
6861     if (Usr == GEPI) continue;
6862     // Check if Usr is an Instruction. If not, give up.
6863     if (!isa<Instruction>(Usr))
6864       return false;
6865     auto *UI = cast<Instruction>(Usr);
6866     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6867     if (UI->getParent() == SrcBlock)
6868       continue;
6869     // Check if Usr is a GEP. If not, give up.
6870     if (!isa<GetElementPtrInst>(Usr))
6871       return false;
6872     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6873     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6874     // the pointer operand to it. If so, record it in the vector. If not, give
6875     // up.
6876     if (!GEPSequentialConstIndexed(UGEPI))
6877       return false;
6878     if (UGEPI->getOperand(0) != GEPIOp)
6879       return false;
6880     if (GEPIIdx->getType() !=
6881         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6882       return false;
6883     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6884     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6885         > TargetTransformInfo::TCC_Basic)
6886       return false;
6887     UGEPIs.push_back(UGEPI);
6888   }
6889   if (UGEPIs.size() == 0)
6890     return false;
6891   // Check the materializing cost of (Uidx-Idx).
6892   for (GetElementPtrInst *UGEPI : UGEPIs) {
6893     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6894     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6895     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6896     if (ImmCost > TargetTransformInfo::TCC_Basic)
6897       return false;
6898   }
6899   // Now unmerge between GEPI and UGEPIs.
6900   for (GetElementPtrInst *UGEPI : UGEPIs) {
6901     UGEPI->setOperand(0, GEPI);
6902     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6903     Constant *NewUGEPIIdx =
6904         ConstantInt::get(GEPIIdx->getType(),
6905                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6906     UGEPI->setOperand(1, NewUGEPIIdx);
6907     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6908     // inbounds to avoid UB.
6909     if (!GEPI->isInBounds()) {
6910       UGEPI->setIsInBounds(false);
6911     }
6912   }
6913   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6914   // alive on IndirectBr edges).
6915   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6916         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6917       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6918   return true;
6919 }
6920 
6921 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6922   // Bail out if we inserted the instruction to prevent optimizations from
6923   // stepping on each other's toes.
6924   if (InsertedInsts.count(I))
6925     return false;
6926 
6927   // TODO: Move into the switch on opcode below here.
6928   if (PHINode *P = dyn_cast<PHINode>(I)) {
6929     // It is possible for very late stage optimizations (such as SimplifyCFG)
6930     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6931     // trivial PHI, go ahead and zap it here.
6932     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6933       LargeOffsetGEPMap.erase(P);
6934       P->replaceAllUsesWith(V);
6935       P->eraseFromParent();
6936       ++NumPHIsElim;
6937       return true;
6938     }
6939     return false;
6940   }
6941 
6942   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6943     // If the source of the cast is a constant, then this should have
6944     // already been constant folded.  The only reason NOT to constant fold
6945     // it is if something (e.g. LSR) was careful to place the constant
6946     // evaluation in a block other than then one that uses it (e.g. to hoist
6947     // the address of globals out of a loop).  If this is the case, we don't
6948     // want to forward-subst the cast.
6949     if (isa<Constant>(CI->getOperand(0)))
6950       return false;
6951 
6952     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6953       return true;
6954 
6955     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6956       /// Sink a zext or sext into its user blocks if the target type doesn't
6957       /// fit in one register
6958       if (TLI &&
6959           TLI->getTypeAction(CI->getContext(),
6960                              TLI->getValueType(*DL, CI->getType())) ==
6961               TargetLowering::TypeExpandInteger) {
6962         return SinkCast(CI);
6963       } else {
6964         bool MadeChange = optimizeExt(I);
6965         return MadeChange | optimizeExtUses(I);
6966       }
6967     }
6968     return false;
6969   }
6970 
6971   if (auto *Cmp = dyn_cast<CmpInst>(I))
6972     if (TLI && optimizeCmp(Cmp, ModifiedDT))
6973       return true;
6974 
6975   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6976     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6977     if (TLI) {
6978       bool Modified = optimizeLoadExt(LI);
6979       unsigned AS = LI->getPointerAddressSpace();
6980       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6981       return Modified;
6982     }
6983     return false;
6984   }
6985 
6986   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6987     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6988       return true;
6989     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6990     if (TLI) {
6991       unsigned AS = SI->getPointerAddressSpace();
6992       return optimizeMemoryInst(I, SI->getOperand(1),
6993                                 SI->getOperand(0)->getType(), AS);
6994     }
6995     return false;
6996   }
6997 
6998   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6999       unsigned AS = RMW->getPointerAddressSpace();
7000       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7001                                 RMW->getType(), AS);
7002   }
7003 
7004   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7005       unsigned AS = CmpX->getPointerAddressSpace();
7006       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7007                                 CmpX->getCompareOperand()->getType(), AS);
7008   }
7009 
7010   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7011 
7012   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7013       EnableAndCmpSinking && TLI)
7014     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7015 
7016   // TODO: Move this into the switch on opcode - it handles shifts already.
7017   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7018                 BinOp->getOpcode() == Instruction::LShr)) {
7019     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7020     if (TLI && CI && TLI->hasExtractBitsInsn())
7021       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7022         return true;
7023   }
7024 
7025   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7026     if (GEPI->hasAllZeroIndices()) {
7027       /// The GEP operand must be a pointer, so must its result -> BitCast
7028       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7029                                         GEPI->getName(), GEPI);
7030       NC->setDebugLoc(GEPI->getDebugLoc());
7031       GEPI->replaceAllUsesWith(NC);
7032       GEPI->eraseFromParent();
7033       ++NumGEPsElim;
7034       optimizeInst(NC, ModifiedDT);
7035       return true;
7036     }
7037     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7038       return true;
7039     }
7040     return false;
7041   }
7042 
7043   if (tryToSinkFreeOperands(I))
7044     return true;
7045 
7046   switch (I->getOpcode()) {
7047   case Instruction::Shl:
7048   case Instruction::LShr:
7049   case Instruction::AShr:
7050     return optimizeShiftInst(cast<BinaryOperator>(I));
7051   case Instruction::Call:
7052     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7053   case Instruction::Select:
7054     return optimizeSelectInst(cast<SelectInst>(I));
7055   case Instruction::ShuffleVector:
7056     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7057   case Instruction::Switch:
7058     return optimizeSwitchInst(cast<SwitchInst>(I));
7059   case Instruction::ExtractElement:
7060     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7061   }
7062 
7063   return false;
7064 }
7065 
7066 /// Given an OR instruction, check to see if this is a bitreverse
7067 /// idiom. If so, insert the new intrinsic and return true.
7068 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7069                            const TargetLowering &TLI) {
7070   if (!I.getType()->isIntegerTy() ||
7071       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7072                                     TLI.getValueType(DL, I.getType(), true)))
7073     return false;
7074 
7075   SmallVector<Instruction*, 4> Insts;
7076   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7077     return false;
7078   Instruction *LastInst = Insts.back();
7079   I.replaceAllUsesWith(LastInst);
7080   RecursivelyDeleteTriviallyDeadInstructions(&I);
7081   return true;
7082 }
7083 
7084 // In this pass we look for GEP and cast instructions that are used
7085 // across basic blocks and rewrite them to improve basic-block-at-a-time
7086 // selection.
7087 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7088   SunkAddrs.clear();
7089   bool MadeChange = false;
7090 
7091   CurInstIterator = BB.begin();
7092   while (CurInstIterator != BB.end()) {
7093     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7094     if (ModifiedDT)
7095       return true;
7096   }
7097 
7098   bool MadeBitReverse = true;
7099   while (TLI && MadeBitReverse) {
7100     MadeBitReverse = false;
7101     for (auto &I : reverse(BB)) {
7102       if (makeBitReverse(I, *DL, *TLI)) {
7103         MadeBitReverse = MadeChange = true;
7104         break;
7105       }
7106     }
7107   }
7108   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7109 
7110   return MadeChange;
7111 }
7112 
7113 // llvm.dbg.value is far away from the value then iSel may not be able
7114 // handle it properly. iSel will drop llvm.dbg.value if it can not
7115 // find a node corresponding to the value.
7116 bool CodeGenPrepare::placeDbgValues(Function &F) {
7117   bool MadeChange = false;
7118   for (BasicBlock &BB : F) {
7119     Instruction *PrevNonDbgInst = nullptr;
7120     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7121       Instruction *Insn = &*BI++;
7122       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7123       // Leave dbg.values that refer to an alloca alone. These
7124       // intrinsics describe the address of a variable (= the alloca)
7125       // being taken.  They should not be moved next to the alloca
7126       // (and to the beginning of the scope), but rather stay close to
7127       // where said address is used.
7128       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7129         PrevNonDbgInst = Insn;
7130         continue;
7131       }
7132 
7133       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7134       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7135         // If VI is a phi in a block with an EHPad terminator, we can't insert
7136         // after it.
7137         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7138           continue;
7139         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7140                           << *DVI << ' ' << *VI);
7141         DVI->removeFromParent();
7142         if (isa<PHINode>(VI))
7143           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7144         else
7145           DVI->insertAfter(VI);
7146         MadeChange = true;
7147         ++NumDbgValueMoved;
7148       }
7149     }
7150   }
7151   return MadeChange;
7152 }
7153 
7154 /// Scale down both weights to fit into uint32_t.
7155 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7156   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7157   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7158   NewTrue = NewTrue / Scale;
7159   NewFalse = NewFalse / Scale;
7160 }
7161 
7162 /// Some targets prefer to split a conditional branch like:
7163 /// \code
7164 ///   %0 = icmp ne i32 %a, 0
7165 ///   %1 = icmp ne i32 %b, 0
7166 ///   %or.cond = or i1 %0, %1
7167 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7168 /// \endcode
7169 /// into multiple branch instructions like:
7170 /// \code
7171 ///   bb1:
7172 ///     %0 = icmp ne i32 %a, 0
7173 ///     br i1 %0, label %TrueBB, label %bb2
7174 ///   bb2:
7175 ///     %1 = icmp ne i32 %b, 0
7176 ///     br i1 %1, label %TrueBB, label %FalseBB
7177 /// \endcode
7178 /// This usually allows instruction selection to do even further optimizations
7179 /// and combine the compare with the branch instruction. Currently this is
7180 /// applied for targets which have "cheap" jump instructions.
7181 ///
7182 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7183 ///
7184 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7185   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7186     return false;
7187 
7188   bool MadeChange = false;
7189   for (auto &BB : F) {
7190     // Does this BB end with the following?
7191     //   %cond1 = icmp|fcmp|binary instruction ...
7192     //   %cond2 = icmp|fcmp|binary instruction ...
7193     //   %cond.or = or|and i1 %cond1, cond2
7194     //   br i1 %cond.or label %dest1, label %dest2"
7195     BinaryOperator *LogicOp;
7196     BasicBlock *TBB, *FBB;
7197     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7198       continue;
7199 
7200     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7201     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7202       continue;
7203 
7204     unsigned Opc;
7205     Value *Cond1, *Cond2;
7206     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7207                              m_OneUse(m_Value(Cond2)))))
7208       Opc = Instruction::And;
7209     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7210                                  m_OneUse(m_Value(Cond2)))))
7211       Opc = Instruction::Or;
7212     else
7213       continue;
7214 
7215     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7216         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7217       continue;
7218 
7219     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7220 
7221     // Create a new BB.
7222     auto TmpBB =
7223         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7224                            BB.getParent(), BB.getNextNode());
7225 
7226     // Update original basic block by using the first condition directly by the
7227     // branch instruction and removing the no longer needed and/or instruction.
7228     Br1->setCondition(Cond1);
7229     LogicOp->eraseFromParent();
7230 
7231     // Depending on the condition we have to either replace the true or the
7232     // false successor of the original branch instruction.
7233     if (Opc == Instruction::And)
7234       Br1->setSuccessor(0, TmpBB);
7235     else
7236       Br1->setSuccessor(1, TmpBB);
7237 
7238     // Fill in the new basic block.
7239     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7240     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7241       I->removeFromParent();
7242       I->insertBefore(Br2);
7243     }
7244 
7245     // Update PHI nodes in both successors. The original BB needs to be
7246     // replaced in one successor's PHI nodes, because the branch comes now from
7247     // the newly generated BB (NewBB). In the other successor we need to add one
7248     // incoming edge to the PHI nodes, because both branch instructions target
7249     // now the same successor. Depending on the original branch condition
7250     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7251     // we perform the correct update for the PHI nodes.
7252     // This doesn't change the successor order of the just created branch
7253     // instruction (or any other instruction).
7254     if (Opc == Instruction::Or)
7255       std::swap(TBB, FBB);
7256 
7257     // Replace the old BB with the new BB.
7258     TBB->replacePhiUsesWith(&BB, TmpBB);
7259 
7260     // Add another incoming edge form the new BB.
7261     for (PHINode &PN : FBB->phis()) {
7262       auto *Val = PN.getIncomingValueForBlock(&BB);
7263       PN.addIncoming(Val, TmpBB);
7264     }
7265 
7266     // Update the branch weights (from SelectionDAGBuilder::
7267     // FindMergedConditions).
7268     if (Opc == Instruction::Or) {
7269       // Codegen X | Y as:
7270       // BB1:
7271       //   jmp_if_X TBB
7272       //   jmp TmpBB
7273       // TmpBB:
7274       //   jmp_if_Y TBB
7275       //   jmp FBB
7276       //
7277 
7278       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7279       // The requirement is that
7280       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7281       //     = TrueProb for original BB.
7282       // Assuming the original weights are A and B, one choice is to set BB1's
7283       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7284       // assumes that
7285       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7286       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7287       // TmpBB, but the math is more complicated.
7288       uint64_t TrueWeight, FalseWeight;
7289       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7290         uint64_t NewTrueWeight = TrueWeight;
7291         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7292         scaleWeights(NewTrueWeight, NewFalseWeight);
7293         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7294                          .createBranchWeights(TrueWeight, FalseWeight));
7295 
7296         NewTrueWeight = TrueWeight;
7297         NewFalseWeight = 2 * FalseWeight;
7298         scaleWeights(NewTrueWeight, NewFalseWeight);
7299         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7300                          .createBranchWeights(TrueWeight, FalseWeight));
7301       }
7302     } else {
7303       // Codegen X & Y as:
7304       // BB1:
7305       //   jmp_if_X TmpBB
7306       //   jmp FBB
7307       // TmpBB:
7308       //   jmp_if_Y TBB
7309       //   jmp FBB
7310       //
7311       //  This requires creation of TmpBB after CurBB.
7312 
7313       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7314       // The requirement is that
7315       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7316       //     = FalseProb for original BB.
7317       // Assuming the original weights are A and B, one choice is to set BB1's
7318       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7319       // assumes that
7320       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7321       uint64_t TrueWeight, FalseWeight;
7322       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7323         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7324         uint64_t NewFalseWeight = FalseWeight;
7325         scaleWeights(NewTrueWeight, NewFalseWeight);
7326         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7327                          .createBranchWeights(TrueWeight, FalseWeight));
7328 
7329         NewTrueWeight = 2 * TrueWeight;
7330         NewFalseWeight = FalseWeight;
7331         scaleWeights(NewTrueWeight, NewFalseWeight);
7332         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7333                          .createBranchWeights(TrueWeight, FalseWeight));
7334       }
7335     }
7336 
7337     ModifiedDT = true;
7338     MadeChange = true;
7339 
7340     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7341                TmpBB->dump());
7342   }
7343   return MadeChange;
7344 }
7345