1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/Analysis.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Argument.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <limits> 97 #include <memory> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define DEBUG_TYPE "codegenprepare" 105 106 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 110 "sunken Cmps"); 111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 112 "of sunken Casts"); 113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 114 "computations were sunk"); 115 STATISTIC(NumMemoryInstsPhiCreated, 116 "Number of phis created when address " 117 "computations were sunk to memory instructions"); 118 STATISTIC(NumMemoryInstsSelectCreated, 119 "Number of select created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 123 STATISTIC(NumAndsAdded, 124 "Number of and mask instructions added to form ext loads"); 125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 126 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 130 131 static cl::opt<bool> DisableBranchOpts( 132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 133 cl::desc("Disable branch optimizations in CodeGenPrepare")); 134 135 static cl::opt<bool> 136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable GC optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> DisableSelectToBranch( 140 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 141 cl::desc("Disable select to branch conversion.")); 142 143 static cl::opt<bool> AddrSinkUsingGEPs( 144 "addr-sink-using-gep", cl::Hidden, cl::init(true), 145 cl::desc("Address sinking in CGP using GEPs.")); 146 147 static cl::opt<bool> EnableAndCmpSinking( 148 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 149 cl::desc("Enable sinkinig and/cmp into branches.")); 150 151 static cl::opt<bool> DisableStoreExtract( 152 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 154 155 static cl::opt<bool> StressStoreExtract( 156 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> DisableExtLdPromotion( 160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 162 "CodeGenPrepare")); 163 164 static cl::opt<bool> StressExtLdPromotion( 165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 167 "optimization in CodeGenPrepare")); 168 169 static cl::opt<bool> DisablePreheaderProtect( 170 "disable-preheader-prot", cl::Hidden, cl::init(false), 171 cl::desc("Disable protection against removing loop preheaders")); 172 173 static cl::opt<bool> ProfileGuidedSectionPrefix( 174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 175 cl::desc("Use profile info to add section prefix for hot/cold functions")); 176 177 static cl::opt<unsigned> FreqRatioToSkipMerge( 178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 179 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 180 "(frequency of destination block) is greater than this ratio")); 181 182 static cl::opt<bool> ForceSplitStore( 183 "force-split-store", cl::Hidden, cl::init(false), 184 cl::desc("Force store splitting no matter what the target query says.")); 185 186 static cl::opt<bool> 187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 188 cl::desc("Enable merging of redundant sexts when one is dominating" 189 " the other."), cl::init(true)); 190 191 static cl::opt<bool> DisableComplexAddrModes( 192 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 193 cl::desc("Disables combining addressing modes with different parts " 194 "in optimizeMemoryInst.")); 195 196 static cl::opt<bool> 197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 198 cl::desc("Allow creation of Phis in Address sinking.")); 199 200 static cl::opt<bool> 201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 202 cl::desc("Allow creation of selects in Address sinking.")); 203 204 static cl::opt<bool> AddrSinkCombineBaseReg( 205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 206 cl::desc("Allow combining of BaseReg field in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseGV( 209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseGV field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseOffs( 213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineScaledReg( 217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 219 220 static cl::opt<bool> 221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 222 cl::init(true), 223 cl::desc("Enable splitting large offset of GEP.")); 224 225 namespace { 226 227 enum ExtType { 228 ZeroExtension, // Zero extension has been seen. 229 SignExtension, // Sign extension has been seen. 230 BothExtension // This extension type is used if we saw sext after 231 // ZeroExtension had been set, or if we saw zext after 232 // SignExtension had been set. It makes the type 233 // information of a promoted instruction invalid. 234 }; 235 236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 239 using SExts = SmallVector<Instruction *, 16>; 240 using ValueToSExts = DenseMap<Value *, SExts>; 241 242 class TypePromotionTransaction; 243 244 class CodeGenPrepare : public FunctionPass { 245 const TargetMachine *TM = nullptr; 246 const TargetSubtargetInfo *SubtargetInfo; 247 const TargetLowering *TLI = nullptr; 248 const TargetRegisterInfo *TRI; 249 const TargetTransformInfo *TTI = nullptr; 250 const TargetLibraryInfo *TLInfo; 251 const LoopInfo *LI; 252 std::unique_ptr<BlockFrequencyInfo> BFI; 253 std::unique_ptr<BranchProbabilityInfo> BPI; 254 255 /// As we scan instructions optimizing them, this is the next instruction 256 /// to optimize. Transforms that can invalidate this should update it. 257 BasicBlock::iterator CurInstIterator; 258 259 /// Keeps track of non-local addresses that have been sunk into a block. 260 /// This allows us to avoid inserting duplicate code for blocks with 261 /// multiple load/stores of the same address. The usage of WeakTrackingVH 262 /// enables SunkAddrs to be treated as a cache whose entries can be 263 /// invalidated if a sunken address computation has been erased. 264 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 265 266 /// Keeps track of all instructions inserted for the current function. 267 SetOfInstrs InsertedInsts; 268 269 /// Keeps track of the type of the related instruction before their 270 /// promotion for the current function. 271 InstrToOrigTy PromotedInsts; 272 273 /// Keep track of instructions removed during promotion. 274 SetOfInstrs RemovedInsts; 275 276 /// Keep track of sext chains based on their initial value. 277 DenseMap<Value *, Instruction *> SeenChainsForSExt; 278 279 /// Keep track of GEPs accessing the same data structures such as structs or 280 /// arrays that are candidates to be split later because of their large 281 /// size. 282 MapVector< 283 AssertingVH<Value>, 284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 285 LargeOffsetGEPMap; 286 287 /// Keep track of new GEP base after splitting the GEPs having large offset. 288 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 289 290 /// Map serial numbers to Large offset GEPs. 291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 292 293 /// Keep track of SExt promoted. 294 ValueToSExts ValToSExtendedUses; 295 296 /// True if optimizing for size. 297 bool OptSize; 298 299 /// DataLayout for the Function being processed. 300 const DataLayout *DL = nullptr; 301 302 /// Building the dominator tree can be expensive, so we only build it 303 /// lazily and update it when required. 304 std::unique_ptr<DominatorTree> DT; 305 306 public: 307 static char ID; // Pass identification, replacement for typeid 308 309 CodeGenPrepare() : FunctionPass(ID) { 310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 311 } 312 313 bool runOnFunction(Function &F) override; 314 315 StringRef getPassName() const override { return "CodeGen Prepare"; } 316 317 void getAnalysisUsage(AnalysisUsage &AU) const override { 318 // FIXME: When we can selectively preserve passes, preserve the domtree. 319 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 320 AU.addRequired<TargetLibraryInfoWrapperPass>(); 321 AU.addRequired<TargetTransformInfoWrapperPass>(); 322 AU.addRequired<LoopInfoWrapperPass>(); 323 } 324 325 private: 326 template <typename F> 327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 328 // Substituting can cause recursive simplifications, which can invalidate 329 // our iterator. Use a WeakTrackingVH to hold onto it in case this 330 // happens. 331 Value *CurValue = &*CurInstIterator; 332 WeakTrackingVH IterHandle(CurValue); 333 334 f(); 335 336 // If the iterator instruction was recursively deleted, start over at the 337 // start of the block. 338 if (IterHandle != CurValue) { 339 CurInstIterator = BB->begin(); 340 SunkAddrs.clear(); 341 } 342 } 343 344 // Get the DominatorTree, building if necessary. 345 DominatorTree &getDT(Function &F) { 346 if (!DT) 347 DT = std::make_unique<DominatorTree>(F); 348 return *DT; 349 } 350 351 bool eliminateFallThrough(Function &F); 352 bool eliminateMostlyEmptyBlocks(Function &F); 353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 355 void eliminateMostlyEmptyBlock(BasicBlock *BB); 356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 357 bool isPreheader); 358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 359 bool optimizeInst(Instruction *I, bool &ModifiedDT); 360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 361 Type *AccessTy, unsigned AddrSpace); 362 bool optimizeInlineAsmInst(CallInst *CS); 363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 364 bool optimizeExt(Instruction *&I); 365 bool optimizeExtUses(Instruction *I); 366 bool optimizeLoadExt(LoadInst *Load); 367 bool optimizeShiftInst(BinaryOperator *BO); 368 bool optimizeSelectInst(SelectInst *SI); 369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 370 bool optimizeSwitchInst(SwitchInst *SI); 371 bool optimizeExtractElementInst(Instruction *Inst); 372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 373 bool placeDbgValues(Function &F); 374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 376 bool tryToPromoteExts(TypePromotionTransaction &TPT, 377 const SmallVectorImpl<Instruction *> &Exts, 378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 379 unsigned CreatedInstsCost = 0); 380 bool mergeSExts(Function &F); 381 bool splitLargeGEPOffsets(); 382 bool performAddressTypePromotion( 383 Instruction *&Inst, 384 bool AllowPromotionWithoutCommonHeader, 385 bool HasPromoted, TypePromotionTransaction &TPT, 386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 387 bool splitBranchCondition(Function &F, bool &ModifiedDT); 388 bool simplifyOffsetableRelocate(Instruction &I); 389 390 bool tryToSinkFreeOperands(Instruction *I); 391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 392 Intrinsic::ID IID); 393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 396 }; 397 398 } // end anonymous namespace 399 400 char CodeGenPrepare::ID = 0; 401 402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 403 "Optimize for code generation", false, false) 404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 406 "Optimize for code generation", false, false) 407 408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 409 410 bool CodeGenPrepare::runOnFunction(Function &F) { 411 if (skipFunction(F)) 412 return false; 413 414 DL = &F.getParent()->getDataLayout(); 415 416 bool EverMadeChange = false; 417 // Clear per function information. 418 InsertedInsts.clear(); 419 PromotedInsts.clear(); 420 421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 422 TM = &TPC->getTM<TargetMachine>(); 423 SubtargetInfo = TM->getSubtargetImpl(F); 424 TLI = SubtargetInfo->getTargetLowering(); 425 TRI = SubtargetInfo->getRegisterInfo(); 426 } 427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 430 BPI.reset(new BranchProbabilityInfo(F, *LI)); 431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 432 OptSize = F.hasOptSize(); 433 434 ProfileSummaryInfo *PSI = 435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 436 if (ProfileGuidedSectionPrefix) { 437 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 438 F.setSectionPrefix(".hot"); 439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 440 F.setSectionPrefix(".unlikely"); 441 } 442 443 /// This optimization identifies DIV instructions that can be 444 /// profitably bypassed and carried out with a shorter, faster divide. 445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 446 TLI->isSlowDivBypassed()) { 447 const DenseMap<unsigned int, unsigned int> &BypassWidths = 448 TLI->getBypassSlowDivWidths(); 449 BasicBlock* BB = &*F.begin(); 450 while (BB != nullptr) { 451 // bypassSlowDivision may create new BBs, but we don't want to reapply the 452 // optimization to those blocks. 453 BasicBlock* Next = BB->getNextNode(); 454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 455 BB = Next; 456 } 457 } 458 459 // Eliminate blocks that contain only PHI nodes and an 460 // unconditional branch. 461 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 462 463 bool ModifiedDT = false; 464 if (!DisableBranchOpts) 465 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 466 467 // Split some critical edges where one of the sources is an indirect branch, 468 // to help generate sane code for PHIs involving such edges. 469 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 470 471 bool MadeChange = true; 472 while (MadeChange) { 473 MadeChange = false; 474 DT.reset(); 475 for (Function::iterator I = F.begin(); I != F.end(); ) { 476 BasicBlock *BB = &*I++; 477 bool ModifiedDTOnIteration = false; 478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 479 480 // Restart BB iteration if the dominator tree of the Function was changed 481 if (ModifiedDTOnIteration) 482 break; 483 } 484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 485 MadeChange |= mergeSExts(F); 486 if (!LargeOffsetGEPMap.empty()) 487 MadeChange |= splitLargeGEPOffsets(); 488 489 // Really free removed instructions during promotion. 490 for (Instruction *I : RemovedInsts) 491 I->deleteValue(); 492 493 EverMadeChange |= MadeChange; 494 SeenChainsForSExt.clear(); 495 ValToSExtendedUses.clear(); 496 RemovedInsts.clear(); 497 LargeOffsetGEPMap.clear(); 498 LargeOffsetGEPID.clear(); 499 } 500 501 SunkAddrs.clear(); 502 503 if (!DisableBranchOpts) { 504 MadeChange = false; 505 // Use a set vector to get deterministic iteration order. The order the 506 // blocks are removed may affect whether or not PHI nodes in successors 507 // are removed. 508 SmallSetVector<BasicBlock*, 8> WorkList; 509 for (BasicBlock &BB : F) { 510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 511 MadeChange |= ConstantFoldTerminator(&BB, true); 512 if (!MadeChange) continue; 513 514 for (SmallVectorImpl<BasicBlock*>::iterator 515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 516 if (pred_begin(*II) == pred_end(*II)) 517 WorkList.insert(*II); 518 } 519 520 // Delete the dead blocks and any of their dead successors. 521 MadeChange |= !WorkList.empty(); 522 while (!WorkList.empty()) { 523 BasicBlock *BB = WorkList.pop_back_val(); 524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 525 526 DeleteDeadBlock(BB); 527 528 for (SmallVectorImpl<BasicBlock*>::iterator 529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 530 if (pred_begin(*II) == pred_end(*II)) 531 WorkList.insert(*II); 532 } 533 534 // Merge pairs of basic blocks with unconditional branches, connected by 535 // a single edge. 536 if (EverMadeChange || MadeChange) 537 MadeChange |= eliminateFallThrough(F); 538 539 EverMadeChange |= MadeChange; 540 } 541 542 if (!DisableGCOpts) { 543 SmallVector<Instruction *, 2> Statepoints; 544 for (BasicBlock &BB : F) 545 for (Instruction &I : BB) 546 if (isStatepoint(I)) 547 Statepoints.push_back(&I); 548 for (auto &I : Statepoints) 549 EverMadeChange |= simplifyOffsetableRelocate(*I); 550 } 551 552 // Do this last to clean up use-before-def scenarios introduced by other 553 // preparatory transforms. 554 EverMadeChange |= placeDbgValues(F); 555 556 return EverMadeChange; 557 } 558 559 /// Merge basic blocks which are connected by a single edge, where one of the 560 /// basic blocks has a single successor pointing to the other basic block, 561 /// which has a single predecessor. 562 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 563 bool Changed = false; 564 // Scan all of the blocks in the function, except for the entry block. 565 // Use a temporary array to avoid iterator being invalidated when 566 // deleting blocks. 567 SmallVector<WeakTrackingVH, 16> Blocks; 568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 569 Blocks.push_back(&Block); 570 571 for (auto &Block : Blocks) { 572 auto *BB = cast_or_null<BasicBlock>(Block); 573 if (!BB) 574 continue; 575 // If the destination block has a single pred, then this is a trivial 576 // edge, just collapse it. 577 BasicBlock *SinglePred = BB->getSinglePredecessor(); 578 579 // Don't merge if BB's address is taken. 580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 581 582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 583 if (Term && !Term->isConditional()) { 584 Changed = true; 585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 586 587 // Merge BB into SinglePred and delete it. 588 MergeBlockIntoPredecessor(BB); 589 } 590 } 591 return Changed; 592 } 593 594 /// Find a destination block from BB if BB is mergeable empty block. 595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 596 // If this block doesn't end with an uncond branch, ignore it. 597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 598 if (!BI || !BI->isUnconditional()) 599 return nullptr; 600 601 // If the instruction before the branch (skipping debug info) isn't a phi 602 // node, then other stuff is happening here. 603 BasicBlock::iterator BBI = BI->getIterator(); 604 if (BBI != BB->begin()) { 605 --BBI; 606 while (isa<DbgInfoIntrinsic>(BBI)) { 607 if (BBI == BB->begin()) 608 break; 609 --BBI; 610 } 611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 612 return nullptr; 613 } 614 615 // Do not break infinite loops. 616 BasicBlock *DestBB = BI->getSuccessor(0); 617 if (DestBB == BB) 618 return nullptr; 619 620 if (!canMergeBlocks(BB, DestBB)) 621 DestBB = nullptr; 622 623 return DestBB; 624 } 625 626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 628 /// edges in ways that are non-optimal for isel. Start by eliminating these 629 /// blocks so we can split them the way we want them. 630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 631 SmallPtrSet<BasicBlock *, 16> Preheaders; 632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 633 while (!LoopList.empty()) { 634 Loop *L = LoopList.pop_back_val(); 635 LoopList.insert(LoopList.end(), L->begin(), L->end()); 636 if (BasicBlock *Preheader = L->getLoopPreheader()) 637 Preheaders.insert(Preheader); 638 } 639 640 bool MadeChange = false; 641 // Copy blocks into a temporary array to avoid iterator invalidation issues 642 // as we remove them. 643 // Note that this intentionally skips the entry block. 644 SmallVector<WeakTrackingVH, 16> Blocks; 645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 646 Blocks.push_back(&Block); 647 648 for (auto &Block : Blocks) { 649 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 650 if (!BB) 651 continue; 652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 653 if (!DestBB || 654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 655 continue; 656 657 eliminateMostlyEmptyBlock(BB); 658 MadeChange = true; 659 } 660 return MadeChange; 661 } 662 663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 664 BasicBlock *DestBB, 665 bool isPreheader) { 666 // Do not delete loop preheaders if doing so would create a critical edge. 667 // Loop preheaders can be good locations to spill registers. If the 668 // preheader is deleted and we create a critical edge, registers may be 669 // spilled in the loop body instead. 670 if (!DisablePreheaderProtect && isPreheader && 671 !(BB->getSinglePredecessor() && 672 BB->getSinglePredecessor()->getSingleSuccessor())) 673 return false; 674 675 // Skip merging if the block's successor is also a successor to any callbr 676 // that leads to this block. 677 // FIXME: Is this really needed? Is this a correctness issue? 678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 681 if (DestBB == CBI->getSuccessor(i)) 682 return false; 683 } 684 685 // Try to skip merging if the unique predecessor of BB is terminated by a 686 // switch or indirect branch instruction, and BB is used as an incoming block 687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 688 // add COPY instructions in the predecessor of BB instead of BB (if it is not 689 // merged). Note that the critical edge created by merging such blocks wont be 690 // split in MachineSink because the jump table is not analyzable. By keeping 691 // such empty block (BB), ISel will place COPY instructions in BB, not in the 692 // predecessor of BB. 693 BasicBlock *Pred = BB->getUniquePredecessor(); 694 if (!Pred || 695 !(isa<SwitchInst>(Pred->getTerminator()) || 696 isa<IndirectBrInst>(Pred->getTerminator()))) 697 return true; 698 699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 700 return true; 701 702 // We use a simple cost heuristic which determine skipping merging is 703 // profitable if the cost of skipping merging is less than the cost of 704 // merging : Cost(skipping merging) < Cost(merging BB), where the 705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 708 // Freq(Pred) / Freq(BB) > 2. 709 // Note that if there are multiple empty blocks sharing the same incoming 710 // value for the PHIs in the DestBB, we consider them together. In such 711 // case, Cost(merging BB) will be the sum of their frequencies. 712 713 if (!isa<PHINode>(DestBB->begin())) 714 return true; 715 716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 717 718 // Find all other incoming blocks from which incoming values of all PHIs in 719 // DestBB are the same as the ones from BB. 720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 721 ++PI) { 722 BasicBlock *DestBBPred = *PI; 723 if (DestBBPred == BB) 724 continue; 725 726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 727 return DestPN.getIncomingValueForBlock(BB) == 728 DestPN.getIncomingValueForBlock(DestBBPred); 729 })) 730 SameIncomingValueBBs.insert(DestBBPred); 731 } 732 733 // See if all BB's incoming values are same as the value from Pred. In this 734 // case, no reason to skip merging because COPYs are expected to be place in 735 // Pred already. 736 if (SameIncomingValueBBs.count(Pred)) 737 return true; 738 739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 740 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 741 742 for (auto SameValueBB : SameIncomingValueBBs) 743 if (SameValueBB->getUniquePredecessor() == Pred && 744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 745 BBFreq += BFI->getBlockFreq(SameValueBB); 746 747 return PredFreq.getFrequency() <= 748 BBFreq.getFrequency() * FreqRatioToSkipMerge; 749 } 750 751 /// Return true if we can merge BB into DestBB if there is a single 752 /// unconditional branch between them, and BB contains no other non-phi 753 /// instructions. 754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 755 const BasicBlock *DestBB) const { 756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 757 // the successor. If there are more complex condition (e.g. preheaders), 758 // don't mess around with them. 759 for (const PHINode &PN : BB->phis()) { 760 for (const User *U : PN.users()) { 761 const Instruction *UI = cast<Instruction>(U); 762 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 763 return false; 764 // If User is inside DestBB block and it is a PHINode then check 765 // incoming value. If incoming value is not from BB then this is 766 // a complex condition (e.g. preheaders) we want to avoid here. 767 if (UI->getParent() == DestBB) { 768 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 771 if (Insn && Insn->getParent() == BB && 772 Insn->getParent() != UPN->getIncomingBlock(I)) 773 return false; 774 } 775 } 776 } 777 } 778 779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 780 // and DestBB may have conflicting incoming values for the block. If so, we 781 // can't merge the block. 782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 783 if (!DestBBPN) return true; // no conflict. 784 785 // Collect the preds of BB. 786 SmallPtrSet<const BasicBlock*, 16> BBPreds; 787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 788 // It is faster to get preds from a PHI than with pred_iterator. 789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 790 BBPreds.insert(BBPN->getIncomingBlock(i)); 791 } else { 792 BBPreds.insert(pred_begin(BB), pred_end(BB)); 793 } 794 795 // Walk the preds of DestBB. 796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 798 if (BBPreds.count(Pred)) { // Common predecessor? 799 for (const PHINode &PN : DestBB->phis()) { 800 const Value *V1 = PN.getIncomingValueForBlock(Pred); 801 const Value *V2 = PN.getIncomingValueForBlock(BB); 802 803 // If V2 is a phi node in BB, look up what the mapped value will be. 804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 805 if (V2PN->getParent() == BB) 806 V2 = V2PN->getIncomingValueForBlock(Pred); 807 808 // If there is a conflict, bail out. 809 if (V1 != V2) return false; 810 } 811 } 812 } 813 814 return true; 815 } 816 817 /// Eliminate a basic block that has only phi's and an unconditional branch in 818 /// it. 819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 820 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 821 BasicBlock *DestBB = BI->getSuccessor(0); 822 823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 824 << *BB << *DestBB); 825 826 // If the destination block has a single pred, then this is a trivial edge, 827 // just collapse it. 828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 829 if (SinglePred != DestBB) { 830 assert(SinglePred == BB && 831 "Single predecessor not the same as predecessor"); 832 // Merge DestBB into SinglePred/BB and delete it. 833 MergeBlockIntoPredecessor(DestBB); 834 // Note: BB(=SinglePred) will not be deleted on this path. 835 // DestBB(=its single successor) is the one that was deleted. 836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 837 return; 838 } 839 } 840 841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 842 // to handle the new incoming edges it is about to have. 843 for (PHINode &PN : DestBB->phis()) { 844 // Remove the incoming value for BB, and remember it. 845 Value *InVal = PN.removeIncomingValue(BB, false); 846 847 // Two options: either the InVal is a phi node defined in BB or it is some 848 // value that dominates BB. 849 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 850 if (InValPhi && InValPhi->getParent() == BB) { 851 // Add all of the input values of the input PHI as inputs of this phi. 852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 853 PN.addIncoming(InValPhi->getIncomingValue(i), 854 InValPhi->getIncomingBlock(i)); 855 } else { 856 // Otherwise, add one instance of the dominating value for each edge that 857 // we will be adding. 858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 861 } else { 862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 863 PN.addIncoming(InVal, *PI); 864 } 865 } 866 } 867 868 // The PHIs are now updated, change everything that refers to BB to use 869 // DestBB and remove BB. 870 BB->replaceAllUsesWith(DestBB); 871 BB->eraseFromParent(); 872 ++NumBlocksElim; 873 874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 875 } 876 877 // Computes a map of base pointer relocation instructions to corresponding 878 // derived pointer relocation instructions given a vector of all relocate calls 879 static void computeBaseDerivedRelocateMap( 880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 882 &RelocateInstMap) { 883 // Collect information in two maps: one primarily for locating the base object 884 // while filling the second map; the second map is the final structure holding 885 // a mapping between Base and corresponding Derived relocate calls 886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 887 for (auto *ThisRelocate : AllRelocateCalls) { 888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 889 ThisRelocate->getDerivedPtrIndex()); 890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 891 } 892 for (auto &Item : RelocateIdxMap) { 893 std::pair<unsigned, unsigned> Key = Item.first; 894 if (Key.first == Key.second) 895 // Base relocation: nothing to insert 896 continue; 897 898 GCRelocateInst *I = Item.second; 899 auto BaseKey = std::make_pair(Key.first, Key.first); 900 901 // We're iterating over RelocateIdxMap so we cannot modify it. 902 auto MaybeBase = RelocateIdxMap.find(BaseKey); 903 if (MaybeBase == RelocateIdxMap.end()) 904 // TODO: We might want to insert a new base object relocate and gep off 905 // that, if there are enough derived object relocates. 906 continue; 907 908 RelocateInstMap[MaybeBase->second].push_back(I); 909 } 910 } 911 912 // Accepts a GEP and extracts the operands into a vector provided they're all 913 // small integer constants 914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 915 SmallVectorImpl<Value *> &OffsetV) { 916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 917 // Only accept small constant integer operands 918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 919 if (!Op || Op->getZExtValue() > 20) 920 return false; 921 } 922 923 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 924 OffsetV.push_back(GEP->getOperand(i)); 925 return true; 926 } 927 928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 929 // replace, computes a replacement, and affects it. 930 static bool 931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 932 const SmallVectorImpl<GCRelocateInst *> &Targets) { 933 bool MadeChange = false; 934 // We must ensure the relocation of derived pointer is defined after 935 // relocation of base pointer. If we find a relocation corresponding to base 936 // defined earlier than relocation of base then we move relocation of base 937 // right before found relocation. We consider only relocation in the same 938 // basic block as relocation of base. Relocations from other basic block will 939 // be skipped by optimization and we do not care about them. 940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 941 &*R != RelocatedBase; ++R) 942 if (auto RI = dyn_cast<GCRelocateInst>(R)) 943 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 945 RelocatedBase->moveBefore(RI); 946 break; 947 } 948 949 for (GCRelocateInst *ToReplace : Targets) { 950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 951 "Not relocating a derived object of the original base object"); 952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 953 // A duplicate relocate call. TODO: coalesce duplicates. 954 continue; 955 } 956 957 if (RelocatedBase->getParent() != ToReplace->getParent()) { 958 // Base and derived relocates are in different basic blocks. 959 // In this case transform is only valid when base dominates derived 960 // relocate. However it would be too expensive to check dominance 961 // for each such relocate, so we skip the whole transformation. 962 continue; 963 } 964 965 Value *Base = ToReplace->getBasePtr(); 966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 967 if (!Derived || Derived->getPointerOperand() != Base) 968 continue; 969 970 SmallVector<Value *, 2> OffsetV; 971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 972 continue; 973 974 // Create a Builder and replace the target callsite with a gep 975 assert(RelocatedBase->getNextNode() && 976 "Should always have one since it's not a terminator"); 977 978 // Insert after RelocatedBase 979 IRBuilder<> Builder(RelocatedBase->getNextNode()); 980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 981 982 // If gc_relocate does not match the actual type, cast it to the right type. 983 // In theory, there must be a bitcast after gc_relocate if the type does not 984 // match, and we should reuse it to get the derived pointer. But it could be 985 // cases like this: 986 // bb1: 987 // ... 988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 989 // br label %merge 990 // 991 // bb2: 992 // ... 993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 994 // br label %merge 995 // 996 // merge: 997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 999 // 1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1001 // no matter there is already one or not. In this way, we can handle all cases, and 1002 // the extra bitcast should be optimized away in later passes. 1003 Value *ActualRelocatedBase = RelocatedBase; 1004 if (RelocatedBase->getType() != Base->getType()) { 1005 ActualRelocatedBase = 1006 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1007 } 1008 Value *Replacement = Builder.CreateGEP( 1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1010 Replacement->takeName(ToReplace); 1011 // If the newly generated derived pointer's type does not match the original derived 1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1013 Value *ActualReplacement = Replacement; 1014 if (Replacement->getType() != ToReplace->getType()) { 1015 ActualReplacement = 1016 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1017 } 1018 ToReplace->replaceAllUsesWith(ActualReplacement); 1019 ToReplace->eraseFromParent(); 1020 1021 MadeChange = true; 1022 } 1023 return MadeChange; 1024 } 1025 1026 // Turns this: 1027 // 1028 // %base = ... 1029 // %ptr = gep %base + 15 1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1031 // %base' = relocate(%tok, i32 4, i32 4) 1032 // %ptr' = relocate(%tok, i32 4, i32 5) 1033 // %val = load %ptr' 1034 // 1035 // into this: 1036 // 1037 // %base = ... 1038 // %ptr = gep %base + 15 1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1040 // %base' = gc.relocate(%tok, i32 4, i32 4) 1041 // %ptr' = gep %base' + 15 1042 // %val = load %ptr' 1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1044 bool MadeChange = false; 1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1046 1047 for (auto *U : I.users()) 1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1049 // Collect all the relocate calls associated with a statepoint 1050 AllRelocateCalls.push_back(Relocate); 1051 1052 // We need atleast one base pointer relocation + one derived pointer 1053 // relocation to mangle 1054 if (AllRelocateCalls.size() < 2) 1055 return false; 1056 1057 // RelocateInstMap is a mapping from the base relocate instruction to the 1058 // corresponding derived relocate instructions 1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1061 if (RelocateInstMap.empty()) 1062 return false; 1063 1064 for (auto &Item : RelocateInstMap) 1065 // Item.first is the RelocatedBase to offset against 1066 // Item.second is the vector of Targets to replace 1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1068 return MadeChange; 1069 } 1070 1071 /// Sink the specified cast instruction into its user blocks. 1072 static bool SinkCast(CastInst *CI) { 1073 BasicBlock *DefBB = CI->getParent(); 1074 1075 /// InsertedCasts - Only insert a cast in each block once. 1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1077 1078 bool MadeChange = false; 1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1080 UI != E; ) { 1081 Use &TheUse = UI.getUse(); 1082 Instruction *User = cast<Instruction>(*UI); 1083 1084 // Figure out which BB this cast is used in. For PHI's this is the 1085 // appropriate predecessor block. 1086 BasicBlock *UserBB = User->getParent(); 1087 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1088 UserBB = PN->getIncomingBlock(TheUse); 1089 } 1090 1091 // Preincrement use iterator so we don't invalidate it. 1092 ++UI; 1093 1094 // The first insertion point of a block containing an EH pad is after the 1095 // pad. If the pad is the user, we cannot sink the cast past the pad. 1096 if (User->isEHPad()) 1097 continue; 1098 1099 // If the block selected to receive the cast is an EH pad that does not 1100 // allow non-PHI instructions before the terminator, we can't sink the 1101 // cast. 1102 if (UserBB->getTerminator()->isEHPad()) 1103 continue; 1104 1105 // If this user is in the same block as the cast, don't change the cast. 1106 if (UserBB == DefBB) continue; 1107 1108 // If we have already inserted a cast into this block, use it. 1109 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1110 1111 if (!InsertedCast) { 1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1113 assert(InsertPt != UserBB->end()); 1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1115 CI->getType(), "", &*InsertPt); 1116 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1117 } 1118 1119 // Replace a use of the cast with a use of the new cast. 1120 TheUse = InsertedCast; 1121 MadeChange = true; 1122 ++NumCastUses; 1123 } 1124 1125 // If we removed all uses, nuke the cast. 1126 if (CI->use_empty()) { 1127 salvageDebugInfo(*CI); 1128 CI->eraseFromParent(); 1129 MadeChange = true; 1130 } 1131 1132 return MadeChange; 1133 } 1134 1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1137 /// reduce the number of virtual registers that must be created and coalesced. 1138 /// 1139 /// Return true if any changes are made. 1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1141 const DataLayout &DL) { 1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1143 // than sinking only nop casts, but is helpful on some platforms. 1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1146 ASC->getDestAddressSpace())) 1147 return false; 1148 } 1149 1150 // If this is a noop copy, 1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1152 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1153 1154 // This is an fp<->int conversion? 1155 if (SrcVT.isInteger() != DstVT.isInteger()) 1156 return false; 1157 1158 // If this is an extension, it will be a zero or sign extension, which 1159 // isn't a noop. 1160 if (SrcVT.bitsLT(DstVT)) return false; 1161 1162 // If these values will be promoted, find out what they will be promoted 1163 // to. This helps us consider truncates on PPC as noop copies when they 1164 // are. 1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1166 TargetLowering::TypePromoteInteger) 1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1168 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1169 TargetLowering::TypePromoteInteger) 1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1171 1172 // If, after promotion, these are the same types, this is a noop copy. 1173 if (SrcVT != DstVT) 1174 return false; 1175 1176 return SinkCast(CI); 1177 } 1178 1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1180 CmpInst *Cmp, 1181 Intrinsic::ID IID) { 1182 if (BO->getParent() != Cmp->getParent()) { 1183 // We used to use a dominator tree here to allow multi-block optimization. 1184 // But that was problematic because: 1185 // 1. It could cause a perf regression by hoisting the math op into the 1186 // critical path. 1187 // 2. It could cause a perf regression by creating a value that was live 1188 // across multiple blocks and increasing register pressure. 1189 // 3. Use of a dominator tree could cause large compile-time regression. 1190 // This is because we recompute the DT on every change in the main CGP 1191 // run-loop. The recomputing is probably unnecessary in many cases, so if 1192 // that was fixed, using a DT here would be ok. 1193 return false; 1194 } 1195 1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1197 Value *Arg0 = BO->getOperand(0); 1198 Value *Arg1 = BO->getOperand(1); 1199 if (BO->getOpcode() == Instruction::Add && 1200 IID == Intrinsic::usub_with_overflow) { 1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1203 } 1204 1205 // Insert at the first instruction of the pair. 1206 Instruction *InsertPt = nullptr; 1207 for (Instruction &Iter : *Cmp->getParent()) { 1208 if (&Iter == BO || &Iter == Cmp) { 1209 InsertPt = &Iter; 1210 break; 1211 } 1212 } 1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1214 1215 IRBuilder<> Builder(InsertPt); 1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1219 BO->replaceAllUsesWith(Math); 1220 Cmp->replaceAllUsesWith(OV); 1221 BO->eraseFromParent(); 1222 Cmp->eraseFromParent(); 1223 return true; 1224 } 1225 1226 /// Match special-case patterns that check for unsigned add overflow. 1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1228 BinaryOperator *&Add) { 1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1232 1233 // We are not expecting non-canonical/degenerate code. Just bail out. 1234 if (isa<Constant>(A)) 1235 return false; 1236 1237 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1239 B = ConstantInt::get(B->getType(), 1); 1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1241 B = ConstantInt::get(B->getType(), -1); 1242 else 1243 return false; 1244 1245 // Check the users of the variable operand of the compare looking for an add 1246 // with the adjusted constant. 1247 for (User *U : A->users()) { 1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1249 Add = cast<BinaryOperator>(U); 1250 return true; 1251 } 1252 } 1253 return false; 1254 } 1255 1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1257 /// intrinsic. Return true if any changes were made. 1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1259 bool &ModifiedDT) { 1260 Value *A, *B; 1261 BinaryOperator *Add; 1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1264 return false; 1265 1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1267 TLI->getValueType(*DL, Add->getType()))) 1268 return false; 1269 1270 // We don't want to move around uses of condition values this late, so we 1271 // check if it is legal to create the call to the intrinsic in the basic 1272 // block containing the icmp. 1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1274 return false; 1275 1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1277 return false; 1278 1279 // Reset callers - do not crash by iterating over a dead instruction. 1280 ModifiedDT = true; 1281 return true; 1282 } 1283 1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1285 bool &ModifiedDT) { 1286 // We are not expecting non-canonical/degenerate code. Just bail out. 1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1288 if (isa<Constant>(A) && isa<Constant>(B)) 1289 return false; 1290 1291 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1292 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1293 if (Pred == ICmpInst::ICMP_UGT) { 1294 std::swap(A, B); 1295 Pred = ICmpInst::ICMP_ULT; 1296 } 1297 // Convert special-case: (A == 0) is the same as (A u< 1). 1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1299 B = ConstantInt::get(B->getType(), 1); 1300 Pred = ICmpInst::ICMP_ULT; 1301 } 1302 // Convert special-case: (A != 0) is the same as (0 u< A). 1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1304 std::swap(A, B); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 if (Pred != ICmpInst::ICMP_ULT) 1308 return false; 1309 1310 // Walk the users of a variable operand of a compare looking for a subtract or 1311 // add with that same operand. Also match the 2nd operand of the compare to 1312 // the add/sub, but that may be a negated constant operand of an add. 1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1314 BinaryOperator *Sub = nullptr; 1315 for (User *U : CmpVariableOperand->users()) { 1316 // A - B, A u< B --> usubo(A, B) 1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1318 Sub = cast<BinaryOperator>(U); 1319 break; 1320 } 1321 1322 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1323 const APInt *CmpC, *AddC; 1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1326 Sub = cast<BinaryOperator>(U); 1327 break; 1328 } 1329 } 1330 if (!Sub) 1331 return false; 1332 1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1334 TLI->getValueType(*DL, Sub->getType()))) 1335 return false; 1336 1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1338 return false; 1339 1340 // Reset callers - do not crash by iterating over a dead instruction. 1341 ModifiedDT = true; 1342 return true; 1343 } 1344 1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1346 /// registers that must be created and coalesced. This is a clear win except on 1347 /// targets with multiple condition code registers (PowerPC), where it might 1348 /// lose; some adjustment may be wanted there. 1349 /// 1350 /// Return true if any changes are made. 1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1352 if (TLI.hasMultipleConditionRegisters()) 1353 return false; 1354 1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1357 return false; 1358 1359 // Only insert a cmp in each block once. 1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1361 1362 bool MadeChange = false; 1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1364 UI != E; ) { 1365 Use &TheUse = UI.getUse(); 1366 Instruction *User = cast<Instruction>(*UI); 1367 1368 // Preincrement use iterator so we don't invalidate it. 1369 ++UI; 1370 1371 // Don't bother for PHI nodes. 1372 if (isa<PHINode>(User)) 1373 continue; 1374 1375 // Figure out which BB this cmp is used in. 1376 BasicBlock *UserBB = User->getParent(); 1377 BasicBlock *DefBB = Cmp->getParent(); 1378 1379 // If this user is in the same block as the cmp, don't change the cmp. 1380 if (UserBB == DefBB) continue; 1381 1382 // If we have already inserted a cmp into this block, use it. 1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1384 1385 if (!InsertedCmp) { 1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1387 assert(InsertPt != UserBB->end()); 1388 InsertedCmp = 1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1390 Cmp->getOperand(0), Cmp->getOperand(1), "", 1391 &*InsertPt); 1392 // Propagate the debug info. 1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1394 } 1395 1396 // Replace a use of the cmp with a use of the new cmp. 1397 TheUse = InsertedCmp; 1398 MadeChange = true; 1399 ++NumCmpUses; 1400 } 1401 1402 // If we removed all uses, nuke the cmp. 1403 if (Cmp->use_empty()) { 1404 Cmp->eraseFromParent(); 1405 MadeChange = true; 1406 } 1407 1408 return MadeChange; 1409 } 1410 1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1412 if (sinkCmpExpression(Cmp, *TLI)) 1413 return true; 1414 1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1416 return true; 1417 1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1425 /// used in a compare to allow isel to generate better code for targets where 1426 /// this operation can be combined. 1427 /// 1428 /// Return true if any changes are made. 1429 static bool sinkAndCmp0Expression(Instruction *AndI, 1430 const TargetLowering &TLI, 1431 SetOfInstrs &InsertedInsts) { 1432 // Double-check that we're not trying to optimize an instruction that was 1433 // already optimized by some other part of this pass. 1434 assert(!InsertedInsts.count(AndI) && 1435 "Attempting to optimize already optimized and instruction"); 1436 (void) InsertedInsts; 1437 1438 // Nothing to do for single use in same basic block. 1439 if (AndI->hasOneUse() && 1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1441 return false; 1442 1443 // Try to avoid cases where sinking/duplicating is likely to increase register 1444 // pressure. 1445 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1446 !isa<ConstantInt>(AndI->getOperand(1)) && 1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1448 return false; 1449 1450 for (auto *U : AndI->users()) { 1451 Instruction *User = cast<Instruction>(U); 1452 1453 // Only sink 'and' feeding icmp with 0. 1454 if (!isa<ICmpInst>(User)) 1455 return false; 1456 1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1458 if (!CmpC || !CmpC->isZero()) 1459 return false; 1460 } 1461 1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1463 return false; 1464 1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1466 LLVM_DEBUG(AndI->getParent()->dump()); 1467 1468 // Push the 'and' into the same block as the icmp 0. There should only be 1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1470 // others, so we don't need to keep track of which BBs we insert into. 1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1472 UI != E; ) { 1473 Use &TheUse = UI.getUse(); 1474 Instruction *User = cast<Instruction>(*UI); 1475 1476 // Preincrement use iterator so we don't invalidate it. 1477 ++UI; 1478 1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1480 1481 // Keep the 'and' in the same place if the use is already in the same block. 1482 Instruction *InsertPt = 1483 User->getParent() == AndI->getParent() ? AndI : User; 1484 Instruction *InsertedAnd = 1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1486 AndI->getOperand(1), "", InsertPt); 1487 // Propagate the debug info. 1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1489 1490 // Replace a use of the 'and' with a use of the new 'and'. 1491 TheUse = InsertedAnd; 1492 ++NumAndUses; 1493 LLVM_DEBUG(User->getParent()->dump()); 1494 } 1495 1496 // We removed all uses, nuke the and. 1497 AndI->eraseFromParent(); 1498 return true; 1499 } 1500 1501 /// Check if the candidates could be combined with a shift instruction, which 1502 /// includes: 1503 /// 1. Truncate instruction 1504 /// 2. And instruction and the imm is a mask of the low bits: 1505 /// imm & (imm+1) == 0 1506 static bool isExtractBitsCandidateUse(Instruction *User) { 1507 if (!isa<TruncInst>(User)) { 1508 if (User->getOpcode() != Instruction::And || 1509 !isa<ConstantInt>(User->getOperand(1))) 1510 return false; 1511 1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1513 1514 if ((Cimm & (Cimm + 1)).getBoolValue()) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 /// Sink both shift and truncate instruction to the use of truncate's BB. 1521 static bool 1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1524 const TargetLowering &TLI, const DataLayout &DL) { 1525 BasicBlock *UserBB = User->getParent(); 1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1527 auto *TruncI = cast<TruncInst>(User); 1528 bool MadeChange = false; 1529 1530 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1531 TruncE = TruncI->user_end(); 1532 TruncUI != TruncE;) { 1533 1534 Use &TruncTheUse = TruncUI.getUse(); 1535 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1536 // Preincrement use iterator so we don't invalidate it. 1537 1538 ++TruncUI; 1539 1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1541 if (!ISDOpcode) 1542 continue; 1543 1544 // If the use is actually a legal node, there will not be an 1545 // implicit truncate. 1546 // FIXME: always querying the result type is just an 1547 // approximation; some nodes' legality is determined by the 1548 // operand or other means. There's no good way to find out though. 1549 if (TLI.isOperationLegalOrCustom( 1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1551 continue; 1552 1553 // Don't bother for PHI nodes. 1554 if (isa<PHINode>(TruncUser)) 1555 continue; 1556 1557 BasicBlock *TruncUserBB = TruncUser->getParent(); 1558 1559 if (UserBB == TruncUserBB) 1560 continue; 1561 1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1564 1565 if (!InsertedShift && !InsertedTrunc) { 1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1567 assert(InsertPt != TruncUserBB->end()); 1568 // Sink the shift 1569 if (ShiftI->getOpcode() == Instruction::AShr) 1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1571 "", &*InsertPt); 1572 else 1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1574 "", &*InsertPt); 1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1576 1577 // Sink the trunc 1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1579 TruncInsertPt++; 1580 assert(TruncInsertPt != TruncUserBB->end()); 1581 1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1583 TruncI->getType(), "", &*TruncInsertPt); 1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1585 1586 MadeChange = true; 1587 1588 TruncTheUse = InsertedTrunc; 1589 } 1590 } 1591 return MadeChange; 1592 } 1593 1594 /// Sink the shift *right* instruction into user blocks if the uses could 1595 /// potentially be combined with this shift instruction and generate BitExtract 1596 /// instruction. It will only be applied if the architecture supports BitExtract 1597 /// instruction. Here is an example: 1598 /// BB1: 1599 /// %x.extract.shift = lshr i64 %arg1, 32 1600 /// BB2: 1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1602 /// ==> 1603 /// 1604 /// BB2: 1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1607 /// 1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1609 /// instruction. 1610 /// Return true if any changes are made. 1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1612 const TargetLowering &TLI, 1613 const DataLayout &DL) { 1614 BasicBlock *DefBB = ShiftI->getParent(); 1615 1616 /// Only insert instructions in each block once. 1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1618 1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1620 1621 bool MadeChange = false; 1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1623 UI != E;) { 1624 Use &TheUse = UI.getUse(); 1625 Instruction *User = cast<Instruction>(*UI); 1626 // Preincrement use iterator so we don't invalidate it. 1627 ++UI; 1628 1629 // Don't bother for PHI nodes. 1630 if (isa<PHINode>(User)) 1631 continue; 1632 1633 if (!isExtractBitsCandidateUse(User)) 1634 continue; 1635 1636 BasicBlock *UserBB = User->getParent(); 1637 1638 if (UserBB == DefBB) { 1639 // If the shift and truncate instruction are in the same BB. The use of 1640 // the truncate(TruncUse) may still introduce another truncate if not 1641 // legal. In this case, we would like to sink both shift and truncate 1642 // instruction to the BB of TruncUse. 1643 // for example: 1644 // BB1: 1645 // i64 shift.result = lshr i64 opnd, imm 1646 // trunc.result = trunc shift.result to i16 1647 // 1648 // BB2: 1649 // ----> We will have an implicit truncate here if the architecture does 1650 // not have i16 compare. 1651 // cmp i16 trunc.result, opnd2 1652 // 1653 if (isa<TruncInst>(User) && shiftIsLegal 1654 // If the type of the truncate is legal, no truncate will be 1655 // introduced in other basic blocks. 1656 && 1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1658 MadeChange = 1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1660 1661 continue; 1662 } 1663 // If we have already inserted a shift into this block, use it. 1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1665 1666 if (!InsertedShift) { 1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1668 assert(InsertPt != UserBB->end()); 1669 1670 if (ShiftI->getOpcode() == Instruction::AShr) 1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1672 "", &*InsertPt); 1673 else 1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1675 "", &*InsertPt); 1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1677 1678 MadeChange = true; 1679 } 1680 1681 // Replace a use of the shift with a use of the new shift. 1682 TheUse = InsertedShift; 1683 } 1684 1685 // If we removed all uses, or there are none, nuke the shift. 1686 if (ShiftI->use_empty()) { 1687 salvageDebugInfo(*ShiftI); 1688 ShiftI->eraseFromParent(); 1689 MadeChange = true; 1690 } 1691 1692 return MadeChange; 1693 } 1694 1695 /// If counting leading or trailing zeros is an expensive operation and a zero 1696 /// input is defined, add a check for zero to avoid calling the intrinsic. 1697 /// 1698 /// We want to transform: 1699 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1700 /// 1701 /// into: 1702 /// entry: 1703 /// %cmpz = icmp eq i64 %A, 0 1704 /// br i1 %cmpz, label %cond.end, label %cond.false 1705 /// cond.false: 1706 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1707 /// br label %cond.end 1708 /// cond.end: 1709 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1710 /// 1711 /// If the transform is performed, return true and set ModifiedDT to true. 1712 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1713 const TargetLowering *TLI, 1714 const DataLayout *DL, 1715 bool &ModifiedDT) { 1716 if (!TLI || !DL) 1717 return false; 1718 1719 // If a zero input is undefined, it doesn't make sense to despeculate that. 1720 if (match(CountZeros->getOperand(1), m_One())) 1721 return false; 1722 1723 // If it's cheap to speculate, there's nothing to do. 1724 auto IntrinsicID = CountZeros->getIntrinsicID(); 1725 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1726 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1727 return false; 1728 1729 // Only handle legal scalar cases. Anything else requires too much work. 1730 Type *Ty = CountZeros->getType(); 1731 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1732 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1733 return false; 1734 1735 // The intrinsic will be sunk behind a compare against zero and branch. 1736 BasicBlock *StartBlock = CountZeros->getParent(); 1737 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1738 1739 // Create another block after the count zero intrinsic. A PHI will be added 1740 // in this block to select the result of the intrinsic or the bit-width 1741 // constant if the input to the intrinsic is zero. 1742 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1743 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1744 1745 // Set up a builder to create a compare, conditional branch, and PHI. 1746 IRBuilder<> Builder(CountZeros->getContext()); 1747 Builder.SetInsertPoint(StartBlock->getTerminator()); 1748 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1749 1750 // Replace the unconditional branch that was created by the first split with 1751 // a compare against zero and a conditional branch. 1752 Value *Zero = Constant::getNullValue(Ty); 1753 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1754 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1755 StartBlock->getTerminator()->eraseFromParent(); 1756 1757 // Create a PHI in the end block to select either the output of the intrinsic 1758 // or the bit width of the operand. 1759 Builder.SetInsertPoint(&EndBlock->front()); 1760 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1761 CountZeros->replaceAllUsesWith(PN); 1762 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1763 PN->addIncoming(BitWidth, StartBlock); 1764 PN->addIncoming(CountZeros, CallBlock); 1765 1766 // We are explicitly handling the zero case, so we can set the intrinsic's 1767 // undefined zero argument to 'true'. This will also prevent reprocessing the 1768 // intrinsic; we only despeculate when a zero input is defined. 1769 CountZeros->setArgOperand(1, Builder.getTrue()); 1770 ModifiedDT = true; 1771 return true; 1772 } 1773 1774 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1775 BasicBlock *BB = CI->getParent(); 1776 1777 // Lower inline assembly if we can. 1778 // If we found an inline asm expession, and if the target knows how to 1779 // lower it to normal LLVM code, do so now. 1780 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1781 if (TLI->ExpandInlineAsm(CI)) { 1782 // Avoid invalidating the iterator. 1783 CurInstIterator = BB->begin(); 1784 // Avoid processing instructions out of order, which could cause 1785 // reuse before a value is defined. 1786 SunkAddrs.clear(); 1787 return true; 1788 } 1789 // Sink address computing for memory operands into the block. 1790 if (optimizeInlineAsmInst(CI)) 1791 return true; 1792 } 1793 1794 // Align the pointer arguments to this call if the target thinks it's a good 1795 // idea 1796 unsigned MinSize, PrefAlign; 1797 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1798 for (auto &Arg : CI->arg_operands()) { 1799 // We want to align both objects whose address is used directly and 1800 // objects whose address is used in casts and GEPs, though it only makes 1801 // sense for GEPs if the offset is a multiple of the desired alignment and 1802 // if size - offset meets the size threshold. 1803 if (!Arg->getType()->isPointerTy()) 1804 continue; 1805 APInt Offset(DL->getIndexSizeInBits( 1806 cast<PointerType>(Arg->getType())->getAddressSpace()), 1807 0); 1808 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1809 uint64_t Offset2 = Offset.getLimitedValue(); 1810 if ((Offset2 & (PrefAlign-1)) != 0) 1811 continue; 1812 AllocaInst *AI; 1813 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1814 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1815 AI->setAlignment(MaybeAlign(PrefAlign)); 1816 // Global variables can only be aligned if they are defined in this 1817 // object (i.e. they are uniquely initialized in this object), and 1818 // over-aligning global variables that have an explicit section is 1819 // forbidden. 1820 GlobalVariable *GV; 1821 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1822 GV->getPointerAlignment(*DL) < PrefAlign && 1823 DL->getTypeAllocSize(GV->getValueType()) >= 1824 MinSize + Offset2) 1825 GV->setAlignment(MaybeAlign(PrefAlign)); 1826 } 1827 // If this is a memcpy (or similar) then we may be able to improve the 1828 // alignment 1829 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1830 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1831 if (DestAlign > MI->getDestAlignment()) 1832 MI->setDestAlignment(DestAlign); 1833 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1834 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1835 if (SrcAlign > MTI->getSourceAlignment()) 1836 MTI->setSourceAlignment(SrcAlign); 1837 } 1838 } 1839 } 1840 1841 // If we have a cold call site, try to sink addressing computation into the 1842 // cold block. This interacts with our handling for loads and stores to 1843 // ensure that we can fold all uses of a potential addressing computation 1844 // into their uses. TODO: generalize this to work over profiling data 1845 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1846 for (auto &Arg : CI->arg_operands()) { 1847 if (!Arg->getType()->isPointerTy()) 1848 continue; 1849 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1850 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1851 } 1852 1853 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1854 if (II) { 1855 switch (II->getIntrinsicID()) { 1856 default: break; 1857 case Intrinsic::experimental_widenable_condition: { 1858 // Give up on future widening oppurtunties so that we can fold away dead 1859 // paths and merge blocks before going into block-local instruction 1860 // selection. 1861 if (II->use_empty()) { 1862 II->eraseFromParent(); 1863 return true; 1864 } 1865 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1866 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1867 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1868 }); 1869 return true; 1870 } 1871 case Intrinsic::objectsize: 1872 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1873 case Intrinsic::is_constant: 1874 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1875 case Intrinsic::aarch64_stlxr: 1876 case Intrinsic::aarch64_stxr: { 1877 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1878 if (!ExtVal || !ExtVal->hasOneUse() || 1879 ExtVal->getParent() == CI->getParent()) 1880 return false; 1881 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1882 ExtVal->moveBefore(CI); 1883 // Mark this instruction as "inserted by CGP", so that other 1884 // optimizations don't touch it. 1885 InsertedInsts.insert(ExtVal); 1886 return true; 1887 } 1888 1889 case Intrinsic::launder_invariant_group: 1890 case Intrinsic::strip_invariant_group: { 1891 Value *ArgVal = II->getArgOperand(0); 1892 auto it = LargeOffsetGEPMap.find(II); 1893 if (it != LargeOffsetGEPMap.end()) { 1894 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1895 // Make sure not to have to deal with iterator invalidation 1896 // after possibly adding ArgVal to LargeOffsetGEPMap. 1897 auto GEPs = std::move(it->second); 1898 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1899 LargeOffsetGEPMap.erase(II); 1900 } 1901 1902 II->replaceAllUsesWith(ArgVal); 1903 II->eraseFromParent(); 1904 return true; 1905 } 1906 case Intrinsic::cttz: 1907 case Intrinsic::ctlz: 1908 // If counting zeros is expensive, try to avoid it. 1909 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1910 } 1911 1912 if (TLI) { 1913 SmallVector<Value*, 2> PtrOps; 1914 Type *AccessTy; 1915 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1916 while (!PtrOps.empty()) { 1917 Value *PtrVal = PtrOps.pop_back_val(); 1918 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1919 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1920 return true; 1921 } 1922 } 1923 } 1924 1925 // From here on out we're working with named functions. 1926 if (!CI->getCalledFunction()) return false; 1927 1928 // Lower all default uses of _chk calls. This is very similar 1929 // to what InstCombineCalls does, but here we are only lowering calls 1930 // to fortified library functions (e.g. __memcpy_chk) that have the default 1931 // "don't know" as the objectsize. Anything else should be left alone. 1932 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1933 if (Value *V = Simplifier.optimizeCall(CI)) { 1934 CI->replaceAllUsesWith(V); 1935 CI->eraseFromParent(); 1936 return true; 1937 } 1938 1939 return false; 1940 } 1941 1942 /// Look for opportunities to duplicate return instructions to the predecessor 1943 /// to enable tail call optimizations. The case it is currently looking for is: 1944 /// @code 1945 /// bb0: 1946 /// %tmp0 = tail call i32 @f0() 1947 /// br label %return 1948 /// bb1: 1949 /// %tmp1 = tail call i32 @f1() 1950 /// br label %return 1951 /// bb2: 1952 /// %tmp2 = tail call i32 @f2() 1953 /// br label %return 1954 /// return: 1955 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1956 /// ret i32 %retval 1957 /// @endcode 1958 /// 1959 /// => 1960 /// 1961 /// @code 1962 /// bb0: 1963 /// %tmp0 = tail call i32 @f0() 1964 /// ret i32 %tmp0 1965 /// bb1: 1966 /// %tmp1 = tail call i32 @f1() 1967 /// ret i32 %tmp1 1968 /// bb2: 1969 /// %tmp2 = tail call i32 @f2() 1970 /// ret i32 %tmp2 1971 /// @endcode 1972 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1973 if (!TLI) 1974 return false; 1975 1976 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1977 if (!RetI) 1978 return false; 1979 1980 PHINode *PN = nullptr; 1981 BitCastInst *BCI = nullptr; 1982 Value *V = RetI->getReturnValue(); 1983 if (V) { 1984 BCI = dyn_cast<BitCastInst>(V); 1985 if (BCI) 1986 V = BCI->getOperand(0); 1987 1988 PN = dyn_cast<PHINode>(V); 1989 if (!PN) 1990 return false; 1991 } 1992 1993 if (PN && PN->getParent() != BB) 1994 return false; 1995 1996 // Make sure there are no instructions between the PHI and return, or that the 1997 // return is the first instruction in the block. 1998 if (PN) { 1999 BasicBlock::iterator BI = BB->begin(); 2000 // Skip over debug and the bitcast. 2001 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2002 if (&*BI != RetI) 2003 return false; 2004 } else { 2005 BasicBlock::iterator BI = BB->begin(); 2006 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2007 if (&*BI != RetI) 2008 return false; 2009 } 2010 2011 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2012 /// call. 2013 const Function *F = BB->getParent(); 2014 SmallVector<BasicBlock*, 4> TailCallBBs; 2015 if (PN) { 2016 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2017 // Look through bitcasts. 2018 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2019 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2020 BasicBlock *PredBB = PN->getIncomingBlock(I); 2021 // Make sure the phi value is indeed produced by the tail call. 2022 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2023 TLI->mayBeEmittedAsTailCall(CI) && 2024 attributesPermitTailCall(F, CI, RetI, *TLI)) 2025 TailCallBBs.push_back(PredBB); 2026 } 2027 } else { 2028 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2029 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2030 if (!VisitedBBs.insert(*PI).second) 2031 continue; 2032 2033 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2034 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2035 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2036 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2037 if (RI == RE) 2038 continue; 2039 2040 CallInst *CI = dyn_cast<CallInst>(&*RI); 2041 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2042 attributesPermitTailCall(F, CI, RetI, *TLI)) 2043 TailCallBBs.push_back(*PI); 2044 } 2045 } 2046 2047 bool Changed = false; 2048 for (auto const &TailCallBB : TailCallBBs) { 2049 // Make sure the call instruction is followed by an unconditional branch to 2050 // the return block. 2051 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2052 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2053 continue; 2054 2055 // Duplicate the return into TailCallBB. 2056 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2057 ModifiedDT = Changed = true; 2058 ++NumRetsDup; 2059 } 2060 2061 // If we eliminated all predecessors of the block, delete the block now. 2062 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2063 BB->eraseFromParent(); 2064 2065 return Changed; 2066 } 2067 2068 //===----------------------------------------------------------------------===// 2069 // Memory Optimization 2070 //===----------------------------------------------------------------------===// 2071 2072 namespace { 2073 2074 /// This is an extended version of TargetLowering::AddrMode 2075 /// which holds actual Value*'s for register values. 2076 struct ExtAddrMode : public TargetLowering::AddrMode { 2077 Value *BaseReg = nullptr; 2078 Value *ScaledReg = nullptr; 2079 Value *OriginalValue = nullptr; 2080 bool InBounds = true; 2081 2082 enum FieldName { 2083 NoField = 0x00, 2084 BaseRegField = 0x01, 2085 BaseGVField = 0x02, 2086 BaseOffsField = 0x04, 2087 ScaledRegField = 0x08, 2088 ScaleField = 0x10, 2089 MultipleFields = 0xff 2090 }; 2091 2092 2093 ExtAddrMode() = default; 2094 2095 void print(raw_ostream &OS) const; 2096 void dump() const; 2097 2098 FieldName compare(const ExtAddrMode &other) { 2099 // First check that the types are the same on each field, as differing types 2100 // is something we can't cope with later on. 2101 if (BaseReg && other.BaseReg && 2102 BaseReg->getType() != other.BaseReg->getType()) 2103 return MultipleFields; 2104 if (BaseGV && other.BaseGV && 2105 BaseGV->getType() != other.BaseGV->getType()) 2106 return MultipleFields; 2107 if (ScaledReg && other.ScaledReg && 2108 ScaledReg->getType() != other.ScaledReg->getType()) 2109 return MultipleFields; 2110 2111 // Conservatively reject 'inbounds' mismatches. 2112 if (InBounds != other.InBounds) 2113 return MultipleFields; 2114 2115 // Check each field to see if it differs. 2116 unsigned Result = NoField; 2117 if (BaseReg != other.BaseReg) 2118 Result |= BaseRegField; 2119 if (BaseGV != other.BaseGV) 2120 Result |= BaseGVField; 2121 if (BaseOffs != other.BaseOffs) 2122 Result |= BaseOffsField; 2123 if (ScaledReg != other.ScaledReg) 2124 Result |= ScaledRegField; 2125 // Don't count 0 as being a different scale, because that actually means 2126 // unscaled (which will already be counted by having no ScaledReg). 2127 if (Scale && other.Scale && Scale != other.Scale) 2128 Result |= ScaleField; 2129 2130 if (countPopulation(Result) > 1) 2131 return MultipleFields; 2132 else 2133 return static_cast<FieldName>(Result); 2134 } 2135 2136 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2137 // with no offset. 2138 bool isTrivial() { 2139 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2140 // trivial if at most one of these terms is nonzero, except that BaseGV and 2141 // BaseReg both being zero actually means a null pointer value, which we 2142 // consider to be 'non-zero' here. 2143 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2144 } 2145 2146 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2147 switch (Field) { 2148 default: 2149 return nullptr; 2150 case BaseRegField: 2151 return BaseReg; 2152 case BaseGVField: 2153 return BaseGV; 2154 case ScaledRegField: 2155 return ScaledReg; 2156 case BaseOffsField: 2157 return ConstantInt::get(IntPtrTy, BaseOffs); 2158 } 2159 } 2160 2161 void SetCombinedField(FieldName Field, Value *V, 2162 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2163 switch (Field) { 2164 default: 2165 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2166 break; 2167 case ExtAddrMode::BaseRegField: 2168 BaseReg = V; 2169 break; 2170 case ExtAddrMode::BaseGVField: 2171 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2172 // in the BaseReg field. 2173 assert(BaseReg == nullptr); 2174 BaseReg = V; 2175 BaseGV = nullptr; 2176 break; 2177 case ExtAddrMode::ScaledRegField: 2178 ScaledReg = V; 2179 // If we have a mix of scaled and unscaled addrmodes then we want scale 2180 // to be the scale and not zero. 2181 if (!Scale) 2182 for (const ExtAddrMode &AM : AddrModes) 2183 if (AM.Scale) { 2184 Scale = AM.Scale; 2185 break; 2186 } 2187 break; 2188 case ExtAddrMode::BaseOffsField: 2189 // The offset is no longer a constant, so it goes in ScaledReg with a 2190 // scale of 1. 2191 assert(ScaledReg == nullptr); 2192 ScaledReg = V; 2193 Scale = 1; 2194 BaseOffs = 0; 2195 break; 2196 } 2197 } 2198 }; 2199 2200 } // end anonymous namespace 2201 2202 #ifndef NDEBUG 2203 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2204 AM.print(OS); 2205 return OS; 2206 } 2207 #endif 2208 2209 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2210 void ExtAddrMode::print(raw_ostream &OS) const { 2211 bool NeedPlus = false; 2212 OS << "["; 2213 if (InBounds) 2214 OS << "inbounds "; 2215 if (BaseGV) { 2216 OS << (NeedPlus ? " + " : "") 2217 << "GV:"; 2218 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2219 NeedPlus = true; 2220 } 2221 2222 if (BaseOffs) { 2223 OS << (NeedPlus ? " + " : "") 2224 << BaseOffs; 2225 NeedPlus = true; 2226 } 2227 2228 if (BaseReg) { 2229 OS << (NeedPlus ? " + " : "") 2230 << "Base:"; 2231 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2232 NeedPlus = true; 2233 } 2234 if (Scale) { 2235 OS << (NeedPlus ? " + " : "") 2236 << Scale << "*"; 2237 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2238 } 2239 2240 OS << ']'; 2241 } 2242 2243 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2244 print(dbgs()); 2245 dbgs() << '\n'; 2246 } 2247 #endif 2248 2249 namespace { 2250 2251 /// This class provides transaction based operation on the IR. 2252 /// Every change made through this class is recorded in the internal state and 2253 /// can be undone (rollback) until commit is called. 2254 class TypePromotionTransaction { 2255 /// This represents the common interface of the individual transaction. 2256 /// Each class implements the logic for doing one specific modification on 2257 /// the IR via the TypePromotionTransaction. 2258 class TypePromotionAction { 2259 protected: 2260 /// The Instruction modified. 2261 Instruction *Inst; 2262 2263 public: 2264 /// Constructor of the action. 2265 /// The constructor performs the related action on the IR. 2266 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2267 2268 virtual ~TypePromotionAction() = default; 2269 2270 /// Undo the modification done by this action. 2271 /// When this method is called, the IR must be in the same state as it was 2272 /// before this action was applied. 2273 /// \pre Undoing the action works if and only if the IR is in the exact same 2274 /// state as it was directly after this action was applied. 2275 virtual void undo() = 0; 2276 2277 /// Advocate every change made by this action. 2278 /// When the results on the IR of the action are to be kept, it is important 2279 /// to call this function, otherwise hidden information may be kept forever. 2280 virtual void commit() { 2281 // Nothing to be done, this action is not doing anything. 2282 } 2283 }; 2284 2285 /// Utility to remember the position of an instruction. 2286 class InsertionHandler { 2287 /// Position of an instruction. 2288 /// Either an instruction: 2289 /// - Is the first in a basic block: BB is used. 2290 /// - Has a previous instruction: PrevInst is used. 2291 union { 2292 Instruction *PrevInst; 2293 BasicBlock *BB; 2294 } Point; 2295 2296 /// Remember whether or not the instruction had a previous instruction. 2297 bool HasPrevInstruction; 2298 2299 public: 2300 /// Record the position of \p Inst. 2301 InsertionHandler(Instruction *Inst) { 2302 BasicBlock::iterator It = Inst->getIterator(); 2303 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2304 if (HasPrevInstruction) 2305 Point.PrevInst = &*--It; 2306 else 2307 Point.BB = Inst->getParent(); 2308 } 2309 2310 /// Insert \p Inst at the recorded position. 2311 void insert(Instruction *Inst) { 2312 if (HasPrevInstruction) { 2313 if (Inst->getParent()) 2314 Inst->removeFromParent(); 2315 Inst->insertAfter(Point.PrevInst); 2316 } else { 2317 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2318 if (Inst->getParent()) 2319 Inst->moveBefore(Position); 2320 else 2321 Inst->insertBefore(Position); 2322 } 2323 } 2324 }; 2325 2326 /// Move an instruction before another. 2327 class InstructionMoveBefore : public TypePromotionAction { 2328 /// Original position of the instruction. 2329 InsertionHandler Position; 2330 2331 public: 2332 /// Move \p Inst before \p Before. 2333 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2334 : TypePromotionAction(Inst), Position(Inst) { 2335 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2336 << "\n"); 2337 Inst->moveBefore(Before); 2338 } 2339 2340 /// Move the instruction back to its original position. 2341 void undo() override { 2342 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2343 Position.insert(Inst); 2344 } 2345 }; 2346 2347 /// Set the operand of an instruction with a new value. 2348 class OperandSetter : public TypePromotionAction { 2349 /// Original operand of the instruction. 2350 Value *Origin; 2351 2352 /// Index of the modified instruction. 2353 unsigned Idx; 2354 2355 public: 2356 /// Set \p Idx operand of \p Inst with \p NewVal. 2357 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2358 : TypePromotionAction(Inst), Idx(Idx) { 2359 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2360 << "for:" << *Inst << "\n" 2361 << "with:" << *NewVal << "\n"); 2362 Origin = Inst->getOperand(Idx); 2363 Inst->setOperand(Idx, NewVal); 2364 } 2365 2366 /// Restore the original value of the instruction. 2367 void undo() override { 2368 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2369 << "for: " << *Inst << "\n" 2370 << "with: " << *Origin << "\n"); 2371 Inst->setOperand(Idx, Origin); 2372 } 2373 }; 2374 2375 /// Hide the operands of an instruction. 2376 /// Do as if this instruction was not using any of its operands. 2377 class OperandsHider : public TypePromotionAction { 2378 /// The list of original operands. 2379 SmallVector<Value *, 4> OriginalValues; 2380 2381 public: 2382 /// Remove \p Inst from the uses of the operands of \p Inst. 2383 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2384 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2385 unsigned NumOpnds = Inst->getNumOperands(); 2386 OriginalValues.reserve(NumOpnds); 2387 for (unsigned It = 0; It < NumOpnds; ++It) { 2388 // Save the current operand. 2389 Value *Val = Inst->getOperand(It); 2390 OriginalValues.push_back(Val); 2391 // Set a dummy one. 2392 // We could use OperandSetter here, but that would imply an overhead 2393 // that we are not willing to pay. 2394 Inst->setOperand(It, UndefValue::get(Val->getType())); 2395 } 2396 } 2397 2398 /// Restore the original list of uses. 2399 void undo() override { 2400 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2401 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2402 Inst->setOperand(It, OriginalValues[It]); 2403 } 2404 }; 2405 2406 /// Build a truncate instruction. 2407 class TruncBuilder : public TypePromotionAction { 2408 Value *Val; 2409 2410 public: 2411 /// Build a truncate instruction of \p Opnd producing a \p Ty 2412 /// result. 2413 /// trunc Opnd to Ty. 2414 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2415 IRBuilder<> Builder(Opnd); 2416 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2417 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2418 } 2419 2420 /// Get the built value. 2421 Value *getBuiltValue() { return Val; } 2422 2423 /// Remove the built instruction. 2424 void undo() override { 2425 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2426 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2427 IVal->eraseFromParent(); 2428 } 2429 }; 2430 2431 /// Build a sign extension instruction. 2432 class SExtBuilder : public TypePromotionAction { 2433 Value *Val; 2434 2435 public: 2436 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2437 /// result. 2438 /// sext Opnd to Ty. 2439 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2440 : TypePromotionAction(InsertPt) { 2441 IRBuilder<> Builder(InsertPt); 2442 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2443 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2444 } 2445 2446 /// Get the built value. 2447 Value *getBuiltValue() { return Val; } 2448 2449 /// Remove the built instruction. 2450 void undo() override { 2451 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2452 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2453 IVal->eraseFromParent(); 2454 } 2455 }; 2456 2457 /// Build a zero extension instruction. 2458 class ZExtBuilder : public TypePromotionAction { 2459 Value *Val; 2460 2461 public: 2462 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2463 /// result. 2464 /// zext Opnd to Ty. 2465 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2466 : TypePromotionAction(InsertPt) { 2467 IRBuilder<> Builder(InsertPt); 2468 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2469 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2470 } 2471 2472 /// Get the built value. 2473 Value *getBuiltValue() { return Val; } 2474 2475 /// Remove the built instruction. 2476 void undo() override { 2477 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2478 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2479 IVal->eraseFromParent(); 2480 } 2481 }; 2482 2483 /// Mutate an instruction to another type. 2484 class TypeMutator : public TypePromotionAction { 2485 /// Record the original type. 2486 Type *OrigTy; 2487 2488 public: 2489 /// Mutate the type of \p Inst into \p NewTy. 2490 TypeMutator(Instruction *Inst, Type *NewTy) 2491 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2492 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2493 << "\n"); 2494 Inst->mutateType(NewTy); 2495 } 2496 2497 /// Mutate the instruction back to its original type. 2498 void undo() override { 2499 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2500 << "\n"); 2501 Inst->mutateType(OrigTy); 2502 } 2503 }; 2504 2505 /// Replace the uses of an instruction by another instruction. 2506 class UsesReplacer : public TypePromotionAction { 2507 /// Helper structure to keep track of the replaced uses. 2508 struct InstructionAndIdx { 2509 /// The instruction using the instruction. 2510 Instruction *Inst; 2511 2512 /// The index where this instruction is used for Inst. 2513 unsigned Idx; 2514 2515 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2516 : Inst(Inst), Idx(Idx) {} 2517 }; 2518 2519 /// Keep track of the original uses (pair Instruction, Index). 2520 SmallVector<InstructionAndIdx, 4> OriginalUses; 2521 /// Keep track of the debug users. 2522 SmallVector<DbgValueInst *, 1> DbgValues; 2523 2524 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2525 2526 public: 2527 /// Replace all the use of \p Inst by \p New. 2528 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2529 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2530 << "\n"); 2531 // Record the original uses. 2532 for (Use &U : Inst->uses()) { 2533 Instruction *UserI = cast<Instruction>(U.getUser()); 2534 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2535 } 2536 // Record the debug uses separately. They are not in the instruction's 2537 // use list, but they are replaced by RAUW. 2538 findDbgValues(DbgValues, Inst); 2539 2540 // Now, we can replace the uses. 2541 Inst->replaceAllUsesWith(New); 2542 } 2543 2544 /// Reassign the original uses of Inst to Inst. 2545 void undo() override { 2546 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2547 for (use_iterator UseIt = OriginalUses.begin(), 2548 EndIt = OriginalUses.end(); 2549 UseIt != EndIt; ++UseIt) { 2550 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2551 } 2552 // RAUW has replaced all original uses with references to the new value, 2553 // including the debug uses. Since we are undoing the replacements, 2554 // the original debug uses must also be reinstated to maintain the 2555 // correctness and utility of debug value instructions. 2556 for (auto *DVI: DbgValues) { 2557 LLVMContext &Ctx = Inst->getType()->getContext(); 2558 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2559 DVI->setOperand(0, MV); 2560 } 2561 } 2562 }; 2563 2564 /// Remove an instruction from the IR. 2565 class InstructionRemover : public TypePromotionAction { 2566 /// Original position of the instruction. 2567 InsertionHandler Inserter; 2568 2569 /// Helper structure to hide all the link to the instruction. In other 2570 /// words, this helps to do as if the instruction was removed. 2571 OperandsHider Hider; 2572 2573 /// Keep track of the uses replaced, if any. 2574 UsesReplacer *Replacer = nullptr; 2575 2576 /// Keep track of instructions removed. 2577 SetOfInstrs &RemovedInsts; 2578 2579 public: 2580 /// Remove all reference of \p Inst and optionally replace all its 2581 /// uses with New. 2582 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2583 /// \pre If !Inst->use_empty(), then New != nullptr 2584 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2585 Value *New = nullptr) 2586 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2587 RemovedInsts(RemovedInsts) { 2588 if (New) 2589 Replacer = new UsesReplacer(Inst, New); 2590 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2591 RemovedInsts.insert(Inst); 2592 /// The instructions removed here will be freed after completing 2593 /// optimizeBlock() for all blocks as we need to keep track of the 2594 /// removed instructions during promotion. 2595 Inst->removeFromParent(); 2596 } 2597 2598 ~InstructionRemover() override { delete Replacer; } 2599 2600 /// Resurrect the instruction and reassign it to the proper uses if 2601 /// new value was provided when build this action. 2602 void undo() override { 2603 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2604 Inserter.insert(Inst); 2605 if (Replacer) 2606 Replacer->undo(); 2607 Hider.undo(); 2608 RemovedInsts.erase(Inst); 2609 } 2610 }; 2611 2612 public: 2613 /// Restoration point. 2614 /// The restoration point is a pointer to an action instead of an iterator 2615 /// because the iterator may be invalidated but not the pointer. 2616 using ConstRestorationPt = const TypePromotionAction *; 2617 2618 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2619 : RemovedInsts(RemovedInsts) {} 2620 2621 /// Advocate every changes made in that transaction. 2622 void commit(); 2623 2624 /// Undo all the changes made after the given point. 2625 void rollback(ConstRestorationPt Point); 2626 2627 /// Get the current restoration point. 2628 ConstRestorationPt getRestorationPoint() const; 2629 2630 /// \name API for IR modification with state keeping to support rollback. 2631 /// @{ 2632 /// Same as Instruction::setOperand. 2633 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2634 2635 /// Same as Instruction::eraseFromParent. 2636 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2637 2638 /// Same as Value::replaceAllUsesWith. 2639 void replaceAllUsesWith(Instruction *Inst, Value *New); 2640 2641 /// Same as Value::mutateType. 2642 void mutateType(Instruction *Inst, Type *NewTy); 2643 2644 /// Same as IRBuilder::createTrunc. 2645 Value *createTrunc(Instruction *Opnd, Type *Ty); 2646 2647 /// Same as IRBuilder::createSExt. 2648 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2649 2650 /// Same as IRBuilder::createZExt. 2651 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2652 2653 /// Same as Instruction::moveBefore. 2654 void moveBefore(Instruction *Inst, Instruction *Before); 2655 /// @} 2656 2657 private: 2658 /// The ordered list of actions made so far. 2659 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2660 2661 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2662 2663 SetOfInstrs &RemovedInsts; 2664 }; 2665 2666 } // end anonymous namespace 2667 2668 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2669 Value *NewVal) { 2670 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2671 Inst, Idx, NewVal)); 2672 } 2673 2674 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2675 Value *NewVal) { 2676 Actions.push_back( 2677 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2678 Inst, RemovedInsts, NewVal)); 2679 } 2680 2681 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2682 Value *New) { 2683 Actions.push_back( 2684 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2685 } 2686 2687 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2688 Actions.push_back( 2689 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2690 } 2691 2692 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2693 Type *Ty) { 2694 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2695 Value *Val = Ptr->getBuiltValue(); 2696 Actions.push_back(std::move(Ptr)); 2697 return Val; 2698 } 2699 2700 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2701 Value *Opnd, Type *Ty) { 2702 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2703 Value *Val = Ptr->getBuiltValue(); 2704 Actions.push_back(std::move(Ptr)); 2705 return Val; 2706 } 2707 2708 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2709 Value *Opnd, Type *Ty) { 2710 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2711 Value *Val = Ptr->getBuiltValue(); 2712 Actions.push_back(std::move(Ptr)); 2713 return Val; 2714 } 2715 2716 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2717 Instruction *Before) { 2718 Actions.push_back( 2719 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2720 Inst, Before)); 2721 } 2722 2723 TypePromotionTransaction::ConstRestorationPt 2724 TypePromotionTransaction::getRestorationPoint() const { 2725 return !Actions.empty() ? Actions.back().get() : nullptr; 2726 } 2727 2728 void TypePromotionTransaction::commit() { 2729 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2730 ++It) 2731 (*It)->commit(); 2732 Actions.clear(); 2733 } 2734 2735 void TypePromotionTransaction::rollback( 2736 TypePromotionTransaction::ConstRestorationPt Point) { 2737 while (!Actions.empty() && Point != Actions.back().get()) { 2738 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2739 Curr->undo(); 2740 } 2741 } 2742 2743 namespace { 2744 2745 /// A helper class for matching addressing modes. 2746 /// 2747 /// This encapsulates the logic for matching the target-legal addressing modes. 2748 class AddressingModeMatcher { 2749 SmallVectorImpl<Instruction*> &AddrModeInsts; 2750 const TargetLowering &TLI; 2751 const TargetRegisterInfo &TRI; 2752 const DataLayout &DL; 2753 2754 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2755 /// the memory instruction that we're computing this address for. 2756 Type *AccessTy; 2757 unsigned AddrSpace; 2758 Instruction *MemoryInst; 2759 2760 /// This is the addressing mode that we're building up. This is 2761 /// part of the return value of this addressing mode matching stuff. 2762 ExtAddrMode &AddrMode; 2763 2764 /// The instructions inserted by other CodeGenPrepare optimizations. 2765 const SetOfInstrs &InsertedInsts; 2766 2767 /// A map from the instructions to their type before promotion. 2768 InstrToOrigTy &PromotedInsts; 2769 2770 /// The ongoing transaction where every action should be registered. 2771 TypePromotionTransaction &TPT; 2772 2773 // A GEP which has too large offset to be folded into the addressing mode. 2774 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2775 2776 /// This is set to true when we should not do profitability checks. 2777 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2778 bool IgnoreProfitability; 2779 2780 AddressingModeMatcher( 2781 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2782 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2783 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2784 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2785 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2786 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2787 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2788 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2789 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2790 IgnoreProfitability = false; 2791 } 2792 2793 public: 2794 /// Find the maximal addressing mode that a load/store of V can fold, 2795 /// give an access type of AccessTy. This returns a list of involved 2796 /// instructions in AddrModeInsts. 2797 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2798 /// optimizations. 2799 /// \p PromotedInsts maps the instructions to their type before promotion. 2800 /// \p The ongoing transaction where every action should be registered. 2801 static ExtAddrMode 2802 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2803 SmallVectorImpl<Instruction *> &AddrModeInsts, 2804 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2805 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2806 TypePromotionTransaction &TPT, 2807 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2808 ExtAddrMode Result; 2809 2810 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2811 MemoryInst, Result, InsertedInsts, 2812 PromotedInsts, TPT, LargeOffsetGEP) 2813 .matchAddr(V, 0); 2814 (void)Success; assert(Success && "Couldn't select *anything*?"); 2815 return Result; 2816 } 2817 2818 private: 2819 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2820 bool matchAddr(Value *Addr, unsigned Depth); 2821 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2822 bool *MovedAway = nullptr); 2823 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2824 ExtAddrMode &AMBefore, 2825 ExtAddrMode &AMAfter); 2826 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2827 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2828 Value *PromotedOperand) const; 2829 }; 2830 2831 class PhiNodeSet; 2832 2833 /// An iterator for PhiNodeSet. 2834 class PhiNodeSetIterator { 2835 PhiNodeSet * const Set; 2836 size_t CurrentIndex = 0; 2837 2838 public: 2839 /// The constructor. Start should point to either a valid element, or be equal 2840 /// to the size of the underlying SmallVector of the PhiNodeSet. 2841 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2842 PHINode * operator*() const; 2843 PhiNodeSetIterator& operator++(); 2844 bool operator==(const PhiNodeSetIterator &RHS) const; 2845 bool operator!=(const PhiNodeSetIterator &RHS) const; 2846 }; 2847 2848 /// Keeps a set of PHINodes. 2849 /// 2850 /// This is a minimal set implementation for a specific use case: 2851 /// It is very fast when there are very few elements, but also provides good 2852 /// performance when there are many. It is similar to SmallPtrSet, but also 2853 /// provides iteration by insertion order, which is deterministic and stable 2854 /// across runs. It is also similar to SmallSetVector, but provides removing 2855 /// elements in O(1) time. This is achieved by not actually removing the element 2856 /// from the underlying vector, so comes at the cost of using more memory, but 2857 /// that is fine, since PhiNodeSets are used as short lived objects. 2858 class PhiNodeSet { 2859 friend class PhiNodeSetIterator; 2860 2861 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2862 using iterator = PhiNodeSetIterator; 2863 2864 /// Keeps the elements in the order of their insertion in the underlying 2865 /// vector. To achieve constant time removal, it never deletes any element. 2866 SmallVector<PHINode *, 32> NodeList; 2867 2868 /// Keeps the elements in the underlying set implementation. This (and not the 2869 /// NodeList defined above) is the source of truth on whether an element 2870 /// is actually in the collection. 2871 MapType NodeMap; 2872 2873 /// Points to the first valid (not deleted) element when the set is not empty 2874 /// and the value is not zero. Equals to the size of the underlying vector 2875 /// when the set is empty. When the value is 0, as in the beginning, the 2876 /// first element may or may not be valid. 2877 size_t FirstValidElement = 0; 2878 2879 public: 2880 /// Inserts a new element to the collection. 2881 /// \returns true if the element is actually added, i.e. was not in the 2882 /// collection before the operation. 2883 bool insert(PHINode *Ptr) { 2884 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2885 NodeList.push_back(Ptr); 2886 return true; 2887 } 2888 return false; 2889 } 2890 2891 /// Removes the element from the collection. 2892 /// \returns whether the element is actually removed, i.e. was in the 2893 /// collection before the operation. 2894 bool erase(PHINode *Ptr) { 2895 auto it = NodeMap.find(Ptr); 2896 if (it != NodeMap.end()) { 2897 NodeMap.erase(Ptr); 2898 SkipRemovedElements(FirstValidElement); 2899 return true; 2900 } 2901 return false; 2902 } 2903 2904 /// Removes all elements and clears the collection. 2905 void clear() { 2906 NodeMap.clear(); 2907 NodeList.clear(); 2908 FirstValidElement = 0; 2909 } 2910 2911 /// \returns an iterator that will iterate the elements in the order of 2912 /// insertion. 2913 iterator begin() { 2914 if (FirstValidElement == 0) 2915 SkipRemovedElements(FirstValidElement); 2916 return PhiNodeSetIterator(this, FirstValidElement); 2917 } 2918 2919 /// \returns an iterator that points to the end of the collection. 2920 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2921 2922 /// Returns the number of elements in the collection. 2923 size_t size() const { 2924 return NodeMap.size(); 2925 } 2926 2927 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2928 size_t count(PHINode *Ptr) const { 2929 return NodeMap.count(Ptr); 2930 } 2931 2932 private: 2933 /// Updates the CurrentIndex so that it will point to a valid element. 2934 /// 2935 /// If the element of NodeList at CurrentIndex is valid, it does not 2936 /// change it. If there are no more valid elements, it updates CurrentIndex 2937 /// to point to the end of the NodeList. 2938 void SkipRemovedElements(size_t &CurrentIndex) { 2939 while (CurrentIndex < NodeList.size()) { 2940 auto it = NodeMap.find(NodeList[CurrentIndex]); 2941 // If the element has been deleted and added again later, NodeMap will 2942 // point to a different index, so CurrentIndex will still be invalid. 2943 if (it != NodeMap.end() && it->second == CurrentIndex) 2944 break; 2945 ++CurrentIndex; 2946 } 2947 } 2948 }; 2949 2950 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2951 : Set(Set), CurrentIndex(Start) {} 2952 2953 PHINode * PhiNodeSetIterator::operator*() const { 2954 assert(CurrentIndex < Set->NodeList.size() && 2955 "PhiNodeSet access out of range"); 2956 return Set->NodeList[CurrentIndex]; 2957 } 2958 2959 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2960 assert(CurrentIndex < Set->NodeList.size() && 2961 "PhiNodeSet access out of range"); 2962 ++CurrentIndex; 2963 Set->SkipRemovedElements(CurrentIndex); 2964 return *this; 2965 } 2966 2967 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2968 return CurrentIndex == RHS.CurrentIndex; 2969 } 2970 2971 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2972 return !((*this) == RHS); 2973 } 2974 2975 /// Keep track of simplification of Phi nodes. 2976 /// Accept the set of all phi nodes and erase phi node from this set 2977 /// if it is simplified. 2978 class SimplificationTracker { 2979 DenseMap<Value *, Value *> Storage; 2980 const SimplifyQuery &SQ; 2981 // Tracks newly created Phi nodes. The elements are iterated by insertion 2982 // order. 2983 PhiNodeSet AllPhiNodes; 2984 // Tracks newly created Select nodes. 2985 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2986 2987 public: 2988 SimplificationTracker(const SimplifyQuery &sq) 2989 : SQ(sq) {} 2990 2991 Value *Get(Value *V) { 2992 do { 2993 auto SV = Storage.find(V); 2994 if (SV == Storage.end()) 2995 return V; 2996 V = SV->second; 2997 } while (true); 2998 } 2999 3000 Value *Simplify(Value *Val) { 3001 SmallVector<Value *, 32> WorkList; 3002 SmallPtrSet<Value *, 32> Visited; 3003 WorkList.push_back(Val); 3004 while (!WorkList.empty()) { 3005 auto P = WorkList.pop_back_val(); 3006 if (!Visited.insert(P).second) 3007 continue; 3008 if (auto *PI = dyn_cast<Instruction>(P)) 3009 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3010 for (auto *U : PI->users()) 3011 WorkList.push_back(cast<Value>(U)); 3012 Put(PI, V); 3013 PI->replaceAllUsesWith(V); 3014 if (auto *PHI = dyn_cast<PHINode>(PI)) 3015 AllPhiNodes.erase(PHI); 3016 if (auto *Select = dyn_cast<SelectInst>(PI)) 3017 AllSelectNodes.erase(Select); 3018 PI->eraseFromParent(); 3019 } 3020 } 3021 return Get(Val); 3022 } 3023 3024 void Put(Value *From, Value *To) { 3025 Storage.insert({ From, To }); 3026 } 3027 3028 void ReplacePhi(PHINode *From, PHINode *To) { 3029 Value* OldReplacement = Get(From); 3030 while (OldReplacement != From) { 3031 From = To; 3032 To = dyn_cast<PHINode>(OldReplacement); 3033 OldReplacement = Get(From); 3034 } 3035 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3036 Put(From, To); 3037 From->replaceAllUsesWith(To); 3038 AllPhiNodes.erase(From); 3039 From->eraseFromParent(); 3040 } 3041 3042 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3043 3044 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3045 3046 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3047 3048 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3049 3050 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3051 3052 void destroyNewNodes(Type *CommonType) { 3053 // For safe erasing, replace the uses with dummy value first. 3054 auto Dummy = UndefValue::get(CommonType); 3055 for (auto I : AllPhiNodes) { 3056 I->replaceAllUsesWith(Dummy); 3057 I->eraseFromParent(); 3058 } 3059 AllPhiNodes.clear(); 3060 for (auto I : AllSelectNodes) { 3061 I->replaceAllUsesWith(Dummy); 3062 I->eraseFromParent(); 3063 } 3064 AllSelectNodes.clear(); 3065 } 3066 }; 3067 3068 /// A helper class for combining addressing modes. 3069 class AddressingModeCombiner { 3070 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3071 typedef std::pair<PHINode *, PHINode *> PHIPair; 3072 3073 private: 3074 /// The addressing modes we've collected. 3075 SmallVector<ExtAddrMode, 16> AddrModes; 3076 3077 /// The field in which the AddrModes differ, when we have more than one. 3078 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3079 3080 /// Are the AddrModes that we have all just equal to their original values? 3081 bool AllAddrModesTrivial = true; 3082 3083 /// Common Type for all different fields in addressing modes. 3084 Type *CommonType; 3085 3086 /// SimplifyQuery for simplifyInstruction utility. 3087 const SimplifyQuery &SQ; 3088 3089 /// Original Address. 3090 Value *Original; 3091 3092 public: 3093 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3094 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3095 3096 /// Get the combined AddrMode 3097 const ExtAddrMode &getAddrMode() const { 3098 return AddrModes[0]; 3099 } 3100 3101 /// Add a new AddrMode if it's compatible with the AddrModes we already 3102 /// have. 3103 /// \return True iff we succeeded in doing so. 3104 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3105 // Take note of if we have any non-trivial AddrModes, as we need to detect 3106 // when all AddrModes are trivial as then we would introduce a phi or select 3107 // which just duplicates what's already there. 3108 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3109 3110 // If this is the first addrmode then everything is fine. 3111 if (AddrModes.empty()) { 3112 AddrModes.emplace_back(NewAddrMode); 3113 return true; 3114 } 3115 3116 // Figure out how different this is from the other address modes, which we 3117 // can do just by comparing against the first one given that we only care 3118 // about the cumulative difference. 3119 ExtAddrMode::FieldName ThisDifferentField = 3120 AddrModes[0].compare(NewAddrMode); 3121 if (DifferentField == ExtAddrMode::NoField) 3122 DifferentField = ThisDifferentField; 3123 else if (DifferentField != ThisDifferentField) 3124 DifferentField = ExtAddrMode::MultipleFields; 3125 3126 // If NewAddrMode differs in more than one dimension we cannot handle it. 3127 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3128 3129 // If Scale Field is different then we reject. 3130 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3131 3132 // We also must reject the case when base offset is different and 3133 // scale reg is not null, we cannot handle this case due to merge of 3134 // different offsets will be used as ScaleReg. 3135 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3136 !NewAddrMode.ScaledReg); 3137 3138 // We also must reject the case when GV is different and BaseReg installed 3139 // due to we want to use base reg as a merge of GV values. 3140 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3141 !NewAddrMode.HasBaseReg); 3142 3143 // Even if NewAddMode is the same we still need to collect it due to 3144 // original value is different. And later we will need all original values 3145 // as anchors during finding the common Phi node. 3146 if (CanHandle) 3147 AddrModes.emplace_back(NewAddrMode); 3148 else 3149 AddrModes.clear(); 3150 3151 return CanHandle; 3152 } 3153 3154 /// Combine the addressing modes we've collected into a single 3155 /// addressing mode. 3156 /// \return True iff we successfully combined them or we only had one so 3157 /// didn't need to combine them anyway. 3158 bool combineAddrModes() { 3159 // If we have no AddrModes then they can't be combined. 3160 if (AddrModes.size() == 0) 3161 return false; 3162 3163 // A single AddrMode can trivially be combined. 3164 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3165 return true; 3166 3167 // If the AddrModes we collected are all just equal to the value they are 3168 // derived from then combining them wouldn't do anything useful. 3169 if (AllAddrModesTrivial) 3170 return false; 3171 3172 if (!addrModeCombiningAllowed()) 3173 return false; 3174 3175 // Build a map between <original value, basic block where we saw it> to 3176 // value of base register. 3177 // Bail out if there is no common type. 3178 FoldAddrToValueMapping Map; 3179 if (!initializeMap(Map)) 3180 return false; 3181 3182 Value *CommonValue = findCommon(Map); 3183 if (CommonValue) 3184 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3185 return CommonValue != nullptr; 3186 } 3187 3188 private: 3189 /// Initialize Map with anchor values. For address seen 3190 /// we set the value of different field saw in this address. 3191 /// At the same time we find a common type for different field we will 3192 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3193 /// Return false if there is no common type found. 3194 bool initializeMap(FoldAddrToValueMapping &Map) { 3195 // Keep track of keys where the value is null. We will need to replace it 3196 // with constant null when we know the common type. 3197 SmallVector<Value *, 2> NullValue; 3198 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3199 for (auto &AM : AddrModes) { 3200 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3201 if (DV) { 3202 auto *Type = DV->getType(); 3203 if (CommonType && CommonType != Type) 3204 return false; 3205 CommonType = Type; 3206 Map[AM.OriginalValue] = DV; 3207 } else { 3208 NullValue.push_back(AM.OriginalValue); 3209 } 3210 } 3211 assert(CommonType && "At least one non-null value must be!"); 3212 for (auto *V : NullValue) 3213 Map[V] = Constant::getNullValue(CommonType); 3214 return true; 3215 } 3216 3217 /// We have mapping between value A and other value B where B was a field in 3218 /// addressing mode represented by A. Also we have an original value C 3219 /// representing an address we start with. Traversing from C through phi and 3220 /// selects we ended up with A's in a map. This utility function tries to find 3221 /// a value V which is a field in addressing mode C and traversing through phi 3222 /// nodes and selects we will end up in corresponded values B in a map. 3223 /// The utility will create a new Phi/Selects if needed. 3224 // The simple example looks as follows: 3225 // BB1: 3226 // p1 = b1 + 40 3227 // br cond BB2, BB3 3228 // BB2: 3229 // p2 = b2 + 40 3230 // br BB3 3231 // BB3: 3232 // p = phi [p1, BB1], [p2, BB2] 3233 // v = load p 3234 // Map is 3235 // p1 -> b1 3236 // p2 -> b2 3237 // Request is 3238 // p -> ? 3239 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3240 Value *findCommon(FoldAddrToValueMapping &Map) { 3241 // Tracks the simplification of newly created phi nodes. The reason we use 3242 // this mapping is because we will add new created Phi nodes in AddrToBase. 3243 // Simplification of Phi nodes is recursive, so some Phi node may 3244 // be simplified after we added it to AddrToBase. In reality this 3245 // simplification is possible only if original phi/selects were not 3246 // simplified yet. 3247 // Using this mapping we can find the current value in AddrToBase. 3248 SimplificationTracker ST(SQ); 3249 3250 // First step, DFS to create PHI nodes for all intermediate blocks. 3251 // Also fill traverse order for the second step. 3252 SmallVector<Value *, 32> TraverseOrder; 3253 InsertPlaceholders(Map, TraverseOrder, ST); 3254 3255 // Second Step, fill new nodes by merged values and simplify if possible. 3256 FillPlaceholders(Map, TraverseOrder, ST); 3257 3258 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3259 ST.destroyNewNodes(CommonType); 3260 return nullptr; 3261 } 3262 3263 // Now we'd like to match New Phi nodes to existed ones. 3264 unsigned PhiNotMatchedCount = 0; 3265 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3266 ST.destroyNewNodes(CommonType); 3267 return nullptr; 3268 } 3269 3270 auto *Result = ST.Get(Map.find(Original)->second); 3271 if (Result) { 3272 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3273 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3274 } 3275 return Result; 3276 } 3277 3278 /// Try to match PHI node to Candidate. 3279 /// Matcher tracks the matched Phi nodes. 3280 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3281 SmallSetVector<PHIPair, 8> &Matcher, 3282 PhiNodeSet &PhiNodesToMatch) { 3283 SmallVector<PHIPair, 8> WorkList; 3284 Matcher.insert({ PHI, Candidate }); 3285 SmallSet<PHINode *, 8> MatchedPHIs; 3286 MatchedPHIs.insert(PHI); 3287 WorkList.push_back({ PHI, Candidate }); 3288 SmallSet<PHIPair, 8> Visited; 3289 while (!WorkList.empty()) { 3290 auto Item = WorkList.pop_back_val(); 3291 if (!Visited.insert(Item).second) 3292 continue; 3293 // We iterate over all incoming values to Phi to compare them. 3294 // If values are different and both of them Phi and the first one is a 3295 // Phi we added (subject to match) and both of them is in the same basic 3296 // block then we can match our pair if values match. So we state that 3297 // these values match and add it to work list to verify that. 3298 for (auto B : Item.first->blocks()) { 3299 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3300 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3301 if (FirstValue == SecondValue) 3302 continue; 3303 3304 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3305 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3306 3307 // One of them is not Phi or 3308 // The first one is not Phi node from the set we'd like to match or 3309 // Phi nodes from different basic blocks then 3310 // we will not be able to match. 3311 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3312 FirstPhi->getParent() != SecondPhi->getParent()) 3313 return false; 3314 3315 // If we already matched them then continue. 3316 if (Matcher.count({ FirstPhi, SecondPhi })) 3317 continue; 3318 // So the values are different and does not match. So we need them to 3319 // match. (But we register no more than one match per PHI node, so that 3320 // we won't later try to replace them twice.) 3321 if (MatchedPHIs.insert(FirstPhi).second) 3322 Matcher.insert({ FirstPhi, SecondPhi }); 3323 // But me must check it. 3324 WorkList.push_back({ FirstPhi, SecondPhi }); 3325 } 3326 } 3327 return true; 3328 } 3329 3330 /// For the given set of PHI nodes (in the SimplificationTracker) try 3331 /// to find their equivalents. 3332 /// Returns false if this matching fails and creation of new Phi is disabled. 3333 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3334 unsigned &PhiNotMatchedCount) { 3335 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3336 // order, so the replacements (ReplacePhi) are also done in a deterministic 3337 // order. 3338 SmallSetVector<PHIPair, 8> Matched; 3339 SmallPtrSet<PHINode *, 8> WillNotMatch; 3340 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3341 while (PhiNodesToMatch.size()) { 3342 PHINode *PHI = *PhiNodesToMatch.begin(); 3343 3344 // Add us, if no Phi nodes in the basic block we do not match. 3345 WillNotMatch.clear(); 3346 WillNotMatch.insert(PHI); 3347 3348 // Traverse all Phis until we found equivalent or fail to do that. 3349 bool IsMatched = false; 3350 for (auto &P : PHI->getParent()->phis()) { 3351 if (&P == PHI) 3352 continue; 3353 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3354 break; 3355 // If it does not match, collect all Phi nodes from matcher. 3356 // if we end up with no match, them all these Phi nodes will not match 3357 // later. 3358 for (auto M : Matched) 3359 WillNotMatch.insert(M.first); 3360 Matched.clear(); 3361 } 3362 if (IsMatched) { 3363 // Replace all matched values and erase them. 3364 for (auto MV : Matched) 3365 ST.ReplacePhi(MV.first, MV.second); 3366 Matched.clear(); 3367 continue; 3368 } 3369 // If we are not allowed to create new nodes then bail out. 3370 if (!AllowNewPhiNodes) 3371 return false; 3372 // Just remove all seen values in matcher. They will not match anything. 3373 PhiNotMatchedCount += WillNotMatch.size(); 3374 for (auto *P : WillNotMatch) 3375 PhiNodesToMatch.erase(P); 3376 } 3377 return true; 3378 } 3379 /// Fill the placeholders with values from predecessors and simplify them. 3380 void FillPlaceholders(FoldAddrToValueMapping &Map, 3381 SmallVectorImpl<Value *> &TraverseOrder, 3382 SimplificationTracker &ST) { 3383 while (!TraverseOrder.empty()) { 3384 Value *Current = TraverseOrder.pop_back_val(); 3385 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3386 Value *V = Map[Current]; 3387 3388 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3389 // CurrentValue also must be Select. 3390 auto *CurrentSelect = cast<SelectInst>(Current); 3391 auto *TrueValue = CurrentSelect->getTrueValue(); 3392 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3393 Select->setTrueValue(ST.Get(Map[TrueValue])); 3394 auto *FalseValue = CurrentSelect->getFalseValue(); 3395 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3396 Select->setFalseValue(ST.Get(Map[FalseValue])); 3397 } else { 3398 // Must be a Phi node then. 3399 auto *PHI = cast<PHINode>(V); 3400 // Fill the Phi node with values from predecessors. 3401 for (auto B : predecessors(PHI->getParent())) { 3402 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3403 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3404 PHI->addIncoming(ST.Get(Map[PV]), B); 3405 } 3406 } 3407 Map[Current] = ST.Simplify(V); 3408 } 3409 } 3410 3411 /// Starting from original value recursively iterates over def-use chain up to 3412 /// known ending values represented in a map. For each traversed phi/select 3413 /// inserts a placeholder Phi or Select. 3414 /// Reports all new created Phi/Select nodes by adding them to set. 3415 /// Also reports and order in what values have been traversed. 3416 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3417 SmallVectorImpl<Value *> &TraverseOrder, 3418 SimplificationTracker &ST) { 3419 SmallVector<Value *, 32> Worklist; 3420 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3421 "Address must be a Phi or Select node"); 3422 auto *Dummy = UndefValue::get(CommonType); 3423 Worklist.push_back(Original); 3424 while (!Worklist.empty()) { 3425 Value *Current = Worklist.pop_back_val(); 3426 // if it is already visited or it is an ending value then skip it. 3427 if (Map.find(Current) != Map.end()) 3428 continue; 3429 TraverseOrder.push_back(Current); 3430 3431 // CurrentValue must be a Phi node or select. All others must be covered 3432 // by anchors. 3433 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3434 // Is it OK to get metadata from OrigSelect?! 3435 // Create a Select placeholder with dummy value. 3436 SelectInst *Select = SelectInst::Create( 3437 CurrentSelect->getCondition(), Dummy, Dummy, 3438 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3439 Map[Current] = Select; 3440 ST.insertNewSelect(Select); 3441 // We are interested in True and False values. 3442 Worklist.push_back(CurrentSelect->getTrueValue()); 3443 Worklist.push_back(CurrentSelect->getFalseValue()); 3444 } else { 3445 // It must be a Phi node then. 3446 PHINode *CurrentPhi = cast<PHINode>(Current); 3447 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3448 PHINode *PHI = 3449 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3450 Map[Current] = PHI; 3451 ST.insertNewPhi(PHI); 3452 for (Value *P : CurrentPhi->incoming_values()) 3453 Worklist.push_back(P); 3454 } 3455 } 3456 } 3457 3458 bool addrModeCombiningAllowed() { 3459 if (DisableComplexAddrModes) 3460 return false; 3461 switch (DifferentField) { 3462 default: 3463 return false; 3464 case ExtAddrMode::BaseRegField: 3465 return AddrSinkCombineBaseReg; 3466 case ExtAddrMode::BaseGVField: 3467 return AddrSinkCombineBaseGV; 3468 case ExtAddrMode::BaseOffsField: 3469 return AddrSinkCombineBaseOffs; 3470 case ExtAddrMode::ScaledRegField: 3471 return AddrSinkCombineScaledReg; 3472 } 3473 } 3474 }; 3475 } // end anonymous namespace 3476 3477 /// Try adding ScaleReg*Scale to the current addressing mode. 3478 /// Return true and update AddrMode if this addr mode is legal for the target, 3479 /// false if not. 3480 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3481 unsigned Depth) { 3482 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3483 // mode. Just process that directly. 3484 if (Scale == 1) 3485 return matchAddr(ScaleReg, Depth); 3486 3487 // If the scale is 0, it takes nothing to add this. 3488 if (Scale == 0) 3489 return true; 3490 3491 // If we already have a scale of this value, we can add to it, otherwise, we 3492 // need an available scale field. 3493 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3494 return false; 3495 3496 ExtAddrMode TestAddrMode = AddrMode; 3497 3498 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3499 // [A+B + A*7] -> [B+A*8]. 3500 TestAddrMode.Scale += Scale; 3501 TestAddrMode.ScaledReg = ScaleReg; 3502 3503 // If the new address isn't legal, bail out. 3504 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3505 return false; 3506 3507 // It was legal, so commit it. 3508 AddrMode = TestAddrMode; 3509 3510 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3511 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3512 // X*Scale + C*Scale to addr mode. 3513 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3514 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3515 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3516 TestAddrMode.InBounds = false; 3517 TestAddrMode.ScaledReg = AddLHS; 3518 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3519 3520 // If this addressing mode is legal, commit it and remember that we folded 3521 // this instruction. 3522 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3523 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3524 AddrMode = TestAddrMode; 3525 return true; 3526 } 3527 } 3528 3529 // Otherwise, not (x+c)*scale, just return what we have. 3530 return true; 3531 } 3532 3533 /// This is a little filter, which returns true if an addressing computation 3534 /// involving I might be folded into a load/store accessing it. 3535 /// This doesn't need to be perfect, but needs to accept at least 3536 /// the set of instructions that MatchOperationAddr can. 3537 static bool MightBeFoldableInst(Instruction *I) { 3538 switch (I->getOpcode()) { 3539 case Instruction::BitCast: 3540 case Instruction::AddrSpaceCast: 3541 // Don't touch identity bitcasts. 3542 if (I->getType() == I->getOperand(0)->getType()) 3543 return false; 3544 return I->getType()->isIntOrPtrTy(); 3545 case Instruction::PtrToInt: 3546 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3547 return true; 3548 case Instruction::IntToPtr: 3549 // We know the input is intptr_t, so this is foldable. 3550 return true; 3551 case Instruction::Add: 3552 return true; 3553 case Instruction::Mul: 3554 case Instruction::Shl: 3555 // Can only handle X*C and X << C. 3556 return isa<ConstantInt>(I->getOperand(1)); 3557 case Instruction::GetElementPtr: 3558 return true; 3559 default: 3560 return false; 3561 } 3562 } 3563 3564 /// Check whether or not \p Val is a legal instruction for \p TLI. 3565 /// \note \p Val is assumed to be the product of some type promotion. 3566 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3567 /// to be legal, as the non-promoted value would have had the same state. 3568 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3569 const DataLayout &DL, Value *Val) { 3570 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3571 if (!PromotedInst) 3572 return false; 3573 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3574 // If the ISDOpcode is undefined, it was undefined before the promotion. 3575 if (!ISDOpcode) 3576 return true; 3577 // Otherwise, check if the promoted instruction is legal or not. 3578 return TLI.isOperationLegalOrCustom( 3579 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3580 } 3581 3582 namespace { 3583 3584 /// Hepler class to perform type promotion. 3585 class TypePromotionHelper { 3586 /// Utility function to add a promoted instruction \p ExtOpnd to 3587 /// \p PromotedInsts and record the type of extension we have seen. 3588 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3589 Instruction *ExtOpnd, 3590 bool IsSExt) { 3591 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3592 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3593 if (It != PromotedInsts.end()) { 3594 // If the new extension is same as original, the information in 3595 // PromotedInsts[ExtOpnd] is still correct. 3596 if (It->second.getInt() == ExtTy) 3597 return; 3598 3599 // Now the new extension is different from old extension, we make 3600 // the type information invalid by setting extension type to 3601 // BothExtension. 3602 ExtTy = BothExtension; 3603 } 3604 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3605 } 3606 3607 /// Utility function to query the original type of instruction \p Opnd 3608 /// with a matched extension type. If the extension doesn't match, we 3609 /// cannot use the information we had on the original type. 3610 /// BothExtension doesn't match any extension type. 3611 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3612 Instruction *Opnd, 3613 bool IsSExt) { 3614 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3615 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3616 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3617 return It->second.getPointer(); 3618 return nullptr; 3619 } 3620 3621 /// Utility function to check whether or not a sign or zero extension 3622 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3623 /// either using the operands of \p Inst or promoting \p Inst. 3624 /// The type of the extension is defined by \p IsSExt. 3625 /// In other words, check if: 3626 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3627 /// #1 Promotion applies: 3628 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3629 /// #2 Operand reuses: 3630 /// ext opnd1 to ConsideredExtType. 3631 /// \p PromotedInsts maps the instructions to their type before promotion. 3632 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3633 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3634 3635 /// Utility function to determine if \p OpIdx should be promoted when 3636 /// promoting \p Inst. 3637 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3638 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3639 } 3640 3641 /// Utility function to promote the operand of \p Ext when this 3642 /// operand is a promotable trunc or sext or zext. 3643 /// \p PromotedInsts maps the instructions to their type before promotion. 3644 /// \p CreatedInstsCost[out] contains the cost of all instructions 3645 /// created to promote the operand of Ext. 3646 /// Newly added extensions are inserted in \p Exts. 3647 /// Newly added truncates are inserted in \p Truncs. 3648 /// Should never be called directly. 3649 /// \return The promoted value which is used instead of Ext. 3650 static Value *promoteOperandForTruncAndAnyExt( 3651 Instruction *Ext, TypePromotionTransaction &TPT, 3652 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3653 SmallVectorImpl<Instruction *> *Exts, 3654 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3655 3656 /// Utility function to promote the operand of \p Ext when this 3657 /// operand is promotable and is not a supported trunc or sext. 3658 /// \p PromotedInsts maps the instructions to their type before promotion. 3659 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3660 /// created to promote the operand of Ext. 3661 /// Newly added extensions are inserted in \p Exts. 3662 /// Newly added truncates are inserted in \p Truncs. 3663 /// Should never be called directly. 3664 /// \return The promoted value which is used instead of Ext. 3665 static Value *promoteOperandForOther(Instruction *Ext, 3666 TypePromotionTransaction &TPT, 3667 InstrToOrigTy &PromotedInsts, 3668 unsigned &CreatedInstsCost, 3669 SmallVectorImpl<Instruction *> *Exts, 3670 SmallVectorImpl<Instruction *> *Truncs, 3671 const TargetLowering &TLI, bool IsSExt); 3672 3673 /// \see promoteOperandForOther. 3674 static Value *signExtendOperandForOther( 3675 Instruction *Ext, TypePromotionTransaction &TPT, 3676 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3677 SmallVectorImpl<Instruction *> *Exts, 3678 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3679 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3680 Exts, Truncs, TLI, true); 3681 } 3682 3683 /// \see promoteOperandForOther. 3684 static Value *zeroExtendOperandForOther( 3685 Instruction *Ext, TypePromotionTransaction &TPT, 3686 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3687 SmallVectorImpl<Instruction *> *Exts, 3688 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3689 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3690 Exts, Truncs, TLI, false); 3691 } 3692 3693 public: 3694 /// Type for the utility function that promotes the operand of Ext. 3695 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3696 InstrToOrigTy &PromotedInsts, 3697 unsigned &CreatedInstsCost, 3698 SmallVectorImpl<Instruction *> *Exts, 3699 SmallVectorImpl<Instruction *> *Truncs, 3700 const TargetLowering &TLI); 3701 3702 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3703 /// action to promote the operand of \p Ext instead of using Ext. 3704 /// \return NULL if no promotable action is possible with the current 3705 /// sign extension. 3706 /// \p InsertedInsts keeps track of all the instructions inserted by the 3707 /// other CodeGenPrepare optimizations. This information is important 3708 /// because we do not want to promote these instructions as CodeGenPrepare 3709 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3710 /// \p PromotedInsts maps the instructions to their type before promotion. 3711 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3712 const TargetLowering &TLI, 3713 const InstrToOrigTy &PromotedInsts); 3714 }; 3715 3716 } // end anonymous namespace 3717 3718 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3719 Type *ConsideredExtType, 3720 const InstrToOrigTy &PromotedInsts, 3721 bool IsSExt) { 3722 // The promotion helper does not know how to deal with vector types yet. 3723 // To be able to fix that, we would need to fix the places where we 3724 // statically extend, e.g., constants and such. 3725 if (Inst->getType()->isVectorTy()) 3726 return false; 3727 3728 // We can always get through zext. 3729 if (isa<ZExtInst>(Inst)) 3730 return true; 3731 3732 // sext(sext) is ok too. 3733 if (IsSExt && isa<SExtInst>(Inst)) 3734 return true; 3735 3736 // We can get through binary operator, if it is legal. In other words, the 3737 // binary operator must have a nuw or nsw flag. 3738 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3739 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3740 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3741 (IsSExt && BinOp->hasNoSignedWrap()))) 3742 return true; 3743 3744 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3745 if ((Inst->getOpcode() == Instruction::And || 3746 Inst->getOpcode() == Instruction::Or)) 3747 return true; 3748 3749 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3750 if (Inst->getOpcode() == Instruction::Xor) { 3751 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3752 // Make sure it is not a NOT. 3753 if (Cst && !Cst->getValue().isAllOnesValue()) 3754 return true; 3755 } 3756 3757 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3758 // It may change a poisoned value into a regular value, like 3759 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3760 // poisoned value regular value 3761 // It should be OK since undef covers valid value. 3762 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3763 return true; 3764 3765 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3766 // It may change a poisoned value into a regular value, like 3767 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3768 // poisoned value regular value 3769 // It should be OK since undef covers valid value. 3770 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3771 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3772 if (ExtInst->hasOneUse()) { 3773 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3774 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3775 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3776 if (Cst && 3777 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3778 return true; 3779 } 3780 } 3781 } 3782 3783 // Check if we can do the following simplification. 3784 // ext(trunc(opnd)) --> ext(opnd) 3785 if (!isa<TruncInst>(Inst)) 3786 return false; 3787 3788 Value *OpndVal = Inst->getOperand(0); 3789 // Check if we can use this operand in the extension. 3790 // If the type is larger than the result type of the extension, we cannot. 3791 if (!OpndVal->getType()->isIntegerTy() || 3792 OpndVal->getType()->getIntegerBitWidth() > 3793 ConsideredExtType->getIntegerBitWidth()) 3794 return false; 3795 3796 // If the operand of the truncate is not an instruction, we will not have 3797 // any information on the dropped bits. 3798 // (Actually we could for constant but it is not worth the extra logic). 3799 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3800 if (!Opnd) 3801 return false; 3802 3803 // Check if the source of the type is narrow enough. 3804 // I.e., check that trunc just drops extended bits of the same kind of 3805 // the extension. 3806 // #1 get the type of the operand and check the kind of the extended bits. 3807 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3808 if (OpndType) 3809 ; 3810 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3811 OpndType = Opnd->getOperand(0)->getType(); 3812 else 3813 return false; 3814 3815 // #2 check that the truncate just drops extended bits. 3816 return Inst->getType()->getIntegerBitWidth() >= 3817 OpndType->getIntegerBitWidth(); 3818 } 3819 3820 TypePromotionHelper::Action TypePromotionHelper::getAction( 3821 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3822 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3823 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3824 "Unexpected instruction type"); 3825 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3826 Type *ExtTy = Ext->getType(); 3827 bool IsSExt = isa<SExtInst>(Ext); 3828 // If the operand of the extension is not an instruction, we cannot 3829 // get through. 3830 // If it, check we can get through. 3831 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3832 return nullptr; 3833 3834 // Do not promote if the operand has been added by codegenprepare. 3835 // Otherwise, it means we are undoing an optimization that is likely to be 3836 // redone, thus causing potential infinite loop. 3837 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3838 return nullptr; 3839 3840 // SExt or Trunc instructions. 3841 // Return the related handler. 3842 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3843 isa<ZExtInst>(ExtOpnd)) 3844 return promoteOperandForTruncAndAnyExt; 3845 3846 // Regular instruction. 3847 // Abort early if we will have to insert non-free instructions. 3848 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3849 return nullptr; 3850 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3851 } 3852 3853 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3854 Instruction *SExt, TypePromotionTransaction &TPT, 3855 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3856 SmallVectorImpl<Instruction *> *Exts, 3857 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3858 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3859 // get through it and this method should not be called. 3860 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3861 Value *ExtVal = SExt; 3862 bool HasMergedNonFreeExt = false; 3863 if (isa<ZExtInst>(SExtOpnd)) { 3864 // Replace s|zext(zext(opnd)) 3865 // => zext(opnd). 3866 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3867 Value *ZExt = 3868 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3869 TPT.replaceAllUsesWith(SExt, ZExt); 3870 TPT.eraseInstruction(SExt); 3871 ExtVal = ZExt; 3872 } else { 3873 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3874 // => z|sext(opnd). 3875 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3876 } 3877 CreatedInstsCost = 0; 3878 3879 // Remove dead code. 3880 if (SExtOpnd->use_empty()) 3881 TPT.eraseInstruction(SExtOpnd); 3882 3883 // Check if the extension is still needed. 3884 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3885 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3886 if (ExtInst) { 3887 if (Exts) 3888 Exts->push_back(ExtInst); 3889 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3890 } 3891 return ExtVal; 3892 } 3893 3894 // At this point we have: ext ty opnd to ty. 3895 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3896 Value *NextVal = ExtInst->getOperand(0); 3897 TPT.eraseInstruction(ExtInst, NextVal); 3898 return NextVal; 3899 } 3900 3901 Value *TypePromotionHelper::promoteOperandForOther( 3902 Instruction *Ext, TypePromotionTransaction &TPT, 3903 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3904 SmallVectorImpl<Instruction *> *Exts, 3905 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3906 bool IsSExt) { 3907 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3908 // get through it and this method should not be called. 3909 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3910 CreatedInstsCost = 0; 3911 if (!ExtOpnd->hasOneUse()) { 3912 // ExtOpnd will be promoted. 3913 // All its uses, but Ext, will need to use a truncated value of the 3914 // promoted version. 3915 // Create the truncate now. 3916 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3917 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3918 // Insert it just after the definition. 3919 ITrunc->moveAfter(ExtOpnd); 3920 if (Truncs) 3921 Truncs->push_back(ITrunc); 3922 } 3923 3924 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3925 // Restore the operand of Ext (which has been replaced by the previous call 3926 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3927 TPT.setOperand(Ext, 0, ExtOpnd); 3928 } 3929 3930 // Get through the Instruction: 3931 // 1. Update its type. 3932 // 2. Replace the uses of Ext by Inst. 3933 // 3. Extend each operand that needs to be extended. 3934 3935 // Remember the original type of the instruction before promotion. 3936 // This is useful to know that the high bits are sign extended bits. 3937 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3938 // Step #1. 3939 TPT.mutateType(ExtOpnd, Ext->getType()); 3940 // Step #2. 3941 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3942 // Step #3. 3943 Instruction *ExtForOpnd = Ext; 3944 3945 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3946 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3947 ++OpIdx) { 3948 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3949 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3950 !shouldExtOperand(ExtOpnd, OpIdx)) { 3951 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3952 continue; 3953 } 3954 // Check if we can statically extend the operand. 3955 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3956 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3957 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3958 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3959 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3960 : Cst->getValue().zext(BitWidth); 3961 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3962 continue; 3963 } 3964 // UndefValue are typed, so we have to statically sign extend them. 3965 if (isa<UndefValue>(Opnd)) { 3966 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3967 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3968 continue; 3969 } 3970 3971 // Otherwise we have to explicitly sign extend the operand. 3972 // Check if Ext was reused to extend an operand. 3973 if (!ExtForOpnd) { 3974 // If yes, create a new one. 3975 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3976 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3977 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3978 if (!isa<Instruction>(ValForExtOpnd)) { 3979 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3980 continue; 3981 } 3982 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3983 } 3984 if (Exts) 3985 Exts->push_back(ExtForOpnd); 3986 TPT.setOperand(ExtForOpnd, 0, Opnd); 3987 3988 // Move the sign extension before the insertion point. 3989 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3990 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3991 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3992 // If more sext are required, new instructions will have to be created. 3993 ExtForOpnd = nullptr; 3994 } 3995 if (ExtForOpnd == Ext) { 3996 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3997 TPT.eraseInstruction(Ext); 3998 } 3999 return ExtOpnd; 4000 } 4001 4002 /// Check whether or not promoting an instruction to a wider type is profitable. 4003 /// \p NewCost gives the cost of extension instructions created by the 4004 /// promotion. 4005 /// \p OldCost gives the cost of extension instructions before the promotion 4006 /// plus the number of instructions that have been 4007 /// matched in the addressing mode the promotion. 4008 /// \p PromotedOperand is the value that has been promoted. 4009 /// \return True if the promotion is profitable, false otherwise. 4010 bool AddressingModeMatcher::isPromotionProfitable( 4011 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4012 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4013 << '\n'); 4014 // The cost of the new extensions is greater than the cost of the 4015 // old extension plus what we folded. 4016 // This is not profitable. 4017 if (NewCost > OldCost) 4018 return false; 4019 if (NewCost < OldCost) 4020 return true; 4021 // The promotion is neutral but it may help folding the sign extension in 4022 // loads for instance. 4023 // Check that we did not create an illegal instruction. 4024 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4025 } 4026 4027 /// Given an instruction or constant expr, see if we can fold the operation 4028 /// into the addressing mode. If so, update the addressing mode and return 4029 /// true, otherwise return false without modifying AddrMode. 4030 /// If \p MovedAway is not NULL, it contains the information of whether or 4031 /// not AddrInst has to be folded into the addressing mode on success. 4032 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4033 /// because it has been moved away. 4034 /// Thus AddrInst must not be added in the matched instructions. 4035 /// This state can happen when AddrInst is a sext, since it may be moved away. 4036 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4037 /// not be referenced anymore. 4038 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4039 unsigned Depth, 4040 bool *MovedAway) { 4041 // Avoid exponential behavior on extremely deep expression trees. 4042 if (Depth >= 5) return false; 4043 4044 // By default, all matched instructions stay in place. 4045 if (MovedAway) 4046 *MovedAway = false; 4047 4048 switch (Opcode) { 4049 case Instruction::PtrToInt: 4050 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4051 return matchAddr(AddrInst->getOperand(0), Depth); 4052 case Instruction::IntToPtr: { 4053 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4054 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4055 // This inttoptr is a no-op if the integer type is pointer sized. 4056 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4057 return matchAddr(AddrInst->getOperand(0), Depth); 4058 return false; 4059 } 4060 case Instruction::BitCast: 4061 // BitCast is always a noop, and we can handle it as long as it is 4062 // int->int or pointer->pointer (we don't want int<->fp or something). 4063 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4064 // Don't touch identity bitcasts. These were probably put here by LSR, 4065 // and we don't want to mess around with them. Assume it knows what it 4066 // is doing. 4067 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4068 return matchAddr(AddrInst->getOperand(0), Depth); 4069 return false; 4070 case Instruction::AddrSpaceCast: { 4071 unsigned SrcAS 4072 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4073 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4074 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4075 return matchAddr(AddrInst->getOperand(0), Depth); 4076 return false; 4077 } 4078 case Instruction::Add: { 4079 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4080 ExtAddrMode BackupAddrMode = AddrMode; 4081 unsigned OldSize = AddrModeInsts.size(); 4082 // Start a transaction at this point. 4083 // The LHS may match but not the RHS. 4084 // Therefore, we need a higher level restoration point to undo partially 4085 // matched operation. 4086 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4087 TPT.getRestorationPoint(); 4088 4089 AddrMode.InBounds = false; 4090 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4091 matchAddr(AddrInst->getOperand(0), Depth+1)) 4092 return true; 4093 4094 // Restore the old addr mode info. 4095 AddrMode = BackupAddrMode; 4096 AddrModeInsts.resize(OldSize); 4097 TPT.rollback(LastKnownGood); 4098 4099 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4100 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4101 matchAddr(AddrInst->getOperand(1), Depth+1)) 4102 return true; 4103 4104 // Otherwise we definitely can't merge the ADD in. 4105 AddrMode = BackupAddrMode; 4106 AddrModeInsts.resize(OldSize); 4107 TPT.rollback(LastKnownGood); 4108 break; 4109 } 4110 //case Instruction::Or: 4111 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4112 //break; 4113 case Instruction::Mul: 4114 case Instruction::Shl: { 4115 // Can only handle X*C and X << C. 4116 AddrMode.InBounds = false; 4117 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4118 if (!RHS || RHS->getBitWidth() > 64) 4119 return false; 4120 int64_t Scale = RHS->getSExtValue(); 4121 if (Opcode == Instruction::Shl) 4122 Scale = 1LL << Scale; 4123 4124 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4125 } 4126 case Instruction::GetElementPtr: { 4127 // Scan the GEP. We check it if it contains constant offsets and at most 4128 // one variable offset. 4129 int VariableOperand = -1; 4130 unsigned VariableScale = 0; 4131 4132 int64_t ConstantOffset = 0; 4133 gep_type_iterator GTI = gep_type_begin(AddrInst); 4134 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4135 if (StructType *STy = GTI.getStructTypeOrNull()) { 4136 const StructLayout *SL = DL.getStructLayout(STy); 4137 unsigned Idx = 4138 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4139 ConstantOffset += SL->getElementOffset(Idx); 4140 } else { 4141 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4142 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4143 const APInt &CVal = CI->getValue(); 4144 if (CVal.getMinSignedBits() <= 64) { 4145 ConstantOffset += CVal.getSExtValue() * TypeSize; 4146 continue; 4147 } 4148 } 4149 if (TypeSize) { // Scales of zero don't do anything. 4150 // We only allow one variable index at the moment. 4151 if (VariableOperand != -1) 4152 return false; 4153 4154 // Remember the variable index. 4155 VariableOperand = i; 4156 VariableScale = TypeSize; 4157 } 4158 } 4159 } 4160 4161 // A common case is for the GEP to only do a constant offset. In this case, 4162 // just add it to the disp field and check validity. 4163 if (VariableOperand == -1) { 4164 AddrMode.BaseOffs += ConstantOffset; 4165 if (ConstantOffset == 0 || 4166 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4167 // Check to see if we can fold the base pointer in too. 4168 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4169 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4170 AddrMode.InBounds = false; 4171 return true; 4172 } 4173 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4174 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4175 ConstantOffset > 0) { 4176 // Record GEPs with non-zero offsets as candidates for splitting in the 4177 // event that the offset cannot fit into the r+i addressing mode. 4178 // Simple and common case that only one GEP is used in calculating the 4179 // address for the memory access. 4180 Value *Base = AddrInst->getOperand(0); 4181 auto *BaseI = dyn_cast<Instruction>(Base); 4182 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4183 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4184 (BaseI && !isa<CastInst>(BaseI) && 4185 !isa<GetElementPtrInst>(BaseI))) { 4186 // Make sure the parent block allows inserting non-PHI instructions 4187 // before the terminator. 4188 BasicBlock *Parent = 4189 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4190 if (!Parent->getTerminator()->isEHPad()) 4191 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4192 } 4193 } 4194 AddrMode.BaseOffs -= ConstantOffset; 4195 return false; 4196 } 4197 4198 // Save the valid addressing mode in case we can't match. 4199 ExtAddrMode BackupAddrMode = AddrMode; 4200 unsigned OldSize = AddrModeInsts.size(); 4201 4202 // See if the scale and offset amount is valid for this target. 4203 AddrMode.BaseOffs += ConstantOffset; 4204 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4205 AddrMode.InBounds = false; 4206 4207 // Match the base operand of the GEP. 4208 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4209 // If it couldn't be matched, just stuff the value in a register. 4210 if (AddrMode.HasBaseReg) { 4211 AddrMode = BackupAddrMode; 4212 AddrModeInsts.resize(OldSize); 4213 return false; 4214 } 4215 AddrMode.HasBaseReg = true; 4216 AddrMode.BaseReg = AddrInst->getOperand(0); 4217 } 4218 4219 // Match the remaining variable portion of the GEP. 4220 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4221 Depth)) { 4222 // If it couldn't be matched, try stuffing the base into a register 4223 // instead of matching it, and retrying the match of the scale. 4224 AddrMode = BackupAddrMode; 4225 AddrModeInsts.resize(OldSize); 4226 if (AddrMode.HasBaseReg) 4227 return false; 4228 AddrMode.HasBaseReg = true; 4229 AddrMode.BaseReg = AddrInst->getOperand(0); 4230 AddrMode.BaseOffs += ConstantOffset; 4231 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4232 VariableScale, Depth)) { 4233 // If even that didn't work, bail. 4234 AddrMode = BackupAddrMode; 4235 AddrModeInsts.resize(OldSize); 4236 return false; 4237 } 4238 } 4239 4240 return true; 4241 } 4242 case Instruction::SExt: 4243 case Instruction::ZExt: { 4244 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4245 if (!Ext) 4246 return false; 4247 4248 // Try to move this ext out of the way of the addressing mode. 4249 // Ask for a method for doing so. 4250 TypePromotionHelper::Action TPH = 4251 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4252 if (!TPH) 4253 return false; 4254 4255 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4256 TPT.getRestorationPoint(); 4257 unsigned CreatedInstsCost = 0; 4258 unsigned ExtCost = !TLI.isExtFree(Ext); 4259 Value *PromotedOperand = 4260 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4261 // SExt has been moved away. 4262 // Thus either it will be rematched later in the recursive calls or it is 4263 // gone. Anyway, we must not fold it into the addressing mode at this point. 4264 // E.g., 4265 // op = add opnd, 1 4266 // idx = ext op 4267 // addr = gep base, idx 4268 // is now: 4269 // promotedOpnd = ext opnd <- no match here 4270 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4271 // addr = gep base, op <- match 4272 if (MovedAway) 4273 *MovedAway = true; 4274 4275 assert(PromotedOperand && 4276 "TypePromotionHelper should have filtered out those cases"); 4277 4278 ExtAddrMode BackupAddrMode = AddrMode; 4279 unsigned OldSize = AddrModeInsts.size(); 4280 4281 if (!matchAddr(PromotedOperand, Depth) || 4282 // The total of the new cost is equal to the cost of the created 4283 // instructions. 4284 // The total of the old cost is equal to the cost of the extension plus 4285 // what we have saved in the addressing mode. 4286 !isPromotionProfitable(CreatedInstsCost, 4287 ExtCost + (AddrModeInsts.size() - OldSize), 4288 PromotedOperand)) { 4289 AddrMode = BackupAddrMode; 4290 AddrModeInsts.resize(OldSize); 4291 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4292 TPT.rollback(LastKnownGood); 4293 return false; 4294 } 4295 return true; 4296 } 4297 } 4298 return false; 4299 } 4300 4301 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4302 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4303 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4304 /// for the target. 4305 /// 4306 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4307 // Start a transaction at this point that we will rollback if the matching 4308 // fails. 4309 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4310 TPT.getRestorationPoint(); 4311 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4312 // Fold in immediates if legal for the target. 4313 AddrMode.BaseOffs += CI->getSExtValue(); 4314 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4315 return true; 4316 AddrMode.BaseOffs -= CI->getSExtValue(); 4317 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4318 // If this is a global variable, try to fold it into the addressing mode. 4319 if (!AddrMode.BaseGV) { 4320 AddrMode.BaseGV = GV; 4321 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4322 return true; 4323 AddrMode.BaseGV = nullptr; 4324 } 4325 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4326 ExtAddrMode BackupAddrMode = AddrMode; 4327 unsigned OldSize = AddrModeInsts.size(); 4328 4329 // Check to see if it is possible to fold this operation. 4330 bool MovedAway = false; 4331 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4332 // This instruction may have been moved away. If so, there is nothing 4333 // to check here. 4334 if (MovedAway) 4335 return true; 4336 // Okay, it's possible to fold this. Check to see if it is actually 4337 // *profitable* to do so. We use a simple cost model to avoid increasing 4338 // register pressure too much. 4339 if (I->hasOneUse() || 4340 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4341 AddrModeInsts.push_back(I); 4342 return true; 4343 } 4344 4345 // It isn't profitable to do this, roll back. 4346 //cerr << "NOT FOLDING: " << *I; 4347 AddrMode = BackupAddrMode; 4348 AddrModeInsts.resize(OldSize); 4349 TPT.rollback(LastKnownGood); 4350 } 4351 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4352 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4353 return true; 4354 TPT.rollback(LastKnownGood); 4355 } else if (isa<ConstantPointerNull>(Addr)) { 4356 // Null pointer gets folded without affecting the addressing mode. 4357 return true; 4358 } 4359 4360 // Worse case, the target should support [reg] addressing modes. :) 4361 if (!AddrMode.HasBaseReg) { 4362 AddrMode.HasBaseReg = true; 4363 AddrMode.BaseReg = Addr; 4364 // Still check for legality in case the target supports [imm] but not [i+r]. 4365 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4366 return true; 4367 AddrMode.HasBaseReg = false; 4368 AddrMode.BaseReg = nullptr; 4369 } 4370 4371 // If the base register is already taken, see if we can do [r+r]. 4372 if (AddrMode.Scale == 0) { 4373 AddrMode.Scale = 1; 4374 AddrMode.ScaledReg = Addr; 4375 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4376 return true; 4377 AddrMode.Scale = 0; 4378 AddrMode.ScaledReg = nullptr; 4379 } 4380 // Couldn't match. 4381 TPT.rollback(LastKnownGood); 4382 return false; 4383 } 4384 4385 /// Check to see if all uses of OpVal by the specified inline asm call are due 4386 /// to memory operands. If so, return true, otherwise return false. 4387 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4388 const TargetLowering &TLI, 4389 const TargetRegisterInfo &TRI) { 4390 const Function *F = CI->getFunction(); 4391 TargetLowering::AsmOperandInfoVector TargetConstraints = 4392 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4393 ImmutableCallSite(CI)); 4394 4395 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4396 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4397 4398 // Compute the constraint code and ConstraintType to use. 4399 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4400 4401 // If this asm operand is our Value*, and if it isn't an indirect memory 4402 // operand, we can't fold it! 4403 if (OpInfo.CallOperandVal == OpVal && 4404 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4405 !OpInfo.isIndirect)) 4406 return false; 4407 } 4408 4409 return true; 4410 } 4411 4412 // Max number of memory uses to look at before aborting the search to conserve 4413 // compile time. 4414 static constexpr int MaxMemoryUsesToScan = 20; 4415 4416 /// Recursively walk all the uses of I until we find a memory use. 4417 /// If we find an obviously non-foldable instruction, return true. 4418 /// Add the ultimately found memory instructions to MemoryUses. 4419 static bool FindAllMemoryUses( 4420 Instruction *I, 4421 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4422 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4423 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4424 // If we already considered this instruction, we're done. 4425 if (!ConsideredInsts.insert(I).second) 4426 return false; 4427 4428 // If this is an obviously unfoldable instruction, bail out. 4429 if (!MightBeFoldableInst(I)) 4430 return true; 4431 4432 const bool OptSize = I->getFunction()->hasOptSize(); 4433 4434 // Loop over all the uses, recursively processing them. 4435 for (Use &U : I->uses()) { 4436 // Conservatively return true if we're seeing a large number or a deep chain 4437 // of users. This avoids excessive compilation times in pathological cases. 4438 if (SeenInsts++ >= MaxMemoryUsesToScan) 4439 return true; 4440 4441 Instruction *UserI = cast<Instruction>(U.getUser()); 4442 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4443 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4444 continue; 4445 } 4446 4447 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4448 unsigned opNo = U.getOperandNo(); 4449 if (opNo != StoreInst::getPointerOperandIndex()) 4450 return true; // Storing addr, not into addr. 4451 MemoryUses.push_back(std::make_pair(SI, opNo)); 4452 continue; 4453 } 4454 4455 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4456 unsigned opNo = U.getOperandNo(); 4457 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4458 return true; // Storing addr, not into addr. 4459 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4460 continue; 4461 } 4462 4463 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4464 unsigned opNo = U.getOperandNo(); 4465 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4466 return true; // Storing addr, not into addr. 4467 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4468 continue; 4469 } 4470 4471 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4472 // If this is a cold call, we can sink the addressing calculation into 4473 // the cold path. See optimizeCallInst 4474 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4475 continue; 4476 4477 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4478 if (!IA) return true; 4479 4480 // If this is a memory operand, we're cool, otherwise bail out. 4481 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4482 return true; 4483 continue; 4484 } 4485 4486 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4487 SeenInsts)) 4488 return true; 4489 } 4490 4491 return false; 4492 } 4493 4494 /// Return true if Val is already known to be live at the use site that we're 4495 /// folding it into. If so, there is no cost to include it in the addressing 4496 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4497 /// instruction already. 4498 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4499 Value *KnownLive2) { 4500 // If Val is either of the known-live values, we know it is live! 4501 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4502 return true; 4503 4504 // All values other than instructions and arguments (e.g. constants) are live. 4505 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4506 4507 // If Val is a constant sized alloca in the entry block, it is live, this is 4508 // true because it is just a reference to the stack/frame pointer, which is 4509 // live for the whole function. 4510 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4511 if (AI->isStaticAlloca()) 4512 return true; 4513 4514 // Check to see if this value is already used in the memory instruction's 4515 // block. If so, it's already live into the block at the very least, so we 4516 // can reasonably fold it. 4517 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4518 } 4519 4520 /// It is possible for the addressing mode of the machine to fold the specified 4521 /// instruction into a load or store that ultimately uses it. 4522 /// However, the specified instruction has multiple uses. 4523 /// Given this, it may actually increase register pressure to fold it 4524 /// into the load. For example, consider this code: 4525 /// 4526 /// X = ... 4527 /// Y = X+1 4528 /// use(Y) -> nonload/store 4529 /// Z = Y+1 4530 /// load Z 4531 /// 4532 /// In this case, Y has multiple uses, and can be folded into the load of Z 4533 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4534 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4535 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4536 /// number of computations either. 4537 /// 4538 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4539 /// X was live across 'load Z' for other reasons, we actually *would* want to 4540 /// fold the addressing mode in the Z case. This would make Y die earlier. 4541 bool AddressingModeMatcher:: 4542 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4543 ExtAddrMode &AMAfter) { 4544 if (IgnoreProfitability) return true; 4545 4546 // AMBefore is the addressing mode before this instruction was folded into it, 4547 // and AMAfter is the addressing mode after the instruction was folded. Get 4548 // the set of registers referenced by AMAfter and subtract out those 4549 // referenced by AMBefore: this is the set of values which folding in this 4550 // address extends the lifetime of. 4551 // 4552 // Note that there are only two potential values being referenced here, 4553 // BaseReg and ScaleReg (global addresses are always available, as are any 4554 // folded immediates). 4555 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4556 4557 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4558 // lifetime wasn't extended by adding this instruction. 4559 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4560 BaseReg = nullptr; 4561 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4562 ScaledReg = nullptr; 4563 4564 // If folding this instruction (and it's subexprs) didn't extend any live 4565 // ranges, we're ok with it. 4566 if (!BaseReg && !ScaledReg) 4567 return true; 4568 4569 // If all uses of this instruction can have the address mode sunk into them, 4570 // we can remove the addressing mode and effectively trade one live register 4571 // for another (at worst.) In this context, folding an addressing mode into 4572 // the use is just a particularly nice way of sinking it. 4573 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4574 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4575 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4576 return false; // Has a non-memory, non-foldable use! 4577 4578 // Now that we know that all uses of this instruction are part of a chain of 4579 // computation involving only operations that could theoretically be folded 4580 // into a memory use, loop over each of these memory operation uses and see 4581 // if they could *actually* fold the instruction. The assumption is that 4582 // addressing modes are cheap and that duplicating the computation involved 4583 // many times is worthwhile, even on a fastpath. For sinking candidates 4584 // (i.e. cold call sites), this serves as a way to prevent excessive code 4585 // growth since most architectures have some reasonable small and fast way to 4586 // compute an effective address. (i.e LEA on x86) 4587 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4588 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4589 Instruction *User = MemoryUses[i].first; 4590 unsigned OpNo = MemoryUses[i].second; 4591 4592 // Get the access type of this use. If the use isn't a pointer, we don't 4593 // know what it accesses. 4594 Value *Address = User->getOperand(OpNo); 4595 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4596 if (!AddrTy) 4597 return false; 4598 Type *AddressAccessTy = AddrTy->getElementType(); 4599 unsigned AS = AddrTy->getAddressSpace(); 4600 4601 // Do a match against the root of this address, ignoring profitability. This 4602 // will tell us if the addressing mode for the memory operation will 4603 // *actually* cover the shared instruction. 4604 ExtAddrMode Result; 4605 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4606 0); 4607 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4608 TPT.getRestorationPoint(); 4609 AddressingModeMatcher Matcher( 4610 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4611 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4612 Matcher.IgnoreProfitability = true; 4613 bool Success = Matcher.matchAddr(Address, 0); 4614 (void)Success; assert(Success && "Couldn't select *anything*?"); 4615 4616 // The match was to check the profitability, the changes made are not 4617 // part of the original matcher. Therefore, they should be dropped 4618 // otherwise the original matcher will not present the right state. 4619 TPT.rollback(LastKnownGood); 4620 4621 // If the match didn't cover I, then it won't be shared by it. 4622 if (!is_contained(MatchedAddrModeInsts, I)) 4623 return false; 4624 4625 MatchedAddrModeInsts.clear(); 4626 } 4627 4628 return true; 4629 } 4630 4631 /// Return true if the specified values are defined in a 4632 /// different basic block than BB. 4633 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4634 if (Instruction *I = dyn_cast<Instruction>(V)) 4635 return I->getParent() != BB; 4636 return false; 4637 } 4638 4639 /// Sink addressing mode computation immediate before MemoryInst if doing so 4640 /// can be done without increasing register pressure. The need for the 4641 /// register pressure constraint means this can end up being an all or nothing 4642 /// decision for all uses of the same addressing computation. 4643 /// 4644 /// Load and Store Instructions often have addressing modes that can do 4645 /// significant amounts of computation. As such, instruction selection will try 4646 /// to get the load or store to do as much computation as possible for the 4647 /// program. The problem is that isel can only see within a single block. As 4648 /// such, we sink as much legal addressing mode work into the block as possible. 4649 /// 4650 /// This method is used to optimize both load/store and inline asms with memory 4651 /// operands. It's also used to sink addressing computations feeding into cold 4652 /// call sites into their (cold) basic block. 4653 /// 4654 /// The motivation for handling sinking into cold blocks is that doing so can 4655 /// both enable other address mode sinking (by satisfying the register pressure 4656 /// constraint above), and reduce register pressure globally (by removing the 4657 /// addressing mode computation from the fast path entirely.). 4658 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4659 Type *AccessTy, unsigned AddrSpace) { 4660 Value *Repl = Addr; 4661 4662 // Try to collapse single-value PHI nodes. This is necessary to undo 4663 // unprofitable PRE transformations. 4664 SmallVector<Value*, 8> worklist; 4665 SmallPtrSet<Value*, 16> Visited; 4666 worklist.push_back(Addr); 4667 4668 // Use a worklist to iteratively look through PHI and select nodes, and 4669 // ensure that the addressing mode obtained from the non-PHI/select roots of 4670 // the graph are compatible. 4671 bool PhiOrSelectSeen = false; 4672 SmallVector<Instruction*, 16> AddrModeInsts; 4673 const SimplifyQuery SQ(*DL, TLInfo); 4674 AddressingModeCombiner AddrModes(SQ, Addr); 4675 TypePromotionTransaction TPT(RemovedInsts); 4676 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4677 TPT.getRestorationPoint(); 4678 while (!worklist.empty()) { 4679 Value *V = worklist.back(); 4680 worklist.pop_back(); 4681 4682 // We allow traversing cyclic Phi nodes. 4683 // In case of success after this loop we ensure that traversing through 4684 // Phi nodes ends up with all cases to compute address of the form 4685 // BaseGV + Base + Scale * Index + Offset 4686 // where Scale and Offset are constans and BaseGV, Base and Index 4687 // are exactly the same Values in all cases. 4688 // It means that BaseGV, Scale and Offset dominate our memory instruction 4689 // and have the same value as they had in address computation represented 4690 // as Phi. So we can safely sink address computation to memory instruction. 4691 if (!Visited.insert(V).second) 4692 continue; 4693 4694 // For a PHI node, push all of its incoming values. 4695 if (PHINode *P = dyn_cast<PHINode>(V)) { 4696 for (Value *IncValue : P->incoming_values()) 4697 worklist.push_back(IncValue); 4698 PhiOrSelectSeen = true; 4699 continue; 4700 } 4701 // Similar for select. 4702 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4703 worklist.push_back(SI->getFalseValue()); 4704 worklist.push_back(SI->getTrueValue()); 4705 PhiOrSelectSeen = true; 4706 continue; 4707 } 4708 4709 // For non-PHIs, determine the addressing mode being computed. Note that 4710 // the result may differ depending on what other uses our candidate 4711 // addressing instructions might have. 4712 AddrModeInsts.clear(); 4713 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4714 0); 4715 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4716 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4717 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4718 4719 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4720 if (GEP && !NewGEPBases.count(GEP)) { 4721 // If splitting the underlying data structure can reduce the offset of a 4722 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4723 // previously split data structures. 4724 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4725 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4726 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4727 } 4728 4729 NewAddrMode.OriginalValue = V; 4730 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4731 break; 4732 } 4733 4734 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4735 // or we have multiple but either couldn't combine them or combining them 4736 // wouldn't do anything useful, bail out now. 4737 if (!AddrModes.combineAddrModes()) { 4738 TPT.rollback(LastKnownGood); 4739 return false; 4740 } 4741 TPT.commit(); 4742 4743 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4744 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4745 4746 // If all the instructions matched are already in this BB, don't do anything. 4747 // If we saw a Phi node then it is not local definitely, and if we saw a select 4748 // then we want to push the address calculation past it even if it's already 4749 // in this BB. 4750 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4751 return IsNonLocalValue(V, MemoryInst->getParent()); 4752 })) { 4753 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4754 << "\n"); 4755 return false; 4756 } 4757 4758 // Insert this computation right after this user. Since our caller is 4759 // scanning from the top of the BB to the bottom, reuse of the expr are 4760 // guaranteed to happen later. 4761 IRBuilder<> Builder(MemoryInst); 4762 4763 // Now that we determined the addressing expression we want to use and know 4764 // that we have to sink it into this block. Check to see if we have already 4765 // done this for some other load/store instr in this block. If so, reuse 4766 // the computation. Before attempting reuse, check if the address is valid 4767 // as it may have been erased. 4768 4769 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4770 4771 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4772 if (SunkAddr) { 4773 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4774 << " for " << *MemoryInst << "\n"); 4775 if (SunkAddr->getType() != Addr->getType()) 4776 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4777 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4778 TM && SubtargetInfo->addrSinkUsingGEPs())) { 4779 // By default, we use the GEP-based method when AA is used later. This 4780 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4781 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4782 << " for " << *MemoryInst << "\n"); 4783 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4784 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4785 4786 // First, find the pointer. 4787 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4788 ResultPtr = AddrMode.BaseReg; 4789 AddrMode.BaseReg = nullptr; 4790 } 4791 4792 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4793 // We can't add more than one pointer together, nor can we scale a 4794 // pointer (both of which seem meaningless). 4795 if (ResultPtr || AddrMode.Scale != 1) 4796 return false; 4797 4798 ResultPtr = AddrMode.ScaledReg; 4799 AddrMode.Scale = 0; 4800 } 4801 4802 // It is only safe to sign extend the BaseReg if we know that the math 4803 // required to create it did not overflow before we extend it. Since 4804 // the original IR value was tossed in favor of a constant back when 4805 // the AddrMode was created we need to bail out gracefully if widths 4806 // do not match instead of extending it. 4807 // 4808 // (See below for code to add the scale.) 4809 if (AddrMode.Scale) { 4810 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4811 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4812 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4813 return false; 4814 } 4815 4816 if (AddrMode.BaseGV) { 4817 if (ResultPtr) 4818 return false; 4819 4820 ResultPtr = AddrMode.BaseGV; 4821 } 4822 4823 // If the real base value actually came from an inttoptr, then the matcher 4824 // will look through it and provide only the integer value. In that case, 4825 // use it here. 4826 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4827 if (!ResultPtr && AddrMode.BaseReg) { 4828 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4829 "sunkaddr"); 4830 AddrMode.BaseReg = nullptr; 4831 } else if (!ResultPtr && AddrMode.Scale == 1) { 4832 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4833 "sunkaddr"); 4834 AddrMode.Scale = 0; 4835 } 4836 } 4837 4838 if (!ResultPtr && 4839 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4840 SunkAddr = Constant::getNullValue(Addr->getType()); 4841 } else if (!ResultPtr) { 4842 return false; 4843 } else { 4844 Type *I8PtrTy = 4845 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4846 Type *I8Ty = Builder.getInt8Ty(); 4847 4848 // Start with the base register. Do this first so that subsequent address 4849 // matching finds it last, which will prevent it from trying to match it 4850 // as the scaled value in case it happens to be a mul. That would be 4851 // problematic if we've sunk a different mul for the scale, because then 4852 // we'd end up sinking both muls. 4853 if (AddrMode.BaseReg) { 4854 Value *V = AddrMode.BaseReg; 4855 if (V->getType() != IntPtrTy) 4856 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4857 4858 ResultIndex = V; 4859 } 4860 4861 // Add the scale value. 4862 if (AddrMode.Scale) { 4863 Value *V = AddrMode.ScaledReg; 4864 if (V->getType() == IntPtrTy) { 4865 // done. 4866 } else { 4867 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4868 cast<IntegerType>(V->getType())->getBitWidth() && 4869 "We can't transform if ScaledReg is too narrow"); 4870 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4871 } 4872 4873 if (AddrMode.Scale != 1) 4874 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4875 "sunkaddr"); 4876 if (ResultIndex) 4877 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4878 else 4879 ResultIndex = V; 4880 } 4881 4882 // Add in the Base Offset if present. 4883 if (AddrMode.BaseOffs) { 4884 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4885 if (ResultIndex) { 4886 // We need to add this separately from the scale above to help with 4887 // SDAG consecutive load/store merging. 4888 if (ResultPtr->getType() != I8PtrTy) 4889 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4890 ResultPtr = 4891 AddrMode.InBounds 4892 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4893 "sunkaddr") 4894 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4895 } 4896 4897 ResultIndex = V; 4898 } 4899 4900 if (!ResultIndex) { 4901 SunkAddr = ResultPtr; 4902 } else { 4903 if (ResultPtr->getType() != I8PtrTy) 4904 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4905 SunkAddr = 4906 AddrMode.InBounds 4907 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4908 "sunkaddr") 4909 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4910 } 4911 4912 if (SunkAddr->getType() != Addr->getType()) 4913 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4914 } 4915 } else { 4916 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4917 // non-integral pointers, so in that case bail out now. 4918 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4919 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4920 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4921 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4922 if (DL->isNonIntegralPointerType(Addr->getType()) || 4923 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4924 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4925 (AddrMode.BaseGV && 4926 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4927 return false; 4928 4929 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4930 << " for " << *MemoryInst << "\n"); 4931 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4932 Value *Result = nullptr; 4933 4934 // Start with the base register. Do this first so that subsequent address 4935 // matching finds it last, which will prevent it from trying to match it 4936 // as the scaled value in case it happens to be a mul. That would be 4937 // problematic if we've sunk a different mul for the scale, because then 4938 // we'd end up sinking both muls. 4939 if (AddrMode.BaseReg) { 4940 Value *V = AddrMode.BaseReg; 4941 if (V->getType()->isPointerTy()) 4942 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4943 if (V->getType() != IntPtrTy) 4944 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4945 Result = V; 4946 } 4947 4948 // Add the scale value. 4949 if (AddrMode.Scale) { 4950 Value *V = AddrMode.ScaledReg; 4951 if (V->getType() == IntPtrTy) { 4952 // done. 4953 } else if (V->getType()->isPointerTy()) { 4954 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4955 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4956 cast<IntegerType>(V->getType())->getBitWidth()) { 4957 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4958 } else { 4959 // It is only safe to sign extend the BaseReg if we know that the math 4960 // required to create it did not overflow before we extend it. Since 4961 // the original IR value was tossed in favor of a constant back when 4962 // the AddrMode was created we need to bail out gracefully if widths 4963 // do not match instead of extending it. 4964 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4965 if (I && (Result != AddrMode.BaseReg)) 4966 I->eraseFromParent(); 4967 return false; 4968 } 4969 if (AddrMode.Scale != 1) 4970 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4971 "sunkaddr"); 4972 if (Result) 4973 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4974 else 4975 Result = V; 4976 } 4977 4978 // Add in the BaseGV if present. 4979 if (AddrMode.BaseGV) { 4980 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4981 if (Result) 4982 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4983 else 4984 Result = V; 4985 } 4986 4987 // Add in the Base Offset if present. 4988 if (AddrMode.BaseOffs) { 4989 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4990 if (Result) 4991 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4992 else 4993 Result = V; 4994 } 4995 4996 if (!Result) 4997 SunkAddr = Constant::getNullValue(Addr->getType()); 4998 else 4999 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5000 } 5001 5002 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5003 // Store the newly computed address into the cache. In the case we reused a 5004 // value, this should be idempotent. 5005 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5006 5007 // If we have no uses, recursively delete the value and all dead instructions 5008 // using it. 5009 if (Repl->use_empty()) { 5010 // This can cause recursive deletion, which can invalidate our iterator. 5011 // Use a WeakTrackingVH to hold onto it in case this happens. 5012 Value *CurValue = &*CurInstIterator; 5013 WeakTrackingVH IterHandle(CurValue); 5014 BasicBlock *BB = CurInstIterator->getParent(); 5015 5016 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5017 5018 if (IterHandle != CurValue) { 5019 // If the iterator instruction was recursively deleted, start over at the 5020 // start of the block. 5021 CurInstIterator = BB->begin(); 5022 SunkAddrs.clear(); 5023 } 5024 } 5025 ++NumMemoryInsts; 5026 return true; 5027 } 5028 5029 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5030 /// address computing into the block when possible / profitable. 5031 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5032 bool MadeChange = false; 5033 5034 const TargetRegisterInfo *TRI = 5035 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5036 TargetLowering::AsmOperandInfoVector TargetConstraints = 5037 TLI->ParseConstraints(*DL, TRI, CS); 5038 unsigned ArgNo = 0; 5039 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5040 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5041 5042 // Compute the constraint code and ConstraintType to use. 5043 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5044 5045 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5046 OpInfo.isIndirect) { 5047 Value *OpVal = CS->getArgOperand(ArgNo++); 5048 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5049 } else if (OpInfo.Type == InlineAsm::isInput) 5050 ArgNo++; 5051 } 5052 5053 return MadeChange; 5054 } 5055 5056 /// Check if all the uses of \p Val are equivalent (or free) zero or 5057 /// sign extensions. 5058 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5059 assert(!Val->use_empty() && "Input must have at least one use"); 5060 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5061 bool IsSExt = isa<SExtInst>(FirstUser); 5062 Type *ExtTy = FirstUser->getType(); 5063 for (const User *U : Val->users()) { 5064 const Instruction *UI = cast<Instruction>(U); 5065 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5066 return false; 5067 Type *CurTy = UI->getType(); 5068 // Same input and output types: Same instruction after CSE. 5069 if (CurTy == ExtTy) 5070 continue; 5071 5072 // If IsSExt is true, we are in this situation: 5073 // a = Val 5074 // b = sext ty1 a to ty2 5075 // c = sext ty1 a to ty3 5076 // Assuming ty2 is shorter than ty3, this could be turned into: 5077 // a = Val 5078 // b = sext ty1 a to ty2 5079 // c = sext ty2 b to ty3 5080 // However, the last sext is not free. 5081 if (IsSExt) 5082 return false; 5083 5084 // This is a ZExt, maybe this is free to extend from one type to another. 5085 // In that case, we would not account for a different use. 5086 Type *NarrowTy; 5087 Type *LargeTy; 5088 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5089 CurTy->getScalarType()->getIntegerBitWidth()) { 5090 NarrowTy = CurTy; 5091 LargeTy = ExtTy; 5092 } else { 5093 NarrowTy = ExtTy; 5094 LargeTy = CurTy; 5095 } 5096 5097 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5098 return false; 5099 } 5100 // All uses are the same or can be derived from one another for free. 5101 return true; 5102 } 5103 5104 /// Try to speculatively promote extensions in \p Exts and continue 5105 /// promoting through newly promoted operands recursively as far as doing so is 5106 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5107 /// When some promotion happened, \p TPT contains the proper state to revert 5108 /// them. 5109 /// 5110 /// \return true if some promotion happened, false otherwise. 5111 bool CodeGenPrepare::tryToPromoteExts( 5112 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5113 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5114 unsigned CreatedInstsCost) { 5115 bool Promoted = false; 5116 5117 // Iterate over all the extensions to try to promote them. 5118 for (auto I : Exts) { 5119 // Early check if we directly have ext(load). 5120 if (isa<LoadInst>(I->getOperand(0))) { 5121 ProfitablyMovedExts.push_back(I); 5122 continue; 5123 } 5124 5125 // Check whether or not we want to do any promotion. The reason we have 5126 // this check inside the for loop is to catch the case where an extension 5127 // is directly fed by a load because in such case the extension can be moved 5128 // up without any promotion on its operands. 5129 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5130 return false; 5131 5132 // Get the action to perform the promotion. 5133 TypePromotionHelper::Action TPH = 5134 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5135 // Check if we can promote. 5136 if (!TPH) { 5137 // Save the current extension as we cannot move up through its operand. 5138 ProfitablyMovedExts.push_back(I); 5139 continue; 5140 } 5141 5142 // Save the current state. 5143 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5144 TPT.getRestorationPoint(); 5145 SmallVector<Instruction *, 4> NewExts; 5146 unsigned NewCreatedInstsCost = 0; 5147 unsigned ExtCost = !TLI->isExtFree(I); 5148 // Promote. 5149 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5150 &NewExts, nullptr, *TLI); 5151 assert(PromotedVal && 5152 "TypePromotionHelper should have filtered out those cases"); 5153 5154 // We would be able to merge only one extension in a load. 5155 // Therefore, if we have more than 1 new extension we heuristically 5156 // cut this search path, because it means we degrade the code quality. 5157 // With exactly 2, the transformation is neutral, because we will merge 5158 // one extension but leave one. However, we optimistically keep going, 5159 // because the new extension may be removed too. 5160 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5161 // FIXME: It would be possible to propagate a negative value instead of 5162 // conservatively ceiling it to 0. 5163 TotalCreatedInstsCost = 5164 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5165 if (!StressExtLdPromotion && 5166 (TotalCreatedInstsCost > 1 || 5167 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5168 // This promotion is not profitable, rollback to the previous state, and 5169 // save the current extension in ProfitablyMovedExts as the latest 5170 // speculative promotion turned out to be unprofitable. 5171 TPT.rollback(LastKnownGood); 5172 ProfitablyMovedExts.push_back(I); 5173 continue; 5174 } 5175 // Continue promoting NewExts as far as doing so is profitable. 5176 SmallVector<Instruction *, 2> NewlyMovedExts; 5177 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5178 bool NewPromoted = false; 5179 for (auto ExtInst : NewlyMovedExts) { 5180 Instruction *MovedExt = cast<Instruction>(ExtInst); 5181 Value *ExtOperand = MovedExt->getOperand(0); 5182 // If we have reached to a load, we need this extra profitability check 5183 // as it could potentially be merged into an ext(load). 5184 if (isa<LoadInst>(ExtOperand) && 5185 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5186 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5187 continue; 5188 5189 ProfitablyMovedExts.push_back(MovedExt); 5190 NewPromoted = true; 5191 } 5192 5193 // If none of speculative promotions for NewExts is profitable, rollback 5194 // and save the current extension (I) as the last profitable extension. 5195 if (!NewPromoted) { 5196 TPT.rollback(LastKnownGood); 5197 ProfitablyMovedExts.push_back(I); 5198 continue; 5199 } 5200 // The promotion is profitable. 5201 Promoted = true; 5202 } 5203 return Promoted; 5204 } 5205 5206 /// Merging redundant sexts when one is dominating the other. 5207 bool CodeGenPrepare::mergeSExts(Function &F) { 5208 bool Changed = false; 5209 for (auto &Entry : ValToSExtendedUses) { 5210 SExts &Insts = Entry.second; 5211 SExts CurPts; 5212 for (Instruction *Inst : Insts) { 5213 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5214 Inst->getOperand(0) != Entry.first) 5215 continue; 5216 bool inserted = false; 5217 for (auto &Pt : CurPts) { 5218 if (getDT(F).dominates(Inst, Pt)) { 5219 Pt->replaceAllUsesWith(Inst); 5220 RemovedInsts.insert(Pt); 5221 Pt->removeFromParent(); 5222 Pt = Inst; 5223 inserted = true; 5224 Changed = true; 5225 break; 5226 } 5227 if (!getDT(F).dominates(Pt, Inst)) 5228 // Give up if we need to merge in a common dominator as the 5229 // experiments show it is not profitable. 5230 continue; 5231 Inst->replaceAllUsesWith(Pt); 5232 RemovedInsts.insert(Inst); 5233 Inst->removeFromParent(); 5234 inserted = true; 5235 Changed = true; 5236 break; 5237 } 5238 if (!inserted) 5239 CurPts.push_back(Inst); 5240 } 5241 } 5242 return Changed; 5243 } 5244 5245 // Spliting large data structures so that the GEPs accessing them can have 5246 // smaller offsets so that they can be sunk to the same blocks as their users. 5247 // For example, a large struct starting from %base is splitted into two parts 5248 // where the second part starts from %new_base. 5249 // 5250 // Before: 5251 // BB0: 5252 // %base = 5253 // 5254 // BB1: 5255 // %gep0 = gep %base, off0 5256 // %gep1 = gep %base, off1 5257 // %gep2 = gep %base, off2 5258 // 5259 // BB2: 5260 // %load1 = load %gep0 5261 // %load2 = load %gep1 5262 // %load3 = load %gep2 5263 // 5264 // After: 5265 // BB0: 5266 // %base = 5267 // %new_base = gep %base, off0 5268 // 5269 // BB1: 5270 // %new_gep0 = %new_base 5271 // %new_gep1 = gep %new_base, off1 - off0 5272 // %new_gep2 = gep %new_base, off2 - off0 5273 // 5274 // BB2: 5275 // %load1 = load i32, i32* %new_gep0 5276 // %load2 = load i32, i32* %new_gep1 5277 // %load3 = load i32, i32* %new_gep2 5278 // 5279 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5280 // their offsets are smaller enough to fit into the addressing mode. 5281 bool CodeGenPrepare::splitLargeGEPOffsets() { 5282 bool Changed = false; 5283 for (auto &Entry : LargeOffsetGEPMap) { 5284 Value *OldBase = Entry.first; 5285 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5286 &LargeOffsetGEPs = Entry.second; 5287 auto compareGEPOffset = 5288 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5289 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5290 if (LHS.first == RHS.first) 5291 return false; 5292 if (LHS.second != RHS.second) 5293 return LHS.second < RHS.second; 5294 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5295 }; 5296 // Sorting all the GEPs of the same data structures based on the offsets. 5297 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5298 LargeOffsetGEPs.erase( 5299 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5300 LargeOffsetGEPs.end()); 5301 // Skip if all the GEPs have the same offsets. 5302 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5303 continue; 5304 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5305 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5306 Value *NewBaseGEP = nullptr; 5307 5308 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5309 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5310 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5311 int64_t Offset = LargeOffsetGEP->second; 5312 if (Offset != BaseOffset) { 5313 TargetLowering::AddrMode AddrMode; 5314 AddrMode.BaseOffs = Offset - BaseOffset; 5315 // The result type of the GEP might not be the type of the memory 5316 // access. 5317 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5318 GEP->getResultElementType(), 5319 GEP->getAddressSpace())) { 5320 // We need to create a new base if the offset to the current base is 5321 // too large to fit into the addressing mode. So, a very large struct 5322 // may be splitted into several parts. 5323 BaseGEP = GEP; 5324 BaseOffset = Offset; 5325 NewBaseGEP = nullptr; 5326 } 5327 } 5328 5329 // Generate a new GEP to replace the current one. 5330 LLVMContext &Ctx = GEP->getContext(); 5331 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5332 Type *I8PtrTy = 5333 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5334 Type *I8Ty = Type::getInt8Ty(Ctx); 5335 5336 if (!NewBaseGEP) { 5337 // Create a new base if we don't have one yet. Find the insertion 5338 // pointer for the new base first. 5339 BasicBlock::iterator NewBaseInsertPt; 5340 BasicBlock *NewBaseInsertBB; 5341 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5342 // If the base of the struct is an instruction, the new base will be 5343 // inserted close to it. 5344 NewBaseInsertBB = BaseI->getParent(); 5345 if (isa<PHINode>(BaseI)) 5346 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5347 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5348 NewBaseInsertBB = 5349 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5350 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5351 } else 5352 NewBaseInsertPt = std::next(BaseI->getIterator()); 5353 } else { 5354 // If the current base is an argument or global value, the new base 5355 // will be inserted to the entry block. 5356 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5357 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5358 } 5359 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5360 // Create a new base. 5361 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5362 NewBaseGEP = OldBase; 5363 if (NewBaseGEP->getType() != I8PtrTy) 5364 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5365 NewBaseGEP = 5366 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5367 NewGEPBases.insert(NewBaseGEP); 5368 } 5369 5370 IRBuilder<> Builder(GEP); 5371 Value *NewGEP = NewBaseGEP; 5372 if (Offset == BaseOffset) { 5373 if (GEP->getType() != I8PtrTy) 5374 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5375 } else { 5376 // Calculate the new offset for the new GEP. 5377 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5378 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5379 5380 if (GEP->getType() != I8PtrTy) 5381 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5382 } 5383 GEP->replaceAllUsesWith(NewGEP); 5384 LargeOffsetGEPID.erase(GEP); 5385 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5386 GEP->eraseFromParent(); 5387 Changed = true; 5388 } 5389 } 5390 return Changed; 5391 } 5392 5393 /// Return true, if an ext(load) can be formed from an extension in 5394 /// \p MovedExts. 5395 bool CodeGenPrepare::canFormExtLd( 5396 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5397 Instruction *&Inst, bool HasPromoted) { 5398 for (auto *MovedExtInst : MovedExts) { 5399 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5400 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5401 Inst = MovedExtInst; 5402 break; 5403 } 5404 } 5405 if (!LI) 5406 return false; 5407 5408 // If they're already in the same block, there's nothing to do. 5409 // Make the cheap checks first if we did not promote. 5410 // If we promoted, we need to check if it is indeed profitable. 5411 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5412 return false; 5413 5414 return TLI->isExtLoad(LI, Inst, *DL); 5415 } 5416 5417 /// Move a zext or sext fed by a load into the same basic block as the load, 5418 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5419 /// extend into the load. 5420 /// 5421 /// E.g., 5422 /// \code 5423 /// %ld = load i32* %addr 5424 /// %add = add nuw i32 %ld, 4 5425 /// %zext = zext i32 %add to i64 5426 // \endcode 5427 /// => 5428 /// \code 5429 /// %ld = load i32* %addr 5430 /// %zext = zext i32 %ld to i64 5431 /// %add = add nuw i64 %zext, 4 5432 /// \encode 5433 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5434 /// allow us to match zext(load i32*) to i64. 5435 /// 5436 /// Also, try to promote the computations used to obtain a sign extended 5437 /// value used into memory accesses. 5438 /// E.g., 5439 /// \code 5440 /// a = add nsw i32 b, 3 5441 /// d = sext i32 a to i64 5442 /// e = getelementptr ..., i64 d 5443 /// \endcode 5444 /// => 5445 /// \code 5446 /// f = sext i32 b to i64 5447 /// a = add nsw i64 f, 3 5448 /// e = getelementptr ..., i64 a 5449 /// \endcode 5450 /// 5451 /// \p Inst[in/out] the extension may be modified during the process if some 5452 /// promotions apply. 5453 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5454 // ExtLoad formation and address type promotion infrastructure requires TLI to 5455 // be effective. 5456 if (!TLI) 5457 return false; 5458 5459 bool AllowPromotionWithoutCommonHeader = false; 5460 /// See if it is an interesting sext operations for the address type 5461 /// promotion before trying to promote it, e.g., the ones with the right 5462 /// type and used in memory accesses. 5463 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5464 *Inst, AllowPromotionWithoutCommonHeader); 5465 TypePromotionTransaction TPT(RemovedInsts); 5466 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5467 TPT.getRestorationPoint(); 5468 SmallVector<Instruction *, 1> Exts; 5469 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5470 Exts.push_back(Inst); 5471 5472 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5473 5474 // Look for a load being extended. 5475 LoadInst *LI = nullptr; 5476 Instruction *ExtFedByLoad; 5477 5478 // Try to promote a chain of computation if it allows to form an extended 5479 // load. 5480 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5481 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5482 TPT.commit(); 5483 // Move the extend into the same block as the load 5484 ExtFedByLoad->moveAfter(LI); 5485 // CGP does not check if the zext would be speculatively executed when moved 5486 // to the same basic block as the load. Preserving its original location 5487 // would pessimize the debugging experience, as well as negatively impact 5488 // the quality of sample pgo. We don't want to use "line 0" as that has a 5489 // size cost in the line-table section and logically the zext can be seen as 5490 // part of the load. Therefore we conservatively reuse the same debug 5491 // location for the load and the zext. 5492 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5493 ++NumExtsMoved; 5494 Inst = ExtFedByLoad; 5495 return true; 5496 } 5497 5498 // Continue promoting SExts if known as considerable depending on targets. 5499 if (ATPConsiderable && 5500 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5501 HasPromoted, TPT, SpeculativelyMovedExts)) 5502 return true; 5503 5504 TPT.rollback(LastKnownGood); 5505 return false; 5506 } 5507 5508 // Perform address type promotion if doing so is profitable. 5509 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5510 // instructions that sign extended the same initial value. However, if 5511 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5512 // extension is just profitable. 5513 bool CodeGenPrepare::performAddressTypePromotion( 5514 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5515 bool HasPromoted, TypePromotionTransaction &TPT, 5516 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5517 bool Promoted = false; 5518 SmallPtrSet<Instruction *, 1> UnhandledExts; 5519 bool AllSeenFirst = true; 5520 for (auto I : SpeculativelyMovedExts) { 5521 Value *HeadOfChain = I->getOperand(0); 5522 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5523 SeenChainsForSExt.find(HeadOfChain); 5524 // If there is an unhandled SExt which has the same header, try to promote 5525 // it as well. 5526 if (AlreadySeen != SeenChainsForSExt.end()) { 5527 if (AlreadySeen->second != nullptr) 5528 UnhandledExts.insert(AlreadySeen->second); 5529 AllSeenFirst = false; 5530 } 5531 } 5532 5533 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5534 SpeculativelyMovedExts.size() == 1)) { 5535 TPT.commit(); 5536 if (HasPromoted) 5537 Promoted = true; 5538 for (auto I : SpeculativelyMovedExts) { 5539 Value *HeadOfChain = I->getOperand(0); 5540 SeenChainsForSExt[HeadOfChain] = nullptr; 5541 ValToSExtendedUses[HeadOfChain].push_back(I); 5542 } 5543 // Update Inst as promotion happen. 5544 Inst = SpeculativelyMovedExts.pop_back_val(); 5545 } else { 5546 // This is the first chain visited from the header, keep the current chain 5547 // as unhandled. Defer to promote this until we encounter another SExt 5548 // chain derived from the same header. 5549 for (auto I : SpeculativelyMovedExts) { 5550 Value *HeadOfChain = I->getOperand(0); 5551 SeenChainsForSExt[HeadOfChain] = Inst; 5552 } 5553 return false; 5554 } 5555 5556 if (!AllSeenFirst && !UnhandledExts.empty()) 5557 for (auto VisitedSExt : UnhandledExts) { 5558 if (RemovedInsts.count(VisitedSExt)) 5559 continue; 5560 TypePromotionTransaction TPT(RemovedInsts); 5561 SmallVector<Instruction *, 1> Exts; 5562 SmallVector<Instruction *, 2> Chains; 5563 Exts.push_back(VisitedSExt); 5564 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5565 TPT.commit(); 5566 if (HasPromoted) 5567 Promoted = true; 5568 for (auto I : Chains) { 5569 Value *HeadOfChain = I->getOperand(0); 5570 // Mark this as handled. 5571 SeenChainsForSExt[HeadOfChain] = nullptr; 5572 ValToSExtendedUses[HeadOfChain].push_back(I); 5573 } 5574 } 5575 return Promoted; 5576 } 5577 5578 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5579 BasicBlock *DefBB = I->getParent(); 5580 5581 // If the result of a {s|z}ext and its source are both live out, rewrite all 5582 // other uses of the source with result of extension. 5583 Value *Src = I->getOperand(0); 5584 if (Src->hasOneUse()) 5585 return false; 5586 5587 // Only do this xform if truncating is free. 5588 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5589 return false; 5590 5591 // Only safe to perform the optimization if the source is also defined in 5592 // this block. 5593 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5594 return false; 5595 5596 bool DefIsLiveOut = false; 5597 for (User *U : I->users()) { 5598 Instruction *UI = cast<Instruction>(U); 5599 5600 // Figure out which BB this ext is used in. 5601 BasicBlock *UserBB = UI->getParent(); 5602 if (UserBB == DefBB) continue; 5603 DefIsLiveOut = true; 5604 break; 5605 } 5606 if (!DefIsLiveOut) 5607 return false; 5608 5609 // Make sure none of the uses are PHI nodes. 5610 for (User *U : Src->users()) { 5611 Instruction *UI = cast<Instruction>(U); 5612 BasicBlock *UserBB = UI->getParent(); 5613 if (UserBB == DefBB) continue; 5614 // Be conservative. We don't want this xform to end up introducing 5615 // reloads just before load / store instructions. 5616 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5617 return false; 5618 } 5619 5620 // InsertedTruncs - Only insert one trunc in each block once. 5621 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5622 5623 bool MadeChange = false; 5624 for (Use &U : Src->uses()) { 5625 Instruction *User = cast<Instruction>(U.getUser()); 5626 5627 // Figure out which BB this ext is used in. 5628 BasicBlock *UserBB = User->getParent(); 5629 if (UserBB == DefBB) continue; 5630 5631 // Both src and def are live in this block. Rewrite the use. 5632 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5633 5634 if (!InsertedTrunc) { 5635 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5636 assert(InsertPt != UserBB->end()); 5637 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5638 InsertedInsts.insert(InsertedTrunc); 5639 } 5640 5641 // Replace a use of the {s|z}ext source with a use of the result. 5642 U = InsertedTrunc; 5643 ++NumExtUses; 5644 MadeChange = true; 5645 } 5646 5647 return MadeChange; 5648 } 5649 5650 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5651 // just after the load if the target can fold this into one extload instruction, 5652 // with the hope of eliminating some of the other later "and" instructions using 5653 // the loaded value. "and"s that are made trivially redundant by the insertion 5654 // of the new "and" are removed by this function, while others (e.g. those whose 5655 // path from the load goes through a phi) are left for isel to potentially 5656 // remove. 5657 // 5658 // For example: 5659 // 5660 // b0: 5661 // x = load i32 5662 // ... 5663 // b1: 5664 // y = and x, 0xff 5665 // z = use y 5666 // 5667 // becomes: 5668 // 5669 // b0: 5670 // x = load i32 5671 // x' = and x, 0xff 5672 // ... 5673 // b1: 5674 // z = use x' 5675 // 5676 // whereas: 5677 // 5678 // b0: 5679 // x1 = load i32 5680 // ... 5681 // b1: 5682 // x2 = load i32 5683 // ... 5684 // b2: 5685 // x = phi x1, x2 5686 // y = and x, 0xff 5687 // 5688 // becomes (after a call to optimizeLoadExt for each load): 5689 // 5690 // b0: 5691 // x1 = load i32 5692 // x1' = and x1, 0xff 5693 // ... 5694 // b1: 5695 // x2 = load i32 5696 // x2' = and x2, 0xff 5697 // ... 5698 // b2: 5699 // x = phi x1', x2' 5700 // y = and x, 0xff 5701 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5702 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5703 return false; 5704 5705 // Skip loads we've already transformed. 5706 if (Load->hasOneUse() && 5707 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5708 return false; 5709 5710 // Look at all uses of Load, looking through phis, to determine how many bits 5711 // of the loaded value are needed. 5712 SmallVector<Instruction *, 8> WorkList; 5713 SmallPtrSet<Instruction *, 16> Visited; 5714 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5715 for (auto *U : Load->users()) 5716 WorkList.push_back(cast<Instruction>(U)); 5717 5718 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5719 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5720 APInt DemandBits(BitWidth, 0); 5721 APInt WidestAndBits(BitWidth, 0); 5722 5723 while (!WorkList.empty()) { 5724 Instruction *I = WorkList.back(); 5725 WorkList.pop_back(); 5726 5727 // Break use-def graph loops. 5728 if (!Visited.insert(I).second) 5729 continue; 5730 5731 // For a PHI node, push all of its users. 5732 if (auto *Phi = dyn_cast<PHINode>(I)) { 5733 for (auto *U : Phi->users()) 5734 WorkList.push_back(cast<Instruction>(U)); 5735 continue; 5736 } 5737 5738 switch (I->getOpcode()) { 5739 case Instruction::And: { 5740 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5741 if (!AndC) 5742 return false; 5743 APInt AndBits = AndC->getValue(); 5744 DemandBits |= AndBits; 5745 // Keep track of the widest and mask we see. 5746 if (AndBits.ugt(WidestAndBits)) 5747 WidestAndBits = AndBits; 5748 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5749 AndsToMaybeRemove.push_back(I); 5750 break; 5751 } 5752 5753 case Instruction::Shl: { 5754 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5755 if (!ShlC) 5756 return false; 5757 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5758 DemandBits.setLowBits(BitWidth - ShiftAmt); 5759 break; 5760 } 5761 5762 case Instruction::Trunc: { 5763 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5764 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5765 DemandBits.setLowBits(TruncBitWidth); 5766 break; 5767 } 5768 5769 default: 5770 return false; 5771 } 5772 } 5773 5774 uint32_t ActiveBits = DemandBits.getActiveBits(); 5775 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5776 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5777 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5778 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5779 // followed by an AND. 5780 // TODO: Look into removing this restriction by fixing backends to either 5781 // return false for isLoadExtLegal for i1 or have them select this pattern to 5782 // a single instruction. 5783 // 5784 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5785 // mask, since these are the only ands that will be removed by isel. 5786 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5787 WidestAndBits != DemandBits) 5788 return false; 5789 5790 LLVMContext &Ctx = Load->getType()->getContext(); 5791 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5792 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5793 5794 // Reject cases that won't be matched as extloads. 5795 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5796 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5797 return false; 5798 5799 IRBuilder<> Builder(Load->getNextNode()); 5800 auto *NewAnd = cast<Instruction>( 5801 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5802 // Mark this instruction as "inserted by CGP", so that other 5803 // optimizations don't touch it. 5804 InsertedInsts.insert(NewAnd); 5805 5806 // Replace all uses of load with new and (except for the use of load in the 5807 // new and itself). 5808 Load->replaceAllUsesWith(NewAnd); 5809 NewAnd->setOperand(0, Load); 5810 5811 // Remove any and instructions that are now redundant. 5812 for (auto *And : AndsToMaybeRemove) 5813 // Check that the and mask is the same as the one we decided to put on the 5814 // new and. 5815 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5816 And->replaceAllUsesWith(NewAnd); 5817 if (&*CurInstIterator == And) 5818 CurInstIterator = std::next(And->getIterator()); 5819 And->eraseFromParent(); 5820 ++NumAndUses; 5821 } 5822 5823 ++NumAndsAdded; 5824 return true; 5825 } 5826 5827 /// Check if V (an operand of a select instruction) is an expensive instruction 5828 /// that is only used once. 5829 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5830 auto *I = dyn_cast<Instruction>(V); 5831 // If it's safe to speculatively execute, then it should not have side 5832 // effects; therefore, it's safe to sink and possibly *not* execute. 5833 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5834 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5835 } 5836 5837 /// Returns true if a SelectInst should be turned into an explicit branch. 5838 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5839 const TargetLowering *TLI, 5840 SelectInst *SI) { 5841 // If even a predictable select is cheap, then a branch can't be cheaper. 5842 if (!TLI->isPredictableSelectExpensive()) 5843 return false; 5844 5845 // FIXME: This should use the same heuristics as IfConversion to determine 5846 // whether a select is better represented as a branch. 5847 5848 // If metadata tells us that the select condition is obviously predictable, 5849 // then we want to replace the select with a branch. 5850 uint64_t TrueWeight, FalseWeight; 5851 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5852 uint64_t Max = std::max(TrueWeight, FalseWeight); 5853 uint64_t Sum = TrueWeight + FalseWeight; 5854 if (Sum != 0) { 5855 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5856 if (Probability > TLI->getPredictableBranchThreshold()) 5857 return true; 5858 } 5859 } 5860 5861 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5862 5863 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5864 // comparison condition. If the compare has more than one use, there's 5865 // probably another cmov or setcc around, so it's not worth emitting a branch. 5866 if (!Cmp || !Cmp->hasOneUse()) 5867 return false; 5868 5869 // If either operand of the select is expensive and only needed on one side 5870 // of the select, we should form a branch. 5871 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5872 sinkSelectOperand(TTI, SI->getFalseValue())) 5873 return true; 5874 5875 return false; 5876 } 5877 5878 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5879 /// false value of \p SI. If the true/false value of \p SI is defined by any 5880 /// select instructions in \p Selects, look through the defining select 5881 /// instruction until the true/false value is not defined in \p Selects. 5882 static Value *getTrueOrFalseValue( 5883 SelectInst *SI, bool isTrue, 5884 const SmallPtrSet<const Instruction *, 2> &Selects) { 5885 Value *V = nullptr; 5886 5887 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5888 DefSI = dyn_cast<SelectInst>(V)) { 5889 assert(DefSI->getCondition() == SI->getCondition() && 5890 "The condition of DefSI does not match with SI"); 5891 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5892 } 5893 5894 assert(V && "Failed to get select true/false value"); 5895 return V; 5896 } 5897 5898 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 5899 assert(Shift->isShift() && "Expected a shift"); 5900 5901 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 5902 // general vector shifts, and (3) the shift amount is a select-of-splatted 5903 // values, hoist the shifts before the select: 5904 // shift Op0, (select Cond, TVal, FVal) --> 5905 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 5906 // 5907 // This is inverting a generic IR transform when we know that the cost of a 5908 // general vector shift is more than the cost of 2 shift-by-scalars. 5909 // We can't do this effectively in SDAG because we may not be able to 5910 // determine if the select operands are splats from within a basic block. 5911 Type *Ty = Shift->getType(); 5912 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 5913 return false; 5914 Value *Cond, *TVal, *FVal; 5915 if (!match(Shift->getOperand(1), 5916 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 5917 return false; 5918 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 5919 return false; 5920 5921 IRBuilder<> Builder(Shift); 5922 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 5923 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 5924 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 5925 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 5926 Shift->replaceAllUsesWith(NewSel); 5927 Shift->eraseFromParent(); 5928 return true; 5929 } 5930 5931 /// If we have a SelectInst that will likely profit from branch prediction, 5932 /// turn it into a branch. 5933 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5934 // If branch conversion isn't desirable, exit early. 5935 if (DisableSelectToBranch || OptSize || !TLI) 5936 return false; 5937 5938 // Find all consecutive select instructions that share the same condition. 5939 SmallVector<SelectInst *, 2> ASI; 5940 ASI.push_back(SI); 5941 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5942 It != SI->getParent()->end(); ++It) { 5943 SelectInst *I = dyn_cast<SelectInst>(&*It); 5944 if (I && SI->getCondition() == I->getCondition()) { 5945 ASI.push_back(I); 5946 } else { 5947 break; 5948 } 5949 } 5950 5951 SelectInst *LastSI = ASI.back(); 5952 // Increment the current iterator to skip all the rest of select instructions 5953 // because they will be either "not lowered" or "all lowered" to branch. 5954 CurInstIterator = std::next(LastSI->getIterator()); 5955 5956 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5957 5958 // Can we convert the 'select' to CF ? 5959 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5960 return false; 5961 5962 TargetLowering::SelectSupportKind SelectKind; 5963 if (VectorCond) 5964 SelectKind = TargetLowering::VectorMaskSelect; 5965 else if (SI->getType()->isVectorTy()) 5966 SelectKind = TargetLowering::ScalarCondVectorVal; 5967 else 5968 SelectKind = TargetLowering::ScalarValSelect; 5969 5970 if (TLI->isSelectSupported(SelectKind) && 5971 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5972 return false; 5973 5974 // The DominatorTree needs to be rebuilt by any consumers after this 5975 // transformation. We simply reset here rather than setting the ModifiedDT 5976 // flag to avoid restarting the function walk in runOnFunction for each 5977 // select optimized. 5978 DT.reset(); 5979 5980 // Transform a sequence like this: 5981 // start: 5982 // %cmp = cmp uge i32 %a, %b 5983 // %sel = select i1 %cmp, i32 %c, i32 %d 5984 // 5985 // Into: 5986 // start: 5987 // %cmp = cmp uge i32 %a, %b 5988 // br i1 %cmp, label %select.true, label %select.false 5989 // select.true: 5990 // br label %select.end 5991 // select.false: 5992 // br label %select.end 5993 // select.end: 5994 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5995 // 5996 // In addition, we may sink instructions that produce %c or %d from 5997 // the entry block into the destination(s) of the new branch. 5998 // If the true or false blocks do not contain a sunken instruction, that 5999 // block and its branch may be optimized away. In that case, one side of the 6000 // first branch will point directly to select.end, and the corresponding PHI 6001 // predecessor block will be the start block. 6002 6003 // First, we split the block containing the select into 2 blocks. 6004 BasicBlock *StartBlock = SI->getParent(); 6005 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6006 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6007 6008 // Delete the unconditional branch that was just created by the split. 6009 StartBlock->getTerminator()->eraseFromParent(); 6010 6011 // These are the new basic blocks for the conditional branch. 6012 // At least one will become an actual new basic block. 6013 BasicBlock *TrueBlock = nullptr; 6014 BasicBlock *FalseBlock = nullptr; 6015 BranchInst *TrueBranch = nullptr; 6016 BranchInst *FalseBranch = nullptr; 6017 6018 // Sink expensive instructions into the conditional blocks to avoid executing 6019 // them speculatively. 6020 for (SelectInst *SI : ASI) { 6021 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6022 if (TrueBlock == nullptr) { 6023 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6024 EndBlock->getParent(), EndBlock); 6025 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6026 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6027 } 6028 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6029 TrueInst->moveBefore(TrueBranch); 6030 } 6031 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6032 if (FalseBlock == nullptr) { 6033 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6034 EndBlock->getParent(), EndBlock); 6035 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6036 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6037 } 6038 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6039 FalseInst->moveBefore(FalseBranch); 6040 } 6041 } 6042 6043 // If there was nothing to sink, then arbitrarily choose the 'false' side 6044 // for a new input value to the PHI. 6045 if (TrueBlock == FalseBlock) { 6046 assert(TrueBlock == nullptr && 6047 "Unexpected basic block transform while optimizing select"); 6048 6049 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6050 EndBlock->getParent(), EndBlock); 6051 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6052 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6053 } 6054 6055 // Insert the real conditional branch based on the original condition. 6056 // If we did not create a new block for one of the 'true' or 'false' paths 6057 // of the condition, it means that side of the branch goes to the end block 6058 // directly and the path originates from the start block from the point of 6059 // view of the new PHI. 6060 BasicBlock *TT, *FT; 6061 if (TrueBlock == nullptr) { 6062 TT = EndBlock; 6063 FT = FalseBlock; 6064 TrueBlock = StartBlock; 6065 } else if (FalseBlock == nullptr) { 6066 TT = TrueBlock; 6067 FT = EndBlock; 6068 FalseBlock = StartBlock; 6069 } else { 6070 TT = TrueBlock; 6071 FT = FalseBlock; 6072 } 6073 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6074 6075 SmallPtrSet<const Instruction *, 2> INS; 6076 INS.insert(ASI.begin(), ASI.end()); 6077 // Use reverse iterator because later select may use the value of the 6078 // earlier select, and we need to propagate value through earlier select 6079 // to get the PHI operand. 6080 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6081 SelectInst *SI = *It; 6082 // The select itself is replaced with a PHI Node. 6083 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6084 PN->takeName(SI); 6085 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6086 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6087 PN->setDebugLoc(SI->getDebugLoc()); 6088 6089 SI->replaceAllUsesWith(PN); 6090 SI->eraseFromParent(); 6091 INS.erase(SI); 6092 ++NumSelectsExpanded; 6093 } 6094 6095 // Instruct OptimizeBlock to skip to the next block. 6096 CurInstIterator = StartBlock->end(); 6097 return true; 6098 } 6099 6100 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6101 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6102 int SplatElem = -1; 6103 for (unsigned i = 0; i < Mask.size(); ++i) { 6104 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6105 return false; 6106 SplatElem = Mask[i]; 6107 } 6108 6109 return true; 6110 } 6111 6112 /// Some targets have expensive vector shifts if the lanes aren't all the same 6113 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6114 /// it's often worth sinking a shufflevector splat down to its use so that 6115 /// codegen can spot all lanes are identical. 6116 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6117 BasicBlock *DefBB = SVI->getParent(); 6118 6119 // Only do this xform if variable vector shifts are particularly expensive. 6120 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6121 return false; 6122 6123 // We only expect better codegen by sinking a shuffle if we can recognise a 6124 // constant splat. 6125 if (!isBroadcastShuffle(SVI)) 6126 return false; 6127 6128 // InsertedShuffles - Only insert a shuffle in each block once. 6129 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6130 6131 bool MadeChange = false; 6132 for (User *U : SVI->users()) { 6133 Instruction *UI = cast<Instruction>(U); 6134 6135 // Figure out which BB this ext is used in. 6136 BasicBlock *UserBB = UI->getParent(); 6137 if (UserBB == DefBB) continue; 6138 6139 // For now only apply this when the splat is used by a shift instruction. 6140 if (!UI->isShift()) continue; 6141 6142 // Everything checks out, sink the shuffle if the user's block doesn't 6143 // already have a copy. 6144 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6145 6146 if (!InsertedShuffle) { 6147 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6148 assert(InsertPt != UserBB->end()); 6149 InsertedShuffle = 6150 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6151 SVI->getOperand(2), "", &*InsertPt); 6152 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6153 } 6154 6155 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6156 MadeChange = true; 6157 } 6158 6159 // If we removed all uses, nuke the shuffle. 6160 if (SVI->use_empty()) { 6161 SVI->eraseFromParent(); 6162 MadeChange = true; 6163 } 6164 6165 return MadeChange; 6166 } 6167 6168 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6169 // If the operands of I can be folded into a target instruction together with 6170 // I, duplicate and sink them. 6171 SmallVector<Use *, 4> OpsToSink; 6172 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6173 return false; 6174 6175 // OpsToSink can contain multiple uses in a use chain (e.g. 6176 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6177 // uses must come first, so we process the ops in reverse order so as to not 6178 // create invalid IR. 6179 BasicBlock *TargetBB = I->getParent(); 6180 bool Changed = false; 6181 SmallVector<Use *, 4> ToReplace; 6182 for (Use *U : reverse(OpsToSink)) { 6183 auto *UI = cast<Instruction>(U->get()); 6184 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6185 continue; 6186 ToReplace.push_back(U); 6187 } 6188 6189 SetVector<Instruction *> MaybeDead; 6190 DenseMap<Instruction *, Instruction *> NewInstructions; 6191 Instruction *InsertPoint = I; 6192 for (Use *U : ToReplace) { 6193 auto *UI = cast<Instruction>(U->get()); 6194 Instruction *NI = UI->clone(); 6195 NewInstructions[UI] = NI; 6196 MaybeDead.insert(UI); 6197 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6198 NI->insertBefore(InsertPoint); 6199 InsertPoint = NI; 6200 InsertedInsts.insert(NI); 6201 6202 // Update the use for the new instruction, making sure that we update the 6203 // sunk instruction uses, if it is part of a chain that has already been 6204 // sunk. 6205 Instruction *OldI = cast<Instruction>(U->getUser()); 6206 if (NewInstructions.count(OldI)) 6207 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6208 else 6209 U->set(NI); 6210 Changed = true; 6211 } 6212 6213 // Remove instructions that are dead after sinking. 6214 for (auto *I : MaybeDead) { 6215 if (!I->hasNUsesOrMore(1)) { 6216 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6217 I->eraseFromParent(); 6218 } 6219 } 6220 6221 return Changed; 6222 } 6223 6224 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6225 if (!TLI || !DL) 6226 return false; 6227 6228 Value *Cond = SI->getCondition(); 6229 Type *OldType = Cond->getType(); 6230 LLVMContext &Context = Cond->getContext(); 6231 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6232 unsigned RegWidth = RegType.getSizeInBits(); 6233 6234 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6235 return false; 6236 6237 // If the register width is greater than the type width, expand the condition 6238 // of the switch instruction and each case constant to the width of the 6239 // register. By widening the type of the switch condition, subsequent 6240 // comparisons (for case comparisons) will not need to be extended to the 6241 // preferred register width, so we will potentially eliminate N-1 extends, 6242 // where N is the number of cases in the switch. 6243 auto *NewType = Type::getIntNTy(Context, RegWidth); 6244 6245 // Zero-extend the switch condition and case constants unless the switch 6246 // condition is a function argument that is already being sign-extended. 6247 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6248 // everything instead. 6249 Instruction::CastOps ExtType = Instruction::ZExt; 6250 if (auto *Arg = dyn_cast<Argument>(Cond)) 6251 if (Arg->hasSExtAttr()) 6252 ExtType = Instruction::SExt; 6253 6254 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6255 ExtInst->insertBefore(SI); 6256 ExtInst->setDebugLoc(SI->getDebugLoc()); 6257 SI->setCondition(ExtInst); 6258 for (auto Case : SI->cases()) { 6259 APInt NarrowConst = Case.getCaseValue()->getValue(); 6260 APInt WideConst = (ExtType == Instruction::ZExt) ? 6261 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6262 Case.setValue(ConstantInt::get(Context, WideConst)); 6263 } 6264 6265 return true; 6266 } 6267 6268 6269 namespace { 6270 6271 /// Helper class to promote a scalar operation to a vector one. 6272 /// This class is used to move downward extractelement transition. 6273 /// E.g., 6274 /// a = vector_op <2 x i32> 6275 /// b = extractelement <2 x i32> a, i32 0 6276 /// c = scalar_op b 6277 /// store c 6278 /// 6279 /// => 6280 /// a = vector_op <2 x i32> 6281 /// c = vector_op a (equivalent to scalar_op on the related lane) 6282 /// * d = extractelement <2 x i32> c, i32 0 6283 /// * store d 6284 /// Assuming both extractelement and store can be combine, we get rid of the 6285 /// transition. 6286 class VectorPromoteHelper { 6287 /// DataLayout associated with the current module. 6288 const DataLayout &DL; 6289 6290 /// Used to perform some checks on the legality of vector operations. 6291 const TargetLowering &TLI; 6292 6293 /// Used to estimated the cost of the promoted chain. 6294 const TargetTransformInfo &TTI; 6295 6296 /// The transition being moved downwards. 6297 Instruction *Transition; 6298 6299 /// The sequence of instructions to be promoted. 6300 SmallVector<Instruction *, 4> InstsToBePromoted; 6301 6302 /// Cost of combining a store and an extract. 6303 unsigned StoreExtractCombineCost; 6304 6305 /// Instruction that will be combined with the transition. 6306 Instruction *CombineInst = nullptr; 6307 6308 /// The instruction that represents the current end of the transition. 6309 /// Since we are faking the promotion until we reach the end of the chain 6310 /// of computation, we need a way to get the current end of the transition. 6311 Instruction *getEndOfTransition() const { 6312 if (InstsToBePromoted.empty()) 6313 return Transition; 6314 return InstsToBePromoted.back(); 6315 } 6316 6317 /// Return the index of the original value in the transition. 6318 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6319 /// c, is at index 0. 6320 unsigned getTransitionOriginalValueIdx() const { 6321 assert(isa<ExtractElementInst>(Transition) && 6322 "Other kind of transitions are not supported yet"); 6323 return 0; 6324 } 6325 6326 /// Return the index of the index in the transition. 6327 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6328 /// is at index 1. 6329 unsigned getTransitionIdx() const { 6330 assert(isa<ExtractElementInst>(Transition) && 6331 "Other kind of transitions are not supported yet"); 6332 return 1; 6333 } 6334 6335 /// Get the type of the transition. 6336 /// This is the type of the original value. 6337 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6338 /// transition is <2 x i32>. 6339 Type *getTransitionType() const { 6340 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6341 } 6342 6343 /// Promote \p ToBePromoted by moving \p Def downward through. 6344 /// I.e., we have the following sequence: 6345 /// Def = Transition <ty1> a to <ty2> 6346 /// b = ToBePromoted <ty2> Def, ... 6347 /// => 6348 /// b = ToBePromoted <ty1> a, ... 6349 /// Def = Transition <ty1> ToBePromoted to <ty2> 6350 void promoteImpl(Instruction *ToBePromoted); 6351 6352 /// Check whether or not it is profitable to promote all the 6353 /// instructions enqueued to be promoted. 6354 bool isProfitableToPromote() { 6355 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6356 unsigned Index = isa<ConstantInt>(ValIdx) 6357 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6358 : -1; 6359 Type *PromotedType = getTransitionType(); 6360 6361 StoreInst *ST = cast<StoreInst>(CombineInst); 6362 unsigned AS = ST->getPointerAddressSpace(); 6363 unsigned Align = ST->getAlignment(); 6364 // Check if this store is supported. 6365 if (!TLI.allowsMisalignedMemoryAccesses( 6366 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6367 Align)) { 6368 // If this is not supported, there is no way we can combine 6369 // the extract with the store. 6370 return false; 6371 } 6372 6373 // The scalar chain of computation has to pay for the transition 6374 // scalar to vector. 6375 // The vector chain has to account for the combining cost. 6376 uint64_t ScalarCost = 6377 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6378 uint64_t VectorCost = StoreExtractCombineCost; 6379 for (const auto &Inst : InstsToBePromoted) { 6380 // Compute the cost. 6381 // By construction, all instructions being promoted are arithmetic ones. 6382 // Moreover, one argument is a constant that can be viewed as a splat 6383 // constant. 6384 Value *Arg0 = Inst->getOperand(0); 6385 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6386 isa<ConstantFP>(Arg0); 6387 TargetTransformInfo::OperandValueKind Arg0OVK = 6388 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6389 : TargetTransformInfo::OK_AnyValue; 6390 TargetTransformInfo::OperandValueKind Arg1OVK = 6391 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6392 : TargetTransformInfo::OK_AnyValue; 6393 ScalarCost += TTI.getArithmeticInstrCost( 6394 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6395 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6396 Arg0OVK, Arg1OVK); 6397 } 6398 LLVM_DEBUG( 6399 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6400 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6401 return ScalarCost > VectorCost; 6402 } 6403 6404 /// Generate a constant vector with \p Val with the same 6405 /// number of elements as the transition. 6406 /// \p UseSplat defines whether or not \p Val should be replicated 6407 /// across the whole vector. 6408 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6409 /// otherwise we generate a vector with as many undef as possible: 6410 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6411 /// used at the index of the extract. 6412 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6413 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6414 if (!UseSplat) { 6415 // If we cannot determine where the constant must be, we have to 6416 // use a splat constant. 6417 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6418 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6419 ExtractIdx = CstVal->getSExtValue(); 6420 else 6421 UseSplat = true; 6422 } 6423 6424 unsigned End = getTransitionType()->getVectorNumElements(); 6425 if (UseSplat) 6426 return ConstantVector::getSplat(End, Val); 6427 6428 SmallVector<Constant *, 4> ConstVec; 6429 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6430 for (unsigned Idx = 0; Idx != End; ++Idx) { 6431 if (Idx == ExtractIdx) 6432 ConstVec.push_back(Val); 6433 else 6434 ConstVec.push_back(UndefVal); 6435 } 6436 return ConstantVector::get(ConstVec); 6437 } 6438 6439 /// Check if promoting to a vector type an operand at \p OperandIdx 6440 /// in \p Use can trigger undefined behavior. 6441 static bool canCauseUndefinedBehavior(const Instruction *Use, 6442 unsigned OperandIdx) { 6443 // This is not safe to introduce undef when the operand is on 6444 // the right hand side of a division-like instruction. 6445 if (OperandIdx != 1) 6446 return false; 6447 switch (Use->getOpcode()) { 6448 default: 6449 return false; 6450 case Instruction::SDiv: 6451 case Instruction::UDiv: 6452 case Instruction::SRem: 6453 case Instruction::URem: 6454 return true; 6455 case Instruction::FDiv: 6456 case Instruction::FRem: 6457 return !Use->hasNoNaNs(); 6458 } 6459 llvm_unreachable(nullptr); 6460 } 6461 6462 public: 6463 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6464 const TargetTransformInfo &TTI, Instruction *Transition, 6465 unsigned CombineCost) 6466 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6467 StoreExtractCombineCost(CombineCost) { 6468 assert(Transition && "Do not know how to promote null"); 6469 } 6470 6471 /// Check if we can promote \p ToBePromoted to \p Type. 6472 bool canPromote(const Instruction *ToBePromoted) const { 6473 // We could support CastInst too. 6474 return isa<BinaryOperator>(ToBePromoted); 6475 } 6476 6477 /// Check if it is profitable to promote \p ToBePromoted 6478 /// by moving downward the transition through. 6479 bool shouldPromote(const Instruction *ToBePromoted) const { 6480 // Promote only if all the operands can be statically expanded. 6481 // Indeed, we do not want to introduce any new kind of transitions. 6482 for (const Use &U : ToBePromoted->operands()) { 6483 const Value *Val = U.get(); 6484 if (Val == getEndOfTransition()) { 6485 // If the use is a division and the transition is on the rhs, 6486 // we cannot promote the operation, otherwise we may create a 6487 // division by zero. 6488 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6489 return false; 6490 continue; 6491 } 6492 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6493 !isa<ConstantFP>(Val)) 6494 return false; 6495 } 6496 // Check that the resulting operation is legal. 6497 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6498 if (!ISDOpcode) 6499 return false; 6500 return StressStoreExtract || 6501 TLI.isOperationLegalOrCustom( 6502 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6503 } 6504 6505 /// Check whether or not \p Use can be combined 6506 /// with the transition. 6507 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6508 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6509 6510 /// Record \p ToBePromoted as part of the chain to be promoted. 6511 void enqueueForPromotion(Instruction *ToBePromoted) { 6512 InstsToBePromoted.push_back(ToBePromoted); 6513 } 6514 6515 /// Set the instruction that will be combined with the transition. 6516 void recordCombineInstruction(Instruction *ToBeCombined) { 6517 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6518 CombineInst = ToBeCombined; 6519 } 6520 6521 /// Promote all the instructions enqueued for promotion if it is 6522 /// is profitable. 6523 /// \return True if the promotion happened, false otherwise. 6524 bool promote() { 6525 // Check if there is something to promote. 6526 // Right now, if we do not have anything to combine with, 6527 // we assume the promotion is not profitable. 6528 if (InstsToBePromoted.empty() || !CombineInst) 6529 return false; 6530 6531 // Check cost. 6532 if (!StressStoreExtract && !isProfitableToPromote()) 6533 return false; 6534 6535 // Promote. 6536 for (auto &ToBePromoted : InstsToBePromoted) 6537 promoteImpl(ToBePromoted); 6538 InstsToBePromoted.clear(); 6539 return true; 6540 } 6541 }; 6542 6543 } // end anonymous namespace 6544 6545 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6546 // At this point, we know that all the operands of ToBePromoted but Def 6547 // can be statically promoted. 6548 // For Def, we need to use its parameter in ToBePromoted: 6549 // b = ToBePromoted ty1 a 6550 // Def = Transition ty1 b to ty2 6551 // Move the transition down. 6552 // 1. Replace all uses of the promoted operation by the transition. 6553 // = ... b => = ... Def. 6554 assert(ToBePromoted->getType() == Transition->getType() && 6555 "The type of the result of the transition does not match " 6556 "the final type"); 6557 ToBePromoted->replaceAllUsesWith(Transition); 6558 // 2. Update the type of the uses. 6559 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6560 Type *TransitionTy = getTransitionType(); 6561 ToBePromoted->mutateType(TransitionTy); 6562 // 3. Update all the operands of the promoted operation with promoted 6563 // operands. 6564 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6565 for (Use &U : ToBePromoted->operands()) { 6566 Value *Val = U.get(); 6567 Value *NewVal = nullptr; 6568 if (Val == Transition) 6569 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6570 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6571 isa<ConstantFP>(Val)) { 6572 // Use a splat constant if it is not safe to use undef. 6573 NewVal = getConstantVector( 6574 cast<Constant>(Val), 6575 isa<UndefValue>(Val) || 6576 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6577 } else 6578 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6579 "this?"); 6580 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6581 } 6582 Transition->moveAfter(ToBePromoted); 6583 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6584 } 6585 6586 /// Some targets can do store(extractelement) with one instruction. 6587 /// Try to push the extractelement towards the stores when the target 6588 /// has this feature and this is profitable. 6589 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6590 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6591 if (DisableStoreExtract || !TLI || 6592 (!StressStoreExtract && 6593 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6594 Inst->getOperand(1), CombineCost))) 6595 return false; 6596 6597 // At this point we know that Inst is a vector to scalar transition. 6598 // Try to move it down the def-use chain, until: 6599 // - We can combine the transition with its single use 6600 // => we got rid of the transition. 6601 // - We escape the current basic block 6602 // => we would need to check that we are moving it at a cheaper place and 6603 // we do not do that for now. 6604 BasicBlock *Parent = Inst->getParent(); 6605 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6606 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6607 // If the transition has more than one use, assume this is not going to be 6608 // beneficial. 6609 while (Inst->hasOneUse()) { 6610 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6611 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6612 6613 if (ToBePromoted->getParent() != Parent) { 6614 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6615 << ToBePromoted->getParent()->getName() 6616 << ") than the transition (" << Parent->getName() 6617 << ").\n"); 6618 return false; 6619 } 6620 6621 if (VPH.canCombine(ToBePromoted)) { 6622 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6623 << "will be combined with: " << *ToBePromoted << '\n'); 6624 VPH.recordCombineInstruction(ToBePromoted); 6625 bool Changed = VPH.promote(); 6626 NumStoreExtractExposed += Changed; 6627 return Changed; 6628 } 6629 6630 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6631 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6632 return false; 6633 6634 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6635 6636 VPH.enqueueForPromotion(ToBePromoted); 6637 Inst = ToBePromoted; 6638 } 6639 return false; 6640 } 6641 6642 /// For the instruction sequence of store below, F and I values 6643 /// are bundled together as an i64 value before being stored into memory. 6644 /// Sometimes it is more efficient to generate separate stores for F and I, 6645 /// which can remove the bitwise instructions or sink them to colder places. 6646 /// 6647 /// (store (or (zext (bitcast F to i32) to i64), 6648 /// (shl (zext I to i64), 32)), addr) --> 6649 /// (store F, addr) and (store I, addr+4) 6650 /// 6651 /// Similarly, splitting for other merged store can also be beneficial, like: 6652 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6653 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6654 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6655 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6656 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6657 /// 6658 /// We allow each target to determine specifically which kind of splitting is 6659 /// supported. 6660 /// 6661 /// The store patterns are commonly seen from the simple code snippet below 6662 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6663 /// void goo(const std::pair<int, float> &); 6664 /// hoo() { 6665 /// ... 6666 /// goo(std::make_pair(tmp, ftmp)); 6667 /// ... 6668 /// } 6669 /// 6670 /// Although we already have similar splitting in DAG Combine, we duplicate 6671 /// it in CodeGenPrepare to catch the case in which pattern is across 6672 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6673 /// during code expansion. 6674 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6675 const TargetLowering &TLI) { 6676 // Handle simple but common cases only. 6677 Type *StoreType = SI.getValueOperand()->getType(); 6678 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6679 DL.getTypeSizeInBits(StoreType) == 0) 6680 return false; 6681 6682 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6683 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6684 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6685 return false; 6686 6687 // Don't split the store if it is volatile. 6688 if (SI.isVolatile()) 6689 return false; 6690 6691 // Match the following patterns: 6692 // (store (or (zext LValue to i64), 6693 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6694 // or 6695 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6696 // (zext LValue to i64), 6697 // Expect both operands of OR and the first operand of SHL have only 6698 // one use. 6699 Value *LValue, *HValue; 6700 if (!match(SI.getValueOperand(), 6701 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6702 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6703 m_SpecificInt(HalfValBitSize)))))) 6704 return false; 6705 6706 // Check LValue and HValue are int with size less or equal than 32. 6707 if (!LValue->getType()->isIntegerTy() || 6708 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6709 !HValue->getType()->isIntegerTy() || 6710 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6711 return false; 6712 6713 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6714 // as the input of target query. 6715 auto *LBC = dyn_cast<BitCastInst>(LValue); 6716 auto *HBC = dyn_cast<BitCastInst>(HValue); 6717 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6718 : EVT::getEVT(LValue->getType()); 6719 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6720 : EVT::getEVT(HValue->getType()); 6721 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6722 return false; 6723 6724 // Start to split store. 6725 IRBuilder<> Builder(SI.getContext()); 6726 Builder.SetInsertPoint(&SI); 6727 6728 // If LValue/HValue is a bitcast in another BB, create a new one in current 6729 // BB so it may be merged with the splitted stores by dag combiner. 6730 if (LBC && LBC->getParent() != SI.getParent()) 6731 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6732 if (HBC && HBC->getParent() != SI.getParent()) 6733 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6734 6735 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6736 auto CreateSplitStore = [&](Value *V, bool Upper) { 6737 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6738 Value *Addr = Builder.CreateBitCast( 6739 SI.getOperand(1), 6740 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6741 if ((IsLE && Upper) || (!IsLE && !Upper)) 6742 Addr = Builder.CreateGEP( 6743 SplitStoreType, Addr, 6744 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6745 Builder.CreateAlignedStore( 6746 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6747 }; 6748 6749 CreateSplitStore(LValue, false); 6750 CreateSplitStore(HValue, true); 6751 6752 // Delete the old store. 6753 SI.eraseFromParent(); 6754 return true; 6755 } 6756 6757 // Return true if the GEP has two operands, the first operand is of a sequential 6758 // type, and the second operand is a constant. 6759 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6760 gep_type_iterator I = gep_type_begin(*GEP); 6761 return GEP->getNumOperands() == 2 && 6762 I.isSequential() && 6763 isa<ConstantInt>(GEP->getOperand(1)); 6764 } 6765 6766 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6767 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6768 // reducing liveness interference across those edges benefits global register 6769 // allocation. Currently handles only certain cases. 6770 // 6771 // For example, unmerge %GEPI and %UGEPI as below. 6772 // 6773 // ---------- BEFORE ---------- 6774 // SrcBlock: 6775 // ... 6776 // %GEPIOp = ... 6777 // ... 6778 // %GEPI = gep %GEPIOp, Idx 6779 // ... 6780 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6781 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6782 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6783 // %UGEPI) 6784 // 6785 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6786 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6787 // ... 6788 // 6789 // DstBi: 6790 // ... 6791 // %UGEPI = gep %GEPIOp, UIdx 6792 // ... 6793 // --------------------------- 6794 // 6795 // ---------- AFTER ---------- 6796 // SrcBlock: 6797 // ... (same as above) 6798 // (* %GEPI is still alive on the indirectbr edges) 6799 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6800 // unmerging) 6801 // ... 6802 // 6803 // DstBi: 6804 // ... 6805 // %UGEPI = gep %GEPI, (UIdx-Idx) 6806 // ... 6807 // --------------------------- 6808 // 6809 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6810 // no longer alive on them. 6811 // 6812 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6813 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6814 // not to disable further simplications and optimizations as a result of GEP 6815 // merging. 6816 // 6817 // Note this unmerging may increase the length of the data flow critical path 6818 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6819 // between the register pressure and the length of data-flow critical 6820 // path. Restricting this to the uncommon IndirectBr case would minimize the 6821 // impact of potentially longer critical path, if any, and the impact on compile 6822 // time. 6823 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6824 const TargetTransformInfo *TTI) { 6825 BasicBlock *SrcBlock = GEPI->getParent(); 6826 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6827 // (non-IndirectBr) cases exit early here. 6828 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6829 return false; 6830 // Check that GEPI is a simple gep with a single constant index. 6831 if (!GEPSequentialConstIndexed(GEPI)) 6832 return false; 6833 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6834 // Check that GEPI is a cheap one. 6835 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6836 > TargetTransformInfo::TCC_Basic) 6837 return false; 6838 Value *GEPIOp = GEPI->getOperand(0); 6839 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6840 if (!isa<Instruction>(GEPIOp)) 6841 return false; 6842 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6843 if (GEPIOpI->getParent() != SrcBlock) 6844 return false; 6845 // Check that GEP is used outside the block, meaning it's alive on the 6846 // IndirectBr edge(s). 6847 if (find_if(GEPI->users(), [&](User *Usr) { 6848 if (auto *I = dyn_cast<Instruction>(Usr)) { 6849 if (I->getParent() != SrcBlock) { 6850 return true; 6851 } 6852 } 6853 return false; 6854 }) == GEPI->users().end()) 6855 return false; 6856 // The second elements of the GEP chains to be unmerged. 6857 std::vector<GetElementPtrInst *> UGEPIs; 6858 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6859 // on IndirectBr edges. 6860 for (User *Usr : GEPIOp->users()) { 6861 if (Usr == GEPI) continue; 6862 // Check if Usr is an Instruction. If not, give up. 6863 if (!isa<Instruction>(Usr)) 6864 return false; 6865 auto *UI = cast<Instruction>(Usr); 6866 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6867 if (UI->getParent() == SrcBlock) 6868 continue; 6869 // Check if Usr is a GEP. If not, give up. 6870 if (!isa<GetElementPtrInst>(Usr)) 6871 return false; 6872 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6873 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6874 // the pointer operand to it. If so, record it in the vector. If not, give 6875 // up. 6876 if (!GEPSequentialConstIndexed(UGEPI)) 6877 return false; 6878 if (UGEPI->getOperand(0) != GEPIOp) 6879 return false; 6880 if (GEPIIdx->getType() != 6881 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6882 return false; 6883 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6884 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6885 > TargetTransformInfo::TCC_Basic) 6886 return false; 6887 UGEPIs.push_back(UGEPI); 6888 } 6889 if (UGEPIs.size() == 0) 6890 return false; 6891 // Check the materializing cost of (Uidx-Idx). 6892 for (GetElementPtrInst *UGEPI : UGEPIs) { 6893 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6894 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6895 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6896 if (ImmCost > TargetTransformInfo::TCC_Basic) 6897 return false; 6898 } 6899 // Now unmerge between GEPI and UGEPIs. 6900 for (GetElementPtrInst *UGEPI : UGEPIs) { 6901 UGEPI->setOperand(0, GEPI); 6902 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6903 Constant *NewUGEPIIdx = 6904 ConstantInt::get(GEPIIdx->getType(), 6905 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6906 UGEPI->setOperand(1, NewUGEPIIdx); 6907 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6908 // inbounds to avoid UB. 6909 if (!GEPI->isInBounds()) { 6910 UGEPI->setIsInBounds(false); 6911 } 6912 } 6913 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6914 // alive on IndirectBr edges). 6915 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6916 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6917 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6918 return true; 6919 } 6920 6921 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6922 // Bail out if we inserted the instruction to prevent optimizations from 6923 // stepping on each other's toes. 6924 if (InsertedInsts.count(I)) 6925 return false; 6926 6927 // TODO: Move into the switch on opcode below here. 6928 if (PHINode *P = dyn_cast<PHINode>(I)) { 6929 // It is possible for very late stage optimizations (such as SimplifyCFG) 6930 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6931 // trivial PHI, go ahead and zap it here. 6932 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6933 LargeOffsetGEPMap.erase(P); 6934 P->replaceAllUsesWith(V); 6935 P->eraseFromParent(); 6936 ++NumPHIsElim; 6937 return true; 6938 } 6939 return false; 6940 } 6941 6942 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6943 // If the source of the cast is a constant, then this should have 6944 // already been constant folded. The only reason NOT to constant fold 6945 // it is if something (e.g. LSR) was careful to place the constant 6946 // evaluation in a block other than then one that uses it (e.g. to hoist 6947 // the address of globals out of a loop). If this is the case, we don't 6948 // want to forward-subst the cast. 6949 if (isa<Constant>(CI->getOperand(0))) 6950 return false; 6951 6952 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6953 return true; 6954 6955 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6956 /// Sink a zext or sext into its user blocks if the target type doesn't 6957 /// fit in one register 6958 if (TLI && 6959 TLI->getTypeAction(CI->getContext(), 6960 TLI->getValueType(*DL, CI->getType())) == 6961 TargetLowering::TypeExpandInteger) { 6962 return SinkCast(CI); 6963 } else { 6964 bool MadeChange = optimizeExt(I); 6965 return MadeChange | optimizeExtUses(I); 6966 } 6967 } 6968 return false; 6969 } 6970 6971 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6972 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 6973 return true; 6974 6975 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6976 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6977 if (TLI) { 6978 bool Modified = optimizeLoadExt(LI); 6979 unsigned AS = LI->getPointerAddressSpace(); 6980 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6981 return Modified; 6982 } 6983 return false; 6984 } 6985 6986 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6987 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6988 return true; 6989 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6990 if (TLI) { 6991 unsigned AS = SI->getPointerAddressSpace(); 6992 return optimizeMemoryInst(I, SI->getOperand(1), 6993 SI->getOperand(0)->getType(), AS); 6994 } 6995 return false; 6996 } 6997 6998 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6999 unsigned AS = RMW->getPointerAddressSpace(); 7000 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7001 RMW->getType(), AS); 7002 } 7003 7004 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7005 unsigned AS = CmpX->getPointerAddressSpace(); 7006 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7007 CmpX->getCompareOperand()->getType(), AS); 7008 } 7009 7010 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7011 7012 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7013 EnableAndCmpSinking && TLI) 7014 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7015 7016 // TODO: Move this into the switch on opcode - it handles shifts already. 7017 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7018 BinOp->getOpcode() == Instruction::LShr)) { 7019 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7020 if (TLI && CI && TLI->hasExtractBitsInsn()) 7021 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7022 return true; 7023 } 7024 7025 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7026 if (GEPI->hasAllZeroIndices()) { 7027 /// The GEP operand must be a pointer, so must its result -> BitCast 7028 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7029 GEPI->getName(), GEPI); 7030 NC->setDebugLoc(GEPI->getDebugLoc()); 7031 GEPI->replaceAllUsesWith(NC); 7032 GEPI->eraseFromParent(); 7033 ++NumGEPsElim; 7034 optimizeInst(NC, ModifiedDT); 7035 return true; 7036 } 7037 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7038 return true; 7039 } 7040 return false; 7041 } 7042 7043 if (tryToSinkFreeOperands(I)) 7044 return true; 7045 7046 switch (I->getOpcode()) { 7047 case Instruction::Shl: 7048 case Instruction::LShr: 7049 case Instruction::AShr: 7050 return optimizeShiftInst(cast<BinaryOperator>(I)); 7051 case Instruction::Call: 7052 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7053 case Instruction::Select: 7054 return optimizeSelectInst(cast<SelectInst>(I)); 7055 case Instruction::ShuffleVector: 7056 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7057 case Instruction::Switch: 7058 return optimizeSwitchInst(cast<SwitchInst>(I)); 7059 case Instruction::ExtractElement: 7060 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7061 } 7062 7063 return false; 7064 } 7065 7066 /// Given an OR instruction, check to see if this is a bitreverse 7067 /// idiom. If so, insert the new intrinsic and return true. 7068 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7069 const TargetLowering &TLI) { 7070 if (!I.getType()->isIntegerTy() || 7071 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7072 TLI.getValueType(DL, I.getType(), true))) 7073 return false; 7074 7075 SmallVector<Instruction*, 4> Insts; 7076 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7077 return false; 7078 Instruction *LastInst = Insts.back(); 7079 I.replaceAllUsesWith(LastInst); 7080 RecursivelyDeleteTriviallyDeadInstructions(&I); 7081 return true; 7082 } 7083 7084 // In this pass we look for GEP and cast instructions that are used 7085 // across basic blocks and rewrite them to improve basic-block-at-a-time 7086 // selection. 7087 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7088 SunkAddrs.clear(); 7089 bool MadeChange = false; 7090 7091 CurInstIterator = BB.begin(); 7092 while (CurInstIterator != BB.end()) { 7093 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7094 if (ModifiedDT) 7095 return true; 7096 } 7097 7098 bool MadeBitReverse = true; 7099 while (TLI && MadeBitReverse) { 7100 MadeBitReverse = false; 7101 for (auto &I : reverse(BB)) { 7102 if (makeBitReverse(I, *DL, *TLI)) { 7103 MadeBitReverse = MadeChange = true; 7104 break; 7105 } 7106 } 7107 } 7108 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7109 7110 return MadeChange; 7111 } 7112 7113 // llvm.dbg.value is far away from the value then iSel may not be able 7114 // handle it properly. iSel will drop llvm.dbg.value if it can not 7115 // find a node corresponding to the value. 7116 bool CodeGenPrepare::placeDbgValues(Function &F) { 7117 bool MadeChange = false; 7118 for (BasicBlock &BB : F) { 7119 Instruction *PrevNonDbgInst = nullptr; 7120 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7121 Instruction *Insn = &*BI++; 7122 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7123 // Leave dbg.values that refer to an alloca alone. These 7124 // intrinsics describe the address of a variable (= the alloca) 7125 // being taken. They should not be moved next to the alloca 7126 // (and to the beginning of the scope), but rather stay close to 7127 // where said address is used. 7128 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7129 PrevNonDbgInst = Insn; 7130 continue; 7131 } 7132 7133 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7134 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7135 // If VI is a phi in a block with an EHPad terminator, we can't insert 7136 // after it. 7137 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7138 continue; 7139 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7140 << *DVI << ' ' << *VI); 7141 DVI->removeFromParent(); 7142 if (isa<PHINode>(VI)) 7143 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7144 else 7145 DVI->insertAfter(VI); 7146 MadeChange = true; 7147 ++NumDbgValueMoved; 7148 } 7149 } 7150 } 7151 return MadeChange; 7152 } 7153 7154 /// Scale down both weights to fit into uint32_t. 7155 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7156 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7157 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7158 NewTrue = NewTrue / Scale; 7159 NewFalse = NewFalse / Scale; 7160 } 7161 7162 /// Some targets prefer to split a conditional branch like: 7163 /// \code 7164 /// %0 = icmp ne i32 %a, 0 7165 /// %1 = icmp ne i32 %b, 0 7166 /// %or.cond = or i1 %0, %1 7167 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7168 /// \endcode 7169 /// into multiple branch instructions like: 7170 /// \code 7171 /// bb1: 7172 /// %0 = icmp ne i32 %a, 0 7173 /// br i1 %0, label %TrueBB, label %bb2 7174 /// bb2: 7175 /// %1 = icmp ne i32 %b, 0 7176 /// br i1 %1, label %TrueBB, label %FalseBB 7177 /// \endcode 7178 /// This usually allows instruction selection to do even further optimizations 7179 /// and combine the compare with the branch instruction. Currently this is 7180 /// applied for targets which have "cheap" jump instructions. 7181 /// 7182 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7183 /// 7184 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7185 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7186 return false; 7187 7188 bool MadeChange = false; 7189 for (auto &BB : F) { 7190 // Does this BB end with the following? 7191 // %cond1 = icmp|fcmp|binary instruction ... 7192 // %cond2 = icmp|fcmp|binary instruction ... 7193 // %cond.or = or|and i1 %cond1, cond2 7194 // br i1 %cond.or label %dest1, label %dest2" 7195 BinaryOperator *LogicOp; 7196 BasicBlock *TBB, *FBB; 7197 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7198 continue; 7199 7200 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7201 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7202 continue; 7203 7204 unsigned Opc; 7205 Value *Cond1, *Cond2; 7206 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7207 m_OneUse(m_Value(Cond2))))) 7208 Opc = Instruction::And; 7209 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7210 m_OneUse(m_Value(Cond2))))) 7211 Opc = Instruction::Or; 7212 else 7213 continue; 7214 7215 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7216 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7217 continue; 7218 7219 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7220 7221 // Create a new BB. 7222 auto TmpBB = 7223 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7224 BB.getParent(), BB.getNextNode()); 7225 7226 // Update original basic block by using the first condition directly by the 7227 // branch instruction and removing the no longer needed and/or instruction. 7228 Br1->setCondition(Cond1); 7229 LogicOp->eraseFromParent(); 7230 7231 // Depending on the condition we have to either replace the true or the 7232 // false successor of the original branch instruction. 7233 if (Opc == Instruction::And) 7234 Br1->setSuccessor(0, TmpBB); 7235 else 7236 Br1->setSuccessor(1, TmpBB); 7237 7238 // Fill in the new basic block. 7239 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7240 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7241 I->removeFromParent(); 7242 I->insertBefore(Br2); 7243 } 7244 7245 // Update PHI nodes in both successors. The original BB needs to be 7246 // replaced in one successor's PHI nodes, because the branch comes now from 7247 // the newly generated BB (NewBB). In the other successor we need to add one 7248 // incoming edge to the PHI nodes, because both branch instructions target 7249 // now the same successor. Depending on the original branch condition 7250 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7251 // we perform the correct update for the PHI nodes. 7252 // This doesn't change the successor order of the just created branch 7253 // instruction (or any other instruction). 7254 if (Opc == Instruction::Or) 7255 std::swap(TBB, FBB); 7256 7257 // Replace the old BB with the new BB. 7258 TBB->replacePhiUsesWith(&BB, TmpBB); 7259 7260 // Add another incoming edge form the new BB. 7261 for (PHINode &PN : FBB->phis()) { 7262 auto *Val = PN.getIncomingValueForBlock(&BB); 7263 PN.addIncoming(Val, TmpBB); 7264 } 7265 7266 // Update the branch weights (from SelectionDAGBuilder:: 7267 // FindMergedConditions). 7268 if (Opc == Instruction::Or) { 7269 // Codegen X | Y as: 7270 // BB1: 7271 // jmp_if_X TBB 7272 // jmp TmpBB 7273 // TmpBB: 7274 // jmp_if_Y TBB 7275 // jmp FBB 7276 // 7277 7278 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7279 // The requirement is that 7280 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7281 // = TrueProb for original BB. 7282 // Assuming the original weights are A and B, one choice is to set BB1's 7283 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7284 // assumes that 7285 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7286 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7287 // TmpBB, but the math is more complicated. 7288 uint64_t TrueWeight, FalseWeight; 7289 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7290 uint64_t NewTrueWeight = TrueWeight; 7291 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7292 scaleWeights(NewTrueWeight, NewFalseWeight); 7293 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7294 .createBranchWeights(TrueWeight, FalseWeight)); 7295 7296 NewTrueWeight = TrueWeight; 7297 NewFalseWeight = 2 * FalseWeight; 7298 scaleWeights(NewTrueWeight, NewFalseWeight); 7299 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7300 .createBranchWeights(TrueWeight, FalseWeight)); 7301 } 7302 } else { 7303 // Codegen X & Y as: 7304 // BB1: 7305 // jmp_if_X TmpBB 7306 // jmp FBB 7307 // TmpBB: 7308 // jmp_if_Y TBB 7309 // jmp FBB 7310 // 7311 // This requires creation of TmpBB after CurBB. 7312 7313 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7314 // The requirement is that 7315 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7316 // = FalseProb for original BB. 7317 // Assuming the original weights are A and B, one choice is to set BB1's 7318 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7319 // assumes that 7320 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7321 uint64_t TrueWeight, FalseWeight; 7322 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7323 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7324 uint64_t NewFalseWeight = FalseWeight; 7325 scaleWeights(NewTrueWeight, NewFalseWeight); 7326 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7327 .createBranchWeights(TrueWeight, FalseWeight)); 7328 7329 NewTrueWeight = 2 * TrueWeight; 7330 NewFalseWeight = FalseWeight; 7331 scaleWeights(NewTrueWeight, NewFalseWeight); 7332 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7333 .createBranchWeights(TrueWeight, FalseWeight)); 7334 } 7335 } 7336 7337 ModifiedDT = true; 7338 MadeChange = true; 7339 7340 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7341 TmpBB->dump()); 7342 } 7343 return MadeChange; 7344 } 7345