1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/IntrinsicsX86.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MachineValueType.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> DisableSelectToBranch( 144 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 145 cl::desc("Disable select to branch conversion.")); 146 147 static cl::opt<bool> AddrSinkUsingGEPs( 148 "addr-sink-using-gep", cl::Hidden, cl::init(true), 149 cl::desc("Address sinking in CGP using GEPs.")); 150 151 static cl::opt<bool> EnableAndCmpSinking( 152 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 153 cl::desc("Enable sinkinig and/cmp into branches.")); 154 155 static cl::opt<bool> DisableStoreExtract( 156 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> StressStoreExtract( 160 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 161 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 162 163 static cl::opt<bool> DisableExtLdPromotion( 164 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 166 "CodeGenPrepare")); 167 168 static cl::opt<bool> StressExtLdPromotion( 169 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 170 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 171 "optimization in CodeGenPrepare")); 172 173 static cl::opt<bool> DisablePreheaderProtect( 174 "disable-preheader-prot", cl::Hidden, cl::init(false), 175 cl::desc("Disable protection against removing loop preheaders")); 176 177 static cl::opt<bool> ProfileGuidedSectionPrefix( 178 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 179 cl::desc("Use profile info to add section prefix for hot/cold functions")); 180 181 static cl::opt<unsigned> FreqRatioToSkipMerge( 182 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 183 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 184 "(frequency of destination block) is greater than this ratio")); 185 186 static cl::opt<bool> ForceSplitStore( 187 "force-split-store", cl::Hidden, cl::init(false), 188 cl::desc("Force store splitting no matter what the target query says.")); 189 190 static cl::opt<bool> 191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 192 cl::desc("Enable merging of redundant sexts when one is dominating" 193 " the other."), cl::init(true)); 194 195 static cl::opt<bool> DisableComplexAddrModes( 196 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 197 cl::desc("Disables combining addressing modes with different parts " 198 "in optimizeMemoryInst.")); 199 200 static cl::opt<bool> 201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 202 cl::desc("Allow creation of Phis in Address sinking.")); 203 204 static cl::opt<bool> 205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 206 cl::desc("Allow creation of selects in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseReg( 209 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseReg field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseGV( 213 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseGV field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseOffs( 217 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineScaledReg( 221 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 223 224 static cl::opt<bool> 225 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 226 cl::init(true), 227 cl::desc("Enable splitting large offset of GEP.")); 228 229 static cl::opt<bool> EnableICMP_EQToICMP_ST( 230 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 231 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 232 233 namespace { 234 235 enum ExtType { 236 ZeroExtension, // Zero extension has been seen. 237 SignExtension, // Sign extension has been seen. 238 BothExtension // This extension type is used if we saw sext after 239 // ZeroExtension had been set, or if we saw zext after 240 // SignExtension had been set. It makes the type 241 // information of a promoted instruction invalid. 242 }; 243 244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 247 using SExts = SmallVector<Instruction *, 16>; 248 using ValueToSExts = DenseMap<Value *, SExts>; 249 250 class TypePromotionTransaction; 251 252 class CodeGenPrepare : public FunctionPass { 253 const TargetMachine *TM = nullptr; 254 const TargetSubtargetInfo *SubtargetInfo; 255 const TargetLowering *TLI = nullptr; 256 const TargetRegisterInfo *TRI; 257 const TargetTransformInfo *TTI = nullptr; 258 const TargetLibraryInfo *TLInfo; 259 const LoopInfo *LI; 260 std::unique_ptr<BlockFrequencyInfo> BFI; 261 std::unique_ptr<BranchProbabilityInfo> BPI; 262 ProfileSummaryInfo *PSI; 263 264 /// As we scan instructions optimizing them, this is the next instruction 265 /// to optimize. Transforms that can invalidate this should update it. 266 BasicBlock::iterator CurInstIterator; 267 268 /// Keeps track of non-local addresses that have been sunk into a block. 269 /// This allows us to avoid inserting duplicate code for blocks with 270 /// multiple load/stores of the same address. The usage of WeakTrackingVH 271 /// enables SunkAddrs to be treated as a cache whose entries can be 272 /// invalidated if a sunken address computation has been erased. 273 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 274 275 /// Keeps track of all instructions inserted for the current function. 276 SetOfInstrs InsertedInsts; 277 278 /// Keeps track of the type of the related instruction before their 279 /// promotion for the current function. 280 InstrToOrigTy PromotedInsts; 281 282 /// Keep track of instructions removed during promotion. 283 SetOfInstrs RemovedInsts; 284 285 /// Keep track of sext chains based on their initial value. 286 DenseMap<Value *, Instruction *> SeenChainsForSExt; 287 288 /// Keep track of GEPs accessing the same data structures such as structs or 289 /// arrays that are candidates to be split later because of their large 290 /// size. 291 MapVector< 292 AssertingVH<Value>, 293 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 294 LargeOffsetGEPMap; 295 296 /// Keep track of new GEP base after splitting the GEPs having large offset. 297 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 298 299 /// Map serial numbers to Large offset GEPs. 300 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 301 302 /// Keep track of SExt promoted. 303 ValueToSExts ValToSExtendedUses; 304 305 /// True if the function has the OptSize attribute. 306 bool OptSize; 307 308 /// DataLayout for the Function being processed. 309 const DataLayout *DL = nullptr; 310 311 /// Building the dominator tree can be expensive, so we only build it 312 /// lazily and update it when required. 313 std::unique_ptr<DominatorTree> DT; 314 315 public: 316 static char ID; // Pass identification, replacement for typeid 317 318 CodeGenPrepare() : FunctionPass(ID) { 319 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 StringRef getPassName() const override { return "CodeGen Prepare"; } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 // FIXME: When we can selectively preserve passes, preserve the domtree. 328 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addRequired<TargetTransformInfoWrapperPass>(); 331 AU.addRequired<LoopInfoWrapperPass>(); 332 } 333 334 private: 335 template <typename F> 336 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 337 // Substituting can cause recursive simplifications, which can invalidate 338 // our iterator. Use a WeakTrackingVH to hold onto it in case this 339 // happens. 340 Value *CurValue = &*CurInstIterator; 341 WeakTrackingVH IterHandle(CurValue); 342 343 f(); 344 345 // If the iterator instruction was recursively deleted, start over at the 346 // start of the block. 347 if (IterHandle != CurValue) { 348 CurInstIterator = BB->begin(); 349 SunkAddrs.clear(); 350 } 351 } 352 353 // Get the DominatorTree, building if necessary. 354 DominatorTree &getDT(Function &F) { 355 if (!DT) 356 DT = std::make_unique<DominatorTree>(F); 357 return *DT; 358 } 359 360 bool eliminateFallThrough(Function &F); 361 bool eliminateMostlyEmptyBlocks(Function &F); 362 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 363 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 364 void eliminateMostlyEmptyBlock(BasicBlock *BB); 365 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 366 bool isPreheader); 367 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 368 bool optimizeInst(Instruction *I, bool &ModifiedDT); 369 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 370 Type *AccessTy, unsigned AddrSpace); 371 bool optimizeInlineAsmInst(CallInst *CS); 372 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 373 bool optimizeExt(Instruction *&I); 374 bool optimizeExtUses(Instruction *I); 375 bool optimizeLoadExt(LoadInst *Load); 376 bool optimizeShiftInst(BinaryOperator *BO); 377 bool optimizeSelectInst(SelectInst *SI); 378 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 379 bool optimizeSwitchInst(SwitchInst *SI); 380 bool optimizeExtractElementInst(Instruction *Inst); 381 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 382 bool fixupDbgValue(Instruction *I); 383 bool placeDbgValues(Function &F); 384 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 385 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 386 bool tryToPromoteExts(TypePromotionTransaction &TPT, 387 const SmallVectorImpl<Instruction *> &Exts, 388 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 389 unsigned CreatedInstsCost = 0); 390 bool mergeSExts(Function &F); 391 bool splitLargeGEPOffsets(); 392 bool performAddressTypePromotion( 393 Instruction *&Inst, 394 bool AllowPromotionWithoutCommonHeader, 395 bool HasPromoted, TypePromotionTransaction &TPT, 396 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 397 bool splitBranchCondition(Function &F, bool &ModifiedDT); 398 bool simplifyOffsetableRelocate(Instruction &I); 399 400 bool tryToSinkFreeOperands(Instruction *I); 401 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 402 Intrinsic::ID IID); 403 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 404 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 405 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 406 }; 407 408 } // end anonymous namespace 409 410 char CodeGenPrepare::ID = 0; 411 412 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 413 "Optimize for code generation", false, false) 414 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 415 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 416 "Optimize for code generation", false, false) 417 418 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 419 420 bool CodeGenPrepare::runOnFunction(Function &F) { 421 if (skipFunction(F)) 422 return false; 423 424 DL = &F.getParent()->getDataLayout(); 425 426 bool EverMadeChange = false; 427 // Clear per function information. 428 InsertedInsts.clear(); 429 PromotedInsts.clear(); 430 431 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 432 TM = &TPC->getTM<TargetMachine>(); 433 SubtargetInfo = TM->getSubtargetImpl(F); 434 TLI = SubtargetInfo->getTargetLowering(); 435 TRI = SubtargetInfo->getRegisterInfo(); 436 } 437 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 438 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 439 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 440 BPI.reset(new BranchProbabilityInfo(F, *LI)); 441 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 442 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 443 OptSize = F.hasOptSize(); 444 if (ProfileGuidedSectionPrefix) { 445 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".hot"); 447 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 448 F.setSectionPrefix(".unlikely"); 449 } 450 451 /// This optimization identifies DIV instructions that can be 452 /// profitably bypassed and carried out with a shorter, faster divide. 453 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 454 TLI->isSlowDivBypassed()) { 455 const DenseMap<unsigned int, unsigned int> &BypassWidths = 456 TLI->getBypassSlowDivWidths(); 457 BasicBlock* BB = &*F.begin(); 458 while (BB != nullptr) { 459 // bypassSlowDivision may create new BBs, but we don't want to reapply the 460 // optimization to those blocks. 461 BasicBlock* Next = BB->getNextNode(); 462 // F.hasOptSize is already checked in the outer if statement. 463 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 464 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 465 BB = Next; 466 } 467 } 468 469 // Eliminate blocks that contain only PHI nodes and an 470 // unconditional branch. 471 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 472 473 bool ModifiedDT = false; 474 if (!DisableBranchOpts) 475 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 476 477 // Split some critical edges where one of the sources is an indirect branch, 478 // to help generate sane code for PHIs involving such edges. 479 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 480 481 bool MadeChange = true; 482 while (MadeChange) { 483 MadeChange = false; 484 DT.reset(); 485 for (Function::iterator I = F.begin(); I != F.end(); ) { 486 BasicBlock *BB = &*I++; 487 bool ModifiedDTOnIteration = false; 488 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 489 490 // Restart BB iteration if the dominator tree of the Function was changed 491 if (ModifiedDTOnIteration) 492 break; 493 } 494 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 495 MadeChange |= mergeSExts(F); 496 if (!LargeOffsetGEPMap.empty()) 497 MadeChange |= splitLargeGEPOffsets(); 498 499 // Really free removed instructions during promotion. 500 for (Instruction *I : RemovedInsts) 501 I->deleteValue(); 502 503 EverMadeChange |= MadeChange; 504 SeenChainsForSExt.clear(); 505 ValToSExtendedUses.clear(); 506 RemovedInsts.clear(); 507 LargeOffsetGEPMap.clear(); 508 LargeOffsetGEPID.clear(); 509 } 510 511 SunkAddrs.clear(); 512 513 if (!DisableBranchOpts) { 514 MadeChange = false; 515 // Use a set vector to get deterministic iteration order. The order the 516 // blocks are removed may affect whether or not PHI nodes in successors 517 // are removed. 518 SmallSetVector<BasicBlock*, 8> WorkList; 519 for (BasicBlock &BB : F) { 520 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 521 MadeChange |= ConstantFoldTerminator(&BB, true); 522 if (!MadeChange) continue; 523 524 for (SmallVectorImpl<BasicBlock*>::iterator 525 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 526 if (pred_begin(*II) == pred_end(*II)) 527 WorkList.insert(*II); 528 } 529 530 // Delete the dead blocks and any of their dead successors. 531 MadeChange |= !WorkList.empty(); 532 while (!WorkList.empty()) { 533 BasicBlock *BB = WorkList.pop_back_val(); 534 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 535 536 DeleteDeadBlock(BB); 537 538 for (SmallVectorImpl<BasicBlock*>::iterator 539 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 540 if (pred_begin(*II) == pred_end(*II)) 541 WorkList.insert(*II); 542 } 543 544 // Merge pairs of basic blocks with unconditional branches, connected by 545 // a single edge. 546 if (EverMadeChange || MadeChange) 547 MadeChange |= eliminateFallThrough(F); 548 549 EverMadeChange |= MadeChange; 550 } 551 552 if (!DisableGCOpts) { 553 SmallVector<Instruction *, 2> Statepoints; 554 for (BasicBlock &BB : F) 555 for (Instruction &I : BB) 556 if (isStatepoint(I)) 557 Statepoints.push_back(&I); 558 for (auto &I : Statepoints) 559 EverMadeChange |= simplifyOffsetableRelocate(*I); 560 } 561 562 // Do this last to clean up use-before-def scenarios introduced by other 563 // preparatory transforms. 564 EverMadeChange |= placeDbgValues(F); 565 566 return EverMadeChange; 567 } 568 569 /// Merge basic blocks which are connected by a single edge, where one of the 570 /// basic blocks has a single successor pointing to the other basic block, 571 /// which has a single predecessor. 572 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 573 bool Changed = false; 574 // Scan all of the blocks in the function, except for the entry block. 575 // Use a temporary array to avoid iterator being invalidated when 576 // deleting blocks. 577 SmallVector<WeakTrackingVH, 16> Blocks; 578 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 579 Blocks.push_back(&Block); 580 581 for (auto &Block : Blocks) { 582 auto *BB = cast_or_null<BasicBlock>(Block); 583 if (!BB) 584 continue; 585 // If the destination block has a single pred, then this is a trivial 586 // edge, just collapse it. 587 BasicBlock *SinglePred = BB->getSinglePredecessor(); 588 589 // Don't merge if BB's address is taken. 590 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 591 592 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 593 if (Term && !Term->isConditional()) { 594 Changed = true; 595 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 596 597 // Merge BB into SinglePred and delete it. 598 MergeBlockIntoPredecessor(BB); 599 } 600 } 601 return Changed; 602 } 603 604 /// Find a destination block from BB if BB is mergeable empty block. 605 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 606 // If this block doesn't end with an uncond branch, ignore it. 607 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 608 if (!BI || !BI->isUnconditional()) 609 return nullptr; 610 611 // If the instruction before the branch (skipping debug info) isn't a phi 612 // node, then other stuff is happening here. 613 BasicBlock::iterator BBI = BI->getIterator(); 614 if (BBI != BB->begin()) { 615 --BBI; 616 while (isa<DbgInfoIntrinsic>(BBI)) { 617 if (BBI == BB->begin()) 618 break; 619 --BBI; 620 } 621 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 622 return nullptr; 623 } 624 625 // Do not break infinite loops. 626 BasicBlock *DestBB = BI->getSuccessor(0); 627 if (DestBB == BB) 628 return nullptr; 629 630 if (!canMergeBlocks(BB, DestBB)) 631 DestBB = nullptr; 632 633 return DestBB; 634 } 635 636 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 637 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 638 /// edges in ways that are non-optimal for isel. Start by eliminating these 639 /// blocks so we can split them the way we want them. 640 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 641 SmallPtrSet<BasicBlock *, 16> Preheaders; 642 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 643 while (!LoopList.empty()) { 644 Loop *L = LoopList.pop_back_val(); 645 LoopList.insert(LoopList.end(), L->begin(), L->end()); 646 if (BasicBlock *Preheader = L->getLoopPreheader()) 647 Preheaders.insert(Preheader); 648 } 649 650 bool MadeChange = false; 651 // Copy blocks into a temporary array to avoid iterator invalidation issues 652 // as we remove them. 653 // Note that this intentionally skips the entry block. 654 SmallVector<WeakTrackingVH, 16> Blocks; 655 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 656 Blocks.push_back(&Block); 657 658 for (auto &Block : Blocks) { 659 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 660 if (!BB) 661 continue; 662 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 663 if (!DestBB || 664 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 665 continue; 666 667 eliminateMostlyEmptyBlock(BB); 668 MadeChange = true; 669 } 670 return MadeChange; 671 } 672 673 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 674 BasicBlock *DestBB, 675 bool isPreheader) { 676 // Do not delete loop preheaders if doing so would create a critical edge. 677 // Loop preheaders can be good locations to spill registers. If the 678 // preheader is deleted and we create a critical edge, registers may be 679 // spilled in the loop body instead. 680 if (!DisablePreheaderProtect && isPreheader && 681 !(BB->getSinglePredecessor() && 682 BB->getSinglePredecessor()->getSingleSuccessor())) 683 return false; 684 685 // Skip merging if the block's successor is also a successor to any callbr 686 // that leads to this block. 687 // FIXME: Is this really needed? Is this a correctness issue? 688 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 689 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 690 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 691 if (DestBB == CBI->getSuccessor(i)) 692 return false; 693 } 694 695 // Try to skip merging if the unique predecessor of BB is terminated by a 696 // switch or indirect branch instruction, and BB is used as an incoming block 697 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 698 // add COPY instructions in the predecessor of BB instead of BB (if it is not 699 // merged). Note that the critical edge created by merging such blocks wont be 700 // split in MachineSink because the jump table is not analyzable. By keeping 701 // such empty block (BB), ISel will place COPY instructions in BB, not in the 702 // predecessor of BB. 703 BasicBlock *Pred = BB->getUniquePredecessor(); 704 if (!Pred || 705 !(isa<SwitchInst>(Pred->getTerminator()) || 706 isa<IndirectBrInst>(Pred->getTerminator()))) 707 return true; 708 709 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 710 return true; 711 712 // We use a simple cost heuristic which determine skipping merging is 713 // profitable if the cost of skipping merging is less than the cost of 714 // merging : Cost(skipping merging) < Cost(merging BB), where the 715 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 716 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 717 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 718 // Freq(Pred) / Freq(BB) > 2. 719 // Note that if there are multiple empty blocks sharing the same incoming 720 // value for the PHIs in the DestBB, we consider them together. In such 721 // case, Cost(merging BB) will be the sum of their frequencies. 722 723 if (!isa<PHINode>(DestBB->begin())) 724 return true; 725 726 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 727 728 // Find all other incoming blocks from which incoming values of all PHIs in 729 // DestBB are the same as the ones from BB. 730 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 731 ++PI) { 732 BasicBlock *DestBBPred = *PI; 733 if (DestBBPred == BB) 734 continue; 735 736 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 737 return DestPN.getIncomingValueForBlock(BB) == 738 DestPN.getIncomingValueForBlock(DestBBPred); 739 })) 740 SameIncomingValueBBs.insert(DestBBPred); 741 } 742 743 // See if all BB's incoming values are same as the value from Pred. In this 744 // case, no reason to skip merging because COPYs are expected to be place in 745 // Pred already. 746 if (SameIncomingValueBBs.count(Pred)) 747 return true; 748 749 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 750 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 751 752 for (auto SameValueBB : SameIncomingValueBBs) 753 if (SameValueBB->getUniquePredecessor() == Pred && 754 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 755 BBFreq += BFI->getBlockFreq(SameValueBB); 756 757 return PredFreq.getFrequency() <= 758 BBFreq.getFrequency() * FreqRatioToSkipMerge; 759 } 760 761 /// Return true if we can merge BB into DestBB if there is a single 762 /// unconditional branch between them, and BB contains no other non-phi 763 /// instructions. 764 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 765 const BasicBlock *DestBB) const { 766 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 767 // the successor. If there are more complex condition (e.g. preheaders), 768 // don't mess around with them. 769 for (const PHINode &PN : BB->phis()) { 770 for (const User *U : PN.users()) { 771 const Instruction *UI = cast<Instruction>(U); 772 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 773 return false; 774 // If User is inside DestBB block and it is a PHINode then check 775 // incoming value. If incoming value is not from BB then this is 776 // a complex condition (e.g. preheaders) we want to avoid here. 777 if (UI->getParent() == DestBB) { 778 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 779 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 780 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 781 if (Insn && Insn->getParent() == BB && 782 Insn->getParent() != UPN->getIncomingBlock(I)) 783 return false; 784 } 785 } 786 } 787 } 788 789 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 790 // and DestBB may have conflicting incoming values for the block. If so, we 791 // can't merge the block. 792 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 793 if (!DestBBPN) return true; // no conflict. 794 795 // Collect the preds of BB. 796 SmallPtrSet<const BasicBlock*, 16> BBPreds; 797 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 798 // It is faster to get preds from a PHI than with pred_iterator. 799 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 800 BBPreds.insert(BBPN->getIncomingBlock(i)); 801 } else { 802 BBPreds.insert(pred_begin(BB), pred_end(BB)); 803 } 804 805 // Walk the preds of DestBB. 806 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 807 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 808 if (BBPreds.count(Pred)) { // Common predecessor? 809 for (const PHINode &PN : DestBB->phis()) { 810 const Value *V1 = PN.getIncomingValueForBlock(Pred); 811 const Value *V2 = PN.getIncomingValueForBlock(BB); 812 813 // If V2 is a phi node in BB, look up what the mapped value will be. 814 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 815 if (V2PN->getParent() == BB) 816 V2 = V2PN->getIncomingValueForBlock(Pred); 817 818 // If there is a conflict, bail out. 819 if (V1 != V2) return false; 820 } 821 } 822 } 823 824 return true; 825 } 826 827 /// Eliminate a basic block that has only phi's and an unconditional branch in 828 /// it. 829 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 830 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 831 BasicBlock *DestBB = BI->getSuccessor(0); 832 833 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 834 << *BB << *DestBB); 835 836 // If the destination block has a single pred, then this is a trivial edge, 837 // just collapse it. 838 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 839 if (SinglePred != DestBB) { 840 assert(SinglePred == BB && 841 "Single predecessor not the same as predecessor"); 842 // Merge DestBB into SinglePred/BB and delete it. 843 MergeBlockIntoPredecessor(DestBB); 844 // Note: BB(=SinglePred) will not be deleted on this path. 845 // DestBB(=its single successor) is the one that was deleted. 846 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 847 return; 848 } 849 } 850 851 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 852 // to handle the new incoming edges it is about to have. 853 for (PHINode &PN : DestBB->phis()) { 854 // Remove the incoming value for BB, and remember it. 855 Value *InVal = PN.removeIncomingValue(BB, false); 856 857 // Two options: either the InVal is a phi node defined in BB or it is some 858 // value that dominates BB. 859 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 860 if (InValPhi && InValPhi->getParent() == BB) { 861 // Add all of the input values of the input PHI as inputs of this phi. 862 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 863 PN.addIncoming(InValPhi->getIncomingValue(i), 864 InValPhi->getIncomingBlock(i)); 865 } else { 866 // Otherwise, add one instance of the dominating value for each edge that 867 // we will be adding. 868 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 869 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 870 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 871 } else { 872 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 873 PN.addIncoming(InVal, *PI); 874 } 875 } 876 } 877 878 // The PHIs are now updated, change everything that refers to BB to use 879 // DestBB and remove BB. 880 BB->replaceAllUsesWith(DestBB); 881 BB->eraseFromParent(); 882 ++NumBlocksElim; 883 884 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 885 } 886 887 // Computes a map of base pointer relocation instructions to corresponding 888 // derived pointer relocation instructions given a vector of all relocate calls 889 static void computeBaseDerivedRelocateMap( 890 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 891 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 892 &RelocateInstMap) { 893 // Collect information in two maps: one primarily for locating the base object 894 // while filling the second map; the second map is the final structure holding 895 // a mapping between Base and corresponding Derived relocate calls 896 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 897 for (auto *ThisRelocate : AllRelocateCalls) { 898 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 899 ThisRelocate->getDerivedPtrIndex()); 900 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 901 } 902 for (auto &Item : RelocateIdxMap) { 903 std::pair<unsigned, unsigned> Key = Item.first; 904 if (Key.first == Key.second) 905 // Base relocation: nothing to insert 906 continue; 907 908 GCRelocateInst *I = Item.second; 909 auto BaseKey = std::make_pair(Key.first, Key.first); 910 911 // We're iterating over RelocateIdxMap so we cannot modify it. 912 auto MaybeBase = RelocateIdxMap.find(BaseKey); 913 if (MaybeBase == RelocateIdxMap.end()) 914 // TODO: We might want to insert a new base object relocate and gep off 915 // that, if there are enough derived object relocates. 916 continue; 917 918 RelocateInstMap[MaybeBase->second].push_back(I); 919 } 920 } 921 922 // Accepts a GEP and extracts the operands into a vector provided they're all 923 // small integer constants 924 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 925 SmallVectorImpl<Value *> &OffsetV) { 926 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 927 // Only accept small constant integer operands 928 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 929 if (!Op || Op->getZExtValue() > 20) 930 return false; 931 } 932 933 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 934 OffsetV.push_back(GEP->getOperand(i)); 935 return true; 936 } 937 938 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 939 // replace, computes a replacement, and affects it. 940 static bool 941 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 942 const SmallVectorImpl<GCRelocateInst *> &Targets) { 943 bool MadeChange = false; 944 // We must ensure the relocation of derived pointer is defined after 945 // relocation of base pointer. If we find a relocation corresponding to base 946 // defined earlier than relocation of base then we move relocation of base 947 // right before found relocation. We consider only relocation in the same 948 // basic block as relocation of base. Relocations from other basic block will 949 // be skipped by optimization and we do not care about them. 950 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 951 &*R != RelocatedBase; ++R) 952 if (auto RI = dyn_cast<GCRelocateInst>(R)) 953 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 954 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 955 RelocatedBase->moveBefore(RI); 956 break; 957 } 958 959 for (GCRelocateInst *ToReplace : Targets) { 960 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 961 "Not relocating a derived object of the original base object"); 962 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 963 // A duplicate relocate call. TODO: coalesce duplicates. 964 continue; 965 } 966 967 if (RelocatedBase->getParent() != ToReplace->getParent()) { 968 // Base and derived relocates are in different basic blocks. 969 // In this case transform is only valid when base dominates derived 970 // relocate. However it would be too expensive to check dominance 971 // for each such relocate, so we skip the whole transformation. 972 continue; 973 } 974 975 Value *Base = ToReplace->getBasePtr(); 976 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 977 if (!Derived || Derived->getPointerOperand() != Base) 978 continue; 979 980 SmallVector<Value *, 2> OffsetV; 981 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 982 continue; 983 984 // Create a Builder and replace the target callsite with a gep 985 assert(RelocatedBase->getNextNode() && 986 "Should always have one since it's not a terminator"); 987 988 // Insert after RelocatedBase 989 IRBuilder<> Builder(RelocatedBase->getNextNode()); 990 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 991 992 // If gc_relocate does not match the actual type, cast it to the right type. 993 // In theory, there must be a bitcast after gc_relocate if the type does not 994 // match, and we should reuse it to get the derived pointer. But it could be 995 // cases like this: 996 // bb1: 997 // ... 998 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 999 // br label %merge 1000 // 1001 // bb2: 1002 // ... 1003 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1004 // br label %merge 1005 // 1006 // merge: 1007 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1008 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1009 // 1010 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1011 // no matter there is already one or not. In this way, we can handle all cases, and 1012 // the extra bitcast should be optimized away in later passes. 1013 Value *ActualRelocatedBase = RelocatedBase; 1014 if (RelocatedBase->getType() != Base->getType()) { 1015 ActualRelocatedBase = 1016 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1017 } 1018 Value *Replacement = Builder.CreateGEP( 1019 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1020 Replacement->takeName(ToReplace); 1021 // If the newly generated derived pointer's type does not match the original derived 1022 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1023 Value *ActualReplacement = Replacement; 1024 if (Replacement->getType() != ToReplace->getType()) { 1025 ActualReplacement = 1026 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1027 } 1028 ToReplace->replaceAllUsesWith(ActualReplacement); 1029 ToReplace->eraseFromParent(); 1030 1031 MadeChange = true; 1032 } 1033 return MadeChange; 1034 } 1035 1036 // Turns this: 1037 // 1038 // %base = ... 1039 // %ptr = gep %base + 15 1040 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1041 // %base' = relocate(%tok, i32 4, i32 4) 1042 // %ptr' = relocate(%tok, i32 4, i32 5) 1043 // %val = load %ptr' 1044 // 1045 // into this: 1046 // 1047 // %base = ... 1048 // %ptr = gep %base + 15 1049 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1050 // %base' = gc.relocate(%tok, i32 4, i32 4) 1051 // %ptr' = gep %base' + 15 1052 // %val = load %ptr' 1053 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1054 bool MadeChange = false; 1055 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1056 1057 for (auto *U : I.users()) 1058 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1059 // Collect all the relocate calls associated with a statepoint 1060 AllRelocateCalls.push_back(Relocate); 1061 1062 // We need at least one base pointer relocation + one derived pointer 1063 // relocation to mangle 1064 if (AllRelocateCalls.size() < 2) 1065 return false; 1066 1067 // RelocateInstMap is a mapping from the base relocate instruction to the 1068 // corresponding derived relocate instructions 1069 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1070 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1071 if (RelocateInstMap.empty()) 1072 return false; 1073 1074 for (auto &Item : RelocateInstMap) 1075 // Item.first is the RelocatedBase to offset against 1076 // Item.second is the vector of Targets to replace 1077 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1078 return MadeChange; 1079 } 1080 1081 /// Sink the specified cast instruction into its user blocks. 1082 static bool SinkCast(CastInst *CI) { 1083 BasicBlock *DefBB = CI->getParent(); 1084 1085 /// InsertedCasts - Only insert a cast in each block once. 1086 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1087 1088 bool MadeChange = false; 1089 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1090 UI != E; ) { 1091 Use &TheUse = UI.getUse(); 1092 Instruction *User = cast<Instruction>(*UI); 1093 1094 // Figure out which BB this cast is used in. For PHI's this is the 1095 // appropriate predecessor block. 1096 BasicBlock *UserBB = User->getParent(); 1097 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1098 UserBB = PN->getIncomingBlock(TheUse); 1099 } 1100 1101 // Preincrement use iterator so we don't invalidate it. 1102 ++UI; 1103 1104 // The first insertion point of a block containing an EH pad is after the 1105 // pad. If the pad is the user, we cannot sink the cast past the pad. 1106 if (User->isEHPad()) 1107 continue; 1108 1109 // If the block selected to receive the cast is an EH pad that does not 1110 // allow non-PHI instructions before the terminator, we can't sink the 1111 // cast. 1112 if (UserBB->getTerminator()->isEHPad()) 1113 continue; 1114 1115 // If this user is in the same block as the cast, don't change the cast. 1116 if (UserBB == DefBB) continue; 1117 1118 // If we have already inserted a cast into this block, use it. 1119 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1120 1121 if (!InsertedCast) { 1122 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1123 assert(InsertPt != UserBB->end()); 1124 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1125 CI->getType(), "", &*InsertPt); 1126 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1127 } 1128 1129 // Replace a use of the cast with a use of the new cast. 1130 TheUse = InsertedCast; 1131 MadeChange = true; 1132 ++NumCastUses; 1133 } 1134 1135 // If we removed all uses, nuke the cast. 1136 if (CI->use_empty()) { 1137 salvageDebugInfo(*CI); 1138 CI->eraseFromParent(); 1139 MadeChange = true; 1140 } 1141 1142 return MadeChange; 1143 } 1144 1145 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1146 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1147 /// reduce the number of virtual registers that must be created and coalesced. 1148 /// 1149 /// Return true if any changes are made. 1150 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1151 const DataLayout &DL) { 1152 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1153 // than sinking only nop casts, but is helpful on some platforms. 1154 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1155 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1156 ASC->getDestAddressSpace())) 1157 return false; 1158 } 1159 1160 // If this is a noop copy, 1161 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1162 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1163 1164 // This is an fp<->int conversion? 1165 if (SrcVT.isInteger() != DstVT.isInteger()) 1166 return false; 1167 1168 // If this is an extension, it will be a zero or sign extension, which 1169 // isn't a noop. 1170 if (SrcVT.bitsLT(DstVT)) return false; 1171 1172 // If these values will be promoted, find out what they will be promoted 1173 // to. This helps us consider truncates on PPC as noop copies when they 1174 // are. 1175 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1176 TargetLowering::TypePromoteInteger) 1177 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1178 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1179 TargetLowering::TypePromoteInteger) 1180 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1181 1182 // If, after promotion, these are the same types, this is a noop copy. 1183 if (SrcVT != DstVT) 1184 return false; 1185 1186 return SinkCast(CI); 1187 } 1188 1189 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1190 CmpInst *Cmp, 1191 Intrinsic::ID IID) { 1192 if (BO->getParent() != Cmp->getParent()) { 1193 // We used to use a dominator tree here to allow multi-block optimization. 1194 // But that was problematic because: 1195 // 1. It could cause a perf regression by hoisting the math op into the 1196 // critical path. 1197 // 2. It could cause a perf regression by creating a value that was live 1198 // across multiple blocks and increasing register pressure. 1199 // 3. Use of a dominator tree could cause large compile-time regression. 1200 // This is because we recompute the DT on every change in the main CGP 1201 // run-loop. The recomputing is probably unnecessary in many cases, so if 1202 // that was fixed, using a DT here would be ok. 1203 return false; 1204 } 1205 1206 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1207 Value *Arg0 = BO->getOperand(0); 1208 Value *Arg1 = BO->getOperand(1); 1209 if (BO->getOpcode() == Instruction::Add && 1210 IID == Intrinsic::usub_with_overflow) { 1211 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1212 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1213 } 1214 1215 // Insert at the first instruction of the pair. 1216 Instruction *InsertPt = nullptr; 1217 for (Instruction &Iter : *Cmp->getParent()) { 1218 if (&Iter == BO || &Iter == Cmp) { 1219 InsertPt = &Iter; 1220 break; 1221 } 1222 } 1223 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1224 1225 IRBuilder<> Builder(InsertPt); 1226 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1227 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1228 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1229 BO->replaceAllUsesWith(Math); 1230 Cmp->replaceAllUsesWith(OV); 1231 BO->eraseFromParent(); 1232 Cmp->eraseFromParent(); 1233 return true; 1234 } 1235 1236 /// Match special-case patterns that check for unsigned add overflow. 1237 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1238 BinaryOperator *&Add) { 1239 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1240 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1241 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1242 1243 // We are not expecting non-canonical/degenerate code. Just bail out. 1244 if (isa<Constant>(A)) 1245 return false; 1246 1247 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1248 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1249 B = ConstantInt::get(B->getType(), 1); 1250 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1251 B = ConstantInt::get(B->getType(), -1); 1252 else 1253 return false; 1254 1255 // Check the users of the variable operand of the compare looking for an add 1256 // with the adjusted constant. 1257 for (User *U : A->users()) { 1258 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1259 Add = cast<BinaryOperator>(U); 1260 return true; 1261 } 1262 } 1263 return false; 1264 } 1265 1266 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1267 /// intrinsic. Return true if any changes were made. 1268 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1269 bool &ModifiedDT) { 1270 Value *A, *B; 1271 BinaryOperator *Add; 1272 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1273 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1274 return false; 1275 1276 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1277 TLI->getValueType(*DL, Add->getType()))) 1278 return false; 1279 1280 // We don't want to move around uses of condition values this late, so we 1281 // check if it is legal to create the call to the intrinsic in the basic 1282 // block containing the icmp. 1283 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1284 return false; 1285 1286 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1287 return false; 1288 1289 // Reset callers - do not crash by iterating over a dead instruction. 1290 ModifiedDT = true; 1291 return true; 1292 } 1293 1294 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1295 bool &ModifiedDT) { 1296 // We are not expecting non-canonical/degenerate code. Just bail out. 1297 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1298 if (isa<Constant>(A) && isa<Constant>(B)) 1299 return false; 1300 1301 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1302 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1303 if (Pred == ICmpInst::ICMP_UGT) { 1304 std::swap(A, B); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 // Convert special-case: (A == 0) is the same as (A u< 1). 1308 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1309 B = ConstantInt::get(B->getType(), 1); 1310 Pred = ICmpInst::ICMP_ULT; 1311 } 1312 // Convert special-case: (A != 0) is the same as (0 u< A). 1313 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1314 std::swap(A, B); 1315 Pred = ICmpInst::ICMP_ULT; 1316 } 1317 if (Pred != ICmpInst::ICMP_ULT) 1318 return false; 1319 1320 // Walk the users of a variable operand of a compare looking for a subtract or 1321 // add with that same operand. Also match the 2nd operand of the compare to 1322 // the add/sub, but that may be a negated constant operand of an add. 1323 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1324 BinaryOperator *Sub = nullptr; 1325 for (User *U : CmpVariableOperand->users()) { 1326 // A - B, A u< B --> usubo(A, B) 1327 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1328 Sub = cast<BinaryOperator>(U); 1329 break; 1330 } 1331 1332 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1333 const APInt *CmpC, *AddC; 1334 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1335 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1336 Sub = cast<BinaryOperator>(U); 1337 break; 1338 } 1339 } 1340 if (!Sub) 1341 return false; 1342 1343 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1344 TLI->getValueType(*DL, Sub->getType()))) 1345 return false; 1346 1347 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1348 return false; 1349 1350 // Reset callers - do not crash by iterating over a dead instruction. 1351 ModifiedDT = true; 1352 return true; 1353 } 1354 1355 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1356 /// registers that must be created and coalesced. This is a clear win except on 1357 /// targets with multiple condition code registers (PowerPC), where it might 1358 /// lose; some adjustment may be wanted there. 1359 /// 1360 /// Return true if any changes are made. 1361 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1362 if (TLI.hasMultipleConditionRegisters()) 1363 return false; 1364 1365 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1366 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1367 return false; 1368 1369 // Only insert a cmp in each block once. 1370 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1371 1372 bool MadeChange = false; 1373 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1374 UI != E; ) { 1375 Use &TheUse = UI.getUse(); 1376 Instruction *User = cast<Instruction>(*UI); 1377 1378 // Preincrement use iterator so we don't invalidate it. 1379 ++UI; 1380 1381 // Don't bother for PHI nodes. 1382 if (isa<PHINode>(User)) 1383 continue; 1384 1385 // Figure out which BB this cmp is used in. 1386 BasicBlock *UserBB = User->getParent(); 1387 BasicBlock *DefBB = Cmp->getParent(); 1388 1389 // If this user is in the same block as the cmp, don't change the cmp. 1390 if (UserBB == DefBB) continue; 1391 1392 // If we have already inserted a cmp into this block, use it. 1393 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1394 1395 if (!InsertedCmp) { 1396 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1397 assert(InsertPt != UserBB->end()); 1398 InsertedCmp = 1399 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1400 Cmp->getOperand(0), Cmp->getOperand(1), "", 1401 &*InsertPt); 1402 // Propagate the debug info. 1403 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1404 } 1405 1406 // Replace a use of the cmp with a use of the new cmp. 1407 TheUse = InsertedCmp; 1408 MadeChange = true; 1409 ++NumCmpUses; 1410 } 1411 1412 // If we removed all uses, nuke the cmp. 1413 if (Cmp->use_empty()) { 1414 Cmp->eraseFromParent(); 1415 MadeChange = true; 1416 } 1417 1418 return MadeChange; 1419 } 1420 1421 /// For pattern like: 1422 /// 1423 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1424 /// ... 1425 /// DomBB: 1426 /// ... 1427 /// br DomCond, TrueBB, CmpBB 1428 /// CmpBB: (with DomBB being the single predecessor) 1429 /// ... 1430 /// Cmp = icmp eq CmpOp0, CmpOp1 1431 /// ... 1432 /// 1433 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1434 /// different from lowering of icmp eq (PowerPC). This function try to convert 1435 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1436 /// After that, DomCond and Cmp can use the same comparison so reduce one 1437 /// comparison. 1438 /// 1439 /// Return true if any changes are made. 1440 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1441 const TargetLowering &TLI) { 1442 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1443 return false; 1444 1445 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1446 if (Pred != ICmpInst::ICMP_EQ) 1447 return false; 1448 1449 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1450 // icmp slt/sgt would introduce more redundant LLVM IR. 1451 for (User *U : Cmp->users()) { 1452 if (isa<BranchInst>(U)) 1453 continue; 1454 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1455 continue; 1456 return false; 1457 } 1458 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp->getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return false; 1465 1466 // We want to ensure that the only way control gets to the comparison of 1467 // interest is that a less/greater than comparison on the same operands is 1468 // false. 1469 Value *DomCond; 1470 BasicBlock *TrueBB, *FalseBB; 1471 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1472 return false; 1473 if (CmpBB != FalseBB) 1474 return false; 1475 1476 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1477 ICmpInst::Predicate DomPred; 1478 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1479 return false; 1480 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1481 return false; 1482 1483 // Convert the equality comparison to the opposite of the dominating 1484 // comparison and swap the direction for all branch/select users. 1485 // We have conceptually converted: 1486 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1487 // to 1488 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1489 // And similarly for branches. 1490 for (User *U : Cmp->users()) { 1491 if (auto *BI = dyn_cast<BranchInst>(U)) { 1492 assert(BI->isConditional() && "Must be conditional"); 1493 BI->swapSuccessors(); 1494 continue; 1495 } 1496 if (auto *SI = dyn_cast<SelectInst>(U)) { 1497 // Swap operands 1498 SI->swapValues(); 1499 SI->swapProfMetadata(); 1500 continue; 1501 } 1502 llvm_unreachable("Must be a branch or a select"); 1503 } 1504 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1505 return true; 1506 } 1507 1508 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1509 if (sinkCmpExpression(Cmp, *TLI)) 1510 return true; 1511 1512 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1513 return true; 1514 1515 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1516 return true; 1517 1518 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1519 return true; 1520 1521 return false; 1522 } 1523 1524 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1525 /// used in a compare to allow isel to generate better code for targets where 1526 /// this operation can be combined. 1527 /// 1528 /// Return true if any changes are made. 1529 static bool sinkAndCmp0Expression(Instruction *AndI, 1530 const TargetLowering &TLI, 1531 SetOfInstrs &InsertedInsts) { 1532 // Double-check that we're not trying to optimize an instruction that was 1533 // already optimized by some other part of this pass. 1534 assert(!InsertedInsts.count(AndI) && 1535 "Attempting to optimize already optimized and instruction"); 1536 (void) InsertedInsts; 1537 1538 // Nothing to do for single use in same basic block. 1539 if (AndI->hasOneUse() && 1540 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1541 return false; 1542 1543 // Try to avoid cases where sinking/duplicating is likely to increase register 1544 // pressure. 1545 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1546 !isa<ConstantInt>(AndI->getOperand(1)) && 1547 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1548 return false; 1549 1550 for (auto *U : AndI->users()) { 1551 Instruction *User = cast<Instruction>(U); 1552 1553 // Only sink 'and' feeding icmp with 0. 1554 if (!isa<ICmpInst>(User)) 1555 return false; 1556 1557 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1558 if (!CmpC || !CmpC->isZero()) 1559 return false; 1560 } 1561 1562 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1563 return false; 1564 1565 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1566 LLVM_DEBUG(AndI->getParent()->dump()); 1567 1568 // Push the 'and' into the same block as the icmp 0. There should only be 1569 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1570 // others, so we don't need to keep track of which BBs we insert into. 1571 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1572 UI != E; ) { 1573 Use &TheUse = UI.getUse(); 1574 Instruction *User = cast<Instruction>(*UI); 1575 1576 // Preincrement use iterator so we don't invalidate it. 1577 ++UI; 1578 1579 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1580 1581 // Keep the 'and' in the same place if the use is already in the same block. 1582 Instruction *InsertPt = 1583 User->getParent() == AndI->getParent() ? AndI : User; 1584 Instruction *InsertedAnd = 1585 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1586 AndI->getOperand(1), "", InsertPt); 1587 // Propagate the debug info. 1588 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1589 1590 // Replace a use of the 'and' with a use of the new 'and'. 1591 TheUse = InsertedAnd; 1592 ++NumAndUses; 1593 LLVM_DEBUG(User->getParent()->dump()); 1594 } 1595 1596 // We removed all uses, nuke the and. 1597 AndI->eraseFromParent(); 1598 return true; 1599 } 1600 1601 /// Check if the candidates could be combined with a shift instruction, which 1602 /// includes: 1603 /// 1. Truncate instruction 1604 /// 2. And instruction and the imm is a mask of the low bits: 1605 /// imm & (imm+1) == 0 1606 static bool isExtractBitsCandidateUse(Instruction *User) { 1607 if (!isa<TruncInst>(User)) { 1608 if (User->getOpcode() != Instruction::And || 1609 !isa<ConstantInt>(User->getOperand(1))) 1610 return false; 1611 1612 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1613 1614 if ((Cimm & (Cimm + 1)).getBoolValue()) 1615 return false; 1616 } 1617 return true; 1618 } 1619 1620 /// Sink both shift and truncate instruction to the use of truncate's BB. 1621 static bool 1622 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1623 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1624 const TargetLowering &TLI, const DataLayout &DL) { 1625 BasicBlock *UserBB = User->getParent(); 1626 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1627 auto *TruncI = cast<TruncInst>(User); 1628 bool MadeChange = false; 1629 1630 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1631 TruncE = TruncI->user_end(); 1632 TruncUI != TruncE;) { 1633 1634 Use &TruncTheUse = TruncUI.getUse(); 1635 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1636 // Preincrement use iterator so we don't invalidate it. 1637 1638 ++TruncUI; 1639 1640 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1641 if (!ISDOpcode) 1642 continue; 1643 1644 // If the use is actually a legal node, there will not be an 1645 // implicit truncate. 1646 // FIXME: always querying the result type is just an 1647 // approximation; some nodes' legality is determined by the 1648 // operand or other means. There's no good way to find out though. 1649 if (TLI.isOperationLegalOrCustom( 1650 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1651 continue; 1652 1653 // Don't bother for PHI nodes. 1654 if (isa<PHINode>(TruncUser)) 1655 continue; 1656 1657 BasicBlock *TruncUserBB = TruncUser->getParent(); 1658 1659 if (UserBB == TruncUserBB) 1660 continue; 1661 1662 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1663 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1664 1665 if (!InsertedShift && !InsertedTrunc) { 1666 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1667 assert(InsertPt != TruncUserBB->end()); 1668 // Sink the shift 1669 if (ShiftI->getOpcode() == Instruction::AShr) 1670 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1671 "", &*InsertPt); 1672 else 1673 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1674 "", &*InsertPt); 1675 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1676 1677 // Sink the trunc 1678 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1679 TruncInsertPt++; 1680 assert(TruncInsertPt != TruncUserBB->end()); 1681 1682 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1683 TruncI->getType(), "", &*TruncInsertPt); 1684 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1685 1686 MadeChange = true; 1687 1688 TruncTheUse = InsertedTrunc; 1689 } 1690 } 1691 return MadeChange; 1692 } 1693 1694 /// Sink the shift *right* instruction into user blocks if the uses could 1695 /// potentially be combined with this shift instruction and generate BitExtract 1696 /// instruction. It will only be applied if the architecture supports BitExtract 1697 /// instruction. Here is an example: 1698 /// BB1: 1699 /// %x.extract.shift = lshr i64 %arg1, 32 1700 /// BB2: 1701 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1702 /// ==> 1703 /// 1704 /// BB2: 1705 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1706 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1707 /// 1708 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1709 /// instruction. 1710 /// Return true if any changes are made. 1711 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1712 const TargetLowering &TLI, 1713 const DataLayout &DL) { 1714 BasicBlock *DefBB = ShiftI->getParent(); 1715 1716 /// Only insert instructions in each block once. 1717 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1718 1719 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1720 1721 bool MadeChange = false; 1722 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1723 UI != E;) { 1724 Use &TheUse = UI.getUse(); 1725 Instruction *User = cast<Instruction>(*UI); 1726 // Preincrement use iterator so we don't invalidate it. 1727 ++UI; 1728 1729 // Don't bother for PHI nodes. 1730 if (isa<PHINode>(User)) 1731 continue; 1732 1733 if (!isExtractBitsCandidateUse(User)) 1734 continue; 1735 1736 BasicBlock *UserBB = User->getParent(); 1737 1738 if (UserBB == DefBB) { 1739 // If the shift and truncate instruction are in the same BB. The use of 1740 // the truncate(TruncUse) may still introduce another truncate if not 1741 // legal. In this case, we would like to sink both shift and truncate 1742 // instruction to the BB of TruncUse. 1743 // for example: 1744 // BB1: 1745 // i64 shift.result = lshr i64 opnd, imm 1746 // trunc.result = trunc shift.result to i16 1747 // 1748 // BB2: 1749 // ----> We will have an implicit truncate here if the architecture does 1750 // not have i16 compare. 1751 // cmp i16 trunc.result, opnd2 1752 // 1753 if (isa<TruncInst>(User) && shiftIsLegal 1754 // If the type of the truncate is legal, no truncate will be 1755 // introduced in other basic blocks. 1756 && 1757 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1758 MadeChange = 1759 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1760 1761 continue; 1762 } 1763 // If we have already inserted a shift into this block, use it. 1764 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1765 1766 if (!InsertedShift) { 1767 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1768 assert(InsertPt != UserBB->end()); 1769 1770 if (ShiftI->getOpcode() == Instruction::AShr) 1771 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1772 "", &*InsertPt); 1773 else 1774 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1775 "", &*InsertPt); 1776 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1777 1778 MadeChange = true; 1779 } 1780 1781 // Replace a use of the shift with a use of the new shift. 1782 TheUse = InsertedShift; 1783 } 1784 1785 // If we removed all uses, or there are none, nuke the shift. 1786 if (ShiftI->use_empty()) { 1787 salvageDebugInfo(*ShiftI); 1788 ShiftI->eraseFromParent(); 1789 MadeChange = true; 1790 } 1791 1792 return MadeChange; 1793 } 1794 1795 /// If counting leading or trailing zeros is an expensive operation and a zero 1796 /// input is defined, add a check for zero to avoid calling the intrinsic. 1797 /// 1798 /// We want to transform: 1799 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1800 /// 1801 /// into: 1802 /// entry: 1803 /// %cmpz = icmp eq i64 %A, 0 1804 /// br i1 %cmpz, label %cond.end, label %cond.false 1805 /// cond.false: 1806 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1807 /// br label %cond.end 1808 /// cond.end: 1809 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1810 /// 1811 /// If the transform is performed, return true and set ModifiedDT to true. 1812 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1813 const TargetLowering *TLI, 1814 const DataLayout *DL, 1815 bool &ModifiedDT) { 1816 if (!TLI || !DL) 1817 return false; 1818 1819 // If a zero input is undefined, it doesn't make sense to despeculate that. 1820 if (match(CountZeros->getOperand(1), m_One())) 1821 return false; 1822 1823 // If it's cheap to speculate, there's nothing to do. 1824 auto IntrinsicID = CountZeros->getIntrinsicID(); 1825 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1826 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1827 return false; 1828 1829 // Only handle legal scalar cases. Anything else requires too much work. 1830 Type *Ty = CountZeros->getType(); 1831 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1832 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1833 return false; 1834 1835 // The intrinsic will be sunk behind a compare against zero and branch. 1836 BasicBlock *StartBlock = CountZeros->getParent(); 1837 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1838 1839 // Create another block after the count zero intrinsic. A PHI will be added 1840 // in this block to select the result of the intrinsic or the bit-width 1841 // constant if the input to the intrinsic is zero. 1842 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1843 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1844 1845 // Set up a builder to create a compare, conditional branch, and PHI. 1846 IRBuilder<> Builder(CountZeros->getContext()); 1847 Builder.SetInsertPoint(StartBlock->getTerminator()); 1848 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1849 1850 // Replace the unconditional branch that was created by the first split with 1851 // a compare against zero and a conditional branch. 1852 Value *Zero = Constant::getNullValue(Ty); 1853 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1854 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1855 StartBlock->getTerminator()->eraseFromParent(); 1856 1857 // Create a PHI in the end block to select either the output of the intrinsic 1858 // or the bit width of the operand. 1859 Builder.SetInsertPoint(&EndBlock->front()); 1860 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1861 CountZeros->replaceAllUsesWith(PN); 1862 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1863 PN->addIncoming(BitWidth, StartBlock); 1864 PN->addIncoming(CountZeros, CallBlock); 1865 1866 // We are explicitly handling the zero case, so we can set the intrinsic's 1867 // undefined zero argument to 'true'. This will also prevent reprocessing the 1868 // intrinsic; we only despeculate when a zero input is defined. 1869 CountZeros->setArgOperand(1, Builder.getTrue()); 1870 ModifiedDT = true; 1871 return true; 1872 } 1873 1874 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1875 BasicBlock *BB = CI->getParent(); 1876 1877 // Lower inline assembly if we can. 1878 // If we found an inline asm expession, and if the target knows how to 1879 // lower it to normal LLVM code, do so now. 1880 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1881 if (TLI->ExpandInlineAsm(CI)) { 1882 // Avoid invalidating the iterator. 1883 CurInstIterator = BB->begin(); 1884 // Avoid processing instructions out of order, which could cause 1885 // reuse before a value is defined. 1886 SunkAddrs.clear(); 1887 return true; 1888 } 1889 // Sink address computing for memory operands into the block. 1890 if (optimizeInlineAsmInst(CI)) 1891 return true; 1892 } 1893 1894 // Align the pointer arguments to this call if the target thinks it's a good 1895 // idea 1896 unsigned MinSize, PrefAlign; 1897 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1898 for (auto &Arg : CI->arg_operands()) { 1899 // We want to align both objects whose address is used directly and 1900 // objects whose address is used in casts and GEPs, though it only makes 1901 // sense for GEPs if the offset is a multiple of the desired alignment and 1902 // if size - offset meets the size threshold. 1903 if (!Arg->getType()->isPointerTy()) 1904 continue; 1905 APInt Offset(DL->getIndexSizeInBits( 1906 cast<PointerType>(Arg->getType())->getAddressSpace()), 1907 0); 1908 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1909 uint64_t Offset2 = Offset.getLimitedValue(); 1910 if ((Offset2 & (PrefAlign-1)) != 0) 1911 continue; 1912 AllocaInst *AI; 1913 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1914 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1915 AI->setAlignment(MaybeAlign(PrefAlign)); 1916 // Global variables can only be aligned if they are defined in this 1917 // object (i.e. they are uniquely initialized in this object), and 1918 // over-aligning global variables that have an explicit section is 1919 // forbidden. 1920 GlobalVariable *GV; 1921 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1922 GV->getPointerAlignment(*DL) < PrefAlign && 1923 DL->getTypeAllocSize(GV->getValueType()) >= 1924 MinSize + Offset2) 1925 GV->setAlignment(MaybeAlign(PrefAlign)); 1926 } 1927 // If this is a memcpy (or similar) then we may be able to improve the 1928 // alignment 1929 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1930 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1931 if (DestAlign > MI->getDestAlignment()) 1932 MI->setDestAlignment(DestAlign); 1933 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1934 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1935 if (SrcAlign > MTI->getSourceAlignment()) 1936 MTI->setSourceAlignment(SrcAlign); 1937 } 1938 } 1939 } 1940 1941 // If we have a cold call site, try to sink addressing computation into the 1942 // cold block. This interacts with our handling for loads and stores to 1943 // ensure that we can fold all uses of a potential addressing computation 1944 // into their uses. TODO: generalize this to work over profiling data 1945 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(BB, PSI, BFI.get()); 1946 if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) 1947 for (auto &Arg : CI->arg_operands()) { 1948 if (!Arg->getType()->isPointerTy()) 1949 continue; 1950 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1951 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1952 } 1953 1954 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1955 if (II) { 1956 switch (II->getIntrinsicID()) { 1957 default: break; 1958 case Intrinsic::experimental_widenable_condition: { 1959 // Give up on future widening oppurtunties so that we can fold away dead 1960 // paths and merge blocks before going into block-local instruction 1961 // selection. 1962 if (II->use_empty()) { 1963 II->eraseFromParent(); 1964 return true; 1965 } 1966 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1967 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1968 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1969 }); 1970 return true; 1971 } 1972 case Intrinsic::objectsize: 1973 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1974 case Intrinsic::is_constant: 1975 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1976 case Intrinsic::aarch64_stlxr: 1977 case Intrinsic::aarch64_stxr: { 1978 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1979 if (!ExtVal || !ExtVal->hasOneUse() || 1980 ExtVal->getParent() == CI->getParent()) 1981 return false; 1982 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1983 ExtVal->moveBefore(CI); 1984 // Mark this instruction as "inserted by CGP", so that other 1985 // optimizations don't touch it. 1986 InsertedInsts.insert(ExtVal); 1987 return true; 1988 } 1989 1990 case Intrinsic::launder_invariant_group: 1991 case Intrinsic::strip_invariant_group: { 1992 Value *ArgVal = II->getArgOperand(0); 1993 auto it = LargeOffsetGEPMap.find(II); 1994 if (it != LargeOffsetGEPMap.end()) { 1995 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1996 // Make sure not to have to deal with iterator invalidation 1997 // after possibly adding ArgVal to LargeOffsetGEPMap. 1998 auto GEPs = std::move(it->second); 1999 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2000 LargeOffsetGEPMap.erase(II); 2001 } 2002 2003 II->replaceAllUsesWith(ArgVal); 2004 II->eraseFromParent(); 2005 return true; 2006 } 2007 case Intrinsic::cttz: 2008 case Intrinsic::ctlz: 2009 // If counting zeros is expensive, try to avoid it. 2010 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2011 case Intrinsic::dbg_value: 2012 return fixupDbgValue(II); 2013 } 2014 2015 if (TLI) { 2016 SmallVector<Value*, 2> PtrOps; 2017 Type *AccessTy; 2018 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2019 while (!PtrOps.empty()) { 2020 Value *PtrVal = PtrOps.pop_back_val(); 2021 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2022 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2023 return true; 2024 } 2025 } 2026 } 2027 2028 // From here on out we're working with named functions. 2029 if (!CI->getCalledFunction()) return false; 2030 2031 // Lower all default uses of _chk calls. This is very similar 2032 // to what InstCombineCalls does, but here we are only lowering calls 2033 // to fortified library functions (e.g. __memcpy_chk) that have the default 2034 // "don't know" as the objectsize. Anything else should be left alone. 2035 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2036 if (Value *V = Simplifier.optimizeCall(CI)) { 2037 CI->replaceAllUsesWith(V); 2038 CI->eraseFromParent(); 2039 return true; 2040 } 2041 2042 return false; 2043 } 2044 2045 /// Look for opportunities to duplicate return instructions to the predecessor 2046 /// to enable tail call optimizations. The case it is currently looking for is: 2047 /// @code 2048 /// bb0: 2049 /// %tmp0 = tail call i32 @f0() 2050 /// br label %return 2051 /// bb1: 2052 /// %tmp1 = tail call i32 @f1() 2053 /// br label %return 2054 /// bb2: 2055 /// %tmp2 = tail call i32 @f2() 2056 /// br label %return 2057 /// return: 2058 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2059 /// ret i32 %retval 2060 /// @endcode 2061 /// 2062 /// => 2063 /// 2064 /// @code 2065 /// bb0: 2066 /// %tmp0 = tail call i32 @f0() 2067 /// ret i32 %tmp0 2068 /// bb1: 2069 /// %tmp1 = tail call i32 @f1() 2070 /// ret i32 %tmp1 2071 /// bb2: 2072 /// %tmp2 = tail call i32 @f2() 2073 /// ret i32 %tmp2 2074 /// @endcode 2075 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2076 if (!TLI) 2077 return false; 2078 2079 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2080 if (!RetI) 2081 return false; 2082 2083 PHINode *PN = nullptr; 2084 BitCastInst *BCI = nullptr; 2085 Value *V = RetI->getReturnValue(); 2086 if (V) { 2087 BCI = dyn_cast<BitCastInst>(V); 2088 if (BCI) 2089 V = BCI->getOperand(0); 2090 2091 PN = dyn_cast<PHINode>(V); 2092 if (!PN) 2093 return false; 2094 } 2095 2096 if (PN && PN->getParent() != BB) 2097 return false; 2098 2099 // Make sure there are no instructions between the PHI and return, or that the 2100 // return is the first instruction in the block. 2101 if (PN) { 2102 BasicBlock::iterator BI = BB->begin(); 2103 // Skip over debug and the bitcast. 2104 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2105 if (&*BI != RetI) 2106 return false; 2107 } else { 2108 BasicBlock::iterator BI = BB->begin(); 2109 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2110 if (&*BI != RetI) 2111 return false; 2112 } 2113 2114 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2115 /// call. 2116 const Function *F = BB->getParent(); 2117 SmallVector<BasicBlock*, 4> TailCallBBs; 2118 if (PN) { 2119 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2120 // Look through bitcasts. 2121 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2122 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2123 BasicBlock *PredBB = PN->getIncomingBlock(I); 2124 // Make sure the phi value is indeed produced by the tail call. 2125 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2126 TLI->mayBeEmittedAsTailCall(CI) && 2127 attributesPermitTailCall(F, CI, RetI, *TLI)) 2128 TailCallBBs.push_back(PredBB); 2129 } 2130 } else { 2131 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2132 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2133 if (!VisitedBBs.insert(*PI).second) 2134 continue; 2135 2136 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2137 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2138 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2139 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2140 if (RI == RE) 2141 continue; 2142 2143 CallInst *CI = dyn_cast<CallInst>(&*RI); 2144 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2145 attributesPermitTailCall(F, CI, RetI, *TLI)) 2146 TailCallBBs.push_back(*PI); 2147 } 2148 } 2149 2150 bool Changed = false; 2151 for (auto const &TailCallBB : TailCallBBs) { 2152 // Make sure the call instruction is followed by an unconditional branch to 2153 // the return block. 2154 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2155 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2156 continue; 2157 2158 // Duplicate the return into TailCallBB. 2159 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2160 ModifiedDT = Changed = true; 2161 ++NumRetsDup; 2162 } 2163 2164 // If we eliminated all predecessors of the block, delete the block now. 2165 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2166 BB->eraseFromParent(); 2167 2168 return Changed; 2169 } 2170 2171 //===----------------------------------------------------------------------===// 2172 // Memory Optimization 2173 //===----------------------------------------------------------------------===// 2174 2175 namespace { 2176 2177 /// This is an extended version of TargetLowering::AddrMode 2178 /// which holds actual Value*'s for register values. 2179 struct ExtAddrMode : public TargetLowering::AddrMode { 2180 Value *BaseReg = nullptr; 2181 Value *ScaledReg = nullptr; 2182 Value *OriginalValue = nullptr; 2183 bool InBounds = true; 2184 2185 enum FieldName { 2186 NoField = 0x00, 2187 BaseRegField = 0x01, 2188 BaseGVField = 0x02, 2189 BaseOffsField = 0x04, 2190 ScaledRegField = 0x08, 2191 ScaleField = 0x10, 2192 MultipleFields = 0xff 2193 }; 2194 2195 2196 ExtAddrMode() = default; 2197 2198 void print(raw_ostream &OS) const; 2199 void dump() const; 2200 2201 FieldName compare(const ExtAddrMode &other) { 2202 // First check that the types are the same on each field, as differing types 2203 // is something we can't cope with later on. 2204 if (BaseReg && other.BaseReg && 2205 BaseReg->getType() != other.BaseReg->getType()) 2206 return MultipleFields; 2207 if (BaseGV && other.BaseGV && 2208 BaseGV->getType() != other.BaseGV->getType()) 2209 return MultipleFields; 2210 if (ScaledReg && other.ScaledReg && 2211 ScaledReg->getType() != other.ScaledReg->getType()) 2212 return MultipleFields; 2213 2214 // Conservatively reject 'inbounds' mismatches. 2215 if (InBounds != other.InBounds) 2216 return MultipleFields; 2217 2218 // Check each field to see if it differs. 2219 unsigned Result = NoField; 2220 if (BaseReg != other.BaseReg) 2221 Result |= BaseRegField; 2222 if (BaseGV != other.BaseGV) 2223 Result |= BaseGVField; 2224 if (BaseOffs != other.BaseOffs) 2225 Result |= BaseOffsField; 2226 if (ScaledReg != other.ScaledReg) 2227 Result |= ScaledRegField; 2228 // Don't count 0 as being a different scale, because that actually means 2229 // unscaled (which will already be counted by having no ScaledReg). 2230 if (Scale && other.Scale && Scale != other.Scale) 2231 Result |= ScaleField; 2232 2233 if (countPopulation(Result) > 1) 2234 return MultipleFields; 2235 else 2236 return static_cast<FieldName>(Result); 2237 } 2238 2239 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2240 // with no offset. 2241 bool isTrivial() { 2242 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2243 // trivial if at most one of these terms is nonzero, except that BaseGV and 2244 // BaseReg both being zero actually means a null pointer value, which we 2245 // consider to be 'non-zero' here. 2246 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2247 } 2248 2249 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2250 switch (Field) { 2251 default: 2252 return nullptr; 2253 case BaseRegField: 2254 return BaseReg; 2255 case BaseGVField: 2256 return BaseGV; 2257 case ScaledRegField: 2258 return ScaledReg; 2259 case BaseOffsField: 2260 return ConstantInt::get(IntPtrTy, BaseOffs); 2261 } 2262 } 2263 2264 void SetCombinedField(FieldName Field, Value *V, 2265 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2266 switch (Field) { 2267 default: 2268 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2269 break; 2270 case ExtAddrMode::BaseRegField: 2271 BaseReg = V; 2272 break; 2273 case ExtAddrMode::BaseGVField: 2274 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2275 // in the BaseReg field. 2276 assert(BaseReg == nullptr); 2277 BaseReg = V; 2278 BaseGV = nullptr; 2279 break; 2280 case ExtAddrMode::ScaledRegField: 2281 ScaledReg = V; 2282 // If we have a mix of scaled and unscaled addrmodes then we want scale 2283 // to be the scale and not zero. 2284 if (!Scale) 2285 for (const ExtAddrMode &AM : AddrModes) 2286 if (AM.Scale) { 2287 Scale = AM.Scale; 2288 break; 2289 } 2290 break; 2291 case ExtAddrMode::BaseOffsField: 2292 // The offset is no longer a constant, so it goes in ScaledReg with a 2293 // scale of 1. 2294 assert(ScaledReg == nullptr); 2295 ScaledReg = V; 2296 Scale = 1; 2297 BaseOffs = 0; 2298 break; 2299 } 2300 } 2301 }; 2302 2303 } // end anonymous namespace 2304 2305 #ifndef NDEBUG 2306 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2307 AM.print(OS); 2308 return OS; 2309 } 2310 #endif 2311 2312 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2313 void ExtAddrMode::print(raw_ostream &OS) const { 2314 bool NeedPlus = false; 2315 OS << "["; 2316 if (InBounds) 2317 OS << "inbounds "; 2318 if (BaseGV) { 2319 OS << (NeedPlus ? " + " : "") 2320 << "GV:"; 2321 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2322 NeedPlus = true; 2323 } 2324 2325 if (BaseOffs) { 2326 OS << (NeedPlus ? " + " : "") 2327 << BaseOffs; 2328 NeedPlus = true; 2329 } 2330 2331 if (BaseReg) { 2332 OS << (NeedPlus ? " + " : "") 2333 << "Base:"; 2334 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2335 NeedPlus = true; 2336 } 2337 if (Scale) { 2338 OS << (NeedPlus ? " + " : "") 2339 << Scale << "*"; 2340 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2341 } 2342 2343 OS << ']'; 2344 } 2345 2346 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2347 print(dbgs()); 2348 dbgs() << '\n'; 2349 } 2350 #endif 2351 2352 namespace { 2353 2354 /// This class provides transaction based operation on the IR. 2355 /// Every change made through this class is recorded in the internal state and 2356 /// can be undone (rollback) until commit is called. 2357 class TypePromotionTransaction { 2358 /// This represents the common interface of the individual transaction. 2359 /// Each class implements the logic for doing one specific modification on 2360 /// the IR via the TypePromotionTransaction. 2361 class TypePromotionAction { 2362 protected: 2363 /// The Instruction modified. 2364 Instruction *Inst; 2365 2366 public: 2367 /// Constructor of the action. 2368 /// The constructor performs the related action on the IR. 2369 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2370 2371 virtual ~TypePromotionAction() = default; 2372 2373 /// Undo the modification done by this action. 2374 /// When this method is called, the IR must be in the same state as it was 2375 /// before this action was applied. 2376 /// \pre Undoing the action works if and only if the IR is in the exact same 2377 /// state as it was directly after this action was applied. 2378 virtual void undo() = 0; 2379 2380 /// Advocate every change made by this action. 2381 /// When the results on the IR of the action are to be kept, it is important 2382 /// to call this function, otherwise hidden information may be kept forever. 2383 virtual void commit() { 2384 // Nothing to be done, this action is not doing anything. 2385 } 2386 }; 2387 2388 /// Utility to remember the position of an instruction. 2389 class InsertionHandler { 2390 /// Position of an instruction. 2391 /// Either an instruction: 2392 /// - Is the first in a basic block: BB is used. 2393 /// - Has a previous instruction: PrevInst is used. 2394 union { 2395 Instruction *PrevInst; 2396 BasicBlock *BB; 2397 } Point; 2398 2399 /// Remember whether or not the instruction had a previous instruction. 2400 bool HasPrevInstruction; 2401 2402 public: 2403 /// Record the position of \p Inst. 2404 InsertionHandler(Instruction *Inst) { 2405 BasicBlock::iterator It = Inst->getIterator(); 2406 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2407 if (HasPrevInstruction) 2408 Point.PrevInst = &*--It; 2409 else 2410 Point.BB = Inst->getParent(); 2411 } 2412 2413 /// Insert \p Inst at the recorded position. 2414 void insert(Instruction *Inst) { 2415 if (HasPrevInstruction) { 2416 if (Inst->getParent()) 2417 Inst->removeFromParent(); 2418 Inst->insertAfter(Point.PrevInst); 2419 } else { 2420 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2421 if (Inst->getParent()) 2422 Inst->moveBefore(Position); 2423 else 2424 Inst->insertBefore(Position); 2425 } 2426 } 2427 }; 2428 2429 /// Move an instruction before another. 2430 class InstructionMoveBefore : public TypePromotionAction { 2431 /// Original position of the instruction. 2432 InsertionHandler Position; 2433 2434 public: 2435 /// Move \p Inst before \p Before. 2436 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2437 : TypePromotionAction(Inst), Position(Inst) { 2438 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2439 << "\n"); 2440 Inst->moveBefore(Before); 2441 } 2442 2443 /// Move the instruction back to its original position. 2444 void undo() override { 2445 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2446 Position.insert(Inst); 2447 } 2448 }; 2449 2450 /// Set the operand of an instruction with a new value. 2451 class OperandSetter : public TypePromotionAction { 2452 /// Original operand of the instruction. 2453 Value *Origin; 2454 2455 /// Index of the modified instruction. 2456 unsigned Idx; 2457 2458 public: 2459 /// Set \p Idx operand of \p Inst with \p NewVal. 2460 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2461 : TypePromotionAction(Inst), Idx(Idx) { 2462 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2463 << "for:" << *Inst << "\n" 2464 << "with:" << *NewVal << "\n"); 2465 Origin = Inst->getOperand(Idx); 2466 Inst->setOperand(Idx, NewVal); 2467 } 2468 2469 /// Restore the original value of the instruction. 2470 void undo() override { 2471 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2472 << "for: " << *Inst << "\n" 2473 << "with: " << *Origin << "\n"); 2474 Inst->setOperand(Idx, Origin); 2475 } 2476 }; 2477 2478 /// Hide the operands of an instruction. 2479 /// Do as if this instruction was not using any of its operands. 2480 class OperandsHider : public TypePromotionAction { 2481 /// The list of original operands. 2482 SmallVector<Value *, 4> OriginalValues; 2483 2484 public: 2485 /// Remove \p Inst from the uses of the operands of \p Inst. 2486 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2487 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2488 unsigned NumOpnds = Inst->getNumOperands(); 2489 OriginalValues.reserve(NumOpnds); 2490 for (unsigned It = 0; It < NumOpnds; ++It) { 2491 // Save the current operand. 2492 Value *Val = Inst->getOperand(It); 2493 OriginalValues.push_back(Val); 2494 // Set a dummy one. 2495 // We could use OperandSetter here, but that would imply an overhead 2496 // that we are not willing to pay. 2497 Inst->setOperand(It, UndefValue::get(Val->getType())); 2498 } 2499 } 2500 2501 /// Restore the original list of uses. 2502 void undo() override { 2503 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2504 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2505 Inst->setOperand(It, OriginalValues[It]); 2506 } 2507 }; 2508 2509 /// Build a truncate instruction. 2510 class TruncBuilder : public TypePromotionAction { 2511 Value *Val; 2512 2513 public: 2514 /// Build a truncate instruction of \p Opnd producing a \p Ty 2515 /// result. 2516 /// trunc Opnd to Ty. 2517 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2518 IRBuilder<> Builder(Opnd); 2519 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2520 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2521 } 2522 2523 /// Get the built value. 2524 Value *getBuiltValue() { return Val; } 2525 2526 /// Remove the built instruction. 2527 void undo() override { 2528 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2529 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2530 IVal->eraseFromParent(); 2531 } 2532 }; 2533 2534 /// Build a sign extension instruction. 2535 class SExtBuilder : public TypePromotionAction { 2536 Value *Val; 2537 2538 public: 2539 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2540 /// result. 2541 /// sext Opnd to Ty. 2542 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2543 : TypePromotionAction(InsertPt) { 2544 IRBuilder<> Builder(InsertPt); 2545 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2546 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2547 } 2548 2549 /// Get the built value. 2550 Value *getBuiltValue() { return Val; } 2551 2552 /// Remove the built instruction. 2553 void undo() override { 2554 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2555 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2556 IVal->eraseFromParent(); 2557 } 2558 }; 2559 2560 /// Build a zero extension instruction. 2561 class ZExtBuilder : public TypePromotionAction { 2562 Value *Val; 2563 2564 public: 2565 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2566 /// result. 2567 /// zext Opnd to Ty. 2568 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2569 : TypePromotionAction(InsertPt) { 2570 IRBuilder<> Builder(InsertPt); 2571 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2572 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2573 } 2574 2575 /// Get the built value. 2576 Value *getBuiltValue() { return Val; } 2577 2578 /// Remove the built instruction. 2579 void undo() override { 2580 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2581 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2582 IVal->eraseFromParent(); 2583 } 2584 }; 2585 2586 /// Mutate an instruction to another type. 2587 class TypeMutator : public TypePromotionAction { 2588 /// Record the original type. 2589 Type *OrigTy; 2590 2591 public: 2592 /// Mutate the type of \p Inst into \p NewTy. 2593 TypeMutator(Instruction *Inst, Type *NewTy) 2594 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2595 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2596 << "\n"); 2597 Inst->mutateType(NewTy); 2598 } 2599 2600 /// Mutate the instruction back to its original type. 2601 void undo() override { 2602 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2603 << "\n"); 2604 Inst->mutateType(OrigTy); 2605 } 2606 }; 2607 2608 /// Replace the uses of an instruction by another instruction. 2609 class UsesReplacer : public TypePromotionAction { 2610 /// Helper structure to keep track of the replaced uses. 2611 struct InstructionAndIdx { 2612 /// The instruction using the instruction. 2613 Instruction *Inst; 2614 2615 /// The index where this instruction is used for Inst. 2616 unsigned Idx; 2617 2618 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2619 : Inst(Inst), Idx(Idx) {} 2620 }; 2621 2622 /// Keep track of the original uses (pair Instruction, Index). 2623 SmallVector<InstructionAndIdx, 4> OriginalUses; 2624 /// Keep track of the debug users. 2625 SmallVector<DbgValueInst *, 1> DbgValues; 2626 2627 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2628 2629 public: 2630 /// Replace all the use of \p Inst by \p New. 2631 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2632 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2633 << "\n"); 2634 // Record the original uses. 2635 for (Use &U : Inst->uses()) { 2636 Instruction *UserI = cast<Instruction>(U.getUser()); 2637 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2638 } 2639 // Record the debug uses separately. They are not in the instruction's 2640 // use list, but they are replaced by RAUW. 2641 findDbgValues(DbgValues, Inst); 2642 2643 // Now, we can replace the uses. 2644 Inst->replaceAllUsesWith(New); 2645 } 2646 2647 /// Reassign the original uses of Inst to Inst. 2648 void undo() override { 2649 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2650 for (use_iterator UseIt = OriginalUses.begin(), 2651 EndIt = OriginalUses.end(); 2652 UseIt != EndIt; ++UseIt) { 2653 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2654 } 2655 // RAUW has replaced all original uses with references to the new value, 2656 // including the debug uses. Since we are undoing the replacements, 2657 // the original debug uses must also be reinstated to maintain the 2658 // correctness and utility of debug value instructions. 2659 for (auto *DVI: DbgValues) { 2660 LLVMContext &Ctx = Inst->getType()->getContext(); 2661 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2662 DVI->setOperand(0, MV); 2663 } 2664 } 2665 }; 2666 2667 /// Remove an instruction from the IR. 2668 class InstructionRemover : public TypePromotionAction { 2669 /// Original position of the instruction. 2670 InsertionHandler Inserter; 2671 2672 /// Helper structure to hide all the link to the instruction. In other 2673 /// words, this helps to do as if the instruction was removed. 2674 OperandsHider Hider; 2675 2676 /// Keep track of the uses replaced, if any. 2677 UsesReplacer *Replacer = nullptr; 2678 2679 /// Keep track of instructions removed. 2680 SetOfInstrs &RemovedInsts; 2681 2682 public: 2683 /// Remove all reference of \p Inst and optionally replace all its 2684 /// uses with New. 2685 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2686 /// \pre If !Inst->use_empty(), then New != nullptr 2687 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2688 Value *New = nullptr) 2689 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2690 RemovedInsts(RemovedInsts) { 2691 if (New) 2692 Replacer = new UsesReplacer(Inst, New); 2693 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2694 RemovedInsts.insert(Inst); 2695 /// The instructions removed here will be freed after completing 2696 /// optimizeBlock() for all blocks as we need to keep track of the 2697 /// removed instructions during promotion. 2698 Inst->removeFromParent(); 2699 } 2700 2701 ~InstructionRemover() override { delete Replacer; } 2702 2703 /// Resurrect the instruction and reassign it to the proper uses if 2704 /// new value was provided when build this action. 2705 void undo() override { 2706 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2707 Inserter.insert(Inst); 2708 if (Replacer) 2709 Replacer->undo(); 2710 Hider.undo(); 2711 RemovedInsts.erase(Inst); 2712 } 2713 }; 2714 2715 public: 2716 /// Restoration point. 2717 /// The restoration point is a pointer to an action instead of an iterator 2718 /// because the iterator may be invalidated but not the pointer. 2719 using ConstRestorationPt = const TypePromotionAction *; 2720 2721 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2722 : RemovedInsts(RemovedInsts) {} 2723 2724 /// Advocate every changes made in that transaction. 2725 void commit(); 2726 2727 /// Undo all the changes made after the given point. 2728 void rollback(ConstRestorationPt Point); 2729 2730 /// Get the current restoration point. 2731 ConstRestorationPt getRestorationPoint() const; 2732 2733 /// \name API for IR modification with state keeping to support rollback. 2734 /// @{ 2735 /// Same as Instruction::setOperand. 2736 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2737 2738 /// Same as Instruction::eraseFromParent. 2739 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2740 2741 /// Same as Value::replaceAllUsesWith. 2742 void replaceAllUsesWith(Instruction *Inst, Value *New); 2743 2744 /// Same as Value::mutateType. 2745 void mutateType(Instruction *Inst, Type *NewTy); 2746 2747 /// Same as IRBuilder::createTrunc. 2748 Value *createTrunc(Instruction *Opnd, Type *Ty); 2749 2750 /// Same as IRBuilder::createSExt. 2751 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2752 2753 /// Same as IRBuilder::createZExt. 2754 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2755 2756 /// Same as Instruction::moveBefore. 2757 void moveBefore(Instruction *Inst, Instruction *Before); 2758 /// @} 2759 2760 private: 2761 /// The ordered list of actions made so far. 2762 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2763 2764 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2765 2766 SetOfInstrs &RemovedInsts; 2767 }; 2768 2769 } // end anonymous namespace 2770 2771 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2772 Value *NewVal) { 2773 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2774 Inst, Idx, NewVal)); 2775 } 2776 2777 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2778 Value *NewVal) { 2779 Actions.push_back( 2780 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2781 Inst, RemovedInsts, NewVal)); 2782 } 2783 2784 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2785 Value *New) { 2786 Actions.push_back( 2787 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2788 } 2789 2790 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2791 Actions.push_back( 2792 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2793 } 2794 2795 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2796 Type *Ty) { 2797 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2798 Value *Val = Ptr->getBuiltValue(); 2799 Actions.push_back(std::move(Ptr)); 2800 return Val; 2801 } 2802 2803 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2804 Value *Opnd, Type *Ty) { 2805 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2806 Value *Val = Ptr->getBuiltValue(); 2807 Actions.push_back(std::move(Ptr)); 2808 return Val; 2809 } 2810 2811 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2812 Value *Opnd, Type *Ty) { 2813 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2814 Value *Val = Ptr->getBuiltValue(); 2815 Actions.push_back(std::move(Ptr)); 2816 return Val; 2817 } 2818 2819 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2820 Instruction *Before) { 2821 Actions.push_back( 2822 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2823 Inst, Before)); 2824 } 2825 2826 TypePromotionTransaction::ConstRestorationPt 2827 TypePromotionTransaction::getRestorationPoint() const { 2828 return !Actions.empty() ? Actions.back().get() : nullptr; 2829 } 2830 2831 void TypePromotionTransaction::commit() { 2832 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2833 ++It) 2834 (*It)->commit(); 2835 Actions.clear(); 2836 } 2837 2838 void TypePromotionTransaction::rollback( 2839 TypePromotionTransaction::ConstRestorationPt Point) { 2840 while (!Actions.empty() && Point != Actions.back().get()) { 2841 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2842 Curr->undo(); 2843 } 2844 } 2845 2846 namespace { 2847 2848 /// A helper class for matching addressing modes. 2849 /// 2850 /// This encapsulates the logic for matching the target-legal addressing modes. 2851 class AddressingModeMatcher { 2852 SmallVectorImpl<Instruction*> &AddrModeInsts; 2853 const TargetLowering &TLI; 2854 const TargetRegisterInfo &TRI; 2855 const DataLayout &DL; 2856 2857 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2858 /// the memory instruction that we're computing this address for. 2859 Type *AccessTy; 2860 unsigned AddrSpace; 2861 Instruction *MemoryInst; 2862 2863 /// This is the addressing mode that we're building up. This is 2864 /// part of the return value of this addressing mode matching stuff. 2865 ExtAddrMode &AddrMode; 2866 2867 /// The instructions inserted by other CodeGenPrepare optimizations. 2868 const SetOfInstrs &InsertedInsts; 2869 2870 /// A map from the instructions to their type before promotion. 2871 InstrToOrigTy &PromotedInsts; 2872 2873 /// The ongoing transaction where every action should be registered. 2874 TypePromotionTransaction &TPT; 2875 2876 // A GEP which has too large offset to be folded into the addressing mode. 2877 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2878 2879 /// This is set to true when we should not do profitability checks. 2880 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2881 bool IgnoreProfitability; 2882 2883 /// True if we are optimizing for size. 2884 bool OptSize; 2885 2886 ProfileSummaryInfo *PSI; 2887 BlockFrequencyInfo *BFI; 2888 2889 AddressingModeMatcher( 2890 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2891 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2892 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2893 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2894 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2895 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2896 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2897 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2898 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2899 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2900 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2901 IgnoreProfitability = false; 2902 } 2903 2904 public: 2905 /// Find the maximal addressing mode that a load/store of V can fold, 2906 /// give an access type of AccessTy. This returns a list of involved 2907 /// instructions in AddrModeInsts. 2908 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2909 /// optimizations. 2910 /// \p PromotedInsts maps the instructions to their type before promotion. 2911 /// \p The ongoing transaction where every action should be registered. 2912 static ExtAddrMode 2913 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2914 SmallVectorImpl<Instruction *> &AddrModeInsts, 2915 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2916 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2917 TypePromotionTransaction &TPT, 2918 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2919 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2920 ExtAddrMode Result; 2921 2922 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2923 MemoryInst, Result, InsertedInsts, 2924 PromotedInsts, TPT, LargeOffsetGEP, 2925 OptSize, PSI, BFI) 2926 .matchAddr(V, 0); 2927 (void)Success; assert(Success && "Couldn't select *anything*?"); 2928 return Result; 2929 } 2930 2931 private: 2932 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2933 bool matchAddr(Value *Addr, unsigned Depth); 2934 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2935 bool *MovedAway = nullptr); 2936 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2937 ExtAddrMode &AMBefore, 2938 ExtAddrMode &AMAfter); 2939 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2940 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2941 Value *PromotedOperand) const; 2942 }; 2943 2944 class PhiNodeSet; 2945 2946 /// An iterator for PhiNodeSet. 2947 class PhiNodeSetIterator { 2948 PhiNodeSet * const Set; 2949 size_t CurrentIndex = 0; 2950 2951 public: 2952 /// The constructor. Start should point to either a valid element, or be equal 2953 /// to the size of the underlying SmallVector of the PhiNodeSet. 2954 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2955 PHINode * operator*() const; 2956 PhiNodeSetIterator& operator++(); 2957 bool operator==(const PhiNodeSetIterator &RHS) const; 2958 bool operator!=(const PhiNodeSetIterator &RHS) const; 2959 }; 2960 2961 /// Keeps a set of PHINodes. 2962 /// 2963 /// This is a minimal set implementation for a specific use case: 2964 /// It is very fast when there are very few elements, but also provides good 2965 /// performance when there are many. It is similar to SmallPtrSet, but also 2966 /// provides iteration by insertion order, which is deterministic and stable 2967 /// across runs. It is also similar to SmallSetVector, but provides removing 2968 /// elements in O(1) time. This is achieved by not actually removing the element 2969 /// from the underlying vector, so comes at the cost of using more memory, but 2970 /// that is fine, since PhiNodeSets are used as short lived objects. 2971 class PhiNodeSet { 2972 friend class PhiNodeSetIterator; 2973 2974 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2975 using iterator = PhiNodeSetIterator; 2976 2977 /// Keeps the elements in the order of their insertion in the underlying 2978 /// vector. To achieve constant time removal, it never deletes any element. 2979 SmallVector<PHINode *, 32> NodeList; 2980 2981 /// Keeps the elements in the underlying set implementation. This (and not the 2982 /// NodeList defined above) is the source of truth on whether an element 2983 /// is actually in the collection. 2984 MapType NodeMap; 2985 2986 /// Points to the first valid (not deleted) element when the set is not empty 2987 /// and the value is not zero. Equals to the size of the underlying vector 2988 /// when the set is empty. When the value is 0, as in the beginning, the 2989 /// first element may or may not be valid. 2990 size_t FirstValidElement = 0; 2991 2992 public: 2993 /// Inserts a new element to the collection. 2994 /// \returns true if the element is actually added, i.e. was not in the 2995 /// collection before the operation. 2996 bool insert(PHINode *Ptr) { 2997 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2998 NodeList.push_back(Ptr); 2999 return true; 3000 } 3001 return false; 3002 } 3003 3004 /// Removes the element from the collection. 3005 /// \returns whether the element is actually removed, i.e. was in the 3006 /// collection before the operation. 3007 bool erase(PHINode *Ptr) { 3008 auto it = NodeMap.find(Ptr); 3009 if (it != NodeMap.end()) { 3010 NodeMap.erase(Ptr); 3011 SkipRemovedElements(FirstValidElement); 3012 return true; 3013 } 3014 return false; 3015 } 3016 3017 /// Removes all elements and clears the collection. 3018 void clear() { 3019 NodeMap.clear(); 3020 NodeList.clear(); 3021 FirstValidElement = 0; 3022 } 3023 3024 /// \returns an iterator that will iterate the elements in the order of 3025 /// insertion. 3026 iterator begin() { 3027 if (FirstValidElement == 0) 3028 SkipRemovedElements(FirstValidElement); 3029 return PhiNodeSetIterator(this, FirstValidElement); 3030 } 3031 3032 /// \returns an iterator that points to the end of the collection. 3033 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3034 3035 /// Returns the number of elements in the collection. 3036 size_t size() const { 3037 return NodeMap.size(); 3038 } 3039 3040 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3041 size_t count(PHINode *Ptr) const { 3042 return NodeMap.count(Ptr); 3043 } 3044 3045 private: 3046 /// Updates the CurrentIndex so that it will point to a valid element. 3047 /// 3048 /// If the element of NodeList at CurrentIndex is valid, it does not 3049 /// change it. If there are no more valid elements, it updates CurrentIndex 3050 /// to point to the end of the NodeList. 3051 void SkipRemovedElements(size_t &CurrentIndex) { 3052 while (CurrentIndex < NodeList.size()) { 3053 auto it = NodeMap.find(NodeList[CurrentIndex]); 3054 // If the element has been deleted and added again later, NodeMap will 3055 // point to a different index, so CurrentIndex will still be invalid. 3056 if (it != NodeMap.end() && it->second == CurrentIndex) 3057 break; 3058 ++CurrentIndex; 3059 } 3060 } 3061 }; 3062 3063 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3064 : Set(Set), CurrentIndex(Start) {} 3065 3066 PHINode * PhiNodeSetIterator::operator*() const { 3067 assert(CurrentIndex < Set->NodeList.size() && 3068 "PhiNodeSet access out of range"); 3069 return Set->NodeList[CurrentIndex]; 3070 } 3071 3072 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3073 assert(CurrentIndex < Set->NodeList.size() && 3074 "PhiNodeSet access out of range"); 3075 ++CurrentIndex; 3076 Set->SkipRemovedElements(CurrentIndex); 3077 return *this; 3078 } 3079 3080 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3081 return CurrentIndex == RHS.CurrentIndex; 3082 } 3083 3084 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3085 return !((*this) == RHS); 3086 } 3087 3088 /// Keep track of simplification of Phi nodes. 3089 /// Accept the set of all phi nodes and erase phi node from this set 3090 /// if it is simplified. 3091 class SimplificationTracker { 3092 DenseMap<Value *, Value *> Storage; 3093 const SimplifyQuery &SQ; 3094 // Tracks newly created Phi nodes. The elements are iterated by insertion 3095 // order. 3096 PhiNodeSet AllPhiNodes; 3097 // Tracks newly created Select nodes. 3098 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3099 3100 public: 3101 SimplificationTracker(const SimplifyQuery &sq) 3102 : SQ(sq) {} 3103 3104 Value *Get(Value *V) { 3105 do { 3106 auto SV = Storage.find(V); 3107 if (SV == Storage.end()) 3108 return V; 3109 V = SV->second; 3110 } while (true); 3111 } 3112 3113 Value *Simplify(Value *Val) { 3114 SmallVector<Value *, 32> WorkList; 3115 SmallPtrSet<Value *, 32> Visited; 3116 WorkList.push_back(Val); 3117 while (!WorkList.empty()) { 3118 auto P = WorkList.pop_back_val(); 3119 if (!Visited.insert(P).second) 3120 continue; 3121 if (auto *PI = dyn_cast<Instruction>(P)) 3122 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3123 for (auto *U : PI->users()) 3124 WorkList.push_back(cast<Value>(U)); 3125 Put(PI, V); 3126 PI->replaceAllUsesWith(V); 3127 if (auto *PHI = dyn_cast<PHINode>(PI)) 3128 AllPhiNodes.erase(PHI); 3129 if (auto *Select = dyn_cast<SelectInst>(PI)) 3130 AllSelectNodes.erase(Select); 3131 PI->eraseFromParent(); 3132 } 3133 } 3134 return Get(Val); 3135 } 3136 3137 void Put(Value *From, Value *To) { 3138 Storage.insert({ From, To }); 3139 } 3140 3141 void ReplacePhi(PHINode *From, PHINode *To) { 3142 Value* OldReplacement = Get(From); 3143 while (OldReplacement != From) { 3144 From = To; 3145 To = dyn_cast<PHINode>(OldReplacement); 3146 OldReplacement = Get(From); 3147 } 3148 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3149 Put(From, To); 3150 From->replaceAllUsesWith(To); 3151 AllPhiNodes.erase(From); 3152 From->eraseFromParent(); 3153 } 3154 3155 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3156 3157 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3158 3159 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3160 3161 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3162 3163 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3164 3165 void destroyNewNodes(Type *CommonType) { 3166 // For safe erasing, replace the uses with dummy value first. 3167 auto Dummy = UndefValue::get(CommonType); 3168 for (auto I : AllPhiNodes) { 3169 I->replaceAllUsesWith(Dummy); 3170 I->eraseFromParent(); 3171 } 3172 AllPhiNodes.clear(); 3173 for (auto I : AllSelectNodes) { 3174 I->replaceAllUsesWith(Dummy); 3175 I->eraseFromParent(); 3176 } 3177 AllSelectNodes.clear(); 3178 } 3179 }; 3180 3181 /// A helper class for combining addressing modes. 3182 class AddressingModeCombiner { 3183 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3184 typedef std::pair<PHINode *, PHINode *> PHIPair; 3185 3186 private: 3187 /// The addressing modes we've collected. 3188 SmallVector<ExtAddrMode, 16> AddrModes; 3189 3190 /// The field in which the AddrModes differ, when we have more than one. 3191 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3192 3193 /// Are the AddrModes that we have all just equal to their original values? 3194 bool AllAddrModesTrivial = true; 3195 3196 /// Common Type for all different fields in addressing modes. 3197 Type *CommonType; 3198 3199 /// SimplifyQuery for simplifyInstruction utility. 3200 const SimplifyQuery &SQ; 3201 3202 /// Original Address. 3203 Value *Original; 3204 3205 public: 3206 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3207 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3208 3209 /// Get the combined AddrMode 3210 const ExtAddrMode &getAddrMode() const { 3211 return AddrModes[0]; 3212 } 3213 3214 /// Add a new AddrMode if it's compatible with the AddrModes we already 3215 /// have. 3216 /// \return True iff we succeeded in doing so. 3217 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3218 // Take note of if we have any non-trivial AddrModes, as we need to detect 3219 // when all AddrModes are trivial as then we would introduce a phi or select 3220 // which just duplicates what's already there. 3221 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3222 3223 // If this is the first addrmode then everything is fine. 3224 if (AddrModes.empty()) { 3225 AddrModes.emplace_back(NewAddrMode); 3226 return true; 3227 } 3228 3229 // Figure out how different this is from the other address modes, which we 3230 // can do just by comparing against the first one given that we only care 3231 // about the cumulative difference. 3232 ExtAddrMode::FieldName ThisDifferentField = 3233 AddrModes[0].compare(NewAddrMode); 3234 if (DifferentField == ExtAddrMode::NoField) 3235 DifferentField = ThisDifferentField; 3236 else if (DifferentField != ThisDifferentField) 3237 DifferentField = ExtAddrMode::MultipleFields; 3238 3239 // If NewAddrMode differs in more than one dimension we cannot handle it. 3240 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3241 3242 // If Scale Field is different then we reject. 3243 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3244 3245 // We also must reject the case when base offset is different and 3246 // scale reg is not null, we cannot handle this case due to merge of 3247 // different offsets will be used as ScaleReg. 3248 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3249 !NewAddrMode.ScaledReg); 3250 3251 // We also must reject the case when GV is different and BaseReg installed 3252 // due to we want to use base reg as a merge of GV values. 3253 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3254 !NewAddrMode.HasBaseReg); 3255 3256 // Even if NewAddMode is the same we still need to collect it due to 3257 // original value is different. And later we will need all original values 3258 // as anchors during finding the common Phi node. 3259 if (CanHandle) 3260 AddrModes.emplace_back(NewAddrMode); 3261 else 3262 AddrModes.clear(); 3263 3264 return CanHandle; 3265 } 3266 3267 /// Combine the addressing modes we've collected into a single 3268 /// addressing mode. 3269 /// \return True iff we successfully combined them or we only had one so 3270 /// didn't need to combine them anyway. 3271 bool combineAddrModes() { 3272 // If we have no AddrModes then they can't be combined. 3273 if (AddrModes.size() == 0) 3274 return false; 3275 3276 // A single AddrMode can trivially be combined. 3277 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3278 return true; 3279 3280 // If the AddrModes we collected are all just equal to the value they are 3281 // derived from then combining them wouldn't do anything useful. 3282 if (AllAddrModesTrivial) 3283 return false; 3284 3285 if (!addrModeCombiningAllowed()) 3286 return false; 3287 3288 // Build a map between <original value, basic block where we saw it> to 3289 // value of base register. 3290 // Bail out if there is no common type. 3291 FoldAddrToValueMapping Map; 3292 if (!initializeMap(Map)) 3293 return false; 3294 3295 Value *CommonValue = findCommon(Map); 3296 if (CommonValue) 3297 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3298 return CommonValue != nullptr; 3299 } 3300 3301 private: 3302 /// Initialize Map with anchor values. For address seen 3303 /// we set the value of different field saw in this address. 3304 /// At the same time we find a common type for different field we will 3305 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3306 /// Return false if there is no common type found. 3307 bool initializeMap(FoldAddrToValueMapping &Map) { 3308 // Keep track of keys where the value is null. We will need to replace it 3309 // with constant null when we know the common type. 3310 SmallVector<Value *, 2> NullValue; 3311 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3312 for (auto &AM : AddrModes) { 3313 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3314 if (DV) { 3315 auto *Type = DV->getType(); 3316 if (CommonType && CommonType != Type) 3317 return false; 3318 CommonType = Type; 3319 Map[AM.OriginalValue] = DV; 3320 } else { 3321 NullValue.push_back(AM.OriginalValue); 3322 } 3323 } 3324 assert(CommonType && "At least one non-null value must be!"); 3325 for (auto *V : NullValue) 3326 Map[V] = Constant::getNullValue(CommonType); 3327 return true; 3328 } 3329 3330 /// We have mapping between value A and other value B where B was a field in 3331 /// addressing mode represented by A. Also we have an original value C 3332 /// representing an address we start with. Traversing from C through phi and 3333 /// selects we ended up with A's in a map. This utility function tries to find 3334 /// a value V which is a field in addressing mode C and traversing through phi 3335 /// nodes and selects we will end up in corresponded values B in a map. 3336 /// The utility will create a new Phi/Selects if needed. 3337 // The simple example looks as follows: 3338 // BB1: 3339 // p1 = b1 + 40 3340 // br cond BB2, BB3 3341 // BB2: 3342 // p2 = b2 + 40 3343 // br BB3 3344 // BB3: 3345 // p = phi [p1, BB1], [p2, BB2] 3346 // v = load p 3347 // Map is 3348 // p1 -> b1 3349 // p2 -> b2 3350 // Request is 3351 // p -> ? 3352 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3353 Value *findCommon(FoldAddrToValueMapping &Map) { 3354 // Tracks the simplification of newly created phi nodes. The reason we use 3355 // this mapping is because we will add new created Phi nodes in AddrToBase. 3356 // Simplification of Phi nodes is recursive, so some Phi node may 3357 // be simplified after we added it to AddrToBase. In reality this 3358 // simplification is possible only if original phi/selects were not 3359 // simplified yet. 3360 // Using this mapping we can find the current value in AddrToBase. 3361 SimplificationTracker ST(SQ); 3362 3363 // First step, DFS to create PHI nodes for all intermediate blocks. 3364 // Also fill traverse order for the second step. 3365 SmallVector<Value *, 32> TraverseOrder; 3366 InsertPlaceholders(Map, TraverseOrder, ST); 3367 3368 // Second Step, fill new nodes by merged values and simplify if possible. 3369 FillPlaceholders(Map, TraverseOrder, ST); 3370 3371 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3372 ST.destroyNewNodes(CommonType); 3373 return nullptr; 3374 } 3375 3376 // Now we'd like to match New Phi nodes to existed ones. 3377 unsigned PhiNotMatchedCount = 0; 3378 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3379 ST.destroyNewNodes(CommonType); 3380 return nullptr; 3381 } 3382 3383 auto *Result = ST.Get(Map.find(Original)->second); 3384 if (Result) { 3385 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3386 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3387 } 3388 return Result; 3389 } 3390 3391 /// Try to match PHI node to Candidate. 3392 /// Matcher tracks the matched Phi nodes. 3393 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3394 SmallSetVector<PHIPair, 8> &Matcher, 3395 PhiNodeSet &PhiNodesToMatch) { 3396 SmallVector<PHIPair, 8> WorkList; 3397 Matcher.insert({ PHI, Candidate }); 3398 SmallSet<PHINode *, 8> MatchedPHIs; 3399 MatchedPHIs.insert(PHI); 3400 WorkList.push_back({ PHI, Candidate }); 3401 SmallSet<PHIPair, 8> Visited; 3402 while (!WorkList.empty()) { 3403 auto Item = WorkList.pop_back_val(); 3404 if (!Visited.insert(Item).second) 3405 continue; 3406 // We iterate over all incoming values to Phi to compare them. 3407 // If values are different and both of them Phi and the first one is a 3408 // Phi we added (subject to match) and both of them is in the same basic 3409 // block then we can match our pair if values match. So we state that 3410 // these values match and add it to work list to verify that. 3411 for (auto B : Item.first->blocks()) { 3412 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3413 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3414 if (FirstValue == SecondValue) 3415 continue; 3416 3417 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3418 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3419 3420 // One of them is not Phi or 3421 // The first one is not Phi node from the set we'd like to match or 3422 // Phi nodes from different basic blocks then 3423 // we will not be able to match. 3424 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3425 FirstPhi->getParent() != SecondPhi->getParent()) 3426 return false; 3427 3428 // If we already matched them then continue. 3429 if (Matcher.count({ FirstPhi, SecondPhi })) 3430 continue; 3431 // So the values are different and does not match. So we need them to 3432 // match. (But we register no more than one match per PHI node, so that 3433 // we won't later try to replace them twice.) 3434 if (MatchedPHIs.insert(FirstPhi).second) 3435 Matcher.insert({ FirstPhi, SecondPhi }); 3436 // But me must check it. 3437 WorkList.push_back({ FirstPhi, SecondPhi }); 3438 } 3439 } 3440 return true; 3441 } 3442 3443 /// For the given set of PHI nodes (in the SimplificationTracker) try 3444 /// to find their equivalents. 3445 /// Returns false if this matching fails and creation of new Phi is disabled. 3446 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3447 unsigned &PhiNotMatchedCount) { 3448 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3449 // order, so the replacements (ReplacePhi) are also done in a deterministic 3450 // order. 3451 SmallSetVector<PHIPair, 8> Matched; 3452 SmallPtrSet<PHINode *, 8> WillNotMatch; 3453 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3454 while (PhiNodesToMatch.size()) { 3455 PHINode *PHI = *PhiNodesToMatch.begin(); 3456 3457 // Add us, if no Phi nodes in the basic block we do not match. 3458 WillNotMatch.clear(); 3459 WillNotMatch.insert(PHI); 3460 3461 // Traverse all Phis until we found equivalent or fail to do that. 3462 bool IsMatched = false; 3463 for (auto &P : PHI->getParent()->phis()) { 3464 if (&P == PHI) 3465 continue; 3466 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3467 break; 3468 // If it does not match, collect all Phi nodes from matcher. 3469 // if we end up with no match, them all these Phi nodes will not match 3470 // later. 3471 for (auto M : Matched) 3472 WillNotMatch.insert(M.first); 3473 Matched.clear(); 3474 } 3475 if (IsMatched) { 3476 // Replace all matched values and erase them. 3477 for (auto MV : Matched) 3478 ST.ReplacePhi(MV.first, MV.second); 3479 Matched.clear(); 3480 continue; 3481 } 3482 // If we are not allowed to create new nodes then bail out. 3483 if (!AllowNewPhiNodes) 3484 return false; 3485 // Just remove all seen values in matcher. They will not match anything. 3486 PhiNotMatchedCount += WillNotMatch.size(); 3487 for (auto *P : WillNotMatch) 3488 PhiNodesToMatch.erase(P); 3489 } 3490 return true; 3491 } 3492 /// Fill the placeholders with values from predecessors and simplify them. 3493 void FillPlaceholders(FoldAddrToValueMapping &Map, 3494 SmallVectorImpl<Value *> &TraverseOrder, 3495 SimplificationTracker &ST) { 3496 while (!TraverseOrder.empty()) { 3497 Value *Current = TraverseOrder.pop_back_val(); 3498 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3499 Value *V = Map[Current]; 3500 3501 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3502 // CurrentValue also must be Select. 3503 auto *CurrentSelect = cast<SelectInst>(Current); 3504 auto *TrueValue = CurrentSelect->getTrueValue(); 3505 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3506 Select->setTrueValue(ST.Get(Map[TrueValue])); 3507 auto *FalseValue = CurrentSelect->getFalseValue(); 3508 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3509 Select->setFalseValue(ST.Get(Map[FalseValue])); 3510 } else { 3511 // Must be a Phi node then. 3512 auto *PHI = cast<PHINode>(V); 3513 // Fill the Phi node with values from predecessors. 3514 for (auto B : predecessors(PHI->getParent())) { 3515 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3516 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3517 PHI->addIncoming(ST.Get(Map[PV]), B); 3518 } 3519 } 3520 Map[Current] = ST.Simplify(V); 3521 } 3522 } 3523 3524 /// Starting from original value recursively iterates over def-use chain up to 3525 /// known ending values represented in a map. For each traversed phi/select 3526 /// inserts a placeholder Phi or Select. 3527 /// Reports all new created Phi/Select nodes by adding them to set. 3528 /// Also reports and order in what values have been traversed. 3529 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3530 SmallVectorImpl<Value *> &TraverseOrder, 3531 SimplificationTracker &ST) { 3532 SmallVector<Value *, 32> Worklist; 3533 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3534 "Address must be a Phi or Select node"); 3535 auto *Dummy = UndefValue::get(CommonType); 3536 Worklist.push_back(Original); 3537 while (!Worklist.empty()) { 3538 Value *Current = Worklist.pop_back_val(); 3539 // if it is already visited or it is an ending value then skip it. 3540 if (Map.find(Current) != Map.end()) 3541 continue; 3542 TraverseOrder.push_back(Current); 3543 3544 // CurrentValue must be a Phi node or select. All others must be covered 3545 // by anchors. 3546 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3547 // Is it OK to get metadata from OrigSelect?! 3548 // Create a Select placeholder with dummy value. 3549 SelectInst *Select = SelectInst::Create( 3550 CurrentSelect->getCondition(), Dummy, Dummy, 3551 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3552 Map[Current] = Select; 3553 ST.insertNewSelect(Select); 3554 // We are interested in True and False values. 3555 Worklist.push_back(CurrentSelect->getTrueValue()); 3556 Worklist.push_back(CurrentSelect->getFalseValue()); 3557 } else { 3558 // It must be a Phi node then. 3559 PHINode *CurrentPhi = cast<PHINode>(Current); 3560 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3561 PHINode *PHI = 3562 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3563 Map[Current] = PHI; 3564 ST.insertNewPhi(PHI); 3565 for (Value *P : CurrentPhi->incoming_values()) 3566 Worklist.push_back(P); 3567 } 3568 } 3569 } 3570 3571 bool addrModeCombiningAllowed() { 3572 if (DisableComplexAddrModes) 3573 return false; 3574 switch (DifferentField) { 3575 default: 3576 return false; 3577 case ExtAddrMode::BaseRegField: 3578 return AddrSinkCombineBaseReg; 3579 case ExtAddrMode::BaseGVField: 3580 return AddrSinkCombineBaseGV; 3581 case ExtAddrMode::BaseOffsField: 3582 return AddrSinkCombineBaseOffs; 3583 case ExtAddrMode::ScaledRegField: 3584 return AddrSinkCombineScaledReg; 3585 } 3586 } 3587 }; 3588 } // end anonymous namespace 3589 3590 /// Try adding ScaleReg*Scale to the current addressing mode. 3591 /// Return true and update AddrMode if this addr mode is legal for the target, 3592 /// false if not. 3593 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3594 unsigned Depth) { 3595 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3596 // mode. Just process that directly. 3597 if (Scale == 1) 3598 return matchAddr(ScaleReg, Depth); 3599 3600 // If the scale is 0, it takes nothing to add this. 3601 if (Scale == 0) 3602 return true; 3603 3604 // If we already have a scale of this value, we can add to it, otherwise, we 3605 // need an available scale field. 3606 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3607 return false; 3608 3609 ExtAddrMode TestAddrMode = AddrMode; 3610 3611 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3612 // [A+B + A*7] -> [B+A*8]. 3613 TestAddrMode.Scale += Scale; 3614 TestAddrMode.ScaledReg = ScaleReg; 3615 3616 // If the new address isn't legal, bail out. 3617 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3618 return false; 3619 3620 // It was legal, so commit it. 3621 AddrMode = TestAddrMode; 3622 3623 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3624 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3625 // X*Scale + C*Scale to addr mode. 3626 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3627 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3628 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3629 TestAddrMode.InBounds = false; 3630 TestAddrMode.ScaledReg = AddLHS; 3631 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3632 3633 // If this addressing mode is legal, commit it and remember that we folded 3634 // this instruction. 3635 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3636 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3637 AddrMode = TestAddrMode; 3638 return true; 3639 } 3640 } 3641 3642 // Otherwise, not (x+c)*scale, just return what we have. 3643 return true; 3644 } 3645 3646 /// This is a little filter, which returns true if an addressing computation 3647 /// involving I might be folded into a load/store accessing it. 3648 /// This doesn't need to be perfect, but needs to accept at least 3649 /// the set of instructions that MatchOperationAddr can. 3650 static bool MightBeFoldableInst(Instruction *I) { 3651 switch (I->getOpcode()) { 3652 case Instruction::BitCast: 3653 case Instruction::AddrSpaceCast: 3654 // Don't touch identity bitcasts. 3655 if (I->getType() == I->getOperand(0)->getType()) 3656 return false; 3657 return I->getType()->isIntOrPtrTy(); 3658 case Instruction::PtrToInt: 3659 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3660 return true; 3661 case Instruction::IntToPtr: 3662 // We know the input is intptr_t, so this is foldable. 3663 return true; 3664 case Instruction::Add: 3665 return true; 3666 case Instruction::Mul: 3667 case Instruction::Shl: 3668 // Can only handle X*C and X << C. 3669 return isa<ConstantInt>(I->getOperand(1)); 3670 case Instruction::GetElementPtr: 3671 return true; 3672 default: 3673 return false; 3674 } 3675 } 3676 3677 /// Check whether or not \p Val is a legal instruction for \p TLI. 3678 /// \note \p Val is assumed to be the product of some type promotion. 3679 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3680 /// to be legal, as the non-promoted value would have had the same state. 3681 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3682 const DataLayout &DL, Value *Val) { 3683 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3684 if (!PromotedInst) 3685 return false; 3686 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3687 // If the ISDOpcode is undefined, it was undefined before the promotion. 3688 if (!ISDOpcode) 3689 return true; 3690 // Otherwise, check if the promoted instruction is legal or not. 3691 return TLI.isOperationLegalOrCustom( 3692 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3693 } 3694 3695 namespace { 3696 3697 /// Hepler class to perform type promotion. 3698 class TypePromotionHelper { 3699 /// Utility function to add a promoted instruction \p ExtOpnd to 3700 /// \p PromotedInsts and record the type of extension we have seen. 3701 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3702 Instruction *ExtOpnd, 3703 bool IsSExt) { 3704 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3705 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3706 if (It != PromotedInsts.end()) { 3707 // If the new extension is same as original, the information in 3708 // PromotedInsts[ExtOpnd] is still correct. 3709 if (It->second.getInt() == ExtTy) 3710 return; 3711 3712 // Now the new extension is different from old extension, we make 3713 // the type information invalid by setting extension type to 3714 // BothExtension. 3715 ExtTy = BothExtension; 3716 } 3717 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3718 } 3719 3720 /// Utility function to query the original type of instruction \p Opnd 3721 /// with a matched extension type. If the extension doesn't match, we 3722 /// cannot use the information we had on the original type. 3723 /// BothExtension doesn't match any extension type. 3724 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3725 Instruction *Opnd, 3726 bool IsSExt) { 3727 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3728 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3729 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3730 return It->second.getPointer(); 3731 return nullptr; 3732 } 3733 3734 /// Utility function to check whether or not a sign or zero extension 3735 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3736 /// either using the operands of \p Inst or promoting \p Inst. 3737 /// The type of the extension is defined by \p IsSExt. 3738 /// In other words, check if: 3739 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3740 /// #1 Promotion applies: 3741 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3742 /// #2 Operand reuses: 3743 /// ext opnd1 to ConsideredExtType. 3744 /// \p PromotedInsts maps the instructions to their type before promotion. 3745 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3746 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3747 3748 /// Utility function to determine if \p OpIdx should be promoted when 3749 /// promoting \p Inst. 3750 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3751 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3752 } 3753 3754 /// Utility function to promote the operand of \p Ext when this 3755 /// operand is a promotable trunc or sext or zext. 3756 /// \p PromotedInsts maps the instructions to their type before promotion. 3757 /// \p CreatedInstsCost[out] contains the cost of all instructions 3758 /// created to promote the operand of Ext. 3759 /// Newly added extensions are inserted in \p Exts. 3760 /// Newly added truncates are inserted in \p Truncs. 3761 /// Should never be called directly. 3762 /// \return The promoted value which is used instead of Ext. 3763 static Value *promoteOperandForTruncAndAnyExt( 3764 Instruction *Ext, TypePromotionTransaction &TPT, 3765 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3766 SmallVectorImpl<Instruction *> *Exts, 3767 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3768 3769 /// Utility function to promote the operand of \p Ext when this 3770 /// operand is promotable and is not a supported trunc or sext. 3771 /// \p PromotedInsts maps the instructions to their type before promotion. 3772 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3773 /// created to promote the operand of Ext. 3774 /// Newly added extensions are inserted in \p Exts. 3775 /// Newly added truncates are inserted in \p Truncs. 3776 /// Should never be called directly. 3777 /// \return The promoted value which is used instead of Ext. 3778 static Value *promoteOperandForOther(Instruction *Ext, 3779 TypePromotionTransaction &TPT, 3780 InstrToOrigTy &PromotedInsts, 3781 unsigned &CreatedInstsCost, 3782 SmallVectorImpl<Instruction *> *Exts, 3783 SmallVectorImpl<Instruction *> *Truncs, 3784 const TargetLowering &TLI, bool IsSExt); 3785 3786 /// \see promoteOperandForOther. 3787 static Value *signExtendOperandForOther( 3788 Instruction *Ext, TypePromotionTransaction &TPT, 3789 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3790 SmallVectorImpl<Instruction *> *Exts, 3791 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3792 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3793 Exts, Truncs, TLI, true); 3794 } 3795 3796 /// \see promoteOperandForOther. 3797 static Value *zeroExtendOperandForOther( 3798 Instruction *Ext, TypePromotionTransaction &TPT, 3799 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3800 SmallVectorImpl<Instruction *> *Exts, 3801 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3802 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3803 Exts, Truncs, TLI, false); 3804 } 3805 3806 public: 3807 /// Type for the utility function that promotes the operand of Ext. 3808 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3809 InstrToOrigTy &PromotedInsts, 3810 unsigned &CreatedInstsCost, 3811 SmallVectorImpl<Instruction *> *Exts, 3812 SmallVectorImpl<Instruction *> *Truncs, 3813 const TargetLowering &TLI); 3814 3815 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3816 /// action to promote the operand of \p Ext instead of using Ext. 3817 /// \return NULL if no promotable action is possible with the current 3818 /// sign extension. 3819 /// \p InsertedInsts keeps track of all the instructions inserted by the 3820 /// other CodeGenPrepare optimizations. This information is important 3821 /// because we do not want to promote these instructions as CodeGenPrepare 3822 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3823 /// \p PromotedInsts maps the instructions to their type before promotion. 3824 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3825 const TargetLowering &TLI, 3826 const InstrToOrigTy &PromotedInsts); 3827 }; 3828 3829 } // end anonymous namespace 3830 3831 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3832 Type *ConsideredExtType, 3833 const InstrToOrigTy &PromotedInsts, 3834 bool IsSExt) { 3835 // The promotion helper does not know how to deal with vector types yet. 3836 // To be able to fix that, we would need to fix the places where we 3837 // statically extend, e.g., constants and such. 3838 if (Inst->getType()->isVectorTy()) 3839 return false; 3840 3841 // We can always get through zext. 3842 if (isa<ZExtInst>(Inst)) 3843 return true; 3844 3845 // sext(sext) is ok too. 3846 if (IsSExt && isa<SExtInst>(Inst)) 3847 return true; 3848 3849 // We can get through binary operator, if it is legal. In other words, the 3850 // binary operator must have a nuw or nsw flag. 3851 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3852 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3853 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3854 (IsSExt && BinOp->hasNoSignedWrap()))) 3855 return true; 3856 3857 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3858 if ((Inst->getOpcode() == Instruction::And || 3859 Inst->getOpcode() == Instruction::Or)) 3860 return true; 3861 3862 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3863 if (Inst->getOpcode() == Instruction::Xor) { 3864 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3865 // Make sure it is not a NOT. 3866 if (Cst && !Cst->getValue().isAllOnesValue()) 3867 return true; 3868 } 3869 3870 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3871 // It may change a poisoned value into a regular value, like 3872 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3873 // poisoned value regular value 3874 // It should be OK since undef covers valid value. 3875 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3876 return true; 3877 3878 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3879 // It may change a poisoned value into a regular value, like 3880 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3881 // poisoned value regular value 3882 // It should be OK since undef covers valid value. 3883 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3884 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3885 if (ExtInst->hasOneUse()) { 3886 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3887 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3888 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3889 if (Cst && 3890 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3891 return true; 3892 } 3893 } 3894 } 3895 3896 // Check if we can do the following simplification. 3897 // ext(trunc(opnd)) --> ext(opnd) 3898 if (!isa<TruncInst>(Inst)) 3899 return false; 3900 3901 Value *OpndVal = Inst->getOperand(0); 3902 // Check if we can use this operand in the extension. 3903 // If the type is larger than the result type of the extension, we cannot. 3904 if (!OpndVal->getType()->isIntegerTy() || 3905 OpndVal->getType()->getIntegerBitWidth() > 3906 ConsideredExtType->getIntegerBitWidth()) 3907 return false; 3908 3909 // If the operand of the truncate is not an instruction, we will not have 3910 // any information on the dropped bits. 3911 // (Actually we could for constant but it is not worth the extra logic). 3912 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3913 if (!Opnd) 3914 return false; 3915 3916 // Check if the source of the type is narrow enough. 3917 // I.e., check that trunc just drops extended bits of the same kind of 3918 // the extension. 3919 // #1 get the type of the operand and check the kind of the extended bits. 3920 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3921 if (OpndType) 3922 ; 3923 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3924 OpndType = Opnd->getOperand(0)->getType(); 3925 else 3926 return false; 3927 3928 // #2 check that the truncate just drops extended bits. 3929 return Inst->getType()->getIntegerBitWidth() >= 3930 OpndType->getIntegerBitWidth(); 3931 } 3932 3933 TypePromotionHelper::Action TypePromotionHelper::getAction( 3934 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3935 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3936 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3937 "Unexpected instruction type"); 3938 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3939 Type *ExtTy = Ext->getType(); 3940 bool IsSExt = isa<SExtInst>(Ext); 3941 // If the operand of the extension is not an instruction, we cannot 3942 // get through. 3943 // If it, check we can get through. 3944 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3945 return nullptr; 3946 3947 // Do not promote if the operand has been added by codegenprepare. 3948 // Otherwise, it means we are undoing an optimization that is likely to be 3949 // redone, thus causing potential infinite loop. 3950 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3951 return nullptr; 3952 3953 // SExt or Trunc instructions. 3954 // Return the related handler. 3955 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3956 isa<ZExtInst>(ExtOpnd)) 3957 return promoteOperandForTruncAndAnyExt; 3958 3959 // Regular instruction. 3960 // Abort early if we will have to insert non-free instructions. 3961 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3962 return nullptr; 3963 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3964 } 3965 3966 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3967 Instruction *SExt, TypePromotionTransaction &TPT, 3968 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3969 SmallVectorImpl<Instruction *> *Exts, 3970 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3971 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3972 // get through it and this method should not be called. 3973 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3974 Value *ExtVal = SExt; 3975 bool HasMergedNonFreeExt = false; 3976 if (isa<ZExtInst>(SExtOpnd)) { 3977 // Replace s|zext(zext(opnd)) 3978 // => zext(opnd). 3979 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3980 Value *ZExt = 3981 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3982 TPT.replaceAllUsesWith(SExt, ZExt); 3983 TPT.eraseInstruction(SExt); 3984 ExtVal = ZExt; 3985 } else { 3986 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3987 // => z|sext(opnd). 3988 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3989 } 3990 CreatedInstsCost = 0; 3991 3992 // Remove dead code. 3993 if (SExtOpnd->use_empty()) 3994 TPT.eraseInstruction(SExtOpnd); 3995 3996 // Check if the extension is still needed. 3997 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3998 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3999 if (ExtInst) { 4000 if (Exts) 4001 Exts->push_back(ExtInst); 4002 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4003 } 4004 return ExtVal; 4005 } 4006 4007 // At this point we have: ext ty opnd to ty. 4008 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4009 Value *NextVal = ExtInst->getOperand(0); 4010 TPT.eraseInstruction(ExtInst, NextVal); 4011 return NextVal; 4012 } 4013 4014 Value *TypePromotionHelper::promoteOperandForOther( 4015 Instruction *Ext, TypePromotionTransaction &TPT, 4016 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4017 SmallVectorImpl<Instruction *> *Exts, 4018 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4019 bool IsSExt) { 4020 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4021 // get through it and this method should not be called. 4022 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4023 CreatedInstsCost = 0; 4024 if (!ExtOpnd->hasOneUse()) { 4025 // ExtOpnd will be promoted. 4026 // All its uses, but Ext, will need to use a truncated value of the 4027 // promoted version. 4028 // Create the truncate now. 4029 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4030 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4031 // Insert it just after the definition. 4032 ITrunc->moveAfter(ExtOpnd); 4033 if (Truncs) 4034 Truncs->push_back(ITrunc); 4035 } 4036 4037 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4038 // Restore the operand of Ext (which has been replaced by the previous call 4039 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4040 TPT.setOperand(Ext, 0, ExtOpnd); 4041 } 4042 4043 // Get through the Instruction: 4044 // 1. Update its type. 4045 // 2. Replace the uses of Ext by Inst. 4046 // 3. Extend each operand that needs to be extended. 4047 4048 // Remember the original type of the instruction before promotion. 4049 // This is useful to know that the high bits are sign extended bits. 4050 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4051 // Step #1. 4052 TPT.mutateType(ExtOpnd, Ext->getType()); 4053 // Step #2. 4054 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4055 // Step #3. 4056 Instruction *ExtForOpnd = Ext; 4057 4058 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4059 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4060 ++OpIdx) { 4061 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4062 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4063 !shouldExtOperand(ExtOpnd, OpIdx)) { 4064 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4065 continue; 4066 } 4067 // Check if we can statically extend the operand. 4068 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4069 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4070 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4071 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4072 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4073 : Cst->getValue().zext(BitWidth); 4074 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4075 continue; 4076 } 4077 // UndefValue are typed, so we have to statically sign extend them. 4078 if (isa<UndefValue>(Opnd)) { 4079 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4080 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4081 continue; 4082 } 4083 4084 // Otherwise we have to explicitly sign extend the operand. 4085 // Check if Ext was reused to extend an operand. 4086 if (!ExtForOpnd) { 4087 // If yes, create a new one. 4088 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4089 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4090 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4091 if (!isa<Instruction>(ValForExtOpnd)) { 4092 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4093 continue; 4094 } 4095 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4096 } 4097 if (Exts) 4098 Exts->push_back(ExtForOpnd); 4099 TPT.setOperand(ExtForOpnd, 0, Opnd); 4100 4101 // Move the sign extension before the insertion point. 4102 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4103 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4104 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4105 // If more sext are required, new instructions will have to be created. 4106 ExtForOpnd = nullptr; 4107 } 4108 if (ExtForOpnd == Ext) { 4109 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4110 TPT.eraseInstruction(Ext); 4111 } 4112 return ExtOpnd; 4113 } 4114 4115 /// Check whether or not promoting an instruction to a wider type is profitable. 4116 /// \p NewCost gives the cost of extension instructions created by the 4117 /// promotion. 4118 /// \p OldCost gives the cost of extension instructions before the promotion 4119 /// plus the number of instructions that have been 4120 /// matched in the addressing mode the promotion. 4121 /// \p PromotedOperand is the value that has been promoted. 4122 /// \return True if the promotion is profitable, false otherwise. 4123 bool AddressingModeMatcher::isPromotionProfitable( 4124 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4125 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4126 << '\n'); 4127 // The cost of the new extensions is greater than the cost of the 4128 // old extension plus what we folded. 4129 // This is not profitable. 4130 if (NewCost > OldCost) 4131 return false; 4132 if (NewCost < OldCost) 4133 return true; 4134 // The promotion is neutral but it may help folding the sign extension in 4135 // loads for instance. 4136 // Check that we did not create an illegal instruction. 4137 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4138 } 4139 4140 /// Given an instruction or constant expr, see if we can fold the operation 4141 /// into the addressing mode. If so, update the addressing mode and return 4142 /// true, otherwise return false without modifying AddrMode. 4143 /// If \p MovedAway is not NULL, it contains the information of whether or 4144 /// not AddrInst has to be folded into the addressing mode on success. 4145 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4146 /// because it has been moved away. 4147 /// Thus AddrInst must not be added in the matched instructions. 4148 /// This state can happen when AddrInst is a sext, since it may be moved away. 4149 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4150 /// not be referenced anymore. 4151 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4152 unsigned Depth, 4153 bool *MovedAway) { 4154 // Avoid exponential behavior on extremely deep expression trees. 4155 if (Depth >= 5) return false; 4156 4157 // By default, all matched instructions stay in place. 4158 if (MovedAway) 4159 *MovedAway = false; 4160 4161 switch (Opcode) { 4162 case Instruction::PtrToInt: 4163 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4164 return matchAddr(AddrInst->getOperand(0), Depth); 4165 case Instruction::IntToPtr: { 4166 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4167 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4168 // This inttoptr is a no-op if the integer type is pointer sized. 4169 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4170 return matchAddr(AddrInst->getOperand(0), Depth); 4171 return false; 4172 } 4173 case Instruction::BitCast: 4174 // BitCast is always a noop, and we can handle it as long as it is 4175 // int->int or pointer->pointer (we don't want int<->fp or something). 4176 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4177 // Don't touch identity bitcasts. These were probably put here by LSR, 4178 // and we don't want to mess around with them. Assume it knows what it 4179 // is doing. 4180 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4181 return matchAddr(AddrInst->getOperand(0), Depth); 4182 return false; 4183 case Instruction::AddrSpaceCast: { 4184 unsigned SrcAS 4185 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4186 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4187 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4188 return matchAddr(AddrInst->getOperand(0), Depth); 4189 return false; 4190 } 4191 case Instruction::Add: { 4192 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4193 ExtAddrMode BackupAddrMode = AddrMode; 4194 unsigned OldSize = AddrModeInsts.size(); 4195 // Start a transaction at this point. 4196 // The LHS may match but not the RHS. 4197 // Therefore, we need a higher level restoration point to undo partially 4198 // matched operation. 4199 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4200 TPT.getRestorationPoint(); 4201 4202 AddrMode.InBounds = false; 4203 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4204 matchAddr(AddrInst->getOperand(0), Depth+1)) 4205 return true; 4206 4207 // Restore the old addr mode info. 4208 AddrMode = BackupAddrMode; 4209 AddrModeInsts.resize(OldSize); 4210 TPT.rollback(LastKnownGood); 4211 4212 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4213 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4214 matchAddr(AddrInst->getOperand(1), Depth+1)) 4215 return true; 4216 4217 // Otherwise we definitely can't merge the ADD in. 4218 AddrMode = BackupAddrMode; 4219 AddrModeInsts.resize(OldSize); 4220 TPT.rollback(LastKnownGood); 4221 break; 4222 } 4223 //case Instruction::Or: 4224 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4225 //break; 4226 case Instruction::Mul: 4227 case Instruction::Shl: { 4228 // Can only handle X*C and X << C. 4229 AddrMode.InBounds = false; 4230 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4231 if (!RHS || RHS->getBitWidth() > 64) 4232 return false; 4233 int64_t Scale = RHS->getSExtValue(); 4234 if (Opcode == Instruction::Shl) 4235 Scale = 1LL << Scale; 4236 4237 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4238 } 4239 case Instruction::GetElementPtr: { 4240 // Scan the GEP. We check it if it contains constant offsets and at most 4241 // one variable offset. 4242 int VariableOperand = -1; 4243 unsigned VariableScale = 0; 4244 4245 int64_t ConstantOffset = 0; 4246 gep_type_iterator GTI = gep_type_begin(AddrInst); 4247 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4248 if (StructType *STy = GTI.getStructTypeOrNull()) { 4249 const StructLayout *SL = DL.getStructLayout(STy); 4250 unsigned Idx = 4251 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4252 ConstantOffset += SL->getElementOffset(Idx); 4253 } else { 4254 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4255 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4256 const APInt &CVal = CI->getValue(); 4257 if (CVal.getMinSignedBits() <= 64) { 4258 ConstantOffset += CVal.getSExtValue() * TypeSize; 4259 continue; 4260 } 4261 } 4262 if (TypeSize) { // Scales of zero don't do anything. 4263 // We only allow one variable index at the moment. 4264 if (VariableOperand != -1) 4265 return false; 4266 4267 // Remember the variable index. 4268 VariableOperand = i; 4269 VariableScale = TypeSize; 4270 } 4271 } 4272 } 4273 4274 // A common case is for the GEP to only do a constant offset. In this case, 4275 // just add it to the disp field and check validity. 4276 if (VariableOperand == -1) { 4277 AddrMode.BaseOffs += ConstantOffset; 4278 if (ConstantOffset == 0 || 4279 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4280 // Check to see if we can fold the base pointer in too. 4281 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4282 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4283 AddrMode.InBounds = false; 4284 return true; 4285 } 4286 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4287 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4288 ConstantOffset > 0) { 4289 // Record GEPs with non-zero offsets as candidates for splitting in the 4290 // event that the offset cannot fit into the r+i addressing mode. 4291 // Simple and common case that only one GEP is used in calculating the 4292 // address for the memory access. 4293 Value *Base = AddrInst->getOperand(0); 4294 auto *BaseI = dyn_cast<Instruction>(Base); 4295 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4296 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4297 (BaseI && !isa<CastInst>(BaseI) && 4298 !isa<GetElementPtrInst>(BaseI))) { 4299 // Make sure the parent block allows inserting non-PHI instructions 4300 // before the terminator. 4301 BasicBlock *Parent = 4302 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4303 if (!Parent->getTerminator()->isEHPad()) 4304 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4305 } 4306 } 4307 AddrMode.BaseOffs -= ConstantOffset; 4308 return false; 4309 } 4310 4311 // Save the valid addressing mode in case we can't match. 4312 ExtAddrMode BackupAddrMode = AddrMode; 4313 unsigned OldSize = AddrModeInsts.size(); 4314 4315 // See if the scale and offset amount is valid for this target. 4316 AddrMode.BaseOffs += ConstantOffset; 4317 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4318 AddrMode.InBounds = false; 4319 4320 // Match the base operand of the GEP. 4321 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4322 // If it couldn't be matched, just stuff the value in a register. 4323 if (AddrMode.HasBaseReg) { 4324 AddrMode = BackupAddrMode; 4325 AddrModeInsts.resize(OldSize); 4326 return false; 4327 } 4328 AddrMode.HasBaseReg = true; 4329 AddrMode.BaseReg = AddrInst->getOperand(0); 4330 } 4331 4332 // Match the remaining variable portion of the GEP. 4333 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4334 Depth)) { 4335 // If it couldn't be matched, try stuffing the base into a register 4336 // instead of matching it, and retrying the match of the scale. 4337 AddrMode = BackupAddrMode; 4338 AddrModeInsts.resize(OldSize); 4339 if (AddrMode.HasBaseReg) 4340 return false; 4341 AddrMode.HasBaseReg = true; 4342 AddrMode.BaseReg = AddrInst->getOperand(0); 4343 AddrMode.BaseOffs += ConstantOffset; 4344 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4345 VariableScale, Depth)) { 4346 // If even that didn't work, bail. 4347 AddrMode = BackupAddrMode; 4348 AddrModeInsts.resize(OldSize); 4349 return false; 4350 } 4351 } 4352 4353 return true; 4354 } 4355 case Instruction::SExt: 4356 case Instruction::ZExt: { 4357 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4358 if (!Ext) 4359 return false; 4360 4361 // Try to move this ext out of the way of the addressing mode. 4362 // Ask for a method for doing so. 4363 TypePromotionHelper::Action TPH = 4364 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4365 if (!TPH) 4366 return false; 4367 4368 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4369 TPT.getRestorationPoint(); 4370 unsigned CreatedInstsCost = 0; 4371 unsigned ExtCost = !TLI.isExtFree(Ext); 4372 Value *PromotedOperand = 4373 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4374 // SExt has been moved away. 4375 // Thus either it will be rematched later in the recursive calls or it is 4376 // gone. Anyway, we must not fold it into the addressing mode at this point. 4377 // E.g., 4378 // op = add opnd, 1 4379 // idx = ext op 4380 // addr = gep base, idx 4381 // is now: 4382 // promotedOpnd = ext opnd <- no match here 4383 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4384 // addr = gep base, op <- match 4385 if (MovedAway) 4386 *MovedAway = true; 4387 4388 assert(PromotedOperand && 4389 "TypePromotionHelper should have filtered out those cases"); 4390 4391 ExtAddrMode BackupAddrMode = AddrMode; 4392 unsigned OldSize = AddrModeInsts.size(); 4393 4394 if (!matchAddr(PromotedOperand, Depth) || 4395 // The total of the new cost is equal to the cost of the created 4396 // instructions. 4397 // The total of the old cost is equal to the cost of the extension plus 4398 // what we have saved in the addressing mode. 4399 !isPromotionProfitable(CreatedInstsCost, 4400 ExtCost + (AddrModeInsts.size() - OldSize), 4401 PromotedOperand)) { 4402 AddrMode = BackupAddrMode; 4403 AddrModeInsts.resize(OldSize); 4404 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4405 TPT.rollback(LastKnownGood); 4406 return false; 4407 } 4408 return true; 4409 } 4410 } 4411 return false; 4412 } 4413 4414 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4415 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4416 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4417 /// for the target. 4418 /// 4419 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4420 // Start a transaction at this point that we will rollback if the matching 4421 // fails. 4422 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4423 TPT.getRestorationPoint(); 4424 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4425 // Fold in immediates if legal for the target. 4426 AddrMode.BaseOffs += CI->getSExtValue(); 4427 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4428 return true; 4429 AddrMode.BaseOffs -= CI->getSExtValue(); 4430 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4431 // If this is a global variable, try to fold it into the addressing mode. 4432 if (!AddrMode.BaseGV) { 4433 AddrMode.BaseGV = GV; 4434 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4435 return true; 4436 AddrMode.BaseGV = nullptr; 4437 } 4438 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4439 ExtAddrMode BackupAddrMode = AddrMode; 4440 unsigned OldSize = AddrModeInsts.size(); 4441 4442 // Check to see if it is possible to fold this operation. 4443 bool MovedAway = false; 4444 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4445 // This instruction may have been moved away. If so, there is nothing 4446 // to check here. 4447 if (MovedAway) 4448 return true; 4449 // Okay, it's possible to fold this. Check to see if it is actually 4450 // *profitable* to do so. We use a simple cost model to avoid increasing 4451 // register pressure too much. 4452 if (I->hasOneUse() || 4453 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4454 AddrModeInsts.push_back(I); 4455 return true; 4456 } 4457 4458 // It isn't profitable to do this, roll back. 4459 //cerr << "NOT FOLDING: " << *I; 4460 AddrMode = BackupAddrMode; 4461 AddrModeInsts.resize(OldSize); 4462 TPT.rollback(LastKnownGood); 4463 } 4464 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4465 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4466 return true; 4467 TPT.rollback(LastKnownGood); 4468 } else if (isa<ConstantPointerNull>(Addr)) { 4469 // Null pointer gets folded without affecting the addressing mode. 4470 return true; 4471 } 4472 4473 // Worse case, the target should support [reg] addressing modes. :) 4474 if (!AddrMode.HasBaseReg) { 4475 AddrMode.HasBaseReg = true; 4476 AddrMode.BaseReg = Addr; 4477 // Still check for legality in case the target supports [imm] but not [i+r]. 4478 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4479 return true; 4480 AddrMode.HasBaseReg = false; 4481 AddrMode.BaseReg = nullptr; 4482 } 4483 4484 // If the base register is already taken, see if we can do [r+r]. 4485 if (AddrMode.Scale == 0) { 4486 AddrMode.Scale = 1; 4487 AddrMode.ScaledReg = Addr; 4488 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4489 return true; 4490 AddrMode.Scale = 0; 4491 AddrMode.ScaledReg = nullptr; 4492 } 4493 // Couldn't match. 4494 TPT.rollback(LastKnownGood); 4495 return false; 4496 } 4497 4498 /// Check to see if all uses of OpVal by the specified inline asm call are due 4499 /// to memory operands. If so, return true, otherwise return false. 4500 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4501 const TargetLowering &TLI, 4502 const TargetRegisterInfo &TRI) { 4503 const Function *F = CI->getFunction(); 4504 TargetLowering::AsmOperandInfoVector TargetConstraints = 4505 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4506 ImmutableCallSite(CI)); 4507 4508 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4509 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4510 4511 // Compute the constraint code and ConstraintType to use. 4512 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4513 4514 // If this asm operand is our Value*, and if it isn't an indirect memory 4515 // operand, we can't fold it! 4516 if (OpInfo.CallOperandVal == OpVal && 4517 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4518 !OpInfo.isIndirect)) 4519 return false; 4520 } 4521 4522 return true; 4523 } 4524 4525 // Max number of memory uses to look at before aborting the search to conserve 4526 // compile time. 4527 static constexpr int MaxMemoryUsesToScan = 20; 4528 4529 /// Recursively walk all the uses of I until we find a memory use. 4530 /// If we find an obviously non-foldable instruction, return true. 4531 /// Add the ultimately found memory instructions to MemoryUses. 4532 static bool FindAllMemoryUses( 4533 Instruction *I, 4534 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4535 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4536 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4537 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4538 // If we already considered this instruction, we're done. 4539 if (!ConsideredInsts.insert(I).second) 4540 return false; 4541 4542 // If this is an obviously unfoldable instruction, bail out. 4543 if (!MightBeFoldableInst(I)) 4544 return true; 4545 4546 // Loop over all the uses, recursively processing them. 4547 for (Use &U : I->uses()) { 4548 // Conservatively return true if we're seeing a large number or a deep chain 4549 // of users. This avoids excessive compilation times in pathological cases. 4550 if (SeenInsts++ >= MaxMemoryUsesToScan) 4551 return true; 4552 4553 Instruction *UserI = cast<Instruction>(U.getUser()); 4554 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4555 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4556 continue; 4557 } 4558 4559 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4560 unsigned opNo = U.getOperandNo(); 4561 if (opNo != StoreInst::getPointerOperandIndex()) 4562 return true; // Storing addr, not into addr. 4563 MemoryUses.push_back(std::make_pair(SI, opNo)); 4564 continue; 4565 } 4566 4567 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4568 unsigned opNo = U.getOperandNo(); 4569 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4570 return true; // Storing addr, not into addr. 4571 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4572 continue; 4573 } 4574 4575 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4576 unsigned opNo = U.getOperandNo(); 4577 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4578 return true; // Storing addr, not into addr. 4579 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4580 continue; 4581 } 4582 4583 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4584 // If this is a cold call, we can sink the addressing calculation into 4585 // the cold path. See optimizeCallInst 4586 bool OptForSize = OptSize || 4587 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4588 if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) 4589 continue; 4590 4591 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4592 if (!IA) return true; 4593 4594 // If this is a memory operand, we're cool, otherwise bail out. 4595 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4596 return true; 4597 continue; 4598 } 4599 4600 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4601 PSI, BFI, SeenInsts)) 4602 return true; 4603 } 4604 4605 return false; 4606 } 4607 4608 /// Return true if Val is already known to be live at the use site that we're 4609 /// folding it into. If so, there is no cost to include it in the addressing 4610 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4611 /// instruction already. 4612 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4613 Value *KnownLive2) { 4614 // If Val is either of the known-live values, we know it is live! 4615 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4616 return true; 4617 4618 // All values other than instructions and arguments (e.g. constants) are live. 4619 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4620 4621 // If Val is a constant sized alloca in the entry block, it is live, this is 4622 // true because it is just a reference to the stack/frame pointer, which is 4623 // live for the whole function. 4624 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4625 if (AI->isStaticAlloca()) 4626 return true; 4627 4628 // Check to see if this value is already used in the memory instruction's 4629 // block. If so, it's already live into the block at the very least, so we 4630 // can reasonably fold it. 4631 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4632 } 4633 4634 /// It is possible for the addressing mode of the machine to fold the specified 4635 /// instruction into a load or store that ultimately uses it. 4636 /// However, the specified instruction has multiple uses. 4637 /// Given this, it may actually increase register pressure to fold it 4638 /// into the load. For example, consider this code: 4639 /// 4640 /// X = ... 4641 /// Y = X+1 4642 /// use(Y) -> nonload/store 4643 /// Z = Y+1 4644 /// load Z 4645 /// 4646 /// In this case, Y has multiple uses, and can be folded into the load of Z 4647 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4648 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4649 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4650 /// number of computations either. 4651 /// 4652 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4653 /// X was live across 'load Z' for other reasons, we actually *would* want to 4654 /// fold the addressing mode in the Z case. This would make Y die earlier. 4655 bool AddressingModeMatcher:: 4656 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4657 ExtAddrMode &AMAfter) { 4658 if (IgnoreProfitability) return true; 4659 4660 // AMBefore is the addressing mode before this instruction was folded into it, 4661 // and AMAfter is the addressing mode after the instruction was folded. Get 4662 // the set of registers referenced by AMAfter and subtract out those 4663 // referenced by AMBefore: this is the set of values which folding in this 4664 // address extends the lifetime of. 4665 // 4666 // Note that there are only two potential values being referenced here, 4667 // BaseReg and ScaleReg (global addresses are always available, as are any 4668 // folded immediates). 4669 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4670 4671 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4672 // lifetime wasn't extended by adding this instruction. 4673 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4674 BaseReg = nullptr; 4675 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4676 ScaledReg = nullptr; 4677 4678 // If folding this instruction (and it's subexprs) didn't extend any live 4679 // ranges, we're ok with it. 4680 if (!BaseReg && !ScaledReg) 4681 return true; 4682 4683 // If all uses of this instruction can have the address mode sunk into them, 4684 // we can remove the addressing mode and effectively trade one live register 4685 // for another (at worst.) In this context, folding an addressing mode into 4686 // the use is just a particularly nice way of sinking it. 4687 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4688 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4689 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4690 PSI, BFI)) 4691 return false; // Has a non-memory, non-foldable use! 4692 4693 // Now that we know that all uses of this instruction are part of a chain of 4694 // computation involving only operations that could theoretically be folded 4695 // into a memory use, loop over each of these memory operation uses and see 4696 // if they could *actually* fold the instruction. The assumption is that 4697 // addressing modes are cheap and that duplicating the computation involved 4698 // many times is worthwhile, even on a fastpath. For sinking candidates 4699 // (i.e. cold call sites), this serves as a way to prevent excessive code 4700 // growth since most architectures have some reasonable small and fast way to 4701 // compute an effective address. (i.e LEA on x86) 4702 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4703 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4704 Instruction *User = MemoryUses[i].first; 4705 unsigned OpNo = MemoryUses[i].second; 4706 4707 // Get the access type of this use. If the use isn't a pointer, we don't 4708 // know what it accesses. 4709 Value *Address = User->getOperand(OpNo); 4710 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4711 if (!AddrTy) 4712 return false; 4713 Type *AddressAccessTy = AddrTy->getElementType(); 4714 unsigned AS = AddrTy->getAddressSpace(); 4715 4716 // Do a match against the root of this address, ignoring profitability. This 4717 // will tell us if the addressing mode for the memory operation will 4718 // *actually* cover the shared instruction. 4719 ExtAddrMode Result; 4720 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4721 0); 4722 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4723 TPT.getRestorationPoint(); 4724 AddressingModeMatcher Matcher( 4725 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4726 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4727 Matcher.IgnoreProfitability = true; 4728 bool Success = Matcher.matchAddr(Address, 0); 4729 (void)Success; assert(Success && "Couldn't select *anything*?"); 4730 4731 // The match was to check the profitability, the changes made are not 4732 // part of the original matcher. Therefore, they should be dropped 4733 // otherwise the original matcher will not present the right state. 4734 TPT.rollback(LastKnownGood); 4735 4736 // If the match didn't cover I, then it won't be shared by it. 4737 if (!is_contained(MatchedAddrModeInsts, I)) 4738 return false; 4739 4740 MatchedAddrModeInsts.clear(); 4741 } 4742 4743 return true; 4744 } 4745 4746 /// Return true if the specified values are defined in a 4747 /// different basic block than BB. 4748 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4749 if (Instruction *I = dyn_cast<Instruction>(V)) 4750 return I->getParent() != BB; 4751 return false; 4752 } 4753 4754 /// Sink addressing mode computation immediate before MemoryInst if doing so 4755 /// can be done without increasing register pressure. The need for the 4756 /// register pressure constraint means this can end up being an all or nothing 4757 /// decision for all uses of the same addressing computation. 4758 /// 4759 /// Load and Store Instructions often have addressing modes that can do 4760 /// significant amounts of computation. As such, instruction selection will try 4761 /// to get the load or store to do as much computation as possible for the 4762 /// program. The problem is that isel can only see within a single block. As 4763 /// such, we sink as much legal addressing mode work into the block as possible. 4764 /// 4765 /// This method is used to optimize both load/store and inline asms with memory 4766 /// operands. It's also used to sink addressing computations feeding into cold 4767 /// call sites into their (cold) basic block. 4768 /// 4769 /// The motivation for handling sinking into cold blocks is that doing so can 4770 /// both enable other address mode sinking (by satisfying the register pressure 4771 /// constraint above), and reduce register pressure globally (by removing the 4772 /// addressing mode computation from the fast path entirely.). 4773 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4774 Type *AccessTy, unsigned AddrSpace) { 4775 Value *Repl = Addr; 4776 4777 // Try to collapse single-value PHI nodes. This is necessary to undo 4778 // unprofitable PRE transformations. 4779 SmallVector<Value*, 8> worklist; 4780 SmallPtrSet<Value*, 16> Visited; 4781 worklist.push_back(Addr); 4782 4783 // Use a worklist to iteratively look through PHI and select nodes, and 4784 // ensure that the addressing mode obtained from the non-PHI/select roots of 4785 // the graph are compatible. 4786 bool PhiOrSelectSeen = false; 4787 SmallVector<Instruction*, 16> AddrModeInsts; 4788 const SimplifyQuery SQ(*DL, TLInfo); 4789 AddressingModeCombiner AddrModes(SQ, Addr); 4790 TypePromotionTransaction TPT(RemovedInsts); 4791 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4792 TPT.getRestorationPoint(); 4793 while (!worklist.empty()) { 4794 Value *V = worklist.back(); 4795 worklist.pop_back(); 4796 4797 // We allow traversing cyclic Phi nodes. 4798 // In case of success after this loop we ensure that traversing through 4799 // Phi nodes ends up with all cases to compute address of the form 4800 // BaseGV + Base + Scale * Index + Offset 4801 // where Scale and Offset are constans and BaseGV, Base and Index 4802 // are exactly the same Values in all cases. 4803 // It means that BaseGV, Scale and Offset dominate our memory instruction 4804 // and have the same value as they had in address computation represented 4805 // as Phi. So we can safely sink address computation to memory instruction. 4806 if (!Visited.insert(V).second) 4807 continue; 4808 4809 // For a PHI node, push all of its incoming values. 4810 if (PHINode *P = dyn_cast<PHINode>(V)) { 4811 for (Value *IncValue : P->incoming_values()) 4812 worklist.push_back(IncValue); 4813 PhiOrSelectSeen = true; 4814 continue; 4815 } 4816 // Similar for select. 4817 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4818 worklist.push_back(SI->getFalseValue()); 4819 worklist.push_back(SI->getTrueValue()); 4820 PhiOrSelectSeen = true; 4821 continue; 4822 } 4823 4824 // For non-PHIs, determine the addressing mode being computed. Note that 4825 // the result may differ depending on what other uses our candidate 4826 // addressing instructions might have. 4827 AddrModeInsts.clear(); 4828 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4829 0); 4830 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4831 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4832 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4833 BFI.get()); 4834 4835 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4836 if (GEP && !NewGEPBases.count(GEP)) { 4837 // If splitting the underlying data structure can reduce the offset of a 4838 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4839 // previously split data structures. 4840 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4841 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4842 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4843 } 4844 4845 NewAddrMode.OriginalValue = V; 4846 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4847 break; 4848 } 4849 4850 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4851 // or we have multiple but either couldn't combine them or combining them 4852 // wouldn't do anything useful, bail out now. 4853 if (!AddrModes.combineAddrModes()) { 4854 TPT.rollback(LastKnownGood); 4855 return false; 4856 } 4857 TPT.commit(); 4858 4859 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4860 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4861 4862 // If all the instructions matched are already in this BB, don't do anything. 4863 // If we saw a Phi node then it is not local definitely, and if we saw a select 4864 // then we want to push the address calculation past it even if it's already 4865 // in this BB. 4866 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4867 return IsNonLocalValue(V, MemoryInst->getParent()); 4868 })) { 4869 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4870 << "\n"); 4871 return false; 4872 } 4873 4874 // Insert this computation right after this user. Since our caller is 4875 // scanning from the top of the BB to the bottom, reuse of the expr are 4876 // guaranteed to happen later. 4877 IRBuilder<> Builder(MemoryInst); 4878 4879 // Now that we determined the addressing expression we want to use and know 4880 // that we have to sink it into this block. Check to see if we have already 4881 // done this for some other load/store instr in this block. If so, reuse 4882 // the computation. Before attempting reuse, check if the address is valid 4883 // as it may have been erased. 4884 4885 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4886 4887 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4888 if (SunkAddr) { 4889 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4890 << " for " << *MemoryInst << "\n"); 4891 if (SunkAddr->getType() != Addr->getType()) 4892 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4893 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4894 TM && SubtargetInfo->addrSinkUsingGEPs())) { 4895 // By default, we use the GEP-based method when AA is used later. This 4896 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4897 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4898 << " for " << *MemoryInst << "\n"); 4899 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4900 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4901 4902 // First, find the pointer. 4903 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4904 ResultPtr = AddrMode.BaseReg; 4905 AddrMode.BaseReg = nullptr; 4906 } 4907 4908 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4909 // We can't add more than one pointer together, nor can we scale a 4910 // pointer (both of which seem meaningless). 4911 if (ResultPtr || AddrMode.Scale != 1) 4912 return false; 4913 4914 ResultPtr = AddrMode.ScaledReg; 4915 AddrMode.Scale = 0; 4916 } 4917 4918 // It is only safe to sign extend the BaseReg if we know that the math 4919 // required to create it did not overflow before we extend it. Since 4920 // the original IR value was tossed in favor of a constant back when 4921 // the AddrMode was created we need to bail out gracefully if widths 4922 // do not match instead of extending it. 4923 // 4924 // (See below for code to add the scale.) 4925 if (AddrMode.Scale) { 4926 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4927 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4928 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4929 return false; 4930 } 4931 4932 if (AddrMode.BaseGV) { 4933 if (ResultPtr) 4934 return false; 4935 4936 ResultPtr = AddrMode.BaseGV; 4937 } 4938 4939 // If the real base value actually came from an inttoptr, then the matcher 4940 // will look through it and provide only the integer value. In that case, 4941 // use it here. 4942 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4943 if (!ResultPtr && AddrMode.BaseReg) { 4944 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4945 "sunkaddr"); 4946 AddrMode.BaseReg = nullptr; 4947 } else if (!ResultPtr && AddrMode.Scale == 1) { 4948 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4949 "sunkaddr"); 4950 AddrMode.Scale = 0; 4951 } 4952 } 4953 4954 if (!ResultPtr && 4955 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4956 SunkAddr = Constant::getNullValue(Addr->getType()); 4957 } else if (!ResultPtr) { 4958 return false; 4959 } else { 4960 Type *I8PtrTy = 4961 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4962 Type *I8Ty = Builder.getInt8Ty(); 4963 4964 // Start with the base register. Do this first so that subsequent address 4965 // matching finds it last, which will prevent it from trying to match it 4966 // as the scaled value in case it happens to be a mul. That would be 4967 // problematic if we've sunk a different mul for the scale, because then 4968 // we'd end up sinking both muls. 4969 if (AddrMode.BaseReg) { 4970 Value *V = AddrMode.BaseReg; 4971 if (V->getType() != IntPtrTy) 4972 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4973 4974 ResultIndex = V; 4975 } 4976 4977 // Add the scale value. 4978 if (AddrMode.Scale) { 4979 Value *V = AddrMode.ScaledReg; 4980 if (V->getType() == IntPtrTy) { 4981 // done. 4982 } else { 4983 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4984 cast<IntegerType>(V->getType())->getBitWidth() && 4985 "We can't transform if ScaledReg is too narrow"); 4986 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4987 } 4988 4989 if (AddrMode.Scale != 1) 4990 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4991 "sunkaddr"); 4992 if (ResultIndex) 4993 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4994 else 4995 ResultIndex = V; 4996 } 4997 4998 // Add in the Base Offset if present. 4999 if (AddrMode.BaseOffs) { 5000 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5001 if (ResultIndex) { 5002 // We need to add this separately from the scale above to help with 5003 // SDAG consecutive load/store merging. 5004 if (ResultPtr->getType() != I8PtrTy) 5005 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5006 ResultPtr = 5007 AddrMode.InBounds 5008 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5009 "sunkaddr") 5010 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5011 } 5012 5013 ResultIndex = V; 5014 } 5015 5016 if (!ResultIndex) { 5017 SunkAddr = ResultPtr; 5018 } else { 5019 if (ResultPtr->getType() != I8PtrTy) 5020 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5021 SunkAddr = 5022 AddrMode.InBounds 5023 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5024 "sunkaddr") 5025 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5026 } 5027 5028 if (SunkAddr->getType() != Addr->getType()) 5029 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5030 } 5031 } else { 5032 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5033 // non-integral pointers, so in that case bail out now. 5034 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5035 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5036 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5037 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5038 if (DL->isNonIntegralPointerType(Addr->getType()) || 5039 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5040 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5041 (AddrMode.BaseGV && 5042 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5043 return false; 5044 5045 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5046 << " for " << *MemoryInst << "\n"); 5047 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5048 Value *Result = nullptr; 5049 5050 // Start with the base register. Do this first so that subsequent address 5051 // matching finds it last, which will prevent it from trying to match it 5052 // as the scaled value in case it happens to be a mul. That would be 5053 // problematic if we've sunk a different mul for the scale, because then 5054 // we'd end up sinking both muls. 5055 if (AddrMode.BaseReg) { 5056 Value *V = AddrMode.BaseReg; 5057 if (V->getType()->isPointerTy()) 5058 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5059 if (V->getType() != IntPtrTy) 5060 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5061 Result = V; 5062 } 5063 5064 // Add the scale value. 5065 if (AddrMode.Scale) { 5066 Value *V = AddrMode.ScaledReg; 5067 if (V->getType() == IntPtrTy) { 5068 // done. 5069 } else if (V->getType()->isPointerTy()) { 5070 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5071 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5072 cast<IntegerType>(V->getType())->getBitWidth()) { 5073 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5074 } else { 5075 // It is only safe to sign extend the BaseReg if we know that the math 5076 // required to create it did not overflow before we extend it. Since 5077 // the original IR value was tossed in favor of a constant back when 5078 // the AddrMode was created we need to bail out gracefully if widths 5079 // do not match instead of extending it. 5080 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5081 if (I && (Result != AddrMode.BaseReg)) 5082 I->eraseFromParent(); 5083 return false; 5084 } 5085 if (AddrMode.Scale != 1) 5086 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5087 "sunkaddr"); 5088 if (Result) 5089 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5090 else 5091 Result = V; 5092 } 5093 5094 // Add in the BaseGV if present. 5095 if (AddrMode.BaseGV) { 5096 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5097 if (Result) 5098 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5099 else 5100 Result = V; 5101 } 5102 5103 // Add in the Base Offset if present. 5104 if (AddrMode.BaseOffs) { 5105 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5106 if (Result) 5107 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5108 else 5109 Result = V; 5110 } 5111 5112 if (!Result) 5113 SunkAddr = Constant::getNullValue(Addr->getType()); 5114 else 5115 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5116 } 5117 5118 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5119 // Store the newly computed address into the cache. In the case we reused a 5120 // value, this should be idempotent. 5121 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5122 5123 // If we have no uses, recursively delete the value and all dead instructions 5124 // using it. 5125 if (Repl->use_empty()) { 5126 // This can cause recursive deletion, which can invalidate our iterator. 5127 // Use a WeakTrackingVH to hold onto it in case this happens. 5128 Value *CurValue = &*CurInstIterator; 5129 WeakTrackingVH IterHandle(CurValue); 5130 BasicBlock *BB = CurInstIterator->getParent(); 5131 5132 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5133 5134 if (IterHandle != CurValue) { 5135 // If the iterator instruction was recursively deleted, start over at the 5136 // start of the block. 5137 CurInstIterator = BB->begin(); 5138 SunkAddrs.clear(); 5139 } 5140 } 5141 ++NumMemoryInsts; 5142 return true; 5143 } 5144 5145 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5146 /// address computing into the block when possible / profitable. 5147 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5148 bool MadeChange = false; 5149 5150 const TargetRegisterInfo *TRI = 5151 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5152 TargetLowering::AsmOperandInfoVector TargetConstraints = 5153 TLI->ParseConstraints(*DL, TRI, CS); 5154 unsigned ArgNo = 0; 5155 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5156 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5157 5158 // Compute the constraint code and ConstraintType to use. 5159 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5160 5161 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5162 OpInfo.isIndirect) { 5163 Value *OpVal = CS->getArgOperand(ArgNo++); 5164 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5165 } else if (OpInfo.Type == InlineAsm::isInput) 5166 ArgNo++; 5167 } 5168 5169 return MadeChange; 5170 } 5171 5172 /// Check if all the uses of \p Val are equivalent (or free) zero or 5173 /// sign extensions. 5174 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5175 assert(!Val->use_empty() && "Input must have at least one use"); 5176 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5177 bool IsSExt = isa<SExtInst>(FirstUser); 5178 Type *ExtTy = FirstUser->getType(); 5179 for (const User *U : Val->users()) { 5180 const Instruction *UI = cast<Instruction>(U); 5181 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5182 return false; 5183 Type *CurTy = UI->getType(); 5184 // Same input and output types: Same instruction after CSE. 5185 if (CurTy == ExtTy) 5186 continue; 5187 5188 // If IsSExt is true, we are in this situation: 5189 // a = Val 5190 // b = sext ty1 a to ty2 5191 // c = sext ty1 a to ty3 5192 // Assuming ty2 is shorter than ty3, this could be turned into: 5193 // a = Val 5194 // b = sext ty1 a to ty2 5195 // c = sext ty2 b to ty3 5196 // However, the last sext is not free. 5197 if (IsSExt) 5198 return false; 5199 5200 // This is a ZExt, maybe this is free to extend from one type to another. 5201 // In that case, we would not account for a different use. 5202 Type *NarrowTy; 5203 Type *LargeTy; 5204 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5205 CurTy->getScalarType()->getIntegerBitWidth()) { 5206 NarrowTy = CurTy; 5207 LargeTy = ExtTy; 5208 } else { 5209 NarrowTy = ExtTy; 5210 LargeTy = CurTy; 5211 } 5212 5213 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5214 return false; 5215 } 5216 // All uses are the same or can be derived from one another for free. 5217 return true; 5218 } 5219 5220 /// Try to speculatively promote extensions in \p Exts and continue 5221 /// promoting through newly promoted operands recursively as far as doing so is 5222 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5223 /// When some promotion happened, \p TPT contains the proper state to revert 5224 /// them. 5225 /// 5226 /// \return true if some promotion happened, false otherwise. 5227 bool CodeGenPrepare::tryToPromoteExts( 5228 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5229 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5230 unsigned CreatedInstsCost) { 5231 bool Promoted = false; 5232 5233 // Iterate over all the extensions to try to promote them. 5234 for (auto I : Exts) { 5235 // Early check if we directly have ext(load). 5236 if (isa<LoadInst>(I->getOperand(0))) { 5237 ProfitablyMovedExts.push_back(I); 5238 continue; 5239 } 5240 5241 // Check whether or not we want to do any promotion. The reason we have 5242 // this check inside the for loop is to catch the case where an extension 5243 // is directly fed by a load because in such case the extension can be moved 5244 // up without any promotion on its operands. 5245 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5246 return false; 5247 5248 // Get the action to perform the promotion. 5249 TypePromotionHelper::Action TPH = 5250 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5251 // Check if we can promote. 5252 if (!TPH) { 5253 // Save the current extension as we cannot move up through its operand. 5254 ProfitablyMovedExts.push_back(I); 5255 continue; 5256 } 5257 5258 // Save the current state. 5259 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5260 TPT.getRestorationPoint(); 5261 SmallVector<Instruction *, 4> NewExts; 5262 unsigned NewCreatedInstsCost = 0; 5263 unsigned ExtCost = !TLI->isExtFree(I); 5264 // Promote. 5265 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5266 &NewExts, nullptr, *TLI); 5267 assert(PromotedVal && 5268 "TypePromotionHelper should have filtered out those cases"); 5269 5270 // We would be able to merge only one extension in a load. 5271 // Therefore, if we have more than 1 new extension we heuristically 5272 // cut this search path, because it means we degrade the code quality. 5273 // With exactly 2, the transformation is neutral, because we will merge 5274 // one extension but leave one. However, we optimistically keep going, 5275 // because the new extension may be removed too. 5276 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5277 // FIXME: It would be possible to propagate a negative value instead of 5278 // conservatively ceiling it to 0. 5279 TotalCreatedInstsCost = 5280 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5281 if (!StressExtLdPromotion && 5282 (TotalCreatedInstsCost > 1 || 5283 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5284 // This promotion is not profitable, rollback to the previous state, and 5285 // save the current extension in ProfitablyMovedExts as the latest 5286 // speculative promotion turned out to be unprofitable. 5287 TPT.rollback(LastKnownGood); 5288 ProfitablyMovedExts.push_back(I); 5289 continue; 5290 } 5291 // Continue promoting NewExts as far as doing so is profitable. 5292 SmallVector<Instruction *, 2> NewlyMovedExts; 5293 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5294 bool NewPromoted = false; 5295 for (auto ExtInst : NewlyMovedExts) { 5296 Instruction *MovedExt = cast<Instruction>(ExtInst); 5297 Value *ExtOperand = MovedExt->getOperand(0); 5298 // If we have reached to a load, we need this extra profitability check 5299 // as it could potentially be merged into an ext(load). 5300 if (isa<LoadInst>(ExtOperand) && 5301 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5302 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5303 continue; 5304 5305 ProfitablyMovedExts.push_back(MovedExt); 5306 NewPromoted = true; 5307 } 5308 5309 // If none of speculative promotions for NewExts is profitable, rollback 5310 // and save the current extension (I) as the last profitable extension. 5311 if (!NewPromoted) { 5312 TPT.rollback(LastKnownGood); 5313 ProfitablyMovedExts.push_back(I); 5314 continue; 5315 } 5316 // The promotion is profitable. 5317 Promoted = true; 5318 } 5319 return Promoted; 5320 } 5321 5322 /// Merging redundant sexts when one is dominating the other. 5323 bool CodeGenPrepare::mergeSExts(Function &F) { 5324 bool Changed = false; 5325 for (auto &Entry : ValToSExtendedUses) { 5326 SExts &Insts = Entry.second; 5327 SExts CurPts; 5328 for (Instruction *Inst : Insts) { 5329 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5330 Inst->getOperand(0) != Entry.first) 5331 continue; 5332 bool inserted = false; 5333 for (auto &Pt : CurPts) { 5334 if (getDT(F).dominates(Inst, Pt)) { 5335 Pt->replaceAllUsesWith(Inst); 5336 RemovedInsts.insert(Pt); 5337 Pt->removeFromParent(); 5338 Pt = Inst; 5339 inserted = true; 5340 Changed = true; 5341 break; 5342 } 5343 if (!getDT(F).dominates(Pt, Inst)) 5344 // Give up if we need to merge in a common dominator as the 5345 // experiments show it is not profitable. 5346 continue; 5347 Inst->replaceAllUsesWith(Pt); 5348 RemovedInsts.insert(Inst); 5349 Inst->removeFromParent(); 5350 inserted = true; 5351 Changed = true; 5352 break; 5353 } 5354 if (!inserted) 5355 CurPts.push_back(Inst); 5356 } 5357 } 5358 return Changed; 5359 } 5360 5361 // Spliting large data structures so that the GEPs accessing them can have 5362 // smaller offsets so that they can be sunk to the same blocks as their users. 5363 // For example, a large struct starting from %base is splitted into two parts 5364 // where the second part starts from %new_base. 5365 // 5366 // Before: 5367 // BB0: 5368 // %base = 5369 // 5370 // BB1: 5371 // %gep0 = gep %base, off0 5372 // %gep1 = gep %base, off1 5373 // %gep2 = gep %base, off2 5374 // 5375 // BB2: 5376 // %load1 = load %gep0 5377 // %load2 = load %gep1 5378 // %load3 = load %gep2 5379 // 5380 // After: 5381 // BB0: 5382 // %base = 5383 // %new_base = gep %base, off0 5384 // 5385 // BB1: 5386 // %new_gep0 = %new_base 5387 // %new_gep1 = gep %new_base, off1 - off0 5388 // %new_gep2 = gep %new_base, off2 - off0 5389 // 5390 // BB2: 5391 // %load1 = load i32, i32* %new_gep0 5392 // %load2 = load i32, i32* %new_gep1 5393 // %load3 = load i32, i32* %new_gep2 5394 // 5395 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5396 // their offsets are smaller enough to fit into the addressing mode. 5397 bool CodeGenPrepare::splitLargeGEPOffsets() { 5398 bool Changed = false; 5399 for (auto &Entry : LargeOffsetGEPMap) { 5400 Value *OldBase = Entry.first; 5401 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5402 &LargeOffsetGEPs = Entry.second; 5403 auto compareGEPOffset = 5404 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5405 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5406 if (LHS.first == RHS.first) 5407 return false; 5408 if (LHS.second != RHS.second) 5409 return LHS.second < RHS.second; 5410 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5411 }; 5412 // Sorting all the GEPs of the same data structures based on the offsets. 5413 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5414 LargeOffsetGEPs.erase( 5415 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5416 LargeOffsetGEPs.end()); 5417 // Skip if all the GEPs have the same offsets. 5418 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5419 continue; 5420 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5421 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5422 Value *NewBaseGEP = nullptr; 5423 5424 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5425 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5426 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5427 int64_t Offset = LargeOffsetGEP->second; 5428 if (Offset != BaseOffset) { 5429 TargetLowering::AddrMode AddrMode; 5430 AddrMode.BaseOffs = Offset - BaseOffset; 5431 // The result type of the GEP might not be the type of the memory 5432 // access. 5433 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5434 GEP->getResultElementType(), 5435 GEP->getAddressSpace())) { 5436 // We need to create a new base if the offset to the current base is 5437 // too large to fit into the addressing mode. So, a very large struct 5438 // may be splitted into several parts. 5439 BaseGEP = GEP; 5440 BaseOffset = Offset; 5441 NewBaseGEP = nullptr; 5442 } 5443 } 5444 5445 // Generate a new GEP to replace the current one. 5446 LLVMContext &Ctx = GEP->getContext(); 5447 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5448 Type *I8PtrTy = 5449 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5450 Type *I8Ty = Type::getInt8Ty(Ctx); 5451 5452 if (!NewBaseGEP) { 5453 // Create a new base if we don't have one yet. Find the insertion 5454 // pointer for the new base first. 5455 BasicBlock::iterator NewBaseInsertPt; 5456 BasicBlock *NewBaseInsertBB; 5457 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5458 // If the base of the struct is an instruction, the new base will be 5459 // inserted close to it. 5460 NewBaseInsertBB = BaseI->getParent(); 5461 if (isa<PHINode>(BaseI)) 5462 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5463 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5464 NewBaseInsertBB = 5465 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5466 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5467 } else 5468 NewBaseInsertPt = std::next(BaseI->getIterator()); 5469 } else { 5470 // If the current base is an argument or global value, the new base 5471 // will be inserted to the entry block. 5472 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5473 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5474 } 5475 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5476 // Create a new base. 5477 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5478 NewBaseGEP = OldBase; 5479 if (NewBaseGEP->getType() != I8PtrTy) 5480 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5481 NewBaseGEP = 5482 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5483 NewGEPBases.insert(NewBaseGEP); 5484 } 5485 5486 IRBuilder<> Builder(GEP); 5487 Value *NewGEP = NewBaseGEP; 5488 if (Offset == BaseOffset) { 5489 if (GEP->getType() != I8PtrTy) 5490 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5491 } else { 5492 // Calculate the new offset for the new GEP. 5493 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5494 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5495 5496 if (GEP->getType() != I8PtrTy) 5497 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5498 } 5499 GEP->replaceAllUsesWith(NewGEP); 5500 LargeOffsetGEPID.erase(GEP); 5501 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5502 GEP->eraseFromParent(); 5503 Changed = true; 5504 } 5505 } 5506 return Changed; 5507 } 5508 5509 /// Return true, if an ext(load) can be formed from an extension in 5510 /// \p MovedExts. 5511 bool CodeGenPrepare::canFormExtLd( 5512 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5513 Instruction *&Inst, bool HasPromoted) { 5514 for (auto *MovedExtInst : MovedExts) { 5515 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5516 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5517 Inst = MovedExtInst; 5518 break; 5519 } 5520 } 5521 if (!LI) 5522 return false; 5523 5524 // If they're already in the same block, there's nothing to do. 5525 // Make the cheap checks first if we did not promote. 5526 // If we promoted, we need to check if it is indeed profitable. 5527 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5528 return false; 5529 5530 return TLI->isExtLoad(LI, Inst, *DL); 5531 } 5532 5533 /// Move a zext or sext fed by a load into the same basic block as the load, 5534 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5535 /// extend into the load. 5536 /// 5537 /// E.g., 5538 /// \code 5539 /// %ld = load i32* %addr 5540 /// %add = add nuw i32 %ld, 4 5541 /// %zext = zext i32 %add to i64 5542 // \endcode 5543 /// => 5544 /// \code 5545 /// %ld = load i32* %addr 5546 /// %zext = zext i32 %ld to i64 5547 /// %add = add nuw i64 %zext, 4 5548 /// \encode 5549 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5550 /// allow us to match zext(load i32*) to i64. 5551 /// 5552 /// Also, try to promote the computations used to obtain a sign extended 5553 /// value used into memory accesses. 5554 /// E.g., 5555 /// \code 5556 /// a = add nsw i32 b, 3 5557 /// d = sext i32 a to i64 5558 /// e = getelementptr ..., i64 d 5559 /// \endcode 5560 /// => 5561 /// \code 5562 /// f = sext i32 b to i64 5563 /// a = add nsw i64 f, 3 5564 /// e = getelementptr ..., i64 a 5565 /// \endcode 5566 /// 5567 /// \p Inst[in/out] the extension may be modified during the process if some 5568 /// promotions apply. 5569 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5570 // ExtLoad formation and address type promotion infrastructure requires TLI to 5571 // be effective. 5572 if (!TLI) 5573 return false; 5574 5575 bool AllowPromotionWithoutCommonHeader = false; 5576 /// See if it is an interesting sext operations for the address type 5577 /// promotion before trying to promote it, e.g., the ones with the right 5578 /// type and used in memory accesses. 5579 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5580 *Inst, AllowPromotionWithoutCommonHeader); 5581 TypePromotionTransaction TPT(RemovedInsts); 5582 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5583 TPT.getRestorationPoint(); 5584 SmallVector<Instruction *, 1> Exts; 5585 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5586 Exts.push_back(Inst); 5587 5588 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5589 5590 // Look for a load being extended. 5591 LoadInst *LI = nullptr; 5592 Instruction *ExtFedByLoad; 5593 5594 // Try to promote a chain of computation if it allows to form an extended 5595 // load. 5596 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5597 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5598 TPT.commit(); 5599 // Move the extend into the same block as the load 5600 ExtFedByLoad->moveAfter(LI); 5601 // CGP does not check if the zext would be speculatively executed when moved 5602 // to the same basic block as the load. Preserving its original location 5603 // would pessimize the debugging experience, as well as negatively impact 5604 // the quality of sample pgo. We don't want to use "line 0" as that has a 5605 // size cost in the line-table section and logically the zext can be seen as 5606 // part of the load. Therefore we conservatively reuse the same debug 5607 // location for the load and the zext. 5608 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5609 ++NumExtsMoved; 5610 Inst = ExtFedByLoad; 5611 return true; 5612 } 5613 5614 // Continue promoting SExts if known as considerable depending on targets. 5615 if (ATPConsiderable && 5616 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5617 HasPromoted, TPT, SpeculativelyMovedExts)) 5618 return true; 5619 5620 TPT.rollback(LastKnownGood); 5621 return false; 5622 } 5623 5624 // Perform address type promotion if doing so is profitable. 5625 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5626 // instructions that sign extended the same initial value. However, if 5627 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5628 // extension is just profitable. 5629 bool CodeGenPrepare::performAddressTypePromotion( 5630 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5631 bool HasPromoted, TypePromotionTransaction &TPT, 5632 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5633 bool Promoted = false; 5634 SmallPtrSet<Instruction *, 1> UnhandledExts; 5635 bool AllSeenFirst = true; 5636 for (auto I : SpeculativelyMovedExts) { 5637 Value *HeadOfChain = I->getOperand(0); 5638 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5639 SeenChainsForSExt.find(HeadOfChain); 5640 // If there is an unhandled SExt which has the same header, try to promote 5641 // it as well. 5642 if (AlreadySeen != SeenChainsForSExt.end()) { 5643 if (AlreadySeen->second != nullptr) 5644 UnhandledExts.insert(AlreadySeen->second); 5645 AllSeenFirst = false; 5646 } 5647 } 5648 5649 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5650 SpeculativelyMovedExts.size() == 1)) { 5651 TPT.commit(); 5652 if (HasPromoted) 5653 Promoted = true; 5654 for (auto I : SpeculativelyMovedExts) { 5655 Value *HeadOfChain = I->getOperand(0); 5656 SeenChainsForSExt[HeadOfChain] = nullptr; 5657 ValToSExtendedUses[HeadOfChain].push_back(I); 5658 } 5659 // Update Inst as promotion happen. 5660 Inst = SpeculativelyMovedExts.pop_back_val(); 5661 } else { 5662 // This is the first chain visited from the header, keep the current chain 5663 // as unhandled. Defer to promote this until we encounter another SExt 5664 // chain derived from the same header. 5665 for (auto I : SpeculativelyMovedExts) { 5666 Value *HeadOfChain = I->getOperand(0); 5667 SeenChainsForSExt[HeadOfChain] = Inst; 5668 } 5669 return false; 5670 } 5671 5672 if (!AllSeenFirst && !UnhandledExts.empty()) 5673 for (auto VisitedSExt : UnhandledExts) { 5674 if (RemovedInsts.count(VisitedSExt)) 5675 continue; 5676 TypePromotionTransaction TPT(RemovedInsts); 5677 SmallVector<Instruction *, 1> Exts; 5678 SmallVector<Instruction *, 2> Chains; 5679 Exts.push_back(VisitedSExt); 5680 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5681 TPT.commit(); 5682 if (HasPromoted) 5683 Promoted = true; 5684 for (auto I : Chains) { 5685 Value *HeadOfChain = I->getOperand(0); 5686 // Mark this as handled. 5687 SeenChainsForSExt[HeadOfChain] = nullptr; 5688 ValToSExtendedUses[HeadOfChain].push_back(I); 5689 } 5690 } 5691 return Promoted; 5692 } 5693 5694 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5695 BasicBlock *DefBB = I->getParent(); 5696 5697 // If the result of a {s|z}ext and its source are both live out, rewrite all 5698 // other uses of the source with result of extension. 5699 Value *Src = I->getOperand(0); 5700 if (Src->hasOneUse()) 5701 return false; 5702 5703 // Only do this xform if truncating is free. 5704 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5705 return false; 5706 5707 // Only safe to perform the optimization if the source is also defined in 5708 // this block. 5709 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5710 return false; 5711 5712 bool DefIsLiveOut = false; 5713 for (User *U : I->users()) { 5714 Instruction *UI = cast<Instruction>(U); 5715 5716 // Figure out which BB this ext is used in. 5717 BasicBlock *UserBB = UI->getParent(); 5718 if (UserBB == DefBB) continue; 5719 DefIsLiveOut = true; 5720 break; 5721 } 5722 if (!DefIsLiveOut) 5723 return false; 5724 5725 // Make sure none of the uses are PHI nodes. 5726 for (User *U : Src->users()) { 5727 Instruction *UI = cast<Instruction>(U); 5728 BasicBlock *UserBB = UI->getParent(); 5729 if (UserBB == DefBB) continue; 5730 // Be conservative. We don't want this xform to end up introducing 5731 // reloads just before load / store instructions. 5732 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5733 return false; 5734 } 5735 5736 // InsertedTruncs - Only insert one trunc in each block once. 5737 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5738 5739 bool MadeChange = false; 5740 for (Use &U : Src->uses()) { 5741 Instruction *User = cast<Instruction>(U.getUser()); 5742 5743 // Figure out which BB this ext is used in. 5744 BasicBlock *UserBB = User->getParent(); 5745 if (UserBB == DefBB) continue; 5746 5747 // Both src and def are live in this block. Rewrite the use. 5748 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5749 5750 if (!InsertedTrunc) { 5751 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5752 assert(InsertPt != UserBB->end()); 5753 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5754 InsertedInsts.insert(InsertedTrunc); 5755 } 5756 5757 // Replace a use of the {s|z}ext source with a use of the result. 5758 U = InsertedTrunc; 5759 ++NumExtUses; 5760 MadeChange = true; 5761 } 5762 5763 return MadeChange; 5764 } 5765 5766 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5767 // just after the load if the target can fold this into one extload instruction, 5768 // with the hope of eliminating some of the other later "and" instructions using 5769 // the loaded value. "and"s that are made trivially redundant by the insertion 5770 // of the new "and" are removed by this function, while others (e.g. those whose 5771 // path from the load goes through a phi) are left for isel to potentially 5772 // remove. 5773 // 5774 // For example: 5775 // 5776 // b0: 5777 // x = load i32 5778 // ... 5779 // b1: 5780 // y = and x, 0xff 5781 // z = use y 5782 // 5783 // becomes: 5784 // 5785 // b0: 5786 // x = load i32 5787 // x' = and x, 0xff 5788 // ... 5789 // b1: 5790 // z = use x' 5791 // 5792 // whereas: 5793 // 5794 // b0: 5795 // x1 = load i32 5796 // ... 5797 // b1: 5798 // x2 = load i32 5799 // ... 5800 // b2: 5801 // x = phi x1, x2 5802 // y = and x, 0xff 5803 // 5804 // becomes (after a call to optimizeLoadExt for each load): 5805 // 5806 // b0: 5807 // x1 = load i32 5808 // x1' = and x1, 0xff 5809 // ... 5810 // b1: 5811 // x2 = load i32 5812 // x2' = and x2, 0xff 5813 // ... 5814 // b2: 5815 // x = phi x1', x2' 5816 // y = and x, 0xff 5817 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5818 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5819 return false; 5820 5821 // Skip loads we've already transformed. 5822 if (Load->hasOneUse() && 5823 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5824 return false; 5825 5826 // Look at all uses of Load, looking through phis, to determine how many bits 5827 // of the loaded value are needed. 5828 SmallVector<Instruction *, 8> WorkList; 5829 SmallPtrSet<Instruction *, 16> Visited; 5830 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5831 for (auto *U : Load->users()) 5832 WorkList.push_back(cast<Instruction>(U)); 5833 5834 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5835 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5836 APInt DemandBits(BitWidth, 0); 5837 APInt WidestAndBits(BitWidth, 0); 5838 5839 while (!WorkList.empty()) { 5840 Instruction *I = WorkList.back(); 5841 WorkList.pop_back(); 5842 5843 // Break use-def graph loops. 5844 if (!Visited.insert(I).second) 5845 continue; 5846 5847 // For a PHI node, push all of its users. 5848 if (auto *Phi = dyn_cast<PHINode>(I)) { 5849 for (auto *U : Phi->users()) 5850 WorkList.push_back(cast<Instruction>(U)); 5851 continue; 5852 } 5853 5854 switch (I->getOpcode()) { 5855 case Instruction::And: { 5856 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5857 if (!AndC) 5858 return false; 5859 APInt AndBits = AndC->getValue(); 5860 DemandBits |= AndBits; 5861 // Keep track of the widest and mask we see. 5862 if (AndBits.ugt(WidestAndBits)) 5863 WidestAndBits = AndBits; 5864 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5865 AndsToMaybeRemove.push_back(I); 5866 break; 5867 } 5868 5869 case Instruction::Shl: { 5870 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5871 if (!ShlC) 5872 return false; 5873 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5874 DemandBits.setLowBits(BitWidth - ShiftAmt); 5875 break; 5876 } 5877 5878 case Instruction::Trunc: { 5879 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5880 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5881 DemandBits.setLowBits(TruncBitWidth); 5882 break; 5883 } 5884 5885 default: 5886 return false; 5887 } 5888 } 5889 5890 uint32_t ActiveBits = DemandBits.getActiveBits(); 5891 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5892 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5893 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5894 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5895 // followed by an AND. 5896 // TODO: Look into removing this restriction by fixing backends to either 5897 // return false for isLoadExtLegal for i1 or have them select this pattern to 5898 // a single instruction. 5899 // 5900 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5901 // mask, since these are the only ands that will be removed by isel. 5902 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5903 WidestAndBits != DemandBits) 5904 return false; 5905 5906 LLVMContext &Ctx = Load->getType()->getContext(); 5907 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5908 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5909 5910 // Reject cases that won't be matched as extloads. 5911 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5912 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5913 return false; 5914 5915 IRBuilder<> Builder(Load->getNextNode()); 5916 auto *NewAnd = cast<Instruction>( 5917 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5918 // Mark this instruction as "inserted by CGP", so that other 5919 // optimizations don't touch it. 5920 InsertedInsts.insert(NewAnd); 5921 5922 // Replace all uses of load with new and (except for the use of load in the 5923 // new and itself). 5924 Load->replaceAllUsesWith(NewAnd); 5925 NewAnd->setOperand(0, Load); 5926 5927 // Remove any and instructions that are now redundant. 5928 for (auto *And : AndsToMaybeRemove) 5929 // Check that the and mask is the same as the one we decided to put on the 5930 // new and. 5931 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5932 And->replaceAllUsesWith(NewAnd); 5933 if (&*CurInstIterator == And) 5934 CurInstIterator = std::next(And->getIterator()); 5935 And->eraseFromParent(); 5936 ++NumAndUses; 5937 } 5938 5939 ++NumAndsAdded; 5940 return true; 5941 } 5942 5943 /// Check if V (an operand of a select instruction) is an expensive instruction 5944 /// that is only used once. 5945 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5946 auto *I = dyn_cast<Instruction>(V); 5947 // If it's safe to speculatively execute, then it should not have side 5948 // effects; therefore, it's safe to sink and possibly *not* execute. 5949 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5950 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5951 } 5952 5953 /// Returns true if a SelectInst should be turned into an explicit branch. 5954 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5955 const TargetLowering *TLI, 5956 SelectInst *SI) { 5957 // If even a predictable select is cheap, then a branch can't be cheaper. 5958 if (!TLI->isPredictableSelectExpensive()) 5959 return false; 5960 5961 // FIXME: This should use the same heuristics as IfConversion to determine 5962 // whether a select is better represented as a branch. 5963 5964 // If metadata tells us that the select condition is obviously predictable, 5965 // then we want to replace the select with a branch. 5966 uint64_t TrueWeight, FalseWeight; 5967 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5968 uint64_t Max = std::max(TrueWeight, FalseWeight); 5969 uint64_t Sum = TrueWeight + FalseWeight; 5970 if (Sum != 0) { 5971 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5972 if (Probability > TLI->getPredictableBranchThreshold()) 5973 return true; 5974 } 5975 } 5976 5977 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5978 5979 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5980 // comparison condition. If the compare has more than one use, there's 5981 // probably another cmov or setcc around, so it's not worth emitting a branch. 5982 if (!Cmp || !Cmp->hasOneUse()) 5983 return false; 5984 5985 // If either operand of the select is expensive and only needed on one side 5986 // of the select, we should form a branch. 5987 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5988 sinkSelectOperand(TTI, SI->getFalseValue())) 5989 return true; 5990 5991 return false; 5992 } 5993 5994 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5995 /// false value of \p SI. If the true/false value of \p SI is defined by any 5996 /// select instructions in \p Selects, look through the defining select 5997 /// instruction until the true/false value is not defined in \p Selects. 5998 static Value *getTrueOrFalseValue( 5999 SelectInst *SI, bool isTrue, 6000 const SmallPtrSet<const Instruction *, 2> &Selects) { 6001 Value *V = nullptr; 6002 6003 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6004 DefSI = dyn_cast<SelectInst>(V)) { 6005 assert(DefSI->getCondition() == SI->getCondition() && 6006 "The condition of DefSI does not match with SI"); 6007 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6008 } 6009 6010 assert(V && "Failed to get select true/false value"); 6011 return V; 6012 } 6013 6014 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6015 assert(Shift->isShift() && "Expected a shift"); 6016 6017 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6018 // general vector shifts, and (3) the shift amount is a select-of-splatted 6019 // values, hoist the shifts before the select: 6020 // shift Op0, (select Cond, TVal, FVal) --> 6021 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6022 // 6023 // This is inverting a generic IR transform when we know that the cost of a 6024 // general vector shift is more than the cost of 2 shift-by-scalars. 6025 // We can't do this effectively in SDAG because we may not be able to 6026 // determine if the select operands are splats from within a basic block. 6027 Type *Ty = Shift->getType(); 6028 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6029 return false; 6030 Value *Cond, *TVal, *FVal; 6031 if (!match(Shift->getOperand(1), 6032 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6033 return false; 6034 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6035 return false; 6036 6037 IRBuilder<> Builder(Shift); 6038 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6039 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6040 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6041 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6042 Shift->replaceAllUsesWith(NewSel); 6043 Shift->eraseFromParent(); 6044 return true; 6045 } 6046 6047 /// If we have a SelectInst that will likely profit from branch prediction, 6048 /// turn it into a branch. 6049 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6050 // If branch conversion isn't desirable, exit early. 6051 if (DisableSelectToBranch || 6052 OptSize || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()) || 6053 !TLI) 6054 return false; 6055 6056 // Find all consecutive select instructions that share the same condition. 6057 SmallVector<SelectInst *, 2> ASI; 6058 ASI.push_back(SI); 6059 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6060 It != SI->getParent()->end(); ++It) { 6061 SelectInst *I = dyn_cast<SelectInst>(&*It); 6062 if (I && SI->getCondition() == I->getCondition()) { 6063 ASI.push_back(I); 6064 } else { 6065 break; 6066 } 6067 } 6068 6069 SelectInst *LastSI = ASI.back(); 6070 // Increment the current iterator to skip all the rest of select instructions 6071 // because they will be either "not lowered" or "all lowered" to branch. 6072 CurInstIterator = std::next(LastSI->getIterator()); 6073 6074 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6075 6076 // Can we convert the 'select' to CF ? 6077 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6078 return false; 6079 6080 TargetLowering::SelectSupportKind SelectKind; 6081 if (VectorCond) 6082 SelectKind = TargetLowering::VectorMaskSelect; 6083 else if (SI->getType()->isVectorTy()) 6084 SelectKind = TargetLowering::ScalarCondVectorVal; 6085 else 6086 SelectKind = TargetLowering::ScalarValSelect; 6087 6088 if (TLI->isSelectSupported(SelectKind) && 6089 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6090 return false; 6091 6092 // The DominatorTree needs to be rebuilt by any consumers after this 6093 // transformation. We simply reset here rather than setting the ModifiedDT 6094 // flag to avoid restarting the function walk in runOnFunction for each 6095 // select optimized. 6096 DT.reset(); 6097 6098 // Transform a sequence like this: 6099 // start: 6100 // %cmp = cmp uge i32 %a, %b 6101 // %sel = select i1 %cmp, i32 %c, i32 %d 6102 // 6103 // Into: 6104 // start: 6105 // %cmp = cmp uge i32 %a, %b 6106 // br i1 %cmp, label %select.true, label %select.false 6107 // select.true: 6108 // br label %select.end 6109 // select.false: 6110 // br label %select.end 6111 // select.end: 6112 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6113 // 6114 // In addition, we may sink instructions that produce %c or %d from 6115 // the entry block into the destination(s) of the new branch. 6116 // If the true or false blocks do not contain a sunken instruction, that 6117 // block and its branch may be optimized away. In that case, one side of the 6118 // first branch will point directly to select.end, and the corresponding PHI 6119 // predecessor block will be the start block. 6120 6121 // First, we split the block containing the select into 2 blocks. 6122 BasicBlock *StartBlock = SI->getParent(); 6123 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6124 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6125 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6126 6127 // Delete the unconditional branch that was just created by the split. 6128 StartBlock->getTerminator()->eraseFromParent(); 6129 6130 // These are the new basic blocks for the conditional branch. 6131 // At least one will become an actual new basic block. 6132 BasicBlock *TrueBlock = nullptr; 6133 BasicBlock *FalseBlock = nullptr; 6134 BranchInst *TrueBranch = nullptr; 6135 BranchInst *FalseBranch = nullptr; 6136 6137 // Sink expensive instructions into the conditional blocks to avoid executing 6138 // them speculatively. 6139 for (SelectInst *SI : ASI) { 6140 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6141 if (TrueBlock == nullptr) { 6142 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6143 EndBlock->getParent(), EndBlock); 6144 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6145 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6146 } 6147 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6148 TrueInst->moveBefore(TrueBranch); 6149 } 6150 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6151 if (FalseBlock == nullptr) { 6152 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6153 EndBlock->getParent(), EndBlock); 6154 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6155 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6156 } 6157 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6158 FalseInst->moveBefore(FalseBranch); 6159 } 6160 } 6161 6162 // If there was nothing to sink, then arbitrarily choose the 'false' side 6163 // for a new input value to the PHI. 6164 if (TrueBlock == FalseBlock) { 6165 assert(TrueBlock == nullptr && 6166 "Unexpected basic block transform while optimizing select"); 6167 6168 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6169 EndBlock->getParent(), EndBlock); 6170 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6171 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6172 } 6173 6174 // Insert the real conditional branch based on the original condition. 6175 // If we did not create a new block for one of the 'true' or 'false' paths 6176 // of the condition, it means that side of the branch goes to the end block 6177 // directly and the path originates from the start block from the point of 6178 // view of the new PHI. 6179 BasicBlock *TT, *FT; 6180 if (TrueBlock == nullptr) { 6181 TT = EndBlock; 6182 FT = FalseBlock; 6183 TrueBlock = StartBlock; 6184 } else if (FalseBlock == nullptr) { 6185 TT = TrueBlock; 6186 FT = EndBlock; 6187 FalseBlock = StartBlock; 6188 } else { 6189 TT = TrueBlock; 6190 FT = FalseBlock; 6191 } 6192 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6193 6194 SmallPtrSet<const Instruction *, 2> INS; 6195 INS.insert(ASI.begin(), ASI.end()); 6196 // Use reverse iterator because later select may use the value of the 6197 // earlier select, and we need to propagate value through earlier select 6198 // to get the PHI operand. 6199 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6200 SelectInst *SI = *It; 6201 // The select itself is replaced with a PHI Node. 6202 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6203 PN->takeName(SI); 6204 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6205 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6206 PN->setDebugLoc(SI->getDebugLoc()); 6207 6208 SI->replaceAllUsesWith(PN); 6209 SI->eraseFromParent(); 6210 INS.erase(SI); 6211 ++NumSelectsExpanded; 6212 } 6213 6214 // Instruct OptimizeBlock to skip to the next block. 6215 CurInstIterator = StartBlock->end(); 6216 return true; 6217 } 6218 6219 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6220 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6221 int SplatElem = -1; 6222 for (unsigned i = 0; i < Mask.size(); ++i) { 6223 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6224 return false; 6225 SplatElem = Mask[i]; 6226 } 6227 6228 return true; 6229 } 6230 6231 /// Some targets have expensive vector shifts if the lanes aren't all the same 6232 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6233 /// it's often worth sinking a shufflevector splat down to its use so that 6234 /// codegen can spot all lanes are identical. 6235 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6236 BasicBlock *DefBB = SVI->getParent(); 6237 6238 // Only do this xform if variable vector shifts are particularly expensive. 6239 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6240 return false; 6241 6242 // We only expect better codegen by sinking a shuffle if we can recognise a 6243 // constant splat. 6244 if (!isBroadcastShuffle(SVI)) 6245 return false; 6246 6247 // InsertedShuffles - Only insert a shuffle in each block once. 6248 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6249 6250 bool MadeChange = false; 6251 for (User *U : SVI->users()) { 6252 Instruction *UI = cast<Instruction>(U); 6253 6254 // Figure out which BB this ext is used in. 6255 BasicBlock *UserBB = UI->getParent(); 6256 if (UserBB == DefBB) continue; 6257 6258 // For now only apply this when the splat is used by a shift instruction. 6259 if (!UI->isShift()) continue; 6260 6261 // Everything checks out, sink the shuffle if the user's block doesn't 6262 // already have a copy. 6263 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6264 6265 if (!InsertedShuffle) { 6266 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6267 assert(InsertPt != UserBB->end()); 6268 InsertedShuffle = 6269 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6270 SVI->getOperand(2), "", &*InsertPt); 6271 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6272 } 6273 6274 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6275 MadeChange = true; 6276 } 6277 6278 // If we removed all uses, nuke the shuffle. 6279 if (SVI->use_empty()) { 6280 SVI->eraseFromParent(); 6281 MadeChange = true; 6282 } 6283 6284 return MadeChange; 6285 } 6286 6287 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6288 // If the operands of I can be folded into a target instruction together with 6289 // I, duplicate and sink them. 6290 SmallVector<Use *, 4> OpsToSink; 6291 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6292 return false; 6293 6294 // OpsToSink can contain multiple uses in a use chain (e.g. 6295 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6296 // uses must come first, so we process the ops in reverse order so as to not 6297 // create invalid IR. 6298 BasicBlock *TargetBB = I->getParent(); 6299 bool Changed = false; 6300 SmallVector<Use *, 4> ToReplace; 6301 for (Use *U : reverse(OpsToSink)) { 6302 auto *UI = cast<Instruction>(U->get()); 6303 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6304 continue; 6305 ToReplace.push_back(U); 6306 } 6307 6308 SetVector<Instruction *> MaybeDead; 6309 DenseMap<Instruction *, Instruction *> NewInstructions; 6310 Instruction *InsertPoint = I; 6311 for (Use *U : ToReplace) { 6312 auto *UI = cast<Instruction>(U->get()); 6313 Instruction *NI = UI->clone(); 6314 NewInstructions[UI] = NI; 6315 MaybeDead.insert(UI); 6316 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6317 NI->insertBefore(InsertPoint); 6318 InsertPoint = NI; 6319 InsertedInsts.insert(NI); 6320 6321 // Update the use for the new instruction, making sure that we update the 6322 // sunk instruction uses, if it is part of a chain that has already been 6323 // sunk. 6324 Instruction *OldI = cast<Instruction>(U->getUser()); 6325 if (NewInstructions.count(OldI)) 6326 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6327 else 6328 U->set(NI); 6329 Changed = true; 6330 } 6331 6332 // Remove instructions that are dead after sinking. 6333 for (auto *I : MaybeDead) { 6334 if (!I->hasNUsesOrMore(1)) { 6335 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6336 I->eraseFromParent(); 6337 } 6338 } 6339 6340 return Changed; 6341 } 6342 6343 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6344 if (!TLI || !DL) 6345 return false; 6346 6347 Value *Cond = SI->getCondition(); 6348 Type *OldType = Cond->getType(); 6349 LLVMContext &Context = Cond->getContext(); 6350 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6351 unsigned RegWidth = RegType.getSizeInBits(); 6352 6353 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6354 return false; 6355 6356 // If the register width is greater than the type width, expand the condition 6357 // of the switch instruction and each case constant to the width of the 6358 // register. By widening the type of the switch condition, subsequent 6359 // comparisons (for case comparisons) will not need to be extended to the 6360 // preferred register width, so we will potentially eliminate N-1 extends, 6361 // where N is the number of cases in the switch. 6362 auto *NewType = Type::getIntNTy(Context, RegWidth); 6363 6364 // Zero-extend the switch condition and case constants unless the switch 6365 // condition is a function argument that is already being sign-extended. 6366 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6367 // everything instead. 6368 Instruction::CastOps ExtType = Instruction::ZExt; 6369 if (auto *Arg = dyn_cast<Argument>(Cond)) 6370 if (Arg->hasSExtAttr()) 6371 ExtType = Instruction::SExt; 6372 6373 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6374 ExtInst->insertBefore(SI); 6375 ExtInst->setDebugLoc(SI->getDebugLoc()); 6376 SI->setCondition(ExtInst); 6377 for (auto Case : SI->cases()) { 6378 APInt NarrowConst = Case.getCaseValue()->getValue(); 6379 APInt WideConst = (ExtType == Instruction::ZExt) ? 6380 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6381 Case.setValue(ConstantInt::get(Context, WideConst)); 6382 } 6383 6384 return true; 6385 } 6386 6387 6388 namespace { 6389 6390 /// Helper class to promote a scalar operation to a vector one. 6391 /// This class is used to move downward extractelement transition. 6392 /// E.g., 6393 /// a = vector_op <2 x i32> 6394 /// b = extractelement <2 x i32> a, i32 0 6395 /// c = scalar_op b 6396 /// store c 6397 /// 6398 /// => 6399 /// a = vector_op <2 x i32> 6400 /// c = vector_op a (equivalent to scalar_op on the related lane) 6401 /// * d = extractelement <2 x i32> c, i32 0 6402 /// * store d 6403 /// Assuming both extractelement and store can be combine, we get rid of the 6404 /// transition. 6405 class VectorPromoteHelper { 6406 /// DataLayout associated with the current module. 6407 const DataLayout &DL; 6408 6409 /// Used to perform some checks on the legality of vector operations. 6410 const TargetLowering &TLI; 6411 6412 /// Used to estimated the cost of the promoted chain. 6413 const TargetTransformInfo &TTI; 6414 6415 /// The transition being moved downwards. 6416 Instruction *Transition; 6417 6418 /// The sequence of instructions to be promoted. 6419 SmallVector<Instruction *, 4> InstsToBePromoted; 6420 6421 /// Cost of combining a store and an extract. 6422 unsigned StoreExtractCombineCost; 6423 6424 /// Instruction that will be combined with the transition. 6425 Instruction *CombineInst = nullptr; 6426 6427 /// The instruction that represents the current end of the transition. 6428 /// Since we are faking the promotion until we reach the end of the chain 6429 /// of computation, we need a way to get the current end of the transition. 6430 Instruction *getEndOfTransition() const { 6431 if (InstsToBePromoted.empty()) 6432 return Transition; 6433 return InstsToBePromoted.back(); 6434 } 6435 6436 /// Return the index of the original value in the transition. 6437 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6438 /// c, is at index 0. 6439 unsigned getTransitionOriginalValueIdx() const { 6440 assert(isa<ExtractElementInst>(Transition) && 6441 "Other kind of transitions are not supported yet"); 6442 return 0; 6443 } 6444 6445 /// Return the index of the index in the transition. 6446 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6447 /// is at index 1. 6448 unsigned getTransitionIdx() const { 6449 assert(isa<ExtractElementInst>(Transition) && 6450 "Other kind of transitions are not supported yet"); 6451 return 1; 6452 } 6453 6454 /// Get the type of the transition. 6455 /// This is the type of the original value. 6456 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6457 /// transition is <2 x i32>. 6458 Type *getTransitionType() const { 6459 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6460 } 6461 6462 /// Promote \p ToBePromoted by moving \p Def downward through. 6463 /// I.e., we have the following sequence: 6464 /// Def = Transition <ty1> a to <ty2> 6465 /// b = ToBePromoted <ty2> Def, ... 6466 /// => 6467 /// b = ToBePromoted <ty1> a, ... 6468 /// Def = Transition <ty1> ToBePromoted to <ty2> 6469 void promoteImpl(Instruction *ToBePromoted); 6470 6471 /// Check whether or not it is profitable to promote all the 6472 /// instructions enqueued to be promoted. 6473 bool isProfitableToPromote() { 6474 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6475 unsigned Index = isa<ConstantInt>(ValIdx) 6476 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6477 : -1; 6478 Type *PromotedType = getTransitionType(); 6479 6480 StoreInst *ST = cast<StoreInst>(CombineInst); 6481 unsigned AS = ST->getPointerAddressSpace(); 6482 unsigned Align = ST->getAlignment(); 6483 // Check if this store is supported. 6484 if (!TLI.allowsMisalignedMemoryAccesses( 6485 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6486 Align)) { 6487 // If this is not supported, there is no way we can combine 6488 // the extract with the store. 6489 return false; 6490 } 6491 6492 // The scalar chain of computation has to pay for the transition 6493 // scalar to vector. 6494 // The vector chain has to account for the combining cost. 6495 uint64_t ScalarCost = 6496 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6497 uint64_t VectorCost = StoreExtractCombineCost; 6498 for (const auto &Inst : InstsToBePromoted) { 6499 // Compute the cost. 6500 // By construction, all instructions being promoted are arithmetic ones. 6501 // Moreover, one argument is a constant that can be viewed as a splat 6502 // constant. 6503 Value *Arg0 = Inst->getOperand(0); 6504 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6505 isa<ConstantFP>(Arg0); 6506 TargetTransformInfo::OperandValueKind Arg0OVK = 6507 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6508 : TargetTransformInfo::OK_AnyValue; 6509 TargetTransformInfo::OperandValueKind Arg1OVK = 6510 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6511 : TargetTransformInfo::OK_AnyValue; 6512 ScalarCost += TTI.getArithmeticInstrCost( 6513 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6514 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6515 Arg0OVK, Arg1OVK); 6516 } 6517 LLVM_DEBUG( 6518 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6519 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6520 return ScalarCost > VectorCost; 6521 } 6522 6523 /// Generate a constant vector with \p Val with the same 6524 /// number of elements as the transition. 6525 /// \p UseSplat defines whether or not \p Val should be replicated 6526 /// across the whole vector. 6527 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6528 /// otherwise we generate a vector with as many undef as possible: 6529 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6530 /// used at the index of the extract. 6531 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6532 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6533 if (!UseSplat) { 6534 // If we cannot determine where the constant must be, we have to 6535 // use a splat constant. 6536 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6537 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6538 ExtractIdx = CstVal->getSExtValue(); 6539 else 6540 UseSplat = true; 6541 } 6542 6543 unsigned End = getTransitionType()->getVectorNumElements(); 6544 if (UseSplat) 6545 return ConstantVector::getSplat(End, Val); 6546 6547 SmallVector<Constant *, 4> ConstVec; 6548 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6549 for (unsigned Idx = 0; Idx != End; ++Idx) { 6550 if (Idx == ExtractIdx) 6551 ConstVec.push_back(Val); 6552 else 6553 ConstVec.push_back(UndefVal); 6554 } 6555 return ConstantVector::get(ConstVec); 6556 } 6557 6558 /// Check if promoting to a vector type an operand at \p OperandIdx 6559 /// in \p Use can trigger undefined behavior. 6560 static bool canCauseUndefinedBehavior(const Instruction *Use, 6561 unsigned OperandIdx) { 6562 // This is not safe to introduce undef when the operand is on 6563 // the right hand side of a division-like instruction. 6564 if (OperandIdx != 1) 6565 return false; 6566 switch (Use->getOpcode()) { 6567 default: 6568 return false; 6569 case Instruction::SDiv: 6570 case Instruction::UDiv: 6571 case Instruction::SRem: 6572 case Instruction::URem: 6573 return true; 6574 case Instruction::FDiv: 6575 case Instruction::FRem: 6576 return !Use->hasNoNaNs(); 6577 } 6578 llvm_unreachable(nullptr); 6579 } 6580 6581 public: 6582 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6583 const TargetTransformInfo &TTI, Instruction *Transition, 6584 unsigned CombineCost) 6585 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6586 StoreExtractCombineCost(CombineCost) { 6587 assert(Transition && "Do not know how to promote null"); 6588 } 6589 6590 /// Check if we can promote \p ToBePromoted to \p Type. 6591 bool canPromote(const Instruction *ToBePromoted) const { 6592 // We could support CastInst too. 6593 return isa<BinaryOperator>(ToBePromoted); 6594 } 6595 6596 /// Check if it is profitable to promote \p ToBePromoted 6597 /// by moving downward the transition through. 6598 bool shouldPromote(const Instruction *ToBePromoted) const { 6599 // Promote only if all the operands can be statically expanded. 6600 // Indeed, we do not want to introduce any new kind of transitions. 6601 for (const Use &U : ToBePromoted->operands()) { 6602 const Value *Val = U.get(); 6603 if (Val == getEndOfTransition()) { 6604 // If the use is a division and the transition is on the rhs, 6605 // we cannot promote the operation, otherwise we may create a 6606 // division by zero. 6607 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6608 return false; 6609 continue; 6610 } 6611 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6612 !isa<ConstantFP>(Val)) 6613 return false; 6614 } 6615 // Check that the resulting operation is legal. 6616 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6617 if (!ISDOpcode) 6618 return false; 6619 return StressStoreExtract || 6620 TLI.isOperationLegalOrCustom( 6621 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6622 } 6623 6624 /// Check whether or not \p Use can be combined 6625 /// with the transition. 6626 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6627 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6628 6629 /// Record \p ToBePromoted as part of the chain to be promoted. 6630 void enqueueForPromotion(Instruction *ToBePromoted) { 6631 InstsToBePromoted.push_back(ToBePromoted); 6632 } 6633 6634 /// Set the instruction that will be combined with the transition. 6635 void recordCombineInstruction(Instruction *ToBeCombined) { 6636 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6637 CombineInst = ToBeCombined; 6638 } 6639 6640 /// Promote all the instructions enqueued for promotion if it is 6641 /// is profitable. 6642 /// \return True if the promotion happened, false otherwise. 6643 bool promote() { 6644 // Check if there is something to promote. 6645 // Right now, if we do not have anything to combine with, 6646 // we assume the promotion is not profitable. 6647 if (InstsToBePromoted.empty() || !CombineInst) 6648 return false; 6649 6650 // Check cost. 6651 if (!StressStoreExtract && !isProfitableToPromote()) 6652 return false; 6653 6654 // Promote. 6655 for (auto &ToBePromoted : InstsToBePromoted) 6656 promoteImpl(ToBePromoted); 6657 InstsToBePromoted.clear(); 6658 return true; 6659 } 6660 }; 6661 6662 } // end anonymous namespace 6663 6664 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6665 // At this point, we know that all the operands of ToBePromoted but Def 6666 // can be statically promoted. 6667 // For Def, we need to use its parameter in ToBePromoted: 6668 // b = ToBePromoted ty1 a 6669 // Def = Transition ty1 b to ty2 6670 // Move the transition down. 6671 // 1. Replace all uses of the promoted operation by the transition. 6672 // = ... b => = ... Def. 6673 assert(ToBePromoted->getType() == Transition->getType() && 6674 "The type of the result of the transition does not match " 6675 "the final type"); 6676 ToBePromoted->replaceAllUsesWith(Transition); 6677 // 2. Update the type of the uses. 6678 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6679 Type *TransitionTy = getTransitionType(); 6680 ToBePromoted->mutateType(TransitionTy); 6681 // 3. Update all the operands of the promoted operation with promoted 6682 // operands. 6683 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6684 for (Use &U : ToBePromoted->operands()) { 6685 Value *Val = U.get(); 6686 Value *NewVal = nullptr; 6687 if (Val == Transition) 6688 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6689 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6690 isa<ConstantFP>(Val)) { 6691 // Use a splat constant if it is not safe to use undef. 6692 NewVal = getConstantVector( 6693 cast<Constant>(Val), 6694 isa<UndefValue>(Val) || 6695 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6696 } else 6697 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6698 "this?"); 6699 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6700 } 6701 Transition->moveAfter(ToBePromoted); 6702 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6703 } 6704 6705 /// Some targets can do store(extractelement) with one instruction. 6706 /// Try to push the extractelement towards the stores when the target 6707 /// has this feature and this is profitable. 6708 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6709 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6710 if (DisableStoreExtract || !TLI || 6711 (!StressStoreExtract && 6712 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6713 Inst->getOperand(1), CombineCost))) 6714 return false; 6715 6716 // At this point we know that Inst is a vector to scalar transition. 6717 // Try to move it down the def-use chain, until: 6718 // - We can combine the transition with its single use 6719 // => we got rid of the transition. 6720 // - We escape the current basic block 6721 // => we would need to check that we are moving it at a cheaper place and 6722 // we do not do that for now. 6723 BasicBlock *Parent = Inst->getParent(); 6724 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6725 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6726 // If the transition has more than one use, assume this is not going to be 6727 // beneficial. 6728 while (Inst->hasOneUse()) { 6729 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6730 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6731 6732 if (ToBePromoted->getParent() != Parent) { 6733 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6734 << ToBePromoted->getParent()->getName() 6735 << ") than the transition (" << Parent->getName() 6736 << ").\n"); 6737 return false; 6738 } 6739 6740 if (VPH.canCombine(ToBePromoted)) { 6741 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6742 << "will be combined with: " << *ToBePromoted << '\n'); 6743 VPH.recordCombineInstruction(ToBePromoted); 6744 bool Changed = VPH.promote(); 6745 NumStoreExtractExposed += Changed; 6746 return Changed; 6747 } 6748 6749 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6750 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6751 return false; 6752 6753 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6754 6755 VPH.enqueueForPromotion(ToBePromoted); 6756 Inst = ToBePromoted; 6757 } 6758 return false; 6759 } 6760 6761 /// For the instruction sequence of store below, F and I values 6762 /// are bundled together as an i64 value before being stored into memory. 6763 /// Sometimes it is more efficient to generate separate stores for F and I, 6764 /// which can remove the bitwise instructions or sink them to colder places. 6765 /// 6766 /// (store (or (zext (bitcast F to i32) to i64), 6767 /// (shl (zext I to i64), 32)), addr) --> 6768 /// (store F, addr) and (store I, addr+4) 6769 /// 6770 /// Similarly, splitting for other merged store can also be beneficial, like: 6771 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6772 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6773 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6774 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6775 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6776 /// 6777 /// We allow each target to determine specifically which kind of splitting is 6778 /// supported. 6779 /// 6780 /// The store patterns are commonly seen from the simple code snippet below 6781 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6782 /// void goo(const std::pair<int, float> &); 6783 /// hoo() { 6784 /// ... 6785 /// goo(std::make_pair(tmp, ftmp)); 6786 /// ... 6787 /// } 6788 /// 6789 /// Although we already have similar splitting in DAG Combine, we duplicate 6790 /// it in CodeGenPrepare to catch the case in which pattern is across 6791 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6792 /// during code expansion. 6793 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6794 const TargetLowering &TLI) { 6795 // Handle simple but common cases only. 6796 Type *StoreType = SI.getValueOperand()->getType(); 6797 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6798 DL.getTypeSizeInBits(StoreType) == 0) 6799 return false; 6800 6801 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6802 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6803 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6804 return false; 6805 6806 // Don't split the store if it is volatile. 6807 if (SI.isVolatile()) 6808 return false; 6809 6810 // Match the following patterns: 6811 // (store (or (zext LValue to i64), 6812 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6813 // or 6814 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6815 // (zext LValue to i64), 6816 // Expect both operands of OR and the first operand of SHL have only 6817 // one use. 6818 Value *LValue, *HValue; 6819 if (!match(SI.getValueOperand(), 6820 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6821 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6822 m_SpecificInt(HalfValBitSize)))))) 6823 return false; 6824 6825 // Check LValue and HValue are int with size less or equal than 32. 6826 if (!LValue->getType()->isIntegerTy() || 6827 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6828 !HValue->getType()->isIntegerTy() || 6829 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6830 return false; 6831 6832 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6833 // as the input of target query. 6834 auto *LBC = dyn_cast<BitCastInst>(LValue); 6835 auto *HBC = dyn_cast<BitCastInst>(HValue); 6836 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6837 : EVT::getEVT(LValue->getType()); 6838 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6839 : EVT::getEVT(HValue->getType()); 6840 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6841 return false; 6842 6843 // Start to split store. 6844 IRBuilder<> Builder(SI.getContext()); 6845 Builder.SetInsertPoint(&SI); 6846 6847 // If LValue/HValue is a bitcast in another BB, create a new one in current 6848 // BB so it may be merged with the splitted stores by dag combiner. 6849 if (LBC && LBC->getParent() != SI.getParent()) 6850 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6851 if (HBC && HBC->getParent() != SI.getParent()) 6852 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6853 6854 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6855 auto CreateSplitStore = [&](Value *V, bool Upper) { 6856 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6857 Value *Addr = Builder.CreateBitCast( 6858 SI.getOperand(1), 6859 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6860 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 6861 if (IsOffsetStore) 6862 Addr = Builder.CreateGEP( 6863 SplitStoreType, Addr, 6864 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6865 MaybeAlign Alignment(SI.getAlignment()); 6866 if (IsOffsetStore && Alignment) { 6867 // When splitting the store in half, naturally one half will retain the 6868 // alignment of the original wider store, regardless of whether it was 6869 // over-aligned or not, while the other will require adjustment. 6870 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 6871 } 6872 Builder.CreateAlignedStore( 6873 V, Addr, Alignment.hasValue() ? Alignment.getValue().value() : 0); 6874 }; 6875 6876 CreateSplitStore(LValue, false); 6877 CreateSplitStore(HValue, true); 6878 6879 // Delete the old store. 6880 SI.eraseFromParent(); 6881 return true; 6882 } 6883 6884 // Return true if the GEP has two operands, the first operand is of a sequential 6885 // type, and the second operand is a constant. 6886 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6887 gep_type_iterator I = gep_type_begin(*GEP); 6888 return GEP->getNumOperands() == 2 && 6889 I.isSequential() && 6890 isa<ConstantInt>(GEP->getOperand(1)); 6891 } 6892 6893 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6894 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6895 // reducing liveness interference across those edges benefits global register 6896 // allocation. Currently handles only certain cases. 6897 // 6898 // For example, unmerge %GEPI and %UGEPI as below. 6899 // 6900 // ---------- BEFORE ---------- 6901 // SrcBlock: 6902 // ... 6903 // %GEPIOp = ... 6904 // ... 6905 // %GEPI = gep %GEPIOp, Idx 6906 // ... 6907 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6908 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6909 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6910 // %UGEPI) 6911 // 6912 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6913 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6914 // ... 6915 // 6916 // DstBi: 6917 // ... 6918 // %UGEPI = gep %GEPIOp, UIdx 6919 // ... 6920 // --------------------------- 6921 // 6922 // ---------- AFTER ---------- 6923 // SrcBlock: 6924 // ... (same as above) 6925 // (* %GEPI is still alive on the indirectbr edges) 6926 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6927 // unmerging) 6928 // ... 6929 // 6930 // DstBi: 6931 // ... 6932 // %UGEPI = gep %GEPI, (UIdx-Idx) 6933 // ... 6934 // --------------------------- 6935 // 6936 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6937 // no longer alive on them. 6938 // 6939 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6940 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6941 // not to disable further simplications and optimizations as a result of GEP 6942 // merging. 6943 // 6944 // Note this unmerging may increase the length of the data flow critical path 6945 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6946 // between the register pressure and the length of data-flow critical 6947 // path. Restricting this to the uncommon IndirectBr case would minimize the 6948 // impact of potentially longer critical path, if any, and the impact on compile 6949 // time. 6950 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6951 const TargetTransformInfo *TTI) { 6952 BasicBlock *SrcBlock = GEPI->getParent(); 6953 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6954 // (non-IndirectBr) cases exit early here. 6955 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6956 return false; 6957 // Check that GEPI is a simple gep with a single constant index. 6958 if (!GEPSequentialConstIndexed(GEPI)) 6959 return false; 6960 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6961 // Check that GEPI is a cheap one. 6962 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6963 > TargetTransformInfo::TCC_Basic) 6964 return false; 6965 Value *GEPIOp = GEPI->getOperand(0); 6966 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6967 if (!isa<Instruction>(GEPIOp)) 6968 return false; 6969 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6970 if (GEPIOpI->getParent() != SrcBlock) 6971 return false; 6972 // Check that GEP is used outside the block, meaning it's alive on the 6973 // IndirectBr edge(s). 6974 if (find_if(GEPI->users(), [&](User *Usr) { 6975 if (auto *I = dyn_cast<Instruction>(Usr)) { 6976 if (I->getParent() != SrcBlock) { 6977 return true; 6978 } 6979 } 6980 return false; 6981 }) == GEPI->users().end()) 6982 return false; 6983 // The second elements of the GEP chains to be unmerged. 6984 std::vector<GetElementPtrInst *> UGEPIs; 6985 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6986 // on IndirectBr edges. 6987 for (User *Usr : GEPIOp->users()) { 6988 if (Usr == GEPI) continue; 6989 // Check if Usr is an Instruction. If not, give up. 6990 if (!isa<Instruction>(Usr)) 6991 return false; 6992 auto *UI = cast<Instruction>(Usr); 6993 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6994 if (UI->getParent() == SrcBlock) 6995 continue; 6996 // Check if Usr is a GEP. If not, give up. 6997 if (!isa<GetElementPtrInst>(Usr)) 6998 return false; 6999 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7000 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7001 // the pointer operand to it. If so, record it in the vector. If not, give 7002 // up. 7003 if (!GEPSequentialConstIndexed(UGEPI)) 7004 return false; 7005 if (UGEPI->getOperand(0) != GEPIOp) 7006 return false; 7007 if (GEPIIdx->getType() != 7008 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7009 return false; 7010 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7011 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7012 > TargetTransformInfo::TCC_Basic) 7013 return false; 7014 UGEPIs.push_back(UGEPI); 7015 } 7016 if (UGEPIs.size() == 0) 7017 return false; 7018 // Check the materializing cost of (Uidx-Idx). 7019 for (GetElementPtrInst *UGEPI : UGEPIs) { 7020 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7021 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7022 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7023 if (ImmCost > TargetTransformInfo::TCC_Basic) 7024 return false; 7025 } 7026 // Now unmerge between GEPI and UGEPIs. 7027 for (GetElementPtrInst *UGEPI : UGEPIs) { 7028 UGEPI->setOperand(0, GEPI); 7029 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7030 Constant *NewUGEPIIdx = 7031 ConstantInt::get(GEPIIdx->getType(), 7032 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7033 UGEPI->setOperand(1, NewUGEPIIdx); 7034 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7035 // inbounds to avoid UB. 7036 if (!GEPI->isInBounds()) { 7037 UGEPI->setIsInBounds(false); 7038 } 7039 } 7040 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7041 // alive on IndirectBr edges). 7042 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7043 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7044 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7045 return true; 7046 } 7047 7048 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7049 // Bail out if we inserted the instruction to prevent optimizations from 7050 // stepping on each other's toes. 7051 if (InsertedInsts.count(I)) 7052 return false; 7053 7054 // TODO: Move into the switch on opcode below here. 7055 if (PHINode *P = dyn_cast<PHINode>(I)) { 7056 // It is possible for very late stage optimizations (such as SimplifyCFG) 7057 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7058 // trivial PHI, go ahead and zap it here. 7059 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7060 LargeOffsetGEPMap.erase(P); 7061 P->replaceAllUsesWith(V); 7062 P->eraseFromParent(); 7063 ++NumPHIsElim; 7064 return true; 7065 } 7066 return false; 7067 } 7068 7069 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7070 // If the source of the cast is a constant, then this should have 7071 // already been constant folded. The only reason NOT to constant fold 7072 // it is if something (e.g. LSR) was careful to place the constant 7073 // evaluation in a block other than then one that uses it (e.g. to hoist 7074 // the address of globals out of a loop). If this is the case, we don't 7075 // want to forward-subst the cast. 7076 if (isa<Constant>(CI->getOperand(0))) 7077 return false; 7078 7079 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7080 return true; 7081 7082 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7083 /// Sink a zext or sext into its user blocks if the target type doesn't 7084 /// fit in one register 7085 if (TLI && 7086 TLI->getTypeAction(CI->getContext(), 7087 TLI->getValueType(*DL, CI->getType())) == 7088 TargetLowering::TypeExpandInteger) { 7089 return SinkCast(CI); 7090 } else { 7091 bool MadeChange = optimizeExt(I); 7092 return MadeChange | optimizeExtUses(I); 7093 } 7094 } 7095 return false; 7096 } 7097 7098 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7099 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 7100 return true; 7101 7102 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7103 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7104 if (TLI) { 7105 bool Modified = optimizeLoadExt(LI); 7106 unsigned AS = LI->getPointerAddressSpace(); 7107 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7108 return Modified; 7109 } 7110 return false; 7111 } 7112 7113 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7114 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 7115 return true; 7116 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7117 if (TLI) { 7118 unsigned AS = SI->getPointerAddressSpace(); 7119 return optimizeMemoryInst(I, SI->getOperand(1), 7120 SI->getOperand(0)->getType(), AS); 7121 } 7122 return false; 7123 } 7124 7125 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7126 unsigned AS = RMW->getPointerAddressSpace(); 7127 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7128 RMW->getType(), AS); 7129 } 7130 7131 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7132 unsigned AS = CmpX->getPointerAddressSpace(); 7133 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7134 CmpX->getCompareOperand()->getType(), AS); 7135 } 7136 7137 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7138 7139 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7140 EnableAndCmpSinking && TLI) 7141 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7142 7143 // TODO: Move this into the switch on opcode - it handles shifts already. 7144 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7145 BinOp->getOpcode() == Instruction::LShr)) { 7146 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7147 if (TLI && CI && TLI->hasExtractBitsInsn()) 7148 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7149 return true; 7150 } 7151 7152 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7153 if (GEPI->hasAllZeroIndices()) { 7154 /// The GEP operand must be a pointer, so must its result -> BitCast 7155 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7156 GEPI->getName(), GEPI); 7157 NC->setDebugLoc(GEPI->getDebugLoc()); 7158 GEPI->replaceAllUsesWith(NC); 7159 GEPI->eraseFromParent(); 7160 ++NumGEPsElim; 7161 optimizeInst(NC, ModifiedDT); 7162 return true; 7163 } 7164 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7165 return true; 7166 } 7167 return false; 7168 } 7169 7170 if (tryToSinkFreeOperands(I)) 7171 return true; 7172 7173 switch (I->getOpcode()) { 7174 case Instruction::Shl: 7175 case Instruction::LShr: 7176 case Instruction::AShr: 7177 return optimizeShiftInst(cast<BinaryOperator>(I)); 7178 case Instruction::Call: 7179 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7180 case Instruction::Select: 7181 return optimizeSelectInst(cast<SelectInst>(I)); 7182 case Instruction::ShuffleVector: 7183 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7184 case Instruction::Switch: 7185 return optimizeSwitchInst(cast<SwitchInst>(I)); 7186 case Instruction::ExtractElement: 7187 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7188 } 7189 7190 return false; 7191 } 7192 7193 /// Given an OR instruction, check to see if this is a bitreverse 7194 /// idiom. If so, insert the new intrinsic and return true. 7195 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7196 const TargetLowering &TLI) { 7197 if (!I.getType()->isIntegerTy() || 7198 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7199 TLI.getValueType(DL, I.getType(), true))) 7200 return false; 7201 7202 SmallVector<Instruction*, 4> Insts; 7203 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7204 return false; 7205 Instruction *LastInst = Insts.back(); 7206 I.replaceAllUsesWith(LastInst); 7207 RecursivelyDeleteTriviallyDeadInstructions(&I); 7208 return true; 7209 } 7210 7211 // In this pass we look for GEP and cast instructions that are used 7212 // across basic blocks and rewrite them to improve basic-block-at-a-time 7213 // selection. 7214 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7215 SunkAddrs.clear(); 7216 bool MadeChange = false; 7217 7218 CurInstIterator = BB.begin(); 7219 while (CurInstIterator != BB.end()) { 7220 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7221 if (ModifiedDT) 7222 return true; 7223 } 7224 7225 bool MadeBitReverse = true; 7226 while (TLI && MadeBitReverse) { 7227 MadeBitReverse = false; 7228 for (auto &I : reverse(BB)) { 7229 if (makeBitReverse(I, *DL, *TLI)) { 7230 MadeBitReverse = MadeChange = true; 7231 break; 7232 } 7233 } 7234 } 7235 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7236 7237 return MadeChange; 7238 } 7239 7240 // Some CGP optimizations may move or alter what's computed in a block. Check 7241 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7242 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7243 assert(isa<DbgValueInst>(I)); 7244 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7245 7246 // Does this dbg.value refer to a sunk address calculation? 7247 Value *Location = DVI.getVariableLocation(); 7248 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7249 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7250 if (SunkAddr) { 7251 // Point dbg.value at locally computed address, which should give the best 7252 // opportunity to be accurately lowered. This update may change the type of 7253 // pointer being referred to; however this makes no difference to debugging 7254 // information, and we can't generate bitcasts that may affect codegen. 7255 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7256 ValueAsMetadata::get(SunkAddr))); 7257 return true; 7258 } 7259 return false; 7260 } 7261 7262 // A llvm.dbg.value may be using a value before its definition, due to 7263 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7264 // them by moving the dbg.value to immediately after the value definition. 7265 // FIXME: Ideally this should never be necessary, and this has the potential 7266 // to re-order dbg.value intrinsics. 7267 bool CodeGenPrepare::placeDbgValues(Function &F) { 7268 bool MadeChange = false; 7269 DominatorTree DT(F); 7270 7271 for (BasicBlock &BB : F) { 7272 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7273 Instruction *Insn = &*BI++; 7274 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7275 if (!DVI) 7276 continue; 7277 7278 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7279 7280 if (!VI || VI->isTerminator()) 7281 continue; 7282 7283 // If VI is a phi in a block with an EHPad terminator, we can't insert 7284 // after it. 7285 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7286 continue; 7287 7288 // If the defining instruction dominates the dbg.value, we do not need 7289 // to move the dbg.value. 7290 if (DT.dominates(VI, DVI)) 7291 continue; 7292 7293 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7294 << *DVI << ' ' << *VI); 7295 DVI->removeFromParent(); 7296 if (isa<PHINode>(VI)) 7297 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7298 else 7299 DVI->insertAfter(VI); 7300 MadeChange = true; 7301 ++NumDbgValueMoved; 7302 } 7303 } 7304 return MadeChange; 7305 } 7306 7307 /// Scale down both weights to fit into uint32_t. 7308 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7309 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7310 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7311 NewTrue = NewTrue / Scale; 7312 NewFalse = NewFalse / Scale; 7313 } 7314 7315 /// Some targets prefer to split a conditional branch like: 7316 /// \code 7317 /// %0 = icmp ne i32 %a, 0 7318 /// %1 = icmp ne i32 %b, 0 7319 /// %or.cond = or i1 %0, %1 7320 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7321 /// \endcode 7322 /// into multiple branch instructions like: 7323 /// \code 7324 /// bb1: 7325 /// %0 = icmp ne i32 %a, 0 7326 /// br i1 %0, label %TrueBB, label %bb2 7327 /// bb2: 7328 /// %1 = icmp ne i32 %b, 0 7329 /// br i1 %1, label %TrueBB, label %FalseBB 7330 /// \endcode 7331 /// This usually allows instruction selection to do even further optimizations 7332 /// and combine the compare with the branch instruction. Currently this is 7333 /// applied for targets which have "cheap" jump instructions. 7334 /// 7335 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7336 /// 7337 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7338 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7339 return false; 7340 7341 bool MadeChange = false; 7342 for (auto &BB : F) { 7343 // Does this BB end with the following? 7344 // %cond1 = icmp|fcmp|binary instruction ... 7345 // %cond2 = icmp|fcmp|binary instruction ... 7346 // %cond.or = or|and i1 %cond1, cond2 7347 // br i1 %cond.or label %dest1, label %dest2" 7348 BinaryOperator *LogicOp; 7349 BasicBlock *TBB, *FBB; 7350 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7351 continue; 7352 7353 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7354 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7355 continue; 7356 7357 // The merging of mostly empty BB can cause a degenerate branch. 7358 if (TBB == FBB) 7359 continue; 7360 7361 unsigned Opc; 7362 Value *Cond1, *Cond2; 7363 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7364 m_OneUse(m_Value(Cond2))))) 7365 Opc = Instruction::And; 7366 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7367 m_OneUse(m_Value(Cond2))))) 7368 Opc = Instruction::Or; 7369 else 7370 continue; 7371 7372 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7373 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7374 continue; 7375 7376 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7377 7378 // Create a new BB. 7379 auto TmpBB = 7380 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7381 BB.getParent(), BB.getNextNode()); 7382 7383 // Update original basic block by using the first condition directly by the 7384 // branch instruction and removing the no longer needed and/or instruction. 7385 Br1->setCondition(Cond1); 7386 LogicOp->eraseFromParent(); 7387 7388 // Depending on the condition we have to either replace the true or the 7389 // false successor of the original branch instruction. 7390 if (Opc == Instruction::And) 7391 Br1->setSuccessor(0, TmpBB); 7392 else 7393 Br1->setSuccessor(1, TmpBB); 7394 7395 // Fill in the new basic block. 7396 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7397 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7398 I->removeFromParent(); 7399 I->insertBefore(Br2); 7400 } 7401 7402 // Update PHI nodes in both successors. The original BB needs to be 7403 // replaced in one successor's PHI nodes, because the branch comes now from 7404 // the newly generated BB (NewBB). In the other successor we need to add one 7405 // incoming edge to the PHI nodes, because both branch instructions target 7406 // now the same successor. Depending on the original branch condition 7407 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7408 // we perform the correct update for the PHI nodes. 7409 // This doesn't change the successor order of the just created branch 7410 // instruction (or any other instruction). 7411 if (Opc == Instruction::Or) 7412 std::swap(TBB, FBB); 7413 7414 // Replace the old BB with the new BB. 7415 TBB->replacePhiUsesWith(&BB, TmpBB); 7416 7417 // Add another incoming edge form the new BB. 7418 for (PHINode &PN : FBB->phis()) { 7419 auto *Val = PN.getIncomingValueForBlock(&BB); 7420 PN.addIncoming(Val, TmpBB); 7421 } 7422 7423 // Update the branch weights (from SelectionDAGBuilder:: 7424 // FindMergedConditions). 7425 if (Opc == Instruction::Or) { 7426 // Codegen X | Y as: 7427 // BB1: 7428 // jmp_if_X TBB 7429 // jmp TmpBB 7430 // TmpBB: 7431 // jmp_if_Y TBB 7432 // jmp FBB 7433 // 7434 7435 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7436 // The requirement is that 7437 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7438 // = TrueProb for original BB. 7439 // Assuming the original weights are A and B, one choice is to set BB1's 7440 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7441 // assumes that 7442 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7443 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7444 // TmpBB, but the math is more complicated. 7445 uint64_t TrueWeight, FalseWeight; 7446 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7447 uint64_t NewTrueWeight = TrueWeight; 7448 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7449 scaleWeights(NewTrueWeight, NewFalseWeight); 7450 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7451 .createBranchWeights(TrueWeight, FalseWeight)); 7452 7453 NewTrueWeight = TrueWeight; 7454 NewFalseWeight = 2 * FalseWeight; 7455 scaleWeights(NewTrueWeight, NewFalseWeight); 7456 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7457 .createBranchWeights(TrueWeight, FalseWeight)); 7458 } 7459 } else { 7460 // Codegen X & Y as: 7461 // BB1: 7462 // jmp_if_X TmpBB 7463 // jmp FBB 7464 // TmpBB: 7465 // jmp_if_Y TBB 7466 // jmp FBB 7467 // 7468 // This requires creation of TmpBB after CurBB. 7469 7470 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7471 // The requirement is that 7472 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7473 // = FalseProb for original BB. 7474 // Assuming the original weights are A and B, one choice is to set BB1's 7475 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7476 // assumes that 7477 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7478 uint64_t TrueWeight, FalseWeight; 7479 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7480 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7481 uint64_t NewFalseWeight = FalseWeight; 7482 scaleWeights(NewTrueWeight, NewFalseWeight); 7483 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7484 .createBranchWeights(TrueWeight, FalseWeight)); 7485 7486 NewTrueWeight = 2 * TrueWeight; 7487 NewFalseWeight = FalseWeight; 7488 scaleWeights(NewTrueWeight, NewFalseWeight); 7489 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7490 .createBranchWeights(TrueWeight, FalseWeight)); 7491 } 7492 } 7493 7494 ModifiedDT = true; 7495 MadeChange = true; 7496 7497 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7498 TmpBB->dump()); 7499 } 7500 return MadeChange; 7501 } 7502