xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision a134ebd6e63f658f2d3d04ac0c60d23bcaa86dd7)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/IntrinsicsX86.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/ValueHandle.h"
76 #include "llvm/IR/ValueMap.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BlockFrequency.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MachineValueType.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 using namespace llvm::PatternMatch;
107 
108 #define DEBUG_TYPE "codegenprepare"
109 
110 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
111 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
112 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
114                       "sunken Cmps");
115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
116                        "of sunken Casts");
117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
118                           "computations were sunk");
119 STATISTIC(NumMemoryInstsPhiCreated,
120           "Number of phis created when address "
121           "computations were sunk to memory instructions");
122 STATISTIC(NumMemoryInstsSelectCreated,
123           "Number of select created when address "
124           "computations were sunk to memory instructions");
125 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
126 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
127 STATISTIC(NumAndsAdded,
128           "Number of and mask instructions added to form ext loads");
129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
130 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
134 
135 static cl::opt<bool> DisableBranchOpts(
136   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
137   cl::desc("Disable branch optimizations in CodeGenPrepare"));
138 
139 static cl::opt<bool>
140     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
141                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
142 
143 static cl::opt<bool> DisableSelectToBranch(
144   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
145   cl::desc("Disable select to branch conversion."));
146 
147 static cl::opt<bool> AddrSinkUsingGEPs(
148   "addr-sink-using-gep", cl::Hidden, cl::init(true),
149   cl::desc("Address sinking in CGP using GEPs."));
150 
151 static cl::opt<bool> EnableAndCmpSinking(
152    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
153    cl::desc("Enable sinkinig and/cmp into branches."));
154 
155 static cl::opt<bool> DisableStoreExtract(
156     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
157     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
158 
159 static cl::opt<bool> StressStoreExtract(
160     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
161     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
162 
163 static cl::opt<bool> DisableExtLdPromotion(
164     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
166              "CodeGenPrepare"));
167 
168 static cl::opt<bool> StressExtLdPromotion(
169     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
170     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
171              "optimization in CodeGenPrepare"));
172 
173 static cl::opt<bool> DisablePreheaderProtect(
174     "disable-preheader-prot", cl::Hidden, cl::init(false),
175     cl::desc("Disable protection against removing loop preheaders"));
176 
177 static cl::opt<bool> ProfileGuidedSectionPrefix(
178     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
179     cl::desc("Use profile info to add section prefix for hot/cold functions"));
180 
181 static cl::opt<unsigned> FreqRatioToSkipMerge(
182     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
183     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
184              "(frequency of destination block) is greater than this ratio"));
185 
186 static cl::opt<bool> ForceSplitStore(
187     "force-split-store", cl::Hidden, cl::init(false),
188     cl::desc("Force store splitting no matter what the target query says."));
189 
190 static cl::opt<bool>
191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
192     cl::desc("Enable merging of redundant sexts when one is dominating"
193     " the other."), cl::init(true));
194 
195 static cl::opt<bool> DisableComplexAddrModes(
196     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
197     cl::desc("Disables combining addressing modes with different parts "
198              "in optimizeMemoryInst."));
199 
200 static cl::opt<bool>
201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
202                 cl::desc("Allow creation of Phis in Address sinking."));
203 
204 static cl::opt<bool>
205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
206                    cl::desc("Allow creation of selects in Address sinking."));
207 
208 static cl::opt<bool> AddrSinkCombineBaseReg(
209     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
210     cl::desc("Allow combining of BaseReg field in Address sinking."));
211 
212 static cl::opt<bool> AddrSinkCombineBaseGV(
213     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
214     cl::desc("Allow combining of BaseGV field in Address sinking."));
215 
216 static cl::opt<bool> AddrSinkCombineBaseOffs(
217     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
218     cl::desc("Allow combining of BaseOffs field in Address sinking."));
219 
220 static cl::opt<bool> AddrSinkCombineScaledReg(
221     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
222     cl::desc("Allow combining of ScaledReg field in Address sinking."));
223 
224 static cl::opt<bool>
225     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
226                          cl::init(true),
227                          cl::desc("Enable splitting large offset of GEP."));
228 
229 static cl::opt<bool> EnableICMP_EQToICMP_ST(
230     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
231     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
232 
233 namespace {
234 
235 enum ExtType {
236   ZeroExtension,   // Zero extension has been seen.
237   SignExtension,   // Sign extension has been seen.
238   BothExtension    // This extension type is used if we saw sext after
239                    // ZeroExtension had been set, or if we saw zext after
240                    // SignExtension had been set. It makes the type
241                    // information of a promoted instruction invalid.
242 };
243 
244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
247 using SExts = SmallVector<Instruction *, 16>;
248 using ValueToSExts = DenseMap<Value *, SExts>;
249 
250 class TypePromotionTransaction;
251 
252   class CodeGenPrepare : public FunctionPass {
253     const TargetMachine *TM = nullptr;
254     const TargetSubtargetInfo *SubtargetInfo;
255     const TargetLowering *TLI = nullptr;
256     const TargetRegisterInfo *TRI;
257     const TargetTransformInfo *TTI = nullptr;
258     const TargetLibraryInfo *TLInfo;
259     const LoopInfo *LI;
260     std::unique_ptr<BlockFrequencyInfo> BFI;
261     std::unique_ptr<BranchProbabilityInfo> BPI;
262     ProfileSummaryInfo *PSI;
263 
264     /// As we scan instructions optimizing them, this is the next instruction
265     /// to optimize. Transforms that can invalidate this should update it.
266     BasicBlock::iterator CurInstIterator;
267 
268     /// Keeps track of non-local addresses that have been sunk into a block.
269     /// This allows us to avoid inserting duplicate code for blocks with
270     /// multiple load/stores of the same address. The usage of WeakTrackingVH
271     /// enables SunkAddrs to be treated as a cache whose entries can be
272     /// invalidated if a sunken address computation has been erased.
273     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
274 
275     /// Keeps track of all instructions inserted for the current function.
276     SetOfInstrs InsertedInsts;
277 
278     /// Keeps track of the type of the related instruction before their
279     /// promotion for the current function.
280     InstrToOrigTy PromotedInsts;
281 
282     /// Keep track of instructions removed during promotion.
283     SetOfInstrs RemovedInsts;
284 
285     /// Keep track of sext chains based on their initial value.
286     DenseMap<Value *, Instruction *> SeenChainsForSExt;
287 
288     /// Keep track of GEPs accessing the same data structures such as structs or
289     /// arrays that are candidates to be split later because of their large
290     /// size.
291     MapVector<
292         AssertingVH<Value>,
293         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
294         LargeOffsetGEPMap;
295 
296     /// Keep track of new GEP base after splitting the GEPs having large offset.
297     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
298 
299     /// Map serial numbers to Large offset GEPs.
300     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
301 
302     /// Keep track of SExt promoted.
303     ValueToSExts ValToSExtendedUses;
304 
305     /// True if the function has the OptSize attribute.
306     bool OptSize;
307 
308     /// DataLayout for the Function being processed.
309     const DataLayout *DL = nullptr;
310 
311     /// Building the dominator tree can be expensive, so we only build it
312     /// lazily and update it when required.
313     std::unique_ptr<DominatorTree> DT;
314 
315   public:
316     static char ID; // Pass identification, replacement for typeid
317 
318     CodeGenPrepare() : FunctionPass(ID) {
319       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
320     }
321 
322     bool runOnFunction(Function &F) override;
323 
324     StringRef getPassName() const override { return "CodeGen Prepare"; }
325 
326     void getAnalysisUsage(AnalysisUsage &AU) const override {
327       // FIXME: When we can selectively preserve passes, preserve the domtree.
328       AU.addRequired<ProfileSummaryInfoWrapperPass>();
329       AU.addRequired<TargetLibraryInfoWrapperPass>();
330       AU.addRequired<TargetTransformInfoWrapperPass>();
331       AU.addRequired<LoopInfoWrapperPass>();
332     }
333 
334   private:
335     template <typename F>
336     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
337       // Substituting can cause recursive simplifications, which can invalidate
338       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
339       // happens.
340       Value *CurValue = &*CurInstIterator;
341       WeakTrackingVH IterHandle(CurValue);
342 
343       f();
344 
345       // If the iterator instruction was recursively deleted, start over at the
346       // start of the block.
347       if (IterHandle != CurValue) {
348         CurInstIterator = BB->begin();
349         SunkAddrs.clear();
350       }
351     }
352 
353     // Get the DominatorTree, building if necessary.
354     DominatorTree &getDT(Function &F) {
355       if (!DT)
356         DT = std::make_unique<DominatorTree>(F);
357       return *DT;
358     }
359 
360     bool eliminateFallThrough(Function &F);
361     bool eliminateMostlyEmptyBlocks(Function &F);
362     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
363     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
364     void eliminateMostlyEmptyBlock(BasicBlock *BB);
365     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
366                                        bool isPreheader);
367     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
368     bool optimizeInst(Instruction *I, bool &ModifiedDT);
369     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
370                             Type *AccessTy, unsigned AddrSpace);
371     bool optimizeInlineAsmInst(CallInst *CS);
372     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
373     bool optimizeExt(Instruction *&I);
374     bool optimizeExtUses(Instruction *I);
375     bool optimizeLoadExt(LoadInst *Load);
376     bool optimizeShiftInst(BinaryOperator *BO);
377     bool optimizeSelectInst(SelectInst *SI);
378     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
379     bool optimizeSwitchInst(SwitchInst *SI);
380     bool optimizeExtractElementInst(Instruction *Inst);
381     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
382     bool fixupDbgValue(Instruction *I);
383     bool placeDbgValues(Function &F);
384     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
385                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
386     bool tryToPromoteExts(TypePromotionTransaction &TPT,
387                           const SmallVectorImpl<Instruction *> &Exts,
388                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
389                           unsigned CreatedInstsCost = 0);
390     bool mergeSExts(Function &F);
391     bool splitLargeGEPOffsets();
392     bool performAddressTypePromotion(
393         Instruction *&Inst,
394         bool AllowPromotionWithoutCommonHeader,
395         bool HasPromoted, TypePromotionTransaction &TPT,
396         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
397     bool splitBranchCondition(Function &F, bool &ModifiedDT);
398     bool simplifyOffsetableRelocate(Instruction &I);
399 
400     bool tryToSinkFreeOperands(Instruction *I);
401     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
402                                      Intrinsic::ID IID);
403     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
404     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
405     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
406   };
407 
408 } // end anonymous namespace
409 
410 char CodeGenPrepare::ID = 0;
411 
412 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
413                       "Optimize for code generation", false, false)
414 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
415 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
416                     "Optimize for code generation", false, false)
417 
418 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
419 
420 bool CodeGenPrepare::runOnFunction(Function &F) {
421   if (skipFunction(F))
422     return false;
423 
424   DL = &F.getParent()->getDataLayout();
425 
426   bool EverMadeChange = false;
427   // Clear per function information.
428   InsertedInsts.clear();
429   PromotedInsts.clear();
430 
431   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
432     TM = &TPC->getTM<TargetMachine>();
433     SubtargetInfo = TM->getSubtargetImpl(F);
434     TLI = SubtargetInfo->getTargetLowering();
435     TRI = SubtargetInfo->getRegisterInfo();
436   }
437   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
438   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
439   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
440   BPI.reset(new BranchProbabilityInfo(F, *LI));
441   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
442   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
443   OptSize = F.hasOptSize();
444   if (ProfileGuidedSectionPrefix) {
445     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
446       F.setSectionPrefix(".hot");
447     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
448       F.setSectionPrefix(".unlikely");
449   }
450 
451   /// This optimization identifies DIV instructions that can be
452   /// profitably bypassed and carried out with a shorter, faster divide.
453   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
454       TLI->isSlowDivBypassed()) {
455     const DenseMap<unsigned int, unsigned int> &BypassWidths =
456        TLI->getBypassSlowDivWidths();
457     BasicBlock* BB = &*F.begin();
458     while (BB != nullptr) {
459       // bypassSlowDivision may create new BBs, but we don't want to reapply the
460       // optimization to those blocks.
461       BasicBlock* Next = BB->getNextNode();
462       // F.hasOptSize is already checked in the outer if statement.
463       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
464         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
465       BB = Next;
466     }
467   }
468 
469   // Eliminate blocks that contain only PHI nodes and an
470   // unconditional branch.
471   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
472 
473   bool ModifiedDT = false;
474   if (!DisableBranchOpts)
475     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
476 
477   // Split some critical edges where one of the sources is an indirect branch,
478   // to help generate sane code for PHIs involving such edges.
479   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
480 
481   bool MadeChange = true;
482   while (MadeChange) {
483     MadeChange = false;
484     DT.reset();
485     for (Function::iterator I = F.begin(); I != F.end(); ) {
486       BasicBlock *BB = &*I++;
487       bool ModifiedDTOnIteration = false;
488       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
489 
490       // Restart BB iteration if the dominator tree of the Function was changed
491       if (ModifiedDTOnIteration)
492         break;
493     }
494     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
495       MadeChange |= mergeSExts(F);
496     if (!LargeOffsetGEPMap.empty())
497       MadeChange |= splitLargeGEPOffsets();
498 
499     // Really free removed instructions during promotion.
500     for (Instruction *I : RemovedInsts)
501       I->deleteValue();
502 
503     EverMadeChange |= MadeChange;
504     SeenChainsForSExt.clear();
505     ValToSExtendedUses.clear();
506     RemovedInsts.clear();
507     LargeOffsetGEPMap.clear();
508     LargeOffsetGEPID.clear();
509   }
510 
511   SunkAddrs.clear();
512 
513   if (!DisableBranchOpts) {
514     MadeChange = false;
515     // Use a set vector to get deterministic iteration order. The order the
516     // blocks are removed may affect whether or not PHI nodes in successors
517     // are removed.
518     SmallSetVector<BasicBlock*, 8> WorkList;
519     for (BasicBlock &BB : F) {
520       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
521       MadeChange |= ConstantFoldTerminator(&BB, true);
522       if (!MadeChange) continue;
523 
524       for (SmallVectorImpl<BasicBlock*>::iterator
525              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
526         if (pred_begin(*II) == pred_end(*II))
527           WorkList.insert(*II);
528     }
529 
530     // Delete the dead blocks and any of their dead successors.
531     MadeChange |= !WorkList.empty();
532     while (!WorkList.empty()) {
533       BasicBlock *BB = WorkList.pop_back_val();
534       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
535 
536       DeleteDeadBlock(BB);
537 
538       for (SmallVectorImpl<BasicBlock*>::iterator
539              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
540         if (pred_begin(*II) == pred_end(*II))
541           WorkList.insert(*II);
542     }
543 
544     // Merge pairs of basic blocks with unconditional branches, connected by
545     // a single edge.
546     if (EverMadeChange || MadeChange)
547       MadeChange |= eliminateFallThrough(F);
548 
549     EverMadeChange |= MadeChange;
550   }
551 
552   if (!DisableGCOpts) {
553     SmallVector<Instruction *, 2> Statepoints;
554     for (BasicBlock &BB : F)
555       for (Instruction &I : BB)
556         if (isStatepoint(I))
557           Statepoints.push_back(&I);
558     for (auto &I : Statepoints)
559       EverMadeChange |= simplifyOffsetableRelocate(*I);
560   }
561 
562   // Do this last to clean up use-before-def scenarios introduced by other
563   // preparatory transforms.
564   EverMadeChange |= placeDbgValues(F);
565 
566   return EverMadeChange;
567 }
568 
569 /// Merge basic blocks which are connected by a single edge, where one of the
570 /// basic blocks has a single successor pointing to the other basic block,
571 /// which has a single predecessor.
572 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
573   bool Changed = false;
574   // Scan all of the blocks in the function, except for the entry block.
575   // Use a temporary array to avoid iterator being invalidated when
576   // deleting blocks.
577   SmallVector<WeakTrackingVH, 16> Blocks;
578   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
579     Blocks.push_back(&Block);
580 
581   for (auto &Block : Blocks) {
582     auto *BB = cast_or_null<BasicBlock>(Block);
583     if (!BB)
584       continue;
585     // If the destination block has a single pred, then this is a trivial
586     // edge, just collapse it.
587     BasicBlock *SinglePred = BB->getSinglePredecessor();
588 
589     // Don't merge if BB's address is taken.
590     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
591 
592     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
593     if (Term && !Term->isConditional()) {
594       Changed = true;
595       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
596 
597       // Merge BB into SinglePred and delete it.
598       MergeBlockIntoPredecessor(BB);
599     }
600   }
601   return Changed;
602 }
603 
604 /// Find a destination block from BB if BB is mergeable empty block.
605 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
606   // If this block doesn't end with an uncond branch, ignore it.
607   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
608   if (!BI || !BI->isUnconditional())
609     return nullptr;
610 
611   // If the instruction before the branch (skipping debug info) isn't a phi
612   // node, then other stuff is happening here.
613   BasicBlock::iterator BBI = BI->getIterator();
614   if (BBI != BB->begin()) {
615     --BBI;
616     while (isa<DbgInfoIntrinsic>(BBI)) {
617       if (BBI == BB->begin())
618         break;
619       --BBI;
620     }
621     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
622       return nullptr;
623   }
624 
625   // Do not break infinite loops.
626   BasicBlock *DestBB = BI->getSuccessor(0);
627   if (DestBB == BB)
628     return nullptr;
629 
630   if (!canMergeBlocks(BB, DestBB))
631     DestBB = nullptr;
632 
633   return DestBB;
634 }
635 
636 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
637 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
638 /// edges in ways that are non-optimal for isel. Start by eliminating these
639 /// blocks so we can split them the way we want them.
640 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
641   SmallPtrSet<BasicBlock *, 16> Preheaders;
642   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
643   while (!LoopList.empty()) {
644     Loop *L = LoopList.pop_back_val();
645     LoopList.insert(LoopList.end(), L->begin(), L->end());
646     if (BasicBlock *Preheader = L->getLoopPreheader())
647       Preheaders.insert(Preheader);
648   }
649 
650   bool MadeChange = false;
651   // Copy blocks into a temporary array to avoid iterator invalidation issues
652   // as we remove them.
653   // Note that this intentionally skips the entry block.
654   SmallVector<WeakTrackingVH, 16> Blocks;
655   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
656     Blocks.push_back(&Block);
657 
658   for (auto &Block : Blocks) {
659     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
660     if (!BB)
661       continue;
662     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
663     if (!DestBB ||
664         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
665       continue;
666 
667     eliminateMostlyEmptyBlock(BB);
668     MadeChange = true;
669   }
670   return MadeChange;
671 }
672 
673 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
674                                                    BasicBlock *DestBB,
675                                                    bool isPreheader) {
676   // Do not delete loop preheaders if doing so would create a critical edge.
677   // Loop preheaders can be good locations to spill registers. If the
678   // preheader is deleted and we create a critical edge, registers may be
679   // spilled in the loop body instead.
680   if (!DisablePreheaderProtect && isPreheader &&
681       !(BB->getSinglePredecessor() &&
682         BB->getSinglePredecessor()->getSingleSuccessor()))
683     return false;
684 
685   // Skip merging if the block's successor is also a successor to any callbr
686   // that leads to this block.
687   // FIXME: Is this really needed? Is this a correctness issue?
688   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
689     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
690       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
691         if (DestBB == CBI->getSuccessor(i))
692           return false;
693   }
694 
695   // Try to skip merging if the unique predecessor of BB is terminated by a
696   // switch or indirect branch instruction, and BB is used as an incoming block
697   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
698   // add COPY instructions in the predecessor of BB instead of BB (if it is not
699   // merged). Note that the critical edge created by merging such blocks wont be
700   // split in MachineSink because the jump table is not analyzable. By keeping
701   // such empty block (BB), ISel will place COPY instructions in BB, not in the
702   // predecessor of BB.
703   BasicBlock *Pred = BB->getUniquePredecessor();
704   if (!Pred ||
705       !(isa<SwitchInst>(Pred->getTerminator()) ||
706         isa<IndirectBrInst>(Pred->getTerminator())))
707     return true;
708 
709   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
710     return true;
711 
712   // We use a simple cost heuristic which determine skipping merging is
713   // profitable if the cost of skipping merging is less than the cost of
714   // merging : Cost(skipping merging) < Cost(merging BB), where the
715   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
716   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
717   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
718   //   Freq(Pred) / Freq(BB) > 2.
719   // Note that if there are multiple empty blocks sharing the same incoming
720   // value for the PHIs in the DestBB, we consider them together. In such
721   // case, Cost(merging BB) will be the sum of their frequencies.
722 
723   if (!isa<PHINode>(DestBB->begin()))
724     return true;
725 
726   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
727 
728   // Find all other incoming blocks from which incoming values of all PHIs in
729   // DestBB are the same as the ones from BB.
730   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
731        ++PI) {
732     BasicBlock *DestBBPred = *PI;
733     if (DestBBPred == BB)
734       continue;
735 
736     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
737           return DestPN.getIncomingValueForBlock(BB) ==
738                  DestPN.getIncomingValueForBlock(DestBBPred);
739         }))
740       SameIncomingValueBBs.insert(DestBBPred);
741   }
742 
743   // See if all BB's incoming values are same as the value from Pred. In this
744   // case, no reason to skip merging because COPYs are expected to be place in
745   // Pred already.
746   if (SameIncomingValueBBs.count(Pred))
747     return true;
748 
749   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
750   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
751 
752   for (auto SameValueBB : SameIncomingValueBBs)
753     if (SameValueBB->getUniquePredecessor() == Pred &&
754         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
755       BBFreq += BFI->getBlockFreq(SameValueBB);
756 
757   return PredFreq.getFrequency() <=
758          BBFreq.getFrequency() * FreqRatioToSkipMerge;
759 }
760 
761 /// Return true if we can merge BB into DestBB if there is a single
762 /// unconditional branch between them, and BB contains no other non-phi
763 /// instructions.
764 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
765                                     const BasicBlock *DestBB) const {
766   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
767   // the successor.  If there are more complex condition (e.g. preheaders),
768   // don't mess around with them.
769   for (const PHINode &PN : BB->phis()) {
770     for (const User *U : PN.users()) {
771       const Instruction *UI = cast<Instruction>(U);
772       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
773         return false;
774       // If User is inside DestBB block and it is a PHINode then check
775       // incoming value. If incoming value is not from BB then this is
776       // a complex condition (e.g. preheaders) we want to avoid here.
777       if (UI->getParent() == DestBB) {
778         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
779           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
780             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
781             if (Insn && Insn->getParent() == BB &&
782                 Insn->getParent() != UPN->getIncomingBlock(I))
783               return false;
784           }
785       }
786     }
787   }
788 
789   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
790   // and DestBB may have conflicting incoming values for the block.  If so, we
791   // can't merge the block.
792   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
793   if (!DestBBPN) return true;  // no conflict.
794 
795   // Collect the preds of BB.
796   SmallPtrSet<const BasicBlock*, 16> BBPreds;
797   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
798     // It is faster to get preds from a PHI than with pred_iterator.
799     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
800       BBPreds.insert(BBPN->getIncomingBlock(i));
801   } else {
802     BBPreds.insert(pred_begin(BB), pred_end(BB));
803   }
804 
805   // Walk the preds of DestBB.
806   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
807     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
808     if (BBPreds.count(Pred)) {   // Common predecessor?
809       for (const PHINode &PN : DestBB->phis()) {
810         const Value *V1 = PN.getIncomingValueForBlock(Pred);
811         const Value *V2 = PN.getIncomingValueForBlock(BB);
812 
813         // If V2 is a phi node in BB, look up what the mapped value will be.
814         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
815           if (V2PN->getParent() == BB)
816             V2 = V2PN->getIncomingValueForBlock(Pred);
817 
818         // If there is a conflict, bail out.
819         if (V1 != V2) return false;
820       }
821     }
822   }
823 
824   return true;
825 }
826 
827 /// Eliminate a basic block that has only phi's and an unconditional branch in
828 /// it.
829 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
830   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
831   BasicBlock *DestBB = BI->getSuccessor(0);
832 
833   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
834                     << *BB << *DestBB);
835 
836   // If the destination block has a single pred, then this is a trivial edge,
837   // just collapse it.
838   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
839     if (SinglePred != DestBB) {
840       assert(SinglePred == BB &&
841              "Single predecessor not the same as predecessor");
842       // Merge DestBB into SinglePred/BB and delete it.
843       MergeBlockIntoPredecessor(DestBB);
844       // Note: BB(=SinglePred) will not be deleted on this path.
845       // DestBB(=its single successor) is the one that was deleted.
846       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
847       return;
848     }
849   }
850 
851   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
852   // to handle the new incoming edges it is about to have.
853   for (PHINode &PN : DestBB->phis()) {
854     // Remove the incoming value for BB, and remember it.
855     Value *InVal = PN.removeIncomingValue(BB, false);
856 
857     // Two options: either the InVal is a phi node defined in BB or it is some
858     // value that dominates BB.
859     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
860     if (InValPhi && InValPhi->getParent() == BB) {
861       // Add all of the input values of the input PHI as inputs of this phi.
862       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
863         PN.addIncoming(InValPhi->getIncomingValue(i),
864                        InValPhi->getIncomingBlock(i));
865     } else {
866       // Otherwise, add one instance of the dominating value for each edge that
867       // we will be adding.
868       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
869         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
870           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
871       } else {
872         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
873           PN.addIncoming(InVal, *PI);
874       }
875     }
876   }
877 
878   // The PHIs are now updated, change everything that refers to BB to use
879   // DestBB and remove BB.
880   BB->replaceAllUsesWith(DestBB);
881   BB->eraseFromParent();
882   ++NumBlocksElim;
883 
884   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
885 }
886 
887 // Computes a map of base pointer relocation instructions to corresponding
888 // derived pointer relocation instructions given a vector of all relocate calls
889 static void computeBaseDerivedRelocateMap(
890     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
891     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
892         &RelocateInstMap) {
893   // Collect information in two maps: one primarily for locating the base object
894   // while filling the second map; the second map is the final structure holding
895   // a mapping between Base and corresponding Derived relocate calls
896   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
897   for (auto *ThisRelocate : AllRelocateCalls) {
898     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
899                             ThisRelocate->getDerivedPtrIndex());
900     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
901   }
902   for (auto &Item : RelocateIdxMap) {
903     std::pair<unsigned, unsigned> Key = Item.first;
904     if (Key.first == Key.second)
905       // Base relocation: nothing to insert
906       continue;
907 
908     GCRelocateInst *I = Item.second;
909     auto BaseKey = std::make_pair(Key.first, Key.first);
910 
911     // We're iterating over RelocateIdxMap so we cannot modify it.
912     auto MaybeBase = RelocateIdxMap.find(BaseKey);
913     if (MaybeBase == RelocateIdxMap.end())
914       // TODO: We might want to insert a new base object relocate and gep off
915       // that, if there are enough derived object relocates.
916       continue;
917 
918     RelocateInstMap[MaybeBase->second].push_back(I);
919   }
920 }
921 
922 // Accepts a GEP and extracts the operands into a vector provided they're all
923 // small integer constants
924 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
925                                           SmallVectorImpl<Value *> &OffsetV) {
926   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
927     // Only accept small constant integer operands
928     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
929     if (!Op || Op->getZExtValue() > 20)
930       return false;
931   }
932 
933   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
934     OffsetV.push_back(GEP->getOperand(i));
935   return true;
936 }
937 
938 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
939 // replace, computes a replacement, and affects it.
940 static bool
941 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
942                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
943   bool MadeChange = false;
944   // We must ensure the relocation of derived pointer is defined after
945   // relocation of base pointer. If we find a relocation corresponding to base
946   // defined earlier than relocation of base then we move relocation of base
947   // right before found relocation. We consider only relocation in the same
948   // basic block as relocation of base. Relocations from other basic block will
949   // be skipped by optimization and we do not care about them.
950   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
951        &*R != RelocatedBase; ++R)
952     if (auto RI = dyn_cast<GCRelocateInst>(R))
953       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
954         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
955           RelocatedBase->moveBefore(RI);
956           break;
957         }
958 
959   for (GCRelocateInst *ToReplace : Targets) {
960     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
961            "Not relocating a derived object of the original base object");
962     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
963       // A duplicate relocate call. TODO: coalesce duplicates.
964       continue;
965     }
966 
967     if (RelocatedBase->getParent() != ToReplace->getParent()) {
968       // Base and derived relocates are in different basic blocks.
969       // In this case transform is only valid when base dominates derived
970       // relocate. However it would be too expensive to check dominance
971       // for each such relocate, so we skip the whole transformation.
972       continue;
973     }
974 
975     Value *Base = ToReplace->getBasePtr();
976     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
977     if (!Derived || Derived->getPointerOperand() != Base)
978       continue;
979 
980     SmallVector<Value *, 2> OffsetV;
981     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
982       continue;
983 
984     // Create a Builder and replace the target callsite with a gep
985     assert(RelocatedBase->getNextNode() &&
986            "Should always have one since it's not a terminator");
987 
988     // Insert after RelocatedBase
989     IRBuilder<> Builder(RelocatedBase->getNextNode());
990     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
991 
992     // If gc_relocate does not match the actual type, cast it to the right type.
993     // In theory, there must be a bitcast after gc_relocate if the type does not
994     // match, and we should reuse it to get the derived pointer. But it could be
995     // cases like this:
996     // bb1:
997     //  ...
998     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
999     //  br label %merge
1000     //
1001     // bb2:
1002     //  ...
1003     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1004     //  br label %merge
1005     //
1006     // merge:
1007     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1008     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1009     //
1010     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1011     // no matter there is already one or not. In this way, we can handle all cases, and
1012     // the extra bitcast should be optimized away in later passes.
1013     Value *ActualRelocatedBase = RelocatedBase;
1014     if (RelocatedBase->getType() != Base->getType()) {
1015       ActualRelocatedBase =
1016           Builder.CreateBitCast(RelocatedBase, Base->getType());
1017     }
1018     Value *Replacement = Builder.CreateGEP(
1019         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1020     Replacement->takeName(ToReplace);
1021     // If the newly generated derived pointer's type does not match the original derived
1022     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1023     Value *ActualReplacement = Replacement;
1024     if (Replacement->getType() != ToReplace->getType()) {
1025       ActualReplacement =
1026           Builder.CreateBitCast(Replacement, ToReplace->getType());
1027     }
1028     ToReplace->replaceAllUsesWith(ActualReplacement);
1029     ToReplace->eraseFromParent();
1030 
1031     MadeChange = true;
1032   }
1033   return MadeChange;
1034 }
1035 
1036 // Turns this:
1037 //
1038 // %base = ...
1039 // %ptr = gep %base + 15
1040 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1041 // %base' = relocate(%tok, i32 4, i32 4)
1042 // %ptr' = relocate(%tok, i32 4, i32 5)
1043 // %val = load %ptr'
1044 //
1045 // into this:
1046 //
1047 // %base = ...
1048 // %ptr = gep %base + 15
1049 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1050 // %base' = gc.relocate(%tok, i32 4, i32 4)
1051 // %ptr' = gep %base' + 15
1052 // %val = load %ptr'
1053 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1054   bool MadeChange = false;
1055   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1056 
1057   for (auto *U : I.users())
1058     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1059       // Collect all the relocate calls associated with a statepoint
1060       AllRelocateCalls.push_back(Relocate);
1061 
1062   // We need at least one base pointer relocation + one derived pointer
1063   // relocation to mangle
1064   if (AllRelocateCalls.size() < 2)
1065     return false;
1066 
1067   // RelocateInstMap is a mapping from the base relocate instruction to the
1068   // corresponding derived relocate instructions
1069   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1070   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1071   if (RelocateInstMap.empty())
1072     return false;
1073 
1074   for (auto &Item : RelocateInstMap)
1075     // Item.first is the RelocatedBase to offset against
1076     // Item.second is the vector of Targets to replace
1077     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1078   return MadeChange;
1079 }
1080 
1081 /// Sink the specified cast instruction into its user blocks.
1082 static bool SinkCast(CastInst *CI) {
1083   BasicBlock *DefBB = CI->getParent();
1084 
1085   /// InsertedCasts - Only insert a cast in each block once.
1086   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1087 
1088   bool MadeChange = false;
1089   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1090        UI != E; ) {
1091     Use &TheUse = UI.getUse();
1092     Instruction *User = cast<Instruction>(*UI);
1093 
1094     // Figure out which BB this cast is used in.  For PHI's this is the
1095     // appropriate predecessor block.
1096     BasicBlock *UserBB = User->getParent();
1097     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1098       UserBB = PN->getIncomingBlock(TheUse);
1099     }
1100 
1101     // Preincrement use iterator so we don't invalidate it.
1102     ++UI;
1103 
1104     // The first insertion point of a block containing an EH pad is after the
1105     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1106     if (User->isEHPad())
1107       continue;
1108 
1109     // If the block selected to receive the cast is an EH pad that does not
1110     // allow non-PHI instructions before the terminator, we can't sink the
1111     // cast.
1112     if (UserBB->getTerminator()->isEHPad())
1113       continue;
1114 
1115     // If this user is in the same block as the cast, don't change the cast.
1116     if (UserBB == DefBB) continue;
1117 
1118     // If we have already inserted a cast into this block, use it.
1119     CastInst *&InsertedCast = InsertedCasts[UserBB];
1120 
1121     if (!InsertedCast) {
1122       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1123       assert(InsertPt != UserBB->end());
1124       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1125                                       CI->getType(), "", &*InsertPt);
1126       InsertedCast->setDebugLoc(CI->getDebugLoc());
1127     }
1128 
1129     // Replace a use of the cast with a use of the new cast.
1130     TheUse = InsertedCast;
1131     MadeChange = true;
1132     ++NumCastUses;
1133   }
1134 
1135   // If we removed all uses, nuke the cast.
1136   if (CI->use_empty()) {
1137     salvageDebugInfo(*CI);
1138     CI->eraseFromParent();
1139     MadeChange = true;
1140   }
1141 
1142   return MadeChange;
1143 }
1144 
1145 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1146 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1147 /// reduce the number of virtual registers that must be created and coalesced.
1148 ///
1149 /// Return true if any changes are made.
1150 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1151                                        const DataLayout &DL) {
1152   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1153   // than sinking only nop casts, but is helpful on some platforms.
1154   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1155     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1156                                  ASC->getDestAddressSpace()))
1157       return false;
1158   }
1159 
1160   // If this is a noop copy,
1161   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1162   EVT DstVT = TLI.getValueType(DL, CI->getType());
1163 
1164   // This is an fp<->int conversion?
1165   if (SrcVT.isInteger() != DstVT.isInteger())
1166     return false;
1167 
1168   // If this is an extension, it will be a zero or sign extension, which
1169   // isn't a noop.
1170   if (SrcVT.bitsLT(DstVT)) return false;
1171 
1172   // If these values will be promoted, find out what they will be promoted
1173   // to.  This helps us consider truncates on PPC as noop copies when they
1174   // are.
1175   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1176       TargetLowering::TypePromoteInteger)
1177     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1178   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1179       TargetLowering::TypePromoteInteger)
1180     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1181 
1182   // If, after promotion, these are the same types, this is a noop copy.
1183   if (SrcVT != DstVT)
1184     return false;
1185 
1186   return SinkCast(CI);
1187 }
1188 
1189 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1190                                                  CmpInst *Cmp,
1191                                                  Intrinsic::ID IID) {
1192   if (BO->getParent() != Cmp->getParent()) {
1193     // We used to use a dominator tree here to allow multi-block optimization.
1194     // But that was problematic because:
1195     // 1. It could cause a perf regression by hoisting the math op into the
1196     //    critical path.
1197     // 2. It could cause a perf regression by creating a value that was live
1198     //    across multiple blocks and increasing register pressure.
1199     // 3. Use of a dominator tree could cause large compile-time regression.
1200     //    This is because we recompute the DT on every change in the main CGP
1201     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1202     //    that was fixed, using a DT here would be ok.
1203     return false;
1204   }
1205 
1206   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1207   Value *Arg0 = BO->getOperand(0);
1208   Value *Arg1 = BO->getOperand(1);
1209   if (BO->getOpcode() == Instruction::Add &&
1210       IID == Intrinsic::usub_with_overflow) {
1211     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1212     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1213   }
1214 
1215   // Insert at the first instruction of the pair.
1216   Instruction *InsertPt = nullptr;
1217   for (Instruction &Iter : *Cmp->getParent()) {
1218     if (&Iter == BO || &Iter == Cmp) {
1219       InsertPt = &Iter;
1220       break;
1221     }
1222   }
1223   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1224 
1225   IRBuilder<> Builder(InsertPt);
1226   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1227   Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1228   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1229   BO->replaceAllUsesWith(Math);
1230   Cmp->replaceAllUsesWith(OV);
1231   BO->eraseFromParent();
1232   Cmp->eraseFromParent();
1233   return true;
1234 }
1235 
1236 /// Match special-case patterns that check for unsigned add overflow.
1237 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1238                                                    BinaryOperator *&Add) {
1239   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1240   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1241   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1242 
1243   // We are not expecting non-canonical/degenerate code. Just bail out.
1244   if (isa<Constant>(A))
1245     return false;
1246 
1247   ICmpInst::Predicate Pred = Cmp->getPredicate();
1248   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1249     B = ConstantInt::get(B->getType(), 1);
1250   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1251     B = ConstantInt::get(B->getType(), -1);
1252   else
1253     return false;
1254 
1255   // Check the users of the variable operand of the compare looking for an add
1256   // with the adjusted constant.
1257   for (User *U : A->users()) {
1258     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1259       Add = cast<BinaryOperator>(U);
1260       return true;
1261     }
1262   }
1263   return false;
1264 }
1265 
1266 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1267 /// intrinsic. Return true if any changes were made.
1268 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1269                                                bool &ModifiedDT) {
1270   Value *A, *B;
1271   BinaryOperator *Add;
1272   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1273     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1274       return false;
1275 
1276   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1277                                  TLI->getValueType(*DL, Add->getType())))
1278     return false;
1279 
1280   // We don't want to move around uses of condition values this late, so we
1281   // check if it is legal to create the call to the intrinsic in the basic
1282   // block containing the icmp.
1283   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1284     return false;
1285 
1286   if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1287     return false;
1288 
1289   // Reset callers - do not crash by iterating over a dead instruction.
1290   ModifiedDT = true;
1291   return true;
1292 }
1293 
1294 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1295                                                bool &ModifiedDT) {
1296   // We are not expecting non-canonical/degenerate code. Just bail out.
1297   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1298   if (isa<Constant>(A) && isa<Constant>(B))
1299     return false;
1300 
1301   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1302   ICmpInst::Predicate Pred = Cmp->getPredicate();
1303   if (Pred == ICmpInst::ICMP_UGT) {
1304     std::swap(A, B);
1305     Pred = ICmpInst::ICMP_ULT;
1306   }
1307   // Convert special-case: (A == 0) is the same as (A u< 1).
1308   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1309     B = ConstantInt::get(B->getType(), 1);
1310     Pred = ICmpInst::ICMP_ULT;
1311   }
1312   // Convert special-case: (A != 0) is the same as (0 u< A).
1313   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1314     std::swap(A, B);
1315     Pred = ICmpInst::ICMP_ULT;
1316   }
1317   if (Pred != ICmpInst::ICMP_ULT)
1318     return false;
1319 
1320   // Walk the users of a variable operand of a compare looking for a subtract or
1321   // add with that same operand. Also match the 2nd operand of the compare to
1322   // the add/sub, but that may be a negated constant operand of an add.
1323   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1324   BinaryOperator *Sub = nullptr;
1325   for (User *U : CmpVariableOperand->users()) {
1326     // A - B, A u< B --> usubo(A, B)
1327     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1328       Sub = cast<BinaryOperator>(U);
1329       break;
1330     }
1331 
1332     // A + (-C), A u< C (canonicalized form of (sub A, C))
1333     const APInt *CmpC, *AddC;
1334     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1335         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1336       Sub = cast<BinaryOperator>(U);
1337       break;
1338     }
1339   }
1340   if (!Sub)
1341     return false;
1342 
1343   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1344                                  TLI->getValueType(*DL, Sub->getType())))
1345     return false;
1346 
1347   if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1348     return false;
1349 
1350   // Reset callers - do not crash by iterating over a dead instruction.
1351   ModifiedDT = true;
1352   return true;
1353 }
1354 
1355 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1356 /// registers that must be created and coalesced. This is a clear win except on
1357 /// targets with multiple condition code registers (PowerPC), where it might
1358 /// lose; some adjustment may be wanted there.
1359 ///
1360 /// Return true if any changes are made.
1361 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1362   if (TLI.hasMultipleConditionRegisters())
1363     return false;
1364 
1365   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1366   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1367     return false;
1368 
1369   // Only insert a cmp in each block once.
1370   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1371 
1372   bool MadeChange = false;
1373   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1374        UI != E; ) {
1375     Use &TheUse = UI.getUse();
1376     Instruction *User = cast<Instruction>(*UI);
1377 
1378     // Preincrement use iterator so we don't invalidate it.
1379     ++UI;
1380 
1381     // Don't bother for PHI nodes.
1382     if (isa<PHINode>(User))
1383       continue;
1384 
1385     // Figure out which BB this cmp is used in.
1386     BasicBlock *UserBB = User->getParent();
1387     BasicBlock *DefBB = Cmp->getParent();
1388 
1389     // If this user is in the same block as the cmp, don't change the cmp.
1390     if (UserBB == DefBB) continue;
1391 
1392     // If we have already inserted a cmp into this block, use it.
1393     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1394 
1395     if (!InsertedCmp) {
1396       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1397       assert(InsertPt != UserBB->end());
1398       InsertedCmp =
1399           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1400                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1401                           &*InsertPt);
1402       // Propagate the debug info.
1403       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1404     }
1405 
1406     // Replace a use of the cmp with a use of the new cmp.
1407     TheUse = InsertedCmp;
1408     MadeChange = true;
1409     ++NumCmpUses;
1410   }
1411 
1412   // If we removed all uses, nuke the cmp.
1413   if (Cmp->use_empty()) {
1414     Cmp->eraseFromParent();
1415     MadeChange = true;
1416   }
1417 
1418   return MadeChange;
1419 }
1420 
1421 /// For pattern like:
1422 ///
1423 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1424 ///   ...
1425 /// DomBB:
1426 ///   ...
1427 ///   br DomCond, TrueBB, CmpBB
1428 /// CmpBB: (with DomBB being the single predecessor)
1429 ///   ...
1430 ///   Cmp = icmp eq CmpOp0, CmpOp1
1431 ///   ...
1432 ///
1433 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1434 /// different from lowering of icmp eq (PowerPC). This function try to convert
1435 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1436 /// After that, DomCond and Cmp can use the same comparison so reduce one
1437 /// comparison.
1438 ///
1439 /// Return true if any changes are made.
1440 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1441                                        const TargetLowering &TLI) {
1442   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1443     return false;
1444 
1445   ICmpInst::Predicate Pred = Cmp->getPredicate();
1446   if (Pred != ICmpInst::ICMP_EQ)
1447     return false;
1448 
1449   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1450   // icmp slt/sgt would introduce more redundant LLVM IR.
1451   for (User *U : Cmp->users()) {
1452     if (isa<BranchInst>(U))
1453       continue;
1454     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1455       continue;
1456     return false;
1457   }
1458 
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp->getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return false;
1465 
1466   // We want to ensure that the only way control gets to the comparison of
1467   // interest is that a less/greater than comparison on the same operands is
1468   // false.
1469   Value *DomCond;
1470   BasicBlock *TrueBB, *FalseBB;
1471   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1472     return false;
1473   if (CmpBB != FalseBB)
1474     return false;
1475 
1476   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1477   ICmpInst::Predicate DomPred;
1478   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1479     return false;
1480   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1481     return false;
1482 
1483   // Convert the equality comparison to the opposite of the dominating
1484   // comparison and swap the direction for all branch/select users.
1485   // We have conceptually converted:
1486   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1487   // to
1488   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1489   // And similarly for branches.
1490   for (User *U : Cmp->users()) {
1491     if (auto *BI = dyn_cast<BranchInst>(U)) {
1492       assert(BI->isConditional() && "Must be conditional");
1493       BI->swapSuccessors();
1494       continue;
1495     }
1496     if (auto *SI = dyn_cast<SelectInst>(U)) {
1497       // Swap operands
1498       SI->swapValues();
1499       SI->swapProfMetadata();
1500       continue;
1501     }
1502     llvm_unreachable("Must be a branch or a select");
1503   }
1504   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1505   return true;
1506 }
1507 
1508 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1509   if (sinkCmpExpression(Cmp, *TLI))
1510     return true;
1511 
1512   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1513     return true;
1514 
1515   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1516     return true;
1517 
1518   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1519     return true;
1520 
1521   return false;
1522 }
1523 
1524 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1525 /// used in a compare to allow isel to generate better code for targets where
1526 /// this operation can be combined.
1527 ///
1528 /// Return true if any changes are made.
1529 static bool sinkAndCmp0Expression(Instruction *AndI,
1530                                   const TargetLowering &TLI,
1531                                   SetOfInstrs &InsertedInsts) {
1532   // Double-check that we're not trying to optimize an instruction that was
1533   // already optimized by some other part of this pass.
1534   assert(!InsertedInsts.count(AndI) &&
1535          "Attempting to optimize already optimized and instruction");
1536   (void) InsertedInsts;
1537 
1538   // Nothing to do for single use in same basic block.
1539   if (AndI->hasOneUse() &&
1540       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1541     return false;
1542 
1543   // Try to avoid cases where sinking/duplicating is likely to increase register
1544   // pressure.
1545   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1546       !isa<ConstantInt>(AndI->getOperand(1)) &&
1547       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1548     return false;
1549 
1550   for (auto *U : AndI->users()) {
1551     Instruction *User = cast<Instruction>(U);
1552 
1553     // Only sink 'and' feeding icmp with 0.
1554     if (!isa<ICmpInst>(User))
1555       return false;
1556 
1557     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1558     if (!CmpC || !CmpC->isZero())
1559       return false;
1560   }
1561 
1562   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1563     return false;
1564 
1565   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1566   LLVM_DEBUG(AndI->getParent()->dump());
1567 
1568   // Push the 'and' into the same block as the icmp 0.  There should only be
1569   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1570   // others, so we don't need to keep track of which BBs we insert into.
1571   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1572        UI != E; ) {
1573     Use &TheUse = UI.getUse();
1574     Instruction *User = cast<Instruction>(*UI);
1575 
1576     // Preincrement use iterator so we don't invalidate it.
1577     ++UI;
1578 
1579     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1580 
1581     // Keep the 'and' in the same place if the use is already in the same block.
1582     Instruction *InsertPt =
1583         User->getParent() == AndI->getParent() ? AndI : User;
1584     Instruction *InsertedAnd =
1585         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1586                                AndI->getOperand(1), "", InsertPt);
1587     // Propagate the debug info.
1588     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1589 
1590     // Replace a use of the 'and' with a use of the new 'and'.
1591     TheUse = InsertedAnd;
1592     ++NumAndUses;
1593     LLVM_DEBUG(User->getParent()->dump());
1594   }
1595 
1596   // We removed all uses, nuke the and.
1597   AndI->eraseFromParent();
1598   return true;
1599 }
1600 
1601 /// Check if the candidates could be combined with a shift instruction, which
1602 /// includes:
1603 /// 1. Truncate instruction
1604 /// 2. And instruction and the imm is a mask of the low bits:
1605 /// imm & (imm+1) == 0
1606 static bool isExtractBitsCandidateUse(Instruction *User) {
1607   if (!isa<TruncInst>(User)) {
1608     if (User->getOpcode() != Instruction::And ||
1609         !isa<ConstantInt>(User->getOperand(1)))
1610       return false;
1611 
1612     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1613 
1614     if ((Cimm & (Cimm + 1)).getBoolValue())
1615       return false;
1616   }
1617   return true;
1618 }
1619 
1620 /// Sink both shift and truncate instruction to the use of truncate's BB.
1621 static bool
1622 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1623                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1624                      const TargetLowering &TLI, const DataLayout &DL) {
1625   BasicBlock *UserBB = User->getParent();
1626   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1627   auto *TruncI = cast<TruncInst>(User);
1628   bool MadeChange = false;
1629 
1630   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1631                             TruncE = TruncI->user_end();
1632        TruncUI != TruncE;) {
1633 
1634     Use &TruncTheUse = TruncUI.getUse();
1635     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1636     // Preincrement use iterator so we don't invalidate it.
1637 
1638     ++TruncUI;
1639 
1640     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1641     if (!ISDOpcode)
1642       continue;
1643 
1644     // If the use is actually a legal node, there will not be an
1645     // implicit truncate.
1646     // FIXME: always querying the result type is just an
1647     // approximation; some nodes' legality is determined by the
1648     // operand or other means. There's no good way to find out though.
1649     if (TLI.isOperationLegalOrCustom(
1650             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1651       continue;
1652 
1653     // Don't bother for PHI nodes.
1654     if (isa<PHINode>(TruncUser))
1655       continue;
1656 
1657     BasicBlock *TruncUserBB = TruncUser->getParent();
1658 
1659     if (UserBB == TruncUserBB)
1660       continue;
1661 
1662     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1663     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1664 
1665     if (!InsertedShift && !InsertedTrunc) {
1666       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1667       assert(InsertPt != TruncUserBB->end());
1668       // Sink the shift
1669       if (ShiftI->getOpcode() == Instruction::AShr)
1670         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1671                                                    "", &*InsertPt);
1672       else
1673         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1674                                                    "", &*InsertPt);
1675       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1676 
1677       // Sink the trunc
1678       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1679       TruncInsertPt++;
1680       assert(TruncInsertPt != TruncUserBB->end());
1681 
1682       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1683                                        TruncI->getType(), "", &*TruncInsertPt);
1684       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1685 
1686       MadeChange = true;
1687 
1688       TruncTheUse = InsertedTrunc;
1689     }
1690   }
1691   return MadeChange;
1692 }
1693 
1694 /// Sink the shift *right* instruction into user blocks if the uses could
1695 /// potentially be combined with this shift instruction and generate BitExtract
1696 /// instruction. It will only be applied if the architecture supports BitExtract
1697 /// instruction. Here is an example:
1698 /// BB1:
1699 ///   %x.extract.shift = lshr i64 %arg1, 32
1700 /// BB2:
1701 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1702 /// ==>
1703 ///
1704 /// BB2:
1705 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1706 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1707 ///
1708 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1709 /// instruction.
1710 /// Return true if any changes are made.
1711 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1712                                 const TargetLowering &TLI,
1713                                 const DataLayout &DL) {
1714   BasicBlock *DefBB = ShiftI->getParent();
1715 
1716   /// Only insert instructions in each block once.
1717   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1718 
1719   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1720 
1721   bool MadeChange = false;
1722   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1723        UI != E;) {
1724     Use &TheUse = UI.getUse();
1725     Instruction *User = cast<Instruction>(*UI);
1726     // Preincrement use iterator so we don't invalidate it.
1727     ++UI;
1728 
1729     // Don't bother for PHI nodes.
1730     if (isa<PHINode>(User))
1731       continue;
1732 
1733     if (!isExtractBitsCandidateUse(User))
1734       continue;
1735 
1736     BasicBlock *UserBB = User->getParent();
1737 
1738     if (UserBB == DefBB) {
1739       // If the shift and truncate instruction are in the same BB. The use of
1740       // the truncate(TruncUse) may still introduce another truncate if not
1741       // legal. In this case, we would like to sink both shift and truncate
1742       // instruction to the BB of TruncUse.
1743       // for example:
1744       // BB1:
1745       // i64 shift.result = lshr i64 opnd, imm
1746       // trunc.result = trunc shift.result to i16
1747       //
1748       // BB2:
1749       //   ----> We will have an implicit truncate here if the architecture does
1750       //   not have i16 compare.
1751       // cmp i16 trunc.result, opnd2
1752       //
1753       if (isa<TruncInst>(User) && shiftIsLegal
1754           // If the type of the truncate is legal, no truncate will be
1755           // introduced in other basic blocks.
1756           &&
1757           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1758         MadeChange =
1759             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1760 
1761       continue;
1762     }
1763     // If we have already inserted a shift into this block, use it.
1764     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1765 
1766     if (!InsertedShift) {
1767       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1768       assert(InsertPt != UserBB->end());
1769 
1770       if (ShiftI->getOpcode() == Instruction::AShr)
1771         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1772                                                    "", &*InsertPt);
1773       else
1774         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1775                                                    "", &*InsertPt);
1776       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1777 
1778       MadeChange = true;
1779     }
1780 
1781     // Replace a use of the shift with a use of the new shift.
1782     TheUse = InsertedShift;
1783   }
1784 
1785   // If we removed all uses, or there are none, nuke the shift.
1786   if (ShiftI->use_empty()) {
1787     salvageDebugInfo(*ShiftI);
1788     ShiftI->eraseFromParent();
1789     MadeChange = true;
1790   }
1791 
1792   return MadeChange;
1793 }
1794 
1795 /// If counting leading or trailing zeros is an expensive operation and a zero
1796 /// input is defined, add a check for zero to avoid calling the intrinsic.
1797 ///
1798 /// We want to transform:
1799 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1800 ///
1801 /// into:
1802 ///   entry:
1803 ///     %cmpz = icmp eq i64 %A, 0
1804 ///     br i1 %cmpz, label %cond.end, label %cond.false
1805 ///   cond.false:
1806 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1807 ///     br label %cond.end
1808 ///   cond.end:
1809 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1810 ///
1811 /// If the transform is performed, return true and set ModifiedDT to true.
1812 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1813                                   const TargetLowering *TLI,
1814                                   const DataLayout *DL,
1815                                   bool &ModifiedDT) {
1816   if (!TLI || !DL)
1817     return false;
1818 
1819   // If a zero input is undefined, it doesn't make sense to despeculate that.
1820   if (match(CountZeros->getOperand(1), m_One()))
1821     return false;
1822 
1823   // If it's cheap to speculate, there's nothing to do.
1824   auto IntrinsicID = CountZeros->getIntrinsicID();
1825   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1826       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1827     return false;
1828 
1829   // Only handle legal scalar cases. Anything else requires too much work.
1830   Type *Ty = CountZeros->getType();
1831   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1832   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1833     return false;
1834 
1835   // The intrinsic will be sunk behind a compare against zero and branch.
1836   BasicBlock *StartBlock = CountZeros->getParent();
1837   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1838 
1839   // Create another block after the count zero intrinsic. A PHI will be added
1840   // in this block to select the result of the intrinsic or the bit-width
1841   // constant if the input to the intrinsic is zero.
1842   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1843   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1844 
1845   // Set up a builder to create a compare, conditional branch, and PHI.
1846   IRBuilder<> Builder(CountZeros->getContext());
1847   Builder.SetInsertPoint(StartBlock->getTerminator());
1848   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1849 
1850   // Replace the unconditional branch that was created by the first split with
1851   // a compare against zero and a conditional branch.
1852   Value *Zero = Constant::getNullValue(Ty);
1853   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1854   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1855   StartBlock->getTerminator()->eraseFromParent();
1856 
1857   // Create a PHI in the end block to select either the output of the intrinsic
1858   // or the bit width of the operand.
1859   Builder.SetInsertPoint(&EndBlock->front());
1860   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1861   CountZeros->replaceAllUsesWith(PN);
1862   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1863   PN->addIncoming(BitWidth, StartBlock);
1864   PN->addIncoming(CountZeros, CallBlock);
1865 
1866   // We are explicitly handling the zero case, so we can set the intrinsic's
1867   // undefined zero argument to 'true'. This will also prevent reprocessing the
1868   // intrinsic; we only despeculate when a zero input is defined.
1869   CountZeros->setArgOperand(1, Builder.getTrue());
1870   ModifiedDT = true;
1871   return true;
1872 }
1873 
1874 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1875   BasicBlock *BB = CI->getParent();
1876 
1877   // Lower inline assembly if we can.
1878   // If we found an inline asm expession, and if the target knows how to
1879   // lower it to normal LLVM code, do so now.
1880   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1881     if (TLI->ExpandInlineAsm(CI)) {
1882       // Avoid invalidating the iterator.
1883       CurInstIterator = BB->begin();
1884       // Avoid processing instructions out of order, which could cause
1885       // reuse before a value is defined.
1886       SunkAddrs.clear();
1887       return true;
1888     }
1889     // Sink address computing for memory operands into the block.
1890     if (optimizeInlineAsmInst(CI))
1891       return true;
1892   }
1893 
1894   // Align the pointer arguments to this call if the target thinks it's a good
1895   // idea
1896   unsigned MinSize, PrefAlign;
1897   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1898     for (auto &Arg : CI->arg_operands()) {
1899       // We want to align both objects whose address is used directly and
1900       // objects whose address is used in casts and GEPs, though it only makes
1901       // sense for GEPs if the offset is a multiple of the desired alignment and
1902       // if size - offset meets the size threshold.
1903       if (!Arg->getType()->isPointerTy())
1904         continue;
1905       APInt Offset(DL->getIndexSizeInBits(
1906                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1907                    0);
1908       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1909       uint64_t Offset2 = Offset.getLimitedValue();
1910       if ((Offset2 & (PrefAlign-1)) != 0)
1911         continue;
1912       AllocaInst *AI;
1913       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1914           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1915         AI->setAlignment(MaybeAlign(PrefAlign));
1916       // Global variables can only be aligned if they are defined in this
1917       // object (i.e. they are uniquely initialized in this object), and
1918       // over-aligning global variables that have an explicit section is
1919       // forbidden.
1920       GlobalVariable *GV;
1921       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1922           GV->getPointerAlignment(*DL) < PrefAlign &&
1923           DL->getTypeAllocSize(GV->getValueType()) >=
1924               MinSize + Offset2)
1925         GV->setAlignment(MaybeAlign(PrefAlign));
1926     }
1927     // If this is a memcpy (or similar) then we may be able to improve the
1928     // alignment
1929     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1930       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1931       if (DestAlign > MI->getDestAlignment())
1932         MI->setDestAlignment(DestAlign);
1933       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1934         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1935         if (SrcAlign > MTI->getSourceAlignment())
1936           MTI->setSourceAlignment(SrcAlign);
1937       }
1938     }
1939   }
1940 
1941   // If we have a cold call site, try to sink addressing computation into the
1942   // cold block.  This interacts with our handling for loads and stores to
1943   // ensure that we can fold all uses of a potential addressing computation
1944   // into their uses.  TODO: generalize this to work over profiling data
1945   bool OptForSize = OptSize || llvm::shouldOptimizeForSize(BB, PSI, BFI.get());
1946   if (!OptForSize && CI->hasFnAttr(Attribute::Cold))
1947     for (auto &Arg : CI->arg_operands()) {
1948       if (!Arg->getType()->isPointerTy())
1949         continue;
1950       unsigned AS = Arg->getType()->getPointerAddressSpace();
1951       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1952     }
1953 
1954   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1955   if (II) {
1956     switch (II->getIntrinsicID()) {
1957     default: break;
1958     case Intrinsic::experimental_widenable_condition: {
1959       // Give up on future widening oppurtunties so that we can fold away dead
1960       // paths and merge blocks before going into block-local instruction
1961       // selection.
1962       if (II->use_empty()) {
1963         II->eraseFromParent();
1964         return true;
1965       }
1966       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1967       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1968         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1969       });
1970       return true;
1971     }
1972     case Intrinsic::objectsize:
1973       llvm_unreachable("llvm.objectsize.* should have been lowered already");
1974     case Intrinsic::is_constant:
1975       llvm_unreachable("llvm.is.constant.* should have been lowered already");
1976     case Intrinsic::aarch64_stlxr:
1977     case Intrinsic::aarch64_stxr: {
1978       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1979       if (!ExtVal || !ExtVal->hasOneUse() ||
1980           ExtVal->getParent() == CI->getParent())
1981         return false;
1982       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1983       ExtVal->moveBefore(CI);
1984       // Mark this instruction as "inserted by CGP", so that other
1985       // optimizations don't touch it.
1986       InsertedInsts.insert(ExtVal);
1987       return true;
1988     }
1989 
1990     case Intrinsic::launder_invariant_group:
1991     case Intrinsic::strip_invariant_group: {
1992       Value *ArgVal = II->getArgOperand(0);
1993       auto it = LargeOffsetGEPMap.find(II);
1994       if (it != LargeOffsetGEPMap.end()) {
1995           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1996           // Make sure not to have to deal with iterator invalidation
1997           // after possibly adding ArgVal to LargeOffsetGEPMap.
1998           auto GEPs = std::move(it->second);
1999           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2000           LargeOffsetGEPMap.erase(II);
2001       }
2002 
2003       II->replaceAllUsesWith(ArgVal);
2004       II->eraseFromParent();
2005       return true;
2006     }
2007     case Intrinsic::cttz:
2008     case Intrinsic::ctlz:
2009       // If counting zeros is expensive, try to avoid it.
2010       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2011     case Intrinsic::dbg_value:
2012       return fixupDbgValue(II);
2013     }
2014 
2015     if (TLI) {
2016       SmallVector<Value*, 2> PtrOps;
2017       Type *AccessTy;
2018       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2019         while (!PtrOps.empty()) {
2020           Value *PtrVal = PtrOps.pop_back_val();
2021           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2022           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2023             return true;
2024         }
2025     }
2026   }
2027 
2028   // From here on out we're working with named functions.
2029   if (!CI->getCalledFunction()) return false;
2030 
2031   // Lower all default uses of _chk calls.  This is very similar
2032   // to what InstCombineCalls does, but here we are only lowering calls
2033   // to fortified library functions (e.g. __memcpy_chk) that have the default
2034   // "don't know" as the objectsize.  Anything else should be left alone.
2035   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2036   if (Value *V = Simplifier.optimizeCall(CI)) {
2037     CI->replaceAllUsesWith(V);
2038     CI->eraseFromParent();
2039     return true;
2040   }
2041 
2042   return false;
2043 }
2044 
2045 /// Look for opportunities to duplicate return instructions to the predecessor
2046 /// to enable tail call optimizations. The case it is currently looking for is:
2047 /// @code
2048 /// bb0:
2049 ///   %tmp0 = tail call i32 @f0()
2050 ///   br label %return
2051 /// bb1:
2052 ///   %tmp1 = tail call i32 @f1()
2053 ///   br label %return
2054 /// bb2:
2055 ///   %tmp2 = tail call i32 @f2()
2056 ///   br label %return
2057 /// return:
2058 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2059 ///   ret i32 %retval
2060 /// @endcode
2061 ///
2062 /// =>
2063 ///
2064 /// @code
2065 /// bb0:
2066 ///   %tmp0 = tail call i32 @f0()
2067 ///   ret i32 %tmp0
2068 /// bb1:
2069 ///   %tmp1 = tail call i32 @f1()
2070 ///   ret i32 %tmp1
2071 /// bb2:
2072 ///   %tmp2 = tail call i32 @f2()
2073 ///   ret i32 %tmp2
2074 /// @endcode
2075 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2076   if (!TLI)
2077     return false;
2078 
2079   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2080   if (!RetI)
2081     return false;
2082 
2083   PHINode *PN = nullptr;
2084   BitCastInst *BCI = nullptr;
2085   Value *V = RetI->getReturnValue();
2086   if (V) {
2087     BCI = dyn_cast<BitCastInst>(V);
2088     if (BCI)
2089       V = BCI->getOperand(0);
2090 
2091     PN = dyn_cast<PHINode>(V);
2092     if (!PN)
2093       return false;
2094   }
2095 
2096   if (PN && PN->getParent() != BB)
2097     return false;
2098 
2099   // Make sure there are no instructions between the PHI and return, or that the
2100   // return is the first instruction in the block.
2101   if (PN) {
2102     BasicBlock::iterator BI = BB->begin();
2103     // Skip over debug and the bitcast.
2104     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2105     if (&*BI != RetI)
2106       return false;
2107   } else {
2108     BasicBlock::iterator BI = BB->begin();
2109     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2110     if (&*BI != RetI)
2111       return false;
2112   }
2113 
2114   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2115   /// call.
2116   const Function *F = BB->getParent();
2117   SmallVector<BasicBlock*, 4> TailCallBBs;
2118   if (PN) {
2119     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2120       // Look through bitcasts.
2121       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2122       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2123       BasicBlock *PredBB = PN->getIncomingBlock(I);
2124       // Make sure the phi value is indeed produced by the tail call.
2125       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2126           TLI->mayBeEmittedAsTailCall(CI) &&
2127           attributesPermitTailCall(F, CI, RetI, *TLI))
2128         TailCallBBs.push_back(PredBB);
2129     }
2130   } else {
2131     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2132     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2133       if (!VisitedBBs.insert(*PI).second)
2134         continue;
2135 
2136       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2137       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2138       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2139       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2140       if (RI == RE)
2141         continue;
2142 
2143       CallInst *CI = dyn_cast<CallInst>(&*RI);
2144       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2145           attributesPermitTailCall(F, CI, RetI, *TLI))
2146         TailCallBBs.push_back(*PI);
2147     }
2148   }
2149 
2150   bool Changed = false;
2151   for (auto const &TailCallBB : TailCallBBs) {
2152     // Make sure the call instruction is followed by an unconditional branch to
2153     // the return block.
2154     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2155     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2156       continue;
2157 
2158     // Duplicate the return into TailCallBB.
2159     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2160     ModifiedDT = Changed = true;
2161     ++NumRetsDup;
2162   }
2163 
2164   // If we eliminated all predecessors of the block, delete the block now.
2165   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2166     BB->eraseFromParent();
2167 
2168   return Changed;
2169 }
2170 
2171 //===----------------------------------------------------------------------===//
2172 // Memory Optimization
2173 //===----------------------------------------------------------------------===//
2174 
2175 namespace {
2176 
2177 /// This is an extended version of TargetLowering::AddrMode
2178 /// which holds actual Value*'s for register values.
2179 struct ExtAddrMode : public TargetLowering::AddrMode {
2180   Value *BaseReg = nullptr;
2181   Value *ScaledReg = nullptr;
2182   Value *OriginalValue = nullptr;
2183   bool InBounds = true;
2184 
2185   enum FieldName {
2186     NoField        = 0x00,
2187     BaseRegField   = 0x01,
2188     BaseGVField    = 0x02,
2189     BaseOffsField  = 0x04,
2190     ScaledRegField = 0x08,
2191     ScaleField     = 0x10,
2192     MultipleFields = 0xff
2193   };
2194 
2195 
2196   ExtAddrMode() = default;
2197 
2198   void print(raw_ostream &OS) const;
2199   void dump() const;
2200 
2201   FieldName compare(const ExtAddrMode &other) {
2202     // First check that the types are the same on each field, as differing types
2203     // is something we can't cope with later on.
2204     if (BaseReg && other.BaseReg &&
2205         BaseReg->getType() != other.BaseReg->getType())
2206       return MultipleFields;
2207     if (BaseGV && other.BaseGV &&
2208         BaseGV->getType() != other.BaseGV->getType())
2209       return MultipleFields;
2210     if (ScaledReg && other.ScaledReg &&
2211         ScaledReg->getType() != other.ScaledReg->getType())
2212       return MultipleFields;
2213 
2214     // Conservatively reject 'inbounds' mismatches.
2215     if (InBounds != other.InBounds)
2216       return MultipleFields;
2217 
2218     // Check each field to see if it differs.
2219     unsigned Result = NoField;
2220     if (BaseReg != other.BaseReg)
2221       Result |= BaseRegField;
2222     if (BaseGV != other.BaseGV)
2223       Result |= BaseGVField;
2224     if (BaseOffs != other.BaseOffs)
2225       Result |= BaseOffsField;
2226     if (ScaledReg != other.ScaledReg)
2227       Result |= ScaledRegField;
2228     // Don't count 0 as being a different scale, because that actually means
2229     // unscaled (which will already be counted by having no ScaledReg).
2230     if (Scale && other.Scale && Scale != other.Scale)
2231       Result |= ScaleField;
2232 
2233     if (countPopulation(Result) > 1)
2234       return MultipleFields;
2235     else
2236       return static_cast<FieldName>(Result);
2237   }
2238 
2239   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2240   // with no offset.
2241   bool isTrivial() {
2242     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2243     // trivial if at most one of these terms is nonzero, except that BaseGV and
2244     // BaseReg both being zero actually means a null pointer value, which we
2245     // consider to be 'non-zero' here.
2246     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2247   }
2248 
2249   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2250     switch (Field) {
2251     default:
2252       return nullptr;
2253     case BaseRegField:
2254       return BaseReg;
2255     case BaseGVField:
2256       return BaseGV;
2257     case ScaledRegField:
2258       return ScaledReg;
2259     case BaseOffsField:
2260       return ConstantInt::get(IntPtrTy, BaseOffs);
2261     }
2262   }
2263 
2264   void SetCombinedField(FieldName Field, Value *V,
2265                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2266     switch (Field) {
2267     default:
2268       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2269       break;
2270     case ExtAddrMode::BaseRegField:
2271       BaseReg = V;
2272       break;
2273     case ExtAddrMode::BaseGVField:
2274       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2275       // in the BaseReg field.
2276       assert(BaseReg == nullptr);
2277       BaseReg = V;
2278       BaseGV = nullptr;
2279       break;
2280     case ExtAddrMode::ScaledRegField:
2281       ScaledReg = V;
2282       // If we have a mix of scaled and unscaled addrmodes then we want scale
2283       // to be the scale and not zero.
2284       if (!Scale)
2285         for (const ExtAddrMode &AM : AddrModes)
2286           if (AM.Scale) {
2287             Scale = AM.Scale;
2288             break;
2289           }
2290       break;
2291     case ExtAddrMode::BaseOffsField:
2292       // The offset is no longer a constant, so it goes in ScaledReg with a
2293       // scale of 1.
2294       assert(ScaledReg == nullptr);
2295       ScaledReg = V;
2296       Scale = 1;
2297       BaseOffs = 0;
2298       break;
2299     }
2300   }
2301 };
2302 
2303 } // end anonymous namespace
2304 
2305 #ifndef NDEBUG
2306 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2307   AM.print(OS);
2308   return OS;
2309 }
2310 #endif
2311 
2312 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2313 void ExtAddrMode::print(raw_ostream &OS) const {
2314   bool NeedPlus = false;
2315   OS << "[";
2316   if (InBounds)
2317     OS << "inbounds ";
2318   if (BaseGV) {
2319     OS << (NeedPlus ? " + " : "")
2320        << "GV:";
2321     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2322     NeedPlus = true;
2323   }
2324 
2325   if (BaseOffs) {
2326     OS << (NeedPlus ? " + " : "")
2327        << BaseOffs;
2328     NeedPlus = true;
2329   }
2330 
2331   if (BaseReg) {
2332     OS << (NeedPlus ? " + " : "")
2333        << "Base:";
2334     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2335     NeedPlus = true;
2336   }
2337   if (Scale) {
2338     OS << (NeedPlus ? " + " : "")
2339        << Scale << "*";
2340     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2341   }
2342 
2343   OS << ']';
2344 }
2345 
2346 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2347   print(dbgs());
2348   dbgs() << '\n';
2349 }
2350 #endif
2351 
2352 namespace {
2353 
2354 /// This class provides transaction based operation on the IR.
2355 /// Every change made through this class is recorded in the internal state and
2356 /// can be undone (rollback) until commit is called.
2357 class TypePromotionTransaction {
2358   /// This represents the common interface of the individual transaction.
2359   /// Each class implements the logic for doing one specific modification on
2360   /// the IR via the TypePromotionTransaction.
2361   class TypePromotionAction {
2362   protected:
2363     /// The Instruction modified.
2364     Instruction *Inst;
2365 
2366   public:
2367     /// Constructor of the action.
2368     /// The constructor performs the related action on the IR.
2369     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2370 
2371     virtual ~TypePromotionAction() = default;
2372 
2373     /// Undo the modification done by this action.
2374     /// When this method is called, the IR must be in the same state as it was
2375     /// before this action was applied.
2376     /// \pre Undoing the action works if and only if the IR is in the exact same
2377     /// state as it was directly after this action was applied.
2378     virtual void undo() = 0;
2379 
2380     /// Advocate every change made by this action.
2381     /// When the results on the IR of the action are to be kept, it is important
2382     /// to call this function, otherwise hidden information may be kept forever.
2383     virtual void commit() {
2384       // Nothing to be done, this action is not doing anything.
2385     }
2386   };
2387 
2388   /// Utility to remember the position of an instruction.
2389   class InsertionHandler {
2390     /// Position of an instruction.
2391     /// Either an instruction:
2392     /// - Is the first in a basic block: BB is used.
2393     /// - Has a previous instruction: PrevInst is used.
2394     union {
2395       Instruction *PrevInst;
2396       BasicBlock *BB;
2397     } Point;
2398 
2399     /// Remember whether or not the instruction had a previous instruction.
2400     bool HasPrevInstruction;
2401 
2402   public:
2403     /// Record the position of \p Inst.
2404     InsertionHandler(Instruction *Inst) {
2405       BasicBlock::iterator It = Inst->getIterator();
2406       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2407       if (HasPrevInstruction)
2408         Point.PrevInst = &*--It;
2409       else
2410         Point.BB = Inst->getParent();
2411     }
2412 
2413     /// Insert \p Inst at the recorded position.
2414     void insert(Instruction *Inst) {
2415       if (HasPrevInstruction) {
2416         if (Inst->getParent())
2417           Inst->removeFromParent();
2418         Inst->insertAfter(Point.PrevInst);
2419       } else {
2420         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2421         if (Inst->getParent())
2422           Inst->moveBefore(Position);
2423         else
2424           Inst->insertBefore(Position);
2425       }
2426     }
2427   };
2428 
2429   /// Move an instruction before another.
2430   class InstructionMoveBefore : public TypePromotionAction {
2431     /// Original position of the instruction.
2432     InsertionHandler Position;
2433 
2434   public:
2435     /// Move \p Inst before \p Before.
2436     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2437         : TypePromotionAction(Inst), Position(Inst) {
2438       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2439                         << "\n");
2440       Inst->moveBefore(Before);
2441     }
2442 
2443     /// Move the instruction back to its original position.
2444     void undo() override {
2445       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2446       Position.insert(Inst);
2447     }
2448   };
2449 
2450   /// Set the operand of an instruction with a new value.
2451   class OperandSetter : public TypePromotionAction {
2452     /// Original operand of the instruction.
2453     Value *Origin;
2454 
2455     /// Index of the modified instruction.
2456     unsigned Idx;
2457 
2458   public:
2459     /// Set \p Idx operand of \p Inst with \p NewVal.
2460     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2461         : TypePromotionAction(Inst), Idx(Idx) {
2462       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2463                         << "for:" << *Inst << "\n"
2464                         << "with:" << *NewVal << "\n");
2465       Origin = Inst->getOperand(Idx);
2466       Inst->setOperand(Idx, NewVal);
2467     }
2468 
2469     /// Restore the original value of the instruction.
2470     void undo() override {
2471       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2472                         << "for: " << *Inst << "\n"
2473                         << "with: " << *Origin << "\n");
2474       Inst->setOperand(Idx, Origin);
2475     }
2476   };
2477 
2478   /// Hide the operands of an instruction.
2479   /// Do as if this instruction was not using any of its operands.
2480   class OperandsHider : public TypePromotionAction {
2481     /// The list of original operands.
2482     SmallVector<Value *, 4> OriginalValues;
2483 
2484   public:
2485     /// Remove \p Inst from the uses of the operands of \p Inst.
2486     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2487       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2488       unsigned NumOpnds = Inst->getNumOperands();
2489       OriginalValues.reserve(NumOpnds);
2490       for (unsigned It = 0; It < NumOpnds; ++It) {
2491         // Save the current operand.
2492         Value *Val = Inst->getOperand(It);
2493         OriginalValues.push_back(Val);
2494         // Set a dummy one.
2495         // We could use OperandSetter here, but that would imply an overhead
2496         // that we are not willing to pay.
2497         Inst->setOperand(It, UndefValue::get(Val->getType()));
2498       }
2499     }
2500 
2501     /// Restore the original list of uses.
2502     void undo() override {
2503       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2504       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2505         Inst->setOperand(It, OriginalValues[It]);
2506     }
2507   };
2508 
2509   /// Build a truncate instruction.
2510   class TruncBuilder : public TypePromotionAction {
2511     Value *Val;
2512 
2513   public:
2514     /// Build a truncate instruction of \p Opnd producing a \p Ty
2515     /// result.
2516     /// trunc Opnd to Ty.
2517     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2518       IRBuilder<> Builder(Opnd);
2519       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2520       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2521     }
2522 
2523     /// Get the built value.
2524     Value *getBuiltValue() { return Val; }
2525 
2526     /// Remove the built instruction.
2527     void undo() override {
2528       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2529       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2530         IVal->eraseFromParent();
2531     }
2532   };
2533 
2534   /// Build a sign extension instruction.
2535   class SExtBuilder : public TypePromotionAction {
2536     Value *Val;
2537 
2538   public:
2539     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2540     /// result.
2541     /// sext Opnd to Ty.
2542     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2543         : TypePromotionAction(InsertPt) {
2544       IRBuilder<> Builder(InsertPt);
2545       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2546       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2547     }
2548 
2549     /// Get the built value.
2550     Value *getBuiltValue() { return Val; }
2551 
2552     /// Remove the built instruction.
2553     void undo() override {
2554       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2555       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2556         IVal->eraseFromParent();
2557     }
2558   };
2559 
2560   /// Build a zero extension instruction.
2561   class ZExtBuilder : public TypePromotionAction {
2562     Value *Val;
2563 
2564   public:
2565     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2566     /// result.
2567     /// zext Opnd to Ty.
2568     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2569         : TypePromotionAction(InsertPt) {
2570       IRBuilder<> Builder(InsertPt);
2571       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2572       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2573     }
2574 
2575     /// Get the built value.
2576     Value *getBuiltValue() { return Val; }
2577 
2578     /// Remove the built instruction.
2579     void undo() override {
2580       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2581       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2582         IVal->eraseFromParent();
2583     }
2584   };
2585 
2586   /// Mutate an instruction to another type.
2587   class TypeMutator : public TypePromotionAction {
2588     /// Record the original type.
2589     Type *OrigTy;
2590 
2591   public:
2592     /// Mutate the type of \p Inst into \p NewTy.
2593     TypeMutator(Instruction *Inst, Type *NewTy)
2594         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2595       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2596                         << "\n");
2597       Inst->mutateType(NewTy);
2598     }
2599 
2600     /// Mutate the instruction back to its original type.
2601     void undo() override {
2602       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2603                         << "\n");
2604       Inst->mutateType(OrigTy);
2605     }
2606   };
2607 
2608   /// Replace the uses of an instruction by another instruction.
2609   class UsesReplacer : public TypePromotionAction {
2610     /// Helper structure to keep track of the replaced uses.
2611     struct InstructionAndIdx {
2612       /// The instruction using the instruction.
2613       Instruction *Inst;
2614 
2615       /// The index where this instruction is used for Inst.
2616       unsigned Idx;
2617 
2618       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2619           : Inst(Inst), Idx(Idx) {}
2620     };
2621 
2622     /// Keep track of the original uses (pair Instruction, Index).
2623     SmallVector<InstructionAndIdx, 4> OriginalUses;
2624     /// Keep track of the debug users.
2625     SmallVector<DbgValueInst *, 1> DbgValues;
2626 
2627     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2628 
2629   public:
2630     /// Replace all the use of \p Inst by \p New.
2631     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2632       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2633                         << "\n");
2634       // Record the original uses.
2635       for (Use &U : Inst->uses()) {
2636         Instruction *UserI = cast<Instruction>(U.getUser());
2637         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2638       }
2639       // Record the debug uses separately. They are not in the instruction's
2640       // use list, but they are replaced by RAUW.
2641       findDbgValues(DbgValues, Inst);
2642 
2643       // Now, we can replace the uses.
2644       Inst->replaceAllUsesWith(New);
2645     }
2646 
2647     /// Reassign the original uses of Inst to Inst.
2648     void undo() override {
2649       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2650       for (use_iterator UseIt = OriginalUses.begin(),
2651                         EndIt = OriginalUses.end();
2652            UseIt != EndIt; ++UseIt) {
2653         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2654       }
2655       // RAUW has replaced all original uses with references to the new value,
2656       // including the debug uses. Since we are undoing the replacements,
2657       // the original debug uses must also be reinstated to maintain the
2658       // correctness and utility of debug value instructions.
2659       for (auto *DVI: DbgValues) {
2660         LLVMContext &Ctx = Inst->getType()->getContext();
2661         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2662         DVI->setOperand(0, MV);
2663       }
2664     }
2665   };
2666 
2667   /// Remove an instruction from the IR.
2668   class InstructionRemover : public TypePromotionAction {
2669     /// Original position of the instruction.
2670     InsertionHandler Inserter;
2671 
2672     /// Helper structure to hide all the link to the instruction. In other
2673     /// words, this helps to do as if the instruction was removed.
2674     OperandsHider Hider;
2675 
2676     /// Keep track of the uses replaced, if any.
2677     UsesReplacer *Replacer = nullptr;
2678 
2679     /// Keep track of instructions removed.
2680     SetOfInstrs &RemovedInsts;
2681 
2682   public:
2683     /// Remove all reference of \p Inst and optionally replace all its
2684     /// uses with New.
2685     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2686     /// \pre If !Inst->use_empty(), then New != nullptr
2687     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2688                        Value *New = nullptr)
2689         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2690           RemovedInsts(RemovedInsts) {
2691       if (New)
2692         Replacer = new UsesReplacer(Inst, New);
2693       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2694       RemovedInsts.insert(Inst);
2695       /// The instructions removed here will be freed after completing
2696       /// optimizeBlock() for all blocks as we need to keep track of the
2697       /// removed instructions during promotion.
2698       Inst->removeFromParent();
2699     }
2700 
2701     ~InstructionRemover() override { delete Replacer; }
2702 
2703     /// Resurrect the instruction and reassign it to the proper uses if
2704     /// new value was provided when build this action.
2705     void undo() override {
2706       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2707       Inserter.insert(Inst);
2708       if (Replacer)
2709         Replacer->undo();
2710       Hider.undo();
2711       RemovedInsts.erase(Inst);
2712     }
2713   };
2714 
2715 public:
2716   /// Restoration point.
2717   /// The restoration point is a pointer to an action instead of an iterator
2718   /// because the iterator may be invalidated but not the pointer.
2719   using ConstRestorationPt = const TypePromotionAction *;
2720 
2721   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2722       : RemovedInsts(RemovedInsts) {}
2723 
2724   /// Advocate every changes made in that transaction.
2725   void commit();
2726 
2727   /// Undo all the changes made after the given point.
2728   void rollback(ConstRestorationPt Point);
2729 
2730   /// Get the current restoration point.
2731   ConstRestorationPt getRestorationPoint() const;
2732 
2733   /// \name API for IR modification with state keeping to support rollback.
2734   /// @{
2735   /// Same as Instruction::setOperand.
2736   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2737 
2738   /// Same as Instruction::eraseFromParent.
2739   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2740 
2741   /// Same as Value::replaceAllUsesWith.
2742   void replaceAllUsesWith(Instruction *Inst, Value *New);
2743 
2744   /// Same as Value::mutateType.
2745   void mutateType(Instruction *Inst, Type *NewTy);
2746 
2747   /// Same as IRBuilder::createTrunc.
2748   Value *createTrunc(Instruction *Opnd, Type *Ty);
2749 
2750   /// Same as IRBuilder::createSExt.
2751   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2752 
2753   /// Same as IRBuilder::createZExt.
2754   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2755 
2756   /// Same as Instruction::moveBefore.
2757   void moveBefore(Instruction *Inst, Instruction *Before);
2758   /// @}
2759 
2760 private:
2761   /// The ordered list of actions made so far.
2762   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2763 
2764   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2765 
2766   SetOfInstrs &RemovedInsts;
2767 };
2768 
2769 } // end anonymous namespace
2770 
2771 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2772                                           Value *NewVal) {
2773   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2774       Inst, Idx, NewVal));
2775 }
2776 
2777 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2778                                                 Value *NewVal) {
2779   Actions.push_back(
2780       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2781           Inst, RemovedInsts, NewVal));
2782 }
2783 
2784 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2785                                                   Value *New) {
2786   Actions.push_back(
2787       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2788 }
2789 
2790 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2791   Actions.push_back(
2792       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2793 }
2794 
2795 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2796                                              Type *Ty) {
2797   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2798   Value *Val = Ptr->getBuiltValue();
2799   Actions.push_back(std::move(Ptr));
2800   return Val;
2801 }
2802 
2803 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2804                                             Value *Opnd, Type *Ty) {
2805   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2806   Value *Val = Ptr->getBuiltValue();
2807   Actions.push_back(std::move(Ptr));
2808   return Val;
2809 }
2810 
2811 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2812                                             Value *Opnd, Type *Ty) {
2813   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2814   Value *Val = Ptr->getBuiltValue();
2815   Actions.push_back(std::move(Ptr));
2816   return Val;
2817 }
2818 
2819 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2820                                           Instruction *Before) {
2821   Actions.push_back(
2822       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2823           Inst, Before));
2824 }
2825 
2826 TypePromotionTransaction::ConstRestorationPt
2827 TypePromotionTransaction::getRestorationPoint() const {
2828   return !Actions.empty() ? Actions.back().get() : nullptr;
2829 }
2830 
2831 void TypePromotionTransaction::commit() {
2832   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2833        ++It)
2834     (*It)->commit();
2835   Actions.clear();
2836 }
2837 
2838 void TypePromotionTransaction::rollback(
2839     TypePromotionTransaction::ConstRestorationPt Point) {
2840   while (!Actions.empty() && Point != Actions.back().get()) {
2841     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2842     Curr->undo();
2843   }
2844 }
2845 
2846 namespace {
2847 
2848 /// A helper class for matching addressing modes.
2849 ///
2850 /// This encapsulates the logic for matching the target-legal addressing modes.
2851 class AddressingModeMatcher {
2852   SmallVectorImpl<Instruction*> &AddrModeInsts;
2853   const TargetLowering &TLI;
2854   const TargetRegisterInfo &TRI;
2855   const DataLayout &DL;
2856 
2857   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2858   /// the memory instruction that we're computing this address for.
2859   Type *AccessTy;
2860   unsigned AddrSpace;
2861   Instruction *MemoryInst;
2862 
2863   /// This is the addressing mode that we're building up. This is
2864   /// part of the return value of this addressing mode matching stuff.
2865   ExtAddrMode &AddrMode;
2866 
2867   /// The instructions inserted by other CodeGenPrepare optimizations.
2868   const SetOfInstrs &InsertedInsts;
2869 
2870   /// A map from the instructions to their type before promotion.
2871   InstrToOrigTy &PromotedInsts;
2872 
2873   /// The ongoing transaction where every action should be registered.
2874   TypePromotionTransaction &TPT;
2875 
2876   // A GEP which has too large offset to be folded into the addressing mode.
2877   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2878 
2879   /// This is set to true when we should not do profitability checks.
2880   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2881   bool IgnoreProfitability;
2882 
2883   /// True if we are optimizing for size.
2884   bool OptSize;
2885 
2886   ProfileSummaryInfo *PSI;
2887   BlockFrequencyInfo *BFI;
2888 
2889   AddressingModeMatcher(
2890       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2891       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2892       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2893       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2894       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2895       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
2896       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2897         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2898         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2899         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
2900         OptSize(OptSize), PSI(PSI), BFI(BFI) {
2901     IgnoreProfitability = false;
2902   }
2903 
2904 public:
2905   /// Find the maximal addressing mode that a load/store of V can fold,
2906   /// give an access type of AccessTy.  This returns a list of involved
2907   /// instructions in AddrModeInsts.
2908   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2909   /// optimizations.
2910   /// \p PromotedInsts maps the instructions to their type before promotion.
2911   /// \p The ongoing transaction where every action should be registered.
2912   static ExtAddrMode
2913   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2914         SmallVectorImpl<Instruction *> &AddrModeInsts,
2915         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2916         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2917         TypePromotionTransaction &TPT,
2918         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2919         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
2920     ExtAddrMode Result;
2921 
2922     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2923                                          MemoryInst, Result, InsertedInsts,
2924                                          PromotedInsts, TPT, LargeOffsetGEP,
2925                                          OptSize, PSI, BFI)
2926                        .matchAddr(V, 0);
2927     (void)Success; assert(Success && "Couldn't select *anything*?");
2928     return Result;
2929   }
2930 
2931 private:
2932   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2933   bool matchAddr(Value *Addr, unsigned Depth);
2934   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2935                           bool *MovedAway = nullptr);
2936   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2937                                             ExtAddrMode &AMBefore,
2938                                             ExtAddrMode &AMAfter);
2939   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2940   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2941                              Value *PromotedOperand) const;
2942 };
2943 
2944 class PhiNodeSet;
2945 
2946 /// An iterator for PhiNodeSet.
2947 class PhiNodeSetIterator {
2948   PhiNodeSet * const Set;
2949   size_t CurrentIndex = 0;
2950 
2951 public:
2952   /// The constructor. Start should point to either a valid element, or be equal
2953   /// to the size of the underlying SmallVector of the PhiNodeSet.
2954   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2955   PHINode * operator*() const;
2956   PhiNodeSetIterator& operator++();
2957   bool operator==(const PhiNodeSetIterator &RHS) const;
2958   bool operator!=(const PhiNodeSetIterator &RHS) const;
2959 };
2960 
2961 /// Keeps a set of PHINodes.
2962 ///
2963 /// This is a minimal set implementation for a specific use case:
2964 /// It is very fast when there are very few elements, but also provides good
2965 /// performance when there are many. It is similar to SmallPtrSet, but also
2966 /// provides iteration by insertion order, which is deterministic and stable
2967 /// across runs. It is also similar to SmallSetVector, but provides removing
2968 /// elements in O(1) time. This is achieved by not actually removing the element
2969 /// from the underlying vector, so comes at the cost of using more memory, but
2970 /// that is fine, since PhiNodeSets are used as short lived objects.
2971 class PhiNodeSet {
2972   friend class PhiNodeSetIterator;
2973 
2974   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2975   using iterator =  PhiNodeSetIterator;
2976 
2977   /// Keeps the elements in the order of their insertion in the underlying
2978   /// vector. To achieve constant time removal, it never deletes any element.
2979   SmallVector<PHINode *, 32> NodeList;
2980 
2981   /// Keeps the elements in the underlying set implementation. This (and not the
2982   /// NodeList defined above) is the source of truth on whether an element
2983   /// is actually in the collection.
2984   MapType NodeMap;
2985 
2986   /// Points to the first valid (not deleted) element when the set is not empty
2987   /// and the value is not zero. Equals to the size of the underlying vector
2988   /// when the set is empty. When the value is 0, as in the beginning, the
2989   /// first element may or may not be valid.
2990   size_t FirstValidElement = 0;
2991 
2992 public:
2993   /// Inserts a new element to the collection.
2994   /// \returns true if the element is actually added, i.e. was not in the
2995   /// collection before the operation.
2996   bool insert(PHINode *Ptr) {
2997     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2998       NodeList.push_back(Ptr);
2999       return true;
3000     }
3001     return false;
3002   }
3003 
3004   /// Removes the element from the collection.
3005   /// \returns whether the element is actually removed, i.e. was in the
3006   /// collection before the operation.
3007   bool erase(PHINode *Ptr) {
3008     auto it = NodeMap.find(Ptr);
3009     if (it != NodeMap.end()) {
3010       NodeMap.erase(Ptr);
3011       SkipRemovedElements(FirstValidElement);
3012       return true;
3013     }
3014     return false;
3015   }
3016 
3017   /// Removes all elements and clears the collection.
3018   void clear() {
3019     NodeMap.clear();
3020     NodeList.clear();
3021     FirstValidElement = 0;
3022   }
3023 
3024   /// \returns an iterator that will iterate the elements in the order of
3025   /// insertion.
3026   iterator begin() {
3027     if (FirstValidElement == 0)
3028       SkipRemovedElements(FirstValidElement);
3029     return PhiNodeSetIterator(this, FirstValidElement);
3030   }
3031 
3032   /// \returns an iterator that points to the end of the collection.
3033   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3034 
3035   /// Returns the number of elements in the collection.
3036   size_t size() const {
3037     return NodeMap.size();
3038   }
3039 
3040   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3041   size_t count(PHINode *Ptr) const {
3042     return NodeMap.count(Ptr);
3043   }
3044 
3045 private:
3046   /// Updates the CurrentIndex so that it will point to a valid element.
3047   ///
3048   /// If the element of NodeList at CurrentIndex is valid, it does not
3049   /// change it. If there are no more valid elements, it updates CurrentIndex
3050   /// to point to the end of the NodeList.
3051   void SkipRemovedElements(size_t &CurrentIndex) {
3052     while (CurrentIndex < NodeList.size()) {
3053       auto it = NodeMap.find(NodeList[CurrentIndex]);
3054       // If the element has been deleted and added again later, NodeMap will
3055       // point to a different index, so CurrentIndex will still be invalid.
3056       if (it != NodeMap.end() && it->second == CurrentIndex)
3057         break;
3058       ++CurrentIndex;
3059     }
3060   }
3061 };
3062 
3063 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3064     : Set(Set), CurrentIndex(Start) {}
3065 
3066 PHINode * PhiNodeSetIterator::operator*() const {
3067   assert(CurrentIndex < Set->NodeList.size() &&
3068          "PhiNodeSet access out of range");
3069   return Set->NodeList[CurrentIndex];
3070 }
3071 
3072 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3073   assert(CurrentIndex < Set->NodeList.size() &&
3074          "PhiNodeSet access out of range");
3075   ++CurrentIndex;
3076   Set->SkipRemovedElements(CurrentIndex);
3077   return *this;
3078 }
3079 
3080 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3081   return CurrentIndex == RHS.CurrentIndex;
3082 }
3083 
3084 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3085   return !((*this) == RHS);
3086 }
3087 
3088 /// Keep track of simplification of Phi nodes.
3089 /// Accept the set of all phi nodes and erase phi node from this set
3090 /// if it is simplified.
3091 class SimplificationTracker {
3092   DenseMap<Value *, Value *> Storage;
3093   const SimplifyQuery &SQ;
3094   // Tracks newly created Phi nodes. The elements are iterated by insertion
3095   // order.
3096   PhiNodeSet AllPhiNodes;
3097   // Tracks newly created Select nodes.
3098   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3099 
3100 public:
3101   SimplificationTracker(const SimplifyQuery &sq)
3102       : SQ(sq) {}
3103 
3104   Value *Get(Value *V) {
3105     do {
3106       auto SV = Storage.find(V);
3107       if (SV == Storage.end())
3108         return V;
3109       V = SV->second;
3110     } while (true);
3111   }
3112 
3113   Value *Simplify(Value *Val) {
3114     SmallVector<Value *, 32> WorkList;
3115     SmallPtrSet<Value *, 32> Visited;
3116     WorkList.push_back(Val);
3117     while (!WorkList.empty()) {
3118       auto P = WorkList.pop_back_val();
3119       if (!Visited.insert(P).second)
3120         continue;
3121       if (auto *PI = dyn_cast<Instruction>(P))
3122         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3123           for (auto *U : PI->users())
3124             WorkList.push_back(cast<Value>(U));
3125           Put(PI, V);
3126           PI->replaceAllUsesWith(V);
3127           if (auto *PHI = dyn_cast<PHINode>(PI))
3128             AllPhiNodes.erase(PHI);
3129           if (auto *Select = dyn_cast<SelectInst>(PI))
3130             AllSelectNodes.erase(Select);
3131           PI->eraseFromParent();
3132         }
3133     }
3134     return Get(Val);
3135   }
3136 
3137   void Put(Value *From, Value *To) {
3138     Storage.insert({ From, To });
3139   }
3140 
3141   void ReplacePhi(PHINode *From, PHINode *To) {
3142     Value* OldReplacement = Get(From);
3143     while (OldReplacement != From) {
3144       From = To;
3145       To = dyn_cast<PHINode>(OldReplacement);
3146       OldReplacement = Get(From);
3147     }
3148     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3149     Put(From, To);
3150     From->replaceAllUsesWith(To);
3151     AllPhiNodes.erase(From);
3152     From->eraseFromParent();
3153   }
3154 
3155   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3156 
3157   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3158 
3159   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3160 
3161   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3162 
3163   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3164 
3165   void destroyNewNodes(Type *CommonType) {
3166     // For safe erasing, replace the uses with dummy value first.
3167     auto Dummy = UndefValue::get(CommonType);
3168     for (auto I : AllPhiNodes) {
3169       I->replaceAllUsesWith(Dummy);
3170       I->eraseFromParent();
3171     }
3172     AllPhiNodes.clear();
3173     for (auto I : AllSelectNodes) {
3174       I->replaceAllUsesWith(Dummy);
3175       I->eraseFromParent();
3176     }
3177     AllSelectNodes.clear();
3178   }
3179 };
3180 
3181 /// A helper class for combining addressing modes.
3182 class AddressingModeCombiner {
3183   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3184   typedef std::pair<PHINode *, PHINode *> PHIPair;
3185 
3186 private:
3187   /// The addressing modes we've collected.
3188   SmallVector<ExtAddrMode, 16> AddrModes;
3189 
3190   /// The field in which the AddrModes differ, when we have more than one.
3191   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3192 
3193   /// Are the AddrModes that we have all just equal to their original values?
3194   bool AllAddrModesTrivial = true;
3195 
3196   /// Common Type for all different fields in addressing modes.
3197   Type *CommonType;
3198 
3199   /// SimplifyQuery for simplifyInstruction utility.
3200   const SimplifyQuery &SQ;
3201 
3202   /// Original Address.
3203   Value *Original;
3204 
3205 public:
3206   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3207       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3208 
3209   /// Get the combined AddrMode
3210   const ExtAddrMode &getAddrMode() const {
3211     return AddrModes[0];
3212   }
3213 
3214   /// Add a new AddrMode if it's compatible with the AddrModes we already
3215   /// have.
3216   /// \return True iff we succeeded in doing so.
3217   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3218     // Take note of if we have any non-trivial AddrModes, as we need to detect
3219     // when all AddrModes are trivial as then we would introduce a phi or select
3220     // which just duplicates what's already there.
3221     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3222 
3223     // If this is the first addrmode then everything is fine.
3224     if (AddrModes.empty()) {
3225       AddrModes.emplace_back(NewAddrMode);
3226       return true;
3227     }
3228 
3229     // Figure out how different this is from the other address modes, which we
3230     // can do just by comparing against the first one given that we only care
3231     // about the cumulative difference.
3232     ExtAddrMode::FieldName ThisDifferentField =
3233       AddrModes[0].compare(NewAddrMode);
3234     if (DifferentField == ExtAddrMode::NoField)
3235       DifferentField = ThisDifferentField;
3236     else if (DifferentField != ThisDifferentField)
3237       DifferentField = ExtAddrMode::MultipleFields;
3238 
3239     // If NewAddrMode differs in more than one dimension we cannot handle it.
3240     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3241 
3242     // If Scale Field is different then we reject.
3243     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3244 
3245     // We also must reject the case when base offset is different and
3246     // scale reg is not null, we cannot handle this case due to merge of
3247     // different offsets will be used as ScaleReg.
3248     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3249                               !NewAddrMode.ScaledReg);
3250 
3251     // We also must reject the case when GV is different and BaseReg installed
3252     // due to we want to use base reg as a merge of GV values.
3253     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3254                               !NewAddrMode.HasBaseReg);
3255 
3256     // Even if NewAddMode is the same we still need to collect it due to
3257     // original value is different. And later we will need all original values
3258     // as anchors during finding the common Phi node.
3259     if (CanHandle)
3260       AddrModes.emplace_back(NewAddrMode);
3261     else
3262       AddrModes.clear();
3263 
3264     return CanHandle;
3265   }
3266 
3267   /// Combine the addressing modes we've collected into a single
3268   /// addressing mode.
3269   /// \return True iff we successfully combined them or we only had one so
3270   /// didn't need to combine them anyway.
3271   bool combineAddrModes() {
3272     // If we have no AddrModes then they can't be combined.
3273     if (AddrModes.size() == 0)
3274       return false;
3275 
3276     // A single AddrMode can trivially be combined.
3277     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3278       return true;
3279 
3280     // If the AddrModes we collected are all just equal to the value they are
3281     // derived from then combining them wouldn't do anything useful.
3282     if (AllAddrModesTrivial)
3283       return false;
3284 
3285     if (!addrModeCombiningAllowed())
3286       return false;
3287 
3288     // Build a map between <original value, basic block where we saw it> to
3289     // value of base register.
3290     // Bail out if there is no common type.
3291     FoldAddrToValueMapping Map;
3292     if (!initializeMap(Map))
3293       return false;
3294 
3295     Value *CommonValue = findCommon(Map);
3296     if (CommonValue)
3297       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3298     return CommonValue != nullptr;
3299   }
3300 
3301 private:
3302   /// Initialize Map with anchor values. For address seen
3303   /// we set the value of different field saw in this address.
3304   /// At the same time we find a common type for different field we will
3305   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3306   /// Return false if there is no common type found.
3307   bool initializeMap(FoldAddrToValueMapping &Map) {
3308     // Keep track of keys where the value is null. We will need to replace it
3309     // with constant null when we know the common type.
3310     SmallVector<Value *, 2> NullValue;
3311     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3312     for (auto &AM : AddrModes) {
3313       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3314       if (DV) {
3315         auto *Type = DV->getType();
3316         if (CommonType && CommonType != Type)
3317           return false;
3318         CommonType = Type;
3319         Map[AM.OriginalValue] = DV;
3320       } else {
3321         NullValue.push_back(AM.OriginalValue);
3322       }
3323     }
3324     assert(CommonType && "At least one non-null value must be!");
3325     for (auto *V : NullValue)
3326       Map[V] = Constant::getNullValue(CommonType);
3327     return true;
3328   }
3329 
3330   /// We have mapping between value A and other value B where B was a field in
3331   /// addressing mode represented by A. Also we have an original value C
3332   /// representing an address we start with. Traversing from C through phi and
3333   /// selects we ended up with A's in a map. This utility function tries to find
3334   /// a value V which is a field in addressing mode C and traversing through phi
3335   /// nodes and selects we will end up in corresponded values B in a map.
3336   /// The utility will create a new Phi/Selects if needed.
3337   // The simple example looks as follows:
3338   // BB1:
3339   //   p1 = b1 + 40
3340   //   br cond BB2, BB3
3341   // BB2:
3342   //   p2 = b2 + 40
3343   //   br BB3
3344   // BB3:
3345   //   p = phi [p1, BB1], [p2, BB2]
3346   //   v = load p
3347   // Map is
3348   //   p1 -> b1
3349   //   p2 -> b2
3350   // Request is
3351   //   p -> ?
3352   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3353   Value *findCommon(FoldAddrToValueMapping &Map) {
3354     // Tracks the simplification of newly created phi nodes. The reason we use
3355     // this mapping is because we will add new created Phi nodes in AddrToBase.
3356     // Simplification of Phi nodes is recursive, so some Phi node may
3357     // be simplified after we added it to AddrToBase. In reality this
3358     // simplification is possible only if original phi/selects were not
3359     // simplified yet.
3360     // Using this mapping we can find the current value in AddrToBase.
3361     SimplificationTracker ST(SQ);
3362 
3363     // First step, DFS to create PHI nodes for all intermediate blocks.
3364     // Also fill traverse order for the second step.
3365     SmallVector<Value *, 32> TraverseOrder;
3366     InsertPlaceholders(Map, TraverseOrder, ST);
3367 
3368     // Second Step, fill new nodes by merged values and simplify if possible.
3369     FillPlaceholders(Map, TraverseOrder, ST);
3370 
3371     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3372       ST.destroyNewNodes(CommonType);
3373       return nullptr;
3374     }
3375 
3376     // Now we'd like to match New Phi nodes to existed ones.
3377     unsigned PhiNotMatchedCount = 0;
3378     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3379       ST.destroyNewNodes(CommonType);
3380       return nullptr;
3381     }
3382 
3383     auto *Result = ST.Get(Map.find(Original)->second);
3384     if (Result) {
3385       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3386       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3387     }
3388     return Result;
3389   }
3390 
3391   /// Try to match PHI node to Candidate.
3392   /// Matcher tracks the matched Phi nodes.
3393   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3394                     SmallSetVector<PHIPair, 8> &Matcher,
3395                     PhiNodeSet &PhiNodesToMatch) {
3396     SmallVector<PHIPair, 8> WorkList;
3397     Matcher.insert({ PHI, Candidate });
3398     SmallSet<PHINode *, 8> MatchedPHIs;
3399     MatchedPHIs.insert(PHI);
3400     WorkList.push_back({ PHI, Candidate });
3401     SmallSet<PHIPair, 8> Visited;
3402     while (!WorkList.empty()) {
3403       auto Item = WorkList.pop_back_val();
3404       if (!Visited.insert(Item).second)
3405         continue;
3406       // We iterate over all incoming values to Phi to compare them.
3407       // If values are different and both of them Phi and the first one is a
3408       // Phi we added (subject to match) and both of them is in the same basic
3409       // block then we can match our pair if values match. So we state that
3410       // these values match and add it to work list to verify that.
3411       for (auto B : Item.first->blocks()) {
3412         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3413         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3414         if (FirstValue == SecondValue)
3415           continue;
3416 
3417         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3418         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3419 
3420         // One of them is not Phi or
3421         // The first one is not Phi node from the set we'd like to match or
3422         // Phi nodes from different basic blocks then
3423         // we will not be able to match.
3424         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3425             FirstPhi->getParent() != SecondPhi->getParent())
3426           return false;
3427 
3428         // If we already matched them then continue.
3429         if (Matcher.count({ FirstPhi, SecondPhi }))
3430           continue;
3431         // So the values are different and does not match. So we need them to
3432         // match. (But we register no more than one match per PHI node, so that
3433         // we won't later try to replace them twice.)
3434         if (MatchedPHIs.insert(FirstPhi).second)
3435           Matcher.insert({ FirstPhi, SecondPhi });
3436         // But me must check it.
3437         WorkList.push_back({ FirstPhi, SecondPhi });
3438       }
3439     }
3440     return true;
3441   }
3442 
3443   /// For the given set of PHI nodes (in the SimplificationTracker) try
3444   /// to find their equivalents.
3445   /// Returns false if this matching fails and creation of new Phi is disabled.
3446   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3447                    unsigned &PhiNotMatchedCount) {
3448     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3449     // order, so the replacements (ReplacePhi) are also done in a deterministic
3450     // order.
3451     SmallSetVector<PHIPair, 8> Matched;
3452     SmallPtrSet<PHINode *, 8> WillNotMatch;
3453     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3454     while (PhiNodesToMatch.size()) {
3455       PHINode *PHI = *PhiNodesToMatch.begin();
3456 
3457       // Add us, if no Phi nodes in the basic block we do not match.
3458       WillNotMatch.clear();
3459       WillNotMatch.insert(PHI);
3460 
3461       // Traverse all Phis until we found equivalent or fail to do that.
3462       bool IsMatched = false;
3463       for (auto &P : PHI->getParent()->phis()) {
3464         if (&P == PHI)
3465           continue;
3466         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3467           break;
3468         // If it does not match, collect all Phi nodes from matcher.
3469         // if we end up with no match, them all these Phi nodes will not match
3470         // later.
3471         for (auto M : Matched)
3472           WillNotMatch.insert(M.first);
3473         Matched.clear();
3474       }
3475       if (IsMatched) {
3476         // Replace all matched values and erase them.
3477         for (auto MV : Matched)
3478           ST.ReplacePhi(MV.first, MV.second);
3479         Matched.clear();
3480         continue;
3481       }
3482       // If we are not allowed to create new nodes then bail out.
3483       if (!AllowNewPhiNodes)
3484         return false;
3485       // Just remove all seen values in matcher. They will not match anything.
3486       PhiNotMatchedCount += WillNotMatch.size();
3487       for (auto *P : WillNotMatch)
3488         PhiNodesToMatch.erase(P);
3489     }
3490     return true;
3491   }
3492   /// Fill the placeholders with values from predecessors and simplify them.
3493   void FillPlaceholders(FoldAddrToValueMapping &Map,
3494                         SmallVectorImpl<Value *> &TraverseOrder,
3495                         SimplificationTracker &ST) {
3496     while (!TraverseOrder.empty()) {
3497       Value *Current = TraverseOrder.pop_back_val();
3498       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3499       Value *V = Map[Current];
3500 
3501       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3502         // CurrentValue also must be Select.
3503         auto *CurrentSelect = cast<SelectInst>(Current);
3504         auto *TrueValue = CurrentSelect->getTrueValue();
3505         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3506         Select->setTrueValue(ST.Get(Map[TrueValue]));
3507         auto *FalseValue = CurrentSelect->getFalseValue();
3508         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3509         Select->setFalseValue(ST.Get(Map[FalseValue]));
3510       } else {
3511         // Must be a Phi node then.
3512         auto *PHI = cast<PHINode>(V);
3513         // Fill the Phi node with values from predecessors.
3514         for (auto B : predecessors(PHI->getParent())) {
3515           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3516           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3517           PHI->addIncoming(ST.Get(Map[PV]), B);
3518         }
3519       }
3520       Map[Current] = ST.Simplify(V);
3521     }
3522   }
3523 
3524   /// Starting from original value recursively iterates over def-use chain up to
3525   /// known ending values represented in a map. For each traversed phi/select
3526   /// inserts a placeholder Phi or Select.
3527   /// Reports all new created Phi/Select nodes by adding them to set.
3528   /// Also reports and order in what values have been traversed.
3529   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3530                           SmallVectorImpl<Value *> &TraverseOrder,
3531                           SimplificationTracker &ST) {
3532     SmallVector<Value *, 32> Worklist;
3533     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3534            "Address must be a Phi or Select node");
3535     auto *Dummy = UndefValue::get(CommonType);
3536     Worklist.push_back(Original);
3537     while (!Worklist.empty()) {
3538       Value *Current = Worklist.pop_back_val();
3539       // if it is already visited or it is an ending value then skip it.
3540       if (Map.find(Current) != Map.end())
3541         continue;
3542       TraverseOrder.push_back(Current);
3543 
3544       // CurrentValue must be a Phi node or select. All others must be covered
3545       // by anchors.
3546       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3547         // Is it OK to get metadata from OrigSelect?!
3548         // Create a Select placeholder with dummy value.
3549         SelectInst *Select = SelectInst::Create(
3550             CurrentSelect->getCondition(), Dummy, Dummy,
3551             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3552         Map[Current] = Select;
3553         ST.insertNewSelect(Select);
3554         // We are interested in True and False values.
3555         Worklist.push_back(CurrentSelect->getTrueValue());
3556         Worklist.push_back(CurrentSelect->getFalseValue());
3557       } else {
3558         // It must be a Phi node then.
3559         PHINode *CurrentPhi = cast<PHINode>(Current);
3560         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3561         PHINode *PHI =
3562             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3563         Map[Current] = PHI;
3564         ST.insertNewPhi(PHI);
3565         for (Value *P : CurrentPhi->incoming_values())
3566           Worklist.push_back(P);
3567       }
3568     }
3569   }
3570 
3571   bool addrModeCombiningAllowed() {
3572     if (DisableComplexAddrModes)
3573       return false;
3574     switch (DifferentField) {
3575     default:
3576       return false;
3577     case ExtAddrMode::BaseRegField:
3578       return AddrSinkCombineBaseReg;
3579     case ExtAddrMode::BaseGVField:
3580       return AddrSinkCombineBaseGV;
3581     case ExtAddrMode::BaseOffsField:
3582       return AddrSinkCombineBaseOffs;
3583     case ExtAddrMode::ScaledRegField:
3584       return AddrSinkCombineScaledReg;
3585     }
3586   }
3587 };
3588 } // end anonymous namespace
3589 
3590 /// Try adding ScaleReg*Scale to the current addressing mode.
3591 /// Return true and update AddrMode if this addr mode is legal for the target,
3592 /// false if not.
3593 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3594                                              unsigned Depth) {
3595   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3596   // mode.  Just process that directly.
3597   if (Scale == 1)
3598     return matchAddr(ScaleReg, Depth);
3599 
3600   // If the scale is 0, it takes nothing to add this.
3601   if (Scale == 0)
3602     return true;
3603 
3604   // If we already have a scale of this value, we can add to it, otherwise, we
3605   // need an available scale field.
3606   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3607     return false;
3608 
3609   ExtAddrMode TestAddrMode = AddrMode;
3610 
3611   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3612   // [A+B + A*7] -> [B+A*8].
3613   TestAddrMode.Scale += Scale;
3614   TestAddrMode.ScaledReg = ScaleReg;
3615 
3616   // If the new address isn't legal, bail out.
3617   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3618     return false;
3619 
3620   // It was legal, so commit it.
3621   AddrMode = TestAddrMode;
3622 
3623   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3624   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3625   // X*Scale + C*Scale to addr mode.
3626   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3627   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3628       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3629     TestAddrMode.InBounds = false;
3630     TestAddrMode.ScaledReg = AddLHS;
3631     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3632 
3633     // If this addressing mode is legal, commit it and remember that we folded
3634     // this instruction.
3635     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3636       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3637       AddrMode = TestAddrMode;
3638       return true;
3639     }
3640   }
3641 
3642   // Otherwise, not (x+c)*scale, just return what we have.
3643   return true;
3644 }
3645 
3646 /// This is a little filter, which returns true if an addressing computation
3647 /// involving I might be folded into a load/store accessing it.
3648 /// This doesn't need to be perfect, but needs to accept at least
3649 /// the set of instructions that MatchOperationAddr can.
3650 static bool MightBeFoldableInst(Instruction *I) {
3651   switch (I->getOpcode()) {
3652   case Instruction::BitCast:
3653   case Instruction::AddrSpaceCast:
3654     // Don't touch identity bitcasts.
3655     if (I->getType() == I->getOperand(0)->getType())
3656       return false;
3657     return I->getType()->isIntOrPtrTy();
3658   case Instruction::PtrToInt:
3659     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3660     return true;
3661   case Instruction::IntToPtr:
3662     // We know the input is intptr_t, so this is foldable.
3663     return true;
3664   case Instruction::Add:
3665     return true;
3666   case Instruction::Mul:
3667   case Instruction::Shl:
3668     // Can only handle X*C and X << C.
3669     return isa<ConstantInt>(I->getOperand(1));
3670   case Instruction::GetElementPtr:
3671     return true;
3672   default:
3673     return false;
3674   }
3675 }
3676 
3677 /// Check whether or not \p Val is a legal instruction for \p TLI.
3678 /// \note \p Val is assumed to be the product of some type promotion.
3679 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3680 /// to be legal, as the non-promoted value would have had the same state.
3681 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3682                                        const DataLayout &DL, Value *Val) {
3683   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3684   if (!PromotedInst)
3685     return false;
3686   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3687   // If the ISDOpcode is undefined, it was undefined before the promotion.
3688   if (!ISDOpcode)
3689     return true;
3690   // Otherwise, check if the promoted instruction is legal or not.
3691   return TLI.isOperationLegalOrCustom(
3692       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3693 }
3694 
3695 namespace {
3696 
3697 /// Hepler class to perform type promotion.
3698 class TypePromotionHelper {
3699   /// Utility function to add a promoted instruction \p ExtOpnd to
3700   /// \p PromotedInsts and record the type of extension we have seen.
3701   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3702                               Instruction *ExtOpnd,
3703                               bool IsSExt) {
3704     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3705     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3706     if (It != PromotedInsts.end()) {
3707       // If the new extension is same as original, the information in
3708       // PromotedInsts[ExtOpnd] is still correct.
3709       if (It->second.getInt() == ExtTy)
3710         return;
3711 
3712       // Now the new extension is different from old extension, we make
3713       // the type information invalid by setting extension type to
3714       // BothExtension.
3715       ExtTy = BothExtension;
3716     }
3717     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3718   }
3719 
3720   /// Utility function to query the original type of instruction \p Opnd
3721   /// with a matched extension type. If the extension doesn't match, we
3722   /// cannot use the information we had on the original type.
3723   /// BothExtension doesn't match any extension type.
3724   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3725                                  Instruction *Opnd,
3726                                  bool IsSExt) {
3727     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3728     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3729     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3730       return It->second.getPointer();
3731     return nullptr;
3732   }
3733 
3734   /// Utility function to check whether or not a sign or zero extension
3735   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3736   /// either using the operands of \p Inst or promoting \p Inst.
3737   /// The type of the extension is defined by \p IsSExt.
3738   /// In other words, check if:
3739   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3740   /// #1 Promotion applies:
3741   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3742   /// #2 Operand reuses:
3743   /// ext opnd1 to ConsideredExtType.
3744   /// \p PromotedInsts maps the instructions to their type before promotion.
3745   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3746                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3747 
3748   /// Utility function to determine if \p OpIdx should be promoted when
3749   /// promoting \p Inst.
3750   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3751     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3752   }
3753 
3754   /// Utility function to promote the operand of \p Ext when this
3755   /// operand is a promotable trunc or sext or zext.
3756   /// \p PromotedInsts maps the instructions to their type before promotion.
3757   /// \p CreatedInstsCost[out] contains the cost of all instructions
3758   /// created to promote the operand of Ext.
3759   /// Newly added extensions are inserted in \p Exts.
3760   /// Newly added truncates are inserted in \p Truncs.
3761   /// Should never be called directly.
3762   /// \return The promoted value which is used instead of Ext.
3763   static Value *promoteOperandForTruncAndAnyExt(
3764       Instruction *Ext, TypePromotionTransaction &TPT,
3765       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3766       SmallVectorImpl<Instruction *> *Exts,
3767       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3768 
3769   /// Utility function to promote the operand of \p Ext when this
3770   /// operand is promotable and is not a supported trunc or sext.
3771   /// \p PromotedInsts maps the instructions to their type before promotion.
3772   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3773   /// created to promote the operand of Ext.
3774   /// Newly added extensions are inserted in \p Exts.
3775   /// Newly added truncates are inserted in \p Truncs.
3776   /// Should never be called directly.
3777   /// \return The promoted value which is used instead of Ext.
3778   static Value *promoteOperandForOther(Instruction *Ext,
3779                                        TypePromotionTransaction &TPT,
3780                                        InstrToOrigTy &PromotedInsts,
3781                                        unsigned &CreatedInstsCost,
3782                                        SmallVectorImpl<Instruction *> *Exts,
3783                                        SmallVectorImpl<Instruction *> *Truncs,
3784                                        const TargetLowering &TLI, bool IsSExt);
3785 
3786   /// \see promoteOperandForOther.
3787   static Value *signExtendOperandForOther(
3788       Instruction *Ext, TypePromotionTransaction &TPT,
3789       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3790       SmallVectorImpl<Instruction *> *Exts,
3791       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3792     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3793                                   Exts, Truncs, TLI, true);
3794   }
3795 
3796   /// \see promoteOperandForOther.
3797   static Value *zeroExtendOperandForOther(
3798       Instruction *Ext, TypePromotionTransaction &TPT,
3799       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3800       SmallVectorImpl<Instruction *> *Exts,
3801       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3802     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3803                                   Exts, Truncs, TLI, false);
3804   }
3805 
3806 public:
3807   /// Type for the utility function that promotes the operand of Ext.
3808   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3809                             InstrToOrigTy &PromotedInsts,
3810                             unsigned &CreatedInstsCost,
3811                             SmallVectorImpl<Instruction *> *Exts,
3812                             SmallVectorImpl<Instruction *> *Truncs,
3813                             const TargetLowering &TLI);
3814 
3815   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3816   /// action to promote the operand of \p Ext instead of using Ext.
3817   /// \return NULL if no promotable action is possible with the current
3818   /// sign extension.
3819   /// \p InsertedInsts keeps track of all the instructions inserted by the
3820   /// other CodeGenPrepare optimizations. This information is important
3821   /// because we do not want to promote these instructions as CodeGenPrepare
3822   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3823   /// \p PromotedInsts maps the instructions to their type before promotion.
3824   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3825                           const TargetLowering &TLI,
3826                           const InstrToOrigTy &PromotedInsts);
3827 };
3828 
3829 } // end anonymous namespace
3830 
3831 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3832                                         Type *ConsideredExtType,
3833                                         const InstrToOrigTy &PromotedInsts,
3834                                         bool IsSExt) {
3835   // The promotion helper does not know how to deal with vector types yet.
3836   // To be able to fix that, we would need to fix the places where we
3837   // statically extend, e.g., constants and such.
3838   if (Inst->getType()->isVectorTy())
3839     return false;
3840 
3841   // We can always get through zext.
3842   if (isa<ZExtInst>(Inst))
3843     return true;
3844 
3845   // sext(sext) is ok too.
3846   if (IsSExt && isa<SExtInst>(Inst))
3847     return true;
3848 
3849   // We can get through binary operator, if it is legal. In other words, the
3850   // binary operator must have a nuw or nsw flag.
3851   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3852   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3853       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3854        (IsSExt && BinOp->hasNoSignedWrap())))
3855     return true;
3856 
3857   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3858   if ((Inst->getOpcode() == Instruction::And ||
3859        Inst->getOpcode() == Instruction::Or))
3860     return true;
3861 
3862   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3863   if (Inst->getOpcode() == Instruction::Xor) {
3864     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3865     // Make sure it is not a NOT.
3866     if (Cst && !Cst->getValue().isAllOnesValue())
3867       return true;
3868   }
3869 
3870   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3871   // It may change a poisoned value into a regular value, like
3872   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3873   //          poisoned value                    regular value
3874   // It should be OK since undef covers valid value.
3875   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3876     return true;
3877 
3878   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3879   // It may change a poisoned value into a regular value, like
3880   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3881   //          poisoned value                    regular value
3882   // It should be OK since undef covers valid value.
3883   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3884     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
3885     if (ExtInst->hasOneUse()) {
3886       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
3887       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3888         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3889         if (Cst &&
3890             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3891           return true;
3892       }
3893     }
3894   }
3895 
3896   // Check if we can do the following simplification.
3897   // ext(trunc(opnd)) --> ext(opnd)
3898   if (!isa<TruncInst>(Inst))
3899     return false;
3900 
3901   Value *OpndVal = Inst->getOperand(0);
3902   // Check if we can use this operand in the extension.
3903   // If the type is larger than the result type of the extension, we cannot.
3904   if (!OpndVal->getType()->isIntegerTy() ||
3905       OpndVal->getType()->getIntegerBitWidth() >
3906           ConsideredExtType->getIntegerBitWidth())
3907     return false;
3908 
3909   // If the operand of the truncate is not an instruction, we will not have
3910   // any information on the dropped bits.
3911   // (Actually we could for constant but it is not worth the extra logic).
3912   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3913   if (!Opnd)
3914     return false;
3915 
3916   // Check if the source of the type is narrow enough.
3917   // I.e., check that trunc just drops extended bits of the same kind of
3918   // the extension.
3919   // #1 get the type of the operand and check the kind of the extended bits.
3920   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3921   if (OpndType)
3922     ;
3923   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3924     OpndType = Opnd->getOperand(0)->getType();
3925   else
3926     return false;
3927 
3928   // #2 check that the truncate just drops extended bits.
3929   return Inst->getType()->getIntegerBitWidth() >=
3930          OpndType->getIntegerBitWidth();
3931 }
3932 
3933 TypePromotionHelper::Action TypePromotionHelper::getAction(
3934     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3935     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3936   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3937          "Unexpected instruction type");
3938   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3939   Type *ExtTy = Ext->getType();
3940   bool IsSExt = isa<SExtInst>(Ext);
3941   // If the operand of the extension is not an instruction, we cannot
3942   // get through.
3943   // If it, check we can get through.
3944   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3945     return nullptr;
3946 
3947   // Do not promote if the operand has been added by codegenprepare.
3948   // Otherwise, it means we are undoing an optimization that is likely to be
3949   // redone, thus causing potential infinite loop.
3950   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3951     return nullptr;
3952 
3953   // SExt or Trunc instructions.
3954   // Return the related handler.
3955   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3956       isa<ZExtInst>(ExtOpnd))
3957     return promoteOperandForTruncAndAnyExt;
3958 
3959   // Regular instruction.
3960   // Abort early if we will have to insert non-free instructions.
3961   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3962     return nullptr;
3963   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3964 }
3965 
3966 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3967     Instruction *SExt, TypePromotionTransaction &TPT,
3968     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3969     SmallVectorImpl<Instruction *> *Exts,
3970     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3971   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3972   // get through it and this method should not be called.
3973   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3974   Value *ExtVal = SExt;
3975   bool HasMergedNonFreeExt = false;
3976   if (isa<ZExtInst>(SExtOpnd)) {
3977     // Replace s|zext(zext(opnd))
3978     // => zext(opnd).
3979     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3980     Value *ZExt =
3981         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3982     TPT.replaceAllUsesWith(SExt, ZExt);
3983     TPT.eraseInstruction(SExt);
3984     ExtVal = ZExt;
3985   } else {
3986     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3987     // => z|sext(opnd).
3988     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3989   }
3990   CreatedInstsCost = 0;
3991 
3992   // Remove dead code.
3993   if (SExtOpnd->use_empty())
3994     TPT.eraseInstruction(SExtOpnd);
3995 
3996   // Check if the extension is still needed.
3997   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3998   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3999     if (ExtInst) {
4000       if (Exts)
4001         Exts->push_back(ExtInst);
4002       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4003     }
4004     return ExtVal;
4005   }
4006 
4007   // At this point we have: ext ty opnd to ty.
4008   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4009   Value *NextVal = ExtInst->getOperand(0);
4010   TPT.eraseInstruction(ExtInst, NextVal);
4011   return NextVal;
4012 }
4013 
4014 Value *TypePromotionHelper::promoteOperandForOther(
4015     Instruction *Ext, TypePromotionTransaction &TPT,
4016     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4017     SmallVectorImpl<Instruction *> *Exts,
4018     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4019     bool IsSExt) {
4020   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4021   // get through it and this method should not be called.
4022   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4023   CreatedInstsCost = 0;
4024   if (!ExtOpnd->hasOneUse()) {
4025     // ExtOpnd will be promoted.
4026     // All its uses, but Ext, will need to use a truncated value of the
4027     // promoted version.
4028     // Create the truncate now.
4029     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4030     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4031       // Insert it just after the definition.
4032       ITrunc->moveAfter(ExtOpnd);
4033       if (Truncs)
4034         Truncs->push_back(ITrunc);
4035     }
4036 
4037     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4038     // Restore the operand of Ext (which has been replaced by the previous call
4039     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4040     TPT.setOperand(Ext, 0, ExtOpnd);
4041   }
4042 
4043   // Get through the Instruction:
4044   // 1. Update its type.
4045   // 2. Replace the uses of Ext by Inst.
4046   // 3. Extend each operand that needs to be extended.
4047 
4048   // Remember the original type of the instruction before promotion.
4049   // This is useful to know that the high bits are sign extended bits.
4050   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4051   // Step #1.
4052   TPT.mutateType(ExtOpnd, Ext->getType());
4053   // Step #2.
4054   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4055   // Step #3.
4056   Instruction *ExtForOpnd = Ext;
4057 
4058   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4059   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4060        ++OpIdx) {
4061     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4062     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4063         !shouldExtOperand(ExtOpnd, OpIdx)) {
4064       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4065       continue;
4066     }
4067     // Check if we can statically extend the operand.
4068     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4069     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4070       LLVM_DEBUG(dbgs() << "Statically extend\n");
4071       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4072       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4073                             : Cst->getValue().zext(BitWidth);
4074       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4075       continue;
4076     }
4077     // UndefValue are typed, so we have to statically sign extend them.
4078     if (isa<UndefValue>(Opnd)) {
4079       LLVM_DEBUG(dbgs() << "Statically extend\n");
4080       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4081       continue;
4082     }
4083 
4084     // Otherwise we have to explicitly sign extend the operand.
4085     // Check if Ext was reused to extend an operand.
4086     if (!ExtForOpnd) {
4087       // If yes, create a new one.
4088       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4089       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4090         : TPT.createZExt(Ext, Opnd, Ext->getType());
4091       if (!isa<Instruction>(ValForExtOpnd)) {
4092         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4093         continue;
4094       }
4095       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4096     }
4097     if (Exts)
4098       Exts->push_back(ExtForOpnd);
4099     TPT.setOperand(ExtForOpnd, 0, Opnd);
4100 
4101     // Move the sign extension before the insertion point.
4102     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4103     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4104     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4105     // If more sext are required, new instructions will have to be created.
4106     ExtForOpnd = nullptr;
4107   }
4108   if (ExtForOpnd == Ext) {
4109     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4110     TPT.eraseInstruction(Ext);
4111   }
4112   return ExtOpnd;
4113 }
4114 
4115 /// Check whether or not promoting an instruction to a wider type is profitable.
4116 /// \p NewCost gives the cost of extension instructions created by the
4117 /// promotion.
4118 /// \p OldCost gives the cost of extension instructions before the promotion
4119 /// plus the number of instructions that have been
4120 /// matched in the addressing mode the promotion.
4121 /// \p PromotedOperand is the value that has been promoted.
4122 /// \return True if the promotion is profitable, false otherwise.
4123 bool AddressingModeMatcher::isPromotionProfitable(
4124     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4125   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4126                     << '\n');
4127   // The cost of the new extensions is greater than the cost of the
4128   // old extension plus what we folded.
4129   // This is not profitable.
4130   if (NewCost > OldCost)
4131     return false;
4132   if (NewCost < OldCost)
4133     return true;
4134   // The promotion is neutral but it may help folding the sign extension in
4135   // loads for instance.
4136   // Check that we did not create an illegal instruction.
4137   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4138 }
4139 
4140 /// Given an instruction or constant expr, see if we can fold the operation
4141 /// into the addressing mode. If so, update the addressing mode and return
4142 /// true, otherwise return false without modifying AddrMode.
4143 /// If \p MovedAway is not NULL, it contains the information of whether or
4144 /// not AddrInst has to be folded into the addressing mode on success.
4145 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4146 /// because it has been moved away.
4147 /// Thus AddrInst must not be added in the matched instructions.
4148 /// This state can happen when AddrInst is a sext, since it may be moved away.
4149 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4150 /// not be referenced anymore.
4151 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4152                                                unsigned Depth,
4153                                                bool *MovedAway) {
4154   // Avoid exponential behavior on extremely deep expression trees.
4155   if (Depth >= 5) return false;
4156 
4157   // By default, all matched instructions stay in place.
4158   if (MovedAway)
4159     *MovedAway = false;
4160 
4161   switch (Opcode) {
4162   case Instruction::PtrToInt:
4163     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4164     return matchAddr(AddrInst->getOperand(0), Depth);
4165   case Instruction::IntToPtr: {
4166     auto AS = AddrInst->getType()->getPointerAddressSpace();
4167     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4168     // This inttoptr is a no-op if the integer type is pointer sized.
4169     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4170       return matchAddr(AddrInst->getOperand(0), Depth);
4171     return false;
4172   }
4173   case Instruction::BitCast:
4174     // BitCast is always a noop, and we can handle it as long as it is
4175     // int->int or pointer->pointer (we don't want int<->fp or something).
4176     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4177         // Don't touch identity bitcasts.  These were probably put here by LSR,
4178         // and we don't want to mess around with them.  Assume it knows what it
4179         // is doing.
4180         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4181       return matchAddr(AddrInst->getOperand(0), Depth);
4182     return false;
4183   case Instruction::AddrSpaceCast: {
4184     unsigned SrcAS
4185       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4186     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4187     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4188       return matchAddr(AddrInst->getOperand(0), Depth);
4189     return false;
4190   }
4191   case Instruction::Add: {
4192     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4193     ExtAddrMode BackupAddrMode = AddrMode;
4194     unsigned OldSize = AddrModeInsts.size();
4195     // Start a transaction at this point.
4196     // The LHS may match but not the RHS.
4197     // Therefore, we need a higher level restoration point to undo partially
4198     // matched operation.
4199     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4200         TPT.getRestorationPoint();
4201 
4202     AddrMode.InBounds = false;
4203     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4204         matchAddr(AddrInst->getOperand(0), Depth+1))
4205       return true;
4206 
4207     // Restore the old addr mode info.
4208     AddrMode = BackupAddrMode;
4209     AddrModeInsts.resize(OldSize);
4210     TPT.rollback(LastKnownGood);
4211 
4212     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4213     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4214         matchAddr(AddrInst->getOperand(1), Depth+1))
4215       return true;
4216 
4217     // Otherwise we definitely can't merge the ADD in.
4218     AddrMode = BackupAddrMode;
4219     AddrModeInsts.resize(OldSize);
4220     TPT.rollback(LastKnownGood);
4221     break;
4222   }
4223   //case Instruction::Or:
4224   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4225   //break;
4226   case Instruction::Mul:
4227   case Instruction::Shl: {
4228     // Can only handle X*C and X << C.
4229     AddrMode.InBounds = false;
4230     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4231     if (!RHS || RHS->getBitWidth() > 64)
4232       return false;
4233     int64_t Scale = RHS->getSExtValue();
4234     if (Opcode == Instruction::Shl)
4235       Scale = 1LL << Scale;
4236 
4237     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4238   }
4239   case Instruction::GetElementPtr: {
4240     // Scan the GEP.  We check it if it contains constant offsets and at most
4241     // one variable offset.
4242     int VariableOperand = -1;
4243     unsigned VariableScale = 0;
4244 
4245     int64_t ConstantOffset = 0;
4246     gep_type_iterator GTI = gep_type_begin(AddrInst);
4247     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4248       if (StructType *STy = GTI.getStructTypeOrNull()) {
4249         const StructLayout *SL = DL.getStructLayout(STy);
4250         unsigned Idx =
4251           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4252         ConstantOffset += SL->getElementOffset(Idx);
4253       } else {
4254         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4255         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4256           const APInt &CVal = CI->getValue();
4257           if (CVal.getMinSignedBits() <= 64) {
4258             ConstantOffset += CVal.getSExtValue() * TypeSize;
4259             continue;
4260           }
4261         }
4262         if (TypeSize) {  // Scales of zero don't do anything.
4263           // We only allow one variable index at the moment.
4264           if (VariableOperand != -1)
4265             return false;
4266 
4267           // Remember the variable index.
4268           VariableOperand = i;
4269           VariableScale = TypeSize;
4270         }
4271       }
4272     }
4273 
4274     // A common case is for the GEP to only do a constant offset.  In this case,
4275     // just add it to the disp field and check validity.
4276     if (VariableOperand == -1) {
4277       AddrMode.BaseOffs += ConstantOffset;
4278       if (ConstantOffset == 0 ||
4279           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4280         // Check to see if we can fold the base pointer in too.
4281         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4282           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4283             AddrMode.InBounds = false;
4284           return true;
4285         }
4286       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4287                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4288                  ConstantOffset > 0) {
4289         // Record GEPs with non-zero offsets as candidates for splitting in the
4290         // event that the offset cannot fit into the r+i addressing mode.
4291         // Simple and common case that only one GEP is used in calculating the
4292         // address for the memory access.
4293         Value *Base = AddrInst->getOperand(0);
4294         auto *BaseI = dyn_cast<Instruction>(Base);
4295         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4296         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4297             (BaseI && !isa<CastInst>(BaseI) &&
4298              !isa<GetElementPtrInst>(BaseI))) {
4299           // Make sure the parent block allows inserting non-PHI instructions
4300           // before the terminator.
4301           BasicBlock *Parent =
4302               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4303           if (!Parent->getTerminator()->isEHPad())
4304             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4305         }
4306       }
4307       AddrMode.BaseOffs -= ConstantOffset;
4308       return false;
4309     }
4310 
4311     // Save the valid addressing mode in case we can't match.
4312     ExtAddrMode BackupAddrMode = AddrMode;
4313     unsigned OldSize = AddrModeInsts.size();
4314 
4315     // See if the scale and offset amount is valid for this target.
4316     AddrMode.BaseOffs += ConstantOffset;
4317     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4318       AddrMode.InBounds = false;
4319 
4320     // Match the base operand of the GEP.
4321     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4322       // If it couldn't be matched, just stuff the value in a register.
4323       if (AddrMode.HasBaseReg) {
4324         AddrMode = BackupAddrMode;
4325         AddrModeInsts.resize(OldSize);
4326         return false;
4327       }
4328       AddrMode.HasBaseReg = true;
4329       AddrMode.BaseReg = AddrInst->getOperand(0);
4330     }
4331 
4332     // Match the remaining variable portion of the GEP.
4333     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4334                           Depth)) {
4335       // If it couldn't be matched, try stuffing the base into a register
4336       // instead of matching it, and retrying the match of the scale.
4337       AddrMode = BackupAddrMode;
4338       AddrModeInsts.resize(OldSize);
4339       if (AddrMode.HasBaseReg)
4340         return false;
4341       AddrMode.HasBaseReg = true;
4342       AddrMode.BaseReg = AddrInst->getOperand(0);
4343       AddrMode.BaseOffs += ConstantOffset;
4344       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4345                             VariableScale, Depth)) {
4346         // If even that didn't work, bail.
4347         AddrMode = BackupAddrMode;
4348         AddrModeInsts.resize(OldSize);
4349         return false;
4350       }
4351     }
4352 
4353     return true;
4354   }
4355   case Instruction::SExt:
4356   case Instruction::ZExt: {
4357     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4358     if (!Ext)
4359       return false;
4360 
4361     // Try to move this ext out of the way of the addressing mode.
4362     // Ask for a method for doing so.
4363     TypePromotionHelper::Action TPH =
4364         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4365     if (!TPH)
4366       return false;
4367 
4368     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4369         TPT.getRestorationPoint();
4370     unsigned CreatedInstsCost = 0;
4371     unsigned ExtCost = !TLI.isExtFree(Ext);
4372     Value *PromotedOperand =
4373         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4374     // SExt has been moved away.
4375     // Thus either it will be rematched later in the recursive calls or it is
4376     // gone. Anyway, we must not fold it into the addressing mode at this point.
4377     // E.g.,
4378     // op = add opnd, 1
4379     // idx = ext op
4380     // addr = gep base, idx
4381     // is now:
4382     // promotedOpnd = ext opnd            <- no match here
4383     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4384     // addr = gep base, op                <- match
4385     if (MovedAway)
4386       *MovedAway = true;
4387 
4388     assert(PromotedOperand &&
4389            "TypePromotionHelper should have filtered out those cases");
4390 
4391     ExtAddrMode BackupAddrMode = AddrMode;
4392     unsigned OldSize = AddrModeInsts.size();
4393 
4394     if (!matchAddr(PromotedOperand, Depth) ||
4395         // The total of the new cost is equal to the cost of the created
4396         // instructions.
4397         // The total of the old cost is equal to the cost of the extension plus
4398         // what we have saved in the addressing mode.
4399         !isPromotionProfitable(CreatedInstsCost,
4400                                ExtCost + (AddrModeInsts.size() - OldSize),
4401                                PromotedOperand)) {
4402       AddrMode = BackupAddrMode;
4403       AddrModeInsts.resize(OldSize);
4404       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4405       TPT.rollback(LastKnownGood);
4406       return false;
4407     }
4408     return true;
4409   }
4410   }
4411   return false;
4412 }
4413 
4414 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4415 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4416 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4417 /// for the target.
4418 ///
4419 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4420   // Start a transaction at this point that we will rollback if the matching
4421   // fails.
4422   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4423       TPT.getRestorationPoint();
4424   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4425     // Fold in immediates if legal for the target.
4426     AddrMode.BaseOffs += CI->getSExtValue();
4427     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4428       return true;
4429     AddrMode.BaseOffs -= CI->getSExtValue();
4430   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4431     // If this is a global variable, try to fold it into the addressing mode.
4432     if (!AddrMode.BaseGV) {
4433       AddrMode.BaseGV = GV;
4434       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4435         return true;
4436       AddrMode.BaseGV = nullptr;
4437     }
4438   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4439     ExtAddrMode BackupAddrMode = AddrMode;
4440     unsigned OldSize = AddrModeInsts.size();
4441 
4442     // Check to see if it is possible to fold this operation.
4443     bool MovedAway = false;
4444     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4445       // This instruction may have been moved away. If so, there is nothing
4446       // to check here.
4447       if (MovedAway)
4448         return true;
4449       // Okay, it's possible to fold this.  Check to see if it is actually
4450       // *profitable* to do so.  We use a simple cost model to avoid increasing
4451       // register pressure too much.
4452       if (I->hasOneUse() ||
4453           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4454         AddrModeInsts.push_back(I);
4455         return true;
4456       }
4457 
4458       // It isn't profitable to do this, roll back.
4459       //cerr << "NOT FOLDING: " << *I;
4460       AddrMode = BackupAddrMode;
4461       AddrModeInsts.resize(OldSize);
4462       TPT.rollback(LastKnownGood);
4463     }
4464   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4465     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4466       return true;
4467     TPT.rollback(LastKnownGood);
4468   } else if (isa<ConstantPointerNull>(Addr)) {
4469     // Null pointer gets folded without affecting the addressing mode.
4470     return true;
4471   }
4472 
4473   // Worse case, the target should support [reg] addressing modes. :)
4474   if (!AddrMode.HasBaseReg) {
4475     AddrMode.HasBaseReg = true;
4476     AddrMode.BaseReg = Addr;
4477     // Still check for legality in case the target supports [imm] but not [i+r].
4478     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4479       return true;
4480     AddrMode.HasBaseReg = false;
4481     AddrMode.BaseReg = nullptr;
4482   }
4483 
4484   // If the base register is already taken, see if we can do [r+r].
4485   if (AddrMode.Scale == 0) {
4486     AddrMode.Scale = 1;
4487     AddrMode.ScaledReg = Addr;
4488     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4489       return true;
4490     AddrMode.Scale = 0;
4491     AddrMode.ScaledReg = nullptr;
4492   }
4493   // Couldn't match.
4494   TPT.rollback(LastKnownGood);
4495   return false;
4496 }
4497 
4498 /// Check to see if all uses of OpVal by the specified inline asm call are due
4499 /// to memory operands. If so, return true, otherwise return false.
4500 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4501                                     const TargetLowering &TLI,
4502                                     const TargetRegisterInfo &TRI) {
4503   const Function *F = CI->getFunction();
4504   TargetLowering::AsmOperandInfoVector TargetConstraints =
4505       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4506                             ImmutableCallSite(CI));
4507 
4508   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4509     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4510 
4511     // Compute the constraint code and ConstraintType to use.
4512     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4513 
4514     // If this asm operand is our Value*, and if it isn't an indirect memory
4515     // operand, we can't fold it!
4516     if (OpInfo.CallOperandVal == OpVal &&
4517         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4518          !OpInfo.isIndirect))
4519       return false;
4520   }
4521 
4522   return true;
4523 }
4524 
4525 // Max number of memory uses to look at before aborting the search to conserve
4526 // compile time.
4527 static constexpr int MaxMemoryUsesToScan = 20;
4528 
4529 /// Recursively walk all the uses of I until we find a memory use.
4530 /// If we find an obviously non-foldable instruction, return true.
4531 /// Add the ultimately found memory instructions to MemoryUses.
4532 static bool FindAllMemoryUses(
4533     Instruction *I,
4534     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4535     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4536     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4537     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4538   // If we already considered this instruction, we're done.
4539   if (!ConsideredInsts.insert(I).second)
4540     return false;
4541 
4542   // If this is an obviously unfoldable instruction, bail out.
4543   if (!MightBeFoldableInst(I))
4544     return true;
4545 
4546   // Loop over all the uses, recursively processing them.
4547   for (Use &U : I->uses()) {
4548     // Conservatively return true if we're seeing a large number or a deep chain
4549     // of users. This avoids excessive compilation times in pathological cases.
4550     if (SeenInsts++ >= MaxMemoryUsesToScan)
4551       return true;
4552 
4553     Instruction *UserI = cast<Instruction>(U.getUser());
4554     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4555       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4556       continue;
4557     }
4558 
4559     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4560       unsigned opNo = U.getOperandNo();
4561       if (opNo != StoreInst::getPointerOperandIndex())
4562         return true; // Storing addr, not into addr.
4563       MemoryUses.push_back(std::make_pair(SI, opNo));
4564       continue;
4565     }
4566 
4567     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4568       unsigned opNo = U.getOperandNo();
4569       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4570         return true; // Storing addr, not into addr.
4571       MemoryUses.push_back(std::make_pair(RMW, opNo));
4572       continue;
4573     }
4574 
4575     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4576       unsigned opNo = U.getOperandNo();
4577       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4578         return true; // Storing addr, not into addr.
4579       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4580       continue;
4581     }
4582 
4583     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4584       // If this is a cold call, we can sink the addressing calculation into
4585       // the cold path.  See optimizeCallInst
4586       bool OptForSize = OptSize ||
4587           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4588       if (!OptForSize && CI->hasFnAttr(Attribute::Cold))
4589         continue;
4590 
4591       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4592       if (!IA) return true;
4593 
4594       // If this is a memory operand, we're cool, otherwise bail out.
4595       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4596         return true;
4597       continue;
4598     }
4599 
4600     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4601                           PSI, BFI, SeenInsts))
4602       return true;
4603   }
4604 
4605   return false;
4606 }
4607 
4608 /// Return true if Val is already known to be live at the use site that we're
4609 /// folding it into. If so, there is no cost to include it in the addressing
4610 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4611 /// instruction already.
4612 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4613                                                    Value *KnownLive2) {
4614   // If Val is either of the known-live values, we know it is live!
4615   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4616     return true;
4617 
4618   // All values other than instructions and arguments (e.g. constants) are live.
4619   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4620 
4621   // If Val is a constant sized alloca in the entry block, it is live, this is
4622   // true because it is just a reference to the stack/frame pointer, which is
4623   // live for the whole function.
4624   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4625     if (AI->isStaticAlloca())
4626       return true;
4627 
4628   // Check to see if this value is already used in the memory instruction's
4629   // block.  If so, it's already live into the block at the very least, so we
4630   // can reasonably fold it.
4631   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4632 }
4633 
4634 /// It is possible for the addressing mode of the machine to fold the specified
4635 /// instruction into a load or store that ultimately uses it.
4636 /// However, the specified instruction has multiple uses.
4637 /// Given this, it may actually increase register pressure to fold it
4638 /// into the load. For example, consider this code:
4639 ///
4640 ///     X = ...
4641 ///     Y = X+1
4642 ///     use(Y)   -> nonload/store
4643 ///     Z = Y+1
4644 ///     load Z
4645 ///
4646 /// In this case, Y has multiple uses, and can be folded into the load of Z
4647 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4648 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4649 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4650 /// number of computations either.
4651 ///
4652 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4653 /// X was live across 'load Z' for other reasons, we actually *would* want to
4654 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4655 bool AddressingModeMatcher::
4656 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4657                                      ExtAddrMode &AMAfter) {
4658   if (IgnoreProfitability) return true;
4659 
4660   // AMBefore is the addressing mode before this instruction was folded into it,
4661   // and AMAfter is the addressing mode after the instruction was folded.  Get
4662   // the set of registers referenced by AMAfter and subtract out those
4663   // referenced by AMBefore: this is the set of values which folding in this
4664   // address extends the lifetime of.
4665   //
4666   // Note that there are only two potential values being referenced here,
4667   // BaseReg and ScaleReg (global addresses are always available, as are any
4668   // folded immediates).
4669   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4670 
4671   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4672   // lifetime wasn't extended by adding this instruction.
4673   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4674     BaseReg = nullptr;
4675   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4676     ScaledReg = nullptr;
4677 
4678   // If folding this instruction (and it's subexprs) didn't extend any live
4679   // ranges, we're ok with it.
4680   if (!BaseReg && !ScaledReg)
4681     return true;
4682 
4683   // If all uses of this instruction can have the address mode sunk into them,
4684   // we can remove the addressing mode and effectively trade one live register
4685   // for another (at worst.)  In this context, folding an addressing mode into
4686   // the use is just a particularly nice way of sinking it.
4687   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4688   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4689   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4690                         PSI, BFI))
4691     return false;  // Has a non-memory, non-foldable use!
4692 
4693   // Now that we know that all uses of this instruction are part of a chain of
4694   // computation involving only operations that could theoretically be folded
4695   // into a memory use, loop over each of these memory operation uses and see
4696   // if they could  *actually* fold the instruction.  The assumption is that
4697   // addressing modes are cheap and that duplicating the computation involved
4698   // many times is worthwhile, even on a fastpath. For sinking candidates
4699   // (i.e. cold call sites), this serves as a way to prevent excessive code
4700   // growth since most architectures have some reasonable small and fast way to
4701   // compute an effective address.  (i.e LEA on x86)
4702   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4703   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4704     Instruction *User = MemoryUses[i].first;
4705     unsigned OpNo = MemoryUses[i].second;
4706 
4707     // Get the access type of this use.  If the use isn't a pointer, we don't
4708     // know what it accesses.
4709     Value *Address = User->getOperand(OpNo);
4710     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4711     if (!AddrTy)
4712       return false;
4713     Type *AddressAccessTy = AddrTy->getElementType();
4714     unsigned AS = AddrTy->getAddressSpace();
4715 
4716     // Do a match against the root of this address, ignoring profitability. This
4717     // will tell us if the addressing mode for the memory operation will
4718     // *actually* cover the shared instruction.
4719     ExtAddrMode Result;
4720     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4721                                                                       0);
4722     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4723         TPT.getRestorationPoint();
4724     AddressingModeMatcher Matcher(
4725         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4726         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4727     Matcher.IgnoreProfitability = true;
4728     bool Success = Matcher.matchAddr(Address, 0);
4729     (void)Success; assert(Success && "Couldn't select *anything*?");
4730 
4731     // The match was to check the profitability, the changes made are not
4732     // part of the original matcher. Therefore, they should be dropped
4733     // otherwise the original matcher will not present the right state.
4734     TPT.rollback(LastKnownGood);
4735 
4736     // If the match didn't cover I, then it won't be shared by it.
4737     if (!is_contained(MatchedAddrModeInsts, I))
4738       return false;
4739 
4740     MatchedAddrModeInsts.clear();
4741   }
4742 
4743   return true;
4744 }
4745 
4746 /// Return true if the specified values are defined in a
4747 /// different basic block than BB.
4748 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4749   if (Instruction *I = dyn_cast<Instruction>(V))
4750     return I->getParent() != BB;
4751   return false;
4752 }
4753 
4754 /// Sink addressing mode computation immediate before MemoryInst if doing so
4755 /// can be done without increasing register pressure.  The need for the
4756 /// register pressure constraint means this can end up being an all or nothing
4757 /// decision for all uses of the same addressing computation.
4758 ///
4759 /// Load and Store Instructions often have addressing modes that can do
4760 /// significant amounts of computation. As such, instruction selection will try
4761 /// to get the load or store to do as much computation as possible for the
4762 /// program. The problem is that isel can only see within a single block. As
4763 /// such, we sink as much legal addressing mode work into the block as possible.
4764 ///
4765 /// This method is used to optimize both load/store and inline asms with memory
4766 /// operands.  It's also used to sink addressing computations feeding into cold
4767 /// call sites into their (cold) basic block.
4768 ///
4769 /// The motivation for handling sinking into cold blocks is that doing so can
4770 /// both enable other address mode sinking (by satisfying the register pressure
4771 /// constraint above), and reduce register pressure globally (by removing the
4772 /// addressing mode computation from the fast path entirely.).
4773 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4774                                         Type *AccessTy, unsigned AddrSpace) {
4775   Value *Repl = Addr;
4776 
4777   // Try to collapse single-value PHI nodes.  This is necessary to undo
4778   // unprofitable PRE transformations.
4779   SmallVector<Value*, 8> worklist;
4780   SmallPtrSet<Value*, 16> Visited;
4781   worklist.push_back(Addr);
4782 
4783   // Use a worklist to iteratively look through PHI and select nodes, and
4784   // ensure that the addressing mode obtained from the non-PHI/select roots of
4785   // the graph are compatible.
4786   bool PhiOrSelectSeen = false;
4787   SmallVector<Instruction*, 16> AddrModeInsts;
4788   const SimplifyQuery SQ(*DL, TLInfo);
4789   AddressingModeCombiner AddrModes(SQ, Addr);
4790   TypePromotionTransaction TPT(RemovedInsts);
4791   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4792       TPT.getRestorationPoint();
4793   while (!worklist.empty()) {
4794     Value *V = worklist.back();
4795     worklist.pop_back();
4796 
4797     // We allow traversing cyclic Phi nodes.
4798     // In case of success after this loop we ensure that traversing through
4799     // Phi nodes ends up with all cases to compute address of the form
4800     //    BaseGV + Base + Scale * Index + Offset
4801     // where Scale and Offset are constans and BaseGV, Base and Index
4802     // are exactly the same Values in all cases.
4803     // It means that BaseGV, Scale and Offset dominate our memory instruction
4804     // and have the same value as they had in address computation represented
4805     // as Phi. So we can safely sink address computation to memory instruction.
4806     if (!Visited.insert(V).second)
4807       continue;
4808 
4809     // For a PHI node, push all of its incoming values.
4810     if (PHINode *P = dyn_cast<PHINode>(V)) {
4811       for (Value *IncValue : P->incoming_values())
4812         worklist.push_back(IncValue);
4813       PhiOrSelectSeen = true;
4814       continue;
4815     }
4816     // Similar for select.
4817     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4818       worklist.push_back(SI->getFalseValue());
4819       worklist.push_back(SI->getTrueValue());
4820       PhiOrSelectSeen = true;
4821       continue;
4822     }
4823 
4824     // For non-PHIs, determine the addressing mode being computed.  Note that
4825     // the result may differ depending on what other uses our candidate
4826     // addressing instructions might have.
4827     AddrModeInsts.clear();
4828     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4829                                                                       0);
4830     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4831         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4832         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4833         BFI.get());
4834 
4835     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4836     if (GEP && !NewGEPBases.count(GEP)) {
4837       // If splitting the underlying data structure can reduce the offset of a
4838       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4839       // previously split data structures.
4840       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4841       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4842         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4843     }
4844 
4845     NewAddrMode.OriginalValue = V;
4846     if (!AddrModes.addNewAddrMode(NewAddrMode))
4847       break;
4848   }
4849 
4850   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4851   // or we have multiple but either couldn't combine them or combining them
4852   // wouldn't do anything useful, bail out now.
4853   if (!AddrModes.combineAddrModes()) {
4854     TPT.rollback(LastKnownGood);
4855     return false;
4856   }
4857   TPT.commit();
4858 
4859   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4860   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4861 
4862   // If all the instructions matched are already in this BB, don't do anything.
4863   // If we saw a Phi node then it is not local definitely, and if we saw a select
4864   // then we want to push the address calculation past it even if it's already
4865   // in this BB.
4866   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4867         return IsNonLocalValue(V, MemoryInst->getParent());
4868                   })) {
4869     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4870                       << "\n");
4871     return false;
4872   }
4873 
4874   // Insert this computation right after this user.  Since our caller is
4875   // scanning from the top of the BB to the bottom, reuse of the expr are
4876   // guaranteed to happen later.
4877   IRBuilder<> Builder(MemoryInst);
4878 
4879   // Now that we determined the addressing expression we want to use and know
4880   // that we have to sink it into this block.  Check to see if we have already
4881   // done this for some other load/store instr in this block.  If so, reuse
4882   // the computation.  Before attempting reuse, check if the address is valid
4883   // as it may have been erased.
4884 
4885   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4886 
4887   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4888   if (SunkAddr) {
4889     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4890                       << " for " << *MemoryInst << "\n");
4891     if (SunkAddr->getType() != Addr->getType())
4892       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4893   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4894                                    TM && SubtargetInfo->addrSinkUsingGEPs())) {
4895     // By default, we use the GEP-based method when AA is used later. This
4896     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4897     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4898                       << " for " << *MemoryInst << "\n");
4899     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4900     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4901 
4902     // First, find the pointer.
4903     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4904       ResultPtr = AddrMode.BaseReg;
4905       AddrMode.BaseReg = nullptr;
4906     }
4907 
4908     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4909       // We can't add more than one pointer together, nor can we scale a
4910       // pointer (both of which seem meaningless).
4911       if (ResultPtr || AddrMode.Scale != 1)
4912         return false;
4913 
4914       ResultPtr = AddrMode.ScaledReg;
4915       AddrMode.Scale = 0;
4916     }
4917 
4918     // It is only safe to sign extend the BaseReg if we know that the math
4919     // required to create it did not overflow before we extend it. Since
4920     // the original IR value was tossed in favor of a constant back when
4921     // the AddrMode was created we need to bail out gracefully if widths
4922     // do not match instead of extending it.
4923     //
4924     // (See below for code to add the scale.)
4925     if (AddrMode.Scale) {
4926       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4927       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4928           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4929         return false;
4930     }
4931 
4932     if (AddrMode.BaseGV) {
4933       if (ResultPtr)
4934         return false;
4935 
4936       ResultPtr = AddrMode.BaseGV;
4937     }
4938 
4939     // If the real base value actually came from an inttoptr, then the matcher
4940     // will look through it and provide only the integer value. In that case,
4941     // use it here.
4942     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4943       if (!ResultPtr && AddrMode.BaseReg) {
4944         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4945                                            "sunkaddr");
4946         AddrMode.BaseReg = nullptr;
4947       } else if (!ResultPtr && AddrMode.Scale == 1) {
4948         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4949                                            "sunkaddr");
4950         AddrMode.Scale = 0;
4951       }
4952     }
4953 
4954     if (!ResultPtr &&
4955         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4956       SunkAddr = Constant::getNullValue(Addr->getType());
4957     } else if (!ResultPtr) {
4958       return false;
4959     } else {
4960       Type *I8PtrTy =
4961           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4962       Type *I8Ty = Builder.getInt8Ty();
4963 
4964       // Start with the base register. Do this first so that subsequent address
4965       // matching finds it last, which will prevent it from trying to match it
4966       // as the scaled value in case it happens to be a mul. That would be
4967       // problematic if we've sunk a different mul for the scale, because then
4968       // we'd end up sinking both muls.
4969       if (AddrMode.BaseReg) {
4970         Value *V = AddrMode.BaseReg;
4971         if (V->getType() != IntPtrTy)
4972           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4973 
4974         ResultIndex = V;
4975       }
4976 
4977       // Add the scale value.
4978       if (AddrMode.Scale) {
4979         Value *V = AddrMode.ScaledReg;
4980         if (V->getType() == IntPtrTy) {
4981           // done.
4982         } else {
4983           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4984                  cast<IntegerType>(V->getType())->getBitWidth() &&
4985                  "We can't transform if ScaledReg is too narrow");
4986           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4987         }
4988 
4989         if (AddrMode.Scale != 1)
4990           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4991                                 "sunkaddr");
4992         if (ResultIndex)
4993           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4994         else
4995           ResultIndex = V;
4996       }
4997 
4998       // Add in the Base Offset if present.
4999       if (AddrMode.BaseOffs) {
5000         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5001         if (ResultIndex) {
5002           // We need to add this separately from the scale above to help with
5003           // SDAG consecutive load/store merging.
5004           if (ResultPtr->getType() != I8PtrTy)
5005             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5006           ResultPtr =
5007               AddrMode.InBounds
5008                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5009                                               "sunkaddr")
5010                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5011         }
5012 
5013         ResultIndex = V;
5014       }
5015 
5016       if (!ResultIndex) {
5017         SunkAddr = ResultPtr;
5018       } else {
5019         if (ResultPtr->getType() != I8PtrTy)
5020           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5021         SunkAddr =
5022             AddrMode.InBounds
5023                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5024                                             "sunkaddr")
5025                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5026       }
5027 
5028       if (SunkAddr->getType() != Addr->getType())
5029         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5030     }
5031   } else {
5032     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5033     // non-integral pointers, so in that case bail out now.
5034     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5035     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5036     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5037     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5038     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5039         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5040         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5041         (AddrMode.BaseGV &&
5042          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5043       return false;
5044 
5045     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5046                       << " for " << *MemoryInst << "\n");
5047     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5048     Value *Result = nullptr;
5049 
5050     // Start with the base register. Do this first so that subsequent address
5051     // matching finds it last, which will prevent it from trying to match it
5052     // as the scaled value in case it happens to be a mul. That would be
5053     // problematic if we've sunk a different mul for the scale, because then
5054     // we'd end up sinking both muls.
5055     if (AddrMode.BaseReg) {
5056       Value *V = AddrMode.BaseReg;
5057       if (V->getType()->isPointerTy())
5058         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5059       if (V->getType() != IntPtrTy)
5060         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5061       Result = V;
5062     }
5063 
5064     // Add the scale value.
5065     if (AddrMode.Scale) {
5066       Value *V = AddrMode.ScaledReg;
5067       if (V->getType() == IntPtrTy) {
5068         // done.
5069       } else if (V->getType()->isPointerTy()) {
5070         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5071       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5072                  cast<IntegerType>(V->getType())->getBitWidth()) {
5073         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5074       } else {
5075         // It is only safe to sign extend the BaseReg if we know that the math
5076         // required to create it did not overflow before we extend it. Since
5077         // the original IR value was tossed in favor of a constant back when
5078         // the AddrMode was created we need to bail out gracefully if widths
5079         // do not match instead of extending it.
5080         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5081         if (I && (Result != AddrMode.BaseReg))
5082           I->eraseFromParent();
5083         return false;
5084       }
5085       if (AddrMode.Scale != 1)
5086         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5087                               "sunkaddr");
5088       if (Result)
5089         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5090       else
5091         Result = V;
5092     }
5093 
5094     // Add in the BaseGV if present.
5095     if (AddrMode.BaseGV) {
5096       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5097       if (Result)
5098         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5099       else
5100         Result = V;
5101     }
5102 
5103     // Add in the Base Offset if present.
5104     if (AddrMode.BaseOffs) {
5105       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5106       if (Result)
5107         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5108       else
5109         Result = V;
5110     }
5111 
5112     if (!Result)
5113       SunkAddr = Constant::getNullValue(Addr->getType());
5114     else
5115       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5116   }
5117 
5118   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5119   // Store the newly computed address into the cache. In the case we reused a
5120   // value, this should be idempotent.
5121   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5122 
5123   // If we have no uses, recursively delete the value and all dead instructions
5124   // using it.
5125   if (Repl->use_empty()) {
5126     // This can cause recursive deletion, which can invalidate our iterator.
5127     // Use a WeakTrackingVH to hold onto it in case this happens.
5128     Value *CurValue = &*CurInstIterator;
5129     WeakTrackingVH IterHandle(CurValue);
5130     BasicBlock *BB = CurInstIterator->getParent();
5131 
5132     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5133 
5134     if (IterHandle != CurValue) {
5135       // If the iterator instruction was recursively deleted, start over at the
5136       // start of the block.
5137       CurInstIterator = BB->begin();
5138       SunkAddrs.clear();
5139     }
5140   }
5141   ++NumMemoryInsts;
5142   return true;
5143 }
5144 
5145 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5146 /// address computing into the block when possible / profitable.
5147 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5148   bool MadeChange = false;
5149 
5150   const TargetRegisterInfo *TRI =
5151       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5152   TargetLowering::AsmOperandInfoVector TargetConstraints =
5153       TLI->ParseConstraints(*DL, TRI, CS);
5154   unsigned ArgNo = 0;
5155   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5156     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5157 
5158     // Compute the constraint code and ConstraintType to use.
5159     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5160 
5161     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5162         OpInfo.isIndirect) {
5163       Value *OpVal = CS->getArgOperand(ArgNo++);
5164       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5165     } else if (OpInfo.Type == InlineAsm::isInput)
5166       ArgNo++;
5167   }
5168 
5169   return MadeChange;
5170 }
5171 
5172 /// Check if all the uses of \p Val are equivalent (or free) zero or
5173 /// sign extensions.
5174 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5175   assert(!Val->use_empty() && "Input must have at least one use");
5176   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5177   bool IsSExt = isa<SExtInst>(FirstUser);
5178   Type *ExtTy = FirstUser->getType();
5179   for (const User *U : Val->users()) {
5180     const Instruction *UI = cast<Instruction>(U);
5181     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5182       return false;
5183     Type *CurTy = UI->getType();
5184     // Same input and output types: Same instruction after CSE.
5185     if (CurTy == ExtTy)
5186       continue;
5187 
5188     // If IsSExt is true, we are in this situation:
5189     // a = Val
5190     // b = sext ty1 a to ty2
5191     // c = sext ty1 a to ty3
5192     // Assuming ty2 is shorter than ty3, this could be turned into:
5193     // a = Val
5194     // b = sext ty1 a to ty2
5195     // c = sext ty2 b to ty3
5196     // However, the last sext is not free.
5197     if (IsSExt)
5198       return false;
5199 
5200     // This is a ZExt, maybe this is free to extend from one type to another.
5201     // In that case, we would not account for a different use.
5202     Type *NarrowTy;
5203     Type *LargeTy;
5204     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5205         CurTy->getScalarType()->getIntegerBitWidth()) {
5206       NarrowTy = CurTy;
5207       LargeTy = ExtTy;
5208     } else {
5209       NarrowTy = ExtTy;
5210       LargeTy = CurTy;
5211     }
5212 
5213     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5214       return false;
5215   }
5216   // All uses are the same or can be derived from one another for free.
5217   return true;
5218 }
5219 
5220 /// Try to speculatively promote extensions in \p Exts and continue
5221 /// promoting through newly promoted operands recursively as far as doing so is
5222 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5223 /// When some promotion happened, \p TPT contains the proper state to revert
5224 /// them.
5225 ///
5226 /// \return true if some promotion happened, false otherwise.
5227 bool CodeGenPrepare::tryToPromoteExts(
5228     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5229     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5230     unsigned CreatedInstsCost) {
5231   bool Promoted = false;
5232 
5233   // Iterate over all the extensions to try to promote them.
5234   for (auto I : Exts) {
5235     // Early check if we directly have ext(load).
5236     if (isa<LoadInst>(I->getOperand(0))) {
5237       ProfitablyMovedExts.push_back(I);
5238       continue;
5239     }
5240 
5241     // Check whether or not we want to do any promotion.  The reason we have
5242     // this check inside the for loop is to catch the case where an extension
5243     // is directly fed by a load because in such case the extension can be moved
5244     // up without any promotion on its operands.
5245     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5246       return false;
5247 
5248     // Get the action to perform the promotion.
5249     TypePromotionHelper::Action TPH =
5250         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5251     // Check if we can promote.
5252     if (!TPH) {
5253       // Save the current extension as we cannot move up through its operand.
5254       ProfitablyMovedExts.push_back(I);
5255       continue;
5256     }
5257 
5258     // Save the current state.
5259     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5260         TPT.getRestorationPoint();
5261     SmallVector<Instruction *, 4> NewExts;
5262     unsigned NewCreatedInstsCost = 0;
5263     unsigned ExtCost = !TLI->isExtFree(I);
5264     // Promote.
5265     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5266                              &NewExts, nullptr, *TLI);
5267     assert(PromotedVal &&
5268            "TypePromotionHelper should have filtered out those cases");
5269 
5270     // We would be able to merge only one extension in a load.
5271     // Therefore, if we have more than 1 new extension we heuristically
5272     // cut this search path, because it means we degrade the code quality.
5273     // With exactly 2, the transformation is neutral, because we will merge
5274     // one extension but leave one. However, we optimistically keep going,
5275     // because the new extension may be removed too.
5276     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5277     // FIXME: It would be possible to propagate a negative value instead of
5278     // conservatively ceiling it to 0.
5279     TotalCreatedInstsCost =
5280         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5281     if (!StressExtLdPromotion &&
5282         (TotalCreatedInstsCost > 1 ||
5283          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5284       // This promotion is not profitable, rollback to the previous state, and
5285       // save the current extension in ProfitablyMovedExts as the latest
5286       // speculative promotion turned out to be unprofitable.
5287       TPT.rollback(LastKnownGood);
5288       ProfitablyMovedExts.push_back(I);
5289       continue;
5290     }
5291     // Continue promoting NewExts as far as doing so is profitable.
5292     SmallVector<Instruction *, 2> NewlyMovedExts;
5293     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5294     bool NewPromoted = false;
5295     for (auto ExtInst : NewlyMovedExts) {
5296       Instruction *MovedExt = cast<Instruction>(ExtInst);
5297       Value *ExtOperand = MovedExt->getOperand(0);
5298       // If we have reached to a load, we need this extra profitability check
5299       // as it could potentially be merged into an ext(load).
5300       if (isa<LoadInst>(ExtOperand) &&
5301           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5302             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5303         continue;
5304 
5305       ProfitablyMovedExts.push_back(MovedExt);
5306       NewPromoted = true;
5307     }
5308 
5309     // If none of speculative promotions for NewExts is profitable, rollback
5310     // and save the current extension (I) as the last profitable extension.
5311     if (!NewPromoted) {
5312       TPT.rollback(LastKnownGood);
5313       ProfitablyMovedExts.push_back(I);
5314       continue;
5315     }
5316     // The promotion is profitable.
5317     Promoted = true;
5318   }
5319   return Promoted;
5320 }
5321 
5322 /// Merging redundant sexts when one is dominating the other.
5323 bool CodeGenPrepare::mergeSExts(Function &F) {
5324   bool Changed = false;
5325   for (auto &Entry : ValToSExtendedUses) {
5326     SExts &Insts = Entry.second;
5327     SExts CurPts;
5328     for (Instruction *Inst : Insts) {
5329       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5330           Inst->getOperand(0) != Entry.first)
5331         continue;
5332       bool inserted = false;
5333       for (auto &Pt : CurPts) {
5334         if (getDT(F).dominates(Inst, Pt)) {
5335           Pt->replaceAllUsesWith(Inst);
5336           RemovedInsts.insert(Pt);
5337           Pt->removeFromParent();
5338           Pt = Inst;
5339           inserted = true;
5340           Changed = true;
5341           break;
5342         }
5343         if (!getDT(F).dominates(Pt, Inst))
5344           // Give up if we need to merge in a common dominator as the
5345           // experiments show it is not profitable.
5346           continue;
5347         Inst->replaceAllUsesWith(Pt);
5348         RemovedInsts.insert(Inst);
5349         Inst->removeFromParent();
5350         inserted = true;
5351         Changed = true;
5352         break;
5353       }
5354       if (!inserted)
5355         CurPts.push_back(Inst);
5356     }
5357   }
5358   return Changed;
5359 }
5360 
5361 // Spliting large data structures so that the GEPs accessing them can have
5362 // smaller offsets so that they can be sunk to the same blocks as their users.
5363 // For example, a large struct starting from %base is splitted into two parts
5364 // where the second part starts from %new_base.
5365 //
5366 // Before:
5367 // BB0:
5368 //   %base     =
5369 //
5370 // BB1:
5371 //   %gep0     = gep %base, off0
5372 //   %gep1     = gep %base, off1
5373 //   %gep2     = gep %base, off2
5374 //
5375 // BB2:
5376 //   %load1    = load %gep0
5377 //   %load2    = load %gep1
5378 //   %load3    = load %gep2
5379 //
5380 // After:
5381 // BB0:
5382 //   %base     =
5383 //   %new_base = gep %base, off0
5384 //
5385 // BB1:
5386 //   %new_gep0 = %new_base
5387 //   %new_gep1 = gep %new_base, off1 - off0
5388 //   %new_gep2 = gep %new_base, off2 - off0
5389 //
5390 // BB2:
5391 //   %load1    = load i32, i32* %new_gep0
5392 //   %load2    = load i32, i32* %new_gep1
5393 //   %load3    = load i32, i32* %new_gep2
5394 //
5395 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5396 // their offsets are smaller enough to fit into the addressing mode.
5397 bool CodeGenPrepare::splitLargeGEPOffsets() {
5398   bool Changed = false;
5399   for (auto &Entry : LargeOffsetGEPMap) {
5400     Value *OldBase = Entry.first;
5401     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5402         &LargeOffsetGEPs = Entry.second;
5403     auto compareGEPOffset =
5404         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5405             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5406           if (LHS.first == RHS.first)
5407             return false;
5408           if (LHS.second != RHS.second)
5409             return LHS.second < RHS.second;
5410           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5411         };
5412     // Sorting all the GEPs of the same data structures based on the offsets.
5413     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5414     LargeOffsetGEPs.erase(
5415         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5416         LargeOffsetGEPs.end());
5417     // Skip if all the GEPs have the same offsets.
5418     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5419       continue;
5420     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5421     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5422     Value *NewBaseGEP = nullptr;
5423 
5424     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5425     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5426       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5427       int64_t Offset = LargeOffsetGEP->second;
5428       if (Offset != BaseOffset) {
5429         TargetLowering::AddrMode AddrMode;
5430         AddrMode.BaseOffs = Offset - BaseOffset;
5431         // The result type of the GEP might not be the type of the memory
5432         // access.
5433         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5434                                         GEP->getResultElementType(),
5435                                         GEP->getAddressSpace())) {
5436           // We need to create a new base if the offset to the current base is
5437           // too large to fit into the addressing mode. So, a very large struct
5438           // may be splitted into several parts.
5439           BaseGEP = GEP;
5440           BaseOffset = Offset;
5441           NewBaseGEP = nullptr;
5442         }
5443       }
5444 
5445       // Generate a new GEP to replace the current one.
5446       LLVMContext &Ctx = GEP->getContext();
5447       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5448       Type *I8PtrTy =
5449           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5450       Type *I8Ty = Type::getInt8Ty(Ctx);
5451 
5452       if (!NewBaseGEP) {
5453         // Create a new base if we don't have one yet.  Find the insertion
5454         // pointer for the new base first.
5455         BasicBlock::iterator NewBaseInsertPt;
5456         BasicBlock *NewBaseInsertBB;
5457         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5458           // If the base of the struct is an instruction, the new base will be
5459           // inserted close to it.
5460           NewBaseInsertBB = BaseI->getParent();
5461           if (isa<PHINode>(BaseI))
5462             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5463           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5464             NewBaseInsertBB =
5465                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5466             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5467           } else
5468             NewBaseInsertPt = std::next(BaseI->getIterator());
5469         } else {
5470           // If the current base is an argument or global value, the new base
5471           // will be inserted to the entry block.
5472           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5473           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5474         }
5475         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5476         // Create a new base.
5477         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5478         NewBaseGEP = OldBase;
5479         if (NewBaseGEP->getType() != I8PtrTy)
5480           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5481         NewBaseGEP =
5482             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5483         NewGEPBases.insert(NewBaseGEP);
5484       }
5485 
5486       IRBuilder<> Builder(GEP);
5487       Value *NewGEP = NewBaseGEP;
5488       if (Offset == BaseOffset) {
5489         if (GEP->getType() != I8PtrTy)
5490           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5491       } else {
5492         // Calculate the new offset for the new GEP.
5493         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5494         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5495 
5496         if (GEP->getType() != I8PtrTy)
5497           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5498       }
5499       GEP->replaceAllUsesWith(NewGEP);
5500       LargeOffsetGEPID.erase(GEP);
5501       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5502       GEP->eraseFromParent();
5503       Changed = true;
5504     }
5505   }
5506   return Changed;
5507 }
5508 
5509 /// Return true, if an ext(load) can be formed from an extension in
5510 /// \p MovedExts.
5511 bool CodeGenPrepare::canFormExtLd(
5512     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5513     Instruction *&Inst, bool HasPromoted) {
5514   for (auto *MovedExtInst : MovedExts) {
5515     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5516       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5517       Inst = MovedExtInst;
5518       break;
5519     }
5520   }
5521   if (!LI)
5522     return false;
5523 
5524   // If they're already in the same block, there's nothing to do.
5525   // Make the cheap checks first if we did not promote.
5526   // If we promoted, we need to check if it is indeed profitable.
5527   if (!HasPromoted && LI->getParent() == Inst->getParent())
5528     return false;
5529 
5530   return TLI->isExtLoad(LI, Inst, *DL);
5531 }
5532 
5533 /// Move a zext or sext fed by a load into the same basic block as the load,
5534 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5535 /// extend into the load.
5536 ///
5537 /// E.g.,
5538 /// \code
5539 /// %ld = load i32* %addr
5540 /// %add = add nuw i32 %ld, 4
5541 /// %zext = zext i32 %add to i64
5542 // \endcode
5543 /// =>
5544 /// \code
5545 /// %ld = load i32* %addr
5546 /// %zext = zext i32 %ld to i64
5547 /// %add = add nuw i64 %zext, 4
5548 /// \encode
5549 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5550 /// allow us to match zext(load i32*) to i64.
5551 ///
5552 /// Also, try to promote the computations used to obtain a sign extended
5553 /// value used into memory accesses.
5554 /// E.g.,
5555 /// \code
5556 /// a = add nsw i32 b, 3
5557 /// d = sext i32 a to i64
5558 /// e = getelementptr ..., i64 d
5559 /// \endcode
5560 /// =>
5561 /// \code
5562 /// f = sext i32 b to i64
5563 /// a = add nsw i64 f, 3
5564 /// e = getelementptr ..., i64 a
5565 /// \endcode
5566 ///
5567 /// \p Inst[in/out] the extension may be modified during the process if some
5568 /// promotions apply.
5569 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5570   // ExtLoad formation and address type promotion infrastructure requires TLI to
5571   // be effective.
5572   if (!TLI)
5573     return false;
5574 
5575   bool AllowPromotionWithoutCommonHeader = false;
5576   /// See if it is an interesting sext operations for the address type
5577   /// promotion before trying to promote it, e.g., the ones with the right
5578   /// type and used in memory accesses.
5579   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5580       *Inst, AllowPromotionWithoutCommonHeader);
5581   TypePromotionTransaction TPT(RemovedInsts);
5582   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5583       TPT.getRestorationPoint();
5584   SmallVector<Instruction *, 1> Exts;
5585   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5586   Exts.push_back(Inst);
5587 
5588   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5589 
5590   // Look for a load being extended.
5591   LoadInst *LI = nullptr;
5592   Instruction *ExtFedByLoad;
5593 
5594   // Try to promote a chain of computation if it allows to form an extended
5595   // load.
5596   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5597     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5598     TPT.commit();
5599     // Move the extend into the same block as the load
5600     ExtFedByLoad->moveAfter(LI);
5601     // CGP does not check if the zext would be speculatively executed when moved
5602     // to the same basic block as the load. Preserving its original location
5603     // would pessimize the debugging experience, as well as negatively impact
5604     // the quality of sample pgo. We don't want to use "line 0" as that has a
5605     // size cost in the line-table section and logically the zext can be seen as
5606     // part of the load. Therefore we conservatively reuse the same debug
5607     // location for the load and the zext.
5608     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5609     ++NumExtsMoved;
5610     Inst = ExtFedByLoad;
5611     return true;
5612   }
5613 
5614   // Continue promoting SExts if known as considerable depending on targets.
5615   if (ATPConsiderable &&
5616       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5617                                   HasPromoted, TPT, SpeculativelyMovedExts))
5618     return true;
5619 
5620   TPT.rollback(LastKnownGood);
5621   return false;
5622 }
5623 
5624 // Perform address type promotion if doing so is profitable.
5625 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5626 // instructions that sign extended the same initial value. However, if
5627 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5628 // extension is just profitable.
5629 bool CodeGenPrepare::performAddressTypePromotion(
5630     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5631     bool HasPromoted, TypePromotionTransaction &TPT,
5632     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5633   bool Promoted = false;
5634   SmallPtrSet<Instruction *, 1> UnhandledExts;
5635   bool AllSeenFirst = true;
5636   for (auto I : SpeculativelyMovedExts) {
5637     Value *HeadOfChain = I->getOperand(0);
5638     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5639         SeenChainsForSExt.find(HeadOfChain);
5640     // If there is an unhandled SExt which has the same header, try to promote
5641     // it as well.
5642     if (AlreadySeen != SeenChainsForSExt.end()) {
5643       if (AlreadySeen->second != nullptr)
5644         UnhandledExts.insert(AlreadySeen->second);
5645       AllSeenFirst = false;
5646     }
5647   }
5648 
5649   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5650                         SpeculativelyMovedExts.size() == 1)) {
5651     TPT.commit();
5652     if (HasPromoted)
5653       Promoted = true;
5654     for (auto I : SpeculativelyMovedExts) {
5655       Value *HeadOfChain = I->getOperand(0);
5656       SeenChainsForSExt[HeadOfChain] = nullptr;
5657       ValToSExtendedUses[HeadOfChain].push_back(I);
5658     }
5659     // Update Inst as promotion happen.
5660     Inst = SpeculativelyMovedExts.pop_back_val();
5661   } else {
5662     // This is the first chain visited from the header, keep the current chain
5663     // as unhandled. Defer to promote this until we encounter another SExt
5664     // chain derived from the same header.
5665     for (auto I : SpeculativelyMovedExts) {
5666       Value *HeadOfChain = I->getOperand(0);
5667       SeenChainsForSExt[HeadOfChain] = Inst;
5668     }
5669     return false;
5670   }
5671 
5672   if (!AllSeenFirst && !UnhandledExts.empty())
5673     for (auto VisitedSExt : UnhandledExts) {
5674       if (RemovedInsts.count(VisitedSExt))
5675         continue;
5676       TypePromotionTransaction TPT(RemovedInsts);
5677       SmallVector<Instruction *, 1> Exts;
5678       SmallVector<Instruction *, 2> Chains;
5679       Exts.push_back(VisitedSExt);
5680       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5681       TPT.commit();
5682       if (HasPromoted)
5683         Promoted = true;
5684       for (auto I : Chains) {
5685         Value *HeadOfChain = I->getOperand(0);
5686         // Mark this as handled.
5687         SeenChainsForSExt[HeadOfChain] = nullptr;
5688         ValToSExtendedUses[HeadOfChain].push_back(I);
5689       }
5690     }
5691   return Promoted;
5692 }
5693 
5694 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5695   BasicBlock *DefBB = I->getParent();
5696 
5697   // If the result of a {s|z}ext and its source are both live out, rewrite all
5698   // other uses of the source with result of extension.
5699   Value *Src = I->getOperand(0);
5700   if (Src->hasOneUse())
5701     return false;
5702 
5703   // Only do this xform if truncating is free.
5704   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5705     return false;
5706 
5707   // Only safe to perform the optimization if the source is also defined in
5708   // this block.
5709   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5710     return false;
5711 
5712   bool DefIsLiveOut = false;
5713   for (User *U : I->users()) {
5714     Instruction *UI = cast<Instruction>(U);
5715 
5716     // Figure out which BB this ext is used in.
5717     BasicBlock *UserBB = UI->getParent();
5718     if (UserBB == DefBB) continue;
5719     DefIsLiveOut = true;
5720     break;
5721   }
5722   if (!DefIsLiveOut)
5723     return false;
5724 
5725   // Make sure none of the uses are PHI nodes.
5726   for (User *U : Src->users()) {
5727     Instruction *UI = cast<Instruction>(U);
5728     BasicBlock *UserBB = UI->getParent();
5729     if (UserBB == DefBB) continue;
5730     // Be conservative. We don't want this xform to end up introducing
5731     // reloads just before load / store instructions.
5732     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5733       return false;
5734   }
5735 
5736   // InsertedTruncs - Only insert one trunc in each block once.
5737   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5738 
5739   bool MadeChange = false;
5740   for (Use &U : Src->uses()) {
5741     Instruction *User = cast<Instruction>(U.getUser());
5742 
5743     // Figure out which BB this ext is used in.
5744     BasicBlock *UserBB = User->getParent();
5745     if (UserBB == DefBB) continue;
5746 
5747     // Both src and def are live in this block. Rewrite the use.
5748     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5749 
5750     if (!InsertedTrunc) {
5751       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5752       assert(InsertPt != UserBB->end());
5753       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5754       InsertedInsts.insert(InsertedTrunc);
5755     }
5756 
5757     // Replace a use of the {s|z}ext source with a use of the result.
5758     U = InsertedTrunc;
5759     ++NumExtUses;
5760     MadeChange = true;
5761   }
5762 
5763   return MadeChange;
5764 }
5765 
5766 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5767 // just after the load if the target can fold this into one extload instruction,
5768 // with the hope of eliminating some of the other later "and" instructions using
5769 // the loaded value.  "and"s that are made trivially redundant by the insertion
5770 // of the new "and" are removed by this function, while others (e.g. those whose
5771 // path from the load goes through a phi) are left for isel to potentially
5772 // remove.
5773 //
5774 // For example:
5775 //
5776 // b0:
5777 //   x = load i32
5778 //   ...
5779 // b1:
5780 //   y = and x, 0xff
5781 //   z = use y
5782 //
5783 // becomes:
5784 //
5785 // b0:
5786 //   x = load i32
5787 //   x' = and x, 0xff
5788 //   ...
5789 // b1:
5790 //   z = use x'
5791 //
5792 // whereas:
5793 //
5794 // b0:
5795 //   x1 = load i32
5796 //   ...
5797 // b1:
5798 //   x2 = load i32
5799 //   ...
5800 // b2:
5801 //   x = phi x1, x2
5802 //   y = and x, 0xff
5803 //
5804 // becomes (after a call to optimizeLoadExt for each load):
5805 //
5806 // b0:
5807 //   x1 = load i32
5808 //   x1' = and x1, 0xff
5809 //   ...
5810 // b1:
5811 //   x2 = load i32
5812 //   x2' = and x2, 0xff
5813 //   ...
5814 // b2:
5815 //   x = phi x1', x2'
5816 //   y = and x, 0xff
5817 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5818   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5819     return false;
5820 
5821   // Skip loads we've already transformed.
5822   if (Load->hasOneUse() &&
5823       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5824     return false;
5825 
5826   // Look at all uses of Load, looking through phis, to determine how many bits
5827   // of the loaded value are needed.
5828   SmallVector<Instruction *, 8> WorkList;
5829   SmallPtrSet<Instruction *, 16> Visited;
5830   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5831   for (auto *U : Load->users())
5832     WorkList.push_back(cast<Instruction>(U));
5833 
5834   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5835   unsigned BitWidth = LoadResultVT.getSizeInBits();
5836   APInt DemandBits(BitWidth, 0);
5837   APInt WidestAndBits(BitWidth, 0);
5838 
5839   while (!WorkList.empty()) {
5840     Instruction *I = WorkList.back();
5841     WorkList.pop_back();
5842 
5843     // Break use-def graph loops.
5844     if (!Visited.insert(I).second)
5845       continue;
5846 
5847     // For a PHI node, push all of its users.
5848     if (auto *Phi = dyn_cast<PHINode>(I)) {
5849       for (auto *U : Phi->users())
5850         WorkList.push_back(cast<Instruction>(U));
5851       continue;
5852     }
5853 
5854     switch (I->getOpcode()) {
5855     case Instruction::And: {
5856       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5857       if (!AndC)
5858         return false;
5859       APInt AndBits = AndC->getValue();
5860       DemandBits |= AndBits;
5861       // Keep track of the widest and mask we see.
5862       if (AndBits.ugt(WidestAndBits))
5863         WidestAndBits = AndBits;
5864       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5865         AndsToMaybeRemove.push_back(I);
5866       break;
5867     }
5868 
5869     case Instruction::Shl: {
5870       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5871       if (!ShlC)
5872         return false;
5873       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5874       DemandBits.setLowBits(BitWidth - ShiftAmt);
5875       break;
5876     }
5877 
5878     case Instruction::Trunc: {
5879       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5880       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5881       DemandBits.setLowBits(TruncBitWidth);
5882       break;
5883     }
5884 
5885     default:
5886       return false;
5887     }
5888   }
5889 
5890   uint32_t ActiveBits = DemandBits.getActiveBits();
5891   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5892   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5893   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5894   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5895   // followed by an AND.
5896   // TODO: Look into removing this restriction by fixing backends to either
5897   // return false for isLoadExtLegal for i1 or have them select this pattern to
5898   // a single instruction.
5899   //
5900   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5901   // mask, since these are the only ands that will be removed by isel.
5902   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5903       WidestAndBits != DemandBits)
5904     return false;
5905 
5906   LLVMContext &Ctx = Load->getType()->getContext();
5907   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5908   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5909 
5910   // Reject cases that won't be matched as extloads.
5911   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5912       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5913     return false;
5914 
5915   IRBuilder<> Builder(Load->getNextNode());
5916   auto *NewAnd = cast<Instruction>(
5917       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5918   // Mark this instruction as "inserted by CGP", so that other
5919   // optimizations don't touch it.
5920   InsertedInsts.insert(NewAnd);
5921 
5922   // Replace all uses of load with new and (except for the use of load in the
5923   // new and itself).
5924   Load->replaceAllUsesWith(NewAnd);
5925   NewAnd->setOperand(0, Load);
5926 
5927   // Remove any and instructions that are now redundant.
5928   for (auto *And : AndsToMaybeRemove)
5929     // Check that the and mask is the same as the one we decided to put on the
5930     // new and.
5931     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5932       And->replaceAllUsesWith(NewAnd);
5933       if (&*CurInstIterator == And)
5934         CurInstIterator = std::next(And->getIterator());
5935       And->eraseFromParent();
5936       ++NumAndUses;
5937     }
5938 
5939   ++NumAndsAdded;
5940   return true;
5941 }
5942 
5943 /// Check if V (an operand of a select instruction) is an expensive instruction
5944 /// that is only used once.
5945 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5946   auto *I = dyn_cast<Instruction>(V);
5947   // If it's safe to speculatively execute, then it should not have side
5948   // effects; therefore, it's safe to sink and possibly *not* execute.
5949   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5950          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5951 }
5952 
5953 /// Returns true if a SelectInst should be turned into an explicit branch.
5954 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5955                                                 const TargetLowering *TLI,
5956                                                 SelectInst *SI) {
5957   // If even a predictable select is cheap, then a branch can't be cheaper.
5958   if (!TLI->isPredictableSelectExpensive())
5959     return false;
5960 
5961   // FIXME: This should use the same heuristics as IfConversion to determine
5962   // whether a select is better represented as a branch.
5963 
5964   // If metadata tells us that the select condition is obviously predictable,
5965   // then we want to replace the select with a branch.
5966   uint64_t TrueWeight, FalseWeight;
5967   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5968     uint64_t Max = std::max(TrueWeight, FalseWeight);
5969     uint64_t Sum = TrueWeight + FalseWeight;
5970     if (Sum != 0) {
5971       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5972       if (Probability > TLI->getPredictableBranchThreshold())
5973         return true;
5974     }
5975   }
5976 
5977   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5978 
5979   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5980   // comparison condition. If the compare has more than one use, there's
5981   // probably another cmov or setcc around, so it's not worth emitting a branch.
5982   if (!Cmp || !Cmp->hasOneUse())
5983     return false;
5984 
5985   // If either operand of the select is expensive and only needed on one side
5986   // of the select, we should form a branch.
5987   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5988       sinkSelectOperand(TTI, SI->getFalseValue()))
5989     return true;
5990 
5991   return false;
5992 }
5993 
5994 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5995 /// false value of \p SI. If the true/false value of \p SI is defined by any
5996 /// select instructions in \p Selects, look through the defining select
5997 /// instruction until the true/false value is not defined in \p Selects.
5998 static Value *getTrueOrFalseValue(
5999     SelectInst *SI, bool isTrue,
6000     const SmallPtrSet<const Instruction *, 2> &Selects) {
6001   Value *V = nullptr;
6002 
6003   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6004        DefSI = dyn_cast<SelectInst>(V)) {
6005     assert(DefSI->getCondition() == SI->getCondition() &&
6006            "The condition of DefSI does not match with SI");
6007     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6008   }
6009 
6010   assert(V && "Failed to get select true/false value");
6011   return V;
6012 }
6013 
6014 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6015   assert(Shift->isShift() && "Expected a shift");
6016 
6017   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6018   // general vector shifts, and (3) the shift amount is a select-of-splatted
6019   // values, hoist the shifts before the select:
6020   //   shift Op0, (select Cond, TVal, FVal) -->
6021   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6022   //
6023   // This is inverting a generic IR transform when we know that the cost of a
6024   // general vector shift is more than the cost of 2 shift-by-scalars.
6025   // We can't do this effectively in SDAG because we may not be able to
6026   // determine if the select operands are splats from within a basic block.
6027   Type *Ty = Shift->getType();
6028   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6029     return false;
6030   Value *Cond, *TVal, *FVal;
6031   if (!match(Shift->getOperand(1),
6032              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6033     return false;
6034   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6035     return false;
6036 
6037   IRBuilder<> Builder(Shift);
6038   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6039   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6040   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6041   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6042   Shift->replaceAllUsesWith(NewSel);
6043   Shift->eraseFromParent();
6044   return true;
6045 }
6046 
6047 /// If we have a SelectInst that will likely profit from branch prediction,
6048 /// turn it into a branch.
6049 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6050   // If branch conversion isn't desirable, exit early.
6051   if (DisableSelectToBranch ||
6052       OptSize || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()) ||
6053       !TLI)
6054     return false;
6055 
6056   // Find all consecutive select instructions that share the same condition.
6057   SmallVector<SelectInst *, 2> ASI;
6058   ASI.push_back(SI);
6059   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6060        It != SI->getParent()->end(); ++It) {
6061     SelectInst *I = dyn_cast<SelectInst>(&*It);
6062     if (I && SI->getCondition() == I->getCondition()) {
6063       ASI.push_back(I);
6064     } else {
6065       break;
6066     }
6067   }
6068 
6069   SelectInst *LastSI = ASI.back();
6070   // Increment the current iterator to skip all the rest of select instructions
6071   // because they will be either "not lowered" or "all lowered" to branch.
6072   CurInstIterator = std::next(LastSI->getIterator());
6073 
6074   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6075 
6076   // Can we convert the 'select' to CF ?
6077   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6078     return false;
6079 
6080   TargetLowering::SelectSupportKind SelectKind;
6081   if (VectorCond)
6082     SelectKind = TargetLowering::VectorMaskSelect;
6083   else if (SI->getType()->isVectorTy())
6084     SelectKind = TargetLowering::ScalarCondVectorVal;
6085   else
6086     SelectKind = TargetLowering::ScalarValSelect;
6087 
6088   if (TLI->isSelectSupported(SelectKind) &&
6089       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
6090     return false;
6091 
6092   // The DominatorTree needs to be rebuilt by any consumers after this
6093   // transformation. We simply reset here rather than setting the ModifiedDT
6094   // flag to avoid restarting the function walk in runOnFunction for each
6095   // select optimized.
6096   DT.reset();
6097 
6098   // Transform a sequence like this:
6099   //    start:
6100   //       %cmp = cmp uge i32 %a, %b
6101   //       %sel = select i1 %cmp, i32 %c, i32 %d
6102   //
6103   // Into:
6104   //    start:
6105   //       %cmp = cmp uge i32 %a, %b
6106   //       br i1 %cmp, label %select.true, label %select.false
6107   //    select.true:
6108   //       br label %select.end
6109   //    select.false:
6110   //       br label %select.end
6111   //    select.end:
6112   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6113   //
6114   // In addition, we may sink instructions that produce %c or %d from
6115   // the entry block into the destination(s) of the new branch.
6116   // If the true or false blocks do not contain a sunken instruction, that
6117   // block and its branch may be optimized away. In that case, one side of the
6118   // first branch will point directly to select.end, and the corresponding PHI
6119   // predecessor block will be the start block.
6120 
6121   // First, we split the block containing the select into 2 blocks.
6122   BasicBlock *StartBlock = SI->getParent();
6123   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6124   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6125   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6126 
6127   // Delete the unconditional branch that was just created by the split.
6128   StartBlock->getTerminator()->eraseFromParent();
6129 
6130   // These are the new basic blocks for the conditional branch.
6131   // At least one will become an actual new basic block.
6132   BasicBlock *TrueBlock = nullptr;
6133   BasicBlock *FalseBlock = nullptr;
6134   BranchInst *TrueBranch = nullptr;
6135   BranchInst *FalseBranch = nullptr;
6136 
6137   // Sink expensive instructions into the conditional blocks to avoid executing
6138   // them speculatively.
6139   for (SelectInst *SI : ASI) {
6140     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6141       if (TrueBlock == nullptr) {
6142         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6143                                        EndBlock->getParent(), EndBlock);
6144         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6145         TrueBranch->setDebugLoc(SI->getDebugLoc());
6146       }
6147       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6148       TrueInst->moveBefore(TrueBranch);
6149     }
6150     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6151       if (FalseBlock == nullptr) {
6152         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6153                                         EndBlock->getParent(), EndBlock);
6154         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6155         FalseBranch->setDebugLoc(SI->getDebugLoc());
6156       }
6157       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6158       FalseInst->moveBefore(FalseBranch);
6159     }
6160   }
6161 
6162   // If there was nothing to sink, then arbitrarily choose the 'false' side
6163   // for a new input value to the PHI.
6164   if (TrueBlock == FalseBlock) {
6165     assert(TrueBlock == nullptr &&
6166            "Unexpected basic block transform while optimizing select");
6167 
6168     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6169                                     EndBlock->getParent(), EndBlock);
6170     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6171     FalseBranch->setDebugLoc(SI->getDebugLoc());
6172   }
6173 
6174   // Insert the real conditional branch based on the original condition.
6175   // If we did not create a new block for one of the 'true' or 'false' paths
6176   // of the condition, it means that side of the branch goes to the end block
6177   // directly and the path originates from the start block from the point of
6178   // view of the new PHI.
6179   BasicBlock *TT, *FT;
6180   if (TrueBlock == nullptr) {
6181     TT = EndBlock;
6182     FT = FalseBlock;
6183     TrueBlock = StartBlock;
6184   } else if (FalseBlock == nullptr) {
6185     TT = TrueBlock;
6186     FT = EndBlock;
6187     FalseBlock = StartBlock;
6188   } else {
6189     TT = TrueBlock;
6190     FT = FalseBlock;
6191   }
6192   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6193 
6194   SmallPtrSet<const Instruction *, 2> INS;
6195   INS.insert(ASI.begin(), ASI.end());
6196   // Use reverse iterator because later select may use the value of the
6197   // earlier select, and we need to propagate value through earlier select
6198   // to get the PHI operand.
6199   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6200     SelectInst *SI = *It;
6201     // The select itself is replaced with a PHI Node.
6202     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6203     PN->takeName(SI);
6204     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6205     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6206     PN->setDebugLoc(SI->getDebugLoc());
6207 
6208     SI->replaceAllUsesWith(PN);
6209     SI->eraseFromParent();
6210     INS.erase(SI);
6211     ++NumSelectsExpanded;
6212   }
6213 
6214   // Instruct OptimizeBlock to skip to the next block.
6215   CurInstIterator = StartBlock->end();
6216   return true;
6217 }
6218 
6219 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6220   SmallVector<int, 16> Mask(SVI->getShuffleMask());
6221   int SplatElem = -1;
6222   for (unsigned i = 0; i < Mask.size(); ++i) {
6223     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6224       return false;
6225     SplatElem = Mask[i];
6226   }
6227 
6228   return true;
6229 }
6230 
6231 /// Some targets have expensive vector shifts if the lanes aren't all the same
6232 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6233 /// it's often worth sinking a shufflevector splat down to its use so that
6234 /// codegen can spot all lanes are identical.
6235 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6236   BasicBlock *DefBB = SVI->getParent();
6237 
6238   // Only do this xform if variable vector shifts are particularly expensive.
6239   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6240     return false;
6241 
6242   // We only expect better codegen by sinking a shuffle if we can recognise a
6243   // constant splat.
6244   if (!isBroadcastShuffle(SVI))
6245     return false;
6246 
6247   // InsertedShuffles - Only insert a shuffle in each block once.
6248   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6249 
6250   bool MadeChange = false;
6251   for (User *U : SVI->users()) {
6252     Instruction *UI = cast<Instruction>(U);
6253 
6254     // Figure out which BB this ext is used in.
6255     BasicBlock *UserBB = UI->getParent();
6256     if (UserBB == DefBB) continue;
6257 
6258     // For now only apply this when the splat is used by a shift instruction.
6259     if (!UI->isShift()) continue;
6260 
6261     // Everything checks out, sink the shuffle if the user's block doesn't
6262     // already have a copy.
6263     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6264 
6265     if (!InsertedShuffle) {
6266       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6267       assert(InsertPt != UserBB->end());
6268       InsertedShuffle =
6269           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6270                                 SVI->getOperand(2), "", &*InsertPt);
6271       InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6272     }
6273 
6274     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6275     MadeChange = true;
6276   }
6277 
6278   // If we removed all uses, nuke the shuffle.
6279   if (SVI->use_empty()) {
6280     SVI->eraseFromParent();
6281     MadeChange = true;
6282   }
6283 
6284   return MadeChange;
6285 }
6286 
6287 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6288   // If the operands of I can be folded into a target instruction together with
6289   // I, duplicate and sink them.
6290   SmallVector<Use *, 4> OpsToSink;
6291   if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6292     return false;
6293 
6294   // OpsToSink can contain multiple uses in a use chain (e.g.
6295   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6296   // uses must come first, so we process the ops in reverse order so as to not
6297   // create invalid IR.
6298   BasicBlock *TargetBB = I->getParent();
6299   bool Changed = false;
6300   SmallVector<Use *, 4> ToReplace;
6301   for (Use *U : reverse(OpsToSink)) {
6302     auto *UI = cast<Instruction>(U->get());
6303     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6304       continue;
6305     ToReplace.push_back(U);
6306   }
6307 
6308   SetVector<Instruction *> MaybeDead;
6309   DenseMap<Instruction *, Instruction *> NewInstructions;
6310   Instruction *InsertPoint = I;
6311   for (Use *U : ToReplace) {
6312     auto *UI = cast<Instruction>(U->get());
6313     Instruction *NI = UI->clone();
6314     NewInstructions[UI] = NI;
6315     MaybeDead.insert(UI);
6316     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6317     NI->insertBefore(InsertPoint);
6318     InsertPoint = NI;
6319     InsertedInsts.insert(NI);
6320 
6321     // Update the use for the new instruction, making sure that we update the
6322     // sunk instruction uses, if it is part of a chain that has already been
6323     // sunk.
6324     Instruction *OldI = cast<Instruction>(U->getUser());
6325     if (NewInstructions.count(OldI))
6326       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6327     else
6328       U->set(NI);
6329     Changed = true;
6330   }
6331 
6332   // Remove instructions that are dead after sinking.
6333   for (auto *I : MaybeDead) {
6334     if (!I->hasNUsesOrMore(1)) {
6335       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6336       I->eraseFromParent();
6337     }
6338   }
6339 
6340   return Changed;
6341 }
6342 
6343 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6344   if (!TLI || !DL)
6345     return false;
6346 
6347   Value *Cond = SI->getCondition();
6348   Type *OldType = Cond->getType();
6349   LLVMContext &Context = Cond->getContext();
6350   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6351   unsigned RegWidth = RegType.getSizeInBits();
6352 
6353   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6354     return false;
6355 
6356   // If the register width is greater than the type width, expand the condition
6357   // of the switch instruction and each case constant to the width of the
6358   // register. By widening the type of the switch condition, subsequent
6359   // comparisons (for case comparisons) will not need to be extended to the
6360   // preferred register width, so we will potentially eliminate N-1 extends,
6361   // where N is the number of cases in the switch.
6362   auto *NewType = Type::getIntNTy(Context, RegWidth);
6363 
6364   // Zero-extend the switch condition and case constants unless the switch
6365   // condition is a function argument that is already being sign-extended.
6366   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6367   // everything instead.
6368   Instruction::CastOps ExtType = Instruction::ZExt;
6369   if (auto *Arg = dyn_cast<Argument>(Cond))
6370     if (Arg->hasSExtAttr())
6371       ExtType = Instruction::SExt;
6372 
6373   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6374   ExtInst->insertBefore(SI);
6375   ExtInst->setDebugLoc(SI->getDebugLoc());
6376   SI->setCondition(ExtInst);
6377   for (auto Case : SI->cases()) {
6378     APInt NarrowConst = Case.getCaseValue()->getValue();
6379     APInt WideConst = (ExtType == Instruction::ZExt) ?
6380                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6381     Case.setValue(ConstantInt::get(Context, WideConst));
6382   }
6383 
6384   return true;
6385 }
6386 
6387 
6388 namespace {
6389 
6390 /// Helper class to promote a scalar operation to a vector one.
6391 /// This class is used to move downward extractelement transition.
6392 /// E.g.,
6393 /// a = vector_op <2 x i32>
6394 /// b = extractelement <2 x i32> a, i32 0
6395 /// c = scalar_op b
6396 /// store c
6397 ///
6398 /// =>
6399 /// a = vector_op <2 x i32>
6400 /// c = vector_op a (equivalent to scalar_op on the related lane)
6401 /// * d = extractelement <2 x i32> c, i32 0
6402 /// * store d
6403 /// Assuming both extractelement and store can be combine, we get rid of the
6404 /// transition.
6405 class VectorPromoteHelper {
6406   /// DataLayout associated with the current module.
6407   const DataLayout &DL;
6408 
6409   /// Used to perform some checks on the legality of vector operations.
6410   const TargetLowering &TLI;
6411 
6412   /// Used to estimated the cost of the promoted chain.
6413   const TargetTransformInfo &TTI;
6414 
6415   /// The transition being moved downwards.
6416   Instruction *Transition;
6417 
6418   /// The sequence of instructions to be promoted.
6419   SmallVector<Instruction *, 4> InstsToBePromoted;
6420 
6421   /// Cost of combining a store and an extract.
6422   unsigned StoreExtractCombineCost;
6423 
6424   /// Instruction that will be combined with the transition.
6425   Instruction *CombineInst = nullptr;
6426 
6427   /// The instruction that represents the current end of the transition.
6428   /// Since we are faking the promotion until we reach the end of the chain
6429   /// of computation, we need a way to get the current end of the transition.
6430   Instruction *getEndOfTransition() const {
6431     if (InstsToBePromoted.empty())
6432       return Transition;
6433     return InstsToBePromoted.back();
6434   }
6435 
6436   /// Return the index of the original value in the transition.
6437   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6438   /// c, is at index 0.
6439   unsigned getTransitionOriginalValueIdx() const {
6440     assert(isa<ExtractElementInst>(Transition) &&
6441            "Other kind of transitions are not supported yet");
6442     return 0;
6443   }
6444 
6445   /// Return the index of the index in the transition.
6446   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6447   /// is at index 1.
6448   unsigned getTransitionIdx() const {
6449     assert(isa<ExtractElementInst>(Transition) &&
6450            "Other kind of transitions are not supported yet");
6451     return 1;
6452   }
6453 
6454   /// Get the type of the transition.
6455   /// This is the type of the original value.
6456   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6457   /// transition is <2 x i32>.
6458   Type *getTransitionType() const {
6459     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6460   }
6461 
6462   /// Promote \p ToBePromoted by moving \p Def downward through.
6463   /// I.e., we have the following sequence:
6464   /// Def = Transition <ty1> a to <ty2>
6465   /// b = ToBePromoted <ty2> Def, ...
6466   /// =>
6467   /// b = ToBePromoted <ty1> a, ...
6468   /// Def = Transition <ty1> ToBePromoted to <ty2>
6469   void promoteImpl(Instruction *ToBePromoted);
6470 
6471   /// Check whether or not it is profitable to promote all the
6472   /// instructions enqueued to be promoted.
6473   bool isProfitableToPromote() {
6474     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6475     unsigned Index = isa<ConstantInt>(ValIdx)
6476                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6477                          : -1;
6478     Type *PromotedType = getTransitionType();
6479 
6480     StoreInst *ST = cast<StoreInst>(CombineInst);
6481     unsigned AS = ST->getPointerAddressSpace();
6482     unsigned Align = ST->getAlignment();
6483     // Check if this store is supported.
6484     if (!TLI.allowsMisalignedMemoryAccesses(
6485             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6486             Align)) {
6487       // If this is not supported, there is no way we can combine
6488       // the extract with the store.
6489       return false;
6490     }
6491 
6492     // The scalar chain of computation has to pay for the transition
6493     // scalar to vector.
6494     // The vector chain has to account for the combining cost.
6495     uint64_t ScalarCost =
6496         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6497     uint64_t VectorCost = StoreExtractCombineCost;
6498     for (const auto &Inst : InstsToBePromoted) {
6499       // Compute the cost.
6500       // By construction, all instructions being promoted are arithmetic ones.
6501       // Moreover, one argument is a constant that can be viewed as a splat
6502       // constant.
6503       Value *Arg0 = Inst->getOperand(0);
6504       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6505                             isa<ConstantFP>(Arg0);
6506       TargetTransformInfo::OperandValueKind Arg0OVK =
6507           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6508                          : TargetTransformInfo::OK_AnyValue;
6509       TargetTransformInfo::OperandValueKind Arg1OVK =
6510           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6511                           : TargetTransformInfo::OK_AnyValue;
6512       ScalarCost += TTI.getArithmeticInstrCost(
6513           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6514       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6515                                                Arg0OVK, Arg1OVK);
6516     }
6517     LLVM_DEBUG(
6518         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6519                << ScalarCost << "\nVector: " << VectorCost << '\n');
6520     return ScalarCost > VectorCost;
6521   }
6522 
6523   /// Generate a constant vector with \p Val with the same
6524   /// number of elements as the transition.
6525   /// \p UseSplat defines whether or not \p Val should be replicated
6526   /// across the whole vector.
6527   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6528   /// otherwise we generate a vector with as many undef as possible:
6529   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6530   /// used at the index of the extract.
6531   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6532     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6533     if (!UseSplat) {
6534       // If we cannot determine where the constant must be, we have to
6535       // use a splat constant.
6536       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6537       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6538         ExtractIdx = CstVal->getSExtValue();
6539       else
6540         UseSplat = true;
6541     }
6542 
6543     unsigned End = getTransitionType()->getVectorNumElements();
6544     if (UseSplat)
6545       return ConstantVector::getSplat(End, Val);
6546 
6547     SmallVector<Constant *, 4> ConstVec;
6548     UndefValue *UndefVal = UndefValue::get(Val->getType());
6549     for (unsigned Idx = 0; Idx != End; ++Idx) {
6550       if (Idx == ExtractIdx)
6551         ConstVec.push_back(Val);
6552       else
6553         ConstVec.push_back(UndefVal);
6554     }
6555     return ConstantVector::get(ConstVec);
6556   }
6557 
6558   /// Check if promoting to a vector type an operand at \p OperandIdx
6559   /// in \p Use can trigger undefined behavior.
6560   static bool canCauseUndefinedBehavior(const Instruction *Use,
6561                                         unsigned OperandIdx) {
6562     // This is not safe to introduce undef when the operand is on
6563     // the right hand side of a division-like instruction.
6564     if (OperandIdx != 1)
6565       return false;
6566     switch (Use->getOpcode()) {
6567     default:
6568       return false;
6569     case Instruction::SDiv:
6570     case Instruction::UDiv:
6571     case Instruction::SRem:
6572     case Instruction::URem:
6573       return true;
6574     case Instruction::FDiv:
6575     case Instruction::FRem:
6576       return !Use->hasNoNaNs();
6577     }
6578     llvm_unreachable(nullptr);
6579   }
6580 
6581 public:
6582   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6583                       const TargetTransformInfo &TTI, Instruction *Transition,
6584                       unsigned CombineCost)
6585       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6586         StoreExtractCombineCost(CombineCost) {
6587     assert(Transition && "Do not know how to promote null");
6588   }
6589 
6590   /// Check if we can promote \p ToBePromoted to \p Type.
6591   bool canPromote(const Instruction *ToBePromoted) const {
6592     // We could support CastInst too.
6593     return isa<BinaryOperator>(ToBePromoted);
6594   }
6595 
6596   /// Check if it is profitable to promote \p ToBePromoted
6597   /// by moving downward the transition through.
6598   bool shouldPromote(const Instruction *ToBePromoted) const {
6599     // Promote only if all the operands can be statically expanded.
6600     // Indeed, we do not want to introduce any new kind of transitions.
6601     for (const Use &U : ToBePromoted->operands()) {
6602       const Value *Val = U.get();
6603       if (Val == getEndOfTransition()) {
6604         // If the use is a division and the transition is on the rhs,
6605         // we cannot promote the operation, otherwise we may create a
6606         // division by zero.
6607         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6608           return false;
6609         continue;
6610       }
6611       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6612           !isa<ConstantFP>(Val))
6613         return false;
6614     }
6615     // Check that the resulting operation is legal.
6616     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6617     if (!ISDOpcode)
6618       return false;
6619     return StressStoreExtract ||
6620            TLI.isOperationLegalOrCustom(
6621                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6622   }
6623 
6624   /// Check whether or not \p Use can be combined
6625   /// with the transition.
6626   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6627   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6628 
6629   /// Record \p ToBePromoted as part of the chain to be promoted.
6630   void enqueueForPromotion(Instruction *ToBePromoted) {
6631     InstsToBePromoted.push_back(ToBePromoted);
6632   }
6633 
6634   /// Set the instruction that will be combined with the transition.
6635   void recordCombineInstruction(Instruction *ToBeCombined) {
6636     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6637     CombineInst = ToBeCombined;
6638   }
6639 
6640   /// Promote all the instructions enqueued for promotion if it is
6641   /// is profitable.
6642   /// \return True if the promotion happened, false otherwise.
6643   bool promote() {
6644     // Check if there is something to promote.
6645     // Right now, if we do not have anything to combine with,
6646     // we assume the promotion is not profitable.
6647     if (InstsToBePromoted.empty() || !CombineInst)
6648       return false;
6649 
6650     // Check cost.
6651     if (!StressStoreExtract && !isProfitableToPromote())
6652       return false;
6653 
6654     // Promote.
6655     for (auto &ToBePromoted : InstsToBePromoted)
6656       promoteImpl(ToBePromoted);
6657     InstsToBePromoted.clear();
6658     return true;
6659   }
6660 };
6661 
6662 } // end anonymous namespace
6663 
6664 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6665   // At this point, we know that all the operands of ToBePromoted but Def
6666   // can be statically promoted.
6667   // For Def, we need to use its parameter in ToBePromoted:
6668   // b = ToBePromoted ty1 a
6669   // Def = Transition ty1 b to ty2
6670   // Move the transition down.
6671   // 1. Replace all uses of the promoted operation by the transition.
6672   // = ... b => = ... Def.
6673   assert(ToBePromoted->getType() == Transition->getType() &&
6674          "The type of the result of the transition does not match "
6675          "the final type");
6676   ToBePromoted->replaceAllUsesWith(Transition);
6677   // 2. Update the type of the uses.
6678   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6679   Type *TransitionTy = getTransitionType();
6680   ToBePromoted->mutateType(TransitionTy);
6681   // 3. Update all the operands of the promoted operation with promoted
6682   // operands.
6683   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6684   for (Use &U : ToBePromoted->operands()) {
6685     Value *Val = U.get();
6686     Value *NewVal = nullptr;
6687     if (Val == Transition)
6688       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6689     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6690              isa<ConstantFP>(Val)) {
6691       // Use a splat constant if it is not safe to use undef.
6692       NewVal = getConstantVector(
6693           cast<Constant>(Val),
6694           isa<UndefValue>(Val) ||
6695               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6696     } else
6697       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6698                        "this?");
6699     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6700   }
6701   Transition->moveAfter(ToBePromoted);
6702   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6703 }
6704 
6705 /// Some targets can do store(extractelement) with one instruction.
6706 /// Try to push the extractelement towards the stores when the target
6707 /// has this feature and this is profitable.
6708 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6709   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6710   if (DisableStoreExtract || !TLI ||
6711       (!StressStoreExtract &&
6712        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6713                                        Inst->getOperand(1), CombineCost)))
6714     return false;
6715 
6716   // At this point we know that Inst is a vector to scalar transition.
6717   // Try to move it down the def-use chain, until:
6718   // - We can combine the transition with its single use
6719   //   => we got rid of the transition.
6720   // - We escape the current basic block
6721   //   => we would need to check that we are moving it at a cheaper place and
6722   //      we do not do that for now.
6723   BasicBlock *Parent = Inst->getParent();
6724   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6725   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6726   // If the transition has more than one use, assume this is not going to be
6727   // beneficial.
6728   while (Inst->hasOneUse()) {
6729     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6730     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6731 
6732     if (ToBePromoted->getParent() != Parent) {
6733       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6734                         << ToBePromoted->getParent()->getName()
6735                         << ") than the transition (" << Parent->getName()
6736                         << ").\n");
6737       return false;
6738     }
6739 
6740     if (VPH.canCombine(ToBePromoted)) {
6741       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6742                         << "will be combined with: " << *ToBePromoted << '\n');
6743       VPH.recordCombineInstruction(ToBePromoted);
6744       bool Changed = VPH.promote();
6745       NumStoreExtractExposed += Changed;
6746       return Changed;
6747     }
6748 
6749     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6750     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6751       return false;
6752 
6753     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6754 
6755     VPH.enqueueForPromotion(ToBePromoted);
6756     Inst = ToBePromoted;
6757   }
6758   return false;
6759 }
6760 
6761 /// For the instruction sequence of store below, F and I values
6762 /// are bundled together as an i64 value before being stored into memory.
6763 /// Sometimes it is more efficient to generate separate stores for F and I,
6764 /// which can remove the bitwise instructions or sink them to colder places.
6765 ///
6766 ///   (store (or (zext (bitcast F to i32) to i64),
6767 ///              (shl (zext I to i64), 32)), addr)  -->
6768 ///   (store F, addr) and (store I, addr+4)
6769 ///
6770 /// Similarly, splitting for other merged store can also be beneficial, like:
6771 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6772 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6773 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6774 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6775 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6776 ///
6777 /// We allow each target to determine specifically which kind of splitting is
6778 /// supported.
6779 ///
6780 /// The store patterns are commonly seen from the simple code snippet below
6781 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6782 ///   void goo(const std::pair<int, float> &);
6783 ///   hoo() {
6784 ///     ...
6785 ///     goo(std::make_pair(tmp, ftmp));
6786 ///     ...
6787 ///   }
6788 ///
6789 /// Although we already have similar splitting in DAG Combine, we duplicate
6790 /// it in CodeGenPrepare to catch the case in which pattern is across
6791 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6792 /// during code expansion.
6793 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6794                                 const TargetLowering &TLI) {
6795   // Handle simple but common cases only.
6796   Type *StoreType = SI.getValueOperand()->getType();
6797   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6798       DL.getTypeSizeInBits(StoreType) == 0)
6799     return false;
6800 
6801   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6802   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6803   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6804     return false;
6805 
6806   // Don't split the store if it is volatile.
6807   if (SI.isVolatile())
6808     return false;
6809 
6810   // Match the following patterns:
6811   // (store (or (zext LValue to i64),
6812   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6813   //  or
6814   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6815   //            (zext LValue to i64),
6816   // Expect both operands of OR and the first operand of SHL have only
6817   // one use.
6818   Value *LValue, *HValue;
6819   if (!match(SI.getValueOperand(),
6820              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6821                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6822                                    m_SpecificInt(HalfValBitSize))))))
6823     return false;
6824 
6825   // Check LValue and HValue are int with size less or equal than 32.
6826   if (!LValue->getType()->isIntegerTy() ||
6827       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6828       !HValue->getType()->isIntegerTy() ||
6829       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6830     return false;
6831 
6832   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6833   // as the input of target query.
6834   auto *LBC = dyn_cast<BitCastInst>(LValue);
6835   auto *HBC = dyn_cast<BitCastInst>(HValue);
6836   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6837                   : EVT::getEVT(LValue->getType());
6838   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6839                    : EVT::getEVT(HValue->getType());
6840   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6841     return false;
6842 
6843   // Start to split store.
6844   IRBuilder<> Builder(SI.getContext());
6845   Builder.SetInsertPoint(&SI);
6846 
6847   // If LValue/HValue is a bitcast in another BB, create a new one in current
6848   // BB so it may be merged with the splitted stores by dag combiner.
6849   if (LBC && LBC->getParent() != SI.getParent())
6850     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6851   if (HBC && HBC->getParent() != SI.getParent())
6852     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6853 
6854   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6855   auto CreateSplitStore = [&](Value *V, bool Upper) {
6856     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6857     Value *Addr = Builder.CreateBitCast(
6858         SI.getOperand(1),
6859         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6860     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
6861     if (IsOffsetStore)
6862       Addr = Builder.CreateGEP(
6863           SplitStoreType, Addr,
6864           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6865     MaybeAlign Alignment(SI.getAlignment());
6866     if (IsOffsetStore && Alignment) {
6867       // When splitting the store in half, naturally one half will retain the
6868       // alignment of the original wider store, regardless of whether it was
6869       // over-aligned or not, while the other will require adjustment.
6870       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
6871     }
6872     Builder.CreateAlignedStore(
6873         V, Addr, Alignment.hasValue() ? Alignment.getValue().value() : 0);
6874   };
6875 
6876   CreateSplitStore(LValue, false);
6877   CreateSplitStore(HValue, true);
6878 
6879   // Delete the old store.
6880   SI.eraseFromParent();
6881   return true;
6882 }
6883 
6884 // Return true if the GEP has two operands, the first operand is of a sequential
6885 // type, and the second operand is a constant.
6886 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6887   gep_type_iterator I = gep_type_begin(*GEP);
6888   return GEP->getNumOperands() == 2 &&
6889       I.isSequential() &&
6890       isa<ConstantInt>(GEP->getOperand(1));
6891 }
6892 
6893 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6894 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6895 // reducing liveness interference across those edges benefits global register
6896 // allocation. Currently handles only certain cases.
6897 //
6898 // For example, unmerge %GEPI and %UGEPI as below.
6899 //
6900 // ---------- BEFORE ----------
6901 // SrcBlock:
6902 //   ...
6903 //   %GEPIOp = ...
6904 //   ...
6905 //   %GEPI = gep %GEPIOp, Idx
6906 //   ...
6907 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6908 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6909 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6910 //   %UGEPI)
6911 //
6912 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6913 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6914 // ...
6915 //
6916 // DstBi:
6917 //   ...
6918 //   %UGEPI = gep %GEPIOp, UIdx
6919 // ...
6920 // ---------------------------
6921 //
6922 // ---------- AFTER ----------
6923 // SrcBlock:
6924 //   ... (same as above)
6925 //    (* %GEPI is still alive on the indirectbr edges)
6926 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6927 //    unmerging)
6928 // ...
6929 //
6930 // DstBi:
6931 //   ...
6932 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6933 //   ...
6934 // ---------------------------
6935 //
6936 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6937 // no longer alive on them.
6938 //
6939 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6940 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6941 // not to disable further simplications and optimizations as a result of GEP
6942 // merging.
6943 //
6944 // Note this unmerging may increase the length of the data flow critical path
6945 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6946 // between the register pressure and the length of data-flow critical
6947 // path. Restricting this to the uncommon IndirectBr case would minimize the
6948 // impact of potentially longer critical path, if any, and the impact on compile
6949 // time.
6950 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6951                                              const TargetTransformInfo *TTI) {
6952   BasicBlock *SrcBlock = GEPI->getParent();
6953   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6954   // (non-IndirectBr) cases exit early here.
6955   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6956     return false;
6957   // Check that GEPI is a simple gep with a single constant index.
6958   if (!GEPSequentialConstIndexed(GEPI))
6959     return false;
6960   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6961   // Check that GEPI is a cheap one.
6962   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6963       > TargetTransformInfo::TCC_Basic)
6964     return false;
6965   Value *GEPIOp = GEPI->getOperand(0);
6966   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6967   if (!isa<Instruction>(GEPIOp))
6968     return false;
6969   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6970   if (GEPIOpI->getParent() != SrcBlock)
6971     return false;
6972   // Check that GEP is used outside the block, meaning it's alive on the
6973   // IndirectBr edge(s).
6974   if (find_if(GEPI->users(), [&](User *Usr) {
6975         if (auto *I = dyn_cast<Instruction>(Usr)) {
6976           if (I->getParent() != SrcBlock) {
6977             return true;
6978           }
6979         }
6980         return false;
6981       }) == GEPI->users().end())
6982     return false;
6983   // The second elements of the GEP chains to be unmerged.
6984   std::vector<GetElementPtrInst *> UGEPIs;
6985   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6986   // on IndirectBr edges.
6987   for (User *Usr : GEPIOp->users()) {
6988     if (Usr == GEPI) continue;
6989     // Check if Usr is an Instruction. If not, give up.
6990     if (!isa<Instruction>(Usr))
6991       return false;
6992     auto *UI = cast<Instruction>(Usr);
6993     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6994     if (UI->getParent() == SrcBlock)
6995       continue;
6996     // Check if Usr is a GEP. If not, give up.
6997     if (!isa<GetElementPtrInst>(Usr))
6998       return false;
6999     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7000     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7001     // the pointer operand to it. If so, record it in the vector. If not, give
7002     // up.
7003     if (!GEPSequentialConstIndexed(UGEPI))
7004       return false;
7005     if (UGEPI->getOperand(0) != GEPIOp)
7006       return false;
7007     if (GEPIIdx->getType() !=
7008         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7009       return false;
7010     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7011     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
7012         > TargetTransformInfo::TCC_Basic)
7013       return false;
7014     UGEPIs.push_back(UGEPI);
7015   }
7016   if (UGEPIs.size() == 0)
7017     return false;
7018   // Check the materializing cost of (Uidx-Idx).
7019   for (GetElementPtrInst *UGEPI : UGEPIs) {
7020     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7021     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7022     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
7023     if (ImmCost > TargetTransformInfo::TCC_Basic)
7024       return false;
7025   }
7026   // Now unmerge between GEPI and UGEPIs.
7027   for (GetElementPtrInst *UGEPI : UGEPIs) {
7028     UGEPI->setOperand(0, GEPI);
7029     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7030     Constant *NewUGEPIIdx =
7031         ConstantInt::get(GEPIIdx->getType(),
7032                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7033     UGEPI->setOperand(1, NewUGEPIIdx);
7034     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7035     // inbounds to avoid UB.
7036     if (!GEPI->isInBounds()) {
7037       UGEPI->setIsInBounds(false);
7038     }
7039   }
7040   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7041   // alive on IndirectBr edges).
7042   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7043         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7044       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7045   return true;
7046 }
7047 
7048 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7049   // Bail out if we inserted the instruction to prevent optimizations from
7050   // stepping on each other's toes.
7051   if (InsertedInsts.count(I))
7052     return false;
7053 
7054   // TODO: Move into the switch on opcode below here.
7055   if (PHINode *P = dyn_cast<PHINode>(I)) {
7056     // It is possible for very late stage optimizations (such as SimplifyCFG)
7057     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7058     // trivial PHI, go ahead and zap it here.
7059     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7060       LargeOffsetGEPMap.erase(P);
7061       P->replaceAllUsesWith(V);
7062       P->eraseFromParent();
7063       ++NumPHIsElim;
7064       return true;
7065     }
7066     return false;
7067   }
7068 
7069   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7070     // If the source of the cast is a constant, then this should have
7071     // already been constant folded.  The only reason NOT to constant fold
7072     // it is if something (e.g. LSR) was careful to place the constant
7073     // evaluation in a block other than then one that uses it (e.g. to hoist
7074     // the address of globals out of a loop).  If this is the case, we don't
7075     // want to forward-subst the cast.
7076     if (isa<Constant>(CI->getOperand(0)))
7077       return false;
7078 
7079     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
7080       return true;
7081 
7082     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7083       /// Sink a zext or sext into its user blocks if the target type doesn't
7084       /// fit in one register
7085       if (TLI &&
7086           TLI->getTypeAction(CI->getContext(),
7087                              TLI->getValueType(*DL, CI->getType())) ==
7088               TargetLowering::TypeExpandInteger) {
7089         return SinkCast(CI);
7090       } else {
7091         bool MadeChange = optimizeExt(I);
7092         return MadeChange | optimizeExtUses(I);
7093       }
7094     }
7095     return false;
7096   }
7097 
7098   if (auto *Cmp = dyn_cast<CmpInst>(I))
7099     if (TLI && optimizeCmp(Cmp, ModifiedDT))
7100       return true;
7101 
7102   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7103     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7104     if (TLI) {
7105       bool Modified = optimizeLoadExt(LI);
7106       unsigned AS = LI->getPointerAddressSpace();
7107       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7108       return Modified;
7109     }
7110     return false;
7111   }
7112 
7113   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7114     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
7115       return true;
7116     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7117     if (TLI) {
7118       unsigned AS = SI->getPointerAddressSpace();
7119       return optimizeMemoryInst(I, SI->getOperand(1),
7120                                 SI->getOperand(0)->getType(), AS);
7121     }
7122     return false;
7123   }
7124 
7125   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7126       unsigned AS = RMW->getPointerAddressSpace();
7127       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7128                                 RMW->getType(), AS);
7129   }
7130 
7131   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7132       unsigned AS = CmpX->getPointerAddressSpace();
7133       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7134                                 CmpX->getCompareOperand()->getType(), AS);
7135   }
7136 
7137   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7138 
7139   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7140       EnableAndCmpSinking && TLI)
7141     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7142 
7143   // TODO: Move this into the switch on opcode - it handles shifts already.
7144   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7145                 BinOp->getOpcode() == Instruction::LShr)) {
7146     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7147     if (TLI && CI && TLI->hasExtractBitsInsn())
7148       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7149         return true;
7150   }
7151 
7152   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7153     if (GEPI->hasAllZeroIndices()) {
7154       /// The GEP operand must be a pointer, so must its result -> BitCast
7155       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7156                                         GEPI->getName(), GEPI);
7157       NC->setDebugLoc(GEPI->getDebugLoc());
7158       GEPI->replaceAllUsesWith(NC);
7159       GEPI->eraseFromParent();
7160       ++NumGEPsElim;
7161       optimizeInst(NC, ModifiedDT);
7162       return true;
7163     }
7164     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7165       return true;
7166     }
7167     return false;
7168   }
7169 
7170   if (tryToSinkFreeOperands(I))
7171     return true;
7172 
7173   switch (I->getOpcode()) {
7174   case Instruction::Shl:
7175   case Instruction::LShr:
7176   case Instruction::AShr:
7177     return optimizeShiftInst(cast<BinaryOperator>(I));
7178   case Instruction::Call:
7179     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7180   case Instruction::Select:
7181     return optimizeSelectInst(cast<SelectInst>(I));
7182   case Instruction::ShuffleVector:
7183     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7184   case Instruction::Switch:
7185     return optimizeSwitchInst(cast<SwitchInst>(I));
7186   case Instruction::ExtractElement:
7187     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7188   }
7189 
7190   return false;
7191 }
7192 
7193 /// Given an OR instruction, check to see if this is a bitreverse
7194 /// idiom. If so, insert the new intrinsic and return true.
7195 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7196                            const TargetLowering &TLI) {
7197   if (!I.getType()->isIntegerTy() ||
7198       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7199                                     TLI.getValueType(DL, I.getType(), true)))
7200     return false;
7201 
7202   SmallVector<Instruction*, 4> Insts;
7203   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7204     return false;
7205   Instruction *LastInst = Insts.back();
7206   I.replaceAllUsesWith(LastInst);
7207   RecursivelyDeleteTriviallyDeadInstructions(&I);
7208   return true;
7209 }
7210 
7211 // In this pass we look for GEP and cast instructions that are used
7212 // across basic blocks and rewrite them to improve basic-block-at-a-time
7213 // selection.
7214 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7215   SunkAddrs.clear();
7216   bool MadeChange = false;
7217 
7218   CurInstIterator = BB.begin();
7219   while (CurInstIterator != BB.end()) {
7220     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7221     if (ModifiedDT)
7222       return true;
7223   }
7224 
7225   bool MadeBitReverse = true;
7226   while (TLI && MadeBitReverse) {
7227     MadeBitReverse = false;
7228     for (auto &I : reverse(BB)) {
7229       if (makeBitReverse(I, *DL, *TLI)) {
7230         MadeBitReverse = MadeChange = true;
7231         break;
7232       }
7233     }
7234   }
7235   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7236 
7237   return MadeChange;
7238 }
7239 
7240 // Some CGP optimizations may move or alter what's computed in a block. Check
7241 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7242 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7243   assert(isa<DbgValueInst>(I));
7244   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7245 
7246   // Does this dbg.value refer to a sunk address calculation?
7247   Value *Location = DVI.getVariableLocation();
7248   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7249   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7250   if (SunkAddr) {
7251     // Point dbg.value at locally computed address, which should give the best
7252     // opportunity to be accurately lowered. This update may change the type of
7253     // pointer being referred to; however this makes no difference to debugging
7254     // information, and we can't generate bitcasts that may affect codegen.
7255     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7256                                            ValueAsMetadata::get(SunkAddr)));
7257     return true;
7258   }
7259   return false;
7260 }
7261 
7262 // A llvm.dbg.value may be using a value before its definition, due to
7263 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7264 // them by moving the dbg.value to immediately after the value definition.
7265 // FIXME: Ideally this should never be necessary, and this has the potential
7266 // to re-order dbg.value intrinsics.
7267 bool CodeGenPrepare::placeDbgValues(Function &F) {
7268   bool MadeChange = false;
7269   DominatorTree DT(F);
7270 
7271   for (BasicBlock &BB : F) {
7272     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7273       Instruction *Insn = &*BI++;
7274       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7275       if (!DVI)
7276         continue;
7277 
7278       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7279 
7280       if (!VI || VI->isTerminator())
7281         continue;
7282 
7283       // If VI is a phi in a block with an EHPad terminator, we can't insert
7284       // after it.
7285       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7286         continue;
7287 
7288       // If the defining instruction dominates the dbg.value, we do not need
7289       // to move the dbg.value.
7290       if (DT.dominates(VI, DVI))
7291         continue;
7292 
7293       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7294                         << *DVI << ' ' << *VI);
7295       DVI->removeFromParent();
7296       if (isa<PHINode>(VI))
7297         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7298       else
7299         DVI->insertAfter(VI);
7300       MadeChange = true;
7301       ++NumDbgValueMoved;
7302     }
7303   }
7304   return MadeChange;
7305 }
7306 
7307 /// Scale down both weights to fit into uint32_t.
7308 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7309   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7310   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7311   NewTrue = NewTrue / Scale;
7312   NewFalse = NewFalse / Scale;
7313 }
7314 
7315 /// Some targets prefer to split a conditional branch like:
7316 /// \code
7317 ///   %0 = icmp ne i32 %a, 0
7318 ///   %1 = icmp ne i32 %b, 0
7319 ///   %or.cond = or i1 %0, %1
7320 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7321 /// \endcode
7322 /// into multiple branch instructions like:
7323 /// \code
7324 ///   bb1:
7325 ///     %0 = icmp ne i32 %a, 0
7326 ///     br i1 %0, label %TrueBB, label %bb2
7327 ///   bb2:
7328 ///     %1 = icmp ne i32 %b, 0
7329 ///     br i1 %1, label %TrueBB, label %FalseBB
7330 /// \endcode
7331 /// This usually allows instruction selection to do even further optimizations
7332 /// and combine the compare with the branch instruction. Currently this is
7333 /// applied for targets which have "cheap" jump instructions.
7334 ///
7335 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7336 ///
7337 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7338   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7339     return false;
7340 
7341   bool MadeChange = false;
7342   for (auto &BB : F) {
7343     // Does this BB end with the following?
7344     //   %cond1 = icmp|fcmp|binary instruction ...
7345     //   %cond2 = icmp|fcmp|binary instruction ...
7346     //   %cond.or = or|and i1 %cond1, cond2
7347     //   br i1 %cond.or label %dest1, label %dest2"
7348     BinaryOperator *LogicOp;
7349     BasicBlock *TBB, *FBB;
7350     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7351       continue;
7352 
7353     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7354     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7355       continue;
7356 
7357     // The merging of mostly empty BB can cause a degenerate branch.
7358     if (TBB == FBB)
7359       continue;
7360 
7361     unsigned Opc;
7362     Value *Cond1, *Cond2;
7363     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7364                              m_OneUse(m_Value(Cond2)))))
7365       Opc = Instruction::And;
7366     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7367                                  m_OneUse(m_Value(Cond2)))))
7368       Opc = Instruction::Or;
7369     else
7370       continue;
7371 
7372     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7373         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7374       continue;
7375 
7376     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7377 
7378     // Create a new BB.
7379     auto TmpBB =
7380         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7381                            BB.getParent(), BB.getNextNode());
7382 
7383     // Update original basic block by using the first condition directly by the
7384     // branch instruction and removing the no longer needed and/or instruction.
7385     Br1->setCondition(Cond1);
7386     LogicOp->eraseFromParent();
7387 
7388     // Depending on the condition we have to either replace the true or the
7389     // false successor of the original branch instruction.
7390     if (Opc == Instruction::And)
7391       Br1->setSuccessor(0, TmpBB);
7392     else
7393       Br1->setSuccessor(1, TmpBB);
7394 
7395     // Fill in the new basic block.
7396     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7397     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7398       I->removeFromParent();
7399       I->insertBefore(Br2);
7400     }
7401 
7402     // Update PHI nodes in both successors. The original BB needs to be
7403     // replaced in one successor's PHI nodes, because the branch comes now from
7404     // the newly generated BB (NewBB). In the other successor we need to add one
7405     // incoming edge to the PHI nodes, because both branch instructions target
7406     // now the same successor. Depending on the original branch condition
7407     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7408     // we perform the correct update for the PHI nodes.
7409     // This doesn't change the successor order of the just created branch
7410     // instruction (or any other instruction).
7411     if (Opc == Instruction::Or)
7412       std::swap(TBB, FBB);
7413 
7414     // Replace the old BB with the new BB.
7415     TBB->replacePhiUsesWith(&BB, TmpBB);
7416 
7417     // Add another incoming edge form the new BB.
7418     for (PHINode &PN : FBB->phis()) {
7419       auto *Val = PN.getIncomingValueForBlock(&BB);
7420       PN.addIncoming(Val, TmpBB);
7421     }
7422 
7423     // Update the branch weights (from SelectionDAGBuilder::
7424     // FindMergedConditions).
7425     if (Opc == Instruction::Or) {
7426       // Codegen X | Y as:
7427       // BB1:
7428       //   jmp_if_X TBB
7429       //   jmp TmpBB
7430       // TmpBB:
7431       //   jmp_if_Y TBB
7432       //   jmp FBB
7433       //
7434 
7435       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7436       // The requirement is that
7437       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7438       //     = TrueProb for original BB.
7439       // Assuming the original weights are A and B, one choice is to set BB1's
7440       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7441       // assumes that
7442       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7443       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7444       // TmpBB, but the math is more complicated.
7445       uint64_t TrueWeight, FalseWeight;
7446       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7447         uint64_t NewTrueWeight = TrueWeight;
7448         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7449         scaleWeights(NewTrueWeight, NewFalseWeight);
7450         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7451                          .createBranchWeights(TrueWeight, FalseWeight));
7452 
7453         NewTrueWeight = TrueWeight;
7454         NewFalseWeight = 2 * FalseWeight;
7455         scaleWeights(NewTrueWeight, NewFalseWeight);
7456         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7457                          .createBranchWeights(TrueWeight, FalseWeight));
7458       }
7459     } else {
7460       // Codegen X & Y as:
7461       // BB1:
7462       //   jmp_if_X TmpBB
7463       //   jmp FBB
7464       // TmpBB:
7465       //   jmp_if_Y TBB
7466       //   jmp FBB
7467       //
7468       //  This requires creation of TmpBB after CurBB.
7469 
7470       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7471       // The requirement is that
7472       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7473       //     = FalseProb for original BB.
7474       // Assuming the original weights are A and B, one choice is to set BB1's
7475       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7476       // assumes that
7477       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7478       uint64_t TrueWeight, FalseWeight;
7479       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7480         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7481         uint64_t NewFalseWeight = FalseWeight;
7482         scaleWeights(NewTrueWeight, NewFalseWeight);
7483         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7484                          .createBranchWeights(TrueWeight, FalseWeight));
7485 
7486         NewTrueWeight = 2 * TrueWeight;
7487         NewFalseWeight = FalseWeight;
7488         scaleWeights(NewTrueWeight, NewFalseWeight);
7489         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7490                          .createBranchWeights(TrueWeight, FalseWeight));
7491       }
7492     }
7493 
7494     ModifiedDT = true;
7495     MadeChange = true;
7496 
7497     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7498                TmpBB->dump());
7499   }
7500   return MadeChange;
7501 }
7502