1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfo.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/ProfDataUtils.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <optional> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> 144 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 145 cl::init(false), 146 cl::desc("Disable select to branch conversion.")); 147 148 static cl::opt<bool> 149 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 150 cl::desc("Address sinking in CGP using GEPs.")); 151 152 static cl::opt<bool> 153 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 154 cl::desc("Enable sinkinig and/cmp into branches.")); 155 156 static cl::opt<bool> DisableStoreExtract( 157 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> StressStoreExtract( 161 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 162 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 163 164 static cl::opt<bool> DisableExtLdPromotion( 165 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 167 "CodeGenPrepare")); 168 169 static cl::opt<bool> StressExtLdPromotion( 170 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 171 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 172 "optimization in CodeGenPrepare")); 173 174 static cl::opt<bool> DisablePreheaderProtect( 175 "disable-preheader-prot", cl::Hidden, cl::init(false), 176 cl::desc("Disable protection against removing loop preheaders")); 177 178 static cl::opt<bool> ProfileGuidedSectionPrefix( 179 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 180 cl::desc("Use profile info to add section prefix for hot/cold functions")); 181 182 static cl::opt<bool> ProfileUnknownInSpecialSection( 183 "profile-unknown-in-special-section", cl::Hidden, 184 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 185 "profile, we cannot tell the function is cold for sure because " 186 "it may be a function newly added without ever being sampled. " 187 "With the flag enabled, compiler can put such profile unknown " 188 "functions into a special section, so runtime system can choose " 189 "to handle it in a different way than .text section, to save " 190 "RAM for example. ")); 191 192 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 193 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 194 cl::desc("Use the basic-block-sections profile to determine the text " 195 "section prefix for hot functions. Functions with " 196 "basic-block-sections profile will be placed in `.text.hot` " 197 "regardless of their FDO profile info. Other functions won't be " 198 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 199 "profiles.")); 200 201 static cl::opt<unsigned> FreqRatioToSkipMerge( 202 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 203 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 204 "(frequency of destination block) is greater than this ratio")); 205 206 static cl::opt<bool> ForceSplitStore( 207 "force-split-store", cl::Hidden, cl::init(false), 208 cl::desc("Force store splitting no matter what the target query says.")); 209 210 static cl::opt<bool> EnableTypePromotionMerge( 211 "cgp-type-promotion-merge", cl::Hidden, 212 cl::desc("Enable merging of redundant sexts when one is dominating" 213 " the other."), 214 cl::init(true)); 215 216 static cl::opt<bool> DisableComplexAddrModes( 217 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 218 cl::desc("Disables combining addressing modes with different parts " 219 "in optimizeMemoryInst.")); 220 221 static cl::opt<bool> 222 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 223 cl::desc("Allow creation of Phis in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkNewSelects( 226 "addr-sink-new-select", cl::Hidden, cl::init(true), 227 cl::desc("Allow creation of selects in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineBaseReg( 230 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of BaseReg field in Address sinking.")); 232 233 static cl::opt<bool> AddrSinkCombineBaseGV( 234 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 235 cl::desc("Allow combining of BaseGV field in Address sinking.")); 236 237 static cl::opt<bool> AddrSinkCombineBaseOffs( 238 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 239 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 240 241 static cl::opt<bool> AddrSinkCombineScaledReg( 242 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 243 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 244 245 static cl::opt<bool> 246 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 247 cl::init(true), 248 cl::desc("Enable splitting large offset of GEP.")); 249 250 static cl::opt<bool> EnableICMP_EQToICMP_ST( 251 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 252 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 253 254 static cl::opt<bool> 255 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 256 cl::desc("Enable BFI update verification for " 257 "CodeGenPrepare.")); 258 259 static cl::opt<bool> 260 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(false), 261 cl::desc("Enable converting phi types in CodeGenPrepare")); 262 263 static cl::opt<unsigned> 264 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 265 cl::desc("Least BB number of huge function.")); 266 267 namespace { 268 269 enum ExtType { 270 ZeroExtension, // Zero extension has been seen. 271 SignExtension, // Sign extension has been seen. 272 BothExtension // This extension type is used if we saw sext after 273 // ZeroExtension had been set, or if we saw zext after 274 // SignExtension had been set. It makes the type 275 // information of a promoted instruction invalid. 276 }; 277 278 enum ModifyDT { 279 NotModifyDT, // Not Modify any DT. 280 ModifyBBDT, // Modify the Basic Block Dominator Tree. 281 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 282 // This usually means we move/delete/insert instruction 283 // in a Basic Block. So we should re-iterate instructions 284 // in such Basic Block. 285 }; 286 287 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 288 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 289 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 290 using SExts = SmallVector<Instruction *, 16>; 291 using ValueToSExts = MapVector<Value *, SExts>; 292 293 class TypePromotionTransaction; 294 295 class CodeGenPrepare : public FunctionPass { 296 const TargetMachine *TM = nullptr; 297 const TargetSubtargetInfo *SubtargetInfo; 298 const TargetLowering *TLI = nullptr; 299 const TargetRegisterInfo *TRI; 300 const TargetTransformInfo *TTI = nullptr; 301 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 302 const TargetLibraryInfo *TLInfo; 303 const LoopInfo *LI; 304 std::unique_ptr<BlockFrequencyInfo> BFI; 305 std::unique_ptr<BranchProbabilityInfo> BPI; 306 ProfileSummaryInfo *PSI; 307 308 /// As we scan instructions optimizing them, this is the next instruction 309 /// to optimize. Transforms that can invalidate this should update it. 310 BasicBlock::iterator CurInstIterator; 311 312 /// Keeps track of non-local addresses that have been sunk into a block. 313 /// This allows us to avoid inserting duplicate code for blocks with 314 /// multiple load/stores of the same address. The usage of WeakTrackingVH 315 /// enables SunkAddrs to be treated as a cache whose entries can be 316 /// invalidated if a sunken address computation has been erased. 317 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 318 319 /// Keeps track of all instructions inserted for the current function. 320 SetOfInstrs InsertedInsts; 321 322 /// Keeps track of the type of the related instruction before their 323 /// promotion for the current function. 324 InstrToOrigTy PromotedInsts; 325 326 /// Keep track of instructions removed during promotion. 327 SetOfInstrs RemovedInsts; 328 329 /// Keep track of sext chains based on their initial value. 330 DenseMap<Value *, Instruction *> SeenChainsForSExt; 331 332 /// Keep track of GEPs accessing the same data structures such as structs or 333 /// arrays that are candidates to be split later because of their large 334 /// size. 335 MapVector<AssertingVH<Value>, 336 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 337 LargeOffsetGEPMap; 338 339 /// Keep track of new GEP base after splitting the GEPs having large offset. 340 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 341 342 /// Map serial numbers to Large offset GEPs. 343 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 344 345 /// Keep track of SExt promoted. 346 ValueToSExts ValToSExtendedUses; 347 348 /// True if the function has the OptSize attribute. 349 bool OptSize; 350 351 /// DataLayout for the Function being processed. 352 const DataLayout *DL = nullptr; 353 354 /// Building the dominator tree can be expensive, so we only build it 355 /// lazily and update it when required. 356 std::unique_ptr<DominatorTree> DT; 357 358 public: 359 /// If encounter huge function, we need to limit the build time. 360 bool IsHugeFunc = false; 361 362 /// FreshBBs is like worklist, it collected the updated BBs which need 363 /// to be optimized again. 364 /// Note: Consider building time in this pass, when a BB updated, we need 365 /// to insert such BB into FreshBBs for huge function. 366 SmallSet<BasicBlock *, 32> FreshBBs; 367 368 static char ID; // Pass identification, replacement for typeid 369 370 CodeGenPrepare() : FunctionPass(ID) { 371 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 372 } 373 374 bool runOnFunction(Function &F) override; 375 376 StringRef getPassName() const override { return "CodeGen Prepare"; } 377 378 void getAnalysisUsage(AnalysisUsage &AU) const override { 379 // FIXME: When we can selectively preserve passes, preserve the domtree. 380 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 381 AU.addRequired<TargetLibraryInfoWrapperPass>(); 382 AU.addRequired<TargetPassConfig>(); 383 AU.addRequired<TargetTransformInfoWrapperPass>(); 384 AU.addRequired<LoopInfoWrapperPass>(); 385 AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); 386 } 387 388 private: 389 template <typename F> 390 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 391 // Substituting can cause recursive simplifications, which can invalidate 392 // our iterator. Use a WeakTrackingVH to hold onto it in case this 393 // happens. 394 Value *CurValue = &*CurInstIterator; 395 WeakTrackingVH IterHandle(CurValue); 396 397 f(); 398 399 // If the iterator instruction was recursively deleted, start over at the 400 // start of the block. 401 if (IterHandle != CurValue) { 402 CurInstIterator = BB->begin(); 403 SunkAddrs.clear(); 404 } 405 } 406 407 // Get the DominatorTree, building if necessary. 408 DominatorTree &getDT(Function &F) { 409 if (!DT) 410 DT = std::make_unique<DominatorTree>(F); 411 return *DT; 412 } 413 414 void removeAllAssertingVHReferences(Value *V); 415 bool eliminateAssumptions(Function &F); 416 bool eliminateFallThrough(Function &F); 417 bool eliminateMostlyEmptyBlocks(Function &F); 418 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 419 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 420 void eliminateMostlyEmptyBlock(BasicBlock *BB); 421 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 422 bool isPreheader); 423 bool makeBitReverse(Instruction &I); 424 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 425 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 426 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 427 unsigned AddrSpace); 428 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 429 bool optimizeInlineAsmInst(CallInst *CS); 430 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 431 bool optimizeExt(Instruction *&I); 432 bool optimizeExtUses(Instruction *I); 433 bool optimizeLoadExt(LoadInst *Load); 434 bool optimizeShiftInst(BinaryOperator *BO); 435 bool optimizeFunnelShift(IntrinsicInst *Fsh); 436 bool optimizeSelectInst(SelectInst *SI); 437 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 438 bool optimizeSwitchType(SwitchInst *SI); 439 bool optimizeSwitchPhiConstants(SwitchInst *SI); 440 bool optimizeSwitchInst(SwitchInst *SI); 441 bool optimizeExtractElementInst(Instruction *Inst); 442 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 443 bool fixupDbgValue(Instruction *I); 444 bool placeDbgValues(Function &F); 445 bool placePseudoProbes(Function &F); 446 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 447 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 448 bool tryToPromoteExts(TypePromotionTransaction &TPT, 449 const SmallVectorImpl<Instruction *> &Exts, 450 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 451 unsigned CreatedInstsCost = 0); 452 bool mergeSExts(Function &F); 453 bool splitLargeGEPOffsets(); 454 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 455 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 456 bool optimizePhiTypes(Function &F); 457 bool performAddressTypePromotion( 458 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 459 bool HasPromoted, TypePromotionTransaction &TPT, 460 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 461 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 462 bool simplifyOffsetableRelocate(GCStatepointInst &I); 463 464 bool tryToSinkFreeOperands(Instruction *I); 465 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 466 CmpInst *Cmp, Intrinsic::ID IID); 467 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 468 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 469 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 470 void verifyBFIUpdates(Function &F); 471 }; 472 473 } // end anonymous namespace 474 475 char CodeGenPrepare::ID = 0; 476 477 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 478 "Optimize for code generation", false, false) 479 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader) 480 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 481 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 482 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 483 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 484 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 485 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation", 486 false, false) 487 488 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 489 490 bool CodeGenPrepare::runOnFunction(Function &F) { 491 if (skipFunction(F)) 492 return false; 493 494 DL = &F.getParent()->getDataLayout(); 495 496 bool EverMadeChange = false; 497 // Clear per function information. 498 InsertedInsts.clear(); 499 PromotedInsts.clear(); 500 FreshBBs.clear(); 501 502 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 503 SubtargetInfo = TM->getSubtargetImpl(F); 504 TLI = SubtargetInfo->getTargetLowering(); 505 TRI = SubtargetInfo->getRegisterInfo(); 506 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 507 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 508 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 509 BPI.reset(new BranchProbabilityInfo(F, *LI)); 510 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 511 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 512 BBSectionsProfileReader = 513 getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); 514 OptSize = F.hasOptSize(); 515 // Use the basic-block-sections profile to promote hot functions to .text.hot 516 // if requested. 517 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 518 BBSectionsProfileReader->isFunctionHot(F.getName())) { 519 F.setSectionPrefix("hot"); 520 } else if (ProfileGuidedSectionPrefix) { 521 // The hot attribute overwrites profile count based hotness while profile 522 // counts based hotness overwrite the cold attribute. 523 // This is a conservative behabvior. 524 if (F.hasFnAttribute(Attribute::Hot) || 525 PSI->isFunctionHotInCallGraph(&F, *BFI)) 526 F.setSectionPrefix("hot"); 527 // If PSI shows this function is not hot, we will placed the function 528 // into unlikely section if (1) PSI shows this is a cold function, or 529 // (2) the function has a attribute of cold. 530 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 531 F.hasFnAttribute(Attribute::Cold)) 532 F.setSectionPrefix("unlikely"); 533 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 534 PSI->isFunctionHotnessUnknown(F)) 535 F.setSectionPrefix("unknown"); 536 } 537 538 /// This optimization identifies DIV instructions that can be 539 /// profitably bypassed and carried out with a shorter, faster divide. 540 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 541 const DenseMap<unsigned int, unsigned int> &BypassWidths = 542 TLI->getBypassSlowDivWidths(); 543 BasicBlock *BB = &*F.begin(); 544 while (BB != nullptr) { 545 // bypassSlowDivision may create new BBs, but we don't want to reapply the 546 // optimization to those blocks. 547 BasicBlock *Next = BB->getNextNode(); 548 // F.hasOptSize is already checked in the outer if statement. 549 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 550 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 551 BB = Next; 552 } 553 } 554 555 // Get rid of @llvm.assume builtins before attempting to eliminate empty 556 // blocks, since there might be blocks that only contain @llvm.assume calls 557 // (plus arguments that we can get rid of). 558 EverMadeChange |= eliminateAssumptions(F); 559 560 // Eliminate blocks that contain only PHI nodes and an 561 // unconditional branch. 562 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 563 564 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 565 if (!DisableBranchOpts) 566 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 567 568 // Split some critical edges where one of the sources is an indirect branch, 569 // to help generate sane code for PHIs involving such edges. 570 EverMadeChange |= 571 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 572 573 // If we are optimzing huge function, we need to consider the build time. 574 // Because the basic algorithm's complex is near O(N!). 575 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 576 577 bool MadeChange = true; 578 bool FuncIterated = false; 579 while (MadeChange) { 580 MadeChange = false; 581 DT.reset(); 582 583 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 584 if (FuncIterated && !FreshBBs.contains(&BB)) 585 continue; 586 587 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 588 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 589 590 MadeChange |= Changed; 591 if (IsHugeFunc) { 592 // If the BB is updated, it may still has chance to be optimized. 593 // This usually happen at sink optimization. 594 // For example: 595 // 596 // bb0: 597 // %and = and i32 %a, 4 598 // %cmp = icmp eq i32 %and, 0 599 // 600 // If the %cmp sink to other BB, the %and will has chance to sink. 601 if (Changed) 602 FreshBBs.insert(&BB); 603 else if (FuncIterated) 604 FreshBBs.erase(&BB); 605 606 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 607 DT.reset(); 608 } else { 609 // For small/normal functions, we restart BB iteration if the dominator 610 // tree of the Function was changed. 611 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 612 break; 613 } 614 } 615 // We have iterated all the BB in the (only work for huge) function. 616 FuncIterated = IsHugeFunc; 617 618 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 619 MadeChange |= mergeSExts(F); 620 if (!LargeOffsetGEPMap.empty()) 621 MadeChange |= splitLargeGEPOffsets(); 622 MadeChange |= optimizePhiTypes(F); 623 624 if (MadeChange) 625 eliminateFallThrough(F); 626 627 // Really free removed instructions during promotion. 628 for (Instruction *I : RemovedInsts) 629 I->deleteValue(); 630 631 EverMadeChange |= MadeChange; 632 SeenChainsForSExt.clear(); 633 ValToSExtendedUses.clear(); 634 RemovedInsts.clear(); 635 LargeOffsetGEPMap.clear(); 636 LargeOffsetGEPID.clear(); 637 } 638 639 NewGEPBases.clear(); 640 SunkAddrs.clear(); 641 642 if (!DisableBranchOpts) { 643 MadeChange = false; 644 // Use a set vector to get deterministic iteration order. The order the 645 // blocks are removed may affect whether or not PHI nodes in successors 646 // are removed. 647 SmallSetVector<BasicBlock *, 8> WorkList; 648 for (BasicBlock &BB : F) { 649 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 650 MadeChange |= ConstantFoldTerminator(&BB, true); 651 if (!MadeChange) 652 continue; 653 654 for (BasicBlock *Succ : Successors) 655 if (pred_empty(Succ)) 656 WorkList.insert(Succ); 657 } 658 659 // Delete the dead blocks and any of their dead successors. 660 MadeChange |= !WorkList.empty(); 661 while (!WorkList.empty()) { 662 BasicBlock *BB = WorkList.pop_back_val(); 663 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 664 665 DeleteDeadBlock(BB); 666 667 for (BasicBlock *Succ : Successors) 668 if (pred_empty(Succ)) 669 WorkList.insert(Succ); 670 } 671 672 // Merge pairs of basic blocks with unconditional branches, connected by 673 // a single edge. 674 if (EverMadeChange || MadeChange) 675 MadeChange |= eliminateFallThrough(F); 676 677 EverMadeChange |= MadeChange; 678 } 679 680 if (!DisableGCOpts) { 681 SmallVector<GCStatepointInst *, 2> Statepoints; 682 for (BasicBlock &BB : F) 683 for (Instruction &I : BB) 684 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 685 Statepoints.push_back(SP); 686 for (auto &I : Statepoints) 687 EverMadeChange |= simplifyOffsetableRelocate(*I); 688 } 689 690 // Do this last to clean up use-before-def scenarios introduced by other 691 // preparatory transforms. 692 EverMadeChange |= placeDbgValues(F); 693 EverMadeChange |= placePseudoProbes(F); 694 695 #ifndef NDEBUG 696 if (VerifyBFIUpdates) 697 verifyBFIUpdates(F); 698 #endif 699 700 return EverMadeChange; 701 } 702 703 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 704 bool MadeChange = false; 705 for (BasicBlock &BB : F) { 706 CurInstIterator = BB.begin(); 707 while (CurInstIterator != BB.end()) { 708 Instruction *I = &*(CurInstIterator++); 709 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 710 MadeChange = true; 711 Value *Operand = Assume->getOperand(0); 712 Assume->eraseFromParent(); 713 714 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 715 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 716 }); 717 } 718 } 719 } 720 return MadeChange; 721 } 722 723 /// An instruction is about to be deleted, so remove all references to it in our 724 /// GEP-tracking data strcutures. 725 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 726 LargeOffsetGEPMap.erase(V); 727 NewGEPBases.erase(V); 728 729 auto GEP = dyn_cast<GetElementPtrInst>(V); 730 if (!GEP) 731 return; 732 733 LargeOffsetGEPID.erase(GEP); 734 735 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 736 if (VecI == LargeOffsetGEPMap.end()) 737 return; 738 739 auto &GEPVector = VecI->second; 740 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 741 742 if (GEPVector.empty()) 743 LargeOffsetGEPMap.erase(VecI); 744 } 745 746 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 747 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 748 DominatorTree NewDT(F); 749 LoopInfo NewLI(NewDT); 750 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 751 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 752 NewBFI.verifyMatch(*BFI); 753 } 754 755 /// Merge basic blocks which are connected by a single edge, where one of the 756 /// basic blocks has a single successor pointing to the other basic block, 757 /// which has a single predecessor. 758 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 759 bool Changed = false; 760 // Scan all of the blocks in the function, except for the entry block. 761 // Use a temporary array to avoid iterator being invalidated when 762 // deleting blocks. 763 SmallVector<WeakTrackingVH, 16> Blocks; 764 for (auto &Block : llvm::drop_begin(F)) 765 Blocks.push_back(&Block); 766 767 SmallSet<WeakTrackingVH, 16> Preds; 768 for (auto &Block : Blocks) { 769 auto *BB = cast_or_null<BasicBlock>(Block); 770 if (!BB) 771 continue; 772 // If the destination block has a single pred, then this is a trivial 773 // edge, just collapse it. 774 BasicBlock *SinglePred = BB->getSinglePredecessor(); 775 776 // Don't merge if BB's address is taken. 777 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 778 continue; 779 780 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 781 if (Term && !Term->isConditional()) { 782 Changed = true; 783 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 784 785 // Merge BB into SinglePred and delete it. 786 MergeBlockIntoPredecessor(BB); 787 Preds.insert(SinglePred); 788 789 if (IsHugeFunc) { 790 // Update FreshBBs to optimize the merged BB. 791 FreshBBs.insert(SinglePred); 792 FreshBBs.erase(BB); 793 } 794 } 795 } 796 797 // (Repeatedly) merging blocks into their predecessors can create redundant 798 // debug intrinsics. 799 for (const auto &Pred : Preds) 800 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 801 RemoveRedundantDbgInstrs(BB); 802 803 return Changed; 804 } 805 806 /// Find a destination block from BB if BB is mergeable empty block. 807 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 808 // If this block doesn't end with an uncond branch, ignore it. 809 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 810 if (!BI || !BI->isUnconditional()) 811 return nullptr; 812 813 // If the instruction before the branch (skipping debug info) isn't a phi 814 // node, then other stuff is happening here. 815 BasicBlock::iterator BBI = BI->getIterator(); 816 if (BBI != BB->begin()) { 817 --BBI; 818 while (isa<DbgInfoIntrinsic>(BBI)) { 819 if (BBI == BB->begin()) 820 break; 821 --BBI; 822 } 823 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 824 return nullptr; 825 } 826 827 // Do not break infinite loops. 828 BasicBlock *DestBB = BI->getSuccessor(0); 829 if (DestBB == BB) 830 return nullptr; 831 832 if (!canMergeBlocks(BB, DestBB)) 833 DestBB = nullptr; 834 835 return DestBB; 836 } 837 838 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 839 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 840 /// edges in ways that are non-optimal for isel. Start by eliminating these 841 /// blocks so we can split them the way we want them. 842 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 843 SmallPtrSet<BasicBlock *, 16> Preheaders; 844 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 845 while (!LoopList.empty()) { 846 Loop *L = LoopList.pop_back_val(); 847 llvm::append_range(LoopList, *L); 848 if (BasicBlock *Preheader = L->getLoopPreheader()) 849 Preheaders.insert(Preheader); 850 } 851 852 bool MadeChange = false; 853 // Copy blocks into a temporary array to avoid iterator invalidation issues 854 // as we remove them. 855 // Note that this intentionally skips the entry block. 856 SmallVector<WeakTrackingVH, 16> Blocks; 857 for (auto &Block : llvm::drop_begin(F)) 858 Blocks.push_back(&Block); 859 860 for (auto &Block : Blocks) { 861 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 862 if (!BB) 863 continue; 864 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 865 if (!DestBB || 866 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 867 continue; 868 869 eliminateMostlyEmptyBlock(BB); 870 MadeChange = true; 871 } 872 return MadeChange; 873 } 874 875 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 876 BasicBlock *DestBB, 877 bool isPreheader) { 878 // Do not delete loop preheaders if doing so would create a critical edge. 879 // Loop preheaders can be good locations to spill registers. If the 880 // preheader is deleted and we create a critical edge, registers may be 881 // spilled in the loop body instead. 882 if (!DisablePreheaderProtect && isPreheader && 883 !(BB->getSinglePredecessor() && 884 BB->getSinglePredecessor()->getSingleSuccessor())) 885 return false; 886 887 // Skip merging if the block's successor is also a successor to any callbr 888 // that leads to this block. 889 // FIXME: Is this really needed? Is this a correctness issue? 890 for (BasicBlock *Pred : predecessors(BB)) { 891 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 892 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 893 if (DestBB == CBI->getSuccessor(i)) 894 return false; 895 } 896 897 // Try to skip merging if the unique predecessor of BB is terminated by a 898 // switch or indirect branch instruction, and BB is used as an incoming block 899 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 900 // add COPY instructions in the predecessor of BB instead of BB (if it is not 901 // merged). Note that the critical edge created by merging such blocks wont be 902 // split in MachineSink because the jump table is not analyzable. By keeping 903 // such empty block (BB), ISel will place COPY instructions in BB, not in the 904 // predecessor of BB. 905 BasicBlock *Pred = BB->getUniquePredecessor(); 906 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 907 isa<IndirectBrInst>(Pred->getTerminator()))) 908 return true; 909 910 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 911 return true; 912 913 // We use a simple cost heuristic which determine skipping merging is 914 // profitable if the cost of skipping merging is less than the cost of 915 // merging : Cost(skipping merging) < Cost(merging BB), where the 916 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 917 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 918 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 919 // Freq(Pred) / Freq(BB) > 2. 920 // Note that if there are multiple empty blocks sharing the same incoming 921 // value for the PHIs in the DestBB, we consider them together. In such 922 // case, Cost(merging BB) will be the sum of their frequencies. 923 924 if (!isa<PHINode>(DestBB->begin())) 925 return true; 926 927 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 928 929 // Find all other incoming blocks from which incoming values of all PHIs in 930 // DestBB are the same as the ones from BB. 931 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 932 if (DestBBPred == BB) 933 continue; 934 935 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 936 return DestPN.getIncomingValueForBlock(BB) == 937 DestPN.getIncomingValueForBlock(DestBBPred); 938 })) 939 SameIncomingValueBBs.insert(DestBBPred); 940 } 941 942 // See if all BB's incoming values are same as the value from Pred. In this 943 // case, no reason to skip merging because COPYs are expected to be place in 944 // Pred already. 945 if (SameIncomingValueBBs.count(Pred)) 946 return true; 947 948 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 949 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 950 951 for (auto *SameValueBB : SameIncomingValueBBs) 952 if (SameValueBB->getUniquePredecessor() == Pred && 953 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 954 BBFreq += BFI->getBlockFreq(SameValueBB); 955 956 return PredFreq.getFrequency() <= 957 BBFreq.getFrequency() * FreqRatioToSkipMerge; 958 } 959 960 /// Return true if we can merge BB into DestBB if there is a single 961 /// unconditional branch between them, and BB contains no other non-phi 962 /// instructions. 963 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 964 const BasicBlock *DestBB) const { 965 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 966 // the successor. If there are more complex condition (e.g. preheaders), 967 // don't mess around with them. 968 for (const PHINode &PN : BB->phis()) { 969 for (const User *U : PN.users()) { 970 const Instruction *UI = cast<Instruction>(U); 971 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 972 return false; 973 // If User is inside DestBB block and it is a PHINode then check 974 // incoming value. If incoming value is not from BB then this is 975 // a complex condition (e.g. preheaders) we want to avoid here. 976 if (UI->getParent() == DestBB) { 977 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 978 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 979 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 980 if (Insn && Insn->getParent() == BB && 981 Insn->getParent() != UPN->getIncomingBlock(I)) 982 return false; 983 } 984 } 985 } 986 } 987 988 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 989 // and DestBB may have conflicting incoming values for the block. If so, we 990 // can't merge the block. 991 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 992 if (!DestBBPN) 993 return true; // no conflict. 994 995 // Collect the preds of BB. 996 SmallPtrSet<const BasicBlock *, 16> BBPreds; 997 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 998 // It is faster to get preds from a PHI than with pred_iterator. 999 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1000 BBPreds.insert(BBPN->getIncomingBlock(i)); 1001 } else { 1002 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1003 } 1004 1005 // Walk the preds of DestBB. 1006 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1007 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1008 if (BBPreds.count(Pred)) { // Common predecessor? 1009 for (const PHINode &PN : DestBB->phis()) { 1010 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1011 const Value *V2 = PN.getIncomingValueForBlock(BB); 1012 1013 // If V2 is a phi node in BB, look up what the mapped value will be. 1014 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1015 if (V2PN->getParent() == BB) 1016 V2 = V2PN->getIncomingValueForBlock(Pred); 1017 1018 // If there is a conflict, bail out. 1019 if (V1 != V2) 1020 return false; 1021 } 1022 } 1023 } 1024 1025 return true; 1026 } 1027 1028 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1029 static void replaceAllUsesWith(Value *Old, Value *New, 1030 SmallSet<BasicBlock *, 32> &FreshBBs, 1031 bool IsHuge) { 1032 auto *OldI = dyn_cast<Instruction>(Old); 1033 if (OldI) { 1034 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1035 UI != E; ++UI) { 1036 Instruction *User = cast<Instruction>(*UI); 1037 if (IsHuge) 1038 FreshBBs.insert(User->getParent()); 1039 } 1040 } 1041 Old->replaceAllUsesWith(New); 1042 } 1043 1044 /// Eliminate a basic block that has only phi's and an unconditional branch in 1045 /// it. 1046 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1047 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1048 BasicBlock *DestBB = BI->getSuccessor(0); 1049 1050 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1051 << *BB << *DestBB); 1052 1053 // If the destination block has a single pred, then this is a trivial edge, 1054 // just collapse it. 1055 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1056 if (SinglePred != DestBB) { 1057 assert(SinglePred == BB && 1058 "Single predecessor not the same as predecessor"); 1059 // Merge DestBB into SinglePred/BB and delete it. 1060 MergeBlockIntoPredecessor(DestBB); 1061 // Note: BB(=SinglePred) will not be deleted on this path. 1062 // DestBB(=its single successor) is the one that was deleted. 1063 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1064 1065 if (IsHugeFunc) { 1066 // Update FreshBBs to optimize the merged BB. 1067 FreshBBs.insert(SinglePred); 1068 FreshBBs.erase(DestBB); 1069 } 1070 return; 1071 } 1072 } 1073 1074 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1075 // to handle the new incoming edges it is about to have. 1076 for (PHINode &PN : DestBB->phis()) { 1077 // Remove the incoming value for BB, and remember it. 1078 Value *InVal = PN.removeIncomingValue(BB, false); 1079 1080 // Two options: either the InVal is a phi node defined in BB or it is some 1081 // value that dominates BB. 1082 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1083 if (InValPhi && InValPhi->getParent() == BB) { 1084 // Add all of the input values of the input PHI as inputs of this phi. 1085 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1086 PN.addIncoming(InValPhi->getIncomingValue(i), 1087 InValPhi->getIncomingBlock(i)); 1088 } else { 1089 // Otherwise, add one instance of the dominating value for each edge that 1090 // we will be adding. 1091 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1092 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1093 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1094 } else { 1095 for (BasicBlock *Pred : predecessors(BB)) 1096 PN.addIncoming(InVal, Pred); 1097 } 1098 } 1099 } 1100 1101 // The PHIs are now updated, change everything that refers to BB to use 1102 // DestBB and remove BB. 1103 BB->replaceAllUsesWith(DestBB); 1104 BB->eraseFromParent(); 1105 ++NumBlocksElim; 1106 1107 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1108 } 1109 1110 // Computes a map of base pointer relocation instructions to corresponding 1111 // derived pointer relocation instructions given a vector of all relocate calls 1112 static void computeBaseDerivedRelocateMap( 1113 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1114 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1115 &RelocateInstMap) { 1116 // Collect information in two maps: one primarily for locating the base object 1117 // while filling the second map; the second map is the final structure holding 1118 // a mapping between Base and corresponding Derived relocate calls 1119 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1120 for (auto *ThisRelocate : AllRelocateCalls) { 1121 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1122 ThisRelocate->getDerivedPtrIndex()); 1123 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1124 } 1125 for (auto &Item : RelocateIdxMap) { 1126 std::pair<unsigned, unsigned> Key = Item.first; 1127 if (Key.first == Key.second) 1128 // Base relocation: nothing to insert 1129 continue; 1130 1131 GCRelocateInst *I = Item.second; 1132 auto BaseKey = std::make_pair(Key.first, Key.first); 1133 1134 // We're iterating over RelocateIdxMap so we cannot modify it. 1135 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1136 if (MaybeBase == RelocateIdxMap.end()) 1137 // TODO: We might want to insert a new base object relocate and gep off 1138 // that, if there are enough derived object relocates. 1139 continue; 1140 1141 RelocateInstMap[MaybeBase->second].push_back(I); 1142 } 1143 } 1144 1145 // Accepts a GEP and extracts the operands into a vector provided they're all 1146 // small integer constants 1147 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1148 SmallVectorImpl<Value *> &OffsetV) { 1149 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1150 // Only accept small constant integer operands 1151 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1152 if (!Op || Op->getZExtValue() > 20) 1153 return false; 1154 } 1155 1156 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1157 OffsetV.push_back(GEP->getOperand(i)); 1158 return true; 1159 } 1160 1161 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1162 // replace, computes a replacement, and affects it. 1163 static bool 1164 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1165 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1166 bool MadeChange = false; 1167 // We must ensure the relocation of derived pointer is defined after 1168 // relocation of base pointer. If we find a relocation corresponding to base 1169 // defined earlier than relocation of base then we move relocation of base 1170 // right before found relocation. We consider only relocation in the same 1171 // basic block as relocation of base. Relocations from other basic block will 1172 // be skipped by optimization and we do not care about them. 1173 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1174 &*R != RelocatedBase; ++R) 1175 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1176 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1177 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1178 RelocatedBase->moveBefore(RI); 1179 break; 1180 } 1181 1182 for (GCRelocateInst *ToReplace : Targets) { 1183 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1184 "Not relocating a derived object of the original base object"); 1185 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1186 // A duplicate relocate call. TODO: coalesce duplicates. 1187 continue; 1188 } 1189 1190 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1191 // Base and derived relocates are in different basic blocks. 1192 // In this case transform is only valid when base dominates derived 1193 // relocate. However it would be too expensive to check dominance 1194 // for each such relocate, so we skip the whole transformation. 1195 continue; 1196 } 1197 1198 Value *Base = ToReplace->getBasePtr(); 1199 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1200 if (!Derived || Derived->getPointerOperand() != Base) 1201 continue; 1202 1203 SmallVector<Value *, 2> OffsetV; 1204 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1205 continue; 1206 1207 // Create a Builder and replace the target callsite with a gep 1208 assert(RelocatedBase->getNextNode() && 1209 "Should always have one since it's not a terminator"); 1210 1211 // Insert after RelocatedBase 1212 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1213 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1214 1215 // If gc_relocate does not match the actual type, cast it to the right type. 1216 // In theory, there must be a bitcast after gc_relocate if the type does not 1217 // match, and we should reuse it to get the derived pointer. But it could be 1218 // cases like this: 1219 // bb1: 1220 // ... 1221 // %g1 = call coldcc i8 addrspace(1)* 1222 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1223 // 1224 // bb2: 1225 // ... 1226 // %g2 = call coldcc i8 addrspace(1)* 1227 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1228 // 1229 // merge: 1230 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1231 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1232 // 1233 // In this case, we can not find the bitcast any more. So we insert a new 1234 // bitcast no matter there is already one or not. In this way, we can handle 1235 // all cases, and the extra bitcast should be optimized away in later 1236 // passes. 1237 Value *ActualRelocatedBase = RelocatedBase; 1238 if (RelocatedBase->getType() != Base->getType()) { 1239 ActualRelocatedBase = 1240 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1241 } 1242 Value *Replacement = 1243 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1244 ArrayRef(OffsetV)); 1245 Replacement->takeName(ToReplace); 1246 // If the newly generated derived pointer's type does not match the original 1247 // derived pointer's type, cast the new derived pointer to match it. Same 1248 // reasoning as above. 1249 Value *ActualReplacement = Replacement; 1250 if (Replacement->getType() != ToReplace->getType()) { 1251 ActualReplacement = 1252 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1253 } 1254 ToReplace->replaceAllUsesWith(ActualReplacement); 1255 ToReplace->eraseFromParent(); 1256 1257 MadeChange = true; 1258 } 1259 return MadeChange; 1260 } 1261 1262 // Turns this: 1263 // 1264 // %base = ... 1265 // %ptr = gep %base + 15 1266 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1267 // %base' = relocate(%tok, i32 4, i32 4) 1268 // %ptr' = relocate(%tok, i32 4, i32 5) 1269 // %val = load %ptr' 1270 // 1271 // into this: 1272 // 1273 // %base = ... 1274 // %ptr = gep %base + 15 1275 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1276 // %base' = gc.relocate(%tok, i32 4, i32 4) 1277 // %ptr' = gep %base' + 15 1278 // %val = load %ptr' 1279 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1280 bool MadeChange = false; 1281 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1282 for (auto *U : I.users()) 1283 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1284 // Collect all the relocate calls associated with a statepoint 1285 AllRelocateCalls.push_back(Relocate); 1286 1287 // We need at least one base pointer relocation + one derived pointer 1288 // relocation to mangle 1289 if (AllRelocateCalls.size() < 2) 1290 return false; 1291 1292 // RelocateInstMap is a mapping from the base relocate instruction to the 1293 // corresponding derived relocate instructions 1294 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1295 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1296 if (RelocateInstMap.empty()) 1297 return false; 1298 1299 for (auto &Item : RelocateInstMap) 1300 // Item.first is the RelocatedBase to offset against 1301 // Item.second is the vector of Targets to replace 1302 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1303 return MadeChange; 1304 } 1305 1306 /// Sink the specified cast instruction into its user blocks. 1307 static bool SinkCast(CastInst *CI) { 1308 BasicBlock *DefBB = CI->getParent(); 1309 1310 /// InsertedCasts - Only insert a cast in each block once. 1311 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1312 1313 bool MadeChange = false; 1314 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1315 UI != E;) { 1316 Use &TheUse = UI.getUse(); 1317 Instruction *User = cast<Instruction>(*UI); 1318 1319 // Figure out which BB this cast is used in. For PHI's this is the 1320 // appropriate predecessor block. 1321 BasicBlock *UserBB = User->getParent(); 1322 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1323 UserBB = PN->getIncomingBlock(TheUse); 1324 } 1325 1326 // Preincrement use iterator so we don't invalidate it. 1327 ++UI; 1328 1329 // The first insertion point of a block containing an EH pad is after the 1330 // pad. If the pad is the user, we cannot sink the cast past the pad. 1331 if (User->isEHPad()) 1332 continue; 1333 1334 // If the block selected to receive the cast is an EH pad that does not 1335 // allow non-PHI instructions before the terminator, we can't sink the 1336 // cast. 1337 if (UserBB->getTerminator()->isEHPad()) 1338 continue; 1339 1340 // If this user is in the same block as the cast, don't change the cast. 1341 if (UserBB == DefBB) 1342 continue; 1343 1344 // If we have already inserted a cast into this block, use it. 1345 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1346 1347 if (!InsertedCast) { 1348 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1349 assert(InsertPt != UserBB->end()); 1350 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1351 CI->getType(), "", &*InsertPt); 1352 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1353 } 1354 1355 // Replace a use of the cast with a use of the new cast. 1356 TheUse = InsertedCast; 1357 MadeChange = true; 1358 ++NumCastUses; 1359 } 1360 1361 // If we removed all uses, nuke the cast. 1362 if (CI->use_empty()) { 1363 salvageDebugInfo(*CI); 1364 CI->eraseFromParent(); 1365 MadeChange = true; 1366 } 1367 1368 return MadeChange; 1369 } 1370 1371 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1372 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1373 /// reduce the number of virtual registers that must be created and coalesced. 1374 /// 1375 /// Return true if any changes are made. 1376 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1377 const DataLayout &DL) { 1378 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1379 // than sinking only nop casts, but is helpful on some platforms. 1380 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1381 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1382 ASC->getDestAddressSpace())) 1383 return false; 1384 } 1385 1386 // If this is a noop copy, 1387 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1388 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1389 1390 // This is an fp<->int conversion? 1391 if (SrcVT.isInteger() != DstVT.isInteger()) 1392 return false; 1393 1394 // If this is an extension, it will be a zero or sign extension, which 1395 // isn't a noop. 1396 if (SrcVT.bitsLT(DstVT)) 1397 return false; 1398 1399 // If these values will be promoted, find out what they will be promoted 1400 // to. This helps us consider truncates on PPC as noop copies when they 1401 // are. 1402 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1403 TargetLowering::TypePromoteInteger) 1404 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1405 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1406 TargetLowering::TypePromoteInteger) 1407 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1408 1409 // If, after promotion, these are the same types, this is a noop copy. 1410 if (SrcVT != DstVT) 1411 return false; 1412 1413 return SinkCast(CI); 1414 } 1415 1416 // Match a simple increment by constant operation. Note that if a sub is 1417 // matched, the step is negated (as if the step had been canonicalized to 1418 // an add, even though we leave the instruction alone.) 1419 bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1420 Constant *&Step) { 1421 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1422 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1423 m_Instruction(LHS), m_Constant(Step))))) 1424 return true; 1425 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1426 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1427 m_Instruction(LHS), m_Constant(Step))))) { 1428 Step = ConstantExpr::getNeg(Step); 1429 return true; 1430 } 1431 return false; 1432 } 1433 1434 /// If given \p PN is an inductive variable with value IVInc coming from the 1435 /// backedge, and on each iteration it gets increased by Step, return pair 1436 /// <IVInc, Step>. Otherwise, return std::nullopt. 1437 static std::optional<std::pair<Instruction *, Constant *>> 1438 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1439 const Loop *L = LI->getLoopFor(PN->getParent()); 1440 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1441 return std::nullopt; 1442 auto *IVInc = 1443 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1444 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1445 return std::nullopt; 1446 Instruction *LHS = nullptr; 1447 Constant *Step = nullptr; 1448 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1449 return std::make_pair(IVInc, Step); 1450 return std::nullopt; 1451 } 1452 1453 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1454 auto *I = dyn_cast<Instruction>(V); 1455 if (!I) 1456 return false; 1457 Instruction *LHS = nullptr; 1458 Constant *Step = nullptr; 1459 if (!matchIncrement(I, LHS, Step)) 1460 return false; 1461 if (auto *PN = dyn_cast<PHINode>(LHS)) 1462 if (auto IVInc = getIVIncrement(PN, LI)) 1463 return IVInc->first == I; 1464 return false; 1465 } 1466 1467 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1468 Value *Arg0, Value *Arg1, 1469 CmpInst *Cmp, 1470 Intrinsic::ID IID) { 1471 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1472 if (!isIVIncrement(BO, LI)) 1473 return false; 1474 const Loop *L = LI->getLoopFor(BO->getParent()); 1475 assert(L && "L should not be null after isIVIncrement()"); 1476 // Do not risk on moving increment into a child loop. 1477 if (LI->getLoopFor(Cmp->getParent()) != L) 1478 return false; 1479 1480 // Finally, we need to ensure that the insert point will dominate all 1481 // existing uses of the increment. 1482 1483 auto &DT = getDT(*BO->getParent()->getParent()); 1484 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1485 // If we're moving up the dom tree, all uses are trivially dominated. 1486 // (This is the common case for code produced by LSR.) 1487 return true; 1488 1489 // Otherwise, special case the single use in the phi recurrence. 1490 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1491 }; 1492 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1493 // We used to use a dominator tree here to allow multi-block optimization. 1494 // But that was problematic because: 1495 // 1. It could cause a perf regression by hoisting the math op into the 1496 // critical path. 1497 // 2. It could cause a perf regression by creating a value that was live 1498 // across multiple blocks and increasing register pressure. 1499 // 3. Use of a dominator tree could cause large compile-time regression. 1500 // This is because we recompute the DT on every change in the main CGP 1501 // run-loop. The recomputing is probably unnecessary in many cases, so if 1502 // that was fixed, using a DT here would be ok. 1503 // 1504 // There is one important particular case we still want to handle: if BO is 1505 // the IV increment. Important properties that make it profitable: 1506 // - We can speculate IV increment anywhere in the loop (as long as the 1507 // indvar Phi is its only user); 1508 // - Upon computing Cmp, we effectively compute something equivalent to the 1509 // IV increment (despite it loops differently in the IR). So moving it up 1510 // to the cmp point does not really increase register pressure. 1511 return false; 1512 } 1513 1514 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1515 if (BO->getOpcode() == Instruction::Add && 1516 IID == Intrinsic::usub_with_overflow) { 1517 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1518 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1519 } 1520 1521 // Insert at the first instruction of the pair. 1522 Instruction *InsertPt = nullptr; 1523 for (Instruction &Iter : *Cmp->getParent()) { 1524 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1525 // the overflow intrinsic are defined. 1526 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1527 InsertPt = &Iter; 1528 break; 1529 } 1530 } 1531 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1532 1533 IRBuilder<> Builder(InsertPt); 1534 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1535 if (BO->getOpcode() != Instruction::Xor) { 1536 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1537 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1538 } else 1539 assert(BO->hasOneUse() && 1540 "Patterns with XOr should use the BO only in the compare"); 1541 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1542 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1543 Cmp->eraseFromParent(); 1544 BO->eraseFromParent(); 1545 return true; 1546 } 1547 1548 /// Match special-case patterns that check for unsigned add overflow. 1549 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1550 BinaryOperator *&Add) { 1551 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1552 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1553 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1554 1555 // We are not expecting non-canonical/degenerate code. Just bail out. 1556 if (isa<Constant>(A)) 1557 return false; 1558 1559 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1560 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1561 B = ConstantInt::get(B->getType(), 1); 1562 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1563 B = ConstantInt::get(B->getType(), -1); 1564 else 1565 return false; 1566 1567 // Check the users of the variable operand of the compare looking for an add 1568 // with the adjusted constant. 1569 for (User *U : A->users()) { 1570 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1571 Add = cast<BinaryOperator>(U); 1572 return true; 1573 } 1574 } 1575 return false; 1576 } 1577 1578 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1579 /// intrinsic. Return true if any changes were made. 1580 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1581 ModifyDT &ModifiedDT) { 1582 Value *A, *B; 1583 BinaryOperator *Add; 1584 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1585 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1586 return false; 1587 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1588 A = Add->getOperand(0); 1589 B = Add->getOperand(1); 1590 } 1591 1592 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1593 TLI->getValueType(*DL, Add->getType()), 1594 Add->hasNUsesOrMore(2))) 1595 return false; 1596 1597 // We don't want to move around uses of condition values this late, so we 1598 // check if it is legal to create the call to the intrinsic in the basic 1599 // block containing the icmp. 1600 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1601 return false; 1602 1603 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1604 Intrinsic::uadd_with_overflow)) 1605 return false; 1606 1607 // Reset callers - do not crash by iterating over a dead instruction. 1608 ModifiedDT = ModifyDT::ModifyInstDT; 1609 return true; 1610 } 1611 1612 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1613 ModifyDT &ModifiedDT) { 1614 // We are not expecting non-canonical/degenerate code. Just bail out. 1615 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1616 if (isa<Constant>(A) && isa<Constant>(B)) 1617 return false; 1618 1619 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1620 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1621 if (Pred == ICmpInst::ICMP_UGT) { 1622 std::swap(A, B); 1623 Pred = ICmpInst::ICMP_ULT; 1624 } 1625 // Convert special-case: (A == 0) is the same as (A u< 1). 1626 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1627 B = ConstantInt::get(B->getType(), 1); 1628 Pred = ICmpInst::ICMP_ULT; 1629 } 1630 // Convert special-case: (A != 0) is the same as (0 u< A). 1631 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1632 std::swap(A, B); 1633 Pred = ICmpInst::ICMP_ULT; 1634 } 1635 if (Pred != ICmpInst::ICMP_ULT) 1636 return false; 1637 1638 // Walk the users of a variable operand of a compare looking for a subtract or 1639 // add with that same operand. Also match the 2nd operand of the compare to 1640 // the add/sub, but that may be a negated constant operand of an add. 1641 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1642 BinaryOperator *Sub = nullptr; 1643 for (User *U : CmpVariableOperand->users()) { 1644 // A - B, A u< B --> usubo(A, B) 1645 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1646 Sub = cast<BinaryOperator>(U); 1647 break; 1648 } 1649 1650 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1651 const APInt *CmpC, *AddC; 1652 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1653 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1654 Sub = cast<BinaryOperator>(U); 1655 break; 1656 } 1657 } 1658 if (!Sub) 1659 return false; 1660 1661 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1662 TLI->getValueType(*DL, Sub->getType()), 1663 Sub->hasNUsesOrMore(2))) 1664 return false; 1665 1666 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1667 Cmp, Intrinsic::usub_with_overflow)) 1668 return false; 1669 1670 // Reset callers - do not crash by iterating over a dead instruction. 1671 ModifiedDT = ModifyDT::ModifyInstDT; 1672 return true; 1673 } 1674 1675 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1676 /// registers that must be created and coalesced. This is a clear win except on 1677 /// targets with multiple condition code registers (PowerPC), where it might 1678 /// lose; some adjustment may be wanted there. 1679 /// 1680 /// Return true if any changes are made. 1681 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1682 if (TLI.hasMultipleConditionRegisters()) 1683 return false; 1684 1685 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1686 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1687 return false; 1688 1689 // Only insert a cmp in each block once. 1690 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1691 1692 bool MadeChange = false; 1693 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1694 UI != E;) { 1695 Use &TheUse = UI.getUse(); 1696 Instruction *User = cast<Instruction>(*UI); 1697 1698 // Preincrement use iterator so we don't invalidate it. 1699 ++UI; 1700 1701 // Don't bother for PHI nodes. 1702 if (isa<PHINode>(User)) 1703 continue; 1704 1705 // Figure out which BB this cmp is used in. 1706 BasicBlock *UserBB = User->getParent(); 1707 BasicBlock *DefBB = Cmp->getParent(); 1708 1709 // If this user is in the same block as the cmp, don't change the cmp. 1710 if (UserBB == DefBB) 1711 continue; 1712 1713 // If we have already inserted a cmp into this block, use it. 1714 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1715 1716 if (!InsertedCmp) { 1717 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1718 assert(InsertPt != UserBB->end()); 1719 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1720 Cmp->getOperand(0), Cmp->getOperand(1), "", 1721 &*InsertPt); 1722 // Propagate the debug info. 1723 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1724 } 1725 1726 // Replace a use of the cmp with a use of the new cmp. 1727 TheUse = InsertedCmp; 1728 MadeChange = true; 1729 ++NumCmpUses; 1730 } 1731 1732 // If we removed all uses, nuke the cmp. 1733 if (Cmp->use_empty()) { 1734 Cmp->eraseFromParent(); 1735 MadeChange = true; 1736 } 1737 1738 return MadeChange; 1739 } 1740 1741 /// For pattern like: 1742 /// 1743 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1744 /// ... 1745 /// DomBB: 1746 /// ... 1747 /// br DomCond, TrueBB, CmpBB 1748 /// CmpBB: (with DomBB being the single predecessor) 1749 /// ... 1750 /// Cmp = icmp eq CmpOp0, CmpOp1 1751 /// ... 1752 /// 1753 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1754 /// different from lowering of icmp eq (PowerPC). This function try to convert 1755 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1756 /// After that, DomCond and Cmp can use the same comparison so reduce one 1757 /// comparison. 1758 /// 1759 /// Return true if any changes are made. 1760 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1761 const TargetLowering &TLI) { 1762 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1763 return false; 1764 1765 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1766 if (Pred != ICmpInst::ICMP_EQ) 1767 return false; 1768 1769 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1770 // icmp slt/sgt would introduce more redundant LLVM IR. 1771 for (User *U : Cmp->users()) { 1772 if (isa<BranchInst>(U)) 1773 continue; 1774 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1775 continue; 1776 return false; 1777 } 1778 1779 // This is a cheap/incomplete check for dominance - just match a single 1780 // predecessor with a conditional branch. 1781 BasicBlock *CmpBB = Cmp->getParent(); 1782 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1783 if (!DomBB) 1784 return false; 1785 1786 // We want to ensure that the only way control gets to the comparison of 1787 // interest is that a less/greater than comparison on the same operands is 1788 // false. 1789 Value *DomCond; 1790 BasicBlock *TrueBB, *FalseBB; 1791 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1792 return false; 1793 if (CmpBB != FalseBB) 1794 return false; 1795 1796 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1797 ICmpInst::Predicate DomPred; 1798 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1799 return false; 1800 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1801 return false; 1802 1803 // Convert the equality comparison to the opposite of the dominating 1804 // comparison and swap the direction for all branch/select users. 1805 // We have conceptually converted: 1806 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1807 // to 1808 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1809 // And similarly for branches. 1810 for (User *U : Cmp->users()) { 1811 if (auto *BI = dyn_cast<BranchInst>(U)) { 1812 assert(BI->isConditional() && "Must be conditional"); 1813 BI->swapSuccessors(); 1814 continue; 1815 } 1816 if (auto *SI = dyn_cast<SelectInst>(U)) { 1817 // Swap operands 1818 SI->swapValues(); 1819 SI->swapProfMetadata(); 1820 continue; 1821 } 1822 llvm_unreachable("Must be a branch or a select"); 1823 } 1824 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1825 return true; 1826 } 1827 1828 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 1829 if (sinkCmpExpression(Cmp, *TLI)) 1830 return true; 1831 1832 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1833 return true; 1834 1835 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1836 return true; 1837 1838 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1839 return true; 1840 1841 return false; 1842 } 1843 1844 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1845 /// used in a compare to allow isel to generate better code for targets where 1846 /// this operation can be combined. 1847 /// 1848 /// Return true if any changes are made. 1849 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 1850 SetOfInstrs &InsertedInsts) { 1851 // Double-check that we're not trying to optimize an instruction that was 1852 // already optimized by some other part of this pass. 1853 assert(!InsertedInsts.count(AndI) && 1854 "Attempting to optimize already optimized and instruction"); 1855 (void)InsertedInsts; 1856 1857 // Nothing to do for single use in same basic block. 1858 if (AndI->hasOneUse() && 1859 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1860 return false; 1861 1862 // Try to avoid cases where sinking/duplicating is likely to increase register 1863 // pressure. 1864 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1865 !isa<ConstantInt>(AndI->getOperand(1)) && 1866 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1867 return false; 1868 1869 for (auto *U : AndI->users()) { 1870 Instruction *User = cast<Instruction>(U); 1871 1872 // Only sink 'and' feeding icmp with 0. 1873 if (!isa<ICmpInst>(User)) 1874 return false; 1875 1876 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1877 if (!CmpC || !CmpC->isZero()) 1878 return false; 1879 } 1880 1881 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1882 return false; 1883 1884 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1885 LLVM_DEBUG(AndI->getParent()->dump()); 1886 1887 // Push the 'and' into the same block as the icmp 0. There should only be 1888 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1889 // others, so we don't need to keep track of which BBs we insert into. 1890 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1891 UI != E;) { 1892 Use &TheUse = UI.getUse(); 1893 Instruction *User = cast<Instruction>(*UI); 1894 1895 // Preincrement use iterator so we don't invalidate it. 1896 ++UI; 1897 1898 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1899 1900 // Keep the 'and' in the same place if the use is already in the same block. 1901 Instruction *InsertPt = 1902 User->getParent() == AndI->getParent() ? AndI : User; 1903 Instruction *InsertedAnd = 1904 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1905 AndI->getOperand(1), "", InsertPt); 1906 // Propagate the debug info. 1907 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1908 1909 // Replace a use of the 'and' with a use of the new 'and'. 1910 TheUse = InsertedAnd; 1911 ++NumAndUses; 1912 LLVM_DEBUG(User->getParent()->dump()); 1913 } 1914 1915 // We removed all uses, nuke the and. 1916 AndI->eraseFromParent(); 1917 return true; 1918 } 1919 1920 /// Check if the candidates could be combined with a shift instruction, which 1921 /// includes: 1922 /// 1. Truncate instruction 1923 /// 2. And instruction and the imm is a mask of the low bits: 1924 /// imm & (imm+1) == 0 1925 static bool isExtractBitsCandidateUse(Instruction *User) { 1926 if (!isa<TruncInst>(User)) { 1927 if (User->getOpcode() != Instruction::And || 1928 !isa<ConstantInt>(User->getOperand(1))) 1929 return false; 1930 1931 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1932 1933 if ((Cimm & (Cimm + 1)).getBoolValue()) 1934 return false; 1935 } 1936 return true; 1937 } 1938 1939 /// Sink both shift and truncate instruction to the use of truncate's BB. 1940 static bool 1941 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1942 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1943 const TargetLowering &TLI, const DataLayout &DL) { 1944 BasicBlock *UserBB = User->getParent(); 1945 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1946 auto *TruncI = cast<TruncInst>(User); 1947 bool MadeChange = false; 1948 1949 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1950 TruncE = TruncI->user_end(); 1951 TruncUI != TruncE;) { 1952 1953 Use &TruncTheUse = TruncUI.getUse(); 1954 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1955 // Preincrement use iterator so we don't invalidate it. 1956 1957 ++TruncUI; 1958 1959 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1960 if (!ISDOpcode) 1961 continue; 1962 1963 // If the use is actually a legal node, there will not be an 1964 // implicit truncate. 1965 // FIXME: always querying the result type is just an 1966 // approximation; some nodes' legality is determined by the 1967 // operand or other means. There's no good way to find out though. 1968 if (TLI.isOperationLegalOrCustom( 1969 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1970 continue; 1971 1972 // Don't bother for PHI nodes. 1973 if (isa<PHINode>(TruncUser)) 1974 continue; 1975 1976 BasicBlock *TruncUserBB = TruncUser->getParent(); 1977 1978 if (UserBB == TruncUserBB) 1979 continue; 1980 1981 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1982 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1983 1984 if (!InsertedShift && !InsertedTrunc) { 1985 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1986 assert(InsertPt != TruncUserBB->end()); 1987 // Sink the shift 1988 if (ShiftI->getOpcode() == Instruction::AShr) 1989 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1990 "", &*InsertPt); 1991 else 1992 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1993 "", &*InsertPt); 1994 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1995 1996 // Sink the trunc 1997 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1998 TruncInsertPt++; 1999 assert(TruncInsertPt != TruncUserBB->end()); 2000 2001 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2002 TruncI->getType(), "", &*TruncInsertPt); 2003 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2004 2005 MadeChange = true; 2006 2007 TruncTheUse = InsertedTrunc; 2008 } 2009 } 2010 return MadeChange; 2011 } 2012 2013 /// Sink the shift *right* instruction into user blocks if the uses could 2014 /// potentially be combined with this shift instruction and generate BitExtract 2015 /// instruction. It will only be applied if the architecture supports BitExtract 2016 /// instruction. Here is an example: 2017 /// BB1: 2018 /// %x.extract.shift = lshr i64 %arg1, 32 2019 /// BB2: 2020 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2021 /// ==> 2022 /// 2023 /// BB2: 2024 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2025 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2026 /// 2027 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2028 /// instruction. 2029 /// Return true if any changes are made. 2030 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2031 const TargetLowering &TLI, 2032 const DataLayout &DL) { 2033 BasicBlock *DefBB = ShiftI->getParent(); 2034 2035 /// Only insert instructions in each block once. 2036 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2037 2038 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2039 2040 bool MadeChange = false; 2041 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2042 UI != E;) { 2043 Use &TheUse = UI.getUse(); 2044 Instruction *User = cast<Instruction>(*UI); 2045 // Preincrement use iterator so we don't invalidate it. 2046 ++UI; 2047 2048 // Don't bother for PHI nodes. 2049 if (isa<PHINode>(User)) 2050 continue; 2051 2052 if (!isExtractBitsCandidateUse(User)) 2053 continue; 2054 2055 BasicBlock *UserBB = User->getParent(); 2056 2057 if (UserBB == DefBB) { 2058 // If the shift and truncate instruction are in the same BB. The use of 2059 // the truncate(TruncUse) may still introduce another truncate if not 2060 // legal. In this case, we would like to sink both shift and truncate 2061 // instruction to the BB of TruncUse. 2062 // for example: 2063 // BB1: 2064 // i64 shift.result = lshr i64 opnd, imm 2065 // trunc.result = trunc shift.result to i16 2066 // 2067 // BB2: 2068 // ----> We will have an implicit truncate here if the architecture does 2069 // not have i16 compare. 2070 // cmp i16 trunc.result, opnd2 2071 // 2072 if (isa<TruncInst>(User) && 2073 shiftIsLegal 2074 // If the type of the truncate is legal, no truncate will be 2075 // introduced in other basic blocks. 2076 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2077 MadeChange = 2078 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2079 2080 continue; 2081 } 2082 // If we have already inserted a shift into this block, use it. 2083 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2084 2085 if (!InsertedShift) { 2086 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2087 assert(InsertPt != UserBB->end()); 2088 2089 if (ShiftI->getOpcode() == Instruction::AShr) 2090 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 2091 "", &*InsertPt); 2092 else 2093 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 2094 "", &*InsertPt); 2095 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2096 2097 MadeChange = true; 2098 } 2099 2100 // Replace a use of the shift with a use of the new shift. 2101 TheUse = InsertedShift; 2102 } 2103 2104 // If we removed all uses, or there are none, nuke the shift. 2105 if (ShiftI->use_empty()) { 2106 salvageDebugInfo(*ShiftI); 2107 ShiftI->eraseFromParent(); 2108 MadeChange = true; 2109 } 2110 2111 return MadeChange; 2112 } 2113 2114 /// If counting leading or trailing zeros is an expensive operation and a zero 2115 /// input is defined, add a check for zero to avoid calling the intrinsic. 2116 /// 2117 /// We want to transform: 2118 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2119 /// 2120 /// into: 2121 /// entry: 2122 /// %cmpz = icmp eq i64 %A, 0 2123 /// br i1 %cmpz, label %cond.end, label %cond.false 2124 /// cond.false: 2125 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2126 /// br label %cond.end 2127 /// cond.end: 2128 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2129 /// 2130 /// If the transform is performed, return true and set ModifiedDT to true. 2131 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2132 const TargetLowering *TLI, 2133 const DataLayout *DL, ModifyDT &ModifiedDT, 2134 SmallSet<BasicBlock *, 32> &FreshBBs, 2135 bool IsHugeFunc) { 2136 // If a zero input is undefined, it doesn't make sense to despeculate that. 2137 if (match(CountZeros->getOperand(1), m_One())) 2138 return false; 2139 2140 // If it's cheap to speculate, there's nothing to do. 2141 Type *Ty = CountZeros->getType(); 2142 auto IntrinsicID = CountZeros->getIntrinsicID(); 2143 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2144 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2145 return false; 2146 2147 // Only handle legal scalar cases. Anything else requires too much work. 2148 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2149 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2150 return false; 2151 2152 // Bail if the value is never zero. 2153 Use &Op = CountZeros->getOperandUse(0); 2154 if (isKnownNonZero(Op, *DL)) 2155 return false; 2156 2157 // The intrinsic will be sunk behind a compare against zero and branch. 2158 BasicBlock *StartBlock = CountZeros->getParent(); 2159 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2160 if (IsHugeFunc) 2161 FreshBBs.insert(CallBlock); 2162 2163 // Create another block after the count zero intrinsic. A PHI will be added 2164 // in this block to select the result of the intrinsic or the bit-width 2165 // constant if the input to the intrinsic is zero. 2166 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2167 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2168 if (IsHugeFunc) 2169 FreshBBs.insert(EndBlock); 2170 2171 // Set up a builder to create a compare, conditional branch, and PHI. 2172 IRBuilder<> Builder(CountZeros->getContext()); 2173 Builder.SetInsertPoint(StartBlock->getTerminator()); 2174 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2175 2176 // Replace the unconditional branch that was created by the first split with 2177 // a compare against zero and a conditional branch. 2178 Value *Zero = Constant::getNullValue(Ty); 2179 // Avoid introducing branch on poison. This also replaces the ctz operand. 2180 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2181 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2182 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2183 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2184 StartBlock->getTerminator()->eraseFromParent(); 2185 2186 // Create a PHI in the end block to select either the output of the intrinsic 2187 // or the bit width of the operand. 2188 Builder.SetInsertPoint(&EndBlock->front()); 2189 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2190 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2191 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2192 PN->addIncoming(BitWidth, StartBlock); 2193 PN->addIncoming(CountZeros, CallBlock); 2194 2195 // We are explicitly handling the zero case, so we can set the intrinsic's 2196 // undefined zero argument to 'true'. This will also prevent reprocessing the 2197 // intrinsic; we only despeculate when a zero input is defined. 2198 CountZeros->setArgOperand(1, Builder.getTrue()); 2199 ModifiedDT = ModifyDT::ModifyBBDT; 2200 return true; 2201 } 2202 2203 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2204 BasicBlock *BB = CI->getParent(); 2205 2206 // Lower inline assembly if we can. 2207 // If we found an inline asm expession, and if the target knows how to 2208 // lower it to normal LLVM code, do so now. 2209 if (CI->isInlineAsm()) { 2210 if (TLI->ExpandInlineAsm(CI)) { 2211 // Avoid invalidating the iterator. 2212 CurInstIterator = BB->begin(); 2213 // Avoid processing instructions out of order, which could cause 2214 // reuse before a value is defined. 2215 SunkAddrs.clear(); 2216 return true; 2217 } 2218 // Sink address computing for memory operands into the block. 2219 if (optimizeInlineAsmInst(CI)) 2220 return true; 2221 } 2222 2223 // Align the pointer arguments to this call if the target thinks it's a good 2224 // idea 2225 unsigned MinSize; 2226 Align PrefAlign; 2227 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2228 for (auto &Arg : CI->args()) { 2229 // We want to align both objects whose address is used directly and 2230 // objects whose address is used in casts and GEPs, though it only makes 2231 // sense for GEPs if the offset is a multiple of the desired alignment and 2232 // if size - offset meets the size threshold. 2233 if (!Arg->getType()->isPointerTy()) 2234 continue; 2235 APInt Offset(DL->getIndexSizeInBits( 2236 cast<PointerType>(Arg->getType())->getAddressSpace()), 2237 0); 2238 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2239 uint64_t Offset2 = Offset.getLimitedValue(); 2240 if (!isAligned(PrefAlign, Offset2)) 2241 continue; 2242 AllocaInst *AI; 2243 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2244 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2245 AI->setAlignment(PrefAlign); 2246 // Global variables can only be aligned if they are defined in this 2247 // object (i.e. they are uniquely initialized in this object), and 2248 // over-aligning global variables that have an explicit section is 2249 // forbidden. 2250 GlobalVariable *GV; 2251 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2252 GV->getPointerAlignment(*DL) < PrefAlign && 2253 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2254 GV->setAlignment(PrefAlign); 2255 } 2256 } 2257 // If this is a memcpy (or similar) then we may be able to improve the 2258 // alignment. 2259 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2260 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2261 MaybeAlign MIDestAlign = MI->getDestAlign(); 2262 if (!MIDestAlign || DestAlign > *MIDestAlign) 2263 MI->setDestAlignment(DestAlign); 2264 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2265 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2266 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2267 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2268 MTI->setSourceAlignment(SrcAlign); 2269 } 2270 } 2271 2272 // If we have a cold call site, try to sink addressing computation into the 2273 // cold block. This interacts with our handling for loads and stores to 2274 // ensure that we can fold all uses of a potential addressing computation 2275 // into their uses. TODO: generalize this to work over profiling data 2276 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2277 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2278 for (auto &Arg : CI->args()) { 2279 if (!Arg->getType()->isPointerTy()) 2280 continue; 2281 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2282 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2283 } 2284 2285 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2286 if (II) { 2287 switch (II->getIntrinsicID()) { 2288 default: 2289 break; 2290 case Intrinsic::assume: 2291 llvm_unreachable("llvm.assume should have been removed already"); 2292 case Intrinsic::experimental_widenable_condition: { 2293 // Give up on future widening oppurtunties so that we can fold away dead 2294 // paths and merge blocks before going into block-local instruction 2295 // selection. 2296 if (II->use_empty()) { 2297 II->eraseFromParent(); 2298 return true; 2299 } 2300 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2301 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2302 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2303 }); 2304 return true; 2305 } 2306 case Intrinsic::objectsize: 2307 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2308 case Intrinsic::is_constant: 2309 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2310 case Intrinsic::aarch64_stlxr: 2311 case Intrinsic::aarch64_stxr: { 2312 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2313 if (!ExtVal || !ExtVal->hasOneUse() || 2314 ExtVal->getParent() == CI->getParent()) 2315 return false; 2316 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2317 ExtVal->moveBefore(CI); 2318 // Mark this instruction as "inserted by CGP", so that other 2319 // optimizations don't touch it. 2320 InsertedInsts.insert(ExtVal); 2321 return true; 2322 } 2323 2324 case Intrinsic::launder_invariant_group: 2325 case Intrinsic::strip_invariant_group: { 2326 Value *ArgVal = II->getArgOperand(0); 2327 auto it = LargeOffsetGEPMap.find(II); 2328 if (it != LargeOffsetGEPMap.end()) { 2329 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2330 // Make sure not to have to deal with iterator invalidation 2331 // after possibly adding ArgVal to LargeOffsetGEPMap. 2332 auto GEPs = std::move(it->second); 2333 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2334 LargeOffsetGEPMap.erase(II); 2335 } 2336 2337 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2338 II->eraseFromParent(); 2339 return true; 2340 } 2341 case Intrinsic::cttz: 2342 case Intrinsic::ctlz: 2343 // If counting zeros is expensive, try to avoid it. 2344 return despeculateCountZeros(II, TLI, DL, ModifiedDT, FreshBBs, 2345 IsHugeFunc); 2346 case Intrinsic::fshl: 2347 case Intrinsic::fshr: 2348 return optimizeFunnelShift(II); 2349 case Intrinsic::dbg_assign: 2350 case Intrinsic::dbg_value: 2351 return fixupDbgValue(II); 2352 case Intrinsic::vscale: { 2353 // If datalayout has no special restrictions on vector data layout, 2354 // replace `llvm.vscale` by an equivalent constant expression 2355 // to benefit from cheap constant propagation. 2356 Type *ScalableVectorTy = 2357 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2358 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinValue() == 8) { 2359 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2360 auto *One = ConstantInt::getSigned(II->getType(), 1); 2361 auto *CGep = 2362 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2363 replaceAllUsesWith(II, ConstantExpr::getPtrToInt(CGep, II->getType()), 2364 FreshBBs, IsHugeFunc); 2365 II->eraseFromParent(); 2366 return true; 2367 } 2368 break; 2369 } 2370 case Intrinsic::masked_gather: 2371 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2372 case Intrinsic::masked_scatter: 2373 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2374 } 2375 2376 SmallVector<Value *, 2> PtrOps; 2377 Type *AccessTy; 2378 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2379 while (!PtrOps.empty()) { 2380 Value *PtrVal = PtrOps.pop_back_val(); 2381 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2382 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2383 return true; 2384 } 2385 } 2386 2387 // From here on out we're working with named functions. 2388 if (!CI->getCalledFunction()) 2389 return false; 2390 2391 // Lower all default uses of _chk calls. This is very similar 2392 // to what InstCombineCalls does, but here we are only lowering calls 2393 // to fortified library functions (e.g. __memcpy_chk) that have the default 2394 // "don't know" as the objectsize. Anything else should be left alone. 2395 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2396 IRBuilder<> Builder(CI); 2397 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2398 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2399 CI->eraseFromParent(); 2400 return true; 2401 } 2402 2403 return false; 2404 } 2405 2406 /// Look for opportunities to duplicate return instructions to the predecessor 2407 /// to enable tail call optimizations. The case it is currently looking for is: 2408 /// @code 2409 /// bb0: 2410 /// %tmp0 = tail call i32 @f0() 2411 /// br label %return 2412 /// bb1: 2413 /// %tmp1 = tail call i32 @f1() 2414 /// br label %return 2415 /// bb2: 2416 /// %tmp2 = tail call i32 @f2() 2417 /// br label %return 2418 /// return: 2419 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2420 /// ret i32 %retval 2421 /// @endcode 2422 /// 2423 /// => 2424 /// 2425 /// @code 2426 /// bb0: 2427 /// %tmp0 = tail call i32 @f0() 2428 /// ret i32 %tmp0 2429 /// bb1: 2430 /// %tmp1 = tail call i32 @f1() 2431 /// ret i32 %tmp1 2432 /// bb2: 2433 /// %tmp2 = tail call i32 @f2() 2434 /// ret i32 %tmp2 2435 /// @endcode 2436 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2437 ModifyDT &ModifiedDT) { 2438 if (!BB->getTerminator()) 2439 return false; 2440 2441 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2442 if (!RetI) 2443 return false; 2444 2445 PHINode *PN = nullptr; 2446 ExtractValueInst *EVI = nullptr; 2447 BitCastInst *BCI = nullptr; 2448 Value *V = RetI->getReturnValue(); 2449 if (V) { 2450 BCI = dyn_cast<BitCastInst>(V); 2451 if (BCI) 2452 V = BCI->getOperand(0); 2453 2454 EVI = dyn_cast<ExtractValueInst>(V); 2455 if (EVI) { 2456 V = EVI->getOperand(0); 2457 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2458 return false; 2459 } 2460 2461 PN = dyn_cast<PHINode>(V); 2462 if (!PN) 2463 return false; 2464 } 2465 2466 if (PN && PN->getParent() != BB) 2467 return false; 2468 2469 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2470 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2471 if (BC && BC->hasOneUse()) 2472 Inst = BC->user_back(); 2473 2474 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2475 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2476 return false; 2477 }; 2478 2479 // Make sure there are no instructions between the first instruction 2480 // and return. 2481 const Instruction *BI = BB->getFirstNonPHI(); 2482 // Skip over debug and the bitcast. 2483 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2484 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2485 BI = BI->getNextNode(); 2486 if (BI != RetI) 2487 return false; 2488 2489 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2490 /// call. 2491 const Function *F = BB->getParent(); 2492 SmallVector<BasicBlock *, 4> TailCallBBs; 2493 if (PN) { 2494 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2495 // Look through bitcasts. 2496 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2497 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2498 BasicBlock *PredBB = PN->getIncomingBlock(I); 2499 // Make sure the phi value is indeed produced by the tail call. 2500 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2501 TLI->mayBeEmittedAsTailCall(CI) && 2502 attributesPermitTailCall(F, CI, RetI, *TLI)) 2503 TailCallBBs.push_back(PredBB); 2504 } 2505 } else { 2506 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2507 for (BasicBlock *Pred : predecessors(BB)) { 2508 if (!VisitedBBs.insert(Pred).second) 2509 continue; 2510 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2511 CallInst *CI = dyn_cast<CallInst>(I); 2512 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2513 attributesPermitTailCall(F, CI, RetI, *TLI)) 2514 TailCallBBs.push_back(Pred); 2515 } 2516 } 2517 } 2518 2519 bool Changed = false; 2520 for (auto const &TailCallBB : TailCallBBs) { 2521 // Make sure the call instruction is followed by an unconditional branch to 2522 // the return block. 2523 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2524 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2525 continue; 2526 2527 // Duplicate the return into TailCallBB. 2528 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2529 assert(!VerifyBFIUpdates || 2530 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2531 BFI->setBlockFreq( 2532 BB, 2533 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2534 ModifiedDT = ModifyDT::ModifyBBDT; 2535 Changed = true; 2536 ++NumRetsDup; 2537 } 2538 2539 // If we eliminated all predecessors of the block, delete the block now. 2540 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2541 BB->eraseFromParent(); 2542 2543 return Changed; 2544 } 2545 2546 //===----------------------------------------------------------------------===// 2547 // Memory Optimization 2548 //===----------------------------------------------------------------------===// 2549 2550 namespace { 2551 2552 /// This is an extended version of TargetLowering::AddrMode 2553 /// which holds actual Value*'s for register values. 2554 struct ExtAddrMode : public TargetLowering::AddrMode { 2555 Value *BaseReg = nullptr; 2556 Value *ScaledReg = nullptr; 2557 Value *OriginalValue = nullptr; 2558 bool InBounds = true; 2559 2560 enum FieldName { 2561 NoField = 0x00, 2562 BaseRegField = 0x01, 2563 BaseGVField = 0x02, 2564 BaseOffsField = 0x04, 2565 ScaledRegField = 0x08, 2566 ScaleField = 0x10, 2567 MultipleFields = 0xff 2568 }; 2569 2570 ExtAddrMode() = default; 2571 2572 void print(raw_ostream &OS) const; 2573 void dump() const; 2574 2575 FieldName compare(const ExtAddrMode &other) { 2576 // First check that the types are the same on each field, as differing types 2577 // is something we can't cope with later on. 2578 if (BaseReg && other.BaseReg && 2579 BaseReg->getType() != other.BaseReg->getType()) 2580 return MultipleFields; 2581 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2582 return MultipleFields; 2583 if (ScaledReg && other.ScaledReg && 2584 ScaledReg->getType() != other.ScaledReg->getType()) 2585 return MultipleFields; 2586 2587 // Conservatively reject 'inbounds' mismatches. 2588 if (InBounds != other.InBounds) 2589 return MultipleFields; 2590 2591 // Check each field to see if it differs. 2592 unsigned Result = NoField; 2593 if (BaseReg != other.BaseReg) 2594 Result |= BaseRegField; 2595 if (BaseGV != other.BaseGV) 2596 Result |= BaseGVField; 2597 if (BaseOffs != other.BaseOffs) 2598 Result |= BaseOffsField; 2599 if (ScaledReg != other.ScaledReg) 2600 Result |= ScaledRegField; 2601 // Don't count 0 as being a different scale, because that actually means 2602 // unscaled (which will already be counted by having no ScaledReg). 2603 if (Scale && other.Scale && Scale != other.Scale) 2604 Result |= ScaleField; 2605 2606 if (llvm::popcount(Result) > 1) 2607 return MultipleFields; 2608 else 2609 return static_cast<FieldName>(Result); 2610 } 2611 2612 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2613 // with no offset. 2614 bool isTrivial() { 2615 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2616 // trivial if at most one of these terms is nonzero, except that BaseGV and 2617 // BaseReg both being zero actually means a null pointer value, which we 2618 // consider to be 'non-zero' here. 2619 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2620 } 2621 2622 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2623 switch (Field) { 2624 default: 2625 return nullptr; 2626 case BaseRegField: 2627 return BaseReg; 2628 case BaseGVField: 2629 return BaseGV; 2630 case ScaledRegField: 2631 return ScaledReg; 2632 case BaseOffsField: 2633 return ConstantInt::get(IntPtrTy, BaseOffs); 2634 } 2635 } 2636 2637 void SetCombinedField(FieldName Field, Value *V, 2638 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2639 switch (Field) { 2640 default: 2641 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2642 break; 2643 case ExtAddrMode::BaseRegField: 2644 BaseReg = V; 2645 break; 2646 case ExtAddrMode::BaseGVField: 2647 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2648 // in the BaseReg field. 2649 assert(BaseReg == nullptr); 2650 BaseReg = V; 2651 BaseGV = nullptr; 2652 break; 2653 case ExtAddrMode::ScaledRegField: 2654 ScaledReg = V; 2655 // If we have a mix of scaled and unscaled addrmodes then we want scale 2656 // to be the scale and not zero. 2657 if (!Scale) 2658 for (const ExtAddrMode &AM : AddrModes) 2659 if (AM.Scale) { 2660 Scale = AM.Scale; 2661 break; 2662 } 2663 break; 2664 case ExtAddrMode::BaseOffsField: 2665 // The offset is no longer a constant, so it goes in ScaledReg with a 2666 // scale of 1. 2667 assert(ScaledReg == nullptr); 2668 ScaledReg = V; 2669 Scale = 1; 2670 BaseOffs = 0; 2671 break; 2672 } 2673 } 2674 }; 2675 2676 #ifndef NDEBUG 2677 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2678 AM.print(OS); 2679 return OS; 2680 } 2681 #endif 2682 2683 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2684 void ExtAddrMode::print(raw_ostream &OS) const { 2685 bool NeedPlus = false; 2686 OS << "["; 2687 if (InBounds) 2688 OS << "inbounds "; 2689 if (BaseGV) { 2690 OS << (NeedPlus ? " + " : "") << "GV:"; 2691 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2692 NeedPlus = true; 2693 } 2694 2695 if (BaseOffs) { 2696 OS << (NeedPlus ? " + " : "") << BaseOffs; 2697 NeedPlus = true; 2698 } 2699 2700 if (BaseReg) { 2701 OS << (NeedPlus ? " + " : "") << "Base:"; 2702 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2703 NeedPlus = true; 2704 } 2705 if (Scale) { 2706 OS << (NeedPlus ? " + " : "") << Scale << "*"; 2707 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2708 } 2709 2710 OS << ']'; 2711 } 2712 2713 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2714 print(dbgs()); 2715 dbgs() << '\n'; 2716 } 2717 #endif 2718 2719 } // end anonymous namespace 2720 2721 namespace { 2722 2723 /// This class provides transaction based operation on the IR. 2724 /// Every change made through this class is recorded in the internal state and 2725 /// can be undone (rollback) until commit is called. 2726 /// CGP does not check if instructions could be speculatively executed when 2727 /// moved. Preserving the original location would pessimize the debugging 2728 /// experience, as well as negatively impact the quality of sample PGO. 2729 class TypePromotionTransaction { 2730 /// This represents the common interface of the individual transaction. 2731 /// Each class implements the logic for doing one specific modification on 2732 /// the IR via the TypePromotionTransaction. 2733 class TypePromotionAction { 2734 protected: 2735 /// The Instruction modified. 2736 Instruction *Inst; 2737 2738 public: 2739 /// Constructor of the action. 2740 /// The constructor performs the related action on the IR. 2741 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2742 2743 virtual ~TypePromotionAction() = default; 2744 2745 /// Undo the modification done by this action. 2746 /// When this method is called, the IR must be in the same state as it was 2747 /// before this action was applied. 2748 /// \pre Undoing the action works if and only if the IR is in the exact same 2749 /// state as it was directly after this action was applied. 2750 virtual void undo() = 0; 2751 2752 /// Advocate every change made by this action. 2753 /// When the results on the IR of the action are to be kept, it is important 2754 /// to call this function, otherwise hidden information may be kept forever. 2755 virtual void commit() { 2756 // Nothing to be done, this action is not doing anything. 2757 } 2758 }; 2759 2760 /// Utility to remember the position of an instruction. 2761 class InsertionHandler { 2762 /// Position of an instruction. 2763 /// Either an instruction: 2764 /// - Is the first in a basic block: BB is used. 2765 /// - Has a previous instruction: PrevInst is used. 2766 union { 2767 Instruction *PrevInst; 2768 BasicBlock *BB; 2769 } Point; 2770 2771 /// Remember whether or not the instruction had a previous instruction. 2772 bool HasPrevInstruction; 2773 2774 public: 2775 /// Record the position of \p Inst. 2776 InsertionHandler(Instruction *Inst) { 2777 BasicBlock::iterator It = Inst->getIterator(); 2778 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2779 if (HasPrevInstruction) 2780 Point.PrevInst = &*--It; 2781 else 2782 Point.BB = Inst->getParent(); 2783 } 2784 2785 /// Insert \p Inst at the recorded position. 2786 void insert(Instruction *Inst) { 2787 if (HasPrevInstruction) { 2788 if (Inst->getParent()) 2789 Inst->removeFromParent(); 2790 Inst->insertAfter(Point.PrevInst); 2791 } else { 2792 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2793 if (Inst->getParent()) 2794 Inst->moveBefore(Position); 2795 else 2796 Inst->insertBefore(Position); 2797 } 2798 } 2799 }; 2800 2801 /// Move an instruction before another. 2802 class InstructionMoveBefore : public TypePromotionAction { 2803 /// Original position of the instruction. 2804 InsertionHandler Position; 2805 2806 public: 2807 /// Move \p Inst before \p Before. 2808 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2809 : TypePromotionAction(Inst), Position(Inst) { 2810 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2811 << "\n"); 2812 Inst->moveBefore(Before); 2813 } 2814 2815 /// Move the instruction back to its original position. 2816 void undo() override { 2817 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2818 Position.insert(Inst); 2819 } 2820 }; 2821 2822 /// Set the operand of an instruction with a new value. 2823 class OperandSetter : public TypePromotionAction { 2824 /// Original operand of the instruction. 2825 Value *Origin; 2826 2827 /// Index of the modified instruction. 2828 unsigned Idx; 2829 2830 public: 2831 /// Set \p Idx operand of \p Inst with \p NewVal. 2832 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2833 : TypePromotionAction(Inst), Idx(Idx) { 2834 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2835 << "for:" << *Inst << "\n" 2836 << "with:" << *NewVal << "\n"); 2837 Origin = Inst->getOperand(Idx); 2838 Inst->setOperand(Idx, NewVal); 2839 } 2840 2841 /// Restore the original value of the instruction. 2842 void undo() override { 2843 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2844 << "for: " << *Inst << "\n" 2845 << "with: " << *Origin << "\n"); 2846 Inst->setOperand(Idx, Origin); 2847 } 2848 }; 2849 2850 /// Hide the operands of an instruction. 2851 /// Do as if this instruction was not using any of its operands. 2852 class OperandsHider : public TypePromotionAction { 2853 /// The list of original operands. 2854 SmallVector<Value *, 4> OriginalValues; 2855 2856 public: 2857 /// Remove \p Inst from the uses of the operands of \p Inst. 2858 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2859 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2860 unsigned NumOpnds = Inst->getNumOperands(); 2861 OriginalValues.reserve(NumOpnds); 2862 for (unsigned It = 0; It < NumOpnds; ++It) { 2863 // Save the current operand. 2864 Value *Val = Inst->getOperand(It); 2865 OriginalValues.push_back(Val); 2866 // Set a dummy one. 2867 // We could use OperandSetter here, but that would imply an overhead 2868 // that we are not willing to pay. 2869 Inst->setOperand(It, UndefValue::get(Val->getType())); 2870 } 2871 } 2872 2873 /// Restore the original list of uses. 2874 void undo() override { 2875 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2876 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2877 Inst->setOperand(It, OriginalValues[It]); 2878 } 2879 }; 2880 2881 /// Build a truncate instruction. 2882 class TruncBuilder : public TypePromotionAction { 2883 Value *Val; 2884 2885 public: 2886 /// Build a truncate instruction of \p Opnd producing a \p Ty 2887 /// result. 2888 /// trunc Opnd to Ty. 2889 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2890 IRBuilder<> Builder(Opnd); 2891 Builder.SetCurrentDebugLocation(DebugLoc()); 2892 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2893 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2894 } 2895 2896 /// Get the built value. 2897 Value *getBuiltValue() { return Val; } 2898 2899 /// Remove the built instruction. 2900 void undo() override { 2901 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2902 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2903 IVal->eraseFromParent(); 2904 } 2905 }; 2906 2907 /// Build a sign extension instruction. 2908 class SExtBuilder : public TypePromotionAction { 2909 Value *Val; 2910 2911 public: 2912 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2913 /// result. 2914 /// sext Opnd to Ty. 2915 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2916 : TypePromotionAction(InsertPt) { 2917 IRBuilder<> Builder(InsertPt); 2918 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2919 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2920 } 2921 2922 /// Get the built value. 2923 Value *getBuiltValue() { return Val; } 2924 2925 /// Remove the built instruction. 2926 void undo() override { 2927 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2928 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2929 IVal->eraseFromParent(); 2930 } 2931 }; 2932 2933 /// Build a zero extension instruction. 2934 class ZExtBuilder : public TypePromotionAction { 2935 Value *Val; 2936 2937 public: 2938 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2939 /// result. 2940 /// zext Opnd to Ty. 2941 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2942 : TypePromotionAction(InsertPt) { 2943 IRBuilder<> Builder(InsertPt); 2944 Builder.SetCurrentDebugLocation(DebugLoc()); 2945 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2946 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2947 } 2948 2949 /// Get the built value. 2950 Value *getBuiltValue() { return Val; } 2951 2952 /// Remove the built instruction. 2953 void undo() override { 2954 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2955 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2956 IVal->eraseFromParent(); 2957 } 2958 }; 2959 2960 /// Mutate an instruction to another type. 2961 class TypeMutator : public TypePromotionAction { 2962 /// Record the original type. 2963 Type *OrigTy; 2964 2965 public: 2966 /// Mutate the type of \p Inst into \p NewTy. 2967 TypeMutator(Instruction *Inst, Type *NewTy) 2968 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2969 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2970 << "\n"); 2971 Inst->mutateType(NewTy); 2972 } 2973 2974 /// Mutate the instruction back to its original type. 2975 void undo() override { 2976 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2977 << "\n"); 2978 Inst->mutateType(OrigTy); 2979 } 2980 }; 2981 2982 /// Replace the uses of an instruction by another instruction. 2983 class UsesReplacer : public TypePromotionAction { 2984 /// Helper structure to keep track of the replaced uses. 2985 struct InstructionAndIdx { 2986 /// The instruction using the instruction. 2987 Instruction *Inst; 2988 2989 /// The index where this instruction is used for Inst. 2990 unsigned Idx; 2991 2992 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2993 : Inst(Inst), Idx(Idx) {} 2994 }; 2995 2996 /// Keep track of the original uses (pair Instruction, Index). 2997 SmallVector<InstructionAndIdx, 4> OriginalUses; 2998 /// Keep track of the debug users. 2999 SmallVector<DbgValueInst *, 1> DbgValues; 3000 3001 /// Keep track of the new value so that we can undo it by replacing 3002 /// instances of the new value with the original value. 3003 Value *New; 3004 3005 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3006 3007 public: 3008 /// Replace all the use of \p Inst by \p New. 3009 UsesReplacer(Instruction *Inst, Value *New) 3010 : TypePromotionAction(Inst), New(New) { 3011 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3012 << "\n"); 3013 // Record the original uses. 3014 for (Use &U : Inst->uses()) { 3015 Instruction *UserI = cast<Instruction>(U.getUser()); 3016 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3017 } 3018 // Record the debug uses separately. They are not in the instruction's 3019 // use list, but they are replaced by RAUW. 3020 findDbgValues(DbgValues, Inst); 3021 3022 // Now, we can replace the uses. 3023 Inst->replaceAllUsesWith(New); 3024 } 3025 3026 /// Reassign the original uses of Inst to Inst. 3027 void undo() override { 3028 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3029 for (InstructionAndIdx &Use : OriginalUses) 3030 Use.Inst->setOperand(Use.Idx, Inst); 3031 // RAUW has replaced all original uses with references to the new value, 3032 // including the debug uses. Since we are undoing the replacements, 3033 // the original debug uses must also be reinstated to maintain the 3034 // correctness and utility of debug value instructions. 3035 for (auto *DVI : DbgValues) 3036 DVI->replaceVariableLocationOp(New, Inst); 3037 } 3038 }; 3039 3040 /// Remove an instruction from the IR. 3041 class InstructionRemover : public TypePromotionAction { 3042 /// Original position of the instruction. 3043 InsertionHandler Inserter; 3044 3045 /// Helper structure to hide all the link to the instruction. In other 3046 /// words, this helps to do as if the instruction was removed. 3047 OperandsHider Hider; 3048 3049 /// Keep track of the uses replaced, if any. 3050 UsesReplacer *Replacer = nullptr; 3051 3052 /// Keep track of instructions removed. 3053 SetOfInstrs &RemovedInsts; 3054 3055 public: 3056 /// Remove all reference of \p Inst and optionally replace all its 3057 /// uses with New. 3058 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3059 /// \pre If !Inst->use_empty(), then New != nullptr 3060 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3061 Value *New = nullptr) 3062 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3063 RemovedInsts(RemovedInsts) { 3064 if (New) 3065 Replacer = new UsesReplacer(Inst, New); 3066 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3067 RemovedInsts.insert(Inst); 3068 /// The instructions removed here will be freed after completing 3069 /// optimizeBlock() for all blocks as we need to keep track of the 3070 /// removed instructions during promotion. 3071 Inst->removeFromParent(); 3072 } 3073 3074 ~InstructionRemover() override { delete Replacer; } 3075 3076 /// Resurrect the instruction and reassign it to the proper uses if 3077 /// new value was provided when build this action. 3078 void undo() override { 3079 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3080 Inserter.insert(Inst); 3081 if (Replacer) 3082 Replacer->undo(); 3083 Hider.undo(); 3084 RemovedInsts.erase(Inst); 3085 } 3086 }; 3087 3088 public: 3089 /// Restoration point. 3090 /// The restoration point is a pointer to an action instead of an iterator 3091 /// because the iterator may be invalidated but not the pointer. 3092 using ConstRestorationPt = const TypePromotionAction *; 3093 3094 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3095 : RemovedInsts(RemovedInsts) {} 3096 3097 /// Advocate every changes made in that transaction. Return true if any change 3098 /// happen. 3099 bool commit(); 3100 3101 /// Undo all the changes made after the given point. 3102 void rollback(ConstRestorationPt Point); 3103 3104 /// Get the current restoration point. 3105 ConstRestorationPt getRestorationPoint() const; 3106 3107 /// \name API for IR modification with state keeping to support rollback. 3108 /// @{ 3109 /// Same as Instruction::setOperand. 3110 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3111 3112 /// Same as Instruction::eraseFromParent. 3113 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3114 3115 /// Same as Value::replaceAllUsesWith. 3116 void replaceAllUsesWith(Instruction *Inst, Value *New); 3117 3118 /// Same as Value::mutateType. 3119 void mutateType(Instruction *Inst, Type *NewTy); 3120 3121 /// Same as IRBuilder::createTrunc. 3122 Value *createTrunc(Instruction *Opnd, Type *Ty); 3123 3124 /// Same as IRBuilder::createSExt. 3125 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3126 3127 /// Same as IRBuilder::createZExt. 3128 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3129 3130 /// Same as Instruction::moveBefore. 3131 void moveBefore(Instruction *Inst, Instruction *Before); 3132 /// @} 3133 3134 private: 3135 /// The ordered list of actions made so far. 3136 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3137 3138 using CommitPt = 3139 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3140 3141 SetOfInstrs &RemovedInsts; 3142 }; 3143 3144 } // end anonymous namespace 3145 3146 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3147 Value *NewVal) { 3148 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3149 Inst, Idx, NewVal)); 3150 } 3151 3152 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3153 Value *NewVal) { 3154 Actions.push_back( 3155 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3156 Inst, RemovedInsts, NewVal)); 3157 } 3158 3159 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3160 Value *New) { 3161 Actions.push_back( 3162 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3163 } 3164 3165 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3166 Actions.push_back( 3167 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3168 } 3169 3170 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3171 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3172 Value *Val = Ptr->getBuiltValue(); 3173 Actions.push_back(std::move(Ptr)); 3174 return Val; 3175 } 3176 3177 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3178 Type *Ty) { 3179 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3180 Value *Val = Ptr->getBuiltValue(); 3181 Actions.push_back(std::move(Ptr)); 3182 return Val; 3183 } 3184 3185 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3186 Type *Ty) { 3187 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3188 Value *Val = Ptr->getBuiltValue(); 3189 Actions.push_back(std::move(Ptr)); 3190 return Val; 3191 } 3192 3193 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3194 Instruction *Before) { 3195 Actions.push_back( 3196 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3197 Inst, Before)); 3198 } 3199 3200 TypePromotionTransaction::ConstRestorationPt 3201 TypePromotionTransaction::getRestorationPoint() const { 3202 return !Actions.empty() ? Actions.back().get() : nullptr; 3203 } 3204 3205 bool TypePromotionTransaction::commit() { 3206 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3207 Action->commit(); 3208 bool Modified = !Actions.empty(); 3209 Actions.clear(); 3210 return Modified; 3211 } 3212 3213 void TypePromotionTransaction::rollback( 3214 TypePromotionTransaction::ConstRestorationPt Point) { 3215 while (!Actions.empty() && Point != Actions.back().get()) { 3216 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3217 Curr->undo(); 3218 } 3219 } 3220 3221 namespace { 3222 3223 /// A helper class for matching addressing modes. 3224 /// 3225 /// This encapsulates the logic for matching the target-legal addressing modes. 3226 class AddressingModeMatcher { 3227 SmallVectorImpl<Instruction *> &AddrModeInsts; 3228 const TargetLowering &TLI; 3229 const TargetRegisterInfo &TRI; 3230 const DataLayout &DL; 3231 const LoopInfo &LI; 3232 const std::function<const DominatorTree &()> getDTFn; 3233 3234 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3235 /// the memory instruction that we're computing this address for. 3236 Type *AccessTy; 3237 unsigned AddrSpace; 3238 Instruction *MemoryInst; 3239 3240 /// This is the addressing mode that we're building up. This is 3241 /// part of the return value of this addressing mode matching stuff. 3242 ExtAddrMode &AddrMode; 3243 3244 /// The instructions inserted by other CodeGenPrepare optimizations. 3245 const SetOfInstrs &InsertedInsts; 3246 3247 /// A map from the instructions to their type before promotion. 3248 InstrToOrigTy &PromotedInsts; 3249 3250 /// The ongoing transaction where every action should be registered. 3251 TypePromotionTransaction &TPT; 3252 3253 // A GEP which has too large offset to be folded into the addressing mode. 3254 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3255 3256 /// This is set to true when we should not do profitability checks. 3257 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3258 bool IgnoreProfitability; 3259 3260 /// True if we are optimizing for size. 3261 bool OptSize; 3262 3263 ProfileSummaryInfo *PSI; 3264 BlockFrequencyInfo *BFI; 3265 3266 AddressingModeMatcher( 3267 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3268 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3269 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3270 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3271 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3272 TypePromotionTransaction &TPT, 3273 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3274 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3275 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3276 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3277 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3278 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3279 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3280 IgnoreProfitability = false; 3281 } 3282 3283 public: 3284 /// Find the maximal addressing mode that a load/store of V can fold, 3285 /// give an access type of AccessTy. This returns a list of involved 3286 /// instructions in AddrModeInsts. 3287 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3288 /// optimizations. 3289 /// \p PromotedInsts maps the instructions to their type before promotion. 3290 /// \p The ongoing transaction where every action should be registered. 3291 static ExtAddrMode 3292 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3293 SmallVectorImpl<Instruction *> &AddrModeInsts, 3294 const TargetLowering &TLI, const LoopInfo &LI, 3295 const std::function<const DominatorTree &()> getDTFn, 3296 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3297 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3298 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3299 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3300 ExtAddrMode Result; 3301 3302 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3303 AccessTy, AS, MemoryInst, Result, 3304 InsertedInsts, PromotedInsts, TPT, 3305 LargeOffsetGEP, OptSize, PSI, BFI) 3306 .matchAddr(V, 0); 3307 (void)Success; 3308 assert(Success && "Couldn't select *anything*?"); 3309 return Result; 3310 } 3311 3312 private: 3313 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3314 bool matchAddr(Value *Addr, unsigned Depth); 3315 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3316 bool *MovedAway = nullptr); 3317 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3318 ExtAddrMode &AMBefore, 3319 ExtAddrMode &AMAfter); 3320 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3321 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3322 Value *PromotedOperand) const; 3323 }; 3324 3325 class PhiNodeSet; 3326 3327 /// An iterator for PhiNodeSet. 3328 class PhiNodeSetIterator { 3329 PhiNodeSet *const Set; 3330 size_t CurrentIndex = 0; 3331 3332 public: 3333 /// The constructor. Start should point to either a valid element, or be equal 3334 /// to the size of the underlying SmallVector of the PhiNodeSet. 3335 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3336 PHINode *operator*() const; 3337 PhiNodeSetIterator &operator++(); 3338 bool operator==(const PhiNodeSetIterator &RHS) const; 3339 bool operator!=(const PhiNodeSetIterator &RHS) const; 3340 }; 3341 3342 /// Keeps a set of PHINodes. 3343 /// 3344 /// This is a minimal set implementation for a specific use case: 3345 /// It is very fast when there are very few elements, but also provides good 3346 /// performance when there are many. It is similar to SmallPtrSet, but also 3347 /// provides iteration by insertion order, which is deterministic and stable 3348 /// across runs. It is also similar to SmallSetVector, but provides removing 3349 /// elements in O(1) time. This is achieved by not actually removing the element 3350 /// from the underlying vector, so comes at the cost of using more memory, but 3351 /// that is fine, since PhiNodeSets are used as short lived objects. 3352 class PhiNodeSet { 3353 friend class PhiNodeSetIterator; 3354 3355 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3356 using iterator = PhiNodeSetIterator; 3357 3358 /// Keeps the elements in the order of their insertion in the underlying 3359 /// vector. To achieve constant time removal, it never deletes any element. 3360 SmallVector<PHINode *, 32> NodeList; 3361 3362 /// Keeps the elements in the underlying set implementation. This (and not the 3363 /// NodeList defined above) is the source of truth on whether an element 3364 /// is actually in the collection. 3365 MapType NodeMap; 3366 3367 /// Points to the first valid (not deleted) element when the set is not empty 3368 /// and the value is not zero. Equals to the size of the underlying vector 3369 /// when the set is empty. When the value is 0, as in the beginning, the 3370 /// first element may or may not be valid. 3371 size_t FirstValidElement = 0; 3372 3373 public: 3374 /// Inserts a new element to the collection. 3375 /// \returns true if the element is actually added, i.e. was not in the 3376 /// collection before the operation. 3377 bool insert(PHINode *Ptr) { 3378 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3379 NodeList.push_back(Ptr); 3380 return true; 3381 } 3382 return false; 3383 } 3384 3385 /// Removes the element from the collection. 3386 /// \returns whether the element is actually removed, i.e. was in the 3387 /// collection before the operation. 3388 bool erase(PHINode *Ptr) { 3389 if (NodeMap.erase(Ptr)) { 3390 SkipRemovedElements(FirstValidElement); 3391 return true; 3392 } 3393 return false; 3394 } 3395 3396 /// Removes all elements and clears the collection. 3397 void clear() { 3398 NodeMap.clear(); 3399 NodeList.clear(); 3400 FirstValidElement = 0; 3401 } 3402 3403 /// \returns an iterator that will iterate the elements in the order of 3404 /// insertion. 3405 iterator begin() { 3406 if (FirstValidElement == 0) 3407 SkipRemovedElements(FirstValidElement); 3408 return PhiNodeSetIterator(this, FirstValidElement); 3409 } 3410 3411 /// \returns an iterator that points to the end of the collection. 3412 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3413 3414 /// Returns the number of elements in the collection. 3415 size_t size() const { return NodeMap.size(); } 3416 3417 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3418 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3419 3420 private: 3421 /// Updates the CurrentIndex so that it will point to a valid element. 3422 /// 3423 /// If the element of NodeList at CurrentIndex is valid, it does not 3424 /// change it. If there are no more valid elements, it updates CurrentIndex 3425 /// to point to the end of the NodeList. 3426 void SkipRemovedElements(size_t &CurrentIndex) { 3427 while (CurrentIndex < NodeList.size()) { 3428 auto it = NodeMap.find(NodeList[CurrentIndex]); 3429 // If the element has been deleted and added again later, NodeMap will 3430 // point to a different index, so CurrentIndex will still be invalid. 3431 if (it != NodeMap.end() && it->second == CurrentIndex) 3432 break; 3433 ++CurrentIndex; 3434 } 3435 } 3436 }; 3437 3438 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3439 : Set(Set), CurrentIndex(Start) {} 3440 3441 PHINode *PhiNodeSetIterator::operator*() const { 3442 assert(CurrentIndex < Set->NodeList.size() && 3443 "PhiNodeSet access out of range"); 3444 return Set->NodeList[CurrentIndex]; 3445 } 3446 3447 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3448 assert(CurrentIndex < Set->NodeList.size() && 3449 "PhiNodeSet access out of range"); 3450 ++CurrentIndex; 3451 Set->SkipRemovedElements(CurrentIndex); 3452 return *this; 3453 } 3454 3455 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3456 return CurrentIndex == RHS.CurrentIndex; 3457 } 3458 3459 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3460 return !((*this) == RHS); 3461 } 3462 3463 /// Keep track of simplification of Phi nodes. 3464 /// Accept the set of all phi nodes and erase phi node from this set 3465 /// if it is simplified. 3466 class SimplificationTracker { 3467 DenseMap<Value *, Value *> Storage; 3468 const SimplifyQuery &SQ; 3469 // Tracks newly created Phi nodes. The elements are iterated by insertion 3470 // order. 3471 PhiNodeSet AllPhiNodes; 3472 // Tracks newly created Select nodes. 3473 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3474 3475 public: 3476 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3477 3478 Value *Get(Value *V) { 3479 do { 3480 auto SV = Storage.find(V); 3481 if (SV == Storage.end()) 3482 return V; 3483 V = SV->second; 3484 } while (true); 3485 } 3486 3487 Value *Simplify(Value *Val) { 3488 SmallVector<Value *, 32> WorkList; 3489 SmallPtrSet<Value *, 32> Visited; 3490 WorkList.push_back(Val); 3491 while (!WorkList.empty()) { 3492 auto *P = WorkList.pop_back_val(); 3493 if (!Visited.insert(P).second) 3494 continue; 3495 if (auto *PI = dyn_cast<Instruction>(P)) 3496 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3497 for (auto *U : PI->users()) 3498 WorkList.push_back(cast<Value>(U)); 3499 Put(PI, V); 3500 PI->replaceAllUsesWith(V); 3501 if (auto *PHI = dyn_cast<PHINode>(PI)) 3502 AllPhiNodes.erase(PHI); 3503 if (auto *Select = dyn_cast<SelectInst>(PI)) 3504 AllSelectNodes.erase(Select); 3505 PI->eraseFromParent(); 3506 } 3507 } 3508 return Get(Val); 3509 } 3510 3511 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3512 3513 void ReplacePhi(PHINode *From, PHINode *To) { 3514 Value *OldReplacement = Get(From); 3515 while (OldReplacement != From) { 3516 From = To; 3517 To = dyn_cast<PHINode>(OldReplacement); 3518 OldReplacement = Get(From); 3519 } 3520 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3521 Put(From, To); 3522 From->replaceAllUsesWith(To); 3523 AllPhiNodes.erase(From); 3524 From->eraseFromParent(); 3525 } 3526 3527 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3528 3529 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3530 3531 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3532 3533 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3534 3535 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3536 3537 void destroyNewNodes(Type *CommonType) { 3538 // For safe erasing, replace the uses with dummy value first. 3539 auto *Dummy = PoisonValue::get(CommonType); 3540 for (auto *I : AllPhiNodes) { 3541 I->replaceAllUsesWith(Dummy); 3542 I->eraseFromParent(); 3543 } 3544 AllPhiNodes.clear(); 3545 for (auto *I : AllSelectNodes) { 3546 I->replaceAllUsesWith(Dummy); 3547 I->eraseFromParent(); 3548 } 3549 AllSelectNodes.clear(); 3550 } 3551 }; 3552 3553 /// A helper class for combining addressing modes. 3554 class AddressingModeCombiner { 3555 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3556 typedef std::pair<PHINode *, PHINode *> PHIPair; 3557 3558 private: 3559 /// The addressing modes we've collected. 3560 SmallVector<ExtAddrMode, 16> AddrModes; 3561 3562 /// The field in which the AddrModes differ, when we have more than one. 3563 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3564 3565 /// Are the AddrModes that we have all just equal to their original values? 3566 bool AllAddrModesTrivial = true; 3567 3568 /// Common Type for all different fields in addressing modes. 3569 Type *CommonType = nullptr; 3570 3571 /// SimplifyQuery for simplifyInstruction utility. 3572 const SimplifyQuery &SQ; 3573 3574 /// Original Address. 3575 Value *Original; 3576 3577 public: 3578 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3579 : SQ(_SQ), Original(OriginalValue) {} 3580 3581 /// Get the combined AddrMode 3582 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3583 3584 /// Add a new AddrMode if it's compatible with the AddrModes we already 3585 /// have. 3586 /// \return True iff we succeeded in doing so. 3587 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3588 // Take note of if we have any non-trivial AddrModes, as we need to detect 3589 // when all AddrModes are trivial as then we would introduce a phi or select 3590 // which just duplicates what's already there. 3591 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3592 3593 // If this is the first addrmode then everything is fine. 3594 if (AddrModes.empty()) { 3595 AddrModes.emplace_back(NewAddrMode); 3596 return true; 3597 } 3598 3599 // Figure out how different this is from the other address modes, which we 3600 // can do just by comparing against the first one given that we only care 3601 // about the cumulative difference. 3602 ExtAddrMode::FieldName ThisDifferentField = 3603 AddrModes[0].compare(NewAddrMode); 3604 if (DifferentField == ExtAddrMode::NoField) 3605 DifferentField = ThisDifferentField; 3606 else if (DifferentField != ThisDifferentField) 3607 DifferentField = ExtAddrMode::MultipleFields; 3608 3609 // If NewAddrMode differs in more than one dimension we cannot handle it. 3610 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3611 3612 // If Scale Field is different then we reject. 3613 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3614 3615 // We also must reject the case when base offset is different and 3616 // scale reg is not null, we cannot handle this case due to merge of 3617 // different offsets will be used as ScaleReg. 3618 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3619 !NewAddrMode.ScaledReg); 3620 3621 // We also must reject the case when GV is different and BaseReg installed 3622 // due to we want to use base reg as a merge of GV values. 3623 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3624 !NewAddrMode.HasBaseReg); 3625 3626 // Even if NewAddMode is the same we still need to collect it due to 3627 // original value is different. And later we will need all original values 3628 // as anchors during finding the common Phi node. 3629 if (CanHandle) 3630 AddrModes.emplace_back(NewAddrMode); 3631 else 3632 AddrModes.clear(); 3633 3634 return CanHandle; 3635 } 3636 3637 /// Combine the addressing modes we've collected into a single 3638 /// addressing mode. 3639 /// \return True iff we successfully combined them or we only had one so 3640 /// didn't need to combine them anyway. 3641 bool combineAddrModes() { 3642 // If we have no AddrModes then they can't be combined. 3643 if (AddrModes.size() == 0) 3644 return false; 3645 3646 // A single AddrMode can trivially be combined. 3647 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3648 return true; 3649 3650 // If the AddrModes we collected are all just equal to the value they are 3651 // derived from then combining them wouldn't do anything useful. 3652 if (AllAddrModesTrivial) 3653 return false; 3654 3655 if (!addrModeCombiningAllowed()) 3656 return false; 3657 3658 // Build a map between <original value, basic block where we saw it> to 3659 // value of base register. 3660 // Bail out if there is no common type. 3661 FoldAddrToValueMapping Map; 3662 if (!initializeMap(Map)) 3663 return false; 3664 3665 Value *CommonValue = findCommon(Map); 3666 if (CommonValue) 3667 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3668 return CommonValue != nullptr; 3669 } 3670 3671 private: 3672 /// Initialize Map with anchor values. For address seen 3673 /// we set the value of different field saw in this address. 3674 /// At the same time we find a common type for different field we will 3675 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3676 /// Return false if there is no common type found. 3677 bool initializeMap(FoldAddrToValueMapping &Map) { 3678 // Keep track of keys where the value is null. We will need to replace it 3679 // with constant null when we know the common type. 3680 SmallVector<Value *, 2> NullValue; 3681 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3682 for (auto &AM : AddrModes) { 3683 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3684 if (DV) { 3685 auto *Type = DV->getType(); 3686 if (CommonType && CommonType != Type) 3687 return false; 3688 CommonType = Type; 3689 Map[AM.OriginalValue] = DV; 3690 } else { 3691 NullValue.push_back(AM.OriginalValue); 3692 } 3693 } 3694 assert(CommonType && "At least one non-null value must be!"); 3695 for (auto *V : NullValue) 3696 Map[V] = Constant::getNullValue(CommonType); 3697 return true; 3698 } 3699 3700 /// We have mapping between value A and other value B where B was a field in 3701 /// addressing mode represented by A. Also we have an original value C 3702 /// representing an address we start with. Traversing from C through phi and 3703 /// selects we ended up with A's in a map. This utility function tries to find 3704 /// a value V which is a field in addressing mode C and traversing through phi 3705 /// nodes and selects we will end up in corresponded values B in a map. 3706 /// The utility will create a new Phi/Selects if needed. 3707 // The simple example looks as follows: 3708 // BB1: 3709 // p1 = b1 + 40 3710 // br cond BB2, BB3 3711 // BB2: 3712 // p2 = b2 + 40 3713 // br BB3 3714 // BB3: 3715 // p = phi [p1, BB1], [p2, BB2] 3716 // v = load p 3717 // Map is 3718 // p1 -> b1 3719 // p2 -> b2 3720 // Request is 3721 // p -> ? 3722 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3723 Value *findCommon(FoldAddrToValueMapping &Map) { 3724 // Tracks the simplification of newly created phi nodes. The reason we use 3725 // this mapping is because we will add new created Phi nodes in AddrToBase. 3726 // Simplification of Phi nodes is recursive, so some Phi node may 3727 // be simplified after we added it to AddrToBase. In reality this 3728 // simplification is possible only if original phi/selects were not 3729 // simplified yet. 3730 // Using this mapping we can find the current value in AddrToBase. 3731 SimplificationTracker ST(SQ); 3732 3733 // First step, DFS to create PHI nodes for all intermediate blocks. 3734 // Also fill traverse order for the second step. 3735 SmallVector<Value *, 32> TraverseOrder; 3736 InsertPlaceholders(Map, TraverseOrder, ST); 3737 3738 // Second Step, fill new nodes by merged values and simplify if possible. 3739 FillPlaceholders(Map, TraverseOrder, ST); 3740 3741 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3742 ST.destroyNewNodes(CommonType); 3743 return nullptr; 3744 } 3745 3746 // Now we'd like to match New Phi nodes to existed ones. 3747 unsigned PhiNotMatchedCount = 0; 3748 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3749 ST.destroyNewNodes(CommonType); 3750 return nullptr; 3751 } 3752 3753 auto *Result = ST.Get(Map.find(Original)->second); 3754 if (Result) { 3755 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3756 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3757 } 3758 return Result; 3759 } 3760 3761 /// Try to match PHI node to Candidate. 3762 /// Matcher tracks the matched Phi nodes. 3763 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3764 SmallSetVector<PHIPair, 8> &Matcher, 3765 PhiNodeSet &PhiNodesToMatch) { 3766 SmallVector<PHIPair, 8> WorkList; 3767 Matcher.insert({PHI, Candidate}); 3768 SmallSet<PHINode *, 8> MatchedPHIs; 3769 MatchedPHIs.insert(PHI); 3770 WorkList.push_back({PHI, Candidate}); 3771 SmallSet<PHIPair, 8> Visited; 3772 while (!WorkList.empty()) { 3773 auto Item = WorkList.pop_back_val(); 3774 if (!Visited.insert(Item).second) 3775 continue; 3776 // We iterate over all incoming values to Phi to compare them. 3777 // If values are different and both of them Phi and the first one is a 3778 // Phi we added (subject to match) and both of them is in the same basic 3779 // block then we can match our pair if values match. So we state that 3780 // these values match and add it to work list to verify that. 3781 for (auto *B : Item.first->blocks()) { 3782 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3783 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3784 if (FirstValue == SecondValue) 3785 continue; 3786 3787 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3788 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3789 3790 // One of them is not Phi or 3791 // The first one is not Phi node from the set we'd like to match or 3792 // Phi nodes from different basic blocks then 3793 // we will not be able to match. 3794 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3795 FirstPhi->getParent() != SecondPhi->getParent()) 3796 return false; 3797 3798 // If we already matched them then continue. 3799 if (Matcher.count({FirstPhi, SecondPhi})) 3800 continue; 3801 // So the values are different and does not match. So we need them to 3802 // match. (But we register no more than one match per PHI node, so that 3803 // we won't later try to replace them twice.) 3804 if (MatchedPHIs.insert(FirstPhi).second) 3805 Matcher.insert({FirstPhi, SecondPhi}); 3806 // But me must check it. 3807 WorkList.push_back({FirstPhi, SecondPhi}); 3808 } 3809 } 3810 return true; 3811 } 3812 3813 /// For the given set of PHI nodes (in the SimplificationTracker) try 3814 /// to find their equivalents. 3815 /// Returns false if this matching fails and creation of new Phi is disabled. 3816 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3817 unsigned &PhiNotMatchedCount) { 3818 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3819 // order, so the replacements (ReplacePhi) are also done in a deterministic 3820 // order. 3821 SmallSetVector<PHIPair, 8> Matched; 3822 SmallPtrSet<PHINode *, 8> WillNotMatch; 3823 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3824 while (PhiNodesToMatch.size()) { 3825 PHINode *PHI = *PhiNodesToMatch.begin(); 3826 3827 // Add us, if no Phi nodes in the basic block we do not match. 3828 WillNotMatch.clear(); 3829 WillNotMatch.insert(PHI); 3830 3831 // Traverse all Phis until we found equivalent or fail to do that. 3832 bool IsMatched = false; 3833 for (auto &P : PHI->getParent()->phis()) { 3834 // Skip new Phi nodes. 3835 if (PhiNodesToMatch.count(&P)) 3836 continue; 3837 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3838 break; 3839 // If it does not match, collect all Phi nodes from matcher. 3840 // if we end up with no match, them all these Phi nodes will not match 3841 // later. 3842 for (auto M : Matched) 3843 WillNotMatch.insert(M.first); 3844 Matched.clear(); 3845 } 3846 if (IsMatched) { 3847 // Replace all matched values and erase them. 3848 for (auto MV : Matched) 3849 ST.ReplacePhi(MV.first, MV.second); 3850 Matched.clear(); 3851 continue; 3852 } 3853 // If we are not allowed to create new nodes then bail out. 3854 if (!AllowNewPhiNodes) 3855 return false; 3856 // Just remove all seen values in matcher. They will not match anything. 3857 PhiNotMatchedCount += WillNotMatch.size(); 3858 for (auto *P : WillNotMatch) 3859 PhiNodesToMatch.erase(P); 3860 } 3861 return true; 3862 } 3863 /// Fill the placeholders with values from predecessors and simplify them. 3864 void FillPlaceholders(FoldAddrToValueMapping &Map, 3865 SmallVectorImpl<Value *> &TraverseOrder, 3866 SimplificationTracker &ST) { 3867 while (!TraverseOrder.empty()) { 3868 Value *Current = TraverseOrder.pop_back_val(); 3869 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3870 Value *V = Map[Current]; 3871 3872 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3873 // CurrentValue also must be Select. 3874 auto *CurrentSelect = cast<SelectInst>(Current); 3875 auto *TrueValue = CurrentSelect->getTrueValue(); 3876 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3877 Select->setTrueValue(ST.Get(Map[TrueValue])); 3878 auto *FalseValue = CurrentSelect->getFalseValue(); 3879 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3880 Select->setFalseValue(ST.Get(Map[FalseValue])); 3881 } else { 3882 // Must be a Phi node then. 3883 auto *PHI = cast<PHINode>(V); 3884 // Fill the Phi node with values from predecessors. 3885 for (auto *B : predecessors(PHI->getParent())) { 3886 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3887 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3888 PHI->addIncoming(ST.Get(Map[PV]), B); 3889 } 3890 } 3891 Map[Current] = ST.Simplify(V); 3892 } 3893 } 3894 3895 /// Starting from original value recursively iterates over def-use chain up to 3896 /// known ending values represented in a map. For each traversed phi/select 3897 /// inserts a placeholder Phi or Select. 3898 /// Reports all new created Phi/Select nodes by adding them to set. 3899 /// Also reports and order in what values have been traversed. 3900 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3901 SmallVectorImpl<Value *> &TraverseOrder, 3902 SimplificationTracker &ST) { 3903 SmallVector<Value *, 32> Worklist; 3904 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3905 "Address must be a Phi or Select node"); 3906 auto *Dummy = PoisonValue::get(CommonType); 3907 Worklist.push_back(Original); 3908 while (!Worklist.empty()) { 3909 Value *Current = Worklist.pop_back_val(); 3910 // if it is already visited or it is an ending value then skip it. 3911 if (Map.find(Current) != Map.end()) 3912 continue; 3913 TraverseOrder.push_back(Current); 3914 3915 // CurrentValue must be a Phi node or select. All others must be covered 3916 // by anchors. 3917 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3918 // Is it OK to get metadata from OrigSelect?! 3919 // Create a Select placeholder with dummy value. 3920 SelectInst *Select = SelectInst::Create( 3921 CurrentSelect->getCondition(), Dummy, Dummy, 3922 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3923 Map[Current] = Select; 3924 ST.insertNewSelect(Select); 3925 // We are interested in True and False values. 3926 Worklist.push_back(CurrentSelect->getTrueValue()); 3927 Worklist.push_back(CurrentSelect->getFalseValue()); 3928 } else { 3929 // It must be a Phi node then. 3930 PHINode *CurrentPhi = cast<PHINode>(Current); 3931 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3932 PHINode *PHI = 3933 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3934 Map[Current] = PHI; 3935 ST.insertNewPhi(PHI); 3936 append_range(Worklist, CurrentPhi->incoming_values()); 3937 } 3938 } 3939 } 3940 3941 bool addrModeCombiningAllowed() { 3942 if (DisableComplexAddrModes) 3943 return false; 3944 switch (DifferentField) { 3945 default: 3946 return false; 3947 case ExtAddrMode::BaseRegField: 3948 return AddrSinkCombineBaseReg; 3949 case ExtAddrMode::BaseGVField: 3950 return AddrSinkCombineBaseGV; 3951 case ExtAddrMode::BaseOffsField: 3952 return AddrSinkCombineBaseOffs; 3953 case ExtAddrMode::ScaledRegField: 3954 return AddrSinkCombineScaledReg; 3955 } 3956 } 3957 }; 3958 } // end anonymous namespace 3959 3960 /// Try adding ScaleReg*Scale to the current addressing mode. 3961 /// Return true and update AddrMode if this addr mode is legal for the target, 3962 /// false if not. 3963 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3964 unsigned Depth) { 3965 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3966 // mode. Just process that directly. 3967 if (Scale == 1) 3968 return matchAddr(ScaleReg, Depth); 3969 3970 // If the scale is 0, it takes nothing to add this. 3971 if (Scale == 0) 3972 return true; 3973 3974 // If we already have a scale of this value, we can add to it, otherwise, we 3975 // need an available scale field. 3976 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3977 return false; 3978 3979 ExtAddrMode TestAddrMode = AddrMode; 3980 3981 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3982 // [A+B + A*7] -> [B+A*8]. 3983 TestAddrMode.Scale += Scale; 3984 TestAddrMode.ScaledReg = ScaleReg; 3985 3986 // If the new address isn't legal, bail out. 3987 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3988 return false; 3989 3990 // It was legal, so commit it. 3991 AddrMode = TestAddrMode; 3992 3993 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3994 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3995 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3996 // go any further: we can reuse it and cannot eliminate it. 3997 ConstantInt *CI = nullptr; 3998 Value *AddLHS = nullptr; 3999 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4000 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4001 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4002 TestAddrMode.InBounds = false; 4003 TestAddrMode.ScaledReg = AddLHS; 4004 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4005 4006 // If this addressing mode is legal, commit it and remember that we folded 4007 // this instruction. 4008 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4009 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4010 AddrMode = TestAddrMode; 4011 return true; 4012 } 4013 // Restore status quo. 4014 TestAddrMode = AddrMode; 4015 } 4016 4017 // If this is an add recurrence with a constant step, return the increment 4018 // instruction and the canonicalized step. 4019 auto GetConstantStep = 4020 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4021 auto *PN = dyn_cast<PHINode>(V); 4022 if (!PN) 4023 return std::nullopt; 4024 auto IVInc = getIVIncrement(PN, &LI); 4025 if (!IVInc) 4026 return std::nullopt; 4027 // TODO: The result of the intrinsics above is two-complement. However when 4028 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4029 // If it has nuw or nsw flags, we need to make sure that these flags are 4030 // inferrable at the point of memory instruction. Otherwise we are replacing 4031 // well-defined two-complement computation with poison. Currently, to avoid 4032 // potentially complex analysis needed to prove this, we reject such cases. 4033 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4034 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4035 return std::nullopt; 4036 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4037 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4038 return std::nullopt; 4039 }; 4040 4041 // Try to account for the following special case: 4042 // 1. ScaleReg is an inductive variable; 4043 // 2. We use it with non-zero offset; 4044 // 3. IV's increment is available at the point of memory instruction. 4045 // 4046 // In this case, we may reuse the IV increment instead of the IV Phi to 4047 // achieve the following advantages: 4048 // 1. If IV step matches the offset, we will have no need in the offset; 4049 // 2. Even if they don't match, we will reduce the overlap of living IV 4050 // and IV increment, that will potentially lead to better register 4051 // assignment. 4052 if (AddrMode.BaseOffs) { 4053 if (auto IVStep = GetConstantStep(ScaleReg)) { 4054 Instruction *IVInc = IVStep->first; 4055 // The following assert is important to ensure a lack of infinite loops. 4056 // This transforms is (intentionally) the inverse of the one just above. 4057 // If they don't agree on the definition of an increment, we'd alternate 4058 // back and forth indefinitely. 4059 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4060 APInt Step = IVStep->second; 4061 APInt Offset = Step * AddrMode.Scale; 4062 if (Offset.isSignedIntN(64)) { 4063 TestAddrMode.InBounds = false; 4064 TestAddrMode.ScaledReg = IVInc; 4065 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4066 // If this addressing mode is legal, commit it.. 4067 // (Note that we defer the (expensive) domtree base legality check 4068 // to the very last possible point.) 4069 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4070 getDTFn().dominates(IVInc, MemoryInst)) { 4071 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4072 AddrMode = TestAddrMode; 4073 return true; 4074 } 4075 // Restore status quo. 4076 TestAddrMode = AddrMode; 4077 } 4078 } 4079 } 4080 4081 // Otherwise, just return what we have. 4082 return true; 4083 } 4084 4085 /// This is a little filter, which returns true if an addressing computation 4086 /// involving I might be folded into a load/store accessing it. 4087 /// This doesn't need to be perfect, but needs to accept at least 4088 /// the set of instructions that MatchOperationAddr can. 4089 static bool MightBeFoldableInst(Instruction *I) { 4090 switch (I->getOpcode()) { 4091 case Instruction::BitCast: 4092 case Instruction::AddrSpaceCast: 4093 // Don't touch identity bitcasts. 4094 if (I->getType() == I->getOperand(0)->getType()) 4095 return false; 4096 return I->getType()->isIntOrPtrTy(); 4097 case Instruction::PtrToInt: 4098 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4099 return true; 4100 case Instruction::IntToPtr: 4101 // We know the input is intptr_t, so this is foldable. 4102 return true; 4103 case Instruction::Add: 4104 return true; 4105 case Instruction::Mul: 4106 case Instruction::Shl: 4107 // Can only handle X*C and X << C. 4108 return isa<ConstantInt>(I->getOperand(1)); 4109 case Instruction::GetElementPtr: 4110 return true; 4111 default: 4112 return false; 4113 } 4114 } 4115 4116 /// Check whether or not \p Val is a legal instruction for \p TLI. 4117 /// \note \p Val is assumed to be the product of some type promotion. 4118 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4119 /// to be legal, as the non-promoted value would have had the same state. 4120 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4121 const DataLayout &DL, Value *Val) { 4122 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4123 if (!PromotedInst) 4124 return false; 4125 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4126 // If the ISDOpcode is undefined, it was undefined before the promotion. 4127 if (!ISDOpcode) 4128 return true; 4129 // Otherwise, check if the promoted instruction is legal or not. 4130 return TLI.isOperationLegalOrCustom( 4131 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4132 } 4133 4134 namespace { 4135 4136 /// Hepler class to perform type promotion. 4137 class TypePromotionHelper { 4138 /// Utility function to add a promoted instruction \p ExtOpnd to 4139 /// \p PromotedInsts and record the type of extension we have seen. 4140 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4141 Instruction *ExtOpnd, bool IsSExt) { 4142 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4143 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4144 if (It != PromotedInsts.end()) { 4145 // If the new extension is same as original, the information in 4146 // PromotedInsts[ExtOpnd] is still correct. 4147 if (It->second.getInt() == ExtTy) 4148 return; 4149 4150 // Now the new extension is different from old extension, we make 4151 // the type information invalid by setting extension type to 4152 // BothExtension. 4153 ExtTy = BothExtension; 4154 } 4155 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4156 } 4157 4158 /// Utility function to query the original type of instruction \p Opnd 4159 /// with a matched extension type. If the extension doesn't match, we 4160 /// cannot use the information we had on the original type. 4161 /// BothExtension doesn't match any extension type. 4162 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4163 Instruction *Opnd, bool IsSExt) { 4164 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4165 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4166 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4167 return It->second.getPointer(); 4168 return nullptr; 4169 } 4170 4171 /// Utility function to check whether or not a sign or zero extension 4172 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4173 /// either using the operands of \p Inst or promoting \p Inst. 4174 /// The type of the extension is defined by \p IsSExt. 4175 /// In other words, check if: 4176 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4177 /// #1 Promotion applies: 4178 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4179 /// #2 Operand reuses: 4180 /// ext opnd1 to ConsideredExtType. 4181 /// \p PromotedInsts maps the instructions to their type before promotion. 4182 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4183 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4184 4185 /// Utility function to determine if \p OpIdx should be promoted when 4186 /// promoting \p Inst. 4187 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4188 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4189 } 4190 4191 /// Utility function to promote the operand of \p Ext when this 4192 /// operand is a promotable trunc or sext or zext. 4193 /// \p PromotedInsts maps the instructions to their type before promotion. 4194 /// \p CreatedInstsCost[out] contains the cost of all instructions 4195 /// created to promote the operand of Ext. 4196 /// Newly added extensions are inserted in \p Exts. 4197 /// Newly added truncates are inserted in \p Truncs. 4198 /// Should never be called directly. 4199 /// \return The promoted value which is used instead of Ext. 4200 static Value *promoteOperandForTruncAndAnyExt( 4201 Instruction *Ext, TypePromotionTransaction &TPT, 4202 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4203 SmallVectorImpl<Instruction *> *Exts, 4204 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4205 4206 /// Utility function to promote the operand of \p Ext when this 4207 /// operand is promotable and is not a supported trunc or sext. 4208 /// \p PromotedInsts maps the instructions to their type before promotion. 4209 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4210 /// created to promote the operand of Ext. 4211 /// Newly added extensions are inserted in \p Exts. 4212 /// Newly added truncates are inserted in \p Truncs. 4213 /// Should never be called directly. 4214 /// \return The promoted value which is used instead of Ext. 4215 static Value *promoteOperandForOther(Instruction *Ext, 4216 TypePromotionTransaction &TPT, 4217 InstrToOrigTy &PromotedInsts, 4218 unsigned &CreatedInstsCost, 4219 SmallVectorImpl<Instruction *> *Exts, 4220 SmallVectorImpl<Instruction *> *Truncs, 4221 const TargetLowering &TLI, bool IsSExt); 4222 4223 /// \see promoteOperandForOther. 4224 static Value *signExtendOperandForOther( 4225 Instruction *Ext, TypePromotionTransaction &TPT, 4226 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4227 SmallVectorImpl<Instruction *> *Exts, 4228 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4229 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4230 Exts, Truncs, TLI, true); 4231 } 4232 4233 /// \see promoteOperandForOther. 4234 static Value *zeroExtendOperandForOther( 4235 Instruction *Ext, TypePromotionTransaction &TPT, 4236 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4237 SmallVectorImpl<Instruction *> *Exts, 4238 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4239 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4240 Exts, Truncs, TLI, false); 4241 } 4242 4243 public: 4244 /// Type for the utility function that promotes the operand of Ext. 4245 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4246 InstrToOrigTy &PromotedInsts, 4247 unsigned &CreatedInstsCost, 4248 SmallVectorImpl<Instruction *> *Exts, 4249 SmallVectorImpl<Instruction *> *Truncs, 4250 const TargetLowering &TLI); 4251 4252 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4253 /// action to promote the operand of \p Ext instead of using Ext. 4254 /// \return NULL if no promotable action is possible with the current 4255 /// sign extension. 4256 /// \p InsertedInsts keeps track of all the instructions inserted by the 4257 /// other CodeGenPrepare optimizations. This information is important 4258 /// because we do not want to promote these instructions as CodeGenPrepare 4259 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4260 /// \p PromotedInsts maps the instructions to their type before promotion. 4261 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4262 const TargetLowering &TLI, 4263 const InstrToOrigTy &PromotedInsts); 4264 }; 4265 4266 } // end anonymous namespace 4267 4268 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4269 Type *ConsideredExtType, 4270 const InstrToOrigTy &PromotedInsts, 4271 bool IsSExt) { 4272 // The promotion helper does not know how to deal with vector types yet. 4273 // To be able to fix that, we would need to fix the places where we 4274 // statically extend, e.g., constants and such. 4275 if (Inst->getType()->isVectorTy()) 4276 return false; 4277 4278 // We can always get through zext. 4279 if (isa<ZExtInst>(Inst)) 4280 return true; 4281 4282 // sext(sext) is ok too. 4283 if (IsSExt && isa<SExtInst>(Inst)) 4284 return true; 4285 4286 // We can get through binary operator, if it is legal. In other words, the 4287 // binary operator must have a nuw or nsw flag. 4288 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4289 if (isa<OverflowingBinaryOperator>(BinOp) && 4290 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4291 (IsSExt && BinOp->hasNoSignedWrap()))) 4292 return true; 4293 4294 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4295 if ((Inst->getOpcode() == Instruction::And || 4296 Inst->getOpcode() == Instruction::Or)) 4297 return true; 4298 4299 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4300 if (Inst->getOpcode() == Instruction::Xor) { 4301 // Make sure it is not a NOT. 4302 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4303 if (!Cst->getValue().isAllOnes()) 4304 return true; 4305 } 4306 4307 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4308 // It may change a poisoned value into a regular value, like 4309 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4310 // poisoned value regular value 4311 // It should be OK since undef covers valid value. 4312 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4313 return true; 4314 4315 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4316 // It may change a poisoned value into a regular value, like 4317 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4318 // poisoned value regular value 4319 // It should be OK since undef covers valid value. 4320 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4321 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4322 if (ExtInst->hasOneUse()) { 4323 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4324 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4325 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4326 if (Cst && 4327 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4328 return true; 4329 } 4330 } 4331 } 4332 4333 // Check if we can do the following simplification. 4334 // ext(trunc(opnd)) --> ext(opnd) 4335 if (!isa<TruncInst>(Inst)) 4336 return false; 4337 4338 Value *OpndVal = Inst->getOperand(0); 4339 // Check if we can use this operand in the extension. 4340 // If the type is larger than the result type of the extension, we cannot. 4341 if (!OpndVal->getType()->isIntegerTy() || 4342 OpndVal->getType()->getIntegerBitWidth() > 4343 ConsideredExtType->getIntegerBitWidth()) 4344 return false; 4345 4346 // If the operand of the truncate is not an instruction, we will not have 4347 // any information on the dropped bits. 4348 // (Actually we could for constant but it is not worth the extra logic). 4349 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4350 if (!Opnd) 4351 return false; 4352 4353 // Check if the source of the type is narrow enough. 4354 // I.e., check that trunc just drops extended bits of the same kind of 4355 // the extension. 4356 // #1 get the type of the operand and check the kind of the extended bits. 4357 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4358 if (OpndType) 4359 ; 4360 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4361 OpndType = Opnd->getOperand(0)->getType(); 4362 else 4363 return false; 4364 4365 // #2 check that the truncate just drops extended bits. 4366 return Inst->getType()->getIntegerBitWidth() >= 4367 OpndType->getIntegerBitWidth(); 4368 } 4369 4370 TypePromotionHelper::Action TypePromotionHelper::getAction( 4371 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4372 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4373 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4374 "Unexpected instruction type"); 4375 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4376 Type *ExtTy = Ext->getType(); 4377 bool IsSExt = isa<SExtInst>(Ext); 4378 // If the operand of the extension is not an instruction, we cannot 4379 // get through. 4380 // If it, check we can get through. 4381 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4382 return nullptr; 4383 4384 // Do not promote if the operand has been added by codegenprepare. 4385 // Otherwise, it means we are undoing an optimization that is likely to be 4386 // redone, thus causing potential infinite loop. 4387 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4388 return nullptr; 4389 4390 // SExt or Trunc instructions. 4391 // Return the related handler. 4392 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4393 isa<ZExtInst>(ExtOpnd)) 4394 return promoteOperandForTruncAndAnyExt; 4395 4396 // Regular instruction. 4397 // Abort early if we will have to insert non-free instructions. 4398 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4399 return nullptr; 4400 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4401 } 4402 4403 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4404 Instruction *SExt, TypePromotionTransaction &TPT, 4405 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4406 SmallVectorImpl<Instruction *> *Exts, 4407 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4408 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4409 // get through it and this method should not be called. 4410 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4411 Value *ExtVal = SExt; 4412 bool HasMergedNonFreeExt = false; 4413 if (isa<ZExtInst>(SExtOpnd)) { 4414 // Replace s|zext(zext(opnd)) 4415 // => zext(opnd). 4416 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4417 Value *ZExt = 4418 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4419 TPT.replaceAllUsesWith(SExt, ZExt); 4420 TPT.eraseInstruction(SExt); 4421 ExtVal = ZExt; 4422 } else { 4423 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4424 // => z|sext(opnd). 4425 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4426 } 4427 CreatedInstsCost = 0; 4428 4429 // Remove dead code. 4430 if (SExtOpnd->use_empty()) 4431 TPT.eraseInstruction(SExtOpnd); 4432 4433 // Check if the extension is still needed. 4434 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4435 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4436 if (ExtInst) { 4437 if (Exts) 4438 Exts->push_back(ExtInst); 4439 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4440 } 4441 return ExtVal; 4442 } 4443 4444 // At this point we have: ext ty opnd to ty. 4445 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4446 Value *NextVal = ExtInst->getOperand(0); 4447 TPT.eraseInstruction(ExtInst, NextVal); 4448 return NextVal; 4449 } 4450 4451 Value *TypePromotionHelper::promoteOperandForOther( 4452 Instruction *Ext, TypePromotionTransaction &TPT, 4453 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4454 SmallVectorImpl<Instruction *> *Exts, 4455 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4456 bool IsSExt) { 4457 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4458 // get through it and this method should not be called. 4459 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4460 CreatedInstsCost = 0; 4461 if (!ExtOpnd->hasOneUse()) { 4462 // ExtOpnd will be promoted. 4463 // All its uses, but Ext, will need to use a truncated value of the 4464 // promoted version. 4465 // Create the truncate now. 4466 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4467 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4468 // Insert it just after the definition. 4469 ITrunc->moveAfter(ExtOpnd); 4470 if (Truncs) 4471 Truncs->push_back(ITrunc); 4472 } 4473 4474 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4475 // Restore the operand of Ext (which has been replaced by the previous call 4476 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4477 TPT.setOperand(Ext, 0, ExtOpnd); 4478 } 4479 4480 // Get through the Instruction: 4481 // 1. Update its type. 4482 // 2. Replace the uses of Ext by Inst. 4483 // 3. Extend each operand that needs to be extended. 4484 4485 // Remember the original type of the instruction before promotion. 4486 // This is useful to know that the high bits are sign extended bits. 4487 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4488 // Step #1. 4489 TPT.mutateType(ExtOpnd, Ext->getType()); 4490 // Step #2. 4491 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4492 // Step #3. 4493 Instruction *ExtForOpnd = Ext; 4494 4495 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4496 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4497 ++OpIdx) { 4498 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4499 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4500 !shouldExtOperand(ExtOpnd, OpIdx)) { 4501 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4502 continue; 4503 } 4504 // Check if we can statically extend the operand. 4505 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4506 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4507 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4508 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4509 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4510 : Cst->getValue().zext(BitWidth); 4511 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4512 continue; 4513 } 4514 // UndefValue are typed, so we have to statically sign extend them. 4515 if (isa<UndefValue>(Opnd)) { 4516 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4517 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4518 continue; 4519 } 4520 4521 // Otherwise we have to explicitly sign extend the operand. 4522 // Check if Ext was reused to extend an operand. 4523 if (!ExtForOpnd) { 4524 // If yes, create a new one. 4525 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4526 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4527 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4528 if (!isa<Instruction>(ValForExtOpnd)) { 4529 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4530 continue; 4531 } 4532 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4533 } 4534 if (Exts) 4535 Exts->push_back(ExtForOpnd); 4536 TPT.setOperand(ExtForOpnd, 0, Opnd); 4537 4538 // Move the sign extension before the insertion point. 4539 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4540 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4541 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4542 // If more sext are required, new instructions will have to be created. 4543 ExtForOpnd = nullptr; 4544 } 4545 if (ExtForOpnd == Ext) { 4546 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4547 TPT.eraseInstruction(Ext); 4548 } 4549 return ExtOpnd; 4550 } 4551 4552 /// Check whether or not promoting an instruction to a wider type is profitable. 4553 /// \p NewCost gives the cost of extension instructions created by the 4554 /// promotion. 4555 /// \p OldCost gives the cost of extension instructions before the promotion 4556 /// plus the number of instructions that have been 4557 /// matched in the addressing mode the promotion. 4558 /// \p PromotedOperand is the value that has been promoted. 4559 /// \return True if the promotion is profitable, false otherwise. 4560 bool AddressingModeMatcher::isPromotionProfitable( 4561 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4562 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4563 << '\n'); 4564 // The cost of the new extensions is greater than the cost of the 4565 // old extension plus what we folded. 4566 // This is not profitable. 4567 if (NewCost > OldCost) 4568 return false; 4569 if (NewCost < OldCost) 4570 return true; 4571 // The promotion is neutral but it may help folding the sign extension in 4572 // loads for instance. 4573 // Check that we did not create an illegal instruction. 4574 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4575 } 4576 4577 /// Given an instruction or constant expr, see if we can fold the operation 4578 /// into the addressing mode. If so, update the addressing mode and return 4579 /// true, otherwise return false without modifying AddrMode. 4580 /// If \p MovedAway is not NULL, it contains the information of whether or 4581 /// not AddrInst has to be folded into the addressing mode on success. 4582 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4583 /// because it has been moved away. 4584 /// Thus AddrInst must not be added in the matched instructions. 4585 /// This state can happen when AddrInst is a sext, since it may be moved away. 4586 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4587 /// not be referenced anymore. 4588 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4589 unsigned Depth, 4590 bool *MovedAway) { 4591 // Avoid exponential behavior on extremely deep expression trees. 4592 if (Depth >= 5) 4593 return false; 4594 4595 // By default, all matched instructions stay in place. 4596 if (MovedAway) 4597 *MovedAway = false; 4598 4599 switch (Opcode) { 4600 case Instruction::PtrToInt: 4601 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4602 return matchAddr(AddrInst->getOperand(0), Depth); 4603 case Instruction::IntToPtr: { 4604 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4605 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4606 // This inttoptr is a no-op if the integer type is pointer sized. 4607 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4608 return matchAddr(AddrInst->getOperand(0), Depth); 4609 return false; 4610 } 4611 case Instruction::BitCast: 4612 // BitCast is always a noop, and we can handle it as long as it is 4613 // int->int or pointer->pointer (we don't want int<->fp or something). 4614 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4615 // Don't touch identity bitcasts. These were probably put here by LSR, 4616 // and we don't want to mess around with them. Assume it knows what it 4617 // is doing. 4618 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4619 return matchAddr(AddrInst->getOperand(0), Depth); 4620 return false; 4621 case Instruction::AddrSpaceCast: { 4622 unsigned SrcAS = 4623 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4624 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4625 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4626 return matchAddr(AddrInst->getOperand(0), Depth); 4627 return false; 4628 } 4629 case Instruction::Add: { 4630 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4631 ExtAddrMode BackupAddrMode = AddrMode; 4632 unsigned OldSize = AddrModeInsts.size(); 4633 // Start a transaction at this point. 4634 // The LHS may match but not the RHS. 4635 // Therefore, we need a higher level restoration point to undo partially 4636 // matched operation. 4637 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4638 TPT.getRestorationPoint(); 4639 4640 AddrMode.InBounds = false; 4641 if (matchAddr(AddrInst->getOperand(1), Depth + 1) && 4642 matchAddr(AddrInst->getOperand(0), Depth + 1)) 4643 return true; 4644 4645 // Restore the old addr mode info. 4646 AddrMode = BackupAddrMode; 4647 AddrModeInsts.resize(OldSize); 4648 TPT.rollback(LastKnownGood); 4649 4650 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4651 if (matchAddr(AddrInst->getOperand(0), Depth + 1) && 4652 matchAddr(AddrInst->getOperand(1), Depth + 1)) 4653 return true; 4654 4655 // Otherwise we definitely can't merge the ADD in. 4656 AddrMode = BackupAddrMode; 4657 AddrModeInsts.resize(OldSize); 4658 TPT.rollback(LastKnownGood); 4659 break; 4660 } 4661 // case Instruction::Or: 4662 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4663 // break; 4664 case Instruction::Mul: 4665 case Instruction::Shl: { 4666 // Can only handle X*C and X << C. 4667 AddrMode.InBounds = false; 4668 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4669 if (!RHS || RHS->getBitWidth() > 64) 4670 return false; 4671 int64_t Scale = Opcode == Instruction::Shl 4672 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4673 : RHS->getSExtValue(); 4674 4675 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4676 } 4677 case Instruction::GetElementPtr: { 4678 // Scan the GEP. We check it if it contains constant offsets and at most 4679 // one variable offset. 4680 int VariableOperand = -1; 4681 unsigned VariableScale = 0; 4682 4683 int64_t ConstantOffset = 0; 4684 gep_type_iterator GTI = gep_type_begin(AddrInst); 4685 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4686 if (StructType *STy = GTI.getStructTypeOrNull()) { 4687 const StructLayout *SL = DL.getStructLayout(STy); 4688 unsigned Idx = 4689 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4690 ConstantOffset += SL->getElementOffset(Idx); 4691 } else { 4692 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4693 if (TS.isNonZero()) { 4694 // The optimisations below currently only work for fixed offsets. 4695 if (TS.isScalable()) 4696 return false; 4697 int64_t TypeSize = TS.getFixedValue(); 4698 if (ConstantInt *CI = 4699 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4700 const APInt &CVal = CI->getValue(); 4701 if (CVal.getMinSignedBits() <= 64) { 4702 ConstantOffset += CVal.getSExtValue() * TypeSize; 4703 continue; 4704 } 4705 } 4706 // We only allow one variable index at the moment. 4707 if (VariableOperand != -1) 4708 return false; 4709 4710 // Remember the variable index. 4711 VariableOperand = i; 4712 VariableScale = TypeSize; 4713 } 4714 } 4715 } 4716 4717 // A common case is for the GEP to only do a constant offset. In this case, 4718 // just add it to the disp field and check validity. 4719 if (VariableOperand == -1) { 4720 AddrMode.BaseOffs += ConstantOffset; 4721 if (ConstantOffset == 0 || 4722 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4723 // Check to see if we can fold the base pointer in too. 4724 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4725 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4726 AddrMode.InBounds = false; 4727 return true; 4728 } 4729 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4730 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4731 ConstantOffset > 0) { 4732 // Record GEPs with non-zero offsets as candidates for splitting in the 4733 // event that the offset cannot fit into the r+i addressing mode. 4734 // Simple and common case that only one GEP is used in calculating the 4735 // address for the memory access. 4736 Value *Base = AddrInst->getOperand(0); 4737 auto *BaseI = dyn_cast<Instruction>(Base); 4738 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4739 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4740 (BaseI && !isa<CastInst>(BaseI) && 4741 !isa<GetElementPtrInst>(BaseI))) { 4742 // Make sure the parent block allows inserting non-PHI instructions 4743 // before the terminator. 4744 BasicBlock *Parent = 4745 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4746 if (!Parent->getTerminator()->isEHPad()) 4747 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4748 } 4749 } 4750 AddrMode.BaseOffs -= ConstantOffset; 4751 return false; 4752 } 4753 4754 // Save the valid addressing mode in case we can't match. 4755 ExtAddrMode BackupAddrMode = AddrMode; 4756 unsigned OldSize = AddrModeInsts.size(); 4757 4758 // See if the scale and offset amount is valid for this target. 4759 AddrMode.BaseOffs += ConstantOffset; 4760 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4761 AddrMode.InBounds = false; 4762 4763 // Match the base operand of the GEP. 4764 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4765 // If it couldn't be matched, just stuff the value in a register. 4766 if (AddrMode.HasBaseReg) { 4767 AddrMode = BackupAddrMode; 4768 AddrModeInsts.resize(OldSize); 4769 return false; 4770 } 4771 AddrMode.HasBaseReg = true; 4772 AddrMode.BaseReg = AddrInst->getOperand(0); 4773 } 4774 4775 // Match the remaining variable portion of the GEP. 4776 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4777 Depth)) { 4778 // If it couldn't be matched, try stuffing the base into a register 4779 // instead of matching it, and retrying the match of the scale. 4780 AddrMode = BackupAddrMode; 4781 AddrModeInsts.resize(OldSize); 4782 if (AddrMode.HasBaseReg) 4783 return false; 4784 AddrMode.HasBaseReg = true; 4785 AddrMode.BaseReg = AddrInst->getOperand(0); 4786 AddrMode.BaseOffs += ConstantOffset; 4787 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4788 VariableScale, Depth)) { 4789 // If even that didn't work, bail. 4790 AddrMode = BackupAddrMode; 4791 AddrModeInsts.resize(OldSize); 4792 return false; 4793 } 4794 } 4795 4796 return true; 4797 } 4798 case Instruction::SExt: 4799 case Instruction::ZExt: { 4800 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4801 if (!Ext) 4802 return false; 4803 4804 // Try to move this ext out of the way of the addressing mode. 4805 // Ask for a method for doing so. 4806 TypePromotionHelper::Action TPH = 4807 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4808 if (!TPH) 4809 return false; 4810 4811 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4812 TPT.getRestorationPoint(); 4813 unsigned CreatedInstsCost = 0; 4814 unsigned ExtCost = !TLI.isExtFree(Ext); 4815 Value *PromotedOperand = 4816 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4817 // SExt has been moved away. 4818 // Thus either it will be rematched later in the recursive calls or it is 4819 // gone. Anyway, we must not fold it into the addressing mode at this point. 4820 // E.g., 4821 // op = add opnd, 1 4822 // idx = ext op 4823 // addr = gep base, idx 4824 // is now: 4825 // promotedOpnd = ext opnd <- no match here 4826 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4827 // addr = gep base, op <- match 4828 if (MovedAway) 4829 *MovedAway = true; 4830 4831 assert(PromotedOperand && 4832 "TypePromotionHelper should have filtered out those cases"); 4833 4834 ExtAddrMode BackupAddrMode = AddrMode; 4835 unsigned OldSize = AddrModeInsts.size(); 4836 4837 if (!matchAddr(PromotedOperand, Depth) || 4838 // The total of the new cost is equal to the cost of the created 4839 // instructions. 4840 // The total of the old cost is equal to the cost of the extension plus 4841 // what we have saved in the addressing mode. 4842 !isPromotionProfitable(CreatedInstsCost, 4843 ExtCost + (AddrModeInsts.size() - OldSize), 4844 PromotedOperand)) { 4845 AddrMode = BackupAddrMode; 4846 AddrModeInsts.resize(OldSize); 4847 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4848 TPT.rollback(LastKnownGood); 4849 return false; 4850 } 4851 return true; 4852 } 4853 } 4854 return false; 4855 } 4856 4857 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4858 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4859 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4860 /// for the target. 4861 /// 4862 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4863 // Start a transaction at this point that we will rollback if the matching 4864 // fails. 4865 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4866 TPT.getRestorationPoint(); 4867 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4868 if (CI->getValue().isSignedIntN(64)) { 4869 // Fold in immediates if legal for the target. 4870 AddrMode.BaseOffs += CI->getSExtValue(); 4871 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4872 return true; 4873 AddrMode.BaseOffs -= CI->getSExtValue(); 4874 } 4875 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4876 // If this is a global variable, try to fold it into the addressing mode. 4877 if (!AddrMode.BaseGV) { 4878 AddrMode.BaseGV = GV; 4879 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4880 return true; 4881 AddrMode.BaseGV = nullptr; 4882 } 4883 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4884 ExtAddrMode BackupAddrMode = AddrMode; 4885 unsigned OldSize = AddrModeInsts.size(); 4886 4887 // Check to see if it is possible to fold this operation. 4888 bool MovedAway = false; 4889 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4890 // This instruction may have been moved away. If so, there is nothing 4891 // to check here. 4892 if (MovedAway) 4893 return true; 4894 // Okay, it's possible to fold this. Check to see if it is actually 4895 // *profitable* to do so. We use a simple cost model to avoid increasing 4896 // register pressure too much. 4897 if (I->hasOneUse() || 4898 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4899 AddrModeInsts.push_back(I); 4900 return true; 4901 } 4902 4903 // It isn't profitable to do this, roll back. 4904 AddrMode = BackupAddrMode; 4905 AddrModeInsts.resize(OldSize); 4906 TPT.rollback(LastKnownGood); 4907 } 4908 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4909 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4910 return true; 4911 TPT.rollback(LastKnownGood); 4912 } else if (isa<ConstantPointerNull>(Addr)) { 4913 // Null pointer gets folded without affecting the addressing mode. 4914 return true; 4915 } 4916 4917 // Worse case, the target should support [reg] addressing modes. :) 4918 if (!AddrMode.HasBaseReg) { 4919 AddrMode.HasBaseReg = true; 4920 AddrMode.BaseReg = Addr; 4921 // Still check for legality in case the target supports [imm] but not [i+r]. 4922 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4923 return true; 4924 AddrMode.HasBaseReg = false; 4925 AddrMode.BaseReg = nullptr; 4926 } 4927 4928 // If the base register is already taken, see if we can do [r+r]. 4929 if (AddrMode.Scale == 0) { 4930 AddrMode.Scale = 1; 4931 AddrMode.ScaledReg = Addr; 4932 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4933 return true; 4934 AddrMode.Scale = 0; 4935 AddrMode.ScaledReg = nullptr; 4936 } 4937 // Couldn't match. 4938 TPT.rollback(LastKnownGood); 4939 return false; 4940 } 4941 4942 /// Check to see if all uses of OpVal by the specified inline asm call are due 4943 /// to memory operands. If so, return true, otherwise return false. 4944 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4945 const TargetLowering &TLI, 4946 const TargetRegisterInfo &TRI) { 4947 const Function *F = CI->getFunction(); 4948 TargetLowering::AsmOperandInfoVector TargetConstraints = 4949 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4950 4951 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 4952 // Compute the constraint code and ConstraintType to use. 4953 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4954 4955 // If this asm operand is our Value*, and if it isn't an indirect memory 4956 // operand, we can't fold it! TODO: Also handle C_Address? 4957 if (OpInfo.CallOperandVal == OpVal && 4958 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4959 !OpInfo.isIndirect)) 4960 return false; 4961 } 4962 4963 return true; 4964 } 4965 4966 // Max number of memory uses to look at before aborting the search to conserve 4967 // compile time. 4968 static constexpr int MaxMemoryUsesToScan = 20; 4969 4970 /// Recursively walk all the uses of I until we find a memory use. 4971 /// If we find an obviously non-foldable instruction, return true. 4972 /// Add accessed addresses and types to MemoryUses. 4973 static bool FindAllMemoryUses( 4974 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4975 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4976 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4977 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4978 // If we already considered this instruction, we're done. 4979 if (!ConsideredInsts.insert(I).second) 4980 return false; 4981 4982 // If this is an obviously unfoldable instruction, bail out. 4983 if (!MightBeFoldableInst(I)) 4984 return true; 4985 4986 // Loop over all the uses, recursively processing them. 4987 for (Use &U : I->uses()) { 4988 // Conservatively return true if we're seeing a large number or a deep chain 4989 // of users. This avoids excessive compilation times in pathological cases. 4990 if (SeenInsts++ >= MaxMemoryUsesToScan) 4991 return true; 4992 4993 Instruction *UserI = cast<Instruction>(U.getUser()); 4994 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4995 MemoryUses.push_back({U.get(), LI->getType()}); 4996 continue; 4997 } 4998 4999 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5000 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5001 return true; // Storing addr, not into addr. 5002 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 5003 continue; 5004 } 5005 5006 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5007 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5008 return true; // Storing addr, not into addr. 5009 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 5010 continue; 5011 } 5012 5013 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5014 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5015 return true; // Storing addr, not into addr. 5016 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 5017 continue; 5018 } 5019 5020 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5021 if (CI->hasFnAttr(Attribute::Cold)) { 5022 // If this is a cold call, we can sink the addressing calculation into 5023 // the cold path. See optimizeCallInst 5024 bool OptForSize = 5025 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5026 if (!OptForSize) 5027 continue; 5028 } 5029 5030 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5031 if (!IA) 5032 return true; 5033 5034 // If this is a memory operand, we're cool, otherwise bail out. 5035 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5036 return true; 5037 continue; 5038 } 5039 5040 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5041 PSI, BFI, SeenInsts)) 5042 return true; 5043 } 5044 5045 return false; 5046 } 5047 5048 /// Return true if Val is already known to be live at the use site that we're 5049 /// folding it into. If so, there is no cost to include it in the addressing 5050 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5051 /// instruction already. 5052 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5053 Value *KnownLive1, 5054 Value *KnownLive2) { 5055 // If Val is either of the known-live values, we know it is live! 5056 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5057 return true; 5058 5059 // All values other than instructions and arguments (e.g. constants) are live. 5060 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5061 return true; 5062 5063 // If Val is a constant sized alloca in the entry block, it is live, this is 5064 // true because it is just a reference to the stack/frame pointer, which is 5065 // live for the whole function. 5066 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5067 if (AI->isStaticAlloca()) 5068 return true; 5069 5070 // Check to see if this value is already used in the memory instruction's 5071 // block. If so, it's already live into the block at the very least, so we 5072 // can reasonably fold it. 5073 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5074 } 5075 5076 /// It is possible for the addressing mode of the machine to fold the specified 5077 /// instruction into a load or store that ultimately uses it. 5078 /// However, the specified instruction has multiple uses. 5079 /// Given this, it may actually increase register pressure to fold it 5080 /// into the load. For example, consider this code: 5081 /// 5082 /// X = ... 5083 /// Y = X+1 5084 /// use(Y) -> nonload/store 5085 /// Z = Y+1 5086 /// load Z 5087 /// 5088 /// In this case, Y has multiple uses, and can be folded into the load of Z 5089 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5090 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5091 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5092 /// number of computations either. 5093 /// 5094 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5095 /// X was live across 'load Z' for other reasons, we actually *would* want to 5096 /// fold the addressing mode in the Z case. This would make Y die earlier. 5097 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5098 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5099 if (IgnoreProfitability) 5100 return true; 5101 5102 // AMBefore is the addressing mode before this instruction was folded into it, 5103 // and AMAfter is the addressing mode after the instruction was folded. Get 5104 // the set of registers referenced by AMAfter and subtract out those 5105 // referenced by AMBefore: this is the set of values which folding in this 5106 // address extends the lifetime of. 5107 // 5108 // Note that there are only two potential values being referenced here, 5109 // BaseReg and ScaleReg (global addresses are always available, as are any 5110 // folded immediates). 5111 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5112 5113 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5114 // lifetime wasn't extended by adding this instruction. 5115 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5116 BaseReg = nullptr; 5117 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5118 ScaledReg = nullptr; 5119 5120 // If folding this instruction (and it's subexprs) didn't extend any live 5121 // ranges, we're ok with it. 5122 if (!BaseReg && !ScaledReg) 5123 return true; 5124 5125 // If all uses of this instruction can have the address mode sunk into them, 5126 // we can remove the addressing mode and effectively trade one live register 5127 // for another (at worst.) In this context, folding an addressing mode into 5128 // the use is just a particularly nice way of sinking it. 5129 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5130 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5131 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, PSI, 5132 BFI)) 5133 return false; // Has a non-memory, non-foldable use! 5134 5135 // Now that we know that all uses of this instruction are part of a chain of 5136 // computation involving only operations that could theoretically be folded 5137 // into a memory use, loop over each of these memory operation uses and see 5138 // if they could *actually* fold the instruction. The assumption is that 5139 // addressing modes are cheap and that duplicating the computation involved 5140 // many times is worthwhile, even on a fastpath. For sinking candidates 5141 // (i.e. cold call sites), this serves as a way to prevent excessive code 5142 // growth since most architectures have some reasonable small and fast way to 5143 // compute an effective address. (i.e LEA on x86) 5144 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5145 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5146 Value *Address = Pair.first; 5147 Type *AddressAccessTy = Pair.second; 5148 unsigned AS = Address->getType()->getPointerAddressSpace(); 5149 5150 // Do a match against the root of this address, ignoring profitability. This 5151 // will tell us if the addressing mode for the memory operation will 5152 // *actually* cover the shared instruction. 5153 ExtAddrMode Result; 5154 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5155 0); 5156 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5157 TPT.getRestorationPoint(); 5158 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5159 AddressAccessTy, AS, MemoryInst, Result, 5160 InsertedInsts, PromotedInsts, TPT, 5161 LargeOffsetGEP, OptSize, PSI, BFI); 5162 Matcher.IgnoreProfitability = true; 5163 bool Success = Matcher.matchAddr(Address, 0); 5164 (void)Success; 5165 assert(Success && "Couldn't select *anything*?"); 5166 5167 // The match was to check the profitability, the changes made are not 5168 // part of the original matcher. Therefore, they should be dropped 5169 // otherwise the original matcher will not present the right state. 5170 TPT.rollback(LastKnownGood); 5171 5172 // If the match didn't cover I, then it won't be shared by it. 5173 if (!is_contained(MatchedAddrModeInsts, I)) 5174 return false; 5175 5176 MatchedAddrModeInsts.clear(); 5177 } 5178 5179 return true; 5180 } 5181 5182 /// Return true if the specified values are defined in a 5183 /// different basic block than BB. 5184 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5185 if (Instruction *I = dyn_cast<Instruction>(V)) 5186 return I->getParent() != BB; 5187 return false; 5188 } 5189 5190 /// Sink addressing mode computation immediate before MemoryInst if doing so 5191 /// can be done without increasing register pressure. The need for the 5192 /// register pressure constraint means this can end up being an all or nothing 5193 /// decision for all uses of the same addressing computation. 5194 /// 5195 /// Load and Store Instructions often have addressing modes that can do 5196 /// significant amounts of computation. As such, instruction selection will try 5197 /// to get the load or store to do as much computation as possible for the 5198 /// program. The problem is that isel can only see within a single block. As 5199 /// such, we sink as much legal addressing mode work into the block as possible. 5200 /// 5201 /// This method is used to optimize both load/store and inline asms with memory 5202 /// operands. It's also used to sink addressing computations feeding into cold 5203 /// call sites into their (cold) basic block. 5204 /// 5205 /// The motivation for handling sinking into cold blocks is that doing so can 5206 /// both enable other address mode sinking (by satisfying the register pressure 5207 /// constraint above), and reduce register pressure globally (by removing the 5208 /// addressing mode computation from the fast path entirely.). 5209 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5210 Type *AccessTy, unsigned AddrSpace) { 5211 Value *Repl = Addr; 5212 5213 // Try to collapse single-value PHI nodes. This is necessary to undo 5214 // unprofitable PRE transformations. 5215 SmallVector<Value *, 8> worklist; 5216 SmallPtrSet<Value *, 16> Visited; 5217 worklist.push_back(Addr); 5218 5219 // Use a worklist to iteratively look through PHI and select nodes, and 5220 // ensure that the addressing mode obtained from the non-PHI/select roots of 5221 // the graph are compatible. 5222 bool PhiOrSelectSeen = false; 5223 SmallVector<Instruction *, 16> AddrModeInsts; 5224 const SimplifyQuery SQ(*DL, TLInfo); 5225 AddressingModeCombiner AddrModes(SQ, Addr); 5226 TypePromotionTransaction TPT(RemovedInsts); 5227 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5228 TPT.getRestorationPoint(); 5229 while (!worklist.empty()) { 5230 Value *V = worklist.pop_back_val(); 5231 5232 // We allow traversing cyclic Phi nodes. 5233 // In case of success after this loop we ensure that traversing through 5234 // Phi nodes ends up with all cases to compute address of the form 5235 // BaseGV + Base + Scale * Index + Offset 5236 // where Scale and Offset are constans and BaseGV, Base and Index 5237 // are exactly the same Values in all cases. 5238 // It means that BaseGV, Scale and Offset dominate our memory instruction 5239 // and have the same value as they had in address computation represented 5240 // as Phi. So we can safely sink address computation to memory instruction. 5241 if (!Visited.insert(V).second) 5242 continue; 5243 5244 // For a PHI node, push all of its incoming values. 5245 if (PHINode *P = dyn_cast<PHINode>(V)) { 5246 append_range(worklist, P->incoming_values()); 5247 PhiOrSelectSeen = true; 5248 continue; 5249 } 5250 // Similar for select. 5251 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5252 worklist.push_back(SI->getFalseValue()); 5253 worklist.push_back(SI->getTrueValue()); 5254 PhiOrSelectSeen = true; 5255 continue; 5256 } 5257 5258 // For non-PHIs, determine the addressing mode being computed. Note that 5259 // the result may differ depending on what other uses our candidate 5260 // addressing instructions might have. 5261 AddrModeInsts.clear(); 5262 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5263 0); 5264 // Defer the query (and possible computation of) the dom tree to point of 5265 // actual use. It's expected that most address matches don't actually need 5266 // the domtree. 5267 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5268 Function *F = MemoryInst->getParent()->getParent(); 5269 return this->getDT(*F); 5270 }; 5271 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5272 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5273 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5274 BFI.get()); 5275 5276 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5277 if (GEP && !NewGEPBases.count(GEP)) { 5278 // If splitting the underlying data structure can reduce the offset of a 5279 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5280 // previously split data structures. 5281 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5282 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5283 } 5284 5285 NewAddrMode.OriginalValue = V; 5286 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5287 break; 5288 } 5289 5290 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5291 // or we have multiple but either couldn't combine them or combining them 5292 // wouldn't do anything useful, bail out now. 5293 if (!AddrModes.combineAddrModes()) { 5294 TPT.rollback(LastKnownGood); 5295 return false; 5296 } 5297 bool Modified = TPT.commit(); 5298 5299 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5300 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5301 5302 // If all the instructions matched are already in this BB, don't do anything. 5303 // If we saw a Phi node then it is not local definitely, and if we saw a 5304 // select then we want to push the address calculation past it even if it's 5305 // already in this BB. 5306 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5307 return IsNonLocalValue(V, MemoryInst->getParent()); 5308 })) { 5309 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5310 << "\n"); 5311 return Modified; 5312 } 5313 5314 // Insert this computation right after this user. Since our caller is 5315 // scanning from the top of the BB to the bottom, reuse of the expr are 5316 // guaranteed to happen later. 5317 IRBuilder<> Builder(MemoryInst); 5318 5319 // Now that we determined the addressing expression we want to use and know 5320 // that we have to sink it into this block. Check to see if we have already 5321 // done this for some other load/store instr in this block. If so, reuse 5322 // the computation. Before attempting reuse, check if the address is valid 5323 // as it may have been erased. 5324 5325 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5326 5327 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5328 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5329 if (SunkAddr) { 5330 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5331 << " for " << *MemoryInst << "\n"); 5332 if (SunkAddr->getType() != Addr->getType()) { 5333 if (SunkAddr->getType()->getPointerAddressSpace() != 5334 Addr->getType()->getPointerAddressSpace() && 5335 !DL->isNonIntegralPointerType(Addr->getType())) { 5336 // There are two reasons the address spaces might not match: a no-op 5337 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5338 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5339 // TODO: allow bitcast between different address space pointers with the 5340 // same size. 5341 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5342 SunkAddr = 5343 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5344 } else 5345 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5346 } 5347 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5348 SubtargetInfo->addrSinkUsingGEPs())) { 5349 // By default, we use the GEP-based method when AA is used later. This 5350 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5351 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5352 << " for " << *MemoryInst << "\n"); 5353 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5354 5355 // First, find the pointer. 5356 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5357 ResultPtr = AddrMode.BaseReg; 5358 AddrMode.BaseReg = nullptr; 5359 } 5360 5361 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5362 // We can't add more than one pointer together, nor can we scale a 5363 // pointer (both of which seem meaningless). 5364 if (ResultPtr || AddrMode.Scale != 1) 5365 return Modified; 5366 5367 ResultPtr = AddrMode.ScaledReg; 5368 AddrMode.Scale = 0; 5369 } 5370 5371 // It is only safe to sign extend the BaseReg if we know that the math 5372 // required to create it did not overflow before we extend it. Since 5373 // the original IR value was tossed in favor of a constant back when 5374 // the AddrMode was created we need to bail out gracefully if widths 5375 // do not match instead of extending it. 5376 // 5377 // (See below for code to add the scale.) 5378 if (AddrMode.Scale) { 5379 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5380 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5381 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5382 return Modified; 5383 } 5384 5385 if (AddrMode.BaseGV) { 5386 if (ResultPtr) 5387 return Modified; 5388 5389 ResultPtr = AddrMode.BaseGV; 5390 } 5391 5392 // If the real base value actually came from an inttoptr, then the matcher 5393 // will look through it and provide only the integer value. In that case, 5394 // use it here. 5395 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5396 if (!ResultPtr && AddrMode.BaseReg) { 5397 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5398 "sunkaddr"); 5399 AddrMode.BaseReg = nullptr; 5400 } else if (!ResultPtr && AddrMode.Scale == 1) { 5401 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5402 "sunkaddr"); 5403 AddrMode.Scale = 0; 5404 } 5405 } 5406 5407 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5408 !AddrMode.BaseOffs) { 5409 SunkAddr = Constant::getNullValue(Addr->getType()); 5410 } else if (!ResultPtr) { 5411 return Modified; 5412 } else { 5413 Type *I8PtrTy = 5414 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5415 Type *I8Ty = Builder.getInt8Ty(); 5416 5417 // Start with the base register. Do this first so that subsequent address 5418 // matching finds it last, which will prevent it from trying to match it 5419 // as the scaled value in case it happens to be a mul. That would be 5420 // problematic if we've sunk a different mul for the scale, because then 5421 // we'd end up sinking both muls. 5422 if (AddrMode.BaseReg) { 5423 Value *V = AddrMode.BaseReg; 5424 if (V->getType() != IntPtrTy) 5425 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5426 5427 ResultIndex = V; 5428 } 5429 5430 // Add the scale value. 5431 if (AddrMode.Scale) { 5432 Value *V = AddrMode.ScaledReg; 5433 if (V->getType() == IntPtrTy) { 5434 // done. 5435 } else { 5436 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5437 cast<IntegerType>(V->getType())->getBitWidth() && 5438 "We can't transform if ScaledReg is too narrow"); 5439 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5440 } 5441 5442 if (AddrMode.Scale != 1) 5443 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5444 "sunkaddr"); 5445 if (ResultIndex) 5446 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5447 else 5448 ResultIndex = V; 5449 } 5450 5451 // Add in the Base Offset if present. 5452 if (AddrMode.BaseOffs) { 5453 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5454 if (ResultIndex) { 5455 // We need to add this separately from the scale above to help with 5456 // SDAG consecutive load/store merging. 5457 if (ResultPtr->getType() != I8PtrTy) 5458 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5459 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, 5460 "sunkaddr", AddrMode.InBounds); 5461 } 5462 5463 ResultIndex = V; 5464 } 5465 5466 if (!ResultIndex) { 5467 SunkAddr = ResultPtr; 5468 } else { 5469 if (ResultPtr->getType() != I8PtrTy) 5470 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5471 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", 5472 AddrMode.InBounds); 5473 } 5474 5475 if (SunkAddr->getType() != Addr->getType()) { 5476 if (SunkAddr->getType()->getPointerAddressSpace() != 5477 Addr->getType()->getPointerAddressSpace() && 5478 !DL->isNonIntegralPointerType(Addr->getType())) { 5479 // There are two reasons the address spaces might not match: a no-op 5480 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5481 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5482 // TODO: allow bitcast between different address space pointers with 5483 // the same size. 5484 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5485 SunkAddr = 5486 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5487 } else 5488 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5489 } 5490 } 5491 } else { 5492 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5493 // non-integral pointers, so in that case bail out now. 5494 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5495 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5496 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5497 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5498 if (DL->isNonIntegralPointerType(Addr->getType()) || 5499 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5500 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5501 (AddrMode.BaseGV && 5502 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5503 return Modified; 5504 5505 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5506 << " for " << *MemoryInst << "\n"); 5507 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5508 Value *Result = nullptr; 5509 5510 // Start with the base register. Do this first so that subsequent address 5511 // matching finds it last, which will prevent it from trying to match it 5512 // as the scaled value in case it happens to be a mul. That would be 5513 // problematic if we've sunk a different mul for the scale, because then 5514 // we'd end up sinking both muls. 5515 if (AddrMode.BaseReg) { 5516 Value *V = AddrMode.BaseReg; 5517 if (V->getType()->isPointerTy()) 5518 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5519 if (V->getType() != IntPtrTy) 5520 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5521 Result = V; 5522 } 5523 5524 // Add the scale value. 5525 if (AddrMode.Scale) { 5526 Value *V = AddrMode.ScaledReg; 5527 if (V->getType() == IntPtrTy) { 5528 // done. 5529 } else if (V->getType()->isPointerTy()) { 5530 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5531 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5532 cast<IntegerType>(V->getType())->getBitWidth()) { 5533 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5534 } else { 5535 // It is only safe to sign extend the BaseReg if we know that the math 5536 // required to create it did not overflow before we extend it. Since 5537 // the original IR value was tossed in favor of a constant back when 5538 // the AddrMode was created we need to bail out gracefully if widths 5539 // do not match instead of extending it. 5540 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5541 if (I && (Result != AddrMode.BaseReg)) 5542 I->eraseFromParent(); 5543 return Modified; 5544 } 5545 if (AddrMode.Scale != 1) 5546 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5547 "sunkaddr"); 5548 if (Result) 5549 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5550 else 5551 Result = V; 5552 } 5553 5554 // Add in the BaseGV if present. 5555 if (AddrMode.BaseGV) { 5556 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5557 if (Result) 5558 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5559 else 5560 Result = V; 5561 } 5562 5563 // Add in the Base Offset if present. 5564 if (AddrMode.BaseOffs) { 5565 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5566 if (Result) 5567 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5568 else 5569 Result = V; 5570 } 5571 5572 if (!Result) 5573 SunkAddr = Constant::getNullValue(Addr->getType()); 5574 else 5575 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5576 } 5577 5578 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5579 // Store the newly computed address into the cache. In the case we reused a 5580 // value, this should be idempotent. 5581 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5582 5583 // If we have no uses, recursively delete the value and all dead instructions 5584 // using it. 5585 if (Repl->use_empty()) { 5586 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5587 RecursivelyDeleteTriviallyDeadInstructions( 5588 Repl, TLInfo, nullptr, 5589 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5590 }); 5591 } 5592 ++NumMemoryInsts; 5593 return true; 5594 } 5595 5596 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5597 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5598 /// only handle a 2 operand GEP in the same basic block or a splat constant 5599 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5600 /// index. 5601 /// 5602 /// If the existing GEP has a vector base pointer that is splat, we can look 5603 /// through the splat to find the scalar pointer. If we can't find a scalar 5604 /// pointer there's nothing we can do. 5605 /// 5606 /// If we have a GEP with more than 2 indices where the middle indices are all 5607 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5608 /// 5609 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5610 /// followed by a GEP with an all zeroes vector index. This will enable 5611 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5612 /// zero index. 5613 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5614 Value *Ptr) { 5615 Value *NewAddr; 5616 5617 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5618 // Don't optimize GEPs that don't have indices. 5619 if (!GEP->hasIndices()) 5620 return false; 5621 5622 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5623 // FIXME: We should support this by sinking the GEP. 5624 if (MemoryInst->getParent() != GEP->getParent()) 5625 return false; 5626 5627 SmallVector<Value *, 2> Ops(GEP->operands()); 5628 5629 bool RewriteGEP = false; 5630 5631 if (Ops[0]->getType()->isVectorTy()) { 5632 Ops[0] = getSplatValue(Ops[0]); 5633 if (!Ops[0]) 5634 return false; 5635 RewriteGEP = true; 5636 } 5637 5638 unsigned FinalIndex = Ops.size() - 1; 5639 5640 // Ensure all but the last index is 0. 5641 // FIXME: This isn't strictly required. All that's required is that they are 5642 // all scalars or splats. 5643 for (unsigned i = 1; i < FinalIndex; ++i) { 5644 auto *C = dyn_cast<Constant>(Ops[i]); 5645 if (!C) 5646 return false; 5647 if (isa<VectorType>(C->getType())) 5648 C = C->getSplatValue(); 5649 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5650 if (!CI || !CI->isZero()) 5651 return false; 5652 // Scalarize the index if needed. 5653 Ops[i] = CI; 5654 } 5655 5656 // Try to scalarize the final index. 5657 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5658 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5659 auto *C = dyn_cast<ConstantInt>(V); 5660 // Don't scalarize all zeros vector. 5661 if (!C || !C->isZero()) { 5662 Ops[FinalIndex] = V; 5663 RewriteGEP = true; 5664 } 5665 } 5666 } 5667 5668 // If we made any changes or the we have extra operands, we need to generate 5669 // new instructions. 5670 if (!RewriteGEP && Ops.size() == 2) 5671 return false; 5672 5673 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5674 5675 IRBuilder<> Builder(MemoryInst); 5676 5677 Type *SourceTy = GEP->getSourceElementType(); 5678 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5679 5680 // If the final index isn't a vector, emit a scalar GEP containing all ops 5681 // and a vector GEP with all zeroes final index. 5682 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5683 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 5684 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5685 auto *SecondTy = GetElementPtrInst::getIndexedType( 5686 SourceTy, ArrayRef(Ops).drop_front()); 5687 NewAddr = 5688 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5689 } else { 5690 Value *Base = Ops[0]; 5691 Value *Index = Ops[FinalIndex]; 5692 5693 // Create a scalar GEP if there are more than 2 operands. 5694 if (Ops.size() != 2) { 5695 // Replace the last index with 0. 5696 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5697 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 5698 SourceTy = GetElementPtrInst::getIndexedType( 5699 SourceTy, ArrayRef(Ops).drop_front()); 5700 } 5701 5702 // Now create the GEP with scalar pointer and vector index. 5703 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5704 } 5705 } else if (!isa<Constant>(Ptr)) { 5706 // Not a GEP, maybe its a splat and we can create a GEP to enable 5707 // SelectionDAGBuilder to use it as a uniform base. 5708 Value *V = getSplatValue(Ptr); 5709 if (!V) 5710 return false; 5711 5712 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5713 5714 IRBuilder<> Builder(MemoryInst); 5715 5716 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5717 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5718 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5719 Type *ScalarTy; 5720 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5721 Intrinsic::masked_gather) { 5722 ScalarTy = MemoryInst->getType()->getScalarType(); 5723 } else { 5724 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5725 Intrinsic::masked_scatter); 5726 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5727 } 5728 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5729 } else { 5730 // Constant, SelectionDAGBuilder knows to check if its a splat. 5731 return false; 5732 } 5733 5734 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5735 5736 // If we have no uses, recursively delete the value and all dead instructions 5737 // using it. 5738 if (Ptr->use_empty()) 5739 RecursivelyDeleteTriviallyDeadInstructions( 5740 Ptr, TLInfo, nullptr, 5741 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5742 5743 return true; 5744 } 5745 5746 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5747 /// address computing into the block when possible / profitable. 5748 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5749 bool MadeChange = false; 5750 5751 const TargetRegisterInfo *TRI = 5752 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5753 TargetLowering::AsmOperandInfoVector TargetConstraints = 5754 TLI->ParseConstraints(*DL, TRI, *CS); 5755 unsigned ArgNo = 0; 5756 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5757 // Compute the constraint code and ConstraintType to use. 5758 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5759 5760 // TODO: Also handle C_Address? 5761 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5762 OpInfo.isIndirect) { 5763 Value *OpVal = CS->getArgOperand(ArgNo++); 5764 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5765 } else if (OpInfo.Type == InlineAsm::isInput) 5766 ArgNo++; 5767 } 5768 5769 return MadeChange; 5770 } 5771 5772 /// Check if all the uses of \p Val are equivalent (or free) zero or 5773 /// sign extensions. 5774 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5775 assert(!Val->use_empty() && "Input must have at least one use"); 5776 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5777 bool IsSExt = isa<SExtInst>(FirstUser); 5778 Type *ExtTy = FirstUser->getType(); 5779 for (const User *U : Val->users()) { 5780 const Instruction *UI = cast<Instruction>(U); 5781 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5782 return false; 5783 Type *CurTy = UI->getType(); 5784 // Same input and output types: Same instruction after CSE. 5785 if (CurTy == ExtTy) 5786 continue; 5787 5788 // If IsSExt is true, we are in this situation: 5789 // a = Val 5790 // b = sext ty1 a to ty2 5791 // c = sext ty1 a to ty3 5792 // Assuming ty2 is shorter than ty3, this could be turned into: 5793 // a = Val 5794 // b = sext ty1 a to ty2 5795 // c = sext ty2 b to ty3 5796 // However, the last sext is not free. 5797 if (IsSExt) 5798 return false; 5799 5800 // This is a ZExt, maybe this is free to extend from one type to another. 5801 // In that case, we would not account for a different use. 5802 Type *NarrowTy; 5803 Type *LargeTy; 5804 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5805 CurTy->getScalarType()->getIntegerBitWidth()) { 5806 NarrowTy = CurTy; 5807 LargeTy = ExtTy; 5808 } else { 5809 NarrowTy = ExtTy; 5810 LargeTy = CurTy; 5811 } 5812 5813 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5814 return false; 5815 } 5816 // All uses are the same or can be derived from one another for free. 5817 return true; 5818 } 5819 5820 /// Try to speculatively promote extensions in \p Exts and continue 5821 /// promoting through newly promoted operands recursively as far as doing so is 5822 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5823 /// When some promotion happened, \p TPT contains the proper state to revert 5824 /// them. 5825 /// 5826 /// \return true if some promotion happened, false otherwise. 5827 bool CodeGenPrepare::tryToPromoteExts( 5828 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5829 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5830 unsigned CreatedInstsCost) { 5831 bool Promoted = false; 5832 5833 // Iterate over all the extensions to try to promote them. 5834 for (auto *I : Exts) { 5835 // Early check if we directly have ext(load). 5836 if (isa<LoadInst>(I->getOperand(0))) { 5837 ProfitablyMovedExts.push_back(I); 5838 continue; 5839 } 5840 5841 // Check whether or not we want to do any promotion. The reason we have 5842 // this check inside the for loop is to catch the case where an extension 5843 // is directly fed by a load because in such case the extension can be moved 5844 // up without any promotion on its operands. 5845 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5846 return false; 5847 5848 // Get the action to perform the promotion. 5849 TypePromotionHelper::Action TPH = 5850 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5851 // Check if we can promote. 5852 if (!TPH) { 5853 // Save the current extension as we cannot move up through its operand. 5854 ProfitablyMovedExts.push_back(I); 5855 continue; 5856 } 5857 5858 // Save the current state. 5859 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5860 TPT.getRestorationPoint(); 5861 SmallVector<Instruction *, 4> NewExts; 5862 unsigned NewCreatedInstsCost = 0; 5863 unsigned ExtCost = !TLI->isExtFree(I); 5864 // Promote. 5865 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5866 &NewExts, nullptr, *TLI); 5867 assert(PromotedVal && 5868 "TypePromotionHelper should have filtered out those cases"); 5869 5870 // We would be able to merge only one extension in a load. 5871 // Therefore, if we have more than 1 new extension we heuristically 5872 // cut this search path, because it means we degrade the code quality. 5873 // With exactly 2, the transformation is neutral, because we will merge 5874 // one extension but leave one. However, we optimistically keep going, 5875 // because the new extension may be removed too. 5876 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5877 // FIXME: It would be possible to propagate a negative value instead of 5878 // conservatively ceiling it to 0. 5879 TotalCreatedInstsCost = 5880 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5881 if (!StressExtLdPromotion && 5882 (TotalCreatedInstsCost > 1 || 5883 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5884 // This promotion is not profitable, rollback to the previous state, and 5885 // save the current extension in ProfitablyMovedExts as the latest 5886 // speculative promotion turned out to be unprofitable. 5887 TPT.rollback(LastKnownGood); 5888 ProfitablyMovedExts.push_back(I); 5889 continue; 5890 } 5891 // Continue promoting NewExts as far as doing so is profitable. 5892 SmallVector<Instruction *, 2> NewlyMovedExts; 5893 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5894 bool NewPromoted = false; 5895 for (auto *ExtInst : NewlyMovedExts) { 5896 Instruction *MovedExt = cast<Instruction>(ExtInst); 5897 Value *ExtOperand = MovedExt->getOperand(0); 5898 // If we have reached to a load, we need this extra profitability check 5899 // as it could potentially be merged into an ext(load). 5900 if (isa<LoadInst>(ExtOperand) && 5901 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5902 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5903 continue; 5904 5905 ProfitablyMovedExts.push_back(MovedExt); 5906 NewPromoted = true; 5907 } 5908 5909 // If none of speculative promotions for NewExts is profitable, rollback 5910 // and save the current extension (I) as the last profitable extension. 5911 if (!NewPromoted) { 5912 TPT.rollback(LastKnownGood); 5913 ProfitablyMovedExts.push_back(I); 5914 continue; 5915 } 5916 // The promotion is profitable. 5917 Promoted = true; 5918 } 5919 return Promoted; 5920 } 5921 5922 /// Merging redundant sexts when one is dominating the other. 5923 bool CodeGenPrepare::mergeSExts(Function &F) { 5924 bool Changed = false; 5925 for (auto &Entry : ValToSExtendedUses) { 5926 SExts &Insts = Entry.second; 5927 SExts CurPts; 5928 for (Instruction *Inst : Insts) { 5929 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5930 Inst->getOperand(0) != Entry.first) 5931 continue; 5932 bool inserted = false; 5933 for (auto &Pt : CurPts) { 5934 if (getDT(F).dominates(Inst, Pt)) { 5935 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 5936 RemovedInsts.insert(Pt); 5937 Pt->removeFromParent(); 5938 Pt = Inst; 5939 inserted = true; 5940 Changed = true; 5941 break; 5942 } 5943 if (!getDT(F).dominates(Pt, Inst)) 5944 // Give up if we need to merge in a common dominator as the 5945 // experiments show it is not profitable. 5946 continue; 5947 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 5948 RemovedInsts.insert(Inst); 5949 Inst->removeFromParent(); 5950 inserted = true; 5951 Changed = true; 5952 break; 5953 } 5954 if (!inserted) 5955 CurPts.push_back(Inst); 5956 } 5957 } 5958 return Changed; 5959 } 5960 5961 // Splitting large data structures so that the GEPs accessing them can have 5962 // smaller offsets so that they can be sunk to the same blocks as their users. 5963 // For example, a large struct starting from %base is split into two parts 5964 // where the second part starts from %new_base. 5965 // 5966 // Before: 5967 // BB0: 5968 // %base = 5969 // 5970 // BB1: 5971 // %gep0 = gep %base, off0 5972 // %gep1 = gep %base, off1 5973 // %gep2 = gep %base, off2 5974 // 5975 // BB2: 5976 // %load1 = load %gep0 5977 // %load2 = load %gep1 5978 // %load3 = load %gep2 5979 // 5980 // After: 5981 // BB0: 5982 // %base = 5983 // %new_base = gep %base, off0 5984 // 5985 // BB1: 5986 // %new_gep0 = %new_base 5987 // %new_gep1 = gep %new_base, off1 - off0 5988 // %new_gep2 = gep %new_base, off2 - off0 5989 // 5990 // BB2: 5991 // %load1 = load i32, i32* %new_gep0 5992 // %load2 = load i32, i32* %new_gep1 5993 // %load3 = load i32, i32* %new_gep2 5994 // 5995 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5996 // their offsets are smaller enough to fit into the addressing mode. 5997 bool CodeGenPrepare::splitLargeGEPOffsets() { 5998 bool Changed = false; 5999 for (auto &Entry : LargeOffsetGEPMap) { 6000 Value *OldBase = Entry.first; 6001 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6002 &LargeOffsetGEPs = Entry.second; 6003 auto compareGEPOffset = 6004 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6005 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6006 if (LHS.first == RHS.first) 6007 return false; 6008 if (LHS.second != RHS.second) 6009 return LHS.second < RHS.second; 6010 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6011 }; 6012 // Sorting all the GEPs of the same data structures based on the offsets. 6013 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6014 LargeOffsetGEPs.erase( 6015 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 6016 LargeOffsetGEPs.end()); 6017 // Skip if all the GEPs have the same offsets. 6018 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6019 continue; 6020 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6021 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6022 Value *NewBaseGEP = nullptr; 6023 6024 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6025 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6026 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6027 int64_t Offset = LargeOffsetGEP->second; 6028 if (Offset != BaseOffset) { 6029 TargetLowering::AddrMode AddrMode; 6030 AddrMode.BaseOffs = Offset - BaseOffset; 6031 // The result type of the GEP might not be the type of the memory 6032 // access. 6033 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6034 GEP->getResultElementType(), 6035 GEP->getAddressSpace())) { 6036 // We need to create a new base if the offset to the current base is 6037 // too large to fit into the addressing mode. So, a very large struct 6038 // may be split into several parts. 6039 BaseGEP = GEP; 6040 BaseOffset = Offset; 6041 NewBaseGEP = nullptr; 6042 } 6043 } 6044 6045 // Generate a new GEP to replace the current one. 6046 LLVMContext &Ctx = GEP->getContext(); 6047 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 6048 Type *I8PtrTy = 6049 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 6050 Type *I8Ty = Type::getInt8Ty(Ctx); 6051 6052 if (!NewBaseGEP) { 6053 // Create a new base if we don't have one yet. Find the insertion 6054 // pointer for the new base first. 6055 BasicBlock::iterator NewBaseInsertPt; 6056 BasicBlock *NewBaseInsertBB; 6057 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6058 // If the base of the struct is an instruction, the new base will be 6059 // inserted close to it. 6060 NewBaseInsertBB = BaseI->getParent(); 6061 if (isa<PHINode>(BaseI)) 6062 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6063 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6064 NewBaseInsertBB = 6065 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 6066 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6067 } else 6068 NewBaseInsertPt = std::next(BaseI->getIterator()); 6069 } else { 6070 // If the current base is an argument or global value, the new base 6071 // will be inserted to the entry block. 6072 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6073 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6074 } 6075 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6076 // Create a new base. 6077 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 6078 NewBaseGEP = OldBase; 6079 if (NewBaseGEP->getType() != I8PtrTy) 6080 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6081 NewBaseGEP = 6082 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 6083 NewGEPBases.insert(NewBaseGEP); 6084 } 6085 6086 IRBuilder<> Builder(GEP); 6087 Value *NewGEP = NewBaseGEP; 6088 if (Offset == BaseOffset) { 6089 if (GEP->getType() != I8PtrTy) 6090 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 6091 } else { 6092 // Calculate the new offset for the new GEP. 6093 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 6094 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 6095 6096 if (GEP->getType() != I8PtrTy) 6097 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 6098 } 6099 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6100 LargeOffsetGEPID.erase(GEP); 6101 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6102 GEP->eraseFromParent(); 6103 Changed = true; 6104 } 6105 } 6106 return Changed; 6107 } 6108 6109 bool CodeGenPrepare::optimizePhiType( 6110 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6111 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6112 // We are looking for a collection on interconnected phi nodes that together 6113 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6114 // are of the same type. Convert the whole set of nodes to the type of the 6115 // bitcast. 6116 Type *PhiTy = I->getType(); 6117 Type *ConvertTy = nullptr; 6118 if (Visited.count(I) || 6119 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6120 return false; 6121 6122 SmallVector<Instruction *, 4> Worklist; 6123 Worklist.push_back(cast<Instruction>(I)); 6124 SmallPtrSet<PHINode *, 4> PhiNodes; 6125 SmallPtrSet<ConstantData *, 4> Constants; 6126 PhiNodes.insert(I); 6127 Visited.insert(I); 6128 SmallPtrSet<Instruction *, 4> Defs; 6129 SmallPtrSet<Instruction *, 4> Uses; 6130 // This works by adding extra bitcasts between load/stores and removing 6131 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6132 // we can get in the situation where we remove a bitcast in one iteration 6133 // just to add it again in the next. We need to ensure that at least one 6134 // bitcast we remove are anchored to something that will not change back. 6135 bool AnyAnchored = false; 6136 6137 while (!Worklist.empty()) { 6138 Instruction *II = Worklist.pop_back_val(); 6139 6140 if (auto *Phi = dyn_cast<PHINode>(II)) { 6141 // Handle Defs, which might also be PHI's 6142 for (Value *V : Phi->incoming_values()) { 6143 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6144 if (!PhiNodes.count(OpPhi)) { 6145 if (!Visited.insert(OpPhi).second) 6146 return false; 6147 PhiNodes.insert(OpPhi); 6148 Worklist.push_back(OpPhi); 6149 } 6150 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6151 if (!OpLoad->isSimple()) 6152 return false; 6153 if (Defs.insert(OpLoad).second) 6154 Worklist.push_back(OpLoad); 6155 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6156 if (Defs.insert(OpEx).second) 6157 Worklist.push_back(OpEx); 6158 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6159 if (!ConvertTy) 6160 ConvertTy = OpBC->getOperand(0)->getType(); 6161 if (OpBC->getOperand(0)->getType() != ConvertTy) 6162 return false; 6163 if (Defs.insert(OpBC).second) { 6164 Worklist.push_back(OpBC); 6165 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6166 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6167 } 6168 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6169 Constants.insert(OpC); 6170 else 6171 return false; 6172 } 6173 } 6174 6175 // Handle uses which might also be phi's 6176 for (User *V : II->users()) { 6177 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6178 if (!PhiNodes.count(OpPhi)) { 6179 if (Visited.count(OpPhi)) 6180 return false; 6181 PhiNodes.insert(OpPhi); 6182 Visited.insert(OpPhi); 6183 Worklist.push_back(OpPhi); 6184 } 6185 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6186 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6187 return false; 6188 Uses.insert(OpStore); 6189 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6190 if (!ConvertTy) 6191 ConvertTy = OpBC->getType(); 6192 if (OpBC->getType() != ConvertTy) 6193 return false; 6194 Uses.insert(OpBC); 6195 AnyAnchored |= 6196 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6197 } else { 6198 return false; 6199 } 6200 } 6201 } 6202 6203 if (!ConvertTy || !AnyAnchored || 6204 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6205 return false; 6206 6207 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6208 << *ConvertTy << "\n"); 6209 6210 // Create all the new phi nodes of the new type, and bitcast any loads to the 6211 // correct type. 6212 ValueToValueMap ValMap; 6213 for (ConstantData *C : Constants) 6214 ValMap[C] = ConstantExpr::getCast(Instruction::BitCast, C, ConvertTy); 6215 for (Instruction *D : Defs) { 6216 if (isa<BitCastInst>(D)) { 6217 ValMap[D] = D->getOperand(0); 6218 DeletedInstrs.insert(D); 6219 } else { 6220 ValMap[D] = 6221 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6222 } 6223 } 6224 for (PHINode *Phi : PhiNodes) 6225 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6226 Phi->getName() + ".tc", Phi); 6227 // Pipe together all the PhiNodes. 6228 for (PHINode *Phi : PhiNodes) { 6229 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6230 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6231 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6232 Phi->getIncomingBlock(i)); 6233 Visited.insert(NewPhi); 6234 } 6235 // And finally pipe up the stores and bitcasts 6236 for (Instruction *U : Uses) { 6237 if (isa<BitCastInst>(U)) { 6238 DeletedInstrs.insert(U); 6239 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6240 } else { 6241 U->setOperand(0, 6242 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6243 } 6244 } 6245 6246 // Save the removed phis to be deleted later. 6247 for (PHINode *Phi : PhiNodes) 6248 DeletedInstrs.insert(Phi); 6249 return true; 6250 } 6251 6252 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6253 if (!OptimizePhiTypes) 6254 return false; 6255 6256 bool Changed = false; 6257 SmallPtrSet<PHINode *, 4> Visited; 6258 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6259 6260 // Attempt to optimize all the phis in the functions to the correct type. 6261 for (auto &BB : F) 6262 for (auto &Phi : BB.phis()) 6263 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6264 6265 // Remove any old phi's that have been converted. 6266 for (auto *I : DeletedInstrs) { 6267 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6268 I->eraseFromParent(); 6269 } 6270 6271 return Changed; 6272 } 6273 6274 /// Return true, if an ext(load) can be formed from an extension in 6275 /// \p MovedExts. 6276 bool CodeGenPrepare::canFormExtLd( 6277 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6278 Instruction *&Inst, bool HasPromoted) { 6279 for (auto *MovedExtInst : MovedExts) { 6280 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6281 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6282 Inst = MovedExtInst; 6283 break; 6284 } 6285 } 6286 if (!LI) 6287 return false; 6288 6289 // If they're already in the same block, there's nothing to do. 6290 // Make the cheap checks first if we did not promote. 6291 // If we promoted, we need to check if it is indeed profitable. 6292 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6293 return false; 6294 6295 return TLI->isExtLoad(LI, Inst, *DL); 6296 } 6297 6298 /// Move a zext or sext fed by a load into the same basic block as the load, 6299 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6300 /// extend into the load. 6301 /// 6302 /// E.g., 6303 /// \code 6304 /// %ld = load i32* %addr 6305 /// %add = add nuw i32 %ld, 4 6306 /// %zext = zext i32 %add to i64 6307 // \endcode 6308 /// => 6309 /// \code 6310 /// %ld = load i32* %addr 6311 /// %zext = zext i32 %ld to i64 6312 /// %add = add nuw i64 %zext, 4 6313 /// \encode 6314 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6315 /// allow us to match zext(load i32*) to i64. 6316 /// 6317 /// Also, try to promote the computations used to obtain a sign extended 6318 /// value used into memory accesses. 6319 /// E.g., 6320 /// \code 6321 /// a = add nsw i32 b, 3 6322 /// d = sext i32 a to i64 6323 /// e = getelementptr ..., i64 d 6324 /// \endcode 6325 /// => 6326 /// \code 6327 /// f = sext i32 b to i64 6328 /// a = add nsw i64 f, 3 6329 /// e = getelementptr ..., i64 a 6330 /// \endcode 6331 /// 6332 /// \p Inst[in/out] the extension may be modified during the process if some 6333 /// promotions apply. 6334 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6335 bool AllowPromotionWithoutCommonHeader = false; 6336 /// See if it is an interesting sext operations for the address type 6337 /// promotion before trying to promote it, e.g., the ones with the right 6338 /// type and used in memory accesses. 6339 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6340 *Inst, AllowPromotionWithoutCommonHeader); 6341 TypePromotionTransaction TPT(RemovedInsts); 6342 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6343 TPT.getRestorationPoint(); 6344 SmallVector<Instruction *, 1> Exts; 6345 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6346 Exts.push_back(Inst); 6347 6348 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6349 6350 // Look for a load being extended. 6351 LoadInst *LI = nullptr; 6352 Instruction *ExtFedByLoad; 6353 6354 // Try to promote a chain of computation if it allows to form an extended 6355 // load. 6356 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6357 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6358 TPT.commit(); 6359 // Move the extend into the same block as the load. 6360 ExtFedByLoad->moveAfter(LI); 6361 ++NumExtsMoved; 6362 Inst = ExtFedByLoad; 6363 return true; 6364 } 6365 6366 // Continue promoting SExts if known as considerable depending on targets. 6367 if (ATPConsiderable && 6368 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6369 HasPromoted, TPT, SpeculativelyMovedExts)) 6370 return true; 6371 6372 TPT.rollback(LastKnownGood); 6373 return false; 6374 } 6375 6376 // Perform address type promotion if doing so is profitable. 6377 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6378 // instructions that sign extended the same initial value. However, if 6379 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6380 // extension is just profitable. 6381 bool CodeGenPrepare::performAddressTypePromotion( 6382 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6383 bool HasPromoted, TypePromotionTransaction &TPT, 6384 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6385 bool Promoted = false; 6386 SmallPtrSet<Instruction *, 1> UnhandledExts; 6387 bool AllSeenFirst = true; 6388 for (auto *I : SpeculativelyMovedExts) { 6389 Value *HeadOfChain = I->getOperand(0); 6390 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6391 SeenChainsForSExt.find(HeadOfChain); 6392 // If there is an unhandled SExt which has the same header, try to promote 6393 // it as well. 6394 if (AlreadySeen != SeenChainsForSExt.end()) { 6395 if (AlreadySeen->second != nullptr) 6396 UnhandledExts.insert(AlreadySeen->second); 6397 AllSeenFirst = false; 6398 } 6399 } 6400 6401 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6402 SpeculativelyMovedExts.size() == 1)) { 6403 TPT.commit(); 6404 if (HasPromoted) 6405 Promoted = true; 6406 for (auto *I : SpeculativelyMovedExts) { 6407 Value *HeadOfChain = I->getOperand(0); 6408 SeenChainsForSExt[HeadOfChain] = nullptr; 6409 ValToSExtendedUses[HeadOfChain].push_back(I); 6410 } 6411 // Update Inst as promotion happen. 6412 Inst = SpeculativelyMovedExts.pop_back_val(); 6413 } else { 6414 // This is the first chain visited from the header, keep the current chain 6415 // as unhandled. Defer to promote this until we encounter another SExt 6416 // chain derived from the same header. 6417 for (auto *I : SpeculativelyMovedExts) { 6418 Value *HeadOfChain = I->getOperand(0); 6419 SeenChainsForSExt[HeadOfChain] = Inst; 6420 } 6421 return false; 6422 } 6423 6424 if (!AllSeenFirst && !UnhandledExts.empty()) 6425 for (auto *VisitedSExt : UnhandledExts) { 6426 if (RemovedInsts.count(VisitedSExt)) 6427 continue; 6428 TypePromotionTransaction TPT(RemovedInsts); 6429 SmallVector<Instruction *, 1> Exts; 6430 SmallVector<Instruction *, 2> Chains; 6431 Exts.push_back(VisitedSExt); 6432 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6433 TPT.commit(); 6434 if (HasPromoted) 6435 Promoted = true; 6436 for (auto *I : Chains) { 6437 Value *HeadOfChain = I->getOperand(0); 6438 // Mark this as handled. 6439 SeenChainsForSExt[HeadOfChain] = nullptr; 6440 ValToSExtendedUses[HeadOfChain].push_back(I); 6441 } 6442 } 6443 return Promoted; 6444 } 6445 6446 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6447 BasicBlock *DefBB = I->getParent(); 6448 6449 // If the result of a {s|z}ext and its source are both live out, rewrite all 6450 // other uses of the source with result of extension. 6451 Value *Src = I->getOperand(0); 6452 if (Src->hasOneUse()) 6453 return false; 6454 6455 // Only do this xform if truncating is free. 6456 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6457 return false; 6458 6459 // Only safe to perform the optimization if the source is also defined in 6460 // this block. 6461 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6462 return false; 6463 6464 bool DefIsLiveOut = false; 6465 for (User *U : I->users()) { 6466 Instruction *UI = cast<Instruction>(U); 6467 6468 // Figure out which BB this ext is used in. 6469 BasicBlock *UserBB = UI->getParent(); 6470 if (UserBB == DefBB) 6471 continue; 6472 DefIsLiveOut = true; 6473 break; 6474 } 6475 if (!DefIsLiveOut) 6476 return false; 6477 6478 // Make sure none of the uses are PHI nodes. 6479 for (User *U : Src->users()) { 6480 Instruction *UI = cast<Instruction>(U); 6481 BasicBlock *UserBB = UI->getParent(); 6482 if (UserBB == DefBB) 6483 continue; 6484 // Be conservative. We don't want this xform to end up introducing 6485 // reloads just before load / store instructions. 6486 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6487 return false; 6488 } 6489 6490 // InsertedTruncs - Only insert one trunc in each block once. 6491 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6492 6493 bool MadeChange = false; 6494 for (Use &U : Src->uses()) { 6495 Instruction *User = cast<Instruction>(U.getUser()); 6496 6497 // Figure out which BB this ext is used in. 6498 BasicBlock *UserBB = User->getParent(); 6499 if (UserBB == DefBB) 6500 continue; 6501 6502 // Both src and def are live in this block. Rewrite the use. 6503 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6504 6505 if (!InsertedTrunc) { 6506 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6507 assert(InsertPt != UserBB->end()); 6508 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6509 InsertedInsts.insert(InsertedTrunc); 6510 } 6511 6512 // Replace a use of the {s|z}ext source with a use of the result. 6513 U = InsertedTrunc; 6514 ++NumExtUses; 6515 MadeChange = true; 6516 } 6517 6518 return MadeChange; 6519 } 6520 6521 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6522 // just after the load if the target can fold this into one extload instruction, 6523 // with the hope of eliminating some of the other later "and" instructions using 6524 // the loaded value. "and"s that are made trivially redundant by the insertion 6525 // of the new "and" are removed by this function, while others (e.g. those whose 6526 // path from the load goes through a phi) are left for isel to potentially 6527 // remove. 6528 // 6529 // For example: 6530 // 6531 // b0: 6532 // x = load i32 6533 // ... 6534 // b1: 6535 // y = and x, 0xff 6536 // z = use y 6537 // 6538 // becomes: 6539 // 6540 // b0: 6541 // x = load i32 6542 // x' = and x, 0xff 6543 // ... 6544 // b1: 6545 // z = use x' 6546 // 6547 // whereas: 6548 // 6549 // b0: 6550 // x1 = load i32 6551 // ... 6552 // b1: 6553 // x2 = load i32 6554 // ... 6555 // b2: 6556 // x = phi x1, x2 6557 // y = and x, 0xff 6558 // 6559 // becomes (after a call to optimizeLoadExt for each load): 6560 // 6561 // b0: 6562 // x1 = load i32 6563 // x1' = and x1, 0xff 6564 // ... 6565 // b1: 6566 // x2 = load i32 6567 // x2' = and x2, 0xff 6568 // ... 6569 // b2: 6570 // x = phi x1', x2' 6571 // y = and x, 0xff 6572 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6573 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6574 return false; 6575 6576 // Skip loads we've already transformed. 6577 if (Load->hasOneUse() && 6578 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6579 return false; 6580 6581 // Look at all uses of Load, looking through phis, to determine how many bits 6582 // of the loaded value are needed. 6583 SmallVector<Instruction *, 8> WorkList; 6584 SmallPtrSet<Instruction *, 16> Visited; 6585 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6586 for (auto *U : Load->users()) 6587 WorkList.push_back(cast<Instruction>(U)); 6588 6589 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6590 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6591 // If the BitWidth is 0, do not try to optimize the type 6592 if (BitWidth == 0) 6593 return false; 6594 6595 APInt DemandBits(BitWidth, 0); 6596 APInt WidestAndBits(BitWidth, 0); 6597 6598 while (!WorkList.empty()) { 6599 Instruction *I = WorkList.pop_back_val(); 6600 6601 // Break use-def graph loops. 6602 if (!Visited.insert(I).second) 6603 continue; 6604 6605 // For a PHI node, push all of its users. 6606 if (auto *Phi = dyn_cast<PHINode>(I)) { 6607 for (auto *U : Phi->users()) 6608 WorkList.push_back(cast<Instruction>(U)); 6609 continue; 6610 } 6611 6612 switch (I->getOpcode()) { 6613 case Instruction::And: { 6614 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6615 if (!AndC) 6616 return false; 6617 APInt AndBits = AndC->getValue(); 6618 DemandBits |= AndBits; 6619 // Keep track of the widest and mask we see. 6620 if (AndBits.ugt(WidestAndBits)) 6621 WidestAndBits = AndBits; 6622 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6623 AndsToMaybeRemove.push_back(I); 6624 break; 6625 } 6626 6627 case Instruction::Shl: { 6628 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6629 if (!ShlC) 6630 return false; 6631 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6632 DemandBits.setLowBits(BitWidth - ShiftAmt); 6633 break; 6634 } 6635 6636 case Instruction::Trunc: { 6637 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6638 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6639 DemandBits.setLowBits(TruncBitWidth); 6640 break; 6641 } 6642 6643 default: 6644 return false; 6645 } 6646 } 6647 6648 uint32_t ActiveBits = DemandBits.getActiveBits(); 6649 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6650 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6651 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6652 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6653 // followed by an AND. 6654 // TODO: Look into removing this restriction by fixing backends to either 6655 // return false for isLoadExtLegal for i1 or have them select this pattern to 6656 // a single instruction. 6657 // 6658 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6659 // mask, since these are the only ands that will be removed by isel. 6660 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6661 WidestAndBits != DemandBits) 6662 return false; 6663 6664 LLVMContext &Ctx = Load->getType()->getContext(); 6665 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6666 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6667 6668 // Reject cases that won't be matched as extloads. 6669 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6670 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6671 return false; 6672 6673 IRBuilder<> Builder(Load->getNextNode()); 6674 auto *NewAnd = cast<Instruction>( 6675 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6676 // Mark this instruction as "inserted by CGP", so that other 6677 // optimizations don't touch it. 6678 InsertedInsts.insert(NewAnd); 6679 6680 // Replace all uses of load with new and (except for the use of load in the 6681 // new and itself). 6682 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 6683 NewAnd->setOperand(0, Load); 6684 6685 // Remove any and instructions that are now redundant. 6686 for (auto *And : AndsToMaybeRemove) 6687 // Check that the and mask is the same as the one we decided to put on the 6688 // new and. 6689 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6690 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 6691 if (&*CurInstIterator == And) 6692 CurInstIterator = std::next(And->getIterator()); 6693 And->eraseFromParent(); 6694 ++NumAndUses; 6695 } 6696 6697 ++NumAndsAdded; 6698 return true; 6699 } 6700 6701 /// Check if V (an operand of a select instruction) is an expensive instruction 6702 /// that is only used once. 6703 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6704 auto *I = dyn_cast<Instruction>(V); 6705 // If it's safe to speculatively execute, then it should not have side 6706 // effects; therefore, it's safe to sink and possibly *not* execute. 6707 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6708 TTI->isExpensiveToSpeculativelyExecute(I); 6709 } 6710 6711 /// Returns true if a SelectInst should be turned into an explicit branch. 6712 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6713 const TargetLowering *TLI, 6714 SelectInst *SI) { 6715 // If even a predictable select is cheap, then a branch can't be cheaper. 6716 if (!TLI->isPredictableSelectExpensive()) 6717 return false; 6718 6719 // FIXME: This should use the same heuristics as IfConversion to determine 6720 // whether a select is better represented as a branch. 6721 6722 // If metadata tells us that the select condition is obviously predictable, 6723 // then we want to replace the select with a branch. 6724 uint64_t TrueWeight, FalseWeight; 6725 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 6726 uint64_t Max = std::max(TrueWeight, FalseWeight); 6727 uint64_t Sum = TrueWeight + FalseWeight; 6728 if (Sum != 0) { 6729 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6730 if (Probability > TTI->getPredictableBranchThreshold()) 6731 return true; 6732 } 6733 } 6734 6735 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6736 6737 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6738 // comparison condition. If the compare has more than one use, there's 6739 // probably another cmov or setcc around, so it's not worth emitting a branch. 6740 if (!Cmp || !Cmp->hasOneUse()) 6741 return false; 6742 6743 // If either operand of the select is expensive and only needed on one side 6744 // of the select, we should form a branch. 6745 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6746 sinkSelectOperand(TTI, SI->getFalseValue())) 6747 return true; 6748 6749 return false; 6750 } 6751 6752 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6753 /// false value of \p SI. If the true/false value of \p SI is defined by any 6754 /// select instructions in \p Selects, look through the defining select 6755 /// instruction until the true/false value is not defined in \p Selects. 6756 static Value * 6757 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 6758 const SmallPtrSet<const Instruction *, 2> &Selects) { 6759 Value *V = nullptr; 6760 6761 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6762 DefSI = dyn_cast<SelectInst>(V)) { 6763 assert(DefSI->getCondition() == SI->getCondition() && 6764 "The condition of DefSI does not match with SI"); 6765 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6766 } 6767 6768 assert(V && "Failed to get select true/false value"); 6769 return V; 6770 } 6771 6772 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6773 assert(Shift->isShift() && "Expected a shift"); 6774 6775 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6776 // general vector shifts, and (3) the shift amount is a select-of-splatted 6777 // values, hoist the shifts before the select: 6778 // shift Op0, (select Cond, TVal, FVal) --> 6779 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6780 // 6781 // This is inverting a generic IR transform when we know that the cost of a 6782 // general vector shift is more than the cost of 2 shift-by-scalars. 6783 // We can't do this effectively in SDAG because we may not be able to 6784 // determine if the select operands are splats from within a basic block. 6785 Type *Ty = Shift->getType(); 6786 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6787 return false; 6788 Value *Cond, *TVal, *FVal; 6789 if (!match(Shift->getOperand(1), 6790 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6791 return false; 6792 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6793 return false; 6794 6795 IRBuilder<> Builder(Shift); 6796 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6797 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6798 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6799 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6800 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 6801 Shift->eraseFromParent(); 6802 return true; 6803 } 6804 6805 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6806 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6807 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6808 "Expected a funnel shift"); 6809 6810 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6811 // than general vector shifts, and (3) the shift amount is select-of-splatted 6812 // values, hoist the funnel shifts before the select: 6813 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6814 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6815 // 6816 // This is inverting a generic IR transform when we know that the cost of a 6817 // general vector shift is more than the cost of 2 shift-by-scalars. 6818 // We can't do this effectively in SDAG because we may not be able to 6819 // determine if the select operands are splats from within a basic block. 6820 Type *Ty = Fsh->getType(); 6821 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6822 return false; 6823 Value *Cond, *TVal, *FVal; 6824 if (!match(Fsh->getOperand(2), 6825 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6826 return false; 6827 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6828 return false; 6829 6830 IRBuilder<> Builder(Fsh); 6831 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6832 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 6833 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 6834 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6835 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 6836 Fsh->eraseFromParent(); 6837 return true; 6838 } 6839 6840 /// If we have a SelectInst that will likely profit from branch prediction, 6841 /// turn it into a branch. 6842 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6843 if (DisableSelectToBranch) 6844 return false; 6845 6846 // If the SelectOptimize pass is enabled, selects have already been optimized. 6847 if (!getCGPassBuilderOption().DisableSelectOptimize) 6848 return false; 6849 6850 // Find all consecutive select instructions that share the same condition. 6851 SmallVector<SelectInst *, 2> ASI; 6852 ASI.push_back(SI); 6853 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6854 It != SI->getParent()->end(); ++It) { 6855 SelectInst *I = dyn_cast<SelectInst>(&*It); 6856 if (I && SI->getCondition() == I->getCondition()) { 6857 ASI.push_back(I); 6858 } else { 6859 break; 6860 } 6861 } 6862 6863 SelectInst *LastSI = ASI.back(); 6864 // Increment the current iterator to skip all the rest of select instructions 6865 // because they will be either "not lowered" or "all lowered" to branch. 6866 CurInstIterator = std::next(LastSI->getIterator()); 6867 6868 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6869 6870 // Can we convert the 'select' to CF ? 6871 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6872 return false; 6873 6874 TargetLowering::SelectSupportKind SelectKind; 6875 if (VectorCond) 6876 SelectKind = TargetLowering::VectorMaskSelect; 6877 else if (SI->getType()->isVectorTy()) 6878 SelectKind = TargetLowering::ScalarCondVectorVal; 6879 else 6880 SelectKind = TargetLowering::ScalarValSelect; 6881 6882 if (TLI->isSelectSupported(SelectKind) && 6883 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6884 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6885 return false; 6886 6887 // The DominatorTree needs to be rebuilt by any consumers after this 6888 // transformation. We simply reset here rather than setting the ModifiedDT 6889 // flag to avoid restarting the function walk in runOnFunction for each 6890 // select optimized. 6891 DT.reset(); 6892 6893 // Transform a sequence like this: 6894 // start: 6895 // %cmp = cmp uge i32 %a, %b 6896 // %sel = select i1 %cmp, i32 %c, i32 %d 6897 // 6898 // Into: 6899 // start: 6900 // %cmp = cmp uge i32 %a, %b 6901 // %cmp.frozen = freeze %cmp 6902 // br i1 %cmp.frozen, label %select.true, label %select.false 6903 // select.true: 6904 // br label %select.end 6905 // select.false: 6906 // br label %select.end 6907 // select.end: 6908 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6909 // 6910 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6911 // In addition, we may sink instructions that produce %c or %d from 6912 // the entry block into the destination(s) of the new branch. 6913 // If the true or false blocks do not contain a sunken instruction, that 6914 // block and its branch may be optimized away. In that case, one side of the 6915 // first branch will point directly to select.end, and the corresponding PHI 6916 // predecessor block will be the start block. 6917 6918 // First, we split the block containing the select into 2 blocks. 6919 BasicBlock *StartBlock = SI->getParent(); 6920 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6921 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6922 if (IsHugeFunc) 6923 FreshBBs.insert(EndBlock); 6924 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6925 6926 // Delete the unconditional branch that was just created by the split. 6927 StartBlock->getTerminator()->eraseFromParent(); 6928 6929 // These are the new basic blocks for the conditional branch. 6930 // At least one will become an actual new basic block. 6931 BasicBlock *TrueBlock = nullptr; 6932 BasicBlock *FalseBlock = nullptr; 6933 BranchInst *TrueBranch = nullptr; 6934 BranchInst *FalseBranch = nullptr; 6935 6936 // Sink expensive instructions into the conditional blocks to avoid executing 6937 // them speculatively. 6938 for (SelectInst *SI : ASI) { 6939 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6940 if (TrueBlock == nullptr) { 6941 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6942 EndBlock->getParent(), EndBlock); 6943 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6944 if (IsHugeFunc) 6945 FreshBBs.insert(TrueBlock); 6946 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6947 } 6948 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6949 TrueInst->moveBefore(TrueBranch); 6950 } 6951 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6952 if (FalseBlock == nullptr) { 6953 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6954 EndBlock->getParent(), EndBlock); 6955 if (IsHugeFunc) 6956 FreshBBs.insert(FalseBlock); 6957 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6958 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6959 } 6960 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6961 FalseInst->moveBefore(FalseBranch); 6962 } 6963 } 6964 6965 // If there was nothing to sink, then arbitrarily choose the 'false' side 6966 // for a new input value to the PHI. 6967 if (TrueBlock == FalseBlock) { 6968 assert(TrueBlock == nullptr && 6969 "Unexpected basic block transform while optimizing select"); 6970 6971 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6972 EndBlock->getParent(), EndBlock); 6973 if (IsHugeFunc) 6974 FreshBBs.insert(FalseBlock); 6975 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6976 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6977 } 6978 6979 // Insert the real conditional branch based on the original condition. 6980 // If we did not create a new block for one of the 'true' or 'false' paths 6981 // of the condition, it means that side of the branch goes to the end block 6982 // directly and the path originates from the start block from the point of 6983 // view of the new PHI. 6984 BasicBlock *TT, *FT; 6985 if (TrueBlock == nullptr) { 6986 TT = EndBlock; 6987 FT = FalseBlock; 6988 TrueBlock = StartBlock; 6989 } else if (FalseBlock == nullptr) { 6990 TT = TrueBlock; 6991 FT = EndBlock; 6992 FalseBlock = StartBlock; 6993 } else { 6994 TT = TrueBlock; 6995 FT = FalseBlock; 6996 } 6997 IRBuilder<> IB(SI); 6998 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6999 IB.CreateCondBr(CondFr, TT, FT, SI); 7000 7001 SmallPtrSet<const Instruction *, 2> INS; 7002 INS.insert(ASI.begin(), ASI.end()); 7003 // Use reverse iterator because later select may use the value of the 7004 // earlier select, and we need to propagate value through earlier select 7005 // to get the PHI operand. 7006 for (SelectInst *SI : llvm::reverse(ASI)) { 7007 // The select itself is replaced with a PHI Node. 7008 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 7009 PN->takeName(SI); 7010 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7011 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7012 PN->setDebugLoc(SI->getDebugLoc()); 7013 7014 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7015 SI->eraseFromParent(); 7016 INS.erase(SI); 7017 ++NumSelectsExpanded; 7018 } 7019 7020 // Instruct OptimizeBlock to skip to the next block. 7021 CurInstIterator = StartBlock->end(); 7022 return true; 7023 } 7024 7025 /// Some targets only accept certain types for splat inputs. For example a VDUP 7026 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7027 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7028 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7029 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7030 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7031 m_Undef(), m_ZeroMask()))) 7032 return false; 7033 Type *NewType = TLI->shouldConvertSplatType(SVI); 7034 if (!NewType) 7035 return false; 7036 7037 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7038 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7039 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7040 "Expected a type of the same size!"); 7041 auto *NewVecType = 7042 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7043 7044 // Create a bitcast (shuffle (insert (bitcast(..)))) 7045 IRBuilder<> Builder(SVI->getContext()); 7046 Builder.SetInsertPoint(SVI); 7047 Value *BC1 = Builder.CreateBitCast( 7048 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7049 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7050 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7051 7052 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7053 RecursivelyDeleteTriviallyDeadInstructions( 7054 SVI, TLInfo, nullptr, 7055 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7056 7057 // Also hoist the bitcast up to its operand if it they are not in the same 7058 // block. 7059 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7060 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7061 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7062 !Op->isTerminator() && !Op->isEHPad()) 7063 BCI->moveAfter(Op); 7064 7065 return true; 7066 } 7067 7068 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7069 // If the operands of I can be folded into a target instruction together with 7070 // I, duplicate and sink them. 7071 SmallVector<Use *, 4> OpsToSink; 7072 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7073 return false; 7074 7075 // OpsToSink can contain multiple uses in a use chain (e.g. 7076 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7077 // uses must come first, so we process the ops in reverse order so as to not 7078 // create invalid IR. 7079 BasicBlock *TargetBB = I->getParent(); 7080 bool Changed = false; 7081 SmallVector<Use *, 4> ToReplace; 7082 Instruction *InsertPoint = I; 7083 DenseMap<const Instruction *, unsigned long> InstOrdering; 7084 unsigned long InstNumber = 0; 7085 for (const auto &I : *TargetBB) 7086 InstOrdering[&I] = InstNumber++; 7087 7088 for (Use *U : reverse(OpsToSink)) { 7089 auto *UI = cast<Instruction>(U->get()); 7090 if (isa<PHINode>(UI)) 7091 continue; 7092 if (UI->getParent() == TargetBB) { 7093 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7094 InsertPoint = UI; 7095 continue; 7096 } 7097 ToReplace.push_back(U); 7098 } 7099 7100 SetVector<Instruction *> MaybeDead; 7101 DenseMap<Instruction *, Instruction *> NewInstructions; 7102 for (Use *U : ToReplace) { 7103 auto *UI = cast<Instruction>(U->get()); 7104 Instruction *NI = UI->clone(); 7105 7106 if (IsHugeFunc) { 7107 // Now we clone an instruction, its operands' defs may sink to this BB 7108 // now. So we put the operands defs' BBs into FreshBBs to do optmization. 7109 for (unsigned I = 0; I < NI->getNumOperands(); ++I) { 7110 auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I)); 7111 if (!OpDef) 7112 continue; 7113 FreshBBs.insert(OpDef->getParent()); 7114 } 7115 } 7116 7117 NewInstructions[UI] = NI; 7118 MaybeDead.insert(UI); 7119 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7120 NI->insertBefore(InsertPoint); 7121 InsertPoint = NI; 7122 InsertedInsts.insert(NI); 7123 7124 // Update the use for the new instruction, making sure that we update the 7125 // sunk instruction uses, if it is part of a chain that has already been 7126 // sunk. 7127 Instruction *OldI = cast<Instruction>(U->getUser()); 7128 if (NewInstructions.count(OldI)) 7129 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7130 else 7131 U->set(NI); 7132 Changed = true; 7133 } 7134 7135 // Remove instructions that are dead after sinking. 7136 for (auto *I : MaybeDead) { 7137 if (!I->hasNUsesOrMore(1)) { 7138 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7139 I->eraseFromParent(); 7140 } 7141 } 7142 7143 return Changed; 7144 } 7145 7146 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7147 Value *Cond = SI->getCondition(); 7148 Type *OldType = Cond->getType(); 7149 LLVMContext &Context = Cond->getContext(); 7150 EVT OldVT = TLI->getValueType(*DL, OldType); 7151 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7152 unsigned RegWidth = RegType.getSizeInBits(); 7153 7154 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7155 return false; 7156 7157 // If the register width is greater than the type width, expand the condition 7158 // of the switch instruction and each case constant to the width of the 7159 // register. By widening the type of the switch condition, subsequent 7160 // comparisons (for case comparisons) will not need to be extended to the 7161 // preferred register width, so we will potentially eliminate N-1 extends, 7162 // where N is the number of cases in the switch. 7163 auto *NewType = Type::getIntNTy(Context, RegWidth); 7164 7165 // Extend the switch condition and case constants using the target preferred 7166 // extend unless the switch condition is a function argument with an extend 7167 // attribute. In that case, we can avoid an unnecessary mask/extension by 7168 // matching the argument extension instead. 7169 Instruction::CastOps ExtType = Instruction::ZExt; 7170 // Some targets prefer SExt over ZExt. 7171 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7172 ExtType = Instruction::SExt; 7173 7174 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7175 if (Arg->hasSExtAttr()) 7176 ExtType = Instruction::SExt; 7177 if (Arg->hasZExtAttr()) 7178 ExtType = Instruction::ZExt; 7179 } 7180 7181 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7182 ExtInst->insertBefore(SI); 7183 ExtInst->setDebugLoc(SI->getDebugLoc()); 7184 SI->setCondition(ExtInst); 7185 for (auto Case : SI->cases()) { 7186 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7187 APInt WideConst = (ExtType == Instruction::ZExt) 7188 ? NarrowConst.zext(RegWidth) 7189 : NarrowConst.sext(RegWidth); 7190 Case.setValue(ConstantInt::get(Context, WideConst)); 7191 } 7192 7193 return true; 7194 } 7195 7196 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7197 // The SCCP optimization tends to produce code like this: 7198 // switch(x) { case 42: phi(42, ...) } 7199 // Materializing the constant for the phi-argument needs instructions; So we 7200 // change the code to: 7201 // switch(x) { case 42: phi(x, ...) } 7202 7203 Value *Condition = SI->getCondition(); 7204 // Avoid endless loop in degenerate case. 7205 if (isa<ConstantInt>(*Condition)) 7206 return false; 7207 7208 bool Changed = false; 7209 BasicBlock *SwitchBB = SI->getParent(); 7210 Type *ConditionType = Condition->getType(); 7211 7212 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7213 ConstantInt *CaseValue = Case.getCaseValue(); 7214 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7215 // Set to true if we previously checked that `CaseBB` is only reached by 7216 // a single case from this switch. 7217 bool CheckedForSinglePred = false; 7218 for (PHINode &PHI : CaseBB->phis()) { 7219 Type *PHIType = PHI.getType(); 7220 // If ZExt is free then we can also catch patterns like this: 7221 // switch((i32)x) { case 42: phi((i64)42, ...); } 7222 // and replace `(i64)42` with `zext i32 %x to i64`. 7223 bool TryZExt = 7224 PHIType->isIntegerTy() && 7225 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7226 TLI->isZExtFree(ConditionType, PHIType); 7227 if (PHIType == ConditionType || TryZExt) { 7228 // Set to true to skip this case because of multiple preds. 7229 bool SkipCase = false; 7230 Value *Replacement = nullptr; 7231 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7232 Value *PHIValue = PHI.getIncomingValue(I); 7233 if (PHIValue != CaseValue) { 7234 if (!TryZExt) 7235 continue; 7236 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7237 if (!PHIValueInt || 7238 PHIValueInt->getValue() != 7239 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7240 continue; 7241 } 7242 if (PHI.getIncomingBlock(I) != SwitchBB) 7243 continue; 7244 // We cannot optimize if there are multiple case labels jumping to 7245 // this block. This check may get expensive when there are many 7246 // case labels so we test for it last. 7247 if (!CheckedForSinglePred) { 7248 CheckedForSinglePred = true; 7249 if (SI->findCaseDest(CaseBB) == nullptr) { 7250 SkipCase = true; 7251 break; 7252 } 7253 } 7254 7255 if (Replacement == nullptr) { 7256 if (PHIValue == CaseValue) { 7257 Replacement = Condition; 7258 } else { 7259 IRBuilder<> Builder(SI); 7260 Replacement = Builder.CreateZExt(Condition, PHIType); 7261 } 7262 } 7263 PHI.setIncomingValue(I, Replacement); 7264 Changed = true; 7265 } 7266 if (SkipCase) 7267 break; 7268 } 7269 } 7270 } 7271 return Changed; 7272 } 7273 7274 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7275 bool Changed = optimizeSwitchType(SI); 7276 Changed |= optimizeSwitchPhiConstants(SI); 7277 return Changed; 7278 } 7279 7280 namespace { 7281 7282 /// Helper class to promote a scalar operation to a vector one. 7283 /// This class is used to move downward extractelement transition. 7284 /// E.g., 7285 /// a = vector_op <2 x i32> 7286 /// b = extractelement <2 x i32> a, i32 0 7287 /// c = scalar_op b 7288 /// store c 7289 /// 7290 /// => 7291 /// a = vector_op <2 x i32> 7292 /// c = vector_op a (equivalent to scalar_op on the related lane) 7293 /// * d = extractelement <2 x i32> c, i32 0 7294 /// * store d 7295 /// Assuming both extractelement and store can be combine, we get rid of the 7296 /// transition. 7297 class VectorPromoteHelper { 7298 /// DataLayout associated with the current module. 7299 const DataLayout &DL; 7300 7301 /// Used to perform some checks on the legality of vector operations. 7302 const TargetLowering &TLI; 7303 7304 /// Used to estimated the cost of the promoted chain. 7305 const TargetTransformInfo &TTI; 7306 7307 /// The transition being moved downwards. 7308 Instruction *Transition; 7309 7310 /// The sequence of instructions to be promoted. 7311 SmallVector<Instruction *, 4> InstsToBePromoted; 7312 7313 /// Cost of combining a store and an extract. 7314 unsigned StoreExtractCombineCost; 7315 7316 /// Instruction that will be combined with the transition. 7317 Instruction *CombineInst = nullptr; 7318 7319 /// The instruction that represents the current end of the transition. 7320 /// Since we are faking the promotion until we reach the end of the chain 7321 /// of computation, we need a way to get the current end of the transition. 7322 Instruction *getEndOfTransition() const { 7323 if (InstsToBePromoted.empty()) 7324 return Transition; 7325 return InstsToBePromoted.back(); 7326 } 7327 7328 /// Return the index of the original value in the transition. 7329 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7330 /// c, is at index 0. 7331 unsigned getTransitionOriginalValueIdx() const { 7332 assert(isa<ExtractElementInst>(Transition) && 7333 "Other kind of transitions are not supported yet"); 7334 return 0; 7335 } 7336 7337 /// Return the index of the index in the transition. 7338 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7339 /// is at index 1. 7340 unsigned getTransitionIdx() const { 7341 assert(isa<ExtractElementInst>(Transition) && 7342 "Other kind of transitions are not supported yet"); 7343 return 1; 7344 } 7345 7346 /// Get the type of the transition. 7347 /// This is the type of the original value. 7348 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7349 /// transition is <2 x i32>. 7350 Type *getTransitionType() const { 7351 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7352 } 7353 7354 /// Promote \p ToBePromoted by moving \p Def downward through. 7355 /// I.e., we have the following sequence: 7356 /// Def = Transition <ty1> a to <ty2> 7357 /// b = ToBePromoted <ty2> Def, ... 7358 /// => 7359 /// b = ToBePromoted <ty1> a, ... 7360 /// Def = Transition <ty1> ToBePromoted to <ty2> 7361 void promoteImpl(Instruction *ToBePromoted); 7362 7363 /// Check whether or not it is profitable to promote all the 7364 /// instructions enqueued to be promoted. 7365 bool isProfitableToPromote() { 7366 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7367 unsigned Index = isa<ConstantInt>(ValIdx) 7368 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7369 : -1; 7370 Type *PromotedType = getTransitionType(); 7371 7372 StoreInst *ST = cast<StoreInst>(CombineInst); 7373 unsigned AS = ST->getPointerAddressSpace(); 7374 // Check if this store is supported. 7375 if (!TLI.allowsMisalignedMemoryAccesses( 7376 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7377 ST->getAlign())) { 7378 // If this is not supported, there is no way we can combine 7379 // the extract with the store. 7380 return false; 7381 } 7382 7383 // The scalar chain of computation has to pay for the transition 7384 // scalar to vector. 7385 // The vector chain has to account for the combining cost. 7386 enum TargetTransformInfo::TargetCostKind CostKind = 7387 TargetTransformInfo::TCK_RecipThroughput; 7388 InstructionCost ScalarCost = 7389 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7390 InstructionCost VectorCost = StoreExtractCombineCost; 7391 for (const auto &Inst : InstsToBePromoted) { 7392 // Compute the cost. 7393 // By construction, all instructions being promoted are arithmetic ones. 7394 // Moreover, one argument is a constant that can be viewed as a splat 7395 // constant. 7396 Value *Arg0 = Inst->getOperand(0); 7397 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7398 isa<ConstantFP>(Arg0); 7399 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7400 if (IsArg0Constant) 7401 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7402 else 7403 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7404 7405 ScalarCost += TTI.getArithmeticInstrCost( 7406 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7407 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7408 CostKind, Arg0Info, Arg1Info); 7409 } 7410 LLVM_DEBUG( 7411 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7412 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7413 return ScalarCost > VectorCost; 7414 } 7415 7416 /// Generate a constant vector with \p Val with the same 7417 /// number of elements as the transition. 7418 /// \p UseSplat defines whether or not \p Val should be replicated 7419 /// across the whole vector. 7420 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7421 /// otherwise we generate a vector with as many undef as possible: 7422 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7423 /// used at the index of the extract. 7424 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7425 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7426 if (!UseSplat) { 7427 // If we cannot determine where the constant must be, we have to 7428 // use a splat constant. 7429 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7430 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7431 ExtractIdx = CstVal->getSExtValue(); 7432 else 7433 UseSplat = true; 7434 } 7435 7436 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7437 if (UseSplat) 7438 return ConstantVector::getSplat(EC, Val); 7439 7440 if (!EC.isScalable()) { 7441 SmallVector<Constant *, 4> ConstVec; 7442 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7443 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7444 if (Idx == ExtractIdx) 7445 ConstVec.push_back(Val); 7446 else 7447 ConstVec.push_back(UndefVal); 7448 } 7449 return ConstantVector::get(ConstVec); 7450 } else 7451 llvm_unreachable( 7452 "Generate scalable vector for non-splat is unimplemented"); 7453 } 7454 7455 /// Check if promoting to a vector type an operand at \p OperandIdx 7456 /// in \p Use can trigger undefined behavior. 7457 static bool canCauseUndefinedBehavior(const Instruction *Use, 7458 unsigned OperandIdx) { 7459 // This is not safe to introduce undef when the operand is on 7460 // the right hand side of a division-like instruction. 7461 if (OperandIdx != 1) 7462 return false; 7463 switch (Use->getOpcode()) { 7464 default: 7465 return false; 7466 case Instruction::SDiv: 7467 case Instruction::UDiv: 7468 case Instruction::SRem: 7469 case Instruction::URem: 7470 return true; 7471 case Instruction::FDiv: 7472 case Instruction::FRem: 7473 return !Use->hasNoNaNs(); 7474 } 7475 llvm_unreachable(nullptr); 7476 } 7477 7478 public: 7479 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7480 const TargetTransformInfo &TTI, Instruction *Transition, 7481 unsigned CombineCost) 7482 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7483 StoreExtractCombineCost(CombineCost) { 7484 assert(Transition && "Do not know how to promote null"); 7485 } 7486 7487 /// Check if we can promote \p ToBePromoted to \p Type. 7488 bool canPromote(const Instruction *ToBePromoted) const { 7489 // We could support CastInst too. 7490 return isa<BinaryOperator>(ToBePromoted); 7491 } 7492 7493 /// Check if it is profitable to promote \p ToBePromoted 7494 /// by moving downward the transition through. 7495 bool shouldPromote(const Instruction *ToBePromoted) const { 7496 // Promote only if all the operands can be statically expanded. 7497 // Indeed, we do not want to introduce any new kind of transitions. 7498 for (const Use &U : ToBePromoted->operands()) { 7499 const Value *Val = U.get(); 7500 if (Val == getEndOfTransition()) { 7501 // If the use is a division and the transition is on the rhs, 7502 // we cannot promote the operation, otherwise we may create a 7503 // division by zero. 7504 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7505 return false; 7506 continue; 7507 } 7508 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7509 !isa<ConstantFP>(Val)) 7510 return false; 7511 } 7512 // Check that the resulting operation is legal. 7513 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7514 if (!ISDOpcode) 7515 return false; 7516 return StressStoreExtract || 7517 TLI.isOperationLegalOrCustom( 7518 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7519 } 7520 7521 /// Check whether or not \p Use can be combined 7522 /// with the transition. 7523 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7524 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7525 7526 /// Record \p ToBePromoted as part of the chain to be promoted. 7527 void enqueueForPromotion(Instruction *ToBePromoted) { 7528 InstsToBePromoted.push_back(ToBePromoted); 7529 } 7530 7531 /// Set the instruction that will be combined with the transition. 7532 void recordCombineInstruction(Instruction *ToBeCombined) { 7533 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7534 CombineInst = ToBeCombined; 7535 } 7536 7537 /// Promote all the instructions enqueued for promotion if it is 7538 /// is profitable. 7539 /// \return True if the promotion happened, false otherwise. 7540 bool promote() { 7541 // Check if there is something to promote. 7542 // Right now, if we do not have anything to combine with, 7543 // we assume the promotion is not profitable. 7544 if (InstsToBePromoted.empty() || !CombineInst) 7545 return false; 7546 7547 // Check cost. 7548 if (!StressStoreExtract && !isProfitableToPromote()) 7549 return false; 7550 7551 // Promote. 7552 for (auto &ToBePromoted : InstsToBePromoted) 7553 promoteImpl(ToBePromoted); 7554 InstsToBePromoted.clear(); 7555 return true; 7556 } 7557 }; 7558 7559 } // end anonymous namespace 7560 7561 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7562 // At this point, we know that all the operands of ToBePromoted but Def 7563 // can be statically promoted. 7564 // For Def, we need to use its parameter in ToBePromoted: 7565 // b = ToBePromoted ty1 a 7566 // Def = Transition ty1 b to ty2 7567 // Move the transition down. 7568 // 1. Replace all uses of the promoted operation by the transition. 7569 // = ... b => = ... Def. 7570 assert(ToBePromoted->getType() == Transition->getType() && 7571 "The type of the result of the transition does not match " 7572 "the final type"); 7573 ToBePromoted->replaceAllUsesWith(Transition); 7574 // 2. Update the type of the uses. 7575 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7576 Type *TransitionTy = getTransitionType(); 7577 ToBePromoted->mutateType(TransitionTy); 7578 // 3. Update all the operands of the promoted operation with promoted 7579 // operands. 7580 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7581 for (Use &U : ToBePromoted->operands()) { 7582 Value *Val = U.get(); 7583 Value *NewVal = nullptr; 7584 if (Val == Transition) 7585 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7586 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7587 isa<ConstantFP>(Val)) { 7588 // Use a splat constant if it is not safe to use undef. 7589 NewVal = getConstantVector( 7590 cast<Constant>(Val), 7591 isa<UndefValue>(Val) || 7592 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7593 } else 7594 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7595 "this?"); 7596 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7597 } 7598 Transition->moveAfter(ToBePromoted); 7599 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7600 } 7601 7602 /// Some targets can do store(extractelement) with one instruction. 7603 /// Try to push the extractelement towards the stores when the target 7604 /// has this feature and this is profitable. 7605 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7606 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7607 if (DisableStoreExtract || 7608 (!StressStoreExtract && 7609 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7610 Inst->getOperand(1), CombineCost))) 7611 return false; 7612 7613 // At this point we know that Inst is a vector to scalar transition. 7614 // Try to move it down the def-use chain, until: 7615 // - We can combine the transition with its single use 7616 // => we got rid of the transition. 7617 // - We escape the current basic block 7618 // => we would need to check that we are moving it at a cheaper place and 7619 // we do not do that for now. 7620 BasicBlock *Parent = Inst->getParent(); 7621 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7622 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7623 // If the transition has more than one use, assume this is not going to be 7624 // beneficial. 7625 while (Inst->hasOneUse()) { 7626 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7627 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7628 7629 if (ToBePromoted->getParent() != Parent) { 7630 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7631 << ToBePromoted->getParent()->getName() 7632 << ") than the transition (" << Parent->getName() 7633 << ").\n"); 7634 return false; 7635 } 7636 7637 if (VPH.canCombine(ToBePromoted)) { 7638 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7639 << "will be combined with: " << *ToBePromoted << '\n'); 7640 VPH.recordCombineInstruction(ToBePromoted); 7641 bool Changed = VPH.promote(); 7642 NumStoreExtractExposed += Changed; 7643 return Changed; 7644 } 7645 7646 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7647 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7648 return false; 7649 7650 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7651 7652 VPH.enqueueForPromotion(ToBePromoted); 7653 Inst = ToBePromoted; 7654 } 7655 return false; 7656 } 7657 7658 /// For the instruction sequence of store below, F and I values 7659 /// are bundled together as an i64 value before being stored into memory. 7660 /// Sometimes it is more efficient to generate separate stores for F and I, 7661 /// which can remove the bitwise instructions or sink them to colder places. 7662 /// 7663 /// (store (or (zext (bitcast F to i32) to i64), 7664 /// (shl (zext I to i64), 32)), addr) --> 7665 /// (store F, addr) and (store I, addr+4) 7666 /// 7667 /// Similarly, splitting for other merged store can also be beneficial, like: 7668 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7669 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7670 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7671 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7672 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7673 /// 7674 /// We allow each target to determine specifically which kind of splitting is 7675 /// supported. 7676 /// 7677 /// The store patterns are commonly seen from the simple code snippet below 7678 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7679 /// void goo(const std::pair<int, float> &); 7680 /// hoo() { 7681 /// ... 7682 /// goo(std::make_pair(tmp, ftmp)); 7683 /// ... 7684 /// } 7685 /// 7686 /// Although we already have similar splitting in DAG Combine, we duplicate 7687 /// it in CodeGenPrepare to catch the case in which pattern is across 7688 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7689 /// during code expansion. 7690 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7691 const TargetLowering &TLI) { 7692 // Handle simple but common cases only. 7693 Type *StoreType = SI.getValueOperand()->getType(); 7694 7695 // The code below assumes shifting a value by <number of bits>, 7696 // whereas scalable vectors would have to be shifted by 7697 // <2log(vscale) + number of bits> in order to store the 7698 // low/high parts. Bailing out for now. 7699 if (isa<ScalableVectorType>(StoreType)) 7700 return false; 7701 7702 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7703 DL.getTypeSizeInBits(StoreType) == 0) 7704 return false; 7705 7706 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7707 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7708 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7709 return false; 7710 7711 // Don't split the store if it is volatile. 7712 if (SI.isVolatile()) 7713 return false; 7714 7715 // Match the following patterns: 7716 // (store (or (zext LValue to i64), 7717 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7718 // or 7719 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7720 // (zext LValue to i64), 7721 // Expect both operands of OR and the first operand of SHL have only 7722 // one use. 7723 Value *LValue, *HValue; 7724 if (!match(SI.getValueOperand(), 7725 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7726 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7727 m_SpecificInt(HalfValBitSize)))))) 7728 return false; 7729 7730 // Check LValue and HValue are int with size less or equal than 32. 7731 if (!LValue->getType()->isIntegerTy() || 7732 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7733 !HValue->getType()->isIntegerTy() || 7734 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7735 return false; 7736 7737 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7738 // as the input of target query. 7739 auto *LBC = dyn_cast<BitCastInst>(LValue); 7740 auto *HBC = dyn_cast<BitCastInst>(HValue); 7741 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7742 : EVT::getEVT(LValue->getType()); 7743 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7744 : EVT::getEVT(HValue->getType()); 7745 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7746 return false; 7747 7748 // Start to split store. 7749 IRBuilder<> Builder(SI.getContext()); 7750 Builder.SetInsertPoint(&SI); 7751 7752 // If LValue/HValue is a bitcast in another BB, create a new one in current 7753 // BB so it may be merged with the splitted stores by dag combiner. 7754 if (LBC && LBC->getParent() != SI.getParent()) 7755 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7756 if (HBC && HBC->getParent() != SI.getParent()) 7757 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7758 7759 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7760 auto CreateSplitStore = [&](Value *V, bool Upper) { 7761 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7762 Value *Addr = Builder.CreateBitCast( 7763 SI.getOperand(1), 7764 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7765 Align Alignment = SI.getAlign(); 7766 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7767 if (IsOffsetStore) { 7768 Addr = Builder.CreateGEP( 7769 SplitStoreType, Addr, 7770 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7771 7772 // When splitting the store in half, naturally one half will retain the 7773 // alignment of the original wider store, regardless of whether it was 7774 // over-aligned or not, while the other will require adjustment. 7775 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7776 } 7777 Builder.CreateAlignedStore(V, Addr, Alignment); 7778 }; 7779 7780 CreateSplitStore(LValue, false); 7781 CreateSplitStore(HValue, true); 7782 7783 // Delete the old store. 7784 SI.eraseFromParent(); 7785 return true; 7786 } 7787 7788 // Return true if the GEP has two operands, the first operand is of a sequential 7789 // type, and the second operand is a constant. 7790 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7791 gep_type_iterator I = gep_type_begin(*GEP); 7792 return GEP->getNumOperands() == 2 && I.isSequential() && 7793 isa<ConstantInt>(GEP->getOperand(1)); 7794 } 7795 7796 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7797 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7798 // reducing liveness interference across those edges benefits global register 7799 // allocation. Currently handles only certain cases. 7800 // 7801 // For example, unmerge %GEPI and %UGEPI as below. 7802 // 7803 // ---------- BEFORE ---------- 7804 // SrcBlock: 7805 // ... 7806 // %GEPIOp = ... 7807 // ... 7808 // %GEPI = gep %GEPIOp, Idx 7809 // ... 7810 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7811 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7812 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7813 // %UGEPI) 7814 // 7815 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7816 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7817 // ... 7818 // 7819 // DstBi: 7820 // ... 7821 // %UGEPI = gep %GEPIOp, UIdx 7822 // ... 7823 // --------------------------- 7824 // 7825 // ---------- AFTER ---------- 7826 // SrcBlock: 7827 // ... (same as above) 7828 // (* %GEPI is still alive on the indirectbr edges) 7829 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7830 // unmerging) 7831 // ... 7832 // 7833 // DstBi: 7834 // ... 7835 // %UGEPI = gep %GEPI, (UIdx-Idx) 7836 // ... 7837 // --------------------------- 7838 // 7839 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7840 // no longer alive on them. 7841 // 7842 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7843 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7844 // not to disable further simplications and optimizations as a result of GEP 7845 // merging. 7846 // 7847 // Note this unmerging may increase the length of the data flow critical path 7848 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7849 // between the register pressure and the length of data-flow critical 7850 // path. Restricting this to the uncommon IndirectBr case would minimize the 7851 // impact of potentially longer critical path, if any, and the impact on compile 7852 // time. 7853 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7854 const TargetTransformInfo *TTI) { 7855 BasicBlock *SrcBlock = GEPI->getParent(); 7856 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7857 // (non-IndirectBr) cases exit early here. 7858 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7859 return false; 7860 // Check that GEPI is a simple gep with a single constant index. 7861 if (!GEPSequentialConstIndexed(GEPI)) 7862 return false; 7863 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7864 // Check that GEPI is a cheap one. 7865 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7866 TargetTransformInfo::TCK_SizeAndLatency) > 7867 TargetTransformInfo::TCC_Basic) 7868 return false; 7869 Value *GEPIOp = GEPI->getOperand(0); 7870 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7871 if (!isa<Instruction>(GEPIOp)) 7872 return false; 7873 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7874 if (GEPIOpI->getParent() != SrcBlock) 7875 return false; 7876 // Check that GEP is used outside the block, meaning it's alive on the 7877 // IndirectBr edge(s). 7878 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 7879 if (auto *I = dyn_cast<Instruction>(Usr)) { 7880 if (I->getParent() != SrcBlock) { 7881 return true; 7882 } 7883 } 7884 return false; 7885 })) 7886 return false; 7887 // The second elements of the GEP chains to be unmerged. 7888 std::vector<GetElementPtrInst *> UGEPIs; 7889 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7890 // on IndirectBr edges. 7891 for (User *Usr : GEPIOp->users()) { 7892 if (Usr == GEPI) 7893 continue; 7894 // Check if Usr is an Instruction. If not, give up. 7895 if (!isa<Instruction>(Usr)) 7896 return false; 7897 auto *UI = cast<Instruction>(Usr); 7898 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7899 if (UI->getParent() == SrcBlock) 7900 continue; 7901 // Check if Usr is a GEP. If not, give up. 7902 if (!isa<GetElementPtrInst>(Usr)) 7903 return false; 7904 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7905 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7906 // the pointer operand to it. If so, record it in the vector. If not, give 7907 // up. 7908 if (!GEPSequentialConstIndexed(UGEPI)) 7909 return false; 7910 if (UGEPI->getOperand(0) != GEPIOp) 7911 return false; 7912 if (GEPIIdx->getType() != 7913 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7914 return false; 7915 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7916 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7917 TargetTransformInfo::TCK_SizeAndLatency) > 7918 TargetTransformInfo::TCC_Basic) 7919 return false; 7920 UGEPIs.push_back(UGEPI); 7921 } 7922 if (UGEPIs.size() == 0) 7923 return false; 7924 // Check the materializing cost of (Uidx-Idx). 7925 for (GetElementPtrInst *UGEPI : UGEPIs) { 7926 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7927 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7928 InstructionCost ImmCost = TTI->getIntImmCost( 7929 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7930 if (ImmCost > TargetTransformInfo::TCC_Basic) 7931 return false; 7932 } 7933 // Now unmerge between GEPI and UGEPIs. 7934 for (GetElementPtrInst *UGEPI : UGEPIs) { 7935 UGEPI->setOperand(0, GEPI); 7936 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7937 Constant *NewUGEPIIdx = ConstantInt::get( 7938 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 7939 UGEPI->setOperand(1, NewUGEPIIdx); 7940 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7941 // inbounds to avoid UB. 7942 if (!GEPI->isInBounds()) { 7943 UGEPI->setIsInBounds(false); 7944 } 7945 } 7946 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7947 // alive on IndirectBr edges). 7948 assert(llvm::none_of(GEPIOp->users(), 7949 [&](User *Usr) { 7950 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7951 }) && 7952 "GEPIOp is used outside SrcBlock"); 7953 return true; 7954 } 7955 7956 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 7957 SmallSet<BasicBlock *, 32> &FreshBBs, 7958 bool IsHugeFunc) { 7959 // Try and convert 7960 // %c = icmp ult %x, 8 7961 // br %c, bla, blb 7962 // %tc = lshr %x, 3 7963 // to 7964 // %tc = lshr %x, 3 7965 // %c = icmp eq %tc, 0 7966 // br %c, bla, blb 7967 // Creating the cmp to zero can be better for the backend, especially if the 7968 // lshr produces flags that can be used automatically. 7969 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7970 return false; 7971 7972 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7973 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7974 return false; 7975 7976 Value *X = Cmp->getOperand(0); 7977 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7978 7979 for (auto *U : X->users()) { 7980 Instruction *UI = dyn_cast<Instruction>(U); 7981 // A quick dominance check 7982 if (!UI || 7983 (UI->getParent() != Branch->getParent() && 7984 UI->getParent() != Branch->getSuccessor(0) && 7985 UI->getParent() != Branch->getSuccessor(1)) || 7986 (UI->getParent() != Branch->getParent() && 7987 !UI->getParent()->getSinglePredecessor())) 7988 continue; 7989 7990 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7991 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7992 IRBuilder<> Builder(Branch); 7993 if (UI->getParent() != Branch->getParent()) 7994 UI->moveBefore(Branch); 7995 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7996 ConstantInt::get(UI->getType(), 0)); 7997 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7998 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7999 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8000 return true; 8001 } 8002 if (Cmp->isEquality() && 8003 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8004 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8005 IRBuilder<> Builder(Branch); 8006 if (UI->getParent() != Branch->getParent()) 8007 UI->moveBefore(Branch); 8008 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8009 ConstantInt::get(UI->getType(), 0)); 8010 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8011 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8012 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8013 return true; 8014 } 8015 } 8016 return false; 8017 } 8018 8019 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8020 // Bail out if we inserted the instruction to prevent optimizations from 8021 // stepping on each other's toes. 8022 if (InsertedInsts.count(I)) 8023 return false; 8024 8025 // TODO: Move into the switch on opcode below here. 8026 if (PHINode *P = dyn_cast<PHINode>(I)) { 8027 // It is possible for very late stage optimizations (such as SimplifyCFG) 8028 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8029 // trivial PHI, go ahead and zap it here. 8030 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8031 LargeOffsetGEPMap.erase(P); 8032 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8033 P->eraseFromParent(); 8034 ++NumPHIsElim; 8035 return true; 8036 } 8037 return false; 8038 } 8039 8040 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8041 // If the source of the cast is a constant, then this should have 8042 // already been constant folded. The only reason NOT to constant fold 8043 // it is if something (e.g. LSR) was careful to place the constant 8044 // evaluation in a block other than then one that uses it (e.g. to hoist 8045 // the address of globals out of a loop). If this is the case, we don't 8046 // want to forward-subst the cast. 8047 if (isa<Constant>(CI->getOperand(0))) 8048 return false; 8049 8050 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8051 return true; 8052 8053 if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) && 8054 TLI->optimizeExtendOrTruncateConversion(I, 8055 LI->getLoopFor(I->getParent()))) 8056 return true; 8057 8058 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8059 /// Sink a zext or sext into its user blocks if the target type doesn't 8060 /// fit in one register 8061 if (TLI->getTypeAction(CI->getContext(), 8062 TLI->getValueType(*DL, CI->getType())) == 8063 TargetLowering::TypeExpandInteger) { 8064 return SinkCast(CI); 8065 } else { 8066 if (TLI->optimizeExtendOrTruncateConversion( 8067 I, LI->getLoopFor(I->getParent()))) 8068 return true; 8069 8070 bool MadeChange = optimizeExt(I); 8071 return MadeChange | optimizeExtUses(I); 8072 } 8073 } 8074 return false; 8075 } 8076 8077 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8078 if (optimizeCmp(Cmp, ModifiedDT)) 8079 return true; 8080 8081 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8082 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8083 bool Modified = optimizeLoadExt(LI); 8084 unsigned AS = LI->getPointerAddressSpace(); 8085 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8086 return Modified; 8087 } 8088 8089 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8090 if (splitMergedValStore(*SI, *DL, *TLI)) 8091 return true; 8092 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8093 unsigned AS = SI->getPointerAddressSpace(); 8094 return optimizeMemoryInst(I, SI->getOperand(1), 8095 SI->getOperand(0)->getType(), AS); 8096 } 8097 8098 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8099 unsigned AS = RMW->getPointerAddressSpace(); 8100 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8101 } 8102 8103 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8104 unsigned AS = CmpX->getPointerAddressSpace(); 8105 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8106 CmpX->getCompareOperand()->getType(), AS); 8107 } 8108 8109 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8110 8111 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8112 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8113 return true; 8114 8115 // TODO: Move this into the switch on opcode - it handles shifts already. 8116 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8117 BinOp->getOpcode() == Instruction::LShr)) { 8118 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8119 if (CI && TLI->hasExtractBitsInsn()) 8120 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8121 return true; 8122 } 8123 8124 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8125 if (GEPI->hasAllZeroIndices()) { 8126 /// The GEP operand must be a pointer, so must its result -> BitCast 8127 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8128 GEPI->getName(), GEPI); 8129 NC->setDebugLoc(GEPI->getDebugLoc()); 8130 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8131 GEPI->eraseFromParent(); 8132 ++NumGEPsElim; 8133 optimizeInst(NC, ModifiedDT); 8134 return true; 8135 } 8136 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8137 return true; 8138 } 8139 return false; 8140 } 8141 8142 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8143 // freeze(icmp a, const)) -> icmp (freeze a), const 8144 // This helps generate efficient conditional jumps. 8145 Instruction *CmpI = nullptr; 8146 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8147 CmpI = II; 8148 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8149 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8150 8151 if (CmpI && CmpI->hasOneUse()) { 8152 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8153 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8154 isa<ConstantPointerNull>(Op0); 8155 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8156 isa<ConstantPointerNull>(Op1); 8157 if (Const0 || Const1) { 8158 if (!Const0 || !Const1) { 8159 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 8160 F->takeName(FI); 8161 CmpI->setOperand(Const0 ? 1 : 0, F); 8162 } 8163 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8164 FI->eraseFromParent(); 8165 return true; 8166 } 8167 } 8168 return false; 8169 } 8170 8171 if (tryToSinkFreeOperands(I)) 8172 return true; 8173 8174 switch (I->getOpcode()) { 8175 case Instruction::Shl: 8176 case Instruction::LShr: 8177 case Instruction::AShr: 8178 return optimizeShiftInst(cast<BinaryOperator>(I)); 8179 case Instruction::Call: 8180 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8181 case Instruction::Select: 8182 return optimizeSelectInst(cast<SelectInst>(I)); 8183 case Instruction::ShuffleVector: 8184 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8185 case Instruction::Switch: 8186 return optimizeSwitchInst(cast<SwitchInst>(I)); 8187 case Instruction::ExtractElement: 8188 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8189 case Instruction::Br: 8190 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8191 } 8192 8193 return false; 8194 } 8195 8196 /// Given an OR instruction, check to see if this is a bitreverse 8197 /// idiom. If so, insert the new intrinsic and return true. 8198 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8199 if (!I.getType()->isIntegerTy() || 8200 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8201 TLI->getValueType(*DL, I.getType(), true))) 8202 return false; 8203 8204 SmallVector<Instruction *, 4> Insts; 8205 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8206 return false; 8207 Instruction *LastInst = Insts.back(); 8208 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8209 RecursivelyDeleteTriviallyDeadInstructions( 8210 &I, TLInfo, nullptr, 8211 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8212 return true; 8213 } 8214 8215 // In this pass we look for GEP and cast instructions that are used 8216 // across basic blocks and rewrite them to improve basic-block-at-a-time 8217 // selection. 8218 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8219 SunkAddrs.clear(); 8220 bool MadeChange = false; 8221 8222 do { 8223 CurInstIterator = BB.begin(); 8224 ModifiedDT = ModifyDT::NotModifyDT; 8225 while (CurInstIterator != BB.end()) { 8226 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8227 if (ModifiedDT != ModifyDT::NotModifyDT) { 8228 // For huge function we tend to quickly go though the inner optmization 8229 // opportunities in the BB. So we go back to the BB head to re-optimize 8230 // each instruction instead of go back to the function head. 8231 if (IsHugeFunc) { 8232 DT.reset(); 8233 getDT(*BB.getParent()); 8234 break; 8235 } else { 8236 return true; 8237 } 8238 } 8239 } 8240 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8241 8242 bool MadeBitReverse = true; 8243 while (MadeBitReverse) { 8244 MadeBitReverse = false; 8245 for (auto &I : reverse(BB)) { 8246 if (makeBitReverse(I)) { 8247 MadeBitReverse = MadeChange = true; 8248 break; 8249 } 8250 } 8251 } 8252 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8253 8254 return MadeChange; 8255 } 8256 8257 // Some CGP optimizations may move or alter what's computed in a block. Check 8258 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8259 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8260 assert(isa<DbgValueInst>(I)); 8261 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8262 8263 // Does this dbg.value refer to a sunk address calculation? 8264 bool AnyChange = false; 8265 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8266 DVI.location_ops().end()); 8267 for (Value *Location : LocationOps) { 8268 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8269 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8270 if (SunkAddr) { 8271 // Point dbg.value at locally computed address, which should give the best 8272 // opportunity to be accurately lowered. This update may change the type 8273 // of pointer being referred to; however this makes no difference to 8274 // debugging information, and we can't generate bitcasts that may affect 8275 // codegen. 8276 DVI.replaceVariableLocationOp(Location, SunkAddr); 8277 AnyChange = true; 8278 } 8279 } 8280 return AnyChange; 8281 } 8282 8283 // A llvm.dbg.value may be using a value before its definition, due to 8284 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8285 // them by moving the dbg.value to immediately after the value definition. 8286 // FIXME: Ideally this should never be necessary, and this has the potential 8287 // to re-order dbg.value intrinsics. 8288 bool CodeGenPrepare::placeDbgValues(Function &F) { 8289 bool MadeChange = false; 8290 DominatorTree DT(F); 8291 8292 for (BasicBlock &BB : F) { 8293 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8294 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8295 if (!DVI) 8296 continue; 8297 8298 SmallVector<Instruction *, 4> VIs; 8299 for (Value *V : DVI->getValues()) 8300 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8301 VIs.push_back(VI); 8302 8303 // This DVI may depend on multiple instructions, complicating any 8304 // potential sink. This block takes the defensive approach, opting to 8305 // "undef" the DVI if it has more than one instruction and any of them do 8306 // not dominate DVI. 8307 for (Instruction *VI : VIs) { 8308 if (VI->isTerminator()) 8309 continue; 8310 8311 // If VI is a phi in a block with an EHPad terminator, we can't insert 8312 // after it. 8313 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8314 continue; 8315 8316 // If the defining instruction dominates the dbg.value, we do not need 8317 // to move the dbg.value. 8318 if (DT.dominates(VI, DVI)) 8319 continue; 8320 8321 // If we depend on multiple instructions and any of them doesn't 8322 // dominate this DVI, we probably can't salvage it: moving it to 8323 // after any of the instructions could cause us to lose the others. 8324 if (VIs.size() > 1) { 8325 LLVM_DEBUG( 8326 dbgs() 8327 << "Unable to find valid location for Debug Value, undefing:\n" 8328 << *DVI); 8329 DVI->setKillLocation(); 8330 break; 8331 } 8332 8333 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8334 << *DVI << ' ' << *VI); 8335 DVI->removeFromParent(); 8336 if (isa<PHINode>(VI)) 8337 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8338 else 8339 DVI->insertAfter(VI); 8340 MadeChange = true; 8341 ++NumDbgValueMoved; 8342 } 8343 } 8344 } 8345 return MadeChange; 8346 } 8347 8348 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8349 // probes can be chained dependencies of other regular DAG nodes and block DAG 8350 // combine optimizations. 8351 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8352 bool MadeChange = false; 8353 for (auto &Block : F) { 8354 // Move the rest probes to the beginning of the block. 8355 auto FirstInst = Block.getFirstInsertionPt(); 8356 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8357 ++FirstInst; 8358 BasicBlock::iterator I(FirstInst); 8359 I++; 8360 while (I != Block.end()) { 8361 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8362 II->moveBefore(&*FirstInst); 8363 MadeChange = true; 8364 } 8365 } 8366 } 8367 return MadeChange; 8368 } 8369 8370 /// Scale down both weights to fit into uint32_t. 8371 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8372 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8373 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8374 NewTrue = NewTrue / Scale; 8375 NewFalse = NewFalse / Scale; 8376 } 8377 8378 /// Some targets prefer to split a conditional branch like: 8379 /// \code 8380 /// %0 = icmp ne i32 %a, 0 8381 /// %1 = icmp ne i32 %b, 0 8382 /// %or.cond = or i1 %0, %1 8383 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8384 /// \endcode 8385 /// into multiple branch instructions like: 8386 /// \code 8387 /// bb1: 8388 /// %0 = icmp ne i32 %a, 0 8389 /// br i1 %0, label %TrueBB, label %bb2 8390 /// bb2: 8391 /// %1 = icmp ne i32 %b, 0 8392 /// br i1 %1, label %TrueBB, label %FalseBB 8393 /// \endcode 8394 /// This usually allows instruction selection to do even further optimizations 8395 /// and combine the compare with the branch instruction. Currently this is 8396 /// applied for targets which have "cheap" jump instructions. 8397 /// 8398 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8399 /// 8400 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8401 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8402 return false; 8403 8404 bool MadeChange = false; 8405 for (auto &BB : F) { 8406 // Does this BB end with the following? 8407 // %cond1 = icmp|fcmp|binary instruction ... 8408 // %cond2 = icmp|fcmp|binary instruction ... 8409 // %cond.or = or|and i1 %cond1, cond2 8410 // br i1 %cond.or label %dest1, label %dest2" 8411 Instruction *LogicOp; 8412 BasicBlock *TBB, *FBB; 8413 if (!match(BB.getTerminator(), 8414 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8415 continue; 8416 8417 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8418 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8419 continue; 8420 8421 // The merging of mostly empty BB can cause a degenerate branch. 8422 if (TBB == FBB) 8423 continue; 8424 8425 unsigned Opc; 8426 Value *Cond1, *Cond2; 8427 if (match(LogicOp, 8428 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8429 Opc = Instruction::And; 8430 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8431 m_OneUse(m_Value(Cond2))))) 8432 Opc = Instruction::Or; 8433 else 8434 continue; 8435 8436 auto IsGoodCond = [](Value *Cond) { 8437 return match( 8438 Cond, 8439 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8440 m_LogicalOr(m_Value(), m_Value())))); 8441 }; 8442 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8443 continue; 8444 8445 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8446 8447 // Create a new BB. 8448 auto *TmpBB = 8449 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8450 BB.getParent(), BB.getNextNode()); 8451 if (IsHugeFunc) 8452 FreshBBs.insert(TmpBB); 8453 8454 // Update original basic block by using the first condition directly by the 8455 // branch instruction and removing the no longer needed and/or instruction. 8456 Br1->setCondition(Cond1); 8457 LogicOp->eraseFromParent(); 8458 8459 // Depending on the condition we have to either replace the true or the 8460 // false successor of the original branch instruction. 8461 if (Opc == Instruction::And) 8462 Br1->setSuccessor(0, TmpBB); 8463 else 8464 Br1->setSuccessor(1, TmpBB); 8465 8466 // Fill in the new basic block. 8467 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8468 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8469 I->removeFromParent(); 8470 I->insertBefore(Br2); 8471 } 8472 8473 // Update PHI nodes in both successors. The original BB needs to be 8474 // replaced in one successor's PHI nodes, because the branch comes now from 8475 // the newly generated BB (NewBB). In the other successor we need to add one 8476 // incoming edge to the PHI nodes, because both branch instructions target 8477 // now the same successor. Depending on the original branch condition 8478 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8479 // we perform the correct update for the PHI nodes. 8480 // This doesn't change the successor order of the just created branch 8481 // instruction (or any other instruction). 8482 if (Opc == Instruction::Or) 8483 std::swap(TBB, FBB); 8484 8485 // Replace the old BB with the new BB. 8486 TBB->replacePhiUsesWith(&BB, TmpBB); 8487 8488 // Add another incoming edge from the new BB. 8489 for (PHINode &PN : FBB->phis()) { 8490 auto *Val = PN.getIncomingValueForBlock(&BB); 8491 PN.addIncoming(Val, TmpBB); 8492 } 8493 8494 // Update the branch weights (from SelectionDAGBuilder:: 8495 // FindMergedConditions). 8496 if (Opc == Instruction::Or) { 8497 // Codegen X | Y as: 8498 // BB1: 8499 // jmp_if_X TBB 8500 // jmp TmpBB 8501 // TmpBB: 8502 // jmp_if_Y TBB 8503 // jmp FBB 8504 // 8505 8506 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8507 // The requirement is that 8508 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8509 // = TrueProb for original BB. 8510 // Assuming the original weights are A and B, one choice is to set BB1's 8511 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8512 // assumes that 8513 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8514 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8515 // TmpBB, but the math is more complicated. 8516 uint64_t TrueWeight, FalseWeight; 8517 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8518 uint64_t NewTrueWeight = TrueWeight; 8519 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8520 scaleWeights(NewTrueWeight, NewFalseWeight); 8521 Br1->setMetadata(LLVMContext::MD_prof, 8522 MDBuilder(Br1->getContext()) 8523 .createBranchWeights(TrueWeight, FalseWeight)); 8524 8525 NewTrueWeight = TrueWeight; 8526 NewFalseWeight = 2 * FalseWeight; 8527 scaleWeights(NewTrueWeight, NewFalseWeight); 8528 Br2->setMetadata(LLVMContext::MD_prof, 8529 MDBuilder(Br2->getContext()) 8530 .createBranchWeights(TrueWeight, FalseWeight)); 8531 } 8532 } else { 8533 // Codegen X & Y as: 8534 // BB1: 8535 // jmp_if_X TmpBB 8536 // jmp FBB 8537 // TmpBB: 8538 // jmp_if_Y TBB 8539 // jmp FBB 8540 // 8541 // This requires creation of TmpBB after CurBB. 8542 8543 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8544 // The requirement is that 8545 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8546 // = FalseProb for original BB. 8547 // Assuming the original weights are A and B, one choice is to set BB1's 8548 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8549 // assumes that 8550 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8551 uint64_t TrueWeight, FalseWeight; 8552 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8553 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8554 uint64_t NewFalseWeight = FalseWeight; 8555 scaleWeights(NewTrueWeight, NewFalseWeight); 8556 Br1->setMetadata(LLVMContext::MD_prof, 8557 MDBuilder(Br1->getContext()) 8558 .createBranchWeights(TrueWeight, FalseWeight)); 8559 8560 NewTrueWeight = 2 * TrueWeight; 8561 NewFalseWeight = FalseWeight; 8562 scaleWeights(NewTrueWeight, NewFalseWeight); 8563 Br2->setMetadata(LLVMContext::MD_prof, 8564 MDBuilder(Br2->getContext()) 8565 .createBranchWeights(TrueWeight, FalseWeight)); 8566 } 8567 } 8568 8569 ModifiedDT = ModifyDT::ModifyBBDT; 8570 MadeChange = true; 8571 8572 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8573 TmpBB->dump()); 8574 } 8575 return MadeChange; 8576 } 8577