xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision 994297b01b98816bea1abf45ae4bac1bc69ee7a0)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/BlockFrequency.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
94 #include "llvm/Transforms/Utils/SizeOpts.h"
95 #include <algorithm>
96 #include <cassert>
97 #include <cstdint>
98 #include <iterator>
99 #include <limits>
100 #include <memory>
101 #include <utility>
102 #include <vector>
103 
104 using namespace llvm;
105 using namespace llvm::PatternMatch;
106 
107 #define DEBUG_TYPE "codegenprepare"
108 
109 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
110 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
111 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
113                       "sunken Cmps");
114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
115                        "of sunken Casts");
116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
117                           "computations were sunk");
118 STATISTIC(NumMemoryInstsPhiCreated,
119           "Number of phis created when address "
120           "computations were sunk to memory instructions");
121 STATISTIC(NumMemoryInstsSelectCreated,
122           "Number of select created when address "
123           "computations were sunk to memory instructions");
124 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
125 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
126 STATISTIC(NumAndsAdded,
127           "Number of and mask instructions added to form ext loads");
128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
129 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
133 
134 static cl::opt<bool> DisableBranchOpts(
135   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
136   cl::desc("Disable branch optimizations in CodeGenPrepare"));
137 
138 static cl::opt<bool>
139     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
140                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
141 
142 static cl::opt<bool> DisableSelectToBranch(
143   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
144   cl::desc("Disable select to branch conversion."));
145 
146 static cl::opt<bool> AddrSinkUsingGEPs(
147   "addr-sink-using-gep", cl::Hidden, cl::init(true),
148   cl::desc("Address sinking in CGP using GEPs."));
149 
150 static cl::opt<bool> EnableAndCmpSinking(
151    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
152    cl::desc("Enable sinkinig and/cmp into branches."));
153 
154 static cl::opt<bool> DisableStoreExtract(
155     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
156     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
157 
158 static cl::opt<bool> StressStoreExtract(
159     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
160     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
161 
162 static cl::opt<bool> DisableExtLdPromotion(
163     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
165              "CodeGenPrepare"));
166 
167 static cl::opt<bool> StressExtLdPromotion(
168     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
169     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
170              "optimization in CodeGenPrepare"));
171 
172 static cl::opt<bool> DisablePreheaderProtect(
173     "disable-preheader-prot", cl::Hidden, cl::init(false),
174     cl::desc("Disable protection against removing loop preheaders"));
175 
176 static cl::opt<bool> ProfileGuidedSectionPrefix(
177     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
178     cl::desc("Use profile info to add section prefix for hot/cold functions"));
179 
180 static cl::opt<bool> ProfileUnknownInSpecialSection(
181     "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
182     cl::ZeroOrMore,
183     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
184              "profile, we cannot tell the function is cold for sure because "
185              "it may be a function newly added without ever being sampled. "
186              "With the flag enabled, compiler can put such profile unknown "
187              "functions into a special section, so runtime system can choose "
188              "to handle it in a different way than .text section, to save "
189              "RAM for example. "));
190 
191 static cl::opt<unsigned> FreqRatioToSkipMerge(
192     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
193     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
194              "(frequency of destination block) is greater than this ratio"));
195 
196 static cl::opt<bool> ForceSplitStore(
197     "force-split-store", cl::Hidden, cl::init(false),
198     cl::desc("Force store splitting no matter what the target query says."));
199 
200 static cl::opt<bool>
201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
202     cl::desc("Enable merging of redundant sexts when one is dominating"
203     " the other."), cl::init(true));
204 
205 static cl::opt<bool> DisableComplexAddrModes(
206     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
207     cl::desc("Disables combining addressing modes with different parts "
208              "in optimizeMemoryInst."));
209 
210 static cl::opt<bool>
211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
212                 cl::desc("Allow creation of Phis in Address sinking."));
213 
214 static cl::opt<bool>
215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
216                    cl::desc("Allow creation of selects in Address sinking."));
217 
218 static cl::opt<bool> AddrSinkCombineBaseReg(
219     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
220     cl::desc("Allow combining of BaseReg field in Address sinking."));
221 
222 static cl::opt<bool> AddrSinkCombineBaseGV(
223     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
224     cl::desc("Allow combining of BaseGV field in Address sinking."));
225 
226 static cl::opt<bool> AddrSinkCombineBaseOffs(
227     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
228     cl::desc("Allow combining of BaseOffs field in Address sinking."));
229 
230 static cl::opt<bool> AddrSinkCombineScaledReg(
231     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
232     cl::desc("Allow combining of ScaledReg field in Address sinking."));
233 
234 static cl::opt<bool>
235     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
236                          cl::init(true),
237                          cl::desc("Enable splitting large offset of GEP."));
238 
239 static cl::opt<bool> EnableICMP_EQToICMP_ST(
240     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
241     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
242 
243 static cl::opt<bool>
244     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
245                      cl::desc("Enable BFI update verification for "
246                               "CodeGenPrepare."));
247 
248 static cl::opt<bool> OptimizePhiTypes(
249     "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
250     cl::desc("Enable converting phi types in CodeGenPrepare"));
251 
252 namespace {
253 
254 enum ExtType {
255   ZeroExtension,   // Zero extension has been seen.
256   SignExtension,   // Sign extension has been seen.
257   BothExtension    // This extension type is used if we saw sext after
258                    // ZeroExtension had been set, or if we saw zext after
259                    // SignExtension had been set. It makes the type
260                    // information of a promoted instruction invalid.
261 };
262 
263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
266 using SExts = SmallVector<Instruction *, 16>;
267 using ValueToSExts = DenseMap<Value *, SExts>;
268 
269 class TypePromotionTransaction;
270 
271   class CodeGenPrepare : public FunctionPass {
272     const TargetMachine *TM = nullptr;
273     const TargetSubtargetInfo *SubtargetInfo;
274     const TargetLowering *TLI = nullptr;
275     const TargetRegisterInfo *TRI;
276     const TargetTransformInfo *TTI = nullptr;
277     const TargetLibraryInfo *TLInfo;
278     const LoopInfo *LI;
279     std::unique_ptr<BlockFrequencyInfo> BFI;
280     std::unique_ptr<BranchProbabilityInfo> BPI;
281     ProfileSummaryInfo *PSI;
282 
283     /// As we scan instructions optimizing them, this is the next instruction
284     /// to optimize. Transforms that can invalidate this should update it.
285     BasicBlock::iterator CurInstIterator;
286 
287     /// Keeps track of non-local addresses that have been sunk into a block.
288     /// This allows us to avoid inserting duplicate code for blocks with
289     /// multiple load/stores of the same address. The usage of WeakTrackingVH
290     /// enables SunkAddrs to be treated as a cache whose entries can be
291     /// invalidated if a sunken address computation has been erased.
292     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
293 
294     /// Keeps track of all instructions inserted for the current function.
295     SetOfInstrs InsertedInsts;
296 
297     /// Keeps track of the type of the related instruction before their
298     /// promotion for the current function.
299     InstrToOrigTy PromotedInsts;
300 
301     /// Keep track of instructions removed during promotion.
302     SetOfInstrs RemovedInsts;
303 
304     /// Keep track of sext chains based on their initial value.
305     DenseMap<Value *, Instruction *> SeenChainsForSExt;
306 
307     /// Keep track of GEPs accessing the same data structures such as structs or
308     /// arrays that are candidates to be split later because of their large
309     /// size.
310     MapVector<
311         AssertingVH<Value>,
312         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
313         LargeOffsetGEPMap;
314 
315     /// Keep track of new GEP base after splitting the GEPs having large offset.
316     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
317 
318     /// Map serial numbers to Large offset GEPs.
319     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
320 
321     /// Keep track of SExt promoted.
322     ValueToSExts ValToSExtendedUses;
323 
324     /// True if the function has the OptSize attribute.
325     bool OptSize;
326 
327     /// DataLayout for the Function being processed.
328     const DataLayout *DL = nullptr;
329 
330     /// Building the dominator tree can be expensive, so we only build it
331     /// lazily and update it when required.
332     std::unique_ptr<DominatorTree> DT;
333 
334   public:
335     static char ID; // Pass identification, replacement for typeid
336 
337     CodeGenPrepare() : FunctionPass(ID) {
338       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
339     }
340 
341     bool runOnFunction(Function &F) override;
342 
343     StringRef getPassName() const override { return "CodeGen Prepare"; }
344 
345     void getAnalysisUsage(AnalysisUsage &AU) const override {
346       // FIXME: When we can selectively preserve passes, preserve the domtree.
347       AU.addRequired<ProfileSummaryInfoWrapperPass>();
348       AU.addRequired<TargetLibraryInfoWrapperPass>();
349       AU.addRequired<TargetPassConfig>();
350       AU.addRequired<TargetTransformInfoWrapperPass>();
351       AU.addRequired<LoopInfoWrapperPass>();
352     }
353 
354   private:
355     template <typename F>
356     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
357       // Substituting can cause recursive simplifications, which can invalidate
358       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
359       // happens.
360       Value *CurValue = &*CurInstIterator;
361       WeakTrackingVH IterHandle(CurValue);
362 
363       f();
364 
365       // If the iterator instruction was recursively deleted, start over at the
366       // start of the block.
367       if (IterHandle != CurValue) {
368         CurInstIterator = BB->begin();
369         SunkAddrs.clear();
370       }
371     }
372 
373     // Get the DominatorTree, building if necessary.
374     DominatorTree &getDT(Function &F) {
375       if (!DT)
376         DT = std::make_unique<DominatorTree>(F);
377       return *DT;
378     }
379 
380     void removeAllAssertingVHReferences(Value *V);
381     bool eliminateAssumptions(Function &F);
382     bool eliminateFallThrough(Function &F);
383     bool eliminateMostlyEmptyBlocks(Function &F);
384     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
385     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
386     void eliminateMostlyEmptyBlock(BasicBlock *BB);
387     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
388                                        bool isPreheader);
389     bool makeBitReverse(Instruction &I);
390     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
391     bool optimizeInst(Instruction *I, bool &ModifiedDT);
392     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
393                             Type *AccessTy, unsigned AddrSpace);
394     bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
395     bool optimizeInlineAsmInst(CallInst *CS);
396     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
397     bool optimizeExt(Instruction *&I);
398     bool optimizeExtUses(Instruction *I);
399     bool optimizeLoadExt(LoadInst *Load);
400     bool optimizeShiftInst(BinaryOperator *BO);
401     bool optimizeFunnelShift(IntrinsicInst *Fsh);
402     bool optimizeSelectInst(SelectInst *SI);
403     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
404     bool optimizeSwitchInst(SwitchInst *SI);
405     bool optimizeExtractElementInst(Instruction *Inst);
406     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
407     bool fixupDbgValue(Instruction *I);
408     bool placeDbgValues(Function &F);
409     bool placePseudoProbes(Function &F);
410     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
411                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
412     bool tryToPromoteExts(TypePromotionTransaction &TPT,
413                           const SmallVectorImpl<Instruction *> &Exts,
414                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
415                           unsigned CreatedInstsCost = 0);
416     bool mergeSExts(Function &F);
417     bool splitLargeGEPOffsets();
418     bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
419                          SmallPtrSetImpl<Instruction *> &DeletedInstrs);
420     bool optimizePhiTypes(Function &F);
421     bool performAddressTypePromotion(
422         Instruction *&Inst,
423         bool AllowPromotionWithoutCommonHeader,
424         bool HasPromoted, TypePromotionTransaction &TPT,
425         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
426     bool splitBranchCondition(Function &F, bool &ModifiedDT);
427     bool simplifyOffsetableRelocate(GCStatepointInst &I);
428 
429     bool tryToSinkFreeOperands(Instruction *I);
430     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
431                                      Value *Arg1, CmpInst *Cmp,
432                                      Intrinsic::ID IID);
433     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
434     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
435     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
436     void verifyBFIUpdates(Function &F);
437   };
438 
439 } // end anonymous namespace
440 
441 char CodeGenPrepare::ID = 0;
442 
443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
444                       "Optimize for code generation", false, false)
445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
451                     "Optimize for code generation", false, false)
452 
453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
454 
455 bool CodeGenPrepare::runOnFunction(Function &F) {
456   if (skipFunction(F))
457     return false;
458 
459   DL = &F.getParent()->getDataLayout();
460 
461   bool EverMadeChange = false;
462   // Clear per function information.
463   InsertedInsts.clear();
464   PromotedInsts.clear();
465 
466   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
467   SubtargetInfo = TM->getSubtargetImpl(F);
468   TLI = SubtargetInfo->getTargetLowering();
469   TRI = SubtargetInfo->getRegisterInfo();
470   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
471   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
472   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
473   BPI.reset(new BranchProbabilityInfo(F, *LI));
474   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
475   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
476   OptSize = F.hasOptSize();
477   if (ProfileGuidedSectionPrefix) {
478     // The hot attribute overwrites profile count based hotness while profile
479     // counts based hotness overwrite the cold attribute.
480     // This is a conservative behabvior.
481     if (F.hasFnAttribute(Attribute::Hot) ||
482         PSI->isFunctionHotInCallGraph(&F, *BFI))
483       F.setSectionPrefix("hot");
484     // If PSI shows this function is not hot, we will placed the function
485     // into unlikely section if (1) PSI shows this is a cold function, or
486     // (2) the function has a attribute of cold.
487     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
488              F.hasFnAttribute(Attribute::Cold))
489       F.setSectionPrefix("unlikely");
490     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
491              PSI->isFunctionHotnessUnknown(F))
492       F.setSectionPrefix("unknown");
493   }
494 
495   /// This optimization identifies DIV instructions that can be
496   /// profitably bypassed and carried out with a shorter, faster divide.
497   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
498     const DenseMap<unsigned int, unsigned int> &BypassWidths =
499         TLI->getBypassSlowDivWidths();
500     BasicBlock* BB = &*F.begin();
501     while (BB != nullptr) {
502       // bypassSlowDivision may create new BBs, but we don't want to reapply the
503       // optimization to those blocks.
504       BasicBlock* Next = BB->getNextNode();
505       // F.hasOptSize is already checked in the outer if statement.
506       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
507         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
508       BB = Next;
509     }
510   }
511 
512   // Get rid of @llvm.assume builtins before attempting to eliminate empty
513   // blocks, since there might be blocks that only contain @llvm.assume calls
514   // (plus arguments that we can get rid of).
515   EverMadeChange |= eliminateAssumptions(F);
516 
517   // Eliminate blocks that contain only PHI nodes and an
518   // unconditional branch.
519   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
520 
521   bool ModifiedDT = false;
522   if (!DisableBranchOpts)
523     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
524 
525   // Split some critical edges where one of the sources is an indirect branch,
526   // to help generate sane code for PHIs involving such edges.
527   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
528 
529   bool MadeChange = true;
530   while (MadeChange) {
531     MadeChange = false;
532     DT.reset();
533     for (Function::iterator I = F.begin(); I != F.end(); ) {
534       BasicBlock *BB = &*I++;
535       bool ModifiedDTOnIteration = false;
536       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
537 
538       // Restart BB iteration if the dominator tree of the Function was changed
539       if (ModifiedDTOnIteration)
540         break;
541     }
542     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
543       MadeChange |= mergeSExts(F);
544     if (!LargeOffsetGEPMap.empty())
545       MadeChange |= splitLargeGEPOffsets();
546     MadeChange |= optimizePhiTypes(F);
547 
548     if (MadeChange)
549       eliminateFallThrough(F);
550 
551     // Really free removed instructions during promotion.
552     for (Instruction *I : RemovedInsts)
553       I->deleteValue();
554 
555     EverMadeChange |= MadeChange;
556     SeenChainsForSExt.clear();
557     ValToSExtendedUses.clear();
558     RemovedInsts.clear();
559     LargeOffsetGEPMap.clear();
560     LargeOffsetGEPID.clear();
561   }
562 
563   NewGEPBases.clear();
564   SunkAddrs.clear();
565 
566   if (!DisableBranchOpts) {
567     MadeChange = false;
568     // Use a set vector to get deterministic iteration order. The order the
569     // blocks are removed may affect whether or not PHI nodes in successors
570     // are removed.
571     SmallSetVector<BasicBlock*, 8> WorkList;
572     for (BasicBlock &BB : F) {
573       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
574       MadeChange |= ConstantFoldTerminator(&BB, true);
575       if (!MadeChange) continue;
576 
577       for (BasicBlock *Succ : Successors)
578         if (pred_empty(Succ))
579           WorkList.insert(Succ);
580     }
581 
582     // Delete the dead blocks and any of their dead successors.
583     MadeChange |= !WorkList.empty();
584     while (!WorkList.empty()) {
585       BasicBlock *BB = WorkList.pop_back_val();
586       SmallVector<BasicBlock*, 2> Successors(successors(BB));
587 
588       DeleteDeadBlock(BB);
589 
590       for (BasicBlock *Succ : Successors)
591         if (pred_empty(Succ))
592           WorkList.insert(Succ);
593     }
594 
595     // Merge pairs of basic blocks with unconditional branches, connected by
596     // a single edge.
597     if (EverMadeChange || MadeChange)
598       MadeChange |= eliminateFallThrough(F);
599 
600     EverMadeChange |= MadeChange;
601   }
602 
603   if (!DisableGCOpts) {
604     SmallVector<GCStatepointInst *, 2> Statepoints;
605     for (BasicBlock &BB : F)
606       for (Instruction &I : BB)
607         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
608           Statepoints.push_back(SP);
609     for (auto &I : Statepoints)
610       EverMadeChange |= simplifyOffsetableRelocate(*I);
611   }
612 
613   // Do this last to clean up use-before-def scenarios introduced by other
614   // preparatory transforms.
615   EverMadeChange |= placeDbgValues(F);
616   EverMadeChange |= placePseudoProbes(F);
617 
618 #ifndef NDEBUG
619   if (VerifyBFIUpdates)
620     verifyBFIUpdates(F);
621 #endif
622 
623   return EverMadeChange;
624 }
625 
626 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
627   bool MadeChange = false;
628   for (BasicBlock &BB : F) {
629     CurInstIterator = BB.begin();
630     while (CurInstIterator != BB.end()) {
631       Instruction *I = &*(CurInstIterator++);
632       if (auto *Assume = dyn_cast<AssumeInst>(I)) {
633         MadeChange = true;
634         Value *Operand = Assume->getOperand(0);
635         Assume->eraseFromParent();
636 
637         resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
638           RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
639         });
640       }
641     }
642   }
643   return MadeChange;
644 }
645 
646 /// An instruction is about to be deleted, so remove all references to it in our
647 /// GEP-tracking data strcutures.
648 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
649   LargeOffsetGEPMap.erase(V);
650   NewGEPBases.erase(V);
651 
652   auto GEP = dyn_cast<GetElementPtrInst>(V);
653   if (!GEP)
654     return;
655 
656   LargeOffsetGEPID.erase(GEP);
657 
658   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
659   if (VecI == LargeOffsetGEPMap.end())
660     return;
661 
662   auto &GEPVector = VecI->second;
663   const auto &I =
664       llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
665   if (I == GEPVector.end())
666     return;
667 
668   GEPVector.erase(I);
669   if (GEPVector.empty())
670     LargeOffsetGEPMap.erase(VecI);
671 }
672 
673 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
674 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
675   DominatorTree NewDT(F);
676   LoopInfo NewLI(NewDT);
677   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
678   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
679   NewBFI.verifyMatch(*BFI);
680 }
681 
682 /// Merge basic blocks which are connected by a single edge, where one of the
683 /// basic blocks has a single successor pointing to the other basic block,
684 /// which has a single predecessor.
685 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
686   bool Changed = false;
687   // Scan all of the blocks in the function, except for the entry block.
688   // Use a temporary array to avoid iterator being invalidated when
689   // deleting blocks.
690   SmallVector<WeakTrackingVH, 16> Blocks;
691   for (auto &Block : llvm::drop_begin(F))
692     Blocks.push_back(&Block);
693 
694   SmallSet<WeakTrackingVH, 16> Preds;
695   for (auto &Block : Blocks) {
696     auto *BB = cast_or_null<BasicBlock>(Block);
697     if (!BB)
698       continue;
699     // If the destination block has a single pred, then this is a trivial
700     // edge, just collapse it.
701     BasicBlock *SinglePred = BB->getSinglePredecessor();
702 
703     // Don't merge if BB's address is taken.
704     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
705 
706     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
707     if (Term && !Term->isConditional()) {
708       Changed = true;
709       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
710 
711       // Merge BB into SinglePred and delete it.
712       MergeBlockIntoPredecessor(BB);
713       Preds.insert(SinglePred);
714     }
715   }
716 
717   // (Repeatedly) merging blocks into their predecessors can create redundant
718   // debug intrinsics.
719   for (auto &Pred : Preds)
720     if (auto *BB = cast_or_null<BasicBlock>(Pred))
721       RemoveRedundantDbgInstrs(BB);
722 
723   return Changed;
724 }
725 
726 /// Find a destination block from BB if BB is mergeable empty block.
727 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
728   // If this block doesn't end with an uncond branch, ignore it.
729   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
730   if (!BI || !BI->isUnconditional())
731     return nullptr;
732 
733   // If the instruction before the branch (skipping debug info) isn't a phi
734   // node, then other stuff is happening here.
735   BasicBlock::iterator BBI = BI->getIterator();
736   if (BBI != BB->begin()) {
737     --BBI;
738     while (isa<DbgInfoIntrinsic>(BBI)) {
739       if (BBI == BB->begin())
740         break;
741       --BBI;
742     }
743     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
744       return nullptr;
745   }
746 
747   // Do not break infinite loops.
748   BasicBlock *DestBB = BI->getSuccessor(0);
749   if (DestBB == BB)
750     return nullptr;
751 
752   if (!canMergeBlocks(BB, DestBB))
753     DestBB = nullptr;
754 
755   return DestBB;
756 }
757 
758 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
759 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
760 /// edges in ways that are non-optimal for isel. Start by eliminating these
761 /// blocks so we can split them the way we want them.
762 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
763   SmallPtrSet<BasicBlock *, 16> Preheaders;
764   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
765   while (!LoopList.empty()) {
766     Loop *L = LoopList.pop_back_val();
767     llvm::append_range(LoopList, *L);
768     if (BasicBlock *Preheader = L->getLoopPreheader())
769       Preheaders.insert(Preheader);
770   }
771 
772   bool MadeChange = false;
773   // Copy blocks into a temporary array to avoid iterator invalidation issues
774   // as we remove them.
775   // Note that this intentionally skips the entry block.
776   SmallVector<WeakTrackingVH, 16> Blocks;
777   for (auto &Block : llvm::drop_begin(F))
778     Blocks.push_back(&Block);
779 
780   for (auto &Block : Blocks) {
781     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
782     if (!BB)
783       continue;
784     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
785     if (!DestBB ||
786         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
787       continue;
788 
789     eliminateMostlyEmptyBlock(BB);
790     MadeChange = true;
791   }
792   return MadeChange;
793 }
794 
795 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
796                                                    BasicBlock *DestBB,
797                                                    bool isPreheader) {
798   // Do not delete loop preheaders if doing so would create a critical edge.
799   // Loop preheaders can be good locations to spill registers. If the
800   // preheader is deleted and we create a critical edge, registers may be
801   // spilled in the loop body instead.
802   if (!DisablePreheaderProtect && isPreheader &&
803       !(BB->getSinglePredecessor() &&
804         BB->getSinglePredecessor()->getSingleSuccessor()))
805     return false;
806 
807   // Skip merging if the block's successor is also a successor to any callbr
808   // that leads to this block.
809   // FIXME: Is this really needed? Is this a correctness issue?
810   for (BasicBlock *Pred : predecessors(BB)) {
811     if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
812       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
813         if (DestBB == CBI->getSuccessor(i))
814           return false;
815   }
816 
817   // Try to skip merging if the unique predecessor of BB is terminated by a
818   // switch or indirect branch instruction, and BB is used as an incoming block
819   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
820   // add COPY instructions in the predecessor of BB instead of BB (if it is not
821   // merged). Note that the critical edge created by merging such blocks wont be
822   // split in MachineSink because the jump table is not analyzable. By keeping
823   // such empty block (BB), ISel will place COPY instructions in BB, not in the
824   // predecessor of BB.
825   BasicBlock *Pred = BB->getUniquePredecessor();
826   if (!Pred ||
827       !(isa<SwitchInst>(Pred->getTerminator()) ||
828         isa<IndirectBrInst>(Pred->getTerminator())))
829     return true;
830 
831   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
832     return true;
833 
834   // We use a simple cost heuristic which determine skipping merging is
835   // profitable if the cost of skipping merging is less than the cost of
836   // merging : Cost(skipping merging) < Cost(merging BB), where the
837   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
838   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
839   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
840   //   Freq(Pred) / Freq(BB) > 2.
841   // Note that if there are multiple empty blocks sharing the same incoming
842   // value for the PHIs in the DestBB, we consider them together. In such
843   // case, Cost(merging BB) will be the sum of their frequencies.
844 
845   if (!isa<PHINode>(DestBB->begin()))
846     return true;
847 
848   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
849 
850   // Find all other incoming blocks from which incoming values of all PHIs in
851   // DestBB are the same as the ones from BB.
852   for (BasicBlock *DestBBPred : predecessors(DestBB)) {
853     if (DestBBPred == BB)
854       continue;
855 
856     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
857           return DestPN.getIncomingValueForBlock(BB) ==
858                  DestPN.getIncomingValueForBlock(DestBBPred);
859         }))
860       SameIncomingValueBBs.insert(DestBBPred);
861   }
862 
863   // See if all BB's incoming values are same as the value from Pred. In this
864   // case, no reason to skip merging because COPYs are expected to be place in
865   // Pred already.
866   if (SameIncomingValueBBs.count(Pred))
867     return true;
868 
869   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
870   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
871 
872   for (auto *SameValueBB : SameIncomingValueBBs)
873     if (SameValueBB->getUniquePredecessor() == Pred &&
874         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
875       BBFreq += BFI->getBlockFreq(SameValueBB);
876 
877   return PredFreq.getFrequency() <=
878          BBFreq.getFrequency() * FreqRatioToSkipMerge;
879 }
880 
881 /// Return true if we can merge BB into DestBB if there is a single
882 /// unconditional branch between them, and BB contains no other non-phi
883 /// instructions.
884 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
885                                     const BasicBlock *DestBB) const {
886   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
887   // the successor.  If there are more complex condition (e.g. preheaders),
888   // don't mess around with them.
889   for (const PHINode &PN : BB->phis()) {
890     for (const User *U : PN.users()) {
891       const Instruction *UI = cast<Instruction>(U);
892       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
893         return false;
894       // If User is inside DestBB block and it is a PHINode then check
895       // incoming value. If incoming value is not from BB then this is
896       // a complex condition (e.g. preheaders) we want to avoid here.
897       if (UI->getParent() == DestBB) {
898         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
899           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
900             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
901             if (Insn && Insn->getParent() == BB &&
902                 Insn->getParent() != UPN->getIncomingBlock(I))
903               return false;
904           }
905       }
906     }
907   }
908 
909   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
910   // and DestBB may have conflicting incoming values for the block.  If so, we
911   // can't merge the block.
912   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
913   if (!DestBBPN) return true;  // no conflict.
914 
915   // Collect the preds of BB.
916   SmallPtrSet<const BasicBlock*, 16> BBPreds;
917   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
918     // It is faster to get preds from a PHI than with pred_iterator.
919     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
920       BBPreds.insert(BBPN->getIncomingBlock(i));
921   } else {
922     BBPreds.insert(pred_begin(BB), pred_end(BB));
923   }
924 
925   // Walk the preds of DestBB.
926   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
927     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
928     if (BBPreds.count(Pred)) {   // Common predecessor?
929       for (const PHINode &PN : DestBB->phis()) {
930         const Value *V1 = PN.getIncomingValueForBlock(Pred);
931         const Value *V2 = PN.getIncomingValueForBlock(BB);
932 
933         // If V2 is a phi node in BB, look up what the mapped value will be.
934         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
935           if (V2PN->getParent() == BB)
936             V2 = V2PN->getIncomingValueForBlock(Pred);
937 
938         // If there is a conflict, bail out.
939         if (V1 != V2) return false;
940       }
941     }
942   }
943 
944   return true;
945 }
946 
947 /// Eliminate a basic block that has only phi's and an unconditional branch in
948 /// it.
949 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
950   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
951   BasicBlock *DestBB = BI->getSuccessor(0);
952 
953   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
954                     << *BB << *DestBB);
955 
956   // If the destination block has a single pred, then this is a trivial edge,
957   // just collapse it.
958   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
959     if (SinglePred != DestBB) {
960       assert(SinglePred == BB &&
961              "Single predecessor not the same as predecessor");
962       // Merge DestBB into SinglePred/BB and delete it.
963       MergeBlockIntoPredecessor(DestBB);
964       // Note: BB(=SinglePred) will not be deleted on this path.
965       // DestBB(=its single successor) is the one that was deleted.
966       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
967       return;
968     }
969   }
970 
971   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
972   // to handle the new incoming edges it is about to have.
973   for (PHINode &PN : DestBB->phis()) {
974     // Remove the incoming value for BB, and remember it.
975     Value *InVal = PN.removeIncomingValue(BB, false);
976 
977     // Two options: either the InVal is a phi node defined in BB or it is some
978     // value that dominates BB.
979     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
980     if (InValPhi && InValPhi->getParent() == BB) {
981       // Add all of the input values of the input PHI as inputs of this phi.
982       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
983         PN.addIncoming(InValPhi->getIncomingValue(i),
984                        InValPhi->getIncomingBlock(i));
985     } else {
986       // Otherwise, add one instance of the dominating value for each edge that
987       // we will be adding.
988       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
989         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
990           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
991       } else {
992         for (BasicBlock *Pred : predecessors(BB))
993           PN.addIncoming(InVal, Pred);
994       }
995     }
996   }
997 
998   // The PHIs are now updated, change everything that refers to BB to use
999   // DestBB and remove BB.
1000   BB->replaceAllUsesWith(DestBB);
1001   BB->eraseFromParent();
1002   ++NumBlocksElim;
1003 
1004   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1005 }
1006 
1007 // Computes a map of base pointer relocation instructions to corresponding
1008 // derived pointer relocation instructions given a vector of all relocate calls
1009 static void computeBaseDerivedRelocateMap(
1010     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1011     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1012         &RelocateInstMap) {
1013   // Collect information in two maps: one primarily for locating the base object
1014   // while filling the second map; the second map is the final structure holding
1015   // a mapping between Base and corresponding Derived relocate calls
1016   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1017   for (auto *ThisRelocate : AllRelocateCalls) {
1018     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1019                             ThisRelocate->getDerivedPtrIndex());
1020     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1021   }
1022   for (auto &Item : RelocateIdxMap) {
1023     std::pair<unsigned, unsigned> Key = Item.first;
1024     if (Key.first == Key.second)
1025       // Base relocation: nothing to insert
1026       continue;
1027 
1028     GCRelocateInst *I = Item.second;
1029     auto BaseKey = std::make_pair(Key.first, Key.first);
1030 
1031     // We're iterating over RelocateIdxMap so we cannot modify it.
1032     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1033     if (MaybeBase == RelocateIdxMap.end())
1034       // TODO: We might want to insert a new base object relocate and gep off
1035       // that, if there are enough derived object relocates.
1036       continue;
1037 
1038     RelocateInstMap[MaybeBase->second].push_back(I);
1039   }
1040 }
1041 
1042 // Accepts a GEP and extracts the operands into a vector provided they're all
1043 // small integer constants
1044 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1045                                           SmallVectorImpl<Value *> &OffsetV) {
1046   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1047     // Only accept small constant integer operands
1048     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1049     if (!Op || Op->getZExtValue() > 20)
1050       return false;
1051   }
1052 
1053   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1054     OffsetV.push_back(GEP->getOperand(i));
1055   return true;
1056 }
1057 
1058 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1059 // replace, computes a replacement, and affects it.
1060 static bool
1061 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1062                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1063   bool MadeChange = false;
1064   // We must ensure the relocation of derived pointer is defined after
1065   // relocation of base pointer. If we find a relocation corresponding to base
1066   // defined earlier than relocation of base then we move relocation of base
1067   // right before found relocation. We consider only relocation in the same
1068   // basic block as relocation of base. Relocations from other basic block will
1069   // be skipped by optimization and we do not care about them.
1070   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1071        &*R != RelocatedBase; ++R)
1072     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1073       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1074         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1075           RelocatedBase->moveBefore(RI);
1076           break;
1077         }
1078 
1079   for (GCRelocateInst *ToReplace : Targets) {
1080     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1081            "Not relocating a derived object of the original base object");
1082     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1083       // A duplicate relocate call. TODO: coalesce duplicates.
1084       continue;
1085     }
1086 
1087     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1088       // Base and derived relocates are in different basic blocks.
1089       // In this case transform is only valid when base dominates derived
1090       // relocate. However it would be too expensive to check dominance
1091       // for each such relocate, so we skip the whole transformation.
1092       continue;
1093     }
1094 
1095     Value *Base = ToReplace->getBasePtr();
1096     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1097     if (!Derived || Derived->getPointerOperand() != Base)
1098       continue;
1099 
1100     SmallVector<Value *, 2> OffsetV;
1101     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1102       continue;
1103 
1104     // Create a Builder and replace the target callsite with a gep
1105     assert(RelocatedBase->getNextNode() &&
1106            "Should always have one since it's not a terminator");
1107 
1108     // Insert after RelocatedBase
1109     IRBuilder<> Builder(RelocatedBase->getNextNode());
1110     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1111 
1112     // If gc_relocate does not match the actual type, cast it to the right type.
1113     // In theory, there must be a bitcast after gc_relocate if the type does not
1114     // match, and we should reuse it to get the derived pointer. But it could be
1115     // cases like this:
1116     // bb1:
1117     //  ...
1118     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1119     //  br label %merge
1120     //
1121     // bb2:
1122     //  ...
1123     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1124     //  br label %merge
1125     //
1126     // merge:
1127     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1128     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1129     //
1130     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1131     // no matter there is already one or not. In this way, we can handle all cases, and
1132     // the extra bitcast should be optimized away in later passes.
1133     Value *ActualRelocatedBase = RelocatedBase;
1134     if (RelocatedBase->getType() != Base->getType()) {
1135       ActualRelocatedBase =
1136           Builder.CreateBitCast(RelocatedBase, Base->getType());
1137     }
1138     Value *Replacement = Builder.CreateGEP(
1139         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1140     Replacement->takeName(ToReplace);
1141     // If the newly generated derived pointer's type does not match the original derived
1142     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1143     Value *ActualReplacement = Replacement;
1144     if (Replacement->getType() != ToReplace->getType()) {
1145       ActualReplacement =
1146           Builder.CreateBitCast(Replacement, ToReplace->getType());
1147     }
1148     ToReplace->replaceAllUsesWith(ActualReplacement);
1149     ToReplace->eraseFromParent();
1150 
1151     MadeChange = true;
1152   }
1153   return MadeChange;
1154 }
1155 
1156 // Turns this:
1157 //
1158 // %base = ...
1159 // %ptr = gep %base + 15
1160 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1161 // %base' = relocate(%tok, i32 4, i32 4)
1162 // %ptr' = relocate(%tok, i32 4, i32 5)
1163 // %val = load %ptr'
1164 //
1165 // into this:
1166 //
1167 // %base = ...
1168 // %ptr = gep %base + 15
1169 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1170 // %base' = gc.relocate(%tok, i32 4, i32 4)
1171 // %ptr' = gep %base' + 15
1172 // %val = load %ptr'
1173 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1174   bool MadeChange = false;
1175   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1176   for (auto *U : I.users())
1177     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1178       // Collect all the relocate calls associated with a statepoint
1179       AllRelocateCalls.push_back(Relocate);
1180 
1181   // We need at least one base pointer relocation + one derived pointer
1182   // relocation to mangle
1183   if (AllRelocateCalls.size() < 2)
1184     return false;
1185 
1186   // RelocateInstMap is a mapping from the base relocate instruction to the
1187   // corresponding derived relocate instructions
1188   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1189   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1190   if (RelocateInstMap.empty())
1191     return false;
1192 
1193   for (auto &Item : RelocateInstMap)
1194     // Item.first is the RelocatedBase to offset against
1195     // Item.second is the vector of Targets to replace
1196     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1197   return MadeChange;
1198 }
1199 
1200 /// Sink the specified cast instruction into its user blocks.
1201 static bool SinkCast(CastInst *CI) {
1202   BasicBlock *DefBB = CI->getParent();
1203 
1204   /// InsertedCasts - Only insert a cast in each block once.
1205   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1206 
1207   bool MadeChange = false;
1208   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1209        UI != E; ) {
1210     Use &TheUse = UI.getUse();
1211     Instruction *User = cast<Instruction>(*UI);
1212 
1213     // Figure out which BB this cast is used in.  For PHI's this is the
1214     // appropriate predecessor block.
1215     BasicBlock *UserBB = User->getParent();
1216     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1217       UserBB = PN->getIncomingBlock(TheUse);
1218     }
1219 
1220     // Preincrement use iterator so we don't invalidate it.
1221     ++UI;
1222 
1223     // The first insertion point of a block containing an EH pad is after the
1224     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1225     if (User->isEHPad())
1226       continue;
1227 
1228     // If the block selected to receive the cast is an EH pad that does not
1229     // allow non-PHI instructions before the terminator, we can't sink the
1230     // cast.
1231     if (UserBB->getTerminator()->isEHPad())
1232       continue;
1233 
1234     // If this user is in the same block as the cast, don't change the cast.
1235     if (UserBB == DefBB) continue;
1236 
1237     // If we have already inserted a cast into this block, use it.
1238     CastInst *&InsertedCast = InsertedCasts[UserBB];
1239 
1240     if (!InsertedCast) {
1241       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1242       assert(InsertPt != UserBB->end());
1243       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1244                                       CI->getType(), "", &*InsertPt);
1245       InsertedCast->setDebugLoc(CI->getDebugLoc());
1246     }
1247 
1248     // Replace a use of the cast with a use of the new cast.
1249     TheUse = InsertedCast;
1250     MadeChange = true;
1251     ++NumCastUses;
1252   }
1253 
1254   // If we removed all uses, nuke the cast.
1255   if (CI->use_empty()) {
1256     salvageDebugInfo(*CI);
1257     CI->eraseFromParent();
1258     MadeChange = true;
1259   }
1260 
1261   return MadeChange;
1262 }
1263 
1264 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1265 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1266 /// reduce the number of virtual registers that must be created and coalesced.
1267 ///
1268 /// Return true if any changes are made.
1269 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1270                                        const DataLayout &DL) {
1271   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1272   // than sinking only nop casts, but is helpful on some platforms.
1273   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1274     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1275                                  ASC->getDestAddressSpace()))
1276       return false;
1277   }
1278 
1279   // If this is a noop copy,
1280   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1281   EVT DstVT = TLI.getValueType(DL, CI->getType());
1282 
1283   // This is an fp<->int conversion?
1284   if (SrcVT.isInteger() != DstVT.isInteger())
1285     return false;
1286 
1287   // If this is an extension, it will be a zero or sign extension, which
1288   // isn't a noop.
1289   if (SrcVT.bitsLT(DstVT)) return false;
1290 
1291   // If these values will be promoted, find out what they will be promoted
1292   // to.  This helps us consider truncates on PPC as noop copies when they
1293   // are.
1294   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1295       TargetLowering::TypePromoteInteger)
1296     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1297   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1298       TargetLowering::TypePromoteInteger)
1299     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1300 
1301   // If, after promotion, these are the same types, this is a noop copy.
1302   if (SrcVT != DstVT)
1303     return false;
1304 
1305   return SinkCast(CI);
1306 }
1307 
1308 // Match a simple increment by constant operation.  Note that if a sub is
1309 // matched, the step is negated (as if the step had been canonicalized to
1310 // an add, even though we leave the instruction alone.)
1311 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS,
1312                     Constant *&Step) {
1313   if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1314       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1315                        m_Instruction(LHS), m_Constant(Step)))))
1316     return true;
1317   if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1318       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1319                        m_Instruction(LHS), m_Constant(Step))))) {
1320     Step = ConstantExpr::getNeg(Step);
1321     return true;
1322   }
1323   return false;
1324 }
1325 
1326 /// If given \p PN is an inductive variable with value IVInc coming from the
1327 /// backedge, and on each iteration it gets increased by Step, return pair
1328 /// <IVInc, Step>. Otherwise, return None.
1329 static Optional<std::pair<Instruction *, Constant *> >
1330 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1331   const Loop *L = LI->getLoopFor(PN->getParent());
1332   if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1333     return None;
1334   auto *IVInc =
1335       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1336   if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1337     return None;
1338   Instruction *LHS = nullptr;
1339   Constant *Step = nullptr;
1340   if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1341     return std::make_pair(IVInc, Step);
1342   return None;
1343 }
1344 
1345 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1346   auto *I = dyn_cast<Instruction>(V);
1347   if (!I)
1348     return false;
1349   Instruction *LHS = nullptr;
1350   Constant *Step = nullptr;
1351   if (!matchIncrement(I, LHS, Step))
1352     return false;
1353   if (auto *PN = dyn_cast<PHINode>(LHS))
1354     if (auto IVInc = getIVIncrement(PN, LI))
1355       return IVInc->first == I;
1356   return false;
1357 }
1358 
1359 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1360                                                  Value *Arg0, Value *Arg1,
1361                                                  CmpInst *Cmp,
1362                                                  Intrinsic::ID IID) {
1363   auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1364     if (!isIVIncrement(BO, LI))
1365       return false;
1366     const Loop *L = LI->getLoopFor(BO->getParent());
1367     assert(L && "L should not be null after isIVIncrement()");
1368     // Do not risk on moving increment into a child loop.
1369     if (LI->getLoopFor(Cmp->getParent()) != L)
1370       return false;
1371 
1372     // Finally, we need to ensure that the insert point will dominate all
1373     // existing uses of the increment.
1374 
1375     auto &DT = getDT(*BO->getParent()->getParent());
1376     if (DT.dominates(Cmp->getParent(), BO->getParent()))
1377       // If we're moving up the dom tree, all uses are trivially dominated.
1378       // (This is the common case for code produced by LSR.)
1379       return true;
1380 
1381     // Otherwise, special case the single use in the phi recurrence.
1382     return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1383   };
1384   if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1385     // We used to use a dominator tree here to allow multi-block optimization.
1386     // But that was problematic because:
1387     // 1. It could cause a perf regression by hoisting the math op into the
1388     //    critical path.
1389     // 2. It could cause a perf regression by creating a value that was live
1390     //    across multiple blocks and increasing register pressure.
1391     // 3. Use of a dominator tree could cause large compile-time regression.
1392     //    This is because we recompute the DT on every change in the main CGP
1393     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1394     //    that was fixed, using a DT here would be ok.
1395     //
1396     // There is one important particular case we still want to handle: if BO is
1397     // the IV increment. Important properties that make it profitable:
1398     // - We can speculate IV increment anywhere in the loop (as long as the
1399     //   indvar Phi is its only user);
1400     // - Upon computing Cmp, we effectively compute something equivalent to the
1401     //   IV increment (despite it loops differently in the IR). So moving it up
1402     //   to the cmp point does not really increase register pressure.
1403     return false;
1404   }
1405 
1406   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1407   if (BO->getOpcode() == Instruction::Add &&
1408       IID == Intrinsic::usub_with_overflow) {
1409     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1410     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1411   }
1412 
1413   // Insert at the first instruction of the pair.
1414   Instruction *InsertPt = nullptr;
1415   for (Instruction &Iter : *Cmp->getParent()) {
1416     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1417     // the overflow intrinsic are defined.
1418     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1419       InsertPt = &Iter;
1420       break;
1421     }
1422   }
1423   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1424 
1425   IRBuilder<> Builder(InsertPt);
1426   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1427   if (BO->getOpcode() != Instruction::Xor) {
1428     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1429     BO->replaceAllUsesWith(Math);
1430   } else
1431     assert(BO->hasOneUse() &&
1432            "Patterns with XOr should use the BO only in the compare");
1433   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1434   Cmp->replaceAllUsesWith(OV);
1435   Cmp->eraseFromParent();
1436   BO->eraseFromParent();
1437   return true;
1438 }
1439 
1440 /// Match special-case patterns that check for unsigned add overflow.
1441 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1442                                                    BinaryOperator *&Add) {
1443   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1444   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1445   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1446 
1447   // We are not expecting non-canonical/degenerate code. Just bail out.
1448   if (isa<Constant>(A))
1449     return false;
1450 
1451   ICmpInst::Predicate Pred = Cmp->getPredicate();
1452   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1453     B = ConstantInt::get(B->getType(), 1);
1454   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1455     B = ConstantInt::get(B->getType(), -1);
1456   else
1457     return false;
1458 
1459   // Check the users of the variable operand of the compare looking for an add
1460   // with the adjusted constant.
1461   for (User *U : A->users()) {
1462     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1463       Add = cast<BinaryOperator>(U);
1464       return true;
1465     }
1466   }
1467   return false;
1468 }
1469 
1470 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1471 /// intrinsic. Return true if any changes were made.
1472 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1473                                                bool &ModifiedDT) {
1474   Value *A, *B;
1475   BinaryOperator *Add;
1476   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1477     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1478       return false;
1479     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1480     A = Add->getOperand(0);
1481     B = Add->getOperand(1);
1482   }
1483 
1484   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1485                                  TLI->getValueType(*DL, Add->getType()),
1486                                  Add->hasNUsesOrMore(2)))
1487     return false;
1488 
1489   // We don't want to move around uses of condition values this late, so we
1490   // check if it is legal to create the call to the intrinsic in the basic
1491   // block containing the icmp.
1492   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1493     return false;
1494 
1495   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1496                                    Intrinsic::uadd_with_overflow))
1497     return false;
1498 
1499   // Reset callers - do not crash by iterating over a dead instruction.
1500   ModifiedDT = true;
1501   return true;
1502 }
1503 
1504 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1505                                                bool &ModifiedDT) {
1506   // We are not expecting non-canonical/degenerate code. Just bail out.
1507   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1508   if (isa<Constant>(A) && isa<Constant>(B))
1509     return false;
1510 
1511   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1512   ICmpInst::Predicate Pred = Cmp->getPredicate();
1513   if (Pred == ICmpInst::ICMP_UGT) {
1514     std::swap(A, B);
1515     Pred = ICmpInst::ICMP_ULT;
1516   }
1517   // Convert special-case: (A == 0) is the same as (A u< 1).
1518   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1519     B = ConstantInt::get(B->getType(), 1);
1520     Pred = ICmpInst::ICMP_ULT;
1521   }
1522   // Convert special-case: (A != 0) is the same as (0 u< A).
1523   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1524     std::swap(A, B);
1525     Pred = ICmpInst::ICMP_ULT;
1526   }
1527   if (Pred != ICmpInst::ICMP_ULT)
1528     return false;
1529 
1530   // Walk the users of a variable operand of a compare looking for a subtract or
1531   // add with that same operand. Also match the 2nd operand of the compare to
1532   // the add/sub, but that may be a negated constant operand of an add.
1533   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1534   BinaryOperator *Sub = nullptr;
1535   for (User *U : CmpVariableOperand->users()) {
1536     // A - B, A u< B --> usubo(A, B)
1537     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1538       Sub = cast<BinaryOperator>(U);
1539       break;
1540     }
1541 
1542     // A + (-C), A u< C (canonicalized form of (sub A, C))
1543     const APInt *CmpC, *AddC;
1544     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1545         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1546       Sub = cast<BinaryOperator>(U);
1547       break;
1548     }
1549   }
1550   if (!Sub)
1551     return false;
1552 
1553   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1554                                  TLI->getValueType(*DL, Sub->getType()),
1555                                  Sub->hasNUsesOrMore(2)))
1556     return false;
1557 
1558   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1559                                    Cmp, Intrinsic::usub_with_overflow))
1560     return false;
1561 
1562   // Reset callers - do not crash by iterating over a dead instruction.
1563   ModifiedDT = true;
1564   return true;
1565 }
1566 
1567 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1568 /// registers that must be created and coalesced. This is a clear win except on
1569 /// targets with multiple condition code registers (PowerPC), where it might
1570 /// lose; some adjustment may be wanted there.
1571 ///
1572 /// Return true if any changes are made.
1573 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1574   if (TLI.hasMultipleConditionRegisters())
1575     return false;
1576 
1577   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1578   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1579     return false;
1580 
1581   // Only insert a cmp in each block once.
1582   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1583 
1584   bool MadeChange = false;
1585   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1586        UI != E; ) {
1587     Use &TheUse = UI.getUse();
1588     Instruction *User = cast<Instruction>(*UI);
1589 
1590     // Preincrement use iterator so we don't invalidate it.
1591     ++UI;
1592 
1593     // Don't bother for PHI nodes.
1594     if (isa<PHINode>(User))
1595       continue;
1596 
1597     // Figure out which BB this cmp is used in.
1598     BasicBlock *UserBB = User->getParent();
1599     BasicBlock *DefBB = Cmp->getParent();
1600 
1601     // If this user is in the same block as the cmp, don't change the cmp.
1602     if (UserBB == DefBB) continue;
1603 
1604     // If we have already inserted a cmp into this block, use it.
1605     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1606 
1607     if (!InsertedCmp) {
1608       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1609       assert(InsertPt != UserBB->end());
1610       InsertedCmp =
1611           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1612                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1613                           &*InsertPt);
1614       // Propagate the debug info.
1615       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1616     }
1617 
1618     // Replace a use of the cmp with a use of the new cmp.
1619     TheUse = InsertedCmp;
1620     MadeChange = true;
1621     ++NumCmpUses;
1622   }
1623 
1624   // If we removed all uses, nuke the cmp.
1625   if (Cmp->use_empty()) {
1626     Cmp->eraseFromParent();
1627     MadeChange = true;
1628   }
1629 
1630   return MadeChange;
1631 }
1632 
1633 /// For pattern like:
1634 ///
1635 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1636 ///   ...
1637 /// DomBB:
1638 ///   ...
1639 ///   br DomCond, TrueBB, CmpBB
1640 /// CmpBB: (with DomBB being the single predecessor)
1641 ///   ...
1642 ///   Cmp = icmp eq CmpOp0, CmpOp1
1643 ///   ...
1644 ///
1645 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1646 /// different from lowering of icmp eq (PowerPC). This function try to convert
1647 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1648 /// After that, DomCond and Cmp can use the same comparison so reduce one
1649 /// comparison.
1650 ///
1651 /// Return true if any changes are made.
1652 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1653                                        const TargetLowering &TLI) {
1654   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1655     return false;
1656 
1657   ICmpInst::Predicate Pred = Cmp->getPredicate();
1658   if (Pred != ICmpInst::ICMP_EQ)
1659     return false;
1660 
1661   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1662   // icmp slt/sgt would introduce more redundant LLVM IR.
1663   for (User *U : Cmp->users()) {
1664     if (isa<BranchInst>(U))
1665       continue;
1666     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1667       continue;
1668     return false;
1669   }
1670 
1671   // This is a cheap/incomplete check for dominance - just match a single
1672   // predecessor with a conditional branch.
1673   BasicBlock *CmpBB = Cmp->getParent();
1674   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1675   if (!DomBB)
1676     return false;
1677 
1678   // We want to ensure that the only way control gets to the comparison of
1679   // interest is that a less/greater than comparison on the same operands is
1680   // false.
1681   Value *DomCond;
1682   BasicBlock *TrueBB, *FalseBB;
1683   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1684     return false;
1685   if (CmpBB != FalseBB)
1686     return false;
1687 
1688   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1689   ICmpInst::Predicate DomPred;
1690   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1691     return false;
1692   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1693     return false;
1694 
1695   // Convert the equality comparison to the opposite of the dominating
1696   // comparison and swap the direction for all branch/select users.
1697   // We have conceptually converted:
1698   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1699   // to
1700   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1701   // And similarly for branches.
1702   for (User *U : Cmp->users()) {
1703     if (auto *BI = dyn_cast<BranchInst>(U)) {
1704       assert(BI->isConditional() && "Must be conditional");
1705       BI->swapSuccessors();
1706       continue;
1707     }
1708     if (auto *SI = dyn_cast<SelectInst>(U)) {
1709       // Swap operands
1710       SI->swapValues();
1711       SI->swapProfMetadata();
1712       continue;
1713     }
1714     llvm_unreachable("Must be a branch or a select");
1715   }
1716   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1717   return true;
1718 }
1719 
1720 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1721   if (sinkCmpExpression(Cmp, *TLI))
1722     return true;
1723 
1724   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1725     return true;
1726 
1727   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1728     return true;
1729 
1730   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1731     return true;
1732 
1733   return false;
1734 }
1735 
1736 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1737 /// used in a compare to allow isel to generate better code for targets where
1738 /// this operation can be combined.
1739 ///
1740 /// Return true if any changes are made.
1741 static bool sinkAndCmp0Expression(Instruction *AndI,
1742                                   const TargetLowering &TLI,
1743                                   SetOfInstrs &InsertedInsts) {
1744   // Double-check that we're not trying to optimize an instruction that was
1745   // already optimized by some other part of this pass.
1746   assert(!InsertedInsts.count(AndI) &&
1747          "Attempting to optimize already optimized and instruction");
1748   (void) InsertedInsts;
1749 
1750   // Nothing to do for single use in same basic block.
1751   if (AndI->hasOneUse() &&
1752       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1753     return false;
1754 
1755   // Try to avoid cases where sinking/duplicating is likely to increase register
1756   // pressure.
1757   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1758       !isa<ConstantInt>(AndI->getOperand(1)) &&
1759       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1760     return false;
1761 
1762   for (auto *U : AndI->users()) {
1763     Instruction *User = cast<Instruction>(U);
1764 
1765     // Only sink 'and' feeding icmp with 0.
1766     if (!isa<ICmpInst>(User))
1767       return false;
1768 
1769     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1770     if (!CmpC || !CmpC->isZero())
1771       return false;
1772   }
1773 
1774   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1775     return false;
1776 
1777   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1778   LLVM_DEBUG(AndI->getParent()->dump());
1779 
1780   // Push the 'and' into the same block as the icmp 0.  There should only be
1781   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1782   // others, so we don't need to keep track of which BBs we insert into.
1783   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1784        UI != E; ) {
1785     Use &TheUse = UI.getUse();
1786     Instruction *User = cast<Instruction>(*UI);
1787 
1788     // Preincrement use iterator so we don't invalidate it.
1789     ++UI;
1790 
1791     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1792 
1793     // Keep the 'and' in the same place if the use is already in the same block.
1794     Instruction *InsertPt =
1795         User->getParent() == AndI->getParent() ? AndI : User;
1796     Instruction *InsertedAnd =
1797         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1798                                AndI->getOperand(1), "", InsertPt);
1799     // Propagate the debug info.
1800     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1801 
1802     // Replace a use of the 'and' with a use of the new 'and'.
1803     TheUse = InsertedAnd;
1804     ++NumAndUses;
1805     LLVM_DEBUG(User->getParent()->dump());
1806   }
1807 
1808   // We removed all uses, nuke the and.
1809   AndI->eraseFromParent();
1810   return true;
1811 }
1812 
1813 /// Check if the candidates could be combined with a shift instruction, which
1814 /// includes:
1815 /// 1. Truncate instruction
1816 /// 2. And instruction and the imm is a mask of the low bits:
1817 /// imm & (imm+1) == 0
1818 static bool isExtractBitsCandidateUse(Instruction *User) {
1819   if (!isa<TruncInst>(User)) {
1820     if (User->getOpcode() != Instruction::And ||
1821         !isa<ConstantInt>(User->getOperand(1)))
1822       return false;
1823 
1824     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1825 
1826     if ((Cimm & (Cimm + 1)).getBoolValue())
1827       return false;
1828   }
1829   return true;
1830 }
1831 
1832 /// Sink both shift and truncate instruction to the use of truncate's BB.
1833 static bool
1834 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1835                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1836                      const TargetLowering &TLI, const DataLayout &DL) {
1837   BasicBlock *UserBB = User->getParent();
1838   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1839   auto *TruncI = cast<TruncInst>(User);
1840   bool MadeChange = false;
1841 
1842   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1843                             TruncE = TruncI->user_end();
1844        TruncUI != TruncE;) {
1845 
1846     Use &TruncTheUse = TruncUI.getUse();
1847     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1848     // Preincrement use iterator so we don't invalidate it.
1849 
1850     ++TruncUI;
1851 
1852     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1853     if (!ISDOpcode)
1854       continue;
1855 
1856     // If the use is actually a legal node, there will not be an
1857     // implicit truncate.
1858     // FIXME: always querying the result type is just an
1859     // approximation; some nodes' legality is determined by the
1860     // operand or other means. There's no good way to find out though.
1861     if (TLI.isOperationLegalOrCustom(
1862             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1863       continue;
1864 
1865     // Don't bother for PHI nodes.
1866     if (isa<PHINode>(TruncUser))
1867       continue;
1868 
1869     BasicBlock *TruncUserBB = TruncUser->getParent();
1870 
1871     if (UserBB == TruncUserBB)
1872       continue;
1873 
1874     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1875     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1876 
1877     if (!InsertedShift && !InsertedTrunc) {
1878       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1879       assert(InsertPt != TruncUserBB->end());
1880       // Sink the shift
1881       if (ShiftI->getOpcode() == Instruction::AShr)
1882         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1883                                                    "", &*InsertPt);
1884       else
1885         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1886                                                    "", &*InsertPt);
1887       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1888 
1889       // Sink the trunc
1890       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1891       TruncInsertPt++;
1892       assert(TruncInsertPt != TruncUserBB->end());
1893 
1894       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1895                                        TruncI->getType(), "", &*TruncInsertPt);
1896       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1897 
1898       MadeChange = true;
1899 
1900       TruncTheUse = InsertedTrunc;
1901     }
1902   }
1903   return MadeChange;
1904 }
1905 
1906 /// Sink the shift *right* instruction into user blocks if the uses could
1907 /// potentially be combined with this shift instruction and generate BitExtract
1908 /// instruction. It will only be applied if the architecture supports BitExtract
1909 /// instruction. Here is an example:
1910 /// BB1:
1911 ///   %x.extract.shift = lshr i64 %arg1, 32
1912 /// BB2:
1913 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1914 /// ==>
1915 ///
1916 /// BB2:
1917 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1918 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1919 ///
1920 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1921 /// instruction.
1922 /// Return true if any changes are made.
1923 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1924                                 const TargetLowering &TLI,
1925                                 const DataLayout &DL) {
1926   BasicBlock *DefBB = ShiftI->getParent();
1927 
1928   /// Only insert instructions in each block once.
1929   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1930 
1931   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1932 
1933   bool MadeChange = false;
1934   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1935        UI != E;) {
1936     Use &TheUse = UI.getUse();
1937     Instruction *User = cast<Instruction>(*UI);
1938     // Preincrement use iterator so we don't invalidate it.
1939     ++UI;
1940 
1941     // Don't bother for PHI nodes.
1942     if (isa<PHINode>(User))
1943       continue;
1944 
1945     if (!isExtractBitsCandidateUse(User))
1946       continue;
1947 
1948     BasicBlock *UserBB = User->getParent();
1949 
1950     if (UserBB == DefBB) {
1951       // If the shift and truncate instruction are in the same BB. The use of
1952       // the truncate(TruncUse) may still introduce another truncate if not
1953       // legal. In this case, we would like to sink both shift and truncate
1954       // instruction to the BB of TruncUse.
1955       // for example:
1956       // BB1:
1957       // i64 shift.result = lshr i64 opnd, imm
1958       // trunc.result = trunc shift.result to i16
1959       //
1960       // BB2:
1961       //   ----> We will have an implicit truncate here if the architecture does
1962       //   not have i16 compare.
1963       // cmp i16 trunc.result, opnd2
1964       //
1965       if (isa<TruncInst>(User) && shiftIsLegal
1966           // If the type of the truncate is legal, no truncate will be
1967           // introduced in other basic blocks.
1968           &&
1969           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1970         MadeChange =
1971             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1972 
1973       continue;
1974     }
1975     // If we have already inserted a shift into this block, use it.
1976     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1977 
1978     if (!InsertedShift) {
1979       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1980       assert(InsertPt != UserBB->end());
1981 
1982       if (ShiftI->getOpcode() == Instruction::AShr)
1983         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1984                                                    "", &*InsertPt);
1985       else
1986         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1987                                                    "", &*InsertPt);
1988       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1989 
1990       MadeChange = true;
1991     }
1992 
1993     // Replace a use of the shift with a use of the new shift.
1994     TheUse = InsertedShift;
1995   }
1996 
1997   // If we removed all uses, or there are none, nuke the shift.
1998   if (ShiftI->use_empty()) {
1999     salvageDebugInfo(*ShiftI);
2000     ShiftI->eraseFromParent();
2001     MadeChange = true;
2002   }
2003 
2004   return MadeChange;
2005 }
2006 
2007 /// If counting leading or trailing zeros is an expensive operation and a zero
2008 /// input is defined, add a check for zero to avoid calling the intrinsic.
2009 ///
2010 /// We want to transform:
2011 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2012 ///
2013 /// into:
2014 ///   entry:
2015 ///     %cmpz = icmp eq i64 %A, 0
2016 ///     br i1 %cmpz, label %cond.end, label %cond.false
2017 ///   cond.false:
2018 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2019 ///     br label %cond.end
2020 ///   cond.end:
2021 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2022 ///
2023 /// If the transform is performed, return true and set ModifiedDT to true.
2024 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2025                                   const TargetLowering *TLI,
2026                                   const DataLayout *DL,
2027                                   bool &ModifiedDT) {
2028   // If a zero input is undefined, it doesn't make sense to despeculate that.
2029   if (match(CountZeros->getOperand(1), m_One()))
2030     return false;
2031 
2032   // If it's cheap to speculate, there's nothing to do.
2033   auto IntrinsicID = CountZeros->getIntrinsicID();
2034   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
2035       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
2036     return false;
2037 
2038   // Only handle legal scalar cases. Anything else requires too much work.
2039   Type *Ty = CountZeros->getType();
2040   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
2041   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2042     return false;
2043 
2044   // Bail if the value is never zero.
2045   if (llvm::isKnownNonZero(CountZeros->getOperand(0), *DL))
2046     return false;
2047 
2048   // The intrinsic will be sunk behind a compare against zero and branch.
2049   BasicBlock *StartBlock = CountZeros->getParent();
2050   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2051 
2052   // Create another block after the count zero intrinsic. A PHI will be added
2053   // in this block to select the result of the intrinsic or the bit-width
2054   // constant if the input to the intrinsic is zero.
2055   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
2056   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2057 
2058   // Set up a builder to create a compare, conditional branch, and PHI.
2059   IRBuilder<> Builder(CountZeros->getContext());
2060   Builder.SetInsertPoint(StartBlock->getTerminator());
2061   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2062 
2063   // Replace the unconditional branch that was created by the first split with
2064   // a compare against zero and a conditional branch.
2065   Value *Zero = Constant::getNullValue(Ty);
2066   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
2067   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2068   StartBlock->getTerminator()->eraseFromParent();
2069 
2070   // Create a PHI in the end block to select either the output of the intrinsic
2071   // or the bit width of the operand.
2072   Builder.SetInsertPoint(&EndBlock->front());
2073   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2074   CountZeros->replaceAllUsesWith(PN);
2075   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2076   PN->addIncoming(BitWidth, StartBlock);
2077   PN->addIncoming(CountZeros, CallBlock);
2078 
2079   // We are explicitly handling the zero case, so we can set the intrinsic's
2080   // undefined zero argument to 'true'. This will also prevent reprocessing the
2081   // intrinsic; we only despeculate when a zero input is defined.
2082   CountZeros->setArgOperand(1, Builder.getTrue());
2083   ModifiedDT = true;
2084   return true;
2085 }
2086 
2087 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2088   BasicBlock *BB = CI->getParent();
2089 
2090   // Lower inline assembly if we can.
2091   // If we found an inline asm expession, and if the target knows how to
2092   // lower it to normal LLVM code, do so now.
2093   if (CI->isInlineAsm()) {
2094     if (TLI->ExpandInlineAsm(CI)) {
2095       // Avoid invalidating the iterator.
2096       CurInstIterator = BB->begin();
2097       // Avoid processing instructions out of order, which could cause
2098       // reuse before a value is defined.
2099       SunkAddrs.clear();
2100       return true;
2101     }
2102     // Sink address computing for memory operands into the block.
2103     if (optimizeInlineAsmInst(CI))
2104       return true;
2105   }
2106 
2107   // Align the pointer arguments to this call if the target thinks it's a good
2108   // idea
2109   unsigned MinSize, PrefAlign;
2110   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2111     for (auto &Arg : CI->arg_operands()) {
2112       // We want to align both objects whose address is used directly and
2113       // objects whose address is used in casts and GEPs, though it only makes
2114       // sense for GEPs if the offset is a multiple of the desired alignment and
2115       // if size - offset meets the size threshold.
2116       if (!Arg->getType()->isPointerTy())
2117         continue;
2118       APInt Offset(DL->getIndexSizeInBits(
2119                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2120                    0);
2121       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2122       uint64_t Offset2 = Offset.getLimitedValue();
2123       if ((Offset2 & (PrefAlign-1)) != 0)
2124         continue;
2125       AllocaInst *AI;
2126       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2127           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2128         AI->setAlignment(Align(PrefAlign));
2129       // Global variables can only be aligned if they are defined in this
2130       // object (i.e. they are uniquely initialized in this object), and
2131       // over-aligning global variables that have an explicit section is
2132       // forbidden.
2133       GlobalVariable *GV;
2134       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2135           GV->getPointerAlignment(*DL) < PrefAlign &&
2136           DL->getTypeAllocSize(GV->getValueType()) >=
2137               MinSize + Offset2)
2138         GV->setAlignment(MaybeAlign(PrefAlign));
2139     }
2140     // If this is a memcpy (or similar) then we may be able to improve the
2141     // alignment
2142     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2143       Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2144       MaybeAlign MIDestAlign = MI->getDestAlign();
2145       if (!MIDestAlign || DestAlign > *MIDestAlign)
2146         MI->setDestAlignment(DestAlign);
2147       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2148         MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2149         Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2150         if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2151           MTI->setSourceAlignment(SrcAlign);
2152       }
2153     }
2154   }
2155 
2156   // If we have a cold call site, try to sink addressing computation into the
2157   // cold block.  This interacts with our handling for loads and stores to
2158   // ensure that we can fold all uses of a potential addressing computation
2159   // into their uses.  TODO: generalize this to work over profiling data
2160   if (CI->hasFnAttr(Attribute::Cold) &&
2161       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2162     for (auto &Arg : CI->arg_operands()) {
2163       if (!Arg->getType()->isPointerTy())
2164         continue;
2165       unsigned AS = Arg->getType()->getPointerAddressSpace();
2166       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2167     }
2168 
2169   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2170   if (II) {
2171     switch (II->getIntrinsicID()) {
2172     default: break;
2173     case Intrinsic::assume:
2174       llvm_unreachable("llvm.assume should have been removed already");
2175     case Intrinsic::experimental_widenable_condition: {
2176       // Give up on future widening oppurtunties so that we can fold away dead
2177       // paths and merge blocks before going into block-local instruction
2178       // selection.
2179       if (II->use_empty()) {
2180         II->eraseFromParent();
2181         return true;
2182       }
2183       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2184       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2185         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2186       });
2187       return true;
2188     }
2189     case Intrinsic::objectsize:
2190       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2191     case Intrinsic::is_constant:
2192       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2193     case Intrinsic::aarch64_stlxr:
2194     case Intrinsic::aarch64_stxr: {
2195       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2196       if (!ExtVal || !ExtVal->hasOneUse() ||
2197           ExtVal->getParent() == CI->getParent())
2198         return false;
2199       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2200       ExtVal->moveBefore(CI);
2201       // Mark this instruction as "inserted by CGP", so that other
2202       // optimizations don't touch it.
2203       InsertedInsts.insert(ExtVal);
2204       return true;
2205     }
2206 
2207     case Intrinsic::launder_invariant_group:
2208     case Intrinsic::strip_invariant_group: {
2209       Value *ArgVal = II->getArgOperand(0);
2210       auto it = LargeOffsetGEPMap.find(II);
2211       if (it != LargeOffsetGEPMap.end()) {
2212           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2213           // Make sure not to have to deal with iterator invalidation
2214           // after possibly adding ArgVal to LargeOffsetGEPMap.
2215           auto GEPs = std::move(it->second);
2216           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2217           LargeOffsetGEPMap.erase(II);
2218       }
2219 
2220       II->replaceAllUsesWith(ArgVal);
2221       II->eraseFromParent();
2222       return true;
2223     }
2224     case Intrinsic::cttz:
2225     case Intrinsic::ctlz:
2226       // If counting zeros is expensive, try to avoid it.
2227       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2228     case Intrinsic::fshl:
2229     case Intrinsic::fshr:
2230       return optimizeFunnelShift(II);
2231     case Intrinsic::dbg_value:
2232       return fixupDbgValue(II);
2233     case Intrinsic::vscale: {
2234       // If datalayout has no special restrictions on vector data layout,
2235       // replace `llvm.vscale` by an equivalent constant expression
2236       // to benefit from cheap constant propagation.
2237       Type *ScalableVectorTy =
2238           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2239       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2240         auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2241         auto *One = ConstantInt::getSigned(II->getType(), 1);
2242         auto *CGep =
2243             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2244         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2245         II->eraseFromParent();
2246         return true;
2247       }
2248       break;
2249     }
2250     case Intrinsic::masked_gather:
2251       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2252     case Intrinsic::masked_scatter:
2253       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2254     }
2255 
2256     SmallVector<Value *, 2> PtrOps;
2257     Type *AccessTy;
2258     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2259       while (!PtrOps.empty()) {
2260         Value *PtrVal = PtrOps.pop_back_val();
2261         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2262         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2263           return true;
2264       }
2265   }
2266 
2267   // From here on out we're working with named functions.
2268   if (!CI->getCalledFunction()) return false;
2269 
2270   // Lower all default uses of _chk calls.  This is very similar
2271   // to what InstCombineCalls does, but here we are only lowering calls
2272   // to fortified library functions (e.g. __memcpy_chk) that have the default
2273   // "don't know" as the objectsize.  Anything else should be left alone.
2274   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2275   IRBuilder<> Builder(CI);
2276   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2277     CI->replaceAllUsesWith(V);
2278     CI->eraseFromParent();
2279     return true;
2280   }
2281 
2282   return false;
2283 }
2284 
2285 /// Look for opportunities to duplicate return instructions to the predecessor
2286 /// to enable tail call optimizations. The case it is currently looking for is:
2287 /// @code
2288 /// bb0:
2289 ///   %tmp0 = tail call i32 @f0()
2290 ///   br label %return
2291 /// bb1:
2292 ///   %tmp1 = tail call i32 @f1()
2293 ///   br label %return
2294 /// bb2:
2295 ///   %tmp2 = tail call i32 @f2()
2296 ///   br label %return
2297 /// return:
2298 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2299 ///   ret i32 %retval
2300 /// @endcode
2301 ///
2302 /// =>
2303 ///
2304 /// @code
2305 /// bb0:
2306 ///   %tmp0 = tail call i32 @f0()
2307 ///   ret i32 %tmp0
2308 /// bb1:
2309 ///   %tmp1 = tail call i32 @f1()
2310 ///   ret i32 %tmp1
2311 /// bb2:
2312 ///   %tmp2 = tail call i32 @f2()
2313 ///   ret i32 %tmp2
2314 /// @endcode
2315 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2316   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2317   if (!RetI)
2318     return false;
2319 
2320   PHINode *PN = nullptr;
2321   ExtractValueInst *EVI = nullptr;
2322   BitCastInst *BCI = nullptr;
2323   Value *V = RetI->getReturnValue();
2324   if (V) {
2325     BCI = dyn_cast<BitCastInst>(V);
2326     if (BCI)
2327       V = BCI->getOperand(0);
2328 
2329     EVI = dyn_cast<ExtractValueInst>(V);
2330     if (EVI) {
2331       V = EVI->getOperand(0);
2332       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2333         return false;
2334     }
2335 
2336     PN = dyn_cast<PHINode>(V);
2337     if (!PN)
2338       return false;
2339   }
2340 
2341   if (PN && PN->getParent() != BB)
2342     return false;
2343 
2344   auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2345     const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2346     if (BC && BC->hasOneUse())
2347       Inst = BC->user_back();
2348 
2349     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2350       return II->getIntrinsicID() == Intrinsic::lifetime_end;
2351     return false;
2352   };
2353 
2354   // Make sure there are no instructions between the first instruction
2355   // and return.
2356   const Instruction *BI = BB->getFirstNonPHI();
2357   // Skip over debug and the bitcast.
2358   while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2359          isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2360     BI = BI->getNextNode();
2361   if (BI != RetI)
2362     return false;
2363 
2364   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2365   /// call.
2366   const Function *F = BB->getParent();
2367   SmallVector<BasicBlock*, 4> TailCallBBs;
2368   if (PN) {
2369     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2370       // Look through bitcasts.
2371       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2372       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2373       BasicBlock *PredBB = PN->getIncomingBlock(I);
2374       // Make sure the phi value is indeed produced by the tail call.
2375       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2376           TLI->mayBeEmittedAsTailCall(CI) &&
2377           attributesPermitTailCall(F, CI, RetI, *TLI))
2378         TailCallBBs.push_back(PredBB);
2379     }
2380   } else {
2381     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2382     for (BasicBlock *Pred : predecessors(BB)) {
2383       if (!VisitedBBs.insert(Pred).second)
2384         continue;
2385       if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2386         CallInst *CI = dyn_cast<CallInst>(I);
2387         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2388             attributesPermitTailCall(F, CI, RetI, *TLI))
2389           TailCallBBs.push_back(Pred);
2390       }
2391     }
2392   }
2393 
2394   bool Changed = false;
2395   for (auto const &TailCallBB : TailCallBBs) {
2396     // Make sure the call instruction is followed by an unconditional branch to
2397     // the return block.
2398     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2399     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2400       continue;
2401 
2402     // Duplicate the return into TailCallBB.
2403     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2404     assert(!VerifyBFIUpdates ||
2405            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2406     BFI->setBlockFreq(
2407         BB,
2408         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2409     ModifiedDT = Changed = true;
2410     ++NumRetsDup;
2411   }
2412 
2413   // If we eliminated all predecessors of the block, delete the block now.
2414   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2415     BB->eraseFromParent();
2416 
2417   return Changed;
2418 }
2419 
2420 //===----------------------------------------------------------------------===//
2421 // Memory Optimization
2422 //===----------------------------------------------------------------------===//
2423 
2424 namespace {
2425 
2426 /// This is an extended version of TargetLowering::AddrMode
2427 /// which holds actual Value*'s for register values.
2428 struct ExtAddrMode : public TargetLowering::AddrMode {
2429   Value *BaseReg = nullptr;
2430   Value *ScaledReg = nullptr;
2431   Value *OriginalValue = nullptr;
2432   bool InBounds = true;
2433 
2434   enum FieldName {
2435     NoField        = 0x00,
2436     BaseRegField   = 0x01,
2437     BaseGVField    = 0x02,
2438     BaseOffsField  = 0x04,
2439     ScaledRegField = 0x08,
2440     ScaleField     = 0x10,
2441     MultipleFields = 0xff
2442   };
2443 
2444 
2445   ExtAddrMode() = default;
2446 
2447   void print(raw_ostream &OS) const;
2448   void dump() const;
2449 
2450   FieldName compare(const ExtAddrMode &other) {
2451     // First check that the types are the same on each field, as differing types
2452     // is something we can't cope with later on.
2453     if (BaseReg && other.BaseReg &&
2454         BaseReg->getType() != other.BaseReg->getType())
2455       return MultipleFields;
2456     if (BaseGV && other.BaseGV &&
2457         BaseGV->getType() != other.BaseGV->getType())
2458       return MultipleFields;
2459     if (ScaledReg && other.ScaledReg &&
2460         ScaledReg->getType() != other.ScaledReg->getType())
2461       return MultipleFields;
2462 
2463     // Conservatively reject 'inbounds' mismatches.
2464     if (InBounds != other.InBounds)
2465       return MultipleFields;
2466 
2467     // Check each field to see if it differs.
2468     unsigned Result = NoField;
2469     if (BaseReg != other.BaseReg)
2470       Result |= BaseRegField;
2471     if (BaseGV != other.BaseGV)
2472       Result |= BaseGVField;
2473     if (BaseOffs != other.BaseOffs)
2474       Result |= BaseOffsField;
2475     if (ScaledReg != other.ScaledReg)
2476       Result |= ScaledRegField;
2477     // Don't count 0 as being a different scale, because that actually means
2478     // unscaled (which will already be counted by having no ScaledReg).
2479     if (Scale && other.Scale && Scale != other.Scale)
2480       Result |= ScaleField;
2481 
2482     if (countPopulation(Result) > 1)
2483       return MultipleFields;
2484     else
2485       return static_cast<FieldName>(Result);
2486   }
2487 
2488   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2489   // with no offset.
2490   bool isTrivial() {
2491     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2492     // trivial if at most one of these terms is nonzero, except that BaseGV and
2493     // BaseReg both being zero actually means a null pointer value, which we
2494     // consider to be 'non-zero' here.
2495     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2496   }
2497 
2498   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2499     switch (Field) {
2500     default:
2501       return nullptr;
2502     case BaseRegField:
2503       return BaseReg;
2504     case BaseGVField:
2505       return BaseGV;
2506     case ScaledRegField:
2507       return ScaledReg;
2508     case BaseOffsField:
2509       return ConstantInt::get(IntPtrTy, BaseOffs);
2510     }
2511   }
2512 
2513   void SetCombinedField(FieldName Field, Value *V,
2514                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2515     switch (Field) {
2516     default:
2517       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2518       break;
2519     case ExtAddrMode::BaseRegField:
2520       BaseReg = V;
2521       break;
2522     case ExtAddrMode::BaseGVField:
2523       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2524       // in the BaseReg field.
2525       assert(BaseReg == nullptr);
2526       BaseReg = V;
2527       BaseGV = nullptr;
2528       break;
2529     case ExtAddrMode::ScaledRegField:
2530       ScaledReg = V;
2531       // If we have a mix of scaled and unscaled addrmodes then we want scale
2532       // to be the scale and not zero.
2533       if (!Scale)
2534         for (const ExtAddrMode &AM : AddrModes)
2535           if (AM.Scale) {
2536             Scale = AM.Scale;
2537             break;
2538           }
2539       break;
2540     case ExtAddrMode::BaseOffsField:
2541       // The offset is no longer a constant, so it goes in ScaledReg with a
2542       // scale of 1.
2543       assert(ScaledReg == nullptr);
2544       ScaledReg = V;
2545       Scale = 1;
2546       BaseOffs = 0;
2547       break;
2548     }
2549   }
2550 };
2551 
2552 } // end anonymous namespace
2553 
2554 #ifndef NDEBUG
2555 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2556   AM.print(OS);
2557   return OS;
2558 }
2559 #endif
2560 
2561 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2562 void ExtAddrMode::print(raw_ostream &OS) const {
2563   bool NeedPlus = false;
2564   OS << "[";
2565   if (InBounds)
2566     OS << "inbounds ";
2567   if (BaseGV) {
2568     OS << (NeedPlus ? " + " : "")
2569        << "GV:";
2570     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2571     NeedPlus = true;
2572   }
2573 
2574   if (BaseOffs) {
2575     OS << (NeedPlus ? " + " : "")
2576        << BaseOffs;
2577     NeedPlus = true;
2578   }
2579 
2580   if (BaseReg) {
2581     OS << (NeedPlus ? " + " : "")
2582        << "Base:";
2583     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2584     NeedPlus = true;
2585   }
2586   if (Scale) {
2587     OS << (NeedPlus ? " + " : "")
2588        << Scale << "*";
2589     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2590   }
2591 
2592   OS << ']';
2593 }
2594 
2595 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2596   print(dbgs());
2597   dbgs() << '\n';
2598 }
2599 #endif
2600 
2601 namespace {
2602 
2603 /// This class provides transaction based operation on the IR.
2604 /// Every change made through this class is recorded in the internal state and
2605 /// can be undone (rollback) until commit is called.
2606 /// CGP does not check if instructions could be speculatively executed when
2607 /// moved. Preserving the original location would pessimize the debugging
2608 /// experience, as well as negatively impact the quality of sample PGO.
2609 class TypePromotionTransaction {
2610   /// This represents the common interface of the individual transaction.
2611   /// Each class implements the logic for doing one specific modification on
2612   /// the IR via the TypePromotionTransaction.
2613   class TypePromotionAction {
2614   protected:
2615     /// The Instruction modified.
2616     Instruction *Inst;
2617 
2618   public:
2619     /// Constructor of the action.
2620     /// The constructor performs the related action on the IR.
2621     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2622 
2623     virtual ~TypePromotionAction() = default;
2624 
2625     /// Undo the modification done by this action.
2626     /// When this method is called, the IR must be in the same state as it was
2627     /// before this action was applied.
2628     /// \pre Undoing the action works if and only if the IR is in the exact same
2629     /// state as it was directly after this action was applied.
2630     virtual void undo() = 0;
2631 
2632     /// Advocate every change made by this action.
2633     /// When the results on the IR of the action are to be kept, it is important
2634     /// to call this function, otherwise hidden information may be kept forever.
2635     virtual void commit() {
2636       // Nothing to be done, this action is not doing anything.
2637     }
2638   };
2639 
2640   /// Utility to remember the position of an instruction.
2641   class InsertionHandler {
2642     /// Position of an instruction.
2643     /// Either an instruction:
2644     /// - Is the first in a basic block: BB is used.
2645     /// - Has a previous instruction: PrevInst is used.
2646     union {
2647       Instruction *PrevInst;
2648       BasicBlock *BB;
2649     } Point;
2650 
2651     /// Remember whether or not the instruction had a previous instruction.
2652     bool HasPrevInstruction;
2653 
2654   public:
2655     /// Record the position of \p Inst.
2656     InsertionHandler(Instruction *Inst) {
2657       BasicBlock::iterator It = Inst->getIterator();
2658       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2659       if (HasPrevInstruction)
2660         Point.PrevInst = &*--It;
2661       else
2662         Point.BB = Inst->getParent();
2663     }
2664 
2665     /// Insert \p Inst at the recorded position.
2666     void insert(Instruction *Inst) {
2667       if (HasPrevInstruction) {
2668         if (Inst->getParent())
2669           Inst->removeFromParent();
2670         Inst->insertAfter(Point.PrevInst);
2671       } else {
2672         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2673         if (Inst->getParent())
2674           Inst->moveBefore(Position);
2675         else
2676           Inst->insertBefore(Position);
2677       }
2678     }
2679   };
2680 
2681   /// Move an instruction before another.
2682   class InstructionMoveBefore : public TypePromotionAction {
2683     /// Original position of the instruction.
2684     InsertionHandler Position;
2685 
2686   public:
2687     /// Move \p Inst before \p Before.
2688     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2689         : TypePromotionAction(Inst), Position(Inst) {
2690       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2691                         << "\n");
2692       Inst->moveBefore(Before);
2693     }
2694 
2695     /// Move the instruction back to its original position.
2696     void undo() override {
2697       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2698       Position.insert(Inst);
2699     }
2700   };
2701 
2702   /// Set the operand of an instruction with a new value.
2703   class OperandSetter : public TypePromotionAction {
2704     /// Original operand of the instruction.
2705     Value *Origin;
2706 
2707     /// Index of the modified instruction.
2708     unsigned Idx;
2709 
2710   public:
2711     /// Set \p Idx operand of \p Inst with \p NewVal.
2712     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2713         : TypePromotionAction(Inst), Idx(Idx) {
2714       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2715                         << "for:" << *Inst << "\n"
2716                         << "with:" << *NewVal << "\n");
2717       Origin = Inst->getOperand(Idx);
2718       Inst->setOperand(Idx, NewVal);
2719     }
2720 
2721     /// Restore the original value of the instruction.
2722     void undo() override {
2723       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2724                         << "for: " << *Inst << "\n"
2725                         << "with: " << *Origin << "\n");
2726       Inst->setOperand(Idx, Origin);
2727     }
2728   };
2729 
2730   /// Hide the operands of an instruction.
2731   /// Do as if this instruction was not using any of its operands.
2732   class OperandsHider : public TypePromotionAction {
2733     /// The list of original operands.
2734     SmallVector<Value *, 4> OriginalValues;
2735 
2736   public:
2737     /// Remove \p Inst from the uses of the operands of \p Inst.
2738     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2739       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2740       unsigned NumOpnds = Inst->getNumOperands();
2741       OriginalValues.reserve(NumOpnds);
2742       for (unsigned It = 0; It < NumOpnds; ++It) {
2743         // Save the current operand.
2744         Value *Val = Inst->getOperand(It);
2745         OriginalValues.push_back(Val);
2746         // Set a dummy one.
2747         // We could use OperandSetter here, but that would imply an overhead
2748         // that we are not willing to pay.
2749         Inst->setOperand(It, UndefValue::get(Val->getType()));
2750       }
2751     }
2752 
2753     /// Restore the original list of uses.
2754     void undo() override {
2755       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2756       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2757         Inst->setOperand(It, OriginalValues[It]);
2758     }
2759   };
2760 
2761   /// Build a truncate instruction.
2762   class TruncBuilder : public TypePromotionAction {
2763     Value *Val;
2764 
2765   public:
2766     /// Build a truncate instruction of \p Opnd producing a \p Ty
2767     /// result.
2768     /// trunc Opnd to Ty.
2769     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2770       IRBuilder<> Builder(Opnd);
2771       Builder.SetCurrentDebugLocation(DebugLoc());
2772       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2773       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2774     }
2775 
2776     /// Get the built value.
2777     Value *getBuiltValue() { return Val; }
2778 
2779     /// Remove the built instruction.
2780     void undo() override {
2781       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2782       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2783         IVal->eraseFromParent();
2784     }
2785   };
2786 
2787   /// Build a sign extension instruction.
2788   class SExtBuilder : public TypePromotionAction {
2789     Value *Val;
2790 
2791   public:
2792     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2793     /// result.
2794     /// sext Opnd to Ty.
2795     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2796         : TypePromotionAction(InsertPt) {
2797       IRBuilder<> Builder(InsertPt);
2798       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2799       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2800     }
2801 
2802     /// Get the built value.
2803     Value *getBuiltValue() { return Val; }
2804 
2805     /// Remove the built instruction.
2806     void undo() override {
2807       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2808       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2809         IVal->eraseFromParent();
2810     }
2811   };
2812 
2813   /// Build a zero extension instruction.
2814   class ZExtBuilder : public TypePromotionAction {
2815     Value *Val;
2816 
2817   public:
2818     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2819     /// result.
2820     /// zext Opnd to Ty.
2821     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2822         : TypePromotionAction(InsertPt) {
2823       IRBuilder<> Builder(InsertPt);
2824       Builder.SetCurrentDebugLocation(DebugLoc());
2825       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2826       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2827     }
2828 
2829     /// Get the built value.
2830     Value *getBuiltValue() { return Val; }
2831 
2832     /// Remove the built instruction.
2833     void undo() override {
2834       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2835       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2836         IVal->eraseFromParent();
2837     }
2838   };
2839 
2840   /// Mutate an instruction to another type.
2841   class TypeMutator : public TypePromotionAction {
2842     /// Record the original type.
2843     Type *OrigTy;
2844 
2845   public:
2846     /// Mutate the type of \p Inst into \p NewTy.
2847     TypeMutator(Instruction *Inst, Type *NewTy)
2848         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2849       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2850                         << "\n");
2851       Inst->mutateType(NewTy);
2852     }
2853 
2854     /// Mutate the instruction back to its original type.
2855     void undo() override {
2856       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2857                         << "\n");
2858       Inst->mutateType(OrigTy);
2859     }
2860   };
2861 
2862   /// Replace the uses of an instruction by another instruction.
2863   class UsesReplacer : public TypePromotionAction {
2864     /// Helper structure to keep track of the replaced uses.
2865     struct InstructionAndIdx {
2866       /// The instruction using the instruction.
2867       Instruction *Inst;
2868 
2869       /// The index where this instruction is used for Inst.
2870       unsigned Idx;
2871 
2872       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2873           : Inst(Inst), Idx(Idx) {}
2874     };
2875 
2876     /// Keep track of the original uses (pair Instruction, Index).
2877     SmallVector<InstructionAndIdx, 4> OriginalUses;
2878     /// Keep track of the debug users.
2879     SmallVector<DbgValueInst *, 1> DbgValues;
2880 
2881     /// Keep track of the new value so that we can undo it by replacing
2882     /// instances of the new value with the original value.
2883     Value *New;
2884 
2885     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2886 
2887   public:
2888     /// Replace all the use of \p Inst by \p New.
2889     UsesReplacer(Instruction *Inst, Value *New)
2890         : TypePromotionAction(Inst), New(New) {
2891       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2892                         << "\n");
2893       // Record the original uses.
2894       for (Use &U : Inst->uses()) {
2895         Instruction *UserI = cast<Instruction>(U.getUser());
2896         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2897       }
2898       // Record the debug uses separately. They are not in the instruction's
2899       // use list, but they are replaced by RAUW.
2900       findDbgValues(DbgValues, Inst);
2901 
2902       // Now, we can replace the uses.
2903       Inst->replaceAllUsesWith(New);
2904     }
2905 
2906     /// Reassign the original uses of Inst to Inst.
2907     void undo() override {
2908       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2909       for (InstructionAndIdx &Use : OriginalUses)
2910         Use.Inst->setOperand(Use.Idx, Inst);
2911       // RAUW has replaced all original uses with references to the new value,
2912       // including the debug uses. Since we are undoing the replacements,
2913       // the original debug uses must also be reinstated to maintain the
2914       // correctness and utility of debug value instructions.
2915       for (auto *DVI : DbgValues)
2916         DVI->replaceVariableLocationOp(New, Inst);
2917     }
2918   };
2919 
2920   /// Remove an instruction from the IR.
2921   class InstructionRemover : public TypePromotionAction {
2922     /// Original position of the instruction.
2923     InsertionHandler Inserter;
2924 
2925     /// Helper structure to hide all the link to the instruction. In other
2926     /// words, this helps to do as if the instruction was removed.
2927     OperandsHider Hider;
2928 
2929     /// Keep track of the uses replaced, if any.
2930     UsesReplacer *Replacer = nullptr;
2931 
2932     /// Keep track of instructions removed.
2933     SetOfInstrs &RemovedInsts;
2934 
2935   public:
2936     /// Remove all reference of \p Inst and optionally replace all its
2937     /// uses with New.
2938     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2939     /// \pre If !Inst->use_empty(), then New != nullptr
2940     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2941                        Value *New = nullptr)
2942         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2943           RemovedInsts(RemovedInsts) {
2944       if (New)
2945         Replacer = new UsesReplacer(Inst, New);
2946       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2947       RemovedInsts.insert(Inst);
2948       /// The instructions removed here will be freed after completing
2949       /// optimizeBlock() for all blocks as we need to keep track of the
2950       /// removed instructions during promotion.
2951       Inst->removeFromParent();
2952     }
2953 
2954     ~InstructionRemover() override { delete Replacer; }
2955 
2956     /// Resurrect the instruction and reassign it to the proper uses if
2957     /// new value was provided when build this action.
2958     void undo() override {
2959       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2960       Inserter.insert(Inst);
2961       if (Replacer)
2962         Replacer->undo();
2963       Hider.undo();
2964       RemovedInsts.erase(Inst);
2965     }
2966   };
2967 
2968 public:
2969   /// Restoration point.
2970   /// The restoration point is a pointer to an action instead of an iterator
2971   /// because the iterator may be invalidated but not the pointer.
2972   using ConstRestorationPt = const TypePromotionAction *;
2973 
2974   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2975       : RemovedInsts(RemovedInsts) {}
2976 
2977   /// Advocate every changes made in that transaction. Return true if any change
2978   /// happen.
2979   bool commit();
2980 
2981   /// Undo all the changes made after the given point.
2982   void rollback(ConstRestorationPt Point);
2983 
2984   /// Get the current restoration point.
2985   ConstRestorationPt getRestorationPoint() const;
2986 
2987   /// \name API for IR modification with state keeping to support rollback.
2988   /// @{
2989   /// Same as Instruction::setOperand.
2990   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2991 
2992   /// Same as Instruction::eraseFromParent.
2993   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2994 
2995   /// Same as Value::replaceAllUsesWith.
2996   void replaceAllUsesWith(Instruction *Inst, Value *New);
2997 
2998   /// Same as Value::mutateType.
2999   void mutateType(Instruction *Inst, Type *NewTy);
3000 
3001   /// Same as IRBuilder::createTrunc.
3002   Value *createTrunc(Instruction *Opnd, Type *Ty);
3003 
3004   /// Same as IRBuilder::createSExt.
3005   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3006 
3007   /// Same as IRBuilder::createZExt.
3008   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3009 
3010   /// Same as Instruction::moveBefore.
3011   void moveBefore(Instruction *Inst, Instruction *Before);
3012   /// @}
3013 
3014 private:
3015   /// The ordered list of actions made so far.
3016   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3017 
3018   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3019 
3020   SetOfInstrs &RemovedInsts;
3021 };
3022 
3023 } // end anonymous namespace
3024 
3025 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3026                                           Value *NewVal) {
3027   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3028       Inst, Idx, NewVal));
3029 }
3030 
3031 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3032                                                 Value *NewVal) {
3033   Actions.push_back(
3034       std::make_unique<TypePromotionTransaction::InstructionRemover>(
3035           Inst, RemovedInsts, NewVal));
3036 }
3037 
3038 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3039                                                   Value *New) {
3040   Actions.push_back(
3041       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3042 }
3043 
3044 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3045   Actions.push_back(
3046       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3047 }
3048 
3049 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3050                                              Type *Ty) {
3051   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3052   Value *Val = Ptr->getBuiltValue();
3053   Actions.push_back(std::move(Ptr));
3054   return Val;
3055 }
3056 
3057 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3058                                             Value *Opnd, Type *Ty) {
3059   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3060   Value *Val = Ptr->getBuiltValue();
3061   Actions.push_back(std::move(Ptr));
3062   return Val;
3063 }
3064 
3065 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3066                                             Value *Opnd, Type *Ty) {
3067   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3068   Value *Val = Ptr->getBuiltValue();
3069   Actions.push_back(std::move(Ptr));
3070   return Val;
3071 }
3072 
3073 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3074                                           Instruction *Before) {
3075   Actions.push_back(
3076       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3077           Inst, Before));
3078 }
3079 
3080 TypePromotionTransaction::ConstRestorationPt
3081 TypePromotionTransaction::getRestorationPoint() const {
3082   return !Actions.empty() ? Actions.back().get() : nullptr;
3083 }
3084 
3085 bool TypePromotionTransaction::commit() {
3086   for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3087     Action->commit();
3088   bool Modified = !Actions.empty();
3089   Actions.clear();
3090   return Modified;
3091 }
3092 
3093 void TypePromotionTransaction::rollback(
3094     TypePromotionTransaction::ConstRestorationPt Point) {
3095   while (!Actions.empty() && Point != Actions.back().get()) {
3096     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3097     Curr->undo();
3098   }
3099 }
3100 
3101 namespace {
3102 
3103 /// A helper class for matching addressing modes.
3104 ///
3105 /// This encapsulates the logic for matching the target-legal addressing modes.
3106 class AddressingModeMatcher {
3107   SmallVectorImpl<Instruction*> &AddrModeInsts;
3108   const TargetLowering &TLI;
3109   const TargetRegisterInfo &TRI;
3110   const DataLayout &DL;
3111   const LoopInfo &LI;
3112   const std::function<const DominatorTree &()> getDTFn;
3113 
3114   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3115   /// the memory instruction that we're computing this address for.
3116   Type *AccessTy;
3117   unsigned AddrSpace;
3118   Instruction *MemoryInst;
3119 
3120   /// This is the addressing mode that we're building up. This is
3121   /// part of the return value of this addressing mode matching stuff.
3122   ExtAddrMode &AddrMode;
3123 
3124   /// The instructions inserted by other CodeGenPrepare optimizations.
3125   const SetOfInstrs &InsertedInsts;
3126 
3127   /// A map from the instructions to their type before promotion.
3128   InstrToOrigTy &PromotedInsts;
3129 
3130   /// The ongoing transaction where every action should be registered.
3131   TypePromotionTransaction &TPT;
3132 
3133   // A GEP which has too large offset to be folded into the addressing mode.
3134   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3135 
3136   /// This is set to true when we should not do profitability checks.
3137   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3138   bool IgnoreProfitability;
3139 
3140   /// True if we are optimizing for size.
3141   bool OptSize;
3142 
3143   ProfileSummaryInfo *PSI;
3144   BlockFrequencyInfo *BFI;
3145 
3146   AddressingModeMatcher(
3147       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3148       const TargetRegisterInfo &TRI, const LoopInfo &LI,
3149       const std::function<const DominatorTree &()> getDTFn,
3150       Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM,
3151       const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3152       TypePromotionTransaction &TPT,
3153       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3154       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3155       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3156         DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3157         AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3158         InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3159         LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3160     IgnoreProfitability = false;
3161   }
3162 
3163 public:
3164   /// Find the maximal addressing mode that a load/store of V can fold,
3165   /// give an access type of AccessTy.  This returns a list of involved
3166   /// instructions in AddrModeInsts.
3167   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3168   /// optimizations.
3169   /// \p PromotedInsts maps the instructions to their type before promotion.
3170   /// \p The ongoing transaction where every action should be registered.
3171   static ExtAddrMode
3172   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3173         SmallVectorImpl<Instruction *> &AddrModeInsts,
3174         const TargetLowering &TLI, const LoopInfo &LI,
3175         const std::function<const DominatorTree &()> getDTFn,
3176         const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3177         InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3178         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3179         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3180     ExtAddrMode Result;
3181 
3182     bool Success = AddressingModeMatcher(
3183         AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result,
3184         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
3185         BFI).matchAddr(V, 0);
3186     (void)Success; assert(Success && "Couldn't select *anything*?");
3187     return Result;
3188   }
3189 
3190 private:
3191   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3192   bool matchAddr(Value *Addr, unsigned Depth);
3193   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3194                           bool *MovedAway = nullptr);
3195   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3196                                             ExtAddrMode &AMBefore,
3197                                             ExtAddrMode &AMAfter);
3198   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3199   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3200                              Value *PromotedOperand) const;
3201 };
3202 
3203 class PhiNodeSet;
3204 
3205 /// An iterator for PhiNodeSet.
3206 class PhiNodeSetIterator {
3207   PhiNodeSet * const Set;
3208   size_t CurrentIndex = 0;
3209 
3210 public:
3211   /// The constructor. Start should point to either a valid element, or be equal
3212   /// to the size of the underlying SmallVector of the PhiNodeSet.
3213   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3214   PHINode * operator*() const;
3215   PhiNodeSetIterator& operator++();
3216   bool operator==(const PhiNodeSetIterator &RHS) const;
3217   bool operator!=(const PhiNodeSetIterator &RHS) const;
3218 };
3219 
3220 /// Keeps a set of PHINodes.
3221 ///
3222 /// This is a minimal set implementation for a specific use case:
3223 /// It is very fast when there are very few elements, but also provides good
3224 /// performance when there are many. It is similar to SmallPtrSet, but also
3225 /// provides iteration by insertion order, which is deterministic and stable
3226 /// across runs. It is also similar to SmallSetVector, but provides removing
3227 /// elements in O(1) time. This is achieved by not actually removing the element
3228 /// from the underlying vector, so comes at the cost of using more memory, but
3229 /// that is fine, since PhiNodeSets are used as short lived objects.
3230 class PhiNodeSet {
3231   friend class PhiNodeSetIterator;
3232 
3233   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3234   using iterator =  PhiNodeSetIterator;
3235 
3236   /// Keeps the elements in the order of their insertion in the underlying
3237   /// vector. To achieve constant time removal, it never deletes any element.
3238   SmallVector<PHINode *, 32> NodeList;
3239 
3240   /// Keeps the elements in the underlying set implementation. This (and not the
3241   /// NodeList defined above) is the source of truth on whether an element
3242   /// is actually in the collection.
3243   MapType NodeMap;
3244 
3245   /// Points to the first valid (not deleted) element when the set is not empty
3246   /// and the value is not zero. Equals to the size of the underlying vector
3247   /// when the set is empty. When the value is 0, as in the beginning, the
3248   /// first element may or may not be valid.
3249   size_t FirstValidElement = 0;
3250 
3251 public:
3252   /// Inserts a new element to the collection.
3253   /// \returns true if the element is actually added, i.e. was not in the
3254   /// collection before the operation.
3255   bool insert(PHINode *Ptr) {
3256     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3257       NodeList.push_back(Ptr);
3258       return true;
3259     }
3260     return false;
3261   }
3262 
3263   /// Removes the element from the collection.
3264   /// \returns whether the element is actually removed, i.e. was in the
3265   /// collection before the operation.
3266   bool erase(PHINode *Ptr) {
3267     if (NodeMap.erase(Ptr)) {
3268       SkipRemovedElements(FirstValidElement);
3269       return true;
3270     }
3271     return false;
3272   }
3273 
3274   /// Removes all elements and clears the collection.
3275   void clear() {
3276     NodeMap.clear();
3277     NodeList.clear();
3278     FirstValidElement = 0;
3279   }
3280 
3281   /// \returns an iterator that will iterate the elements in the order of
3282   /// insertion.
3283   iterator begin() {
3284     if (FirstValidElement == 0)
3285       SkipRemovedElements(FirstValidElement);
3286     return PhiNodeSetIterator(this, FirstValidElement);
3287   }
3288 
3289   /// \returns an iterator that points to the end of the collection.
3290   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3291 
3292   /// Returns the number of elements in the collection.
3293   size_t size() const {
3294     return NodeMap.size();
3295   }
3296 
3297   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3298   size_t count(PHINode *Ptr) const {
3299     return NodeMap.count(Ptr);
3300   }
3301 
3302 private:
3303   /// Updates the CurrentIndex so that it will point to a valid element.
3304   ///
3305   /// If the element of NodeList at CurrentIndex is valid, it does not
3306   /// change it. If there are no more valid elements, it updates CurrentIndex
3307   /// to point to the end of the NodeList.
3308   void SkipRemovedElements(size_t &CurrentIndex) {
3309     while (CurrentIndex < NodeList.size()) {
3310       auto it = NodeMap.find(NodeList[CurrentIndex]);
3311       // If the element has been deleted and added again later, NodeMap will
3312       // point to a different index, so CurrentIndex will still be invalid.
3313       if (it != NodeMap.end() && it->second == CurrentIndex)
3314         break;
3315       ++CurrentIndex;
3316     }
3317   }
3318 };
3319 
3320 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3321     : Set(Set), CurrentIndex(Start) {}
3322 
3323 PHINode * PhiNodeSetIterator::operator*() const {
3324   assert(CurrentIndex < Set->NodeList.size() &&
3325          "PhiNodeSet access out of range");
3326   return Set->NodeList[CurrentIndex];
3327 }
3328 
3329 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3330   assert(CurrentIndex < Set->NodeList.size() &&
3331          "PhiNodeSet access out of range");
3332   ++CurrentIndex;
3333   Set->SkipRemovedElements(CurrentIndex);
3334   return *this;
3335 }
3336 
3337 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3338   return CurrentIndex == RHS.CurrentIndex;
3339 }
3340 
3341 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3342   return !((*this) == RHS);
3343 }
3344 
3345 /// Keep track of simplification of Phi nodes.
3346 /// Accept the set of all phi nodes and erase phi node from this set
3347 /// if it is simplified.
3348 class SimplificationTracker {
3349   DenseMap<Value *, Value *> Storage;
3350   const SimplifyQuery &SQ;
3351   // Tracks newly created Phi nodes. The elements are iterated by insertion
3352   // order.
3353   PhiNodeSet AllPhiNodes;
3354   // Tracks newly created Select nodes.
3355   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3356 
3357 public:
3358   SimplificationTracker(const SimplifyQuery &sq)
3359       : SQ(sq) {}
3360 
3361   Value *Get(Value *V) {
3362     do {
3363       auto SV = Storage.find(V);
3364       if (SV == Storage.end())
3365         return V;
3366       V = SV->second;
3367     } while (true);
3368   }
3369 
3370   Value *Simplify(Value *Val) {
3371     SmallVector<Value *, 32> WorkList;
3372     SmallPtrSet<Value *, 32> Visited;
3373     WorkList.push_back(Val);
3374     while (!WorkList.empty()) {
3375       auto *P = WorkList.pop_back_val();
3376       if (!Visited.insert(P).second)
3377         continue;
3378       if (auto *PI = dyn_cast<Instruction>(P))
3379         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3380           for (auto *U : PI->users())
3381             WorkList.push_back(cast<Value>(U));
3382           Put(PI, V);
3383           PI->replaceAllUsesWith(V);
3384           if (auto *PHI = dyn_cast<PHINode>(PI))
3385             AllPhiNodes.erase(PHI);
3386           if (auto *Select = dyn_cast<SelectInst>(PI))
3387             AllSelectNodes.erase(Select);
3388           PI->eraseFromParent();
3389         }
3390     }
3391     return Get(Val);
3392   }
3393 
3394   void Put(Value *From, Value *To) {
3395     Storage.insert({ From, To });
3396   }
3397 
3398   void ReplacePhi(PHINode *From, PHINode *To) {
3399     Value* OldReplacement = Get(From);
3400     while (OldReplacement != From) {
3401       From = To;
3402       To = dyn_cast<PHINode>(OldReplacement);
3403       OldReplacement = Get(From);
3404     }
3405     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3406     Put(From, To);
3407     From->replaceAllUsesWith(To);
3408     AllPhiNodes.erase(From);
3409     From->eraseFromParent();
3410   }
3411 
3412   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3413 
3414   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3415 
3416   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3417 
3418   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3419 
3420   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3421 
3422   void destroyNewNodes(Type *CommonType) {
3423     // For safe erasing, replace the uses with dummy value first.
3424     auto *Dummy = UndefValue::get(CommonType);
3425     for (auto *I : AllPhiNodes) {
3426       I->replaceAllUsesWith(Dummy);
3427       I->eraseFromParent();
3428     }
3429     AllPhiNodes.clear();
3430     for (auto *I : AllSelectNodes) {
3431       I->replaceAllUsesWith(Dummy);
3432       I->eraseFromParent();
3433     }
3434     AllSelectNodes.clear();
3435   }
3436 };
3437 
3438 /// A helper class for combining addressing modes.
3439 class AddressingModeCombiner {
3440   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3441   typedef std::pair<PHINode *, PHINode *> PHIPair;
3442 
3443 private:
3444   /// The addressing modes we've collected.
3445   SmallVector<ExtAddrMode, 16> AddrModes;
3446 
3447   /// The field in which the AddrModes differ, when we have more than one.
3448   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3449 
3450   /// Are the AddrModes that we have all just equal to their original values?
3451   bool AllAddrModesTrivial = true;
3452 
3453   /// Common Type for all different fields in addressing modes.
3454   Type *CommonType;
3455 
3456   /// SimplifyQuery for simplifyInstruction utility.
3457   const SimplifyQuery &SQ;
3458 
3459   /// Original Address.
3460   Value *Original;
3461 
3462 public:
3463   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3464       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3465 
3466   /// Get the combined AddrMode
3467   const ExtAddrMode &getAddrMode() const {
3468     return AddrModes[0];
3469   }
3470 
3471   /// Add a new AddrMode if it's compatible with the AddrModes we already
3472   /// have.
3473   /// \return True iff we succeeded in doing so.
3474   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3475     // Take note of if we have any non-trivial AddrModes, as we need to detect
3476     // when all AddrModes are trivial as then we would introduce a phi or select
3477     // which just duplicates what's already there.
3478     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3479 
3480     // If this is the first addrmode then everything is fine.
3481     if (AddrModes.empty()) {
3482       AddrModes.emplace_back(NewAddrMode);
3483       return true;
3484     }
3485 
3486     // Figure out how different this is from the other address modes, which we
3487     // can do just by comparing against the first one given that we only care
3488     // about the cumulative difference.
3489     ExtAddrMode::FieldName ThisDifferentField =
3490       AddrModes[0].compare(NewAddrMode);
3491     if (DifferentField == ExtAddrMode::NoField)
3492       DifferentField = ThisDifferentField;
3493     else if (DifferentField != ThisDifferentField)
3494       DifferentField = ExtAddrMode::MultipleFields;
3495 
3496     // If NewAddrMode differs in more than one dimension we cannot handle it.
3497     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3498 
3499     // If Scale Field is different then we reject.
3500     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3501 
3502     // We also must reject the case when base offset is different and
3503     // scale reg is not null, we cannot handle this case due to merge of
3504     // different offsets will be used as ScaleReg.
3505     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3506                               !NewAddrMode.ScaledReg);
3507 
3508     // We also must reject the case when GV is different and BaseReg installed
3509     // due to we want to use base reg as a merge of GV values.
3510     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3511                               !NewAddrMode.HasBaseReg);
3512 
3513     // Even if NewAddMode is the same we still need to collect it due to
3514     // original value is different. And later we will need all original values
3515     // as anchors during finding the common Phi node.
3516     if (CanHandle)
3517       AddrModes.emplace_back(NewAddrMode);
3518     else
3519       AddrModes.clear();
3520 
3521     return CanHandle;
3522   }
3523 
3524   /// Combine the addressing modes we've collected into a single
3525   /// addressing mode.
3526   /// \return True iff we successfully combined them or we only had one so
3527   /// didn't need to combine them anyway.
3528   bool combineAddrModes() {
3529     // If we have no AddrModes then they can't be combined.
3530     if (AddrModes.size() == 0)
3531       return false;
3532 
3533     // A single AddrMode can trivially be combined.
3534     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3535       return true;
3536 
3537     // If the AddrModes we collected are all just equal to the value they are
3538     // derived from then combining them wouldn't do anything useful.
3539     if (AllAddrModesTrivial)
3540       return false;
3541 
3542     if (!addrModeCombiningAllowed())
3543       return false;
3544 
3545     // Build a map between <original value, basic block where we saw it> to
3546     // value of base register.
3547     // Bail out if there is no common type.
3548     FoldAddrToValueMapping Map;
3549     if (!initializeMap(Map))
3550       return false;
3551 
3552     Value *CommonValue = findCommon(Map);
3553     if (CommonValue)
3554       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3555     return CommonValue != nullptr;
3556   }
3557 
3558 private:
3559   /// Initialize Map with anchor values. For address seen
3560   /// we set the value of different field saw in this address.
3561   /// At the same time we find a common type for different field we will
3562   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3563   /// Return false if there is no common type found.
3564   bool initializeMap(FoldAddrToValueMapping &Map) {
3565     // Keep track of keys where the value is null. We will need to replace it
3566     // with constant null when we know the common type.
3567     SmallVector<Value *, 2> NullValue;
3568     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3569     for (auto &AM : AddrModes) {
3570       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3571       if (DV) {
3572         auto *Type = DV->getType();
3573         if (CommonType && CommonType != Type)
3574           return false;
3575         CommonType = Type;
3576         Map[AM.OriginalValue] = DV;
3577       } else {
3578         NullValue.push_back(AM.OriginalValue);
3579       }
3580     }
3581     assert(CommonType && "At least one non-null value must be!");
3582     for (auto *V : NullValue)
3583       Map[V] = Constant::getNullValue(CommonType);
3584     return true;
3585   }
3586 
3587   /// We have mapping between value A and other value B where B was a field in
3588   /// addressing mode represented by A. Also we have an original value C
3589   /// representing an address we start with. Traversing from C through phi and
3590   /// selects we ended up with A's in a map. This utility function tries to find
3591   /// a value V which is a field in addressing mode C and traversing through phi
3592   /// nodes and selects we will end up in corresponded values B in a map.
3593   /// The utility will create a new Phi/Selects if needed.
3594   // The simple example looks as follows:
3595   // BB1:
3596   //   p1 = b1 + 40
3597   //   br cond BB2, BB3
3598   // BB2:
3599   //   p2 = b2 + 40
3600   //   br BB3
3601   // BB3:
3602   //   p = phi [p1, BB1], [p2, BB2]
3603   //   v = load p
3604   // Map is
3605   //   p1 -> b1
3606   //   p2 -> b2
3607   // Request is
3608   //   p -> ?
3609   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3610   Value *findCommon(FoldAddrToValueMapping &Map) {
3611     // Tracks the simplification of newly created phi nodes. The reason we use
3612     // this mapping is because we will add new created Phi nodes in AddrToBase.
3613     // Simplification of Phi nodes is recursive, so some Phi node may
3614     // be simplified after we added it to AddrToBase. In reality this
3615     // simplification is possible only if original phi/selects were not
3616     // simplified yet.
3617     // Using this mapping we can find the current value in AddrToBase.
3618     SimplificationTracker ST(SQ);
3619 
3620     // First step, DFS to create PHI nodes for all intermediate blocks.
3621     // Also fill traverse order for the second step.
3622     SmallVector<Value *, 32> TraverseOrder;
3623     InsertPlaceholders(Map, TraverseOrder, ST);
3624 
3625     // Second Step, fill new nodes by merged values and simplify if possible.
3626     FillPlaceholders(Map, TraverseOrder, ST);
3627 
3628     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3629       ST.destroyNewNodes(CommonType);
3630       return nullptr;
3631     }
3632 
3633     // Now we'd like to match New Phi nodes to existed ones.
3634     unsigned PhiNotMatchedCount = 0;
3635     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3636       ST.destroyNewNodes(CommonType);
3637       return nullptr;
3638     }
3639 
3640     auto *Result = ST.Get(Map.find(Original)->second);
3641     if (Result) {
3642       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3643       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3644     }
3645     return Result;
3646   }
3647 
3648   /// Try to match PHI node to Candidate.
3649   /// Matcher tracks the matched Phi nodes.
3650   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3651                     SmallSetVector<PHIPair, 8> &Matcher,
3652                     PhiNodeSet &PhiNodesToMatch) {
3653     SmallVector<PHIPair, 8> WorkList;
3654     Matcher.insert({ PHI, Candidate });
3655     SmallSet<PHINode *, 8> MatchedPHIs;
3656     MatchedPHIs.insert(PHI);
3657     WorkList.push_back({ PHI, Candidate });
3658     SmallSet<PHIPair, 8> Visited;
3659     while (!WorkList.empty()) {
3660       auto Item = WorkList.pop_back_val();
3661       if (!Visited.insert(Item).second)
3662         continue;
3663       // We iterate over all incoming values to Phi to compare them.
3664       // If values are different and both of them Phi and the first one is a
3665       // Phi we added (subject to match) and both of them is in the same basic
3666       // block then we can match our pair if values match. So we state that
3667       // these values match and add it to work list to verify that.
3668       for (auto B : Item.first->blocks()) {
3669         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3670         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3671         if (FirstValue == SecondValue)
3672           continue;
3673 
3674         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3675         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3676 
3677         // One of them is not Phi or
3678         // The first one is not Phi node from the set we'd like to match or
3679         // Phi nodes from different basic blocks then
3680         // we will not be able to match.
3681         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3682             FirstPhi->getParent() != SecondPhi->getParent())
3683           return false;
3684 
3685         // If we already matched them then continue.
3686         if (Matcher.count({ FirstPhi, SecondPhi }))
3687           continue;
3688         // So the values are different and does not match. So we need them to
3689         // match. (But we register no more than one match per PHI node, so that
3690         // we won't later try to replace them twice.)
3691         if (MatchedPHIs.insert(FirstPhi).second)
3692           Matcher.insert({ FirstPhi, SecondPhi });
3693         // But me must check it.
3694         WorkList.push_back({ FirstPhi, SecondPhi });
3695       }
3696     }
3697     return true;
3698   }
3699 
3700   /// For the given set of PHI nodes (in the SimplificationTracker) try
3701   /// to find their equivalents.
3702   /// Returns false if this matching fails and creation of new Phi is disabled.
3703   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3704                    unsigned &PhiNotMatchedCount) {
3705     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3706     // order, so the replacements (ReplacePhi) are also done in a deterministic
3707     // order.
3708     SmallSetVector<PHIPair, 8> Matched;
3709     SmallPtrSet<PHINode *, 8> WillNotMatch;
3710     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3711     while (PhiNodesToMatch.size()) {
3712       PHINode *PHI = *PhiNodesToMatch.begin();
3713 
3714       // Add us, if no Phi nodes in the basic block we do not match.
3715       WillNotMatch.clear();
3716       WillNotMatch.insert(PHI);
3717 
3718       // Traverse all Phis until we found equivalent or fail to do that.
3719       bool IsMatched = false;
3720       for (auto &P : PHI->getParent()->phis()) {
3721         if (&P == PHI)
3722           continue;
3723         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3724           break;
3725         // If it does not match, collect all Phi nodes from matcher.
3726         // if we end up with no match, them all these Phi nodes will not match
3727         // later.
3728         for (auto M : Matched)
3729           WillNotMatch.insert(M.first);
3730         Matched.clear();
3731       }
3732       if (IsMatched) {
3733         // Replace all matched values and erase them.
3734         for (auto MV : Matched)
3735           ST.ReplacePhi(MV.first, MV.second);
3736         Matched.clear();
3737         continue;
3738       }
3739       // If we are not allowed to create new nodes then bail out.
3740       if (!AllowNewPhiNodes)
3741         return false;
3742       // Just remove all seen values in matcher. They will not match anything.
3743       PhiNotMatchedCount += WillNotMatch.size();
3744       for (auto *P : WillNotMatch)
3745         PhiNodesToMatch.erase(P);
3746     }
3747     return true;
3748   }
3749   /// Fill the placeholders with values from predecessors and simplify them.
3750   void FillPlaceholders(FoldAddrToValueMapping &Map,
3751                         SmallVectorImpl<Value *> &TraverseOrder,
3752                         SimplificationTracker &ST) {
3753     while (!TraverseOrder.empty()) {
3754       Value *Current = TraverseOrder.pop_back_val();
3755       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3756       Value *V = Map[Current];
3757 
3758       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3759         // CurrentValue also must be Select.
3760         auto *CurrentSelect = cast<SelectInst>(Current);
3761         auto *TrueValue = CurrentSelect->getTrueValue();
3762         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3763         Select->setTrueValue(ST.Get(Map[TrueValue]));
3764         auto *FalseValue = CurrentSelect->getFalseValue();
3765         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3766         Select->setFalseValue(ST.Get(Map[FalseValue]));
3767       } else {
3768         // Must be a Phi node then.
3769         auto *PHI = cast<PHINode>(V);
3770         // Fill the Phi node with values from predecessors.
3771         for (auto *B : predecessors(PHI->getParent())) {
3772           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3773           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3774           PHI->addIncoming(ST.Get(Map[PV]), B);
3775         }
3776       }
3777       Map[Current] = ST.Simplify(V);
3778     }
3779   }
3780 
3781   /// Starting from original value recursively iterates over def-use chain up to
3782   /// known ending values represented in a map. For each traversed phi/select
3783   /// inserts a placeholder Phi or Select.
3784   /// Reports all new created Phi/Select nodes by adding them to set.
3785   /// Also reports and order in what values have been traversed.
3786   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3787                           SmallVectorImpl<Value *> &TraverseOrder,
3788                           SimplificationTracker &ST) {
3789     SmallVector<Value *, 32> Worklist;
3790     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3791            "Address must be a Phi or Select node");
3792     auto *Dummy = UndefValue::get(CommonType);
3793     Worklist.push_back(Original);
3794     while (!Worklist.empty()) {
3795       Value *Current = Worklist.pop_back_val();
3796       // if it is already visited or it is an ending value then skip it.
3797       if (Map.find(Current) != Map.end())
3798         continue;
3799       TraverseOrder.push_back(Current);
3800 
3801       // CurrentValue must be a Phi node or select. All others must be covered
3802       // by anchors.
3803       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3804         // Is it OK to get metadata from OrigSelect?!
3805         // Create a Select placeholder with dummy value.
3806         SelectInst *Select = SelectInst::Create(
3807             CurrentSelect->getCondition(), Dummy, Dummy,
3808             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3809         Map[Current] = Select;
3810         ST.insertNewSelect(Select);
3811         // We are interested in True and False values.
3812         Worklist.push_back(CurrentSelect->getTrueValue());
3813         Worklist.push_back(CurrentSelect->getFalseValue());
3814       } else {
3815         // It must be a Phi node then.
3816         PHINode *CurrentPhi = cast<PHINode>(Current);
3817         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3818         PHINode *PHI =
3819             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3820         Map[Current] = PHI;
3821         ST.insertNewPhi(PHI);
3822         append_range(Worklist, CurrentPhi->incoming_values());
3823       }
3824     }
3825   }
3826 
3827   bool addrModeCombiningAllowed() {
3828     if (DisableComplexAddrModes)
3829       return false;
3830     switch (DifferentField) {
3831     default:
3832       return false;
3833     case ExtAddrMode::BaseRegField:
3834       return AddrSinkCombineBaseReg;
3835     case ExtAddrMode::BaseGVField:
3836       return AddrSinkCombineBaseGV;
3837     case ExtAddrMode::BaseOffsField:
3838       return AddrSinkCombineBaseOffs;
3839     case ExtAddrMode::ScaledRegField:
3840       return AddrSinkCombineScaledReg;
3841     }
3842   }
3843 };
3844 } // end anonymous namespace
3845 
3846 /// Try adding ScaleReg*Scale to the current addressing mode.
3847 /// Return true and update AddrMode if this addr mode is legal for the target,
3848 /// false if not.
3849 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3850                                              unsigned Depth) {
3851   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3852   // mode.  Just process that directly.
3853   if (Scale == 1)
3854     return matchAddr(ScaleReg, Depth);
3855 
3856   // If the scale is 0, it takes nothing to add this.
3857   if (Scale == 0)
3858     return true;
3859 
3860   // If we already have a scale of this value, we can add to it, otherwise, we
3861   // need an available scale field.
3862   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3863     return false;
3864 
3865   ExtAddrMode TestAddrMode = AddrMode;
3866 
3867   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3868   // [A+B + A*7] -> [B+A*8].
3869   TestAddrMode.Scale += Scale;
3870   TestAddrMode.ScaledReg = ScaleReg;
3871 
3872   // If the new address isn't legal, bail out.
3873   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3874     return false;
3875 
3876   // It was legal, so commit it.
3877   AddrMode = TestAddrMode;
3878 
3879   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3880   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3881   // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
3882   // go any further: we can reuse it and cannot eliminate it.
3883   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3884   if (isa<Instruction>(ScaleReg) && // not a constant expr.
3885       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3886       !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
3887     TestAddrMode.InBounds = false;
3888     TestAddrMode.ScaledReg = AddLHS;
3889     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3890 
3891     // If this addressing mode is legal, commit it and remember that we folded
3892     // this instruction.
3893     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3894       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3895       AddrMode = TestAddrMode;
3896       return true;
3897     }
3898     // Restore status quo.
3899     TestAddrMode = AddrMode;
3900   }
3901 
3902   // If this is an add recurrence with a constant step, return the increment
3903   // instruction and the canonicalized step.
3904   auto GetConstantStep = [this](const Value * V)
3905       ->Optional<std::pair<Instruction *, APInt> > {
3906     auto *PN = dyn_cast<PHINode>(V);
3907     if (!PN)
3908       return None;
3909     auto IVInc = getIVIncrement(PN, &LI);
3910     if (!IVInc)
3911       return None;
3912     // TODO: The result of the intrinsics above is two-compliment. However when
3913     // IV inc is expressed as add or sub, iv.next is potentially a poison value.
3914     // If it has nuw or nsw flags, we need to make sure that these flags are
3915     // inferrable at the point of memory instruction. Otherwise we are replacing
3916     // well-defined two-compliment computation with poison. Currently, to avoid
3917     // potentially complex analysis needed to prove this, we reject such cases.
3918     if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
3919       if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
3920         return None;
3921     if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
3922       return std::make_pair(IVInc->first, ConstantStep->getValue());
3923     return None;
3924   };
3925 
3926   // Try to account for the following special case:
3927   // 1. ScaleReg is an inductive variable;
3928   // 2. We use it with non-zero offset;
3929   // 3. IV's increment is available at the point of memory instruction.
3930   //
3931   // In this case, we may reuse the IV increment instead of the IV Phi to
3932   // achieve the following advantages:
3933   // 1. If IV step matches the offset, we will have no need in the offset;
3934   // 2. Even if they don't match, we will reduce the overlap of living IV
3935   //    and IV increment, that will potentially lead to better register
3936   //    assignment.
3937   if (AddrMode.BaseOffs) {
3938     if (auto IVStep = GetConstantStep(ScaleReg)) {
3939       Instruction *IVInc = IVStep->first;
3940       // The following assert is important to ensure a lack of infinite loops.
3941       // This transforms is (intentionally) the inverse of the one just above.
3942       // If they don't agree on the definition of an increment, we'd alternate
3943       // back and forth indefinitely.
3944       assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
3945       APInt Step = IVStep->second;
3946       APInt Offset = Step * AddrMode.Scale;
3947       if (Offset.isSignedIntN(64)) {
3948         TestAddrMode.InBounds = false;
3949         TestAddrMode.ScaledReg = IVInc;
3950         TestAddrMode.BaseOffs -= Offset.getLimitedValue();
3951         // If this addressing mode is legal, commit it..
3952         // (Note that we defer the (expensive) domtree base legality check
3953         // to the very last possible point.)
3954         if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
3955             getDTFn().dominates(IVInc, MemoryInst)) {
3956           AddrModeInsts.push_back(cast<Instruction>(IVInc));
3957           AddrMode = TestAddrMode;
3958           return true;
3959         }
3960         // Restore status quo.
3961         TestAddrMode = AddrMode;
3962       }
3963     }
3964   }
3965 
3966   // Otherwise, just return what we have.
3967   return true;
3968 }
3969 
3970 /// This is a little filter, which returns true if an addressing computation
3971 /// involving I might be folded into a load/store accessing it.
3972 /// This doesn't need to be perfect, but needs to accept at least
3973 /// the set of instructions that MatchOperationAddr can.
3974 static bool MightBeFoldableInst(Instruction *I) {
3975   switch (I->getOpcode()) {
3976   case Instruction::BitCast:
3977   case Instruction::AddrSpaceCast:
3978     // Don't touch identity bitcasts.
3979     if (I->getType() == I->getOperand(0)->getType())
3980       return false;
3981     return I->getType()->isIntOrPtrTy();
3982   case Instruction::PtrToInt:
3983     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3984     return true;
3985   case Instruction::IntToPtr:
3986     // We know the input is intptr_t, so this is foldable.
3987     return true;
3988   case Instruction::Add:
3989     return true;
3990   case Instruction::Mul:
3991   case Instruction::Shl:
3992     // Can only handle X*C and X << C.
3993     return isa<ConstantInt>(I->getOperand(1));
3994   case Instruction::GetElementPtr:
3995     return true;
3996   default:
3997     return false;
3998   }
3999 }
4000 
4001 /// Check whether or not \p Val is a legal instruction for \p TLI.
4002 /// \note \p Val is assumed to be the product of some type promotion.
4003 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4004 /// to be legal, as the non-promoted value would have had the same state.
4005 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4006                                        const DataLayout &DL, Value *Val) {
4007   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4008   if (!PromotedInst)
4009     return false;
4010   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4011   // If the ISDOpcode is undefined, it was undefined before the promotion.
4012   if (!ISDOpcode)
4013     return true;
4014   // Otherwise, check if the promoted instruction is legal or not.
4015   return TLI.isOperationLegalOrCustom(
4016       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4017 }
4018 
4019 namespace {
4020 
4021 /// Hepler class to perform type promotion.
4022 class TypePromotionHelper {
4023   /// Utility function to add a promoted instruction \p ExtOpnd to
4024   /// \p PromotedInsts and record the type of extension we have seen.
4025   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4026                               Instruction *ExtOpnd,
4027                               bool IsSExt) {
4028     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4029     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4030     if (It != PromotedInsts.end()) {
4031       // If the new extension is same as original, the information in
4032       // PromotedInsts[ExtOpnd] is still correct.
4033       if (It->second.getInt() == ExtTy)
4034         return;
4035 
4036       // Now the new extension is different from old extension, we make
4037       // the type information invalid by setting extension type to
4038       // BothExtension.
4039       ExtTy = BothExtension;
4040     }
4041     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4042   }
4043 
4044   /// Utility function to query the original type of instruction \p Opnd
4045   /// with a matched extension type. If the extension doesn't match, we
4046   /// cannot use the information we had on the original type.
4047   /// BothExtension doesn't match any extension type.
4048   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4049                                  Instruction *Opnd,
4050                                  bool IsSExt) {
4051     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4052     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4053     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4054       return It->second.getPointer();
4055     return nullptr;
4056   }
4057 
4058   /// Utility function to check whether or not a sign or zero extension
4059   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4060   /// either using the operands of \p Inst or promoting \p Inst.
4061   /// The type of the extension is defined by \p IsSExt.
4062   /// In other words, check if:
4063   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4064   /// #1 Promotion applies:
4065   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4066   /// #2 Operand reuses:
4067   /// ext opnd1 to ConsideredExtType.
4068   /// \p PromotedInsts maps the instructions to their type before promotion.
4069   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4070                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
4071 
4072   /// Utility function to determine if \p OpIdx should be promoted when
4073   /// promoting \p Inst.
4074   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4075     return !(isa<SelectInst>(Inst) && OpIdx == 0);
4076   }
4077 
4078   /// Utility function to promote the operand of \p Ext when this
4079   /// operand is a promotable trunc or sext or zext.
4080   /// \p PromotedInsts maps the instructions to their type before promotion.
4081   /// \p CreatedInstsCost[out] contains the cost of all instructions
4082   /// created to promote the operand of Ext.
4083   /// Newly added extensions are inserted in \p Exts.
4084   /// Newly added truncates are inserted in \p Truncs.
4085   /// Should never be called directly.
4086   /// \return The promoted value which is used instead of Ext.
4087   static Value *promoteOperandForTruncAndAnyExt(
4088       Instruction *Ext, TypePromotionTransaction &TPT,
4089       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4090       SmallVectorImpl<Instruction *> *Exts,
4091       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4092 
4093   /// Utility function to promote the operand of \p Ext when this
4094   /// operand is promotable and is not a supported trunc or sext.
4095   /// \p PromotedInsts maps the instructions to their type before promotion.
4096   /// \p CreatedInstsCost[out] contains the cost of all the instructions
4097   /// created to promote the operand of Ext.
4098   /// Newly added extensions are inserted in \p Exts.
4099   /// Newly added truncates are inserted in \p Truncs.
4100   /// Should never be called directly.
4101   /// \return The promoted value which is used instead of Ext.
4102   static Value *promoteOperandForOther(Instruction *Ext,
4103                                        TypePromotionTransaction &TPT,
4104                                        InstrToOrigTy &PromotedInsts,
4105                                        unsigned &CreatedInstsCost,
4106                                        SmallVectorImpl<Instruction *> *Exts,
4107                                        SmallVectorImpl<Instruction *> *Truncs,
4108                                        const TargetLowering &TLI, bool IsSExt);
4109 
4110   /// \see promoteOperandForOther.
4111   static Value *signExtendOperandForOther(
4112       Instruction *Ext, TypePromotionTransaction &TPT,
4113       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4114       SmallVectorImpl<Instruction *> *Exts,
4115       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4116     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4117                                   Exts, Truncs, TLI, true);
4118   }
4119 
4120   /// \see promoteOperandForOther.
4121   static Value *zeroExtendOperandForOther(
4122       Instruction *Ext, TypePromotionTransaction &TPT,
4123       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4124       SmallVectorImpl<Instruction *> *Exts,
4125       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4126     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4127                                   Exts, Truncs, TLI, false);
4128   }
4129 
4130 public:
4131   /// Type for the utility function that promotes the operand of Ext.
4132   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4133                             InstrToOrigTy &PromotedInsts,
4134                             unsigned &CreatedInstsCost,
4135                             SmallVectorImpl<Instruction *> *Exts,
4136                             SmallVectorImpl<Instruction *> *Truncs,
4137                             const TargetLowering &TLI);
4138 
4139   /// Given a sign/zero extend instruction \p Ext, return the appropriate
4140   /// action to promote the operand of \p Ext instead of using Ext.
4141   /// \return NULL if no promotable action is possible with the current
4142   /// sign extension.
4143   /// \p InsertedInsts keeps track of all the instructions inserted by the
4144   /// other CodeGenPrepare optimizations. This information is important
4145   /// because we do not want to promote these instructions as CodeGenPrepare
4146   /// will reinsert them later. Thus creating an infinite loop: create/remove.
4147   /// \p PromotedInsts maps the instructions to their type before promotion.
4148   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4149                           const TargetLowering &TLI,
4150                           const InstrToOrigTy &PromotedInsts);
4151 };
4152 
4153 } // end anonymous namespace
4154 
4155 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4156                                         Type *ConsideredExtType,
4157                                         const InstrToOrigTy &PromotedInsts,
4158                                         bool IsSExt) {
4159   // The promotion helper does not know how to deal with vector types yet.
4160   // To be able to fix that, we would need to fix the places where we
4161   // statically extend, e.g., constants and such.
4162   if (Inst->getType()->isVectorTy())
4163     return false;
4164 
4165   // We can always get through zext.
4166   if (isa<ZExtInst>(Inst))
4167     return true;
4168 
4169   // sext(sext) is ok too.
4170   if (IsSExt && isa<SExtInst>(Inst))
4171     return true;
4172 
4173   // We can get through binary operator, if it is legal. In other words, the
4174   // binary operator must have a nuw or nsw flag.
4175   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
4176   if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
4177       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4178        (IsSExt && BinOp->hasNoSignedWrap())))
4179     return true;
4180 
4181   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4182   if ((Inst->getOpcode() == Instruction::And ||
4183        Inst->getOpcode() == Instruction::Or))
4184     return true;
4185 
4186   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4187   if (Inst->getOpcode() == Instruction::Xor) {
4188     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
4189     // Make sure it is not a NOT.
4190     if (Cst && !Cst->getValue().isAllOnesValue())
4191       return true;
4192   }
4193 
4194   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4195   // It may change a poisoned value into a regular value, like
4196   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4197   //          poisoned value                    regular value
4198   // It should be OK since undef covers valid value.
4199   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4200     return true;
4201 
4202   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4203   // It may change a poisoned value into a regular value, like
4204   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4205   //          poisoned value                    regular value
4206   // It should be OK since undef covers valid value.
4207   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4208     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4209     if (ExtInst->hasOneUse()) {
4210       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4211       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4212         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4213         if (Cst &&
4214             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4215           return true;
4216       }
4217     }
4218   }
4219 
4220   // Check if we can do the following simplification.
4221   // ext(trunc(opnd)) --> ext(opnd)
4222   if (!isa<TruncInst>(Inst))
4223     return false;
4224 
4225   Value *OpndVal = Inst->getOperand(0);
4226   // Check if we can use this operand in the extension.
4227   // If the type is larger than the result type of the extension, we cannot.
4228   if (!OpndVal->getType()->isIntegerTy() ||
4229       OpndVal->getType()->getIntegerBitWidth() >
4230           ConsideredExtType->getIntegerBitWidth())
4231     return false;
4232 
4233   // If the operand of the truncate is not an instruction, we will not have
4234   // any information on the dropped bits.
4235   // (Actually we could for constant but it is not worth the extra logic).
4236   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4237   if (!Opnd)
4238     return false;
4239 
4240   // Check if the source of the type is narrow enough.
4241   // I.e., check that trunc just drops extended bits of the same kind of
4242   // the extension.
4243   // #1 get the type of the operand and check the kind of the extended bits.
4244   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4245   if (OpndType)
4246     ;
4247   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4248     OpndType = Opnd->getOperand(0)->getType();
4249   else
4250     return false;
4251 
4252   // #2 check that the truncate just drops extended bits.
4253   return Inst->getType()->getIntegerBitWidth() >=
4254          OpndType->getIntegerBitWidth();
4255 }
4256 
4257 TypePromotionHelper::Action TypePromotionHelper::getAction(
4258     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4259     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4260   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4261          "Unexpected instruction type");
4262   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4263   Type *ExtTy = Ext->getType();
4264   bool IsSExt = isa<SExtInst>(Ext);
4265   // If the operand of the extension is not an instruction, we cannot
4266   // get through.
4267   // If it, check we can get through.
4268   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4269     return nullptr;
4270 
4271   // Do not promote if the operand has been added by codegenprepare.
4272   // Otherwise, it means we are undoing an optimization that is likely to be
4273   // redone, thus causing potential infinite loop.
4274   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4275     return nullptr;
4276 
4277   // SExt or Trunc instructions.
4278   // Return the related handler.
4279   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4280       isa<ZExtInst>(ExtOpnd))
4281     return promoteOperandForTruncAndAnyExt;
4282 
4283   // Regular instruction.
4284   // Abort early if we will have to insert non-free instructions.
4285   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4286     return nullptr;
4287   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4288 }
4289 
4290 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4291     Instruction *SExt, TypePromotionTransaction &TPT,
4292     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4293     SmallVectorImpl<Instruction *> *Exts,
4294     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4295   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4296   // get through it and this method should not be called.
4297   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4298   Value *ExtVal = SExt;
4299   bool HasMergedNonFreeExt = false;
4300   if (isa<ZExtInst>(SExtOpnd)) {
4301     // Replace s|zext(zext(opnd))
4302     // => zext(opnd).
4303     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4304     Value *ZExt =
4305         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4306     TPT.replaceAllUsesWith(SExt, ZExt);
4307     TPT.eraseInstruction(SExt);
4308     ExtVal = ZExt;
4309   } else {
4310     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4311     // => z|sext(opnd).
4312     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4313   }
4314   CreatedInstsCost = 0;
4315 
4316   // Remove dead code.
4317   if (SExtOpnd->use_empty())
4318     TPT.eraseInstruction(SExtOpnd);
4319 
4320   // Check if the extension is still needed.
4321   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4322   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4323     if (ExtInst) {
4324       if (Exts)
4325         Exts->push_back(ExtInst);
4326       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4327     }
4328     return ExtVal;
4329   }
4330 
4331   // At this point we have: ext ty opnd to ty.
4332   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4333   Value *NextVal = ExtInst->getOperand(0);
4334   TPT.eraseInstruction(ExtInst, NextVal);
4335   return NextVal;
4336 }
4337 
4338 Value *TypePromotionHelper::promoteOperandForOther(
4339     Instruction *Ext, TypePromotionTransaction &TPT,
4340     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4341     SmallVectorImpl<Instruction *> *Exts,
4342     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4343     bool IsSExt) {
4344   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4345   // get through it and this method should not be called.
4346   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4347   CreatedInstsCost = 0;
4348   if (!ExtOpnd->hasOneUse()) {
4349     // ExtOpnd will be promoted.
4350     // All its uses, but Ext, will need to use a truncated value of the
4351     // promoted version.
4352     // Create the truncate now.
4353     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4354     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4355       // Insert it just after the definition.
4356       ITrunc->moveAfter(ExtOpnd);
4357       if (Truncs)
4358         Truncs->push_back(ITrunc);
4359     }
4360 
4361     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4362     // Restore the operand of Ext (which has been replaced by the previous call
4363     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4364     TPT.setOperand(Ext, 0, ExtOpnd);
4365   }
4366 
4367   // Get through the Instruction:
4368   // 1. Update its type.
4369   // 2. Replace the uses of Ext by Inst.
4370   // 3. Extend each operand that needs to be extended.
4371 
4372   // Remember the original type of the instruction before promotion.
4373   // This is useful to know that the high bits are sign extended bits.
4374   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4375   // Step #1.
4376   TPT.mutateType(ExtOpnd, Ext->getType());
4377   // Step #2.
4378   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4379   // Step #3.
4380   Instruction *ExtForOpnd = Ext;
4381 
4382   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4383   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4384        ++OpIdx) {
4385     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4386     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4387         !shouldExtOperand(ExtOpnd, OpIdx)) {
4388       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4389       continue;
4390     }
4391     // Check if we can statically extend the operand.
4392     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4393     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4394       LLVM_DEBUG(dbgs() << "Statically extend\n");
4395       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4396       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4397                             : Cst->getValue().zext(BitWidth);
4398       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4399       continue;
4400     }
4401     // UndefValue are typed, so we have to statically sign extend them.
4402     if (isa<UndefValue>(Opnd)) {
4403       LLVM_DEBUG(dbgs() << "Statically extend\n");
4404       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4405       continue;
4406     }
4407 
4408     // Otherwise we have to explicitly sign extend the operand.
4409     // Check if Ext was reused to extend an operand.
4410     if (!ExtForOpnd) {
4411       // If yes, create a new one.
4412       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4413       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4414         : TPT.createZExt(Ext, Opnd, Ext->getType());
4415       if (!isa<Instruction>(ValForExtOpnd)) {
4416         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4417         continue;
4418       }
4419       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4420     }
4421     if (Exts)
4422       Exts->push_back(ExtForOpnd);
4423     TPT.setOperand(ExtForOpnd, 0, Opnd);
4424 
4425     // Move the sign extension before the insertion point.
4426     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4427     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4428     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4429     // If more sext are required, new instructions will have to be created.
4430     ExtForOpnd = nullptr;
4431   }
4432   if (ExtForOpnd == Ext) {
4433     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4434     TPT.eraseInstruction(Ext);
4435   }
4436   return ExtOpnd;
4437 }
4438 
4439 /// Check whether or not promoting an instruction to a wider type is profitable.
4440 /// \p NewCost gives the cost of extension instructions created by the
4441 /// promotion.
4442 /// \p OldCost gives the cost of extension instructions before the promotion
4443 /// plus the number of instructions that have been
4444 /// matched in the addressing mode the promotion.
4445 /// \p PromotedOperand is the value that has been promoted.
4446 /// \return True if the promotion is profitable, false otherwise.
4447 bool AddressingModeMatcher::isPromotionProfitable(
4448     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4449   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4450                     << '\n');
4451   // The cost of the new extensions is greater than the cost of the
4452   // old extension plus what we folded.
4453   // This is not profitable.
4454   if (NewCost > OldCost)
4455     return false;
4456   if (NewCost < OldCost)
4457     return true;
4458   // The promotion is neutral but it may help folding the sign extension in
4459   // loads for instance.
4460   // Check that we did not create an illegal instruction.
4461   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4462 }
4463 
4464 /// Given an instruction or constant expr, see if we can fold the operation
4465 /// into the addressing mode. If so, update the addressing mode and return
4466 /// true, otherwise return false without modifying AddrMode.
4467 /// If \p MovedAway is not NULL, it contains the information of whether or
4468 /// not AddrInst has to be folded into the addressing mode on success.
4469 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4470 /// because it has been moved away.
4471 /// Thus AddrInst must not be added in the matched instructions.
4472 /// This state can happen when AddrInst is a sext, since it may be moved away.
4473 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4474 /// not be referenced anymore.
4475 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4476                                                unsigned Depth,
4477                                                bool *MovedAway) {
4478   // Avoid exponential behavior on extremely deep expression trees.
4479   if (Depth >= 5) return false;
4480 
4481   // By default, all matched instructions stay in place.
4482   if (MovedAway)
4483     *MovedAway = false;
4484 
4485   switch (Opcode) {
4486   case Instruction::PtrToInt:
4487     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4488     return matchAddr(AddrInst->getOperand(0), Depth);
4489   case Instruction::IntToPtr: {
4490     auto AS = AddrInst->getType()->getPointerAddressSpace();
4491     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4492     // This inttoptr is a no-op if the integer type is pointer sized.
4493     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4494       return matchAddr(AddrInst->getOperand(0), Depth);
4495     return false;
4496   }
4497   case Instruction::BitCast:
4498     // BitCast is always a noop, and we can handle it as long as it is
4499     // int->int or pointer->pointer (we don't want int<->fp or something).
4500     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4501         // Don't touch identity bitcasts.  These were probably put here by LSR,
4502         // and we don't want to mess around with them.  Assume it knows what it
4503         // is doing.
4504         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4505       return matchAddr(AddrInst->getOperand(0), Depth);
4506     return false;
4507   case Instruction::AddrSpaceCast: {
4508     unsigned SrcAS
4509       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4510     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4511     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4512       return matchAddr(AddrInst->getOperand(0), Depth);
4513     return false;
4514   }
4515   case Instruction::Add: {
4516     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4517     ExtAddrMode BackupAddrMode = AddrMode;
4518     unsigned OldSize = AddrModeInsts.size();
4519     // Start a transaction at this point.
4520     // The LHS may match but not the RHS.
4521     // Therefore, we need a higher level restoration point to undo partially
4522     // matched operation.
4523     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4524         TPT.getRestorationPoint();
4525 
4526     AddrMode.InBounds = false;
4527     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4528         matchAddr(AddrInst->getOperand(0), Depth+1))
4529       return true;
4530 
4531     // Restore the old addr mode info.
4532     AddrMode = BackupAddrMode;
4533     AddrModeInsts.resize(OldSize);
4534     TPT.rollback(LastKnownGood);
4535 
4536     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4537     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4538         matchAddr(AddrInst->getOperand(1), Depth+1))
4539       return true;
4540 
4541     // Otherwise we definitely can't merge the ADD in.
4542     AddrMode = BackupAddrMode;
4543     AddrModeInsts.resize(OldSize);
4544     TPT.rollback(LastKnownGood);
4545     break;
4546   }
4547   //case Instruction::Or:
4548   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4549   //break;
4550   case Instruction::Mul:
4551   case Instruction::Shl: {
4552     // Can only handle X*C and X << C.
4553     AddrMode.InBounds = false;
4554     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4555     if (!RHS || RHS->getBitWidth() > 64)
4556       return false;
4557     int64_t Scale = RHS->getSExtValue();
4558     if (Opcode == Instruction::Shl)
4559       Scale = 1LL << Scale;
4560 
4561     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4562   }
4563   case Instruction::GetElementPtr: {
4564     // Scan the GEP.  We check it if it contains constant offsets and at most
4565     // one variable offset.
4566     int VariableOperand = -1;
4567     unsigned VariableScale = 0;
4568 
4569     int64_t ConstantOffset = 0;
4570     gep_type_iterator GTI = gep_type_begin(AddrInst);
4571     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4572       if (StructType *STy = GTI.getStructTypeOrNull()) {
4573         const StructLayout *SL = DL.getStructLayout(STy);
4574         unsigned Idx =
4575           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4576         ConstantOffset += SL->getElementOffset(Idx);
4577       } else {
4578         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4579         if (TS.isNonZero()) {
4580           // The optimisations below currently only work for fixed offsets.
4581           if (TS.isScalable())
4582             return false;
4583           int64_t TypeSize = TS.getFixedSize();
4584           if (ConstantInt *CI =
4585                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4586             const APInt &CVal = CI->getValue();
4587             if (CVal.getMinSignedBits() <= 64) {
4588               ConstantOffset += CVal.getSExtValue() * TypeSize;
4589               continue;
4590             }
4591           }
4592           // We only allow one variable index at the moment.
4593           if (VariableOperand != -1)
4594             return false;
4595 
4596           // Remember the variable index.
4597           VariableOperand = i;
4598           VariableScale = TypeSize;
4599         }
4600       }
4601     }
4602 
4603     // A common case is for the GEP to only do a constant offset.  In this case,
4604     // just add it to the disp field and check validity.
4605     if (VariableOperand == -1) {
4606       AddrMode.BaseOffs += ConstantOffset;
4607       if (ConstantOffset == 0 ||
4608           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4609         // Check to see if we can fold the base pointer in too.
4610         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4611           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4612             AddrMode.InBounds = false;
4613           return true;
4614         }
4615       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4616                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4617                  ConstantOffset > 0) {
4618         // Record GEPs with non-zero offsets as candidates for splitting in the
4619         // event that the offset cannot fit into the r+i addressing mode.
4620         // Simple and common case that only one GEP is used in calculating the
4621         // address for the memory access.
4622         Value *Base = AddrInst->getOperand(0);
4623         auto *BaseI = dyn_cast<Instruction>(Base);
4624         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4625         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4626             (BaseI && !isa<CastInst>(BaseI) &&
4627              !isa<GetElementPtrInst>(BaseI))) {
4628           // Make sure the parent block allows inserting non-PHI instructions
4629           // before the terminator.
4630           BasicBlock *Parent =
4631               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4632           if (!Parent->getTerminator()->isEHPad())
4633             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4634         }
4635       }
4636       AddrMode.BaseOffs -= ConstantOffset;
4637       return false;
4638     }
4639 
4640     // Save the valid addressing mode in case we can't match.
4641     ExtAddrMode BackupAddrMode = AddrMode;
4642     unsigned OldSize = AddrModeInsts.size();
4643 
4644     // See if the scale and offset amount is valid for this target.
4645     AddrMode.BaseOffs += ConstantOffset;
4646     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4647       AddrMode.InBounds = false;
4648 
4649     // Match the base operand of the GEP.
4650     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4651       // If it couldn't be matched, just stuff the value in a register.
4652       if (AddrMode.HasBaseReg) {
4653         AddrMode = BackupAddrMode;
4654         AddrModeInsts.resize(OldSize);
4655         return false;
4656       }
4657       AddrMode.HasBaseReg = true;
4658       AddrMode.BaseReg = AddrInst->getOperand(0);
4659     }
4660 
4661     // Match the remaining variable portion of the GEP.
4662     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4663                           Depth)) {
4664       // If it couldn't be matched, try stuffing the base into a register
4665       // instead of matching it, and retrying the match of the scale.
4666       AddrMode = BackupAddrMode;
4667       AddrModeInsts.resize(OldSize);
4668       if (AddrMode.HasBaseReg)
4669         return false;
4670       AddrMode.HasBaseReg = true;
4671       AddrMode.BaseReg = AddrInst->getOperand(0);
4672       AddrMode.BaseOffs += ConstantOffset;
4673       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4674                             VariableScale, Depth)) {
4675         // If even that didn't work, bail.
4676         AddrMode = BackupAddrMode;
4677         AddrModeInsts.resize(OldSize);
4678         return false;
4679       }
4680     }
4681 
4682     return true;
4683   }
4684   case Instruction::SExt:
4685   case Instruction::ZExt: {
4686     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4687     if (!Ext)
4688       return false;
4689 
4690     // Try to move this ext out of the way of the addressing mode.
4691     // Ask for a method for doing so.
4692     TypePromotionHelper::Action TPH =
4693         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4694     if (!TPH)
4695       return false;
4696 
4697     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4698         TPT.getRestorationPoint();
4699     unsigned CreatedInstsCost = 0;
4700     unsigned ExtCost = !TLI.isExtFree(Ext);
4701     Value *PromotedOperand =
4702         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4703     // SExt has been moved away.
4704     // Thus either it will be rematched later in the recursive calls or it is
4705     // gone. Anyway, we must not fold it into the addressing mode at this point.
4706     // E.g.,
4707     // op = add opnd, 1
4708     // idx = ext op
4709     // addr = gep base, idx
4710     // is now:
4711     // promotedOpnd = ext opnd            <- no match here
4712     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4713     // addr = gep base, op                <- match
4714     if (MovedAway)
4715       *MovedAway = true;
4716 
4717     assert(PromotedOperand &&
4718            "TypePromotionHelper should have filtered out those cases");
4719 
4720     ExtAddrMode BackupAddrMode = AddrMode;
4721     unsigned OldSize = AddrModeInsts.size();
4722 
4723     if (!matchAddr(PromotedOperand, Depth) ||
4724         // The total of the new cost is equal to the cost of the created
4725         // instructions.
4726         // The total of the old cost is equal to the cost of the extension plus
4727         // what we have saved in the addressing mode.
4728         !isPromotionProfitable(CreatedInstsCost,
4729                                ExtCost + (AddrModeInsts.size() - OldSize),
4730                                PromotedOperand)) {
4731       AddrMode = BackupAddrMode;
4732       AddrModeInsts.resize(OldSize);
4733       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4734       TPT.rollback(LastKnownGood);
4735       return false;
4736     }
4737     return true;
4738   }
4739   }
4740   return false;
4741 }
4742 
4743 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4744 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4745 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4746 /// for the target.
4747 ///
4748 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4749   // Start a transaction at this point that we will rollback if the matching
4750   // fails.
4751   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4752       TPT.getRestorationPoint();
4753   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4754     if (CI->getValue().isSignedIntN(64)) {
4755       // Fold in immediates if legal for the target.
4756       AddrMode.BaseOffs += CI->getSExtValue();
4757       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4758         return true;
4759       AddrMode.BaseOffs -= CI->getSExtValue();
4760     }
4761   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4762     // If this is a global variable, try to fold it into the addressing mode.
4763     if (!AddrMode.BaseGV) {
4764       AddrMode.BaseGV = GV;
4765       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4766         return true;
4767       AddrMode.BaseGV = nullptr;
4768     }
4769   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4770     ExtAddrMode BackupAddrMode = AddrMode;
4771     unsigned OldSize = AddrModeInsts.size();
4772 
4773     // Check to see if it is possible to fold this operation.
4774     bool MovedAway = false;
4775     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4776       // This instruction may have been moved away. If so, there is nothing
4777       // to check here.
4778       if (MovedAway)
4779         return true;
4780       // Okay, it's possible to fold this.  Check to see if it is actually
4781       // *profitable* to do so.  We use a simple cost model to avoid increasing
4782       // register pressure too much.
4783       if (I->hasOneUse() ||
4784           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4785         AddrModeInsts.push_back(I);
4786         return true;
4787       }
4788 
4789       // It isn't profitable to do this, roll back.
4790       //cerr << "NOT FOLDING: " << *I;
4791       AddrMode = BackupAddrMode;
4792       AddrModeInsts.resize(OldSize);
4793       TPT.rollback(LastKnownGood);
4794     }
4795   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4796     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4797       return true;
4798     TPT.rollback(LastKnownGood);
4799   } else if (isa<ConstantPointerNull>(Addr)) {
4800     // Null pointer gets folded without affecting the addressing mode.
4801     return true;
4802   }
4803 
4804   // Worse case, the target should support [reg] addressing modes. :)
4805   if (!AddrMode.HasBaseReg) {
4806     AddrMode.HasBaseReg = true;
4807     AddrMode.BaseReg = Addr;
4808     // Still check for legality in case the target supports [imm] but not [i+r].
4809     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4810       return true;
4811     AddrMode.HasBaseReg = false;
4812     AddrMode.BaseReg = nullptr;
4813   }
4814 
4815   // If the base register is already taken, see if we can do [r+r].
4816   if (AddrMode.Scale == 0) {
4817     AddrMode.Scale = 1;
4818     AddrMode.ScaledReg = Addr;
4819     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4820       return true;
4821     AddrMode.Scale = 0;
4822     AddrMode.ScaledReg = nullptr;
4823   }
4824   // Couldn't match.
4825   TPT.rollback(LastKnownGood);
4826   return false;
4827 }
4828 
4829 /// Check to see if all uses of OpVal by the specified inline asm call are due
4830 /// to memory operands. If so, return true, otherwise return false.
4831 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4832                                     const TargetLowering &TLI,
4833                                     const TargetRegisterInfo &TRI) {
4834   const Function *F = CI->getFunction();
4835   TargetLowering::AsmOperandInfoVector TargetConstraints =
4836       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4837 
4838   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4839     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4840 
4841     // Compute the constraint code and ConstraintType to use.
4842     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4843 
4844     // If this asm operand is our Value*, and if it isn't an indirect memory
4845     // operand, we can't fold it!
4846     if (OpInfo.CallOperandVal == OpVal &&
4847         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4848          !OpInfo.isIndirect))
4849       return false;
4850   }
4851 
4852   return true;
4853 }
4854 
4855 // Max number of memory uses to look at before aborting the search to conserve
4856 // compile time.
4857 static constexpr int MaxMemoryUsesToScan = 20;
4858 
4859 /// Recursively walk all the uses of I until we find a memory use.
4860 /// If we find an obviously non-foldable instruction, return true.
4861 /// Add the ultimately found memory instructions to MemoryUses.
4862 static bool FindAllMemoryUses(
4863     Instruction *I,
4864     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4865     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4866     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4867     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4868   // If we already considered this instruction, we're done.
4869   if (!ConsideredInsts.insert(I).second)
4870     return false;
4871 
4872   // If this is an obviously unfoldable instruction, bail out.
4873   if (!MightBeFoldableInst(I))
4874     return true;
4875 
4876   // Loop over all the uses, recursively processing them.
4877   for (Use &U : I->uses()) {
4878     // Conservatively return true if we're seeing a large number or a deep chain
4879     // of users. This avoids excessive compilation times in pathological cases.
4880     if (SeenInsts++ >= MaxMemoryUsesToScan)
4881       return true;
4882 
4883     Instruction *UserI = cast<Instruction>(U.getUser());
4884     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4885       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4886       continue;
4887     }
4888 
4889     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4890       unsigned opNo = U.getOperandNo();
4891       if (opNo != StoreInst::getPointerOperandIndex())
4892         return true; // Storing addr, not into addr.
4893       MemoryUses.push_back(std::make_pair(SI, opNo));
4894       continue;
4895     }
4896 
4897     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4898       unsigned opNo = U.getOperandNo();
4899       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4900         return true; // Storing addr, not into addr.
4901       MemoryUses.push_back(std::make_pair(RMW, opNo));
4902       continue;
4903     }
4904 
4905     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4906       unsigned opNo = U.getOperandNo();
4907       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4908         return true; // Storing addr, not into addr.
4909       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4910       continue;
4911     }
4912 
4913     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4914       if (CI->hasFnAttr(Attribute::Cold)) {
4915         // If this is a cold call, we can sink the addressing calculation into
4916         // the cold path.  See optimizeCallInst
4917         bool OptForSize = OptSize ||
4918           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4919         if (!OptForSize)
4920           continue;
4921       }
4922 
4923       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4924       if (!IA) return true;
4925 
4926       // If this is a memory operand, we're cool, otherwise bail out.
4927       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4928         return true;
4929       continue;
4930     }
4931 
4932     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4933                           PSI, BFI, SeenInsts))
4934       return true;
4935   }
4936 
4937   return false;
4938 }
4939 
4940 /// Return true if Val is already known to be live at the use site that we're
4941 /// folding it into. If so, there is no cost to include it in the addressing
4942 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4943 /// instruction already.
4944 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4945                                                    Value *KnownLive2) {
4946   // If Val is either of the known-live values, we know it is live!
4947   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4948     return true;
4949 
4950   // All values other than instructions and arguments (e.g. constants) are live.
4951   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4952 
4953   // If Val is a constant sized alloca in the entry block, it is live, this is
4954   // true because it is just a reference to the stack/frame pointer, which is
4955   // live for the whole function.
4956   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4957     if (AI->isStaticAlloca())
4958       return true;
4959 
4960   // Check to see if this value is already used in the memory instruction's
4961   // block.  If so, it's already live into the block at the very least, so we
4962   // can reasonably fold it.
4963   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4964 }
4965 
4966 /// It is possible for the addressing mode of the machine to fold the specified
4967 /// instruction into a load or store that ultimately uses it.
4968 /// However, the specified instruction has multiple uses.
4969 /// Given this, it may actually increase register pressure to fold it
4970 /// into the load. For example, consider this code:
4971 ///
4972 ///     X = ...
4973 ///     Y = X+1
4974 ///     use(Y)   -> nonload/store
4975 ///     Z = Y+1
4976 ///     load Z
4977 ///
4978 /// In this case, Y has multiple uses, and can be folded into the load of Z
4979 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4980 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4981 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4982 /// number of computations either.
4983 ///
4984 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4985 /// X was live across 'load Z' for other reasons, we actually *would* want to
4986 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4987 bool AddressingModeMatcher::
4988 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4989                                      ExtAddrMode &AMAfter) {
4990   if (IgnoreProfitability) return true;
4991 
4992   // AMBefore is the addressing mode before this instruction was folded into it,
4993   // and AMAfter is the addressing mode after the instruction was folded.  Get
4994   // the set of registers referenced by AMAfter and subtract out those
4995   // referenced by AMBefore: this is the set of values which folding in this
4996   // address extends the lifetime of.
4997   //
4998   // Note that there are only two potential values being referenced here,
4999   // BaseReg and ScaleReg (global addresses are always available, as are any
5000   // folded immediates).
5001   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5002 
5003   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5004   // lifetime wasn't extended by adding this instruction.
5005   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5006     BaseReg = nullptr;
5007   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5008     ScaledReg = nullptr;
5009 
5010   // If folding this instruction (and it's subexprs) didn't extend any live
5011   // ranges, we're ok with it.
5012   if (!BaseReg && !ScaledReg)
5013     return true;
5014 
5015   // If all uses of this instruction can have the address mode sunk into them,
5016   // we can remove the addressing mode and effectively trade one live register
5017   // for another (at worst.)  In this context, folding an addressing mode into
5018   // the use is just a particularly nice way of sinking it.
5019   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
5020   SmallPtrSet<Instruction*, 16> ConsideredInsts;
5021   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5022                         PSI, BFI))
5023     return false;  // Has a non-memory, non-foldable use!
5024 
5025   // Now that we know that all uses of this instruction are part of a chain of
5026   // computation involving only operations that could theoretically be folded
5027   // into a memory use, loop over each of these memory operation uses and see
5028   // if they could  *actually* fold the instruction.  The assumption is that
5029   // addressing modes are cheap and that duplicating the computation involved
5030   // many times is worthwhile, even on a fastpath. For sinking candidates
5031   // (i.e. cold call sites), this serves as a way to prevent excessive code
5032   // growth since most architectures have some reasonable small and fast way to
5033   // compute an effective address.  (i.e LEA on x86)
5034   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
5035   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
5036     Instruction *User = MemoryUses[i].first;
5037     unsigned OpNo = MemoryUses[i].second;
5038 
5039     // Get the access type of this use.  If the use isn't a pointer, we don't
5040     // know what it accesses.
5041     Value *Address = User->getOperand(OpNo);
5042     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
5043     if (!AddrTy)
5044       return false;
5045     Type *AddressAccessTy = AddrTy->getElementType();
5046     unsigned AS = AddrTy->getAddressSpace();
5047 
5048     // Do a match against the root of this address, ignoring profitability. This
5049     // will tell us if the addressing mode for the memory operation will
5050     // *actually* cover the shared instruction.
5051     ExtAddrMode Result;
5052     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5053                                                                       0);
5054     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5055         TPT.getRestorationPoint();
5056     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5057                                   AddressAccessTy, AS, MemoryInst, Result,
5058                                   InsertedInsts, PromotedInsts, TPT,
5059                                   LargeOffsetGEP, OptSize, PSI, BFI);
5060     Matcher.IgnoreProfitability = true;
5061     bool Success = Matcher.matchAddr(Address, 0);
5062     (void)Success; assert(Success && "Couldn't select *anything*?");
5063 
5064     // The match was to check the profitability, the changes made are not
5065     // part of the original matcher. Therefore, they should be dropped
5066     // otherwise the original matcher will not present the right state.
5067     TPT.rollback(LastKnownGood);
5068 
5069     // If the match didn't cover I, then it won't be shared by it.
5070     if (!is_contained(MatchedAddrModeInsts, I))
5071       return false;
5072 
5073     MatchedAddrModeInsts.clear();
5074   }
5075 
5076   return true;
5077 }
5078 
5079 /// Return true if the specified values are defined in a
5080 /// different basic block than BB.
5081 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5082   if (Instruction *I = dyn_cast<Instruction>(V))
5083     return I->getParent() != BB;
5084   return false;
5085 }
5086 
5087 /// Sink addressing mode computation immediate before MemoryInst if doing so
5088 /// can be done without increasing register pressure.  The need for the
5089 /// register pressure constraint means this can end up being an all or nothing
5090 /// decision for all uses of the same addressing computation.
5091 ///
5092 /// Load and Store Instructions often have addressing modes that can do
5093 /// significant amounts of computation. As such, instruction selection will try
5094 /// to get the load or store to do as much computation as possible for the
5095 /// program. The problem is that isel can only see within a single block. As
5096 /// such, we sink as much legal addressing mode work into the block as possible.
5097 ///
5098 /// This method is used to optimize both load/store and inline asms with memory
5099 /// operands.  It's also used to sink addressing computations feeding into cold
5100 /// call sites into their (cold) basic block.
5101 ///
5102 /// The motivation for handling sinking into cold blocks is that doing so can
5103 /// both enable other address mode sinking (by satisfying the register pressure
5104 /// constraint above), and reduce register pressure globally (by removing the
5105 /// addressing mode computation from the fast path entirely.).
5106 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5107                                         Type *AccessTy, unsigned AddrSpace) {
5108   Value *Repl = Addr;
5109 
5110   // Try to collapse single-value PHI nodes.  This is necessary to undo
5111   // unprofitable PRE transformations.
5112   SmallVector<Value*, 8> worklist;
5113   SmallPtrSet<Value*, 16> Visited;
5114   worklist.push_back(Addr);
5115 
5116   // Use a worklist to iteratively look through PHI and select nodes, and
5117   // ensure that the addressing mode obtained from the non-PHI/select roots of
5118   // the graph are compatible.
5119   bool PhiOrSelectSeen = false;
5120   SmallVector<Instruction*, 16> AddrModeInsts;
5121   const SimplifyQuery SQ(*DL, TLInfo);
5122   AddressingModeCombiner AddrModes(SQ, Addr);
5123   TypePromotionTransaction TPT(RemovedInsts);
5124   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5125       TPT.getRestorationPoint();
5126   while (!worklist.empty()) {
5127     Value *V = worklist.back();
5128     worklist.pop_back();
5129 
5130     // We allow traversing cyclic Phi nodes.
5131     // In case of success after this loop we ensure that traversing through
5132     // Phi nodes ends up with all cases to compute address of the form
5133     //    BaseGV + Base + Scale * Index + Offset
5134     // where Scale and Offset are constans and BaseGV, Base and Index
5135     // are exactly the same Values in all cases.
5136     // It means that BaseGV, Scale and Offset dominate our memory instruction
5137     // and have the same value as they had in address computation represented
5138     // as Phi. So we can safely sink address computation to memory instruction.
5139     if (!Visited.insert(V).second)
5140       continue;
5141 
5142     // For a PHI node, push all of its incoming values.
5143     if (PHINode *P = dyn_cast<PHINode>(V)) {
5144       append_range(worklist, P->incoming_values());
5145       PhiOrSelectSeen = true;
5146       continue;
5147     }
5148     // Similar for select.
5149     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5150       worklist.push_back(SI->getFalseValue());
5151       worklist.push_back(SI->getTrueValue());
5152       PhiOrSelectSeen = true;
5153       continue;
5154     }
5155 
5156     // For non-PHIs, determine the addressing mode being computed.  Note that
5157     // the result may differ depending on what other uses our candidate
5158     // addressing instructions might have.
5159     AddrModeInsts.clear();
5160     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5161                                                                       0);
5162     // Defer the query (and possible computation of) the dom tree to point of
5163     // actual use.  It's expected that most address matches don't actually need
5164     // the domtree.
5165     auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5166       Function *F = MemoryInst->getParent()->getParent();
5167       return this->getDT(*F);
5168     };
5169     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5170         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5171         *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5172         BFI.get());
5173 
5174     GetElementPtrInst *GEP = LargeOffsetGEP.first;
5175     if (GEP && !NewGEPBases.count(GEP)) {
5176       // If splitting the underlying data structure can reduce the offset of a
5177       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5178       // previously split data structures.
5179       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5180       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5181         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5182     }
5183 
5184     NewAddrMode.OriginalValue = V;
5185     if (!AddrModes.addNewAddrMode(NewAddrMode))
5186       break;
5187   }
5188 
5189   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5190   // or we have multiple but either couldn't combine them or combining them
5191   // wouldn't do anything useful, bail out now.
5192   if (!AddrModes.combineAddrModes()) {
5193     TPT.rollback(LastKnownGood);
5194     return false;
5195   }
5196   bool Modified = TPT.commit();
5197 
5198   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5199   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5200 
5201   // If all the instructions matched are already in this BB, don't do anything.
5202   // If we saw a Phi node then it is not local definitely, and if we saw a select
5203   // then we want to push the address calculation past it even if it's already
5204   // in this BB.
5205   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5206         return IsNonLocalValue(V, MemoryInst->getParent());
5207                   })) {
5208     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5209                       << "\n");
5210     return Modified;
5211   }
5212 
5213   // Insert this computation right after this user.  Since our caller is
5214   // scanning from the top of the BB to the bottom, reuse of the expr are
5215   // guaranteed to happen later.
5216   IRBuilder<> Builder(MemoryInst);
5217 
5218   // Now that we determined the addressing expression we want to use and know
5219   // that we have to sink it into this block.  Check to see if we have already
5220   // done this for some other load/store instr in this block.  If so, reuse
5221   // the computation.  Before attempting reuse, check if the address is valid
5222   // as it may have been erased.
5223 
5224   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5225 
5226   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5227   if (SunkAddr) {
5228     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5229                       << " for " << *MemoryInst << "\n");
5230     if (SunkAddr->getType() != Addr->getType())
5231       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5232   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5233                                    SubtargetInfo->addrSinkUsingGEPs())) {
5234     // By default, we use the GEP-based method when AA is used later. This
5235     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5236     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5237                       << " for " << *MemoryInst << "\n");
5238     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5239     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5240 
5241     // First, find the pointer.
5242     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5243       ResultPtr = AddrMode.BaseReg;
5244       AddrMode.BaseReg = nullptr;
5245     }
5246 
5247     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5248       // We can't add more than one pointer together, nor can we scale a
5249       // pointer (both of which seem meaningless).
5250       if (ResultPtr || AddrMode.Scale != 1)
5251         return Modified;
5252 
5253       ResultPtr = AddrMode.ScaledReg;
5254       AddrMode.Scale = 0;
5255     }
5256 
5257     // It is only safe to sign extend the BaseReg if we know that the math
5258     // required to create it did not overflow before we extend it. Since
5259     // the original IR value was tossed in favor of a constant back when
5260     // the AddrMode was created we need to bail out gracefully if widths
5261     // do not match instead of extending it.
5262     //
5263     // (See below for code to add the scale.)
5264     if (AddrMode.Scale) {
5265       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5266       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5267           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5268         return Modified;
5269     }
5270 
5271     if (AddrMode.BaseGV) {
5272       if (ResultPtr)
5273         return Modified;
5274 
5275       ResultPtr = AddrMode.BaseGV;
5276     }
5277 
5278     // If the real base value actually came from an inttoptr, then the matcher
5279     // will look through it and provide only the integer value. In that case,
5280     // use it here.
5281     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5282       if (!ResultPtr && AddrMode.BaseReg) {
5283         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5284                                            "sunkaddr");
5285         AddrMode.BaseReg = nullptr;
5286       } else if (!ResultPtr && AddrMode.Scale == 1) {
5287         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5288                                            "sunkaddr");
5289         AddrMode.Scale = 0;
5290       }
5291     }
5292 
5293     if (!ResultPtr &&
5294         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5295       SunkAddr = Constant::getNullValue(Addr->getType());
5296     } else if (!ResultPtr) {
5297       return Modified;
5298     } else {
5299       Type *I8PtrTy =
5300           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5301       Type *I8Ty = Builder.getInt8Ty();
5302 
5303       // Start with the base register. Do this first so that subsequent address
5304       // matching finds it last, which will prevent it from trying to match it
5305       // as the scaled value in case it happens to be a mul. That would be
5306       // problematic if we've sunk a different mul for the scale, because then
5307       // we'd end up sinking both muls.
5308       if (AddrMode.BaseReg) {
5309         Value *V = AddrMode.BaseReg;
5310         if (V->getType() != IntPtrTy)
5311           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5312 
5313         ResultIndex = V;
5314       }
5315 
5316       // Add the scale value.
5317       if (AddrMode.Scale) {
5318         Value *V = AddrMode.ScaledReg;
5319         if (V->getType() == IntPtrTy) {
5320           // done.
5321         } else {
5322           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5323                  cast<IntegerType>(V->getType())->getBitWidth() &&
5324                  "We can't transform if ScaledReg is too narrow");
5325           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5326         }
5327 
5328         if (AddrMode.Scale != 1)
5329           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5330                                 "sunkaddr");
5331         if (ResultIndex)
5332           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5333         else
5334           ResultIndex = V;
5335       }
5336 
5337       // Add in the Base Offset if present.
5338       if (AddrMode.BaseOffs) {
5339         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5340         if (ResultIndex) {
5341           // We need to add this separately from the scale above to help with
5342           // SDAG consecutive load/store merging.
5343           if (ResultPtr->getType() != I8PtrTy)
5344             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5345           ResultPtr =
5346               AddrMode.InBounds
5347                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5348                                               "sunkaddr")
5349                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5350         }
5351 
5352         ResultIndex = V;
5353       }
5354 
5355       if (!ResultIndex) {
5356         SunkAddr = ResultPtr;
5357       } else {
5358         if (ResultPtr->getType() != I8PtrTy)
5359           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5360         SunkAddr =
5361             AddrMode.InBounds
5362                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5363                                             "sunkaddr")
5364                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5365       }
5366 
5367       if (SunkAddr->getType() != Addr->getType())
5368         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5369     }
5370   } else {
5371     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5372     // non-integral pointers, so in that case bail out now.
5373     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5374     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5375     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5376     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5377     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5378         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5379         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5380         (AddrMode.BaseGV &&
5381          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5382       return Modified;
5383 
5384     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5385                       << " for " << *MemoryInst << "\n");
5386     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5387     Value *Result = nullptr;
5388 
5389     // Start with the base register. Do this first so that subsequent address
5390     // matching finds it last, which will prevent it from trying to match it
5391     // as the scaled value in case it happens to be a mul. That would be
5392     // problematic if we've sunk a different mul for the scale, because then
5393     // we'd end up sinking both muls.
5394     if (AddrMode.BaseReg) {
5395       Value *V = AddrMode.BaseReg;
5396       if (V->getType()->isPointerTy())
5397         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5398       if (V->getType() != IntPtrTy)
5399         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5400       Result = V;
5401     }
5402 
5403     // Add the scale value.
5404     if (AddrMode.Scale) {
5405       Value *V = AddrMode.ScaledReg;
5406       if (V->getType() == IntPtrTy) {
5407         // done.
5408       } else if (V->getType()->isPointerTy()) {
5409         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5410       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5411                  cast<IntegerType>(V->getType())->getBitWidth()) {
5412         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5413       } else {
5414         // It is only safe to sign extend the BaseReg if we know that the math
5415         // required to create it did not overflow before we extend it. Since
5416         // the original IR value was tossed in favor of a constant back when
5417         // the AddrMode was created we need to bail out gracefully if widths
5418         // do not match instead of extending it.
5419         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5420         if (I && (Result != AddrMode.BaseReg))
5421           I->eraseFromParent();
5422         return Modified;
5423       }
5424       if (AddrMode.Scale != 1)
5425         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5426                               "sunkaddr");
5427       if (Result)
5428         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5429       else
5430         Result = V;
5431     }
5432 
5433     // Add in the BaseGV if present.
5434     if (AddrMode.BaseGV) {
5435       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5436       if (Result)
5437         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5438       else
5439         Result = V;
5440     }
5441 
5442     // Add in the Base Offset if present.
5443     if (AddrMode.BaseOffs) {
5444       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5445       if (Result)
5446         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5447       else
5448         Result = V;
5449     }
5450 
5451     if (!Result)
5452       SunkAddr = Constant::getNullValue(Addr->getType());
5453     else
5454       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5455   }
5456 
5457   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5458   // Store the newly computed address into the cache. In the case we reused a
5459   // value, this should be idempotent.
5460   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5461 
5462   // If we have no uses, recursively delete the value and all dead instructions
5463   // using it.
5464   if (Repl->use_empty()) {
5465     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5466       RecursivelyDeleteTriviallyDeadInstructions(
5467           Repl, TLInfo, nullptr,
5468           [&](Value *V) { removeAllAssertingVHReferences(V); });
5469     });
5470   }
5471   ++NumMemoryInsts;
5472   return true;
5473 }
5474 
5475 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5476 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5477 /// only handle a 2 operand GEP in the same basic block or a splat constant
5478 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5479 /// index.
5480 ///
5481 /// If the existing GEP has a vector base pointer that is splat, we can look
5482 /// through the splat to find the scalar pointer. If we can't find a scalar
5483 /// pointer there's nothing we can do.
5484 ///
5485 /// If we have a GEP with more than 2 indices where the middle indices are all
5486 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5487 ///
5488 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5489 /// followed by a GEP with an all zeroes vector index. This will enable
5490 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5491 /// zero index.
5492 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5493                                                Value *Ptr) {
5494   Value *NewAddr;
5495 
5496   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5497     // Don't optimize GEPs that don't have indices.
5498     if (!GEP->hasIndices())
5499       return false;
5500 
5501     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5502     // FIXME: We should support this by sinking the GEP.
5503     if (MemoryInst->getParent() != GEP->getParent())
5504       return false;
5505 
5506     SmallVector<Value *, 2> Ops(GEP->operands());
5507 
5508     bool RewriteGEP = false;
5509 
5510     if (Ops[0]->getType()->isVectorTy()) {
5511       Ops[0] = getSplatValue(Ops[0]);
5512       if (!Ops[0])
5513         return false;
5514       RewriteGEP = true;
5515     }
5516 
5517     unsigned FinalIndex = Ops.size() - 1;
5518 
5519     // Ensure all but the last index is 0.
5520     // FIXME: This isn't strictly required. All that's required is that they are
5521     // all scalars or splats.
5522     for (unsigned i = 1; i < FinalIndex; ++i) {
5523       auto *C = dyn_cast<Constant>(Ops[i]);
5524       if (!C)
5525         return false;
5526       if (isa<VectorType>(C->getType()))
5527         C = C->getSplatValue();
5528       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5529       if (!CI || !CI->isZero())
5530         return false;
5531       // Scalarize the index if needed.
5532       Ops[i] = CI;
5533     }
5534 
5535     // Try to scalarize the final index.
5536     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5537       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5538         auto *C = dyn_cast<ConstantInt>(V);
5539         // Don't scalarize all zeros vector.
5540         if (!C || !C->isZero()) {
5541           Ops[FinalIndex] = V;
5542           RewriteGEP = true;
5543         }
5544       }
5545     }
5546 
5547     // If we made any changes or the we have extra operands, we need to generate
5548     // new instructions.
5549     if (!RewriteGEP && Ops.size() == 2)
5550       return false;
5551 
5552     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5553 
5554     IRBuilder<> Builder(MemoryInst);
5555 
5556     Type *SourceTy = GEP->getSourceElementType();
5557     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5558 
5559     // If the final index isn't a vector, emit a scalar GEP containing all ops
5560     // and a vector GEP with all zeroes final index.
5561     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5562       NewAddr = Builder.CreateGEP(SourceTy, Ops[0],
5563                                   makeArrayRef(Ops).drop_front());
5564       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5565       auto *SecondTy = GetElementPtrInst::getIndexedType(
5566           SourceTy, makeArrayRef(Ops).drop_front());
5567       NewAddr =
5568           Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5569     } else {
5570       Value *Base = Ops[0];
5571       Value *Index = Ops[FinalIndex];
5572 
5573       // Create a scalar GEP if there are more than 2 operands.
5574       if (Ops.size() != 2) {
5575         // Replace the last index with 0.
5576         Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5577         Base = Builder.CreateGEP(SourceTy, Base,
5578                                  makeArrayRef(Ops).drop_front());
5579         SourceTy = GetElementPtrInst::getIndexedType(
5580             SourceTy, makeArrayRef(Ops).drop_front());
5581       }
5582 
5583       // Now create the GEP with scalar pointer and vector index.
5584       NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5585     }
5586   } else if (!isa<Constant>(Ptr)) {
5587     // Not a GEP, maybe its a splat and we can create a GEP to enable
5588     // SelectionDAGBuilder to use it as a uniform base.
5589     Value *V = getSplatValue(Ptr);
5590     if (!V)
5591       return false;
5592 
5593     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5594 
5595     IRBuilder<> Builder(MemoryInst);
5596 
5597     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5598     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5599     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5600     Type *ScalarTy;
5601     if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5602         Intrinsic::masked_gather) {
5603       ScalarTy = MemoryInst->getType()->getScalarType();
5604     } else {
5605       assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5606              Intrinsic::masked_scatter);
5607       ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5608     }
5609     NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5610   } else {
5611     // Constant, SelectionDAGBuilder knows to check if its a splat.
5612     return false;
5613   }
5614 
5615   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5616 
5617   // If we have no uses, recursively delete the value and all dead instructions
5618   // using it.
5619   if (Ptr->use_empty())
5620     RecursivelyDeleteTriviallyDeadInstructions(
5621         Ptr, TLInfo, nullptr,
5622         [&](Value *V) { removeAllAssertingVHReferences(V); });
5623 
5624   return true;
5625 }
5626 
5627 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5628 /// address computing into the block when possible / profitable.
5629 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5630   bool MadeChange = false;
5631 
5632   const TargetRegisterInfo *TRI =
5633       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5634   TargetLowering::AsmOperandInfoVector TargetConstraints =
5635       TLI->ParseConstraints(*DL, TRI, *CS);
5636   unsigned ArgNo = 0;
5637   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5638     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5639 
5640     // Compute the constraint code and ConstraintType to use.
5641     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5642 
5643     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5644         OpInfo.isIndirect) {
5645       Value *OpVal = CS->getArgOperand(ArgNo++);
5646       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5647     } else if (OpInfo.Type == InlineAsm::isInput)
5648       ArgNo++;
5649   }
5650 
5651   return MadeChange;
5652 }
5653 
5654 /// Check if all the uses of \p Val are equivalent (or free) zero or
5655 /// sign extensions.
5656 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5657   assert(!Val->use_empty() && "Input must have at least one use");
5658   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5659   bool IsSExt = isa<SExtInst>(FirstUser);
5660   Type *ExtTy = FirstUser->getType();
5661   for (const User *U : Val->users()) {
5662     const Instruction *UI = cast<Instruction>(U);
5663     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5664       return false;
5665     Type *CurTy = UI->getType();
5666     // Same input and output types: Same instruction after CSE.
5667     if (CurTy == ExtTy)
5668       continue;
5669 
5670     // If IsSExt is true, we are in this situation:
5671     // a = Val
5672     // b = sext ty1 a to ty2
5673     // c = sext ty1 a to ty3
5674     // Assuming ty2 is shorter than ty3, this could be turned into:
5675     // a = Val
5676     // b = sext ty1 a to ty2
5677     // c = sext ty2 b to ty3
5678     // However, the last sext is not free.
5679     if (IsSExt)
5680       return false;
5681 
5682     // This is a ZExt, maybe this is free to extend from one type to another.
5683     // In that case, we would not account for a different use.
5684     Type *NarrowTy;
5685     Type *LargeTy;
5686     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5687         CurTy->getScalarType()->getIntegerBitWidth()) {
5688       NarrowTy = CurTy;
5689       LargeTy = ExtTy;
5690     } else {
5691       NarrowTy = ExtTy;
5692       LargeTy = CurTy;
5693     }
5694 
5695     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5696       return false;
5697   }
5698   // All uses are the same or can be derived from one another for free.
5699   return true;
5700 }
5701 
5702 /// Try to speculatively promote extensions in \p Exts and continue
5703 /// promoting through newly promoted operands recursively as far as doing so is
5704 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5705 /// When some promotion happened, \p TPT contains the proper state to revert
5706 /// them.
5707 ///
5708 /// \return true if some promotion happened, false otherwise.
5709 bool CodeGenPrepare::tryToPromoteExts(
5710     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5711     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5712     unsigned CreatedInstsCost) {
5713   bool Promoted = false;
5714 
5715   // Iterate over all the extensions to try to promote them.
5716   for (auto *I : Exts) {
5717     // Early check if we directly have ext(load).
5718     if (isa<LoadInst>(I->getOperand(0))) {
5719       ProfitablyMovedExts.push_back(I);
5720       continue;
5721     }
5722 
5723     // Check whether or not we want to do any promotion.  The reason we have
5724     // this check inside the for loop is to catch the case where an extension
5725     // is directly fed by a load because in such case the extension can be moved
5726     // up without any promotion on its operands.
5727     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5728       return false;
5729 
5730     // Get the action to perform the promotion.
5731     TypePromotionHelper::Action TPH =
5732         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5733     // Check if we can promote.
5734     if (!TPH) {
5735       // Save the current extension as we cannot move up through its operand.
5736       ProfitablyMovedExts.push_back(I);
5737       continue;
5738     }
5739 
5740     // Save the current state.
5741     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5742         TPT.getRestorationPoint();
5743     SmallVector<Instruction *, 4> NewExts;
5744     unsigned NewCreatedInstsCost = 0;
5745     unsigned ExtCost = !TLI->isExtFree(I);
5746     // Promote.
5747     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5748                              &NewExts, nullptr, *TLI);
5749     assert(PromotedVal &&
5750            "TypePromotionHelper should have filtered out those cases");
5751 
5752     // We would be able to merge only one extension in a load.
5753     // Therefore, if we have more than 1 new extension we heuristically
5754     // cut this search path, because it means we degrade the code quality.
5755     // With exactly 2, the transformation is neutral, because we will merge
5756     // one extension but leave one. However, we optimistically keep going,
5757     // because the new extension may be removed too.
5758     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5759     // FIXME: It would be possible to propagate a negative value instead of
5760     // conservatively ceiling it to 0.
5761     TotalCreatedInstsCost =
5762         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5763     if (!StressExtLdPromotion &&
5764         (TotalCreatedInstsCost > 1 ||
5765          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5766       // This promotion is not profitable, rollback to the previous state, and
5767       // save the current extension in ProfitablyMovedExts as the latest
5768       // speculative promotion turned out to be unprofitable.
5769       TPT.rollback(LastKnownGood);
5770       ProfitablyMovedExts.push_back(I);
5771       continue;
5772     }
5773     // Continue promoting NewExts as far as doing so is profitable.
5774     SmallVector<Instruction *, 2> NewlyMovedExts;
5775     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5776     bool NewPromoted = false;
5777     for (auto *ExtInst : NewlyMovedExts) {
5778       Instruction *MovedExt = cast<Instruction>(ExtInst);
5779       Value *ExtOperand = MovedExt->getOperand(0);
5780       // If we have reached to a load, we need this extra profitability check
5781       // as it could potentially be merged into an ext(load).
5782       if (isa<LoadInst>(ExtOperand) &&
5783           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5784             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5785         continue;
5786 
5787       ProfitablyMovedExts.push_back(MovedExt);
5788       NewPromoted = true;
5789     }
5790 
5791     // If none of speculative promotions for NewExts is profitable, rollback
5792     // and save the current extension (I) as the last profitable extension.
5793     if (!NewPromoted) {
5794       TPT.rollback(LastKnownGood);
5795       ProfitablyMovedExts.push_back(I);
5796       continue;
5797     }
5798     // The promotion is profitable.
5799     Promoted = true;
5800   }
5801   return Promoted;
5802 }
5803 
5804 /// Merging redundant sexts when one is dominating the other.
5805 bool CodeGenPrepare::mergeSExts(Function &F) {
5806   bool Changed = false;
5807   for (auto &Entry : ValToSExtendedUses) {
5808     SExts &Insts = Entry.second;
5809     SExts CurPts;
5810     for (Instruction *Inst : Insts) {
5811       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5812           Inst->getOperand(0) != Entry.first)
5813         continue;
5814       bool inserted = false;
5815       for (auto &Pt : CurPts) {
5816         if (getDT(F).dominates(Inst, Pt)) {
5817           Pt->replaceAllUsesWith(Inst);
5818           RemovedInsts.insert(Pt);
5819           Pt->removeFromParent();
5820           Pt = Inst;
5821           inserted = true;
5822           Changed = true;
5823           break;
5824         }
5825         if (!getDT(F).dominates(Pt, Inst))
5826           // Give up if we need to merge in a common dominator as the
5827           // experiments show it is not profitable.
5828           continue;
5829         Inst->replaceAllUsesWith(Pt);
5830         RemovedInsts.insert(Inst);
5831         Inst->removeFromParent();
5832         inserted = true;
5833         Changed = true;
5834         break;
5835       }
5836       if (!inserted)
5837         CurPts.push_back(Inst);
5838     }
5839   }
5840   return Changed;
5841 }
5842 
5843 // Splitting large data structures so that the GEPs accessing them can have
5844 // smaller offsets so that they can be sunk to the same blocks as their users.
5845 // For example, a large struct starting from %base is split into two parts
5846 // where the second part starts from %new_base.
5847 //
5848 // Before:
5849 // BB0:
5850 //   %base     =
5851 //
5852 // BB1:
5853 //   %gep0     = gep %base, off0
5854 //   %gep1     = gep %base, off1
5855 //   %gep2     = gep %base, off2
5856 //
5857 // BB2:
5858 //   %load1    = load %gep0
5859 //   %load2    = load %gep1
5860 //   %load3    = load %gep2
5861 //
5862 // After:
5863 // BB0:
5864 //   %base     =
5865 //   %new_base = gep %base, off0
5866 //
5867 // BB1:
5868 //   %new_gep0 = %new_base
5869 //   %new_gep1 = gep %new_base, off1 - off0
5870 //   %new_gep2 = gep %new_base, off2 - off0
5871 //
5872 // BB2:
5873 //   %load1    = load i32, i32* %new_gep0
5874 //   %load2    = load i32, i32* %new_gep1
5875 //   %load3    = load i32, i32* %new_gep2
5876 //
5877 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5878 // their offsets are smaller enough to fit into the addressing mode.
5879 bool CodeGenPrepare::splitLargeGEPOffsets() {
5880   bool Changed = false;
5881   for (auto &Entry : LargeOffsetGEPMap) {
5882     Value *OldBase = Entry.first;
5883     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5884         &LargeOffsetGEPs = Entry.second;
5885     auto compareGEPOffset =
5886         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5887             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5888           if (LHS.first == RHS.first)
5889             return false;
5890           if (LHS.second != RHS.second)
5891             return LHS.second < RHS.second;
5892           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5893         };
5894     // Sorting all the GEPs of the same data structures based on the offsets.
5895     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5896     LargeOffsetGEPs.erase(
5897         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5898         LargeOffsetGEPs.end());
5899     // Skip if all the GEPs have the same offsets.
5900     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5901       continue;
5902     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5903     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5904     Value *NewBaseGEP = nullptr;
5905 
5906     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5907     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5908       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5909       int64_t Offset = LargeOffsetGEP->second;
5910       if (Offset != BaseOffset) {
5911         TargetLowering::AddrMode AddrMode;
5912         AddrMode.BaseOffs = Offset - BaseOffset;
5913         // The result type of the GEP might not be the type of the memory
5914         // access.
5915         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5916                                         GEP->getResultElementType(),
5917                                         GEP->getAddressSpace())) {
5918           // We need to create a new base if the offset to the current base is
5919           // too large to fit into the addressing mode. So, a very large struct
5920           // may be split into several parts.
5921           BaseGEP = GEP;
5922           BaseOffset = Offset;
5923           NewBaseGEP = nullptr;
5924         }
5925       }
5926 
5927       // Generate a new GEP to replace the current one.
5928       LLVMContext &Ctx = GEP->getContext();
5929       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5930       Type *I8PtrTy =
5931           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5932       Type *I8Ty = Type::getInt8Ty(Ctx);
5933 
5934       if (!NewBaseGEP) {
5935         // Create a new base if we don't have one yet.  Find the insertion
5936         // pointer for the new base first.
5937         BasicBlock::iterator NewBaseInsertPt;
5938         BasicBlock *NewBaseInsertBB;
5939         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5940           // If the base of the struct is an instruction, the new base will be
5941           // inserted close to it.
5942           NewBaseInsertBB = BaseI->getParent();
5943           if (isa<PHINode>(BaseI))
5944             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5945           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5946             NewBaseInsertBB =
5947                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5948             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5949           } else
5950             NewBaseInsertPt = std::next(BaseI->getIterator());
5951         } else {
5952           // If the current base is an argument or global value, the new base
5953           // will be inserted to the entry block.
5954           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5955           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5956         }
5957         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5958         // Create a new base.
5959         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5960         NewBaseGEP = OldBase;
5961         if (NewBaseGEP->getType() != I8PtrTy)
5962           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5963         NewBaseGEP =
5964             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5965         NewGEPBases.insert(NewBaseGEP);
5966       }
5967 
5968       IRBuilder<> Builder(GEP);
5969       Value *NewGEP = NewBaseGEP;
5970       if (Offset == BaseOffset) {
5971         if (GEP->getType() != I8PtrTy)
5972           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5973       } else {
5974         // Calculate the new offset for the new GEP.
5975         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5976         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5977 
5978         if (GEP->getType() != I8PtrTy)
5979           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5980       }
5981       GEP->replaceAllUsesWith(NewGEP);
5982       LargeOffsetGEPID.erase(GEP);
5983       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5984       GEP->eraseFromParent();
5985       Changed = true;
5986     }
5987   }
5988   return Changed;
5989 }
5990 
5991 bool CodeGenPrepare::optimizePhiType(
5992     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5993     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5994   // We are looking for a collection on interconnected phi nodes that together
5995   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5996   // are of the same type. Convert the whole set of nodes to the type of the
5997   // bitcast.
5998   Type *PhiTy = I->getType();
5999   Type *ConvertTy = nullptr;
6000   if (Visited.count(I) ||
6001       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6002     return false;
6003 
6004   SmallVector<Instruction *, 4> Worklist;
6005   Worklist.push_back(cast<Instruction>(I));
6006   SmallPtrSet<PHINode *, 4> PhiNodes;
6007   PhiNodes.insert(I);
6008   Visited.insert(I);
6009   SmallPtrSet<Instruction *, 4> Defs;
6010   SmallPtrSet<Instruction *, 4> Uses;
6011   // This works by adding extra bitcasts between load/stores and removing
6012   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6013   // we can get in the situation where we remove a bitcast in one iteration
6014   // just to add it again in the next. We need to ensure that at least one
6015   // bitcast we remove are anchored to something that will not change back.
6016   bool AnyAnchored = false;
6017 
6018   while (!Worklist.empty()) {
6019     Instruction *II = Worklist.pop_back_val();
6020 
6021     if (auto *Phi = dyn_cast<PHINode>(II)) {
6022       // Handle Defs, which might also be PHI's
6023       for (Value *V : Phi->incoming_values()) {
6024         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6025           if (!PhiNodes.count(OpPhi)) {
6026             if (Visited.count(OpPhi))
6027               return false;
6028             PhiNodes.insert(OpPhi);
6029             Visited.insert(OpPhi);
6030             Worklist.push_back(OpPhi);
6031           }
6032         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6033           if (!OpLoad->isSimple())
6034             return false;
6035           if (!Defs.count(OpLoad)) {
6036             Defs.insert(OpLoad);
6037             Worklist.push_back(OpLoad);
6038           }
6039         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6040           if (!Defs.count(OpEx)) {
6041             Defs.insert(OpEx);
6042             Worklist.push_back(OpEx);
6043           }
6044         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6045           if (!ConvertTy)
6046             ConvertTy = OpBC->getOperand(0)->getType();
6047           if (OpBC->getOperand(0)->getType() != ConvertTy)
6048             return false;
6049           if (!Defs.count(OpBC)) {
6050             Defs.insert(OpBC);
6051             Worklist.push_back(OpBC);
6052             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6053                            !isa<ExtractElementInst>(OpBC->getOperand(0));
6054           }
6055         } else if (!isa<UndefValue>(V)) {
6056           return false;
6057         }
6058       }
6059     }
6060 
6061     // Handle uses which might also be phi's
6062     for (User *V : II->users()) {
6063       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6064         if (!PhiNodes.count(OpPhi)) {
6065           if (Visited.count(OpPhi))
6066             return false;
6067           PhiNodes.insert(OpPhi);
6068           Visited.insert(OpPhi);
6069           Worklist.push_back(OpPhi);
6070         }
6071       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6072         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6073           return false;
6074         Uses.insert(OpStore);
6075       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6076         if (!ConvertTy)
6077           ConvertTy = OpBC->getType();
6078         if (OpBC->getType() != ConvertTy)
6079           return false;
6080         Uses.insert(OpBC);
6081         AnyAnchored |=
6082             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6083       } else {
6084         return false;
6085       }
6086     }
6087   }
6088 
6089   if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6090     return false;
6091 
6092   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
6093                     << *ConvertTy << "\n");
6094 
6095   // Create all the new phi nodes of the new type, and bitcast any loads to the
6096   // correct type.
6097   ValueToValueMap ValMap;
6098   ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
6099   for (Instruction *D : Defs) {
6100     if (isa<BitCastInst>(D)) {
6101       ValMap[D] = D->getOperand(0);
6102       DeletedInstrs.insert(D);
6103     } else {
6104       ValMap[D] =
6105           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6106     }
6107   }
6108   for (PHINode *Phi : PhiNodes)
6109     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6110                                   Phi->getName() + ".tc", Phi);
6111   // Pipe together all the PhiNodes.
6112   for (PHINode *Phi : PhiNodes) {
6113     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6114     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6115       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6116                           Phi->getIncomingBlock(i));
6117     Visited.insert(NewPhi);
6118   }
6119   // And finally pipe up the stores and bitcasts
6120   for (Instruction *U : Uses) {
6121     if (isa<BitCastInst>(U)) {
6122       DeletedInstrs.insert(U);
6123       U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
6124     } else {
6125       U->setOperand(0,
6126                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6127     }
6128   }
6129 
6130   // Save the removed phis to be deleted later.
6131   for (PHINode *Phi : PhiNodes)
6132     DeletedInstrs.insert(Phi);
6133   return true;
6134 }
6135 
6136 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6137   if (!OptimizePhiTypes)
6138     return false;
6139 
6140   bool Changed = false;
6141   SmallPtrSet<PHINode *, 4> Visited;
6142   SmallPtrSet<Instruction *, 4> DeletedInstrs;
6143 
6144   // Attempt to optimize all the phis in the functions to the correct type.
6145   for (auto &BB : F)
6146     for (auto &Phi : BB.phis())
6147       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6148 
6149   // Remove any old phi's that have been converted.
6150   for (auto *I : DeletedInstrs) {
6151     I->replaceAllUsesWith(UndefValue::get(I->getType()));
6152     I->eraseFromParent();
6153   }
6154 
6155   return Changed;
6156 }
6157 
6158 /// Return true, if an ext(load) can be formed from an extension in
6159 /// \p MovedExts.
6160 bool CodeGenPrepare::canFormExtLd(
6161     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6162     Instruction *&Inst, bool HasPromoted) {
6163   for (auto *MovedExtInst : MovedExts) {
6164     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6165       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6166       Inst = MovedExtInst;
6167       break;
6168     }
6169   }
6170   if (!LI)
6171     return false;
6172 
6173   // If they're already in the same block, there's nothing to do.
6174   // Make the cheap checks first if we did not promote.
6175   // If we promoted, we need to check if it is indeed profitable.
6176   if (!HasPromoted && LI->getParent() == Inst->getParent())
6177     return false;
6178 
6179   return TLI->isExtLoad(LI, Inst, *DL);
6180 }
6181 
6182 /// Move a zext or sext fed by a load into the same basic block as the load,
6183 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6184 /// extend into the load.
6185 ///
6186 /// E.g.,
6187 /// \code
6188 /// %ld = load i32* %addr
6189 /// %add = add nuw i32 %ld, 4
6190 /// %zext = zext i32 %add to i64
6191 // \endcode
6192 /// =>
6193 /// \code
6194 /// %ld = load i32* %addr
6195 /// %zext = zext i32 %ld to i64
6196 /// %add = add nuw i64 %zext, 4
6197 /// \encode
6198 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6199 /// allow us to match zext(load i32*) to i64.
6200 ///
6201 /// Also, try to promote the computations used to obtain a sign extended
6202 /// value used into memory accesses.
6203 /// E.g.,
6204 /// \code
6205 /// a = add nsw i32 b, 3
6206 /// d = sext i32 a to i64
6207 /// e = getelementptr ..., i64 d
6208 /// \endcode
6209 /// =>
6210 /// \code
6211 /// f = sext i32 b to i64
6212 /// a = add nsw i64 f, 3
6213 /// e = getelementptr ..., i64 a
6214 /// \endcode
6215 ///
6216 /// \p Inst[in/out] the extension may be modified during the process if some
6217 /// promotions apply.
6218 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6219   bool AllowPromotionWithoutCommonHeader = false;
6220   /// See if it is an interesting sext operations for the address type
6221   /// promotion before trying to promote it, e.g., the ones with the right
6222   /// type and used in memory accesses.
6223   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6224       *Inst, AllowPromotionWithoutCommonHeader);
6225   TypePromotionTransaction TPT(RemovedInsts);
6226   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6227       TPT.getRestorationPoint();
6228   SmallVector<Instruction *, 1> Exts;
6229   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6230   Exts.push_back(Inst);
6231 
6232   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6233 
6234   // Look for a load being extended.
6235   LoadInst *LI = nullptr;
6236   Instruction *ExtFedByLoad;
6237 
6238   // Try to promote a chain of computation if it allows to form an extended
6239   // load.
6240   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6241     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6242     TPT.commit();
6243     // Move the extend into the same block as the load.
6244     ExtFedByLoad->moveAfter(LI);
6245     ++NumExtsMoved;
6246     Inst = ExtFedByLoad;
6247     return true;
6248   }
6249 
6250   // Continue promoting SExts if known as considerable depending on targets.
6251   if (ATPConsiderable &&
6252       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6253                                   HasPromoted, TPT, SpeculativelyMovedExts))
6254     return true;
6255 
6256   TPT.rollback(LastKnownGood);
6257   return false;
6258 }
6259 
6260 // Perform address type promotion if doing so is profitable.
6261 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6262 // instructions that sign extended the same initial value. However, if
6263 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6264 // extension is just profitable.
6265 bool CodeGenPrepare::performAddressTypePromotion(
6266     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6267     bool HasPromoted, TypePromotionTransaction &TPT,
6268     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6269   bool Promoted = false;
6270   SmallPtrSet<Instruction *, 1> UnhandledExts;
6271   bool AllSeenFirst = true;
6272   for (auto *I : SpeculativelyMovedExts) {
6273     Value *HeadOfChain = I->getOperand(0);
6274     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6275         SeenChainsForSExt.find(HeadOfChain);
6276     // If there is an unhandled SExt which has the same header, try to promote
6277     // it as well.
6278     if (AlreadySeen != SeenChainsForSExt.end()) {
6279       if (AlreadySeen->second != nullptr)
6280         UnhandledExts.insert(AlreadySeen->second);
6281       AllSeenFirst = false;
6282     }
6283   }
6284 
6285   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6286                         SpeculativelyMovedExts.size() == 1)) {
6287     TPT.commit();
6288     if (HasPromoted)
6289       Promoted = true;
6290     for (auto *I : SpeculativelyMovedExts) {
6291       Value *HeadOfChain = I->getOperand(0);
6292       SeenChainsForSExt[HeadOfChain] = nullptr;
6293       ValToSExtendedUses[HeadOfChain].push_back(I);
6294     }
6295     // Update Inst as promotion happen.
6296     Inst = SpeculativelyMovedExts.pop_back_val();
6297   } else {
6298     // This is the first chain visited from the header, keep the current chain
6299     // as unhandled. Defer to promote this until we encounter another SExt
6300     // chain derived from the same header.
6301     for (auto *I : SpeculativelyMovedExts) {
6302       Value *HeadOfChain = I->getOperand(0);
6303       SeenChainsForSExt[HeadOfChain] = Inst;
6304     }
6305     return false;
6306   }
6307 
6308   if (!AllSeenFirst && !UnhandledExts.empty())
6309     for (auto *VisitedSExt : UnhandledExts) {
6310       if (RemovedInsts.count(VisitedSExt))
6311         continue;
6312       TypePromotionTransaction TPT(RemovedInsts);
6313       SmallVector<Instruction *, 1> Exts;
6314       SmallVector<Instruction *, 2> Chains;
6315       Exts.push_back(VisitedSExt);
6316       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6317       TPT.commit();
6318       if (HasPromoted)
6319         Promoted = true;
6320       for (auto *I : Chains) {
6321         Value *HeadOfChain = I->getOperand(0);
6322         // Mark this as handled.
6323         SeenChainsForSExt[HeadOfChain] = nullptr;
6324         ValToSExtendedUses[HeadOfChain].push_back(I);
6325       }
6326     }
6327   return Promoted;
6328 }
6329 
6330 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6331   BasicBlock *DefBB = I->getParent();
6332 
6333   // If the result of a {s|z}ext and its source are both live out, rewrite all
6334   // other uses of the source with result of extension.
6335   Value *Src = I->getOperand(0);
6336   if (Src->hasOneUse())
6337     return false;
6338 
6339   // Only do this xform if truncating is free.
6340   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6341     return false;
6342 
6343   // Only safe to perform the optimization if the source is also defined in
6344   // this block.
6345   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6346     return false;
6347 
6348   bool DefIsLiveOut = false;
6349   for (User *U : I->users()) {
6350     Instruction *UI = cast<Instruction>(U);
6351 
6352     // Figure out which BB this ext is used in.
6353     BasicBlock *UserBB = UI->getParent();
6354     if (UserBB == DefBB) continue;
6355     DefIsLiveOut = true;
6356     break;
6357   }
6358   if (!DefIsLiveOut)
6359     return false;
6360 
6361   // Make sure none of the uses are PHI nodes.
6362   for (User *U : Src->users()) {
6363     Instruction *UI = cast<Instruction>(U);
6364     BasicBlock *UserBB = UI->getParent();
6365     if (UserBB == DefBB) continue;
6366     // Be conservative. We don't want this xform to end up introducing
6367     // reloads just before load / store instructions.
6368     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6369       return false;
6370   }
6371 
6372   // InsertedTruncs - Only insert one trunc in each block once.
6373   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6374 
6375   bool MadeChange = false;
6376   for (Use &U : Src->uses()) {
6377     Instruction *User = cast<Instruction>(U.getUser());
6378 
6379     // Figure out which BB this ext is used in.
6380     BasicBlock *UserBB = User->getParent();
6381     if (UserBB == DefBB) continue;
6382 
6383     // Both src and def are live in this block. Rewrite the use.
6384     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6385 
6386     if (!InsertedTrunc) {
6387       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6388       assert(InsertPt != UserBB->end());
6389       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6390       InsertedInsts.insert(InsertedTrunc);
6391     }
6392 
6393     // Replace a use of the {s|z}ext source with a use of the result.
6394     U = InsertedTrunc;
6395     ++NumExtUses;
6396     MadeChange = true;
6397   }
6398 
6399   return MadeChange;
6400 }
6401 
6402 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6403 // just after the load if the target can fold this into one extload instruction,
6404 // with the hope of eliminating some of the other later "and" instructions using
6405 // the loaded value.  "and"s that are made trivially redundant by the insertion
6406 // of the new "and" are removed by this function, while others (e.g. those whose
6407 // path from the load goes through a phi) are left for isel to potentially
6408 // remove.
6409 //
6410 // For example:
6411 //
6412 // b0:
6413 //   x = load i32
6414 //   ...
6415 // b1:
6416 //   y = and x, 0xff
6417 //   z = use y
6418 //
6419 // becomes:
6420 //
6421 // b0:
6422 //   x = load i32
6423 //   x' = and x, 0xff
6424 //   ...
6425 // b1:
6426 //   z = use x'
6427 //
6428 // whereas:
6429 //
6430 // b0:
6431 //   x1 = load i32
6432 //   ...
6433 // b1:
6434 //   x2 = load i32
6435 //   ...
6436 // b2:
6437 //   x = phi x1, x2
6438 //   y = and x, 0xff
6439 //
6440 // becomes (after a call to optimizeLoadExt for each load):
6441 //
6442 // b0:
6443 //   x1 = load i32
6444 //   x1' = and x1, 0xff
6445 //   ...
6446 // b1:
6447 //   x2 = load i32
6448 //   x2' = and x2, 0xff
6449 //   ...
6450 // b2:
6451 //   x = phi x1', x2'
6452 //   y = and x, 0xff
6453 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6454   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6455     return false;
6456 
6457   // Skip loads we've already transformed.
6458   if (Load->hasOneUse() &&
6459       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6460     return false;
6461 
6462   // Look at all uses of Load, looking through phis, to determine how many bits
6463   // of the loaded value are needed.
6464   SmallVector<Instruction *, 8> WorkList;
6465   SmallPtrSet<Instruction *, 16> Visited;
6466   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6467   for (auto *U : Load->users())
6468     WorkList.push_back(cast<Instruction>(U));
6469 
6470   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6471   unsigned BitWidth = LoadResultVT.getSizeInBits();
6472   // If the BitWidth is 0, do not try to optimize the type
6473   if (BitWidth == 0)
6474     return false;
6475 
6476   APInt DemandBits(BitWidth, 0);
6477   APInt WidestAndBits(BitWidth, 0);
6478 
6479   while (!WorkList.empty()) {
6480     Instruction *I = WorkList.back();
6481     WorkList.pop_back();
6482 
6483     // Break use-def graph loops.
6484     if (!Visited.insert(I).second)
6485       continue;
6486 
6487     // For a PHI node, push all of its users.
6488     if (auto *Phi = dyn_cast<PHINode>(I)) {
6489       for (auto *U : Phi->users())
6490         WorkList.push_back(cast<Instruction>(U));
6491       continue;
6492     }
6493 
6494     switch (I->getOpcode()) {
6495     case Instruction::And: {
6496       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6497       if (!AndC)
6498         return false;
6499       APInt AndBits = AndC->getValue();
6500       DemandBits |= AndBits;
6501       // Keep track of the widest and mask we see.
6502       if (AndBits.ugt(WidestAndBits))
6503         WidestAndBits = AndBits;
6504       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6505         AndsToMaybeRemove.push_back(I);
6506       break;
6507     }
6508 
6509     case Instruction::Shl: {
6510       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6511       if (!ShlC)
6512         return false;
6513       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6514       DemandBits.setLowBits(BitWidth - ShiftAmt);
6515       break;
6516     }
6517 
6518     case Instruction::Trunc: {
6519       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6520       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6521       DemandBits.setLowBits(TruncBitWidth);
6522       break;
6523     }
6524 
6525     default:
6526       return false;
6527     }
6528   }
6529 
6530   uint32_t ActiveBits = DemandBits.getActiveBits();
6531   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6532   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6533   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6534   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6535   // followed by an AND.
6536   // TODO: Look into removing this restriction by fixing backends to either
6537   // return false for isLoadExtLegal for i1 or have them select this pattern to
6538   // a single instruction.
6539   //
6540   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6541   // mask, since these are the only ands that will be removed by isel.
6542   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6543       WidestAndBits != DemandBits)
6544     return false;
6545 
6546   LLVMContext &Ctx = Load->getType()->getContext();
6547   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6548   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6549 
6550   // Reject cases that won't be matched as extloads.
6551   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6552       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6553     return false;
6554 
6555   IRBuilder<> Builder(Load->getNextNode());
6556   auto *NewAnd = cast<Instruction>(
6557       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6558   // Mark this instruction as "inserted by CGP", so that other
6559   // optimizations don't touch it.
6560   InsertedInsts.insert(NewAnd);
6561 
6562   // Replace all uses of load with new and (except for the use of load in the
6563   // new and itself).
6564   Load->replaceAllUsesWith(NewAnd);
6565   NewAnd->setOperand(0, Load);
6566 
6567   // Remove any and instructions that are now redundant.
6568   for (auto *And : AndsToMaybeRemove)
6569     // Check that the and mask is the same as the one we decided to put on the
6570     // new and.
6571     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6572       And->replaceAllUsesWith(NewAnd);
6573       if (&*CurInstIterator == And)
6574         CurInstIterator = std::next(And->getIterator());
6575       And->eraseFromParent();
6576       ++NumAndUses;
6577     }
6578 
6579   ++NumAndsAdded;
6580   return true;
6581 }
6582 
6583 /// Check if V (an operand of a select instruction) is an expensive instruction
6584 /// that is only used once.
6585 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6586   auto *I = dyn_cast<Instruction>(V);
6587   // If it's safe to speculatively execute, then it should not have side
6588   // effects; therefore, it's safe to sink and possibly *not* execute.
6589   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6590          TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6591          TargetTransformInfo::TCC_Expensive;
6592 }
6593 
6594 /// Returns true if a SelectInst should be turned into an explicit branch.
6595 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6596                                                 const TargetLowering *TLI,
6597                                                 SelectInst *SI) {
6598   // If even a predictable select is cheap, then a branch can't be cheaper.
6599   if (!TLI->isPredictableSelectExpensive())
6600     return false;
6601 
6602   // FIXME: This should use the same heuristics as IfConversion to determine
6603   // whether a select is better represented as a branch.
6604 
6605   // If metadata tells us that the select condition is obviously predictable,
6606   // then we want to replace the select with a branch.
6607   uint64_t TrueWeight, FalseWeight;
6608   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6609     uint64_t Max = std::max(TrueWeight, FalseWeight);
6610     uint64_t Sum = TrueWeight + FalseWeight;
6611     if (Sum != 0) {
6612       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6613       if (Probability > TTI->getPredictableBranchThreshold())
6614         return true;
6615     }
6616   }
6617 
6618   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6619 
6620   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6621   // comparison condition. If the compare has more than one use, there's
6622   // probably another cmov or setcc around, so it's not worth emitting a branch.
6623   if (!Cmp || !Cmp->hasOneUse())
6624     return false;
6625 
6626   // If either operand of the select is expensive and only needed on one side
6627   // of the select, we should form a branch.
6628   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6629       sinkSelectOperand(TTI, SI->getFalseValue()))
6630     return true;
6631 
6632   return false;
6633 }
6634 
6635 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6636 /// false value of \p SI. If the true/false value of \p SI is defined by any
6637 /// select instructions in \p Selects, look through the defining select
6638 /// instruction until the true/false value is not defined in \p Selects.
6639 static Value *getTrueOrFalseValue(
6640     SelectInst *SI, bool isTrue,
6641     const SmallPtrSet<const Instruction *, 2> &Selects) {
6642   Value *V = nullptr;
6643 
6644   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6645        DefSI = dyn_cast<SelectInst>(V)) {
6646     assert(DefSI->getCondition() == SI->getCondition() &&
6647            "The condition of DefSI does not match with SI");
6648     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6649   }
6650 
6651   assert(V && "Failed to get select true/false value");
6652   return V;
6653 }
6654 
6655 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6656   assert(Shift->isShift() && "Expected a shift");
6657 
6658   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6659   // general vector shifts, and (3) the shift amount is a select-of-splatted
6660   // values, hoist the shifts before the select:
6661   //   shift Op0, (select Cond, TVal, FVal) -->
6662   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6663   //
6664   // This is inverting a generic IR transform when we know that the cost of a
6665   // general vector shift is more than the cost of 2 shift-by-scalars.
6666   // We can't do this effectively in SDAG because we may not be able to
6667   // determine if the select operands are splats from within a basic block.
6668   Type *Ty = Shift->getType();
6669   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6670     return false;
6671   Value *Cond, *TVal, *FVal;
6672   if (!match(Shift->getOperand(1),
6673              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6674     return false;
6675   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6676     return false;
6677 
6678   IRBuilder<> Builder(Shift);
6679   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6680   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6681   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6682   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6683   Shift->replaceAllUsesWith(NewSel);
6684   Shift->eraseFromParent();
6685   return true;
6686 }
6687 
6688 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6689   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6690   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6691          "Expected a funnel shift");
6692 
6693   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6694   // than general vector shifts, and (3) the shift amount is select-of-splatted
6695   // values, hoist the funnel shifts before the select:
6696   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6697   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6698   //
6699   // This is inverting a generic IR transform when we know that the cost of a
6700   // general vector shift is more than the cost of 2 shift-by-scalars.
6701   // We can't do this effectively in SDAG because we may not be able to
6702   // determine if the select operands are splats from within a basic block.
6703   Type *Ty = Fsh->getType();
6704   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6705     return false;
6706   Value *Cond, *TVal, *FVal;
6707   if (!match(Fsh->getOperand(2),
6708              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6709     return false;
6710   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6711     return false;
6712 
6713   IRBuilder<> Builder(Fsh);
6714   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6715   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6716   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6717   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6718   Fsh->replaceAllUsesWith(NewSel);
6719   Fsh->eraseFromParent();
6720   return true;
6721 }
6722 
6723 /// If we have a SelectInst that will likely profit from branch prediction,
6724 /// turn it into a branch.
6725 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6726   if (DisableSelectToBranch)
6727     return false;
6728 
6729   // Find all consecutive select instructions that share the same condition.
6730   SmallVector<SelectInst *, 2> ASI;
6731   ASI.push_back(SI);
6732   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6733        It != SI->getParent()->end(); ++It) {
6734     SelectInst *I = dyn_cast<SelectInst>(&*It);
6735     if (I && SI->getCondition() == I->getCondition()) {
6736       ASI.push_back(I);
6737     } else {
6738       break;
6739     }
6740   }
6741 
6742   SelectInst *LastSI = ASI.back();
6743   // Increment the current iterator to skip all the rest of select instructions
6744   // because they will be either "not lowered" or "all lowered" to branch.
6745   CurInstIterator = std::next(LastSI->getIterator());
6746 
6747   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6748 
6749   // Can we convert the 'select' to CF ?
6750   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6751     return false;
6752 
6753   TargetLowering::SelectSupportKind SelectKind;
6754   if (VectorCond)
6755     SelectKind = TargetLowering::VectorMaskSelect;
6756   else if (SI->getType()->isVectorTy())
6757     SelectKind = TargetLowering::ScalarCondVectorVal;
6758   else
6759     SelectKind = TargetLowering::ScalarValSelect;
6760 
6761   if (TLI->isSelectSupported(SelectKind) &&
6762       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6763        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6764     return false;
6765 
6766   // The DominatorTree needs to be rebuilt by any consumers after this
6767   // transformation. We simply reset here rather than setting the ModifiedDT
6768   // flag to avoid restarting the function walk in runOnFunction for each
6769   // select optimized.
6770   DT.reset();
6771 
6772   // Transform a sequence like this:
6773   //    start:
6774   //       %cmp = cmp uge i32 %a, %b
6775   //       %sel = select i1 %cmp, i32 %c, i32 %d
6776   //
6777   // Into:
6778   //    start:
6779   //       %cmp = cmp uge i32 %a, %b
6780   //       %cmp.frozen = freeze %cmp
6781   //       br i1 %cmp.frozen, label %select.true, label %select.false
6782   //    select.true:
6783   //       br label %select.end
6784   //    select.false:
6785   //       br label %select.end
6786   //    select.end:
6787   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6788   //
6789   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6790   // In addition, we may sink instructions that produce %c or %d from
6791   // the entry block into the destination(s) of the new branch.
6792   // If the true or false blocks do not contain a sunken instruction, that
6793   // block and its branch may be optimized away. In that case, one side of the
6794   // first branch will point directly to select.end, and the corresponding PHI
6795   // predecessor block will be the start block.
6796 
6797   // First, we split the block containing the select into 2 blocks.
6798   BasicBlock *StartBlock = SI->getParent();
6799   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6800   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6801   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6802 
6803   // Delete the unconditional branch that was just created by the split.
6804   StartBlock->getTerminator()->eraseFromParent();
6805 
6806   // These are the new basic blocks for the conditional branch.
6807   // At least one will become an actual new basic block.
6808   BasicBlock *TrueBlock = nullptr;
6809   BasicBlock *FalseBlock = nullptr;
6810   BranchInst *TrueBranch = nullptr;
6811   BranchInst *FalseBranch = nullptr;
6812 
6813   // Sink expensive instructions into the conditional blocks to avoid executing
6814   // them speculatively.
6815   for (SelectInst *SI : ASI) {
6816     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6817       if (TrueBlock == nullptr) {
6818         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6819                                        EndBlock->getParent(), EndBlock);
6820         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6821         TrueBranch->setDebugLoc(SI->getDebugLoc());
6822       }
6823       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6824       TrueInst->moveBefore(TrueBranch);
6825     }
6826     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6827       if (FalseBlock == nullptr) {
6828         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6829                                         EndBlock->getParent(), EndBlock);
6830         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6831         FalseBranch->setDebugLoc(SI->getDebugLoc());
6832       }
6833       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6834       FalseInst->moveBefore(FalseBranch);
6835     }
6836   }
6837 
6838   // If there was nothing to sink, then arbitrarily choose the 'false' side
6839   // for a new input value to the PHI.
6840   if (TrueBlock == FalseBlock) {
6841     assert(TrueBlock == nullptr &&
6842            "Unexpected basic block transform while optimizing select");
6843 
6844     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6845                                     EndBlock->getParent(), EndBlock);
6846     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6847     FalseBranch->setDebugLoc(SI->getDebugLoc());
6848   }
6849 
6850   // Insert the real conditional branch based on the original condition.
6851   // If we did not create a new block for one of the 'true' or 'false' paths
6852   // of the condition, it means that side of the branch goes to the end block
6853   // directly and the path originates from the start block from the point of
6854   // view of the new PHI.
6855   BasicBlock *TT, *FT;
6856   if (TrueBlock == nullptr) {
6857     TT = EndBlock;
6858     FT = FalseBlock;
6859     TrueBlock = StartBlock;
6860   } else if (FalseBlock == nullptr) {
6861     TT = TrueBlock;
6862     FT = EndBlock;
6863     FalseBlock = StartBlock;
6864   } else {
6865     TT = TrueBlock;
6866     FT = FalseBlock;
6867   }
6868   IRBuilder<> IB(SI);
6869   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6870   IB.CreateCondBr(CondFr, TT, FT, SI);
6871 
6872   SmallPtrSet<const Instruction *, 2> INS;
6873   INS.insert(ASI.begin(), ASI.end());
6874   // Use reverse iterator because later select may use the value of the
6875   // earlier select, and we need to propagate value through earlier select
6876   // to get the PHI operand.
6877   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6878     SelectInst *SI = *It;
6879     // The select itself is replaced with a PHI Node.
6880     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6881     PN->takeName(SI);
6882     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6883     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6884     PN->setDebugLoc(SI->getDebugLoc());
6885 
6886     SI->replaceAllUsesWith(PN);
6887     SI->eraseFromParent();
6888     INS.erase(SI);
6889     ++NumSelectsExpanded;
6890   }
6891 
6892   // Instruct OptimizeBlock to skip to the next block.
6893   CurInstIterator = StartBlock->end();
6894   return true;
6895 }
6896 
6897 /// Some targets only accept certain types for splat inputs. For example a VDUP
6898 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6899 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
6900 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6901   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6902   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6903                             m_Undef(), m_ZeroMask())))
6904     return false;
6905   Type *NewType = TLI->shouldConvertSplatType(SVI);
6906   if (!NewType)
6907     return false;
6908 
6909   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6910   assert(!NewType->isVectorTy() && "Expected a scalar type!");
6911   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6912          "Expected a type of the same size!");
6913   auto *NewVecType =
6914       FixedVectorType::get(NewType, SVIVecType->getNumElements());
6915 
6916   // Create a bitcast (shuffle (insert (bitcast(..))))
6917   IRBuilder<> Builder(SVI->getContext());
6918   Builder.SetInsertPoint(SVI);
6919   Value *BC1 = Builder.CreateBitCast(
6920       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6921   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
6922   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6923 
6924   SVI->replaceAllUsesWith(BC2);
6925   RecursivelyDeleteTriviallyDeadInstructions(
6926       SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6927 
6928   // Also hoist the bitcast up to its operand if it they are not in the same
6929   // block.
6930   if (auto *BCI = dyn_cast<Instruction>(BC1))
6931     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6932       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6933           !Op->isTerminator() && !Op->isEHPad())
6934         BCI->moveAfter(Op);
6935 
6936   return true;
6937 }
6938 
6939 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6940   // If the operands of I can be folded into a target instruction together with
6941   // I, duplicate and sink them.
6942   SmallVector<Use *, 4> OpsToSink;
6943   if (!TLI->shouldSinkOperands(I, OpsToSink))
6944     return false;
6945 
6946   // OpsToSink can contain multiple uses in a use chain (e.g.
6947   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6948   // uses must come first, so we process the ops in reverse order so as to not
6949   // create invalid IR.
6950   BasicBlock *TargetBB = I->getParent();
6951   bool Changed = false;
6952   SmallVector<Use *, 4> ToReplace;
6953   for (Use *U : reverse(OpsToSink)) {
6954     auto *UI = cast<Instruction>(U->get());
6955     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6956       continue;
6957     ToReplace.push_back(U);
6958   }
6959 
6960   SetVector<Instruction *> MaybeDead;
6961   DenseMap<Instruction *, Instruction *> NewInstructions;
6962   Instruction *InsertPoint = I;
6963   for (Use *U : ToReplace) {
6964     auto *UI = cast<Instruction>(U->get());
6965     Instruction *NI = UI->clone();
6966     NewInstructions[UI] = NI;
6967     MaybeDead.insert(UI);
6968     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6969     NI->insertBefore(InsertPoint);
6970     InsertPoint = NI;
6971     InsertedInsts.insert(NI);
6972 
6973     // Update the use for the new instruction, making sure that we update the
6974     // sunk instruction uses, if it is part of a chain that has already been
6975     // sunk.
6976     Instruction *OldI = cast<Instruction>(U->getUser());
6977     if (NewInstructions.count(OldI))
6978       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6979     else
6980       U->set(NI);
6981     Changed = true;
6982   }
6983 
6984   // Remove instructions that are dead after sinking.
6985   for (auto *I : MaybeDead) {
6986     if (!I->hasNUsesOrMore(1)) {
6987       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6988       I->eraseFromParent();
6989     }
6990   }
6991 
6992   return Changed;
6993 }
6994 
6995 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6996   Value *Cond = SI->getCondition();
6997   Type *OldType = Cond->getType();
6998   LLVMContext &Context = Cond->getContext();
6999   EVT OldVT = TLI->getValueType(*DL, OldType);
7000   MVT RegType = TLI->getRegisterType(Context, OldVT);
7001   unsigned RegWidth = RegType.getSizeInBits();
7002 
7003   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7004     return false;
7005 
7006   // If the register width is greater than the type width, expand the condition
7007   // of the switch instruction and each case constant to the width of the
7008   // register. By widening the type of the switch condition, subsequent
7009   // comparisons (for case comparisons) will not need to be extended to the
7010   // preferred register width, so we will potentially eliminate N-1 extends,
7011   // where N is the number of cases in the switch.
7012   auto *NewType = Type::getIntNTy(Context, RegWidth);
7013 
7014   // Extend the switch condition and case constants using the target preferred
7015   // extend unless the switch condition is a function argument with an extend
7016   // attribute. In that case, we can avoid an unnecessary mask/extension by
7017   // matching the argument extension instead.
7018   Instruction::CastOps ExtType = Instruction::ZExt;
7019   // Some targets prefer SExt over ZExt.
7020   if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7021     ExtType = Instruction::SExt;
7022 
7023   if (auto *Arg = dyn_cast<Argument>(Cond)) {
7024     if (Arg->hasSExtAttr())
7025       ExtType = Instruction::SExt;
7026     if (Arg->hasZExtAttr())
7027       ExtType = Instruction::ZExt;
7028   }
7029 
7030   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7031   ExtInst->insertBefore(SI);
7032   ExtInst->setDebugLoc(SI->getDebugLoc());
7033   SI->setCondition(ExtInst);
7034   for (auto Case : SI->cases()) {
7035     APInt NarrowConst = Case.getCaseValue()->getValue();
7036     APInt WideConst = (ExtType == Instruction::ZExt) ?
7037                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
7038     Case.setValue(ConstantInt::get(Context, WideConst));
7039   }
7040 
7041   return true;
7042 }
7043 
7044 
7045 namespace {
7046 
7047 /// Helper class to promote a scalar operation to a vector one.
7048 /// This class is used to move downward extractelement transition.
7049 /// E.g.,
7050 /// a = vector_op <2 x i32>
7051 /// b = extractelement <2 x i32> a, i32 0
7052 /// c = scalar_op b
7053 /// store c
7054 ///
7055 /// =>
7056 /// a = vector_op <2 x i32>
7057 /// c = vector_op a (equivalent to scalar_op on the related lane)
7058 /// * d = extractelement <2 x i32> c, i32 0
7059 /// * store d
7060 /// Assuming both extractelement and store can be combine, we get rid of the
7061 /// transition.
7062 class VectorPromoteHelper {
7063   /// DataLayout associated with the current module.
7064   const DataLayout &DL;
7065 
7066   /// Used to perform some checks on the legality of vector operations.
7067   const TargetLowering &TLI;
7068 
7069   /// Used to estimated the cost of the promoted chain.
7070   const TargetTransformInfo &TTI;
7071 
7072   /// The transition being moved downwards.
7073   Instruction *Transition;
7074 
7075   /// The sequence of instructions to be promoted.
7076   SmallVector<Instruction *, 4> InstsToBePromoted;
7077 
7078   /// Cost of combining a store and an extract.
7079   unsigned StoreExtractCombineCost;
7080 
7081   /// Instruction that will be combined with the transition.
7082   Instruction *CombineInst = nullptr;
7083 
7084   /// The instruction that represents the current end of the transition.
7085   /// Since we are faking the promotion until we reach the end of the chain
7086   /// of computation, we need a way to get the current end of the transition.
7087   Instruction *getEndOfTransition() const {
7088     if (InstsToBePromoted.empty())
7089       return Transition;
7090     return InstsToBePromoted.back();
7091   }
7092 
7093   /// Return the index of the original value in the transition.
7094   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7095   /// c, is at index 0.
7096   unsigned getTransitionOriginalValueIdx() const {
7097     assert(isa<ExtractElementInst>(Transition) &&
7098            "Other kind of transitions are not supported yet");
7099     return 0;
7100   }
7101 
7102   /// Return the index of the index in the transition.
7103   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7104   /// is at index 1.
7105   unsigned getTransitionIdx() const {
7106     assert(isa<ExtractElementInst>(Transition) &&
7107            "Other kind of transitions are not supported yet");
7108     return 1;
7109   }
7110 
7111   /// Get the type of the transition.
7112   /// This is the type of the original value.
7113   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7114   /// transition is <2 x i32>.
7115   Type *getTransitionType() const {
7116     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7117   }
7118 
7119   /// Promote \p ToBePromoted by moving \p Def downward through.
7120   /// I.e., we have the following sequence:
7121   /// Def = Transition <ty1> a to <ty2>
7122   /// b = ToBePromoted <ty2> Def, ...
7123   /// =>
7124   /// b = ToBePromoted <ty1> a, ...
7125   /// Def = Transition <ty1> ToBePromoted to <ty2>
7126   void promoteImpl(Instruction *ToBePromoted);
7127 
7128   /// Check whether or not it is profitable to promote all the
7129   /// instructions enqueued to be promoted.
7130   bool isProfitableToPromote() {
7131     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7132     unsigned Index = isa<ConstantInt>(ValIdx)
7133                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
7134                          : -1;
7135     Type *PromotedType = getTransitionType();
7136 
7137     StoreInst *ST = cast<StoreInst>(CombineInst);
7138     unsigned AS = ST->getPointerAddressSpace();
7139     // Check if this store is supported.
7140     if (!TLI.allowsMisalignedMemoryAccesses(
7141             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7142             ST->getAlign())) {
7143       // If this is not supported, there is no way we can combine
7144       // the extract with the store.
7145       return false;
7146     }
7147 
7148     // The scalar chain of computation has to pay for the transition
7149     // scalar to vector.
7150     // The vector chain has to account for the combining cost.
7151     InstructionCost ScalarCost =
7152         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
7153     InstructionCost VectorCost = StoreExtractCombineCost;
7154     enum TargetTransformInfo::TargetCostKind CostKind =
7155       TargetTransformInfo::TCK_RecipThroughput;
7156     for (const auto &Inst : InstsToBePromoted) {
7157       // Compute the cost.
7158       // By construction, all instructions being promoted are arithmetic ones.
7159       // Moreover, one argument is a constant that can be viewed as a splat
7160       // constant.
7161       Value *Arg0 = Inst->getOperand(0);
7162       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7163                             isa<ConstantFP>(Arg0);
7164       TargetTransformInfo::OperandValueKind Arg0OVK =
7165           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7166                          : TargetTransformInfo::OK_AnyValue;
7167       TargetTransformInfo::OperandValueKind Arg1OVK =
7168           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7169                           : TargetTransformInfo::OK_AnyValue;
7170       ScalarCost += TTI.getArithmeticInstrCost(
7171           Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
7172       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7173                                                CostKind,
7174                                                Arg0OVK, Arg1OVK);
7175     }
7176     LLVM_DEBUG(
7177         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7178                << ScalarCost << "\nVector: " << VectorCost << '\n');
7179     return ScalarCost > VectorCost;
7180   }
7181 
7182   /// Generate a constant vector with \p Val with the same
7183   /// number of elements as the transition.
7184   /// \p UseSplat defines whether or not \p Val should be replicated
7185   /// across the whole vector.
7186   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7187   /// otherwise we generate a vector with as many undef as possible:
7188   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7189   /// used at the index of the extract.
7190   Value *getConstantVector(Constant *Val, bool UseSplat) const {
7191     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7192     if (!UseSplat) {
7193       // If we cannot determine where the constant must be, we have to
7194       // use a splat constant.
7195       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7196       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7197         ExtractIdx = CstVal->getSExtValue();
7198       else
7199         UseSplat = true;
7200     }
7201 
7202     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7203     if (UseSplat)
7204       return ConstantVector::getSplat(EC, Val);
7205 
7206     if (!EC.isScalable()) {
7207       SmallVector<Constant *, 4> ConstVec;
7208       UndefValue *UndefVal = UndefValue::get(Val->getType());
7209       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7210         if (Idx == ExtractIdx)
7211           ConstVec.push_back(Val);
7212         else
7213           ConstVec.push_back(UndefVal);
7214       }
7215       return ConstantVector::get(ConstVec);
7216     } else
7217       llvm_unreachable(
7218           "Generate scalable vector for non-splat is unimplemented");
7219   }
7220 
7221   /// Check if promoting to a vector type an operand at \p OperandIdx
7222   /// in \p Use can trigger undefined behavior.
7223   static bool canCauseUndefinedBehavior(const Instruction *Use,
7224                                         unsigned OperandIdx) {
7225     // This is not safe to introduce undef when the operand is on
7226     // the right hand side of a division-like instruction.
7227     if (OperandIdx != 1)
7228       return false;
7229     switch (Use->getOpcode()) {
7230     default:
7231       return false;
7232     case Instruction::SDiv:
7233     case Instruction::UDiv:
7234     case Instruction::SRem:
7235     case Instruction::URem:
7236       return true;
7237     case Instruction::FDiv:
7238     case Instruction::FRem:
7239       return !Use->hasNoNaNs();
7240     }
7241     llvm_unreachable(nullptr);
7242   }
7243 
7244 public:
7245   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7246                       const TargetTransformInfo &TTI, Instruction *Transition,
7247                       unsigned CombineCost)
7248       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7249         StoreExtractCombineCost(CombineCost) {
7250     assert(Transition && "Do not know how to promote null");
7251   }
7252 
7253   /// Check if we can promote \p ToBePromoted to \p Type.
7254   bool canPromote(const Instruction *ToBePromoted) const {
7255     // We could support CastInst too.
7256     return isa<BinaryOperator>(ToBePromoted);
7257   }
7258 
7259   /// Check if it is profitable to promote \p ToBePromoted
7260   /// by moving downward the transition through.
7261   bool shouldPromote(const Instruction *ToBePromoted) const {
7262     // Promote only if all the operands can be statically expanded.
7263     // Indeed, we do not want to introduce any new kind of transitions.
7264     for (const Use &U : ToBePromoted->operands()) {
7265       const Value *Val = U.get();
7266       if (Val == getEndOfTransition()) {
7267         // If the use is a division and the transition is on the rhs,
7268         // we cannot promote the operation, otherwise we may create a
7269         // division by zero.
7270         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7271           return false;
7272         continue;
7273       }
7274       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7275           !isa<ConstantFP>(Val))
7276         return false;
7277     }
7278     // Check that the resulting operation is legal.
7279     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7280     if (!ISDOpcode)
7281       return false;
7282     return StressStoreExtract ||
7283            TLI.isOperationLegalOrCustom(
7284                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7285   }
7286 
7287   /// Check whether or not \p Use can be combined
7288   /// with the transition.
7289   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7290   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7291 
7292   /// Record \p ToBePromoted as part of the chain to be promoted.
7293   void enqueueForPromotion(Instruction *ToBePromoted) {
7294     InstsToBePromoted.push_back(ToBePromoted);
7295   }
7296 
7297   /// Set the instruction that will be combined with the transition.
7298   void recordCombineInstruction(Instruction *ToBeCombined) {
7299     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7300     CombineInst = ToBeCombined;
7301   }
7302 
7303   /// Promote all the instructions enqueued for promotion if it is
7304   /// is profitable.
7305   /// \return True if the promotion happened, false otherwise.
7306   bool promote() {
7307     // Check if there is something to promote.
7308     // Right now, if we do not have anything to combine with,
7309     // we assume the promotion is not profitable.
7310     if (InstsToBePromoted.empty() || !CombineInst)
7311       return false;
7312 
7313     // Check cost.
7314     if (!StressStoreExtract && !isProfitableToPromote())
7315       return false;
7316 
7317     // Promote.
7318     for (auto &ToBePromoted : InstsToBePromoted)
7319       promoteImpl(ToBePromoted);
7320     InstsToBePromoted.clear();
7321     return true;
7322   }
7323 };
7324 
7325 } // end anonymous namespace
7326 
7327 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7328   // At this point, we know that all the operands of ToBePromoted but Def
7329   // can be statically promoted.
7330   // For Def, we need to use its parameter in ToBePromoted:
7331   // b = ToBePromoted ty1 a
7332   // Def = Transition ty1 b to ty2
7333   // Move the transition down.
7334   // 1. Replace all uses of the promoted operation by the transition.
7335   // = ... b => = ... Def.
7336   assert(ToBePromoted->getType() == Transition->getType() &&
7337          "The type of the result of the transition does not match "
7338          "the final type");
7339   ToBePromoted->replaceAllUsesWith(Transition);
7340   // 2. Update the type of the uses.
7341   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7342   Type *TransitionTy = getTransitionType();
7343   ToBePromoted->mutateType(TransitionTy);
7344   // 3. Update all the operands of the promoted operation with promoted
7345   // operands.
7346   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7347   for (Use &U : ToBePromoted->operands()) {
7348     Value *Val = U.get();
7349     Value *NewVal = nullptr;
7350     if (Val == Transition)
7351       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7352     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7353              isa<ConstantFP>(Val)) {
7354       // Use a splat constant if it is not safe to use undef.
7355       NewVal = getConstantVector(
7356           cast<Constant>(Val),
7357           isa<UndefValue>(Val) ||
7358               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7359     } else
7360       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7361                        "this?");
7362     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7363   }
7364   Transition->moveAfter(ToBePromoted);
7365   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7366 }
7367 
7368 /// Some targets can do store(extractelement) with one instruction.
7369 /// Try to push the extractelement towards the stores when the target
7370 /// has this feature and this is profitable.
7371 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7372   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7373   if (DisableStoreExtract ||
7374       (!StressStoreExtract &&
7375        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7376                                        Inst->getOperand(1), CombineCost)))
7377     return false;
7378 
7379   // At this point we know that Inst is a vector to scalar transition.
7380   // Try to move it down the def-use chain, until:
7381   // - We can combine the transition with its single use
7382   //   => we got rid of the transition.
7383   // - We escape the current basic block
7384   //   => we would need to check that we are moving it at a cheaper place and
7385   //      we do not do that for now.
7386   BasicBlock *Parent = Inst->getParent();
7387   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7388   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7389   // If the transition has more than one use, assume this is not going to be
7390   // beneficial.
7391   while (Inst->hasOneUse()) {
7392     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7393     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7394 
7395     if (ToBePromoted->getParent() != Parent) {
7396       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7397                         << ToBePromoted->getParent()->getName()
7398                         << ") than the transition (" << Parent->getName()
7399                         << ").\n");
7400       return false;
7401     }
7402 
7403     if (VPH.canCombine(ToBePromoted)) {
7404       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7405                         << "will be combined with: " << *ToBePromoted << '\n');
7406       VPH.recordCombineInstruction(ToBePromoted);
7407       bool Changed = VPH.promote();
7408       NumStoreExtractExposed += Changed;
7409       return Changed;
7410     }
7411 
7412     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7413     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7414       return false;
7415 
7416     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7417 
7418     VPH.enqueueForPromotion(ToBePromoted);
7419     Inst = ToBePromoted;
7420   }
7421   return false;
7422 }
7423 
7424 /// For the instruction sequence of store below, F and I values
7425 /// are bundled together as an i64 value before being stored into memory.
7426 /// Sometimes it is more efficient to generate separate stores for F and I,
7427 /// which can remove the bitwise instructions or sink them to colder places.
7428 ///
7429 ///   (store (or (zext (bitcast F to i32) to i64),
7430 ///              (shl (zext I to i64), 32)), addr)  -->
7431 ///   (store F, addr) and (store I, addr+4)
7432 ///
7433 /// Similarly, splitting for other merged store can also be beneficial, like:
7434 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7435 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7436 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7437 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7438 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7439 ///
7440 /// We allow each target to determine specifically which kind of splitting is
7441 /// supported.
7442 ///
7443 /// The store patterns are commonly seen from the simple code snippet below
7444 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7445 ///   void goo(const std::pair<int, float> &);
7446 ///   hoo() {
7447 ///     ...
7448 ///     goo(std::make_pair(tmp, ftmp));
7449 ///     ...
7450 ///   }
7451 ///
7452 /// Although we already have similar splitting in DAG Combine, we duplicate
7453 /// it in CodeGenPrepare to catch the case in which pattern is across
7454 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7455 /// during code expansion.
7456 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7457                                 const TargetLowering &TLI) {
7458   // Handle simple but common cases only.
7459   Type *StoreType = SI.getValueOperand()->getType();
7460 
7461   // The code below assumes shifting a value by <number of bits>,
7462   // whereas scalable vectors would have to be shifted by
7463   // <2log(vscale) + number of bits> in order to store the
7464   // low/high parts. Bailing out for now.
7465   if (isa<ScalableVectorType>(StoreType))
7466     return false;
7467 
7468   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7469       DL.getTypeSizeInBits(StoreType) == 0)
7470     return false;
7471 
7472   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7473   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7474   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7475     return false;
7476 
7477   // Don't split the store if it is volatile.
7478   if (SI.isVolatile())
7479     return false;
7480 
7481   // Match the following patterns:
7482   // (store (or (zext LValue to i64),
7483   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7484   //  or
7485   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7486   //            (zext LValue to i64),
7487   // Expect both operands of OR and the first operand of SHL have only
7488   // one use.
7489   Value *LValue, *HValue;
7490   if (!match(SI.getValueOperand(),
7491              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7492                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7493                                    m_SpecificInt(HalfValBitSize))))))
7494     return false;
7495 
7496   // Check LValue and HValue are int with size less or equal than 32.
7497   if (!LValue->getType()->isIntegerTy() ||
7498       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7499       !HValue->getType()->isIntegerTy() ||
7500       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7501     return false;
7502 
7503   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7504   // as the input of target query.
7505   auto *LBC = dyn_cast<BitCastInst>(LValue);
7506   auto *HBC = dyn_cast<BitCastInst>(HValue);
7507   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7508                   : EVT::getEVT(LValue->getType());
7509   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7510                    : EVT::getEVT(HValue->getType());
7511   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7512     return false;
7513 
7514   // Start to split store.
7515   IRBuilder<> Builder(SI.getContext());
7516   Builder.SetInsertPoint(&SI);
7517 
7518   // If LValue/HValue is a bitcast in another BB, create a new one in current
7519   // BB so it may be merged with the splitted stores by dag combiner.
7520   if (LBC && LBC->getParent() != SI.getParent())
7521     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7522   if (HBC && HBC->getParent() != SI.getParent())
7523     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7524 
7525   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7526   auto CreateSplitStore = [&](Value *V, bool Upper) {
7527     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7528     Value *Addr = Builder.CreateBitCast(
7529         SI.getOperand(1),
7530         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7531     Align Alignment = SI.getAlign();
7532     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7533     if (IsOffsetStore) {
7534       Addr = Builder.CreateGEP(
7535           SplitStoreType, Addr,
7536           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7537 
7538       // When splitting the store in half, naturally one half will retain the
7539       // alignment of the original wider store, regardless of whether it was
7540       // over-aligned or not, while the other will require adjustment.
7541       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7542     }
7543     Builder.CreateAlignedStore(V, Addr, Alignment);
7544   };
7545 
7546   CreateSplitStore(LValue, false);
7547   CreateSplitStore(HValue, true);
7548 
7549   // Delete the old store.
7550   SI.eraseFromParent();
7551   return true;
7552 }
7553 
7554 // Return true if the GEP has two operands, the first operand is of a sequential
7555 // type, and the second operand is a constant.
7556 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7557   gep_type_iterator I = gep_type_begin(*GEP);
7558   return GEP->getNumOperands() == 2 &&
7559       I.isSequential() &&
7560       isa<ConstantInt>(GEP->getOperand(1));
7561 }
7562 
7563 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7564 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7565 // reducing liveness interference across those edges benefits global register
7566 // allocation. Currently handles only certain cases.
7567 //
7568 // For example, unmerge %GEPI and %UGEPI as below.
7569 //
7570 // ---------- BEFORE ----------
7571 // SrcBlock:
7572 //   ...
7573 //   %GEPIOp = ...
7574 //   ...
7575 //   %GEPI = gep %GEPIOp, Idx
7576 //   ...
7577 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7578 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7579 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7580 //   %UGEPI)
7581 //
7582 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7583 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7584 // ...
7585 //
7586 // DstBi:
7587 //   ...
7588 //   %UGEPI = gep %GEPIOp, UIdx
7589 // ...
7590 // ---------------------------
7591 //
7592 // ---------- AFTER ----------
7593 // SrcBlock:
7594 //   ... (same as above)
7595 //    (* %GEPI is still alive on the indirectbr edges)
7596 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7597 //    unmerging)
7598 // ...
7599 //
7600 // DstBi:
7601 //   ...
7602 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7603 //   ...
7604 // ---------------------------
7605 //
7606 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7607 // no longer alive on them.
7608 //
7609 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7610 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7611 // not to disable further simplications and optimizations as a result of GEP
7612 // merging.
7613 //
7614 // Note this unmerging may increase the length of the data flow critical path
7615 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7616 // between the register pressure and the length of data-flow critical
7617 // path. Restricting this to the uncommon IndirectBr case would minimize the
7618 // impact of potentially longer critical path, if any, and the impact on compile
7619 // time.
7620 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7621                                              const TargetTransformInfo *TTI) {
7622   BasicBlock *SrcBlock = GEPI->getParent();
7623   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7624   // (non-IndirectBr) cases exit early here.
7625   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7626     return false;
7627   // Check that GEPI is a simple gep with a single constant index.
7628   if (!GEPSequentialConstIndexed(GEPI))
7629     return false;
7630   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7631   // Check that GEPI is a cheap one.
7632   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7633                          TargetTransformInfo::TCK_SizeAndLatency)
7634       > TargetTransformInfo::TCC_Basic)
7635     return false;
7636   Value *GEPIOp = GEPI->getOperand(0);
7637   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7638   if (!isa<Instruction>(GEPIOp))
7639     return false;
7640   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7641   if (GEPIOpI->getParent() != SrcBlock)
7642     return false;
7643   // Check that GEP is used outside the block, meaning it's alive on the
7644   // IndirectBr edge(s).
7645   if (find_if(GEPI->users(), [&](User *Usr) {
7646         if (auto *I = dyn_cast<Instruction>(Usr)) {
7647           if (I->getParent() != SrcBlock) {
7648             return true;
7649           }
7650         }
7651         return false;
7652       }) == GEPI->users().end())
7653     return false;
7654   // The second elements of the GEP chains to be unmerged.
7655   std::vector<GetElementPtrInst *> UGEPIs;
7656   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7657   // on IndirectBr edges.
7658   for (User *Usr : GEPIOp->users()) {
7659     if (Usr == GEPI) continue;
7660     // Check if Usr is an Instruction. If not, give up.
7661     if (!isa<Instruction>(Usr))
7662       return false;
7663     auto *UI = cast<Instruction>(Usr);
7664     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7665     if (UI->getParent() == SrcBlock)
7666       continue;
7667     // Check if Usr is a GEP. If not, give up.
7668     if (!isa<GetElementPtrInst>(Usr))
7669       return false;
7670     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7671     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7672     // the pointer operand to it. If so, record it in the vector. If not, give
7673     // up.
7674     if (!GEPSequentialConstIndexed(UGEPI))
7675       return false;
7676     if (UGEPI->getOperand(0) != GEPIOp)
7677       return false;
7678     if (GEPIIdx->getType() !=
7679         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7680       return false;
7681     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7682     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7683                            TargetTransformInfo::TCK_SizeAndLatency)
7684         > TargetTransformInfo::TCC_Basic)
7685       return false;
7686     UGEPIs.push_back(UGEPI);
7687   }
7688   if (UGEPIs.size() == 0)
7689     return false;
7690   // Check the materializing cost of (Uidx-Idx).
7691   for (GetElementPtrInst *UGEPI : UGEPIs) {
7692     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7693     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7694     InstructionCost ImmCost = TTI->getIntImmCost(
7695         NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
7696     if (ImmCost > TargetTransformInfo::TCC_Basic)
7697       return false;
7698   }
7699   // Now unmerge between GEPI and UGEPIs.
7700   for (GetElementPtrInst *UGEPI : UGEPIs) {
7701     UGEPI->setOperand(0, GEPI);
7702     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7703     Constant *NewUGEPIIdx =
7704         ConstantInt::get(GEPIIdx->getType(),
7705                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7706     UGEPI->setOperand(1, NewUGEPIIdx);
7707     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7708     // inbounds to avoid UB.
7709     if (!GEPI->isInBounds()) {
7710       UGEPI->setIsInBounds(false);
7711     }
7712   }
7713   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7714   // alive on IndirectBr edges).
7715   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7716         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7717       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7718   return true;
7719 }
7720 
7721 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) {
7722   // Try and convert
7723   //  %c = icmp ult %x, 8
7724   //  br %c, bla, blb
7725   //  %tc = lshr %x, 3
7726   // to
7727   //  %tc = lshr %x, 3
7728   //  %c = icmp eq %tc, 0
7729   //  br %c, bla, blb
7730   // Creating the cmp to zero can be better for the backend, especially if the
7731   // lshr produces flags that can be used automatically.
7732   if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
7733     return false;
7734 
7735   ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
7736   if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
7737     return false;
7738 
7739   Value *X = Cmp->getOperand(0);
7740   APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
7741 
7742   for (auto *U : X->users()) {
7743     Instruction *UI = dyn_cast<Instruction>(U);
7744     // A quick dominance check
7745     if (!UI ||
7746         (UI->getParent() != Branch->getParent() &&
7747          UI->getParent() != Branch->getSuccessor(0) &&
7748          UI->getParent() != Branch->getSuccessor(1)) ||
7749         (UI->getParent() != Branch->getParent() &&
7750          !UI->getParent()->getSinglePredecessor()))
7751       continue;
7752 
7753     if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
7754         match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
7755       IRBuilder<> Builder(Branch);
7756       if (UI->getParent() != Branch->getParent())
7757         UI->moveBefore(Branch);
7758       Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
7759                                         ConstantInt::get(UI->getType(), 0));
7760       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7761       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7762       Cmp->replaceAllUsesWith(NewCmp);
7763       return true;
7764     }
7765     if (Cmp->isEquality() &&
7766         (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
7767          match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
7768       IRBuilder<> Builder(Branch);
7769       if (UI->getParent() != Branch->getParent())
7770         UI->moveBefore(Branch);
7771       Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
7772                                         ConstantInt::get(UI->getType(), 0));
7773       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7774       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7775       Cmp->replaceAllUsesWith(NewCmp);
7776       return true;
7777     }
7778   }
7779   return false;
7780 }
7781 
7782 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7783   // Bail out if we inserted the instruction to prevent optimizations from
7784   // stepping on each other's toes.
7785   if (InsertedInsts.count(I))
7786     return false;
7787 
7788   // TODO: Move into the switch on opcode below here.
7789   if (PHINode *P = dyn_cast<PHINode>(I)) {
7790     // It is possible for very late stage optimizations (such as SimplifyCFG)
7791     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7792     // trivial PHI, go ahead and zap it here.
7793     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7794       LargeOffsetGEPMap.erase(P);
7795       P->replaceAllUsesWith(V);
7796       P->eraseFromParent();
7797       ++NumPHIsElim;
7798       return true;
7799     }
7800     return false;
7801   }
7802 
7803   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7804     // If the source of the cast is a constant, then this should have
7805     // already been constant folded.  The only reason NOT to constant fold
7806     // it is if something (e.g. LSR) was careful to place the constant
7807     // evaluation in a block other than then one that uses it (e.g. to hoist
7808     // the address of globals out of a loop).  If this is the case, we don't
7809     // want to forward-subst the cast.
7810     if (isa<Constant>(CI->getOperand(0)))
7811       return false;
7812 
7813     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7814       return true;
7815 
7816     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7817       /// Sink a zext or sext into its user blocks if the target type doesn't
7818       /// fit in one register
7819       if (TLI->getTypeAction(CI->getContext(),
7820                              TLI->getValueType(*DL, CI->getType())) ==
7821           TargetLowering::TypeExpandInteger) {
7822         return SinkCast(CI);
7823       } else {
7824         bool MadeChange = optimizeExt(I);
7825         return MadeChange | optimizeExtUses(I);
7826       }
7827     }
7828     return false;
7829   }
7830 
7831   if (auto *Cmp = dyn_cast<CmpInst>(I))
7832     if (optimizeCmp(Cmp, ModifiedDT))
7833       return true;
7834 
7835   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7836     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7837     bool Modified = optimizeLoadExt(LI);
7838     unsigned AS = LI->getPointerAddressSpace();
7839     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7840     return Modified;
7841   }
7842 
7843   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7844     if (splitMergedValStore(*SI, *DL, *TLI))
7845       return true;
7846     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7847     unsigned AS = SI->getPointerAddressSpace();
7848     return optimizeMemoryInst(I, SI->getOperand(1),
7849                               SI->getOperand(0)->getType(), AS);
7850   }
7851 
7852   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7853       unsigned AS = RMW->getPointerAddressSpace();
7854       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7855                                 RMW->getType(), AS);
7856   }
7857 
7858   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7859       unsigned AS = CmpX->getPointerAddressSpace();
7860       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7861                                 CmpX->getCompareOperand()->getType(), AS);
7862   }
7863 
7864   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7865 
7866   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7867     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7868 
7869   // TODO: Move this into the switch on opcode - it handles shifts already.
7870   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7871                 BinOp->getOpcode() == Instruction::LShr)) {
7872     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7873     if (CI && TLI->hasExtractBitsInsn())
7874       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7875         return true;
7876   }
7877 
7878   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7879     if (GEPI->hasAllZeroIndices()) {
7880       /// The GEP operand must be a pointer, so must its result -> BitCast
7881       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7882                                         GEPI->getName(), GEPI);
7883       NC->setDebugLoc(GEPI->getDebugLoc());
7884       GEPI->replaceAllUsesWith(NC);
7885       GEPI->eraseFromParent();
7886       ++NumGEPsElim;
7887       optimizeInst(NC, ModifiedDT);
7888       return true;
7889     }
7890     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7891       return true;
7892     }
7893     return false;
7894   }
7895 
7896   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7897     // freeze(icmp a, const)) -> icmp (freeze a), const
7898     // This helps generate efficient conditional jumps.
7899     Instruction *CmpI = nullptr;
7900     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7901       CmpI = II;
7902     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7903       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7904 
7905     if (CmpI && CmpI->hasOneUse()) {
7906       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7907       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7908                     isa<ConstantPointerNull>(Op0);
7909       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7910                     isa<ConstantPointerNull>(Op1);
7911       if (Const0 || Const1) {
7912         if (!Const0 || !Const1) {
7913           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7914           F->takeName(FI);
7915           CmpI->setOperand(Const0 ? 1 : 0, F);
7916         }
7917         FI->replaceAllUsesWith(CmpI);
7918         FI->eraseFromParent();
7919         return true;
7920       }
7921     }
7922     return false;
7923   }
7924 
7925   if (tryToSinkFreeOperands(I))
7926     return true;
7927 
7928   switch (I->getOpcode()) {
7929   case Instruction::Shl:
7930   case Instruction::LShr:
7931   case Instruction::AShr:
7932     return optimizeShiftInst(cast<BinaryOperator>(I));
7933   case Instruction::Call:
7934     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7935   case Instruction::Select:
7936     return optimizeSelectInst(cast<SelectInst>(I));
7937   case Instruction::ShuffleVector:
7938     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7939   case Instruction::Switch:
7940     return optimizeSwitchInst(cast<SwitchInst>(I));
7941   case Instruction::ExtractElement:
7942     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7943   case Instruction::Br:
7944     return optimizeBranch(cast<BranchInst>(I), *TLI);
7945   }
7946 
7947   return false;
7948 }
7949 
7950 /// Given an OR instruction, check to see if this is a bitreverse
7951 /// idiom. If so, insert the new intrinsic and return true.
7952 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
7953   if (!I.getType()->isIntegerTy() ||
7954       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
7955                                      TLI->getValueType(*DL, I.getType(), true)))
7956     return false;
7957 
7958   SmallVector<Instruction*, 4> Insts;
7959   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7960     return false;
7961   Instruction *LastInst = Insts.back();
7962   I.replaceAllUsesWith(LastInst);
7963   RecursivelyDeleteTriviallyDeadInstructions(
7964       &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
7965   return true;
7966 }
7967 
7968 // In this pass we look for GEP and cast instructions that are used
7969 // across basic blocks and rewrite them to improve basic-block-at-a-time
7970 // selection.
7971 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7972   SunkAddrs.clear();
7973   bool MadeChange = false;
7974 
7975   CurInstIterator = BB.begin();
7976   while (CurInstIterator != BB.end()) {
7977     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7978     if (ModifiedDT)
7979       return true;
7980   }
7981 
7982   bool MadeBitReverse = true;
7983   while (MadeBitReverse) {
7984     MadeBitReverse = false;
7985     for (auto &I : reverse(BB)) {
7986       if (makeBitReverse(I)) {
7987         MadeBitReverse = MadeChange = true;
7988         break;
7989       }
7990     }
7991   }
7992   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7993 
7994   return MadeChange;
7995 }
7996 
7997 // Some CGP optimizations may move or alter what's computed in a block. Check
7998 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7999 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8000   assert(isa<DbgValueInst>(I));
8001   DbgValueInst &DVI = *cast<DbgValueInst>(I);
8002 
8003   // Does this dbg.value refer to a sunk address calculation?
8004   bool AnyChange = false;
8005   SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8006                                      DVI.location_ops().end());
8007   for (Value *Location : LocationOps) {
8008     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8009     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8010     if (SunkAddr) {
8011       // Point dbg.value at locally computed address, which should give the best
8012       // opportunity to be accurately lowered. This update may change the type
8013       // of pointer being referred to; however this makes no difference to
8014       // debugging information, and we can't generate bitcasts that may affect
8015       // codegen.
8016       DVI.replaceVariableLocationOp(Location, SunkAddr);
8017       AnyChange = true;
8018     }
8019   }
8020   return AnyChange;
8021 }
8022 
8023 // A llvm.dbg.value may be using a value before its definition, due to
8024 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8025 // them by moving the dbg.value to immediately after the value definition.
8026 // FIXME: Ideally this should never be necessary, and this has the potential
8027 // to re-order dbg.value intrinsics.
8028 bool CodeGenPrepare::placeDbgValues(Function &F) {
8029   bool MadeChange = false;
8030   DominatorTree DT(F);
8031 
8032   for (BasicBlock &BB : F) {
8033     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
8034       Instruction *Insn = &*BI++;
8035       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
8036       if (!DVI)
8037         continue;
8038 
8039       SmallVector<Instruction *, 4> VIs;
8040       for (Value *V : DVI->getValues())
8041         if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8042           VIs.push_back(VI);
8043 
8044       // This DVI may depend on multiple instructions, complicating any
8045       // potential sink. This block takes the defensive approach, opting to
8046       // "undef" the DVI if it has more than one instruction and any of them do
8047       // not dominate DVI.
8048       for (Instruction *VI : VIs) {
8049         if (VI->isTerminator())
8050           continue;
8051 
8052         // If VI is a phi in a block with an EHPad terminator, we can't insert
8053         // after it.
8054         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8055           continue;
8056 
8057         // If the defining instruction dominates the dbg.value, we do not need
8058         // to move the dbg.value.
8059         if (DT.dominates(VI, DVI))
8060           continue;
8061 
8062         // If we depend on multiple instructions and any of them doesn't
8063         // dominate this DVI, we probably can't salvage it: moving it to
8064         // after any of the instructions could cause us to lose the others.
8065         if (VIs.size() > 1) {
8066           LLVM_DEBUG(
8067               dbgs()
8068               << "Unable to find valid location for Debug Value, undefing:\n"
8069               << *DVI);
8070           DVI->setUndef();
8071           break;
8072         }
8073 
8074         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8075                           << *DVI << ' ' << *VI);
8076         DVI->removeFromParent();
8077         if (isa<PHINode>(VI))
8078           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8079         else
8080           DVI->insertAfter(VI);
8081         MadeChange = true;
8082         ++NumDbgValueMoved;
8083       }
8084     }
8085   }
8086   return MadeChange;
8087 }
8088 
8089 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8090 // probes can be chained dependencies of other regular DAG nodes and block DAG
8091 // combine optimizations.
8092 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8093   bool MadeChange = false;
8094   for (auto &Block : F) {
8095     // Move the rest probes to the beginning of the block.
8096     auto FirstInst = Block.getFirstInsertionPt();
8097     while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8098       ++FirstInst;
8099     BasicBlock::iterator I(FirstInst);
8100     I++;
8101     while (I != Block.end()) {
8102       if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8103         II->moveBefore(&*FirstInst);
8104         MadeChange = true;
8105       }
8106     }
8107   }
8108   return MadeChange;
8109 }
8110 
8111 /// Scale down both weights to fit into uint32_t.
8112 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8113   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8114   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8115   NewTrue = NewTrue / Scale;
8116   NewFalse = NewFalse / Scale;
8117 }
8118 
8119 /// Some targets prefer to split a conditional branch like:
8120 /// \code
8121 ///   %0 = icmp ne i32 %a, 0
8122 ///   %1 = icmp ne i32 %b, 0
8123 ///   %or.cond = or i1 %0, %1
8124 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
8125 /// \endcode
8126 /// into multiple branch instructions like:
8127 /// \code
8128 ///   bb1:
8129 ///     %0 = icmp ne i32 %a, 0
8130 ///     br i1 %0, label %TrueBB, label %bb2
8131 ///   bb2:
8132 ///     %1 = icmp ne i32 %b, 0
8133 ///     br i1 %1, label %TrueBB, label %FalseBB
8134 /// \endcode
8135 /// This usually allows instruction selection to do even further optimizations
8136 /// and combine the compare with the branch instruction. Currently this is
8137 /// applied for targets which have "cheap" jump instructions.
8138 ///
8139 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8140 ///
8141 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
8142   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8143     return false;
8144 
8145   bool MadeChange = false;
8146   for (auto &BB : F) {
8147     // Does this BB end with the following?
8148     //   %cond1 = icmp|fcmp|binary instruction ...
8149     //   %cond2 = icmp|fcmp|binary instruction ...
8150     //   %cond.or = or|and i1 %cond1, cond2
8151     //   br i1 %cond.or label %dest1, label %dest2"
8152     Instruction *LogicOp;
8153     BasicBlock *TBB, *FBB;
8154     if (!match(BB.getTerminator(),
8155                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8156       continue;
8157 
8158     auto *Br1 = cast<BranchInst>(BB.getTerminator());
8159     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8160       continue;
8161 
8162     // The merging of mostly empty BB can cause a degenerate branch.
8163     if (TBB == FBB)
8164       continue;
8165 
8166     unsigned Opc;
8167     Value *Cond1, *Cond2;
8168     if (match(LogicOp,
8169               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8170       Opc = Instruction::And;
8171     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8172                                         m_OneUse(m_Value(Cond2)))))
8173       Opc = Instruction::Or;
8174     else
8175       continue;
8176 
8177     auto IsGoodCond = [](Value *Cond) {
8178       return match(
8179           Cond,
8180           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8181                                            m_LogicalOr(m_Value(), m_Value()))));
8182     };
8183     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8184       continue;
8185 
8186     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8187 
8188     // Create a new BB.
8189     auto *TmpBB =
8190         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8191                            BB.getParent(), BB.getNextNode());
8192 
8193     // Update original basic block by using the first condition directly by the
8194     // branch instruction and removing the no longer needed and/or instruction.
8195     Br1->setCondition(Cond1);
8196     LogicOp->eraseFromParent();
8197 
8198     // Depending on the condition we have to either replace the true or the
8199     // false successor of the original branch instruction.
8200     if (Opc == Instruction::And)
8201       Br1->setSuccessor(0, TmpBB);
8202     else
8203       Br1->setSuccessor(1, TmpBB);
8204 
8205     // Fill in the new basic block.
8206     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8207     if (auto *I = dyn_cast<Instruction>(Cond2)) {
8208       I->removeFromParent();
8209       I->insertBefore(Br2);
8210     }
8211 
8212     // Update PHI nodes in both successors. The original BB needs to be
8213     // replaced in one successor's PHI nodes, because the branch comes now from
8214     // the newly generated BB (NewBB). In the other successor we need to add one
8215     // incoming edge to the PHI nodes, because both branch instructions target
8216     // now the same successor. Depending on the original branch condition
8217     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8218     // we perform the correct update for the PHI nodes.
8219     // This doesn't change the successor order of the just created branch
8220     // instruction (or any other instruction).
8221     if (Opc == Instruction::Or)
8222       std::swap(TBB, FBB);
8223 
8224     // Replace the old BB with the new BB.
8225     TBB->replacePhiUsesWith(&BB, TmpBB);
8226 
8227     // Add another incoming edge form the new BB.
8228     for (PHINode &PN : FBB->phis()) {
8229       auto *Val = PN.getIncomingValueForBlock(&BB);
8230       PN.addIncoming(Val, TmpBB);
8231     }
8232 
8233     // Update the branch weights (from SelectionDAGBuilder::
8234     // FindMergedConditions).
8235     if (Opc == Instruction::Or) {
8236       // Codegen X | Y as:
8237       // BB1:
8238       //   jmp_if_X TBB
8239       //   jmp TmpBB
8240       // TmpBB:
8241       //   jmp_if_Y TBB
8242       //   jmp FBB
8243       //
8244 
8245       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8246       // The requirement is that
8247       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8248       //     = TrueProb for original BB.
8249       // Assuming the original weights are A and B, one choice is to set BB1's
8250       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8251       // assumes that
8252       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8253       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8254       // TmpBB, but the math is more complicated.
8255       uint64_t TrueWeight, FalseWeight;
8256       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8257         uint64_t NewTrueWeight = TrueWeight;
8258         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8259         scaleWeights(NewTrueWeight, NewFalseWeight);
8260         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8261                          .createBranchWeights(TrueWeight, FalseWeight));
8262 
8263         NewTrueWeight = TrueWeight;
8264         NewFalseWeight = 2 * FalseWeight;
8265         scaleWeights(NewTrueWeight, NewFalseWeight);
8266         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8267                          .createBranchWeights(TrueWeight, FalseWeight));
8268       }
8269     } else {
8270       // Codegen X & Y as:
8271       // BB1:
8272       //   jmp_if_X TmpBB
8273       //   jmp FBB
8274       // TmpBB:
8275       //   jmp_if_Y TBB
8276       //   jmp FBB
8277       //
8278       //  This requires creation of TmpBB after CurBB.
8279 
8280       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8281       // The requirement is that
8282       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8283       //     = FalseProb for original BB.
8284       // Assuming the original weights are A and B, one choice is to set BB1's
8285       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8286       // assumes that
8287       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8288       uint64_t TrueWeight, FalseWeight;
8289       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8290         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8291         uint64_t NewFalseWeight = FalseWeight;
8292         scaleWeights(NewTrueWeight, NewFalseWeight);
8293         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8294                          .createBranchWeights(TrueWeight, FalseWeight));
8295 
8296         NewTrueWeight = 2 * TrueWeight;
8297         NewFalseWeight = FalseWeight;
8298         scaleWeights(NewTrueWeight, NewFalseWeight);
8299         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8300                          .createBranchWeights(TrueWeight, FalseWeight));
8301       }
8302     }
8303 
8304     ModifiedDT = true;
8305     MadeChange = true;
8306 
8307     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8308                TmpBB->dump());
8309   }
8310   return MadeChange;
8311 }
8312