1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfo.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<bool> ProfileUnknownInSpecialSection( 181 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 182 cl::ZeroOrMore, 183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 184 "profile, we cannot tell the function is cold for sure because " 185 "it may be a function newly added without ever being sampled. " 186 "With the flag enabled, compiler can put such profile unknown " 187 "functions into a special section, so runtime system can choose " 188 "to handle it in a different way than .text section, to save " 189 "RAM for example. ")); 190 191 static cl::opt<unsigned> FreqRatioToSkipMerge( 192 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 193 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 194 "(frequency of destination block) is greater than this ratio")); 195 196 static cl::opt<bool> ForceSplitStore( 197 "force-split-store", cl::Hidden, cl::init(false), 198 cl::desc("Force store splitting no matter what the target query says.")); 199 200 static cl::opt<bool> 201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 202 cl::desc("Enable merging of redundant sexts when one is dominating" 203 " the other."), cl::init(true)); 204 205 static cl::opt<bool> DisableComplexAddrModes( 206 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 207 cl::desc("Disables combining addressing modes with different parts " 208 "in optimizeMemoryInst.")); 209 210 static cl::opt<bool> 211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 212 cl::desc("Allow creation of Phis in Address sinking.")); 213 214 static cl::opt<bool> 215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 216 cl::desc("Allow creation of selects in Address sinking.")); 217 218 static cl::opt<bool> AddrSinkCombineBaseReg( 219 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 220 cl::desc("Allow combining of BaseReg field in Address sinking.")); 221 222 static cl::opt<bool> AddrSinkCombineBaseGV( 223 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 224 cl::desc("Allow combining of BaseGV field in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkCombineBaseOffs( 227 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 228 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineScaledReg( 231 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 233 234 static cl::opt<bool> 235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 236 cl::init(true), 237 cl::desc("Enable splitting large offset of GEP.")); 238 239 static cl::opt<bool> EnableICMP_EQToICMP_ST( 240 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 242 243 static cl::opt<bool> 244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 245 cl::desc("Enable BFI update verification for " 246 "CodeGenPrepare.")); 247 248 static cl::opt<bool> OptimizePhiTypes( 249 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 250 cl::desc("Enable converting phi types in CodeGenPrepare")); 251 252 namespace { 253 254 enum ExtType { 255 ZeroExtension, // Zero extension has been seen. 256 SignExtension, // Sign extension has been seen. 257 BothExtension // This extension type is used if we saw sext after 258 // ZeroExtension had been set, or if we saw zext after 259 // SignExtension had been set. It makes the type 260 // information of a promoted instruction invalid. 261 }; 262 263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 266 using SExts = SmallVector<Instruction *, 16>; 267 using ValueToSExts = DenseMap<Value *, SExts>; 268 269 class TypePromotionTransaction; 270 271 class CodeGenPrepare : public FunctionPass { 272 const TargetMachine *TM = nullptr; 273 const TargetSubtargetInfo *SubtargetInfo; 274 const TargetLowering *TLI = nullptr; 275 const TargetRegisterInfo *TRI; 276 const TargetTransformInfo *TTI = nullptr; 277 const TargetLibraryInfo *TLInfo; 278 const LoopInfo *LI; 279 std::unique_ptr<BlockFrequencyInfo> BFI; 280 std::unique_ptr<BranchProbabilityInfo> BPI; 281 ProfileSummaryInfo *PSI; 282 283 /// As we scan instructions optimizing them, this is the next instruction 284 /// to optimize. Transforms that can invalidate this should update it. 285 BasicBlock::iterator CurInstIterator; 286 287 /// Keeps track of non-local addresses that have been sunk into a block. 288 /// This allows us to avoid inserting duplicate code for blocks with 289 /// multiple load/stores of the same address. The usage of WeakTrackingVH 290 /// enables SunkAddrs to be treated as a cache whose entries can be 291 /// invalidated if a sunken address computation has been erased. 292 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 293 294 /// Keeps track of all instructions inserted for the current function. 295 SetOfInstrs InsertedInsts; 296 297 /// Keeps track of the type of the related instruction before their 298 /// promotion for the current function. 299 InstrToOrigTy PromotedInsts; 300 301 /// Keep track of instructions removed during promotion. 302 SetOfInstrs RemovedInsts; 303 304 /// Keep track of sext chains based on their initial value. 305 DenseMap<Value *, Instruction *> SeenChainsForSExt; 306 307 /// Keep track of GEPs accessing the same data structures such as structs or 308 /// arrays that are candidates to be split later because of their large 309 /// size. 310 MapVector< 311 AssertingVH<Value>, 312 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 313 LargeOffsetGEPMap; 314 315 /// Keep track of new GEP base after splitting the GEPs having large offset. 316 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 317 318 /// Map serial numbers to Large offset GEPs. 319 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 320 321 /// Keep track of SExt promoted. 322 ValueToSExts ValToSExtendedUses; 323 324 /// True if the function has the OptSize attribute. 325 bool OptSize; 326 327 /// DataLayout for the Function being processed. 328 const DataLayout *DL = nullptr; 329 330 /// Building the dominator tree can be expensive, so we only build it 331 /// lazily and update it when required. 332 std::unique_ptr<DominatorTree> DT; 333 334 public: 335 static char ID; // Pass identification, replacement for typeid 336 337 CodeGenPrepare() : FunctionPass(ID) { 338 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 339 } 340 341 bool runOnFunction(Function &F) override; 342 343 StringRef getPassName() const override { return "CodeGen Prepare"; } 344 345 void getAnalysisUsage(AnalysisUsage &AU) const override { 346 // FIXME: When we can selectively preserve passes, preserve the domtree. 347 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 348 AU.addRequired<TargetLibraryInfoWrapperPass>(); 349 AU.addRequired<TargetPassConfig>(); 350 AU.addRequired<TargetTransformInfoWrapperPass>(); 351 AU.addRequired<LoopInfoWrapperPass>(); 352 } 353 354 private: 355 template <typename F> 356 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 357 // Substituting can cause recursive simplifications, which can invalidate 358 // our iterator. Use a WeakTrackingVH to hold onto it in case this 359 // happens. 360 Value *CurValue = &*CurInstIterator; 361 WeakTrackingVH IterHandle(CurValue); 362 363 f(); 364 365 // If the iterator instruction was recursively deleted, start over at the 366 // start of the block. 367 if (IterHandle != CurValue) { 368 CurInstIterator = BB->begin(); 369 SunkAddrs.clear(); 370 } 371 } 372 373 // Get the DominatorTree, building if necessary. 374 DominatorTree &getDT(Function &F) { 375 if (!DT) 376 DT = std::make_unique<DominatorTree>(F); 377 return *DT; 378 } 379 380 void removeAllAssertingVHReferences(Value *V); 381 bool eliminateAssumptions(Function &F); 382 bool eliminateFallThrough(Function &F); 383 bool eliminateMostlyEmptyBlocks(Function &F); 384 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 385 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 386 void eliminateMostlyEmptyBlock(BasicBlock *BB); 387 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 388 bool isPreheader); 389 bool makeBitReverse(Instruction &I); 390 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 391 bool optimizeInst(Instruction *I, bool &ModifiedDT); 392 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 393 Type *AccessTy, unsigned AddrSpace); 394 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 395 bool optimizeInlineAsmInst(CallInst *CS); 396 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 397 bool optimizeExt(Instruction *&I); 398 bool optimizeExtUses(Instruction *I); 399 bool optimizeLoadExt(LoadInst *Load); 400 bool optimizeShiftInst(BinaryOperator *BO); 401 bool optimizeFunnelShift(IntrinsicInst *Fsh); 402 bool optimizeSelectInst(SelectInst *SI); 403 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 404 bool optimizeSwitchInst(SwitchInst *SI); 405 bool optimizeExtractElementInst(Instruction *Inst); 406 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 407 bool fixupDbgValue(Instruction *I); 408 bool placeDbgValues(Function &F); 409 bool placePseudoProbes(Function &F); 410 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 411 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 412 bool tryToPromoteExts(TypePromotionTransaction &TPT, 413 const SmallVectorImpl<Instruction *> &Exts, 414 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 415 unsigned CreatedInstsCost = 0); 416 bool mergeSExts(Function &F); 417 bool splitLargeGEPOffsets(); 418 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 419 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 420 bool optimizePhiTypes(Function &F); 421 bool performAddressTypePromotion( 422 Instruction *&Inst, 423 bool AllowPromotionWithoutCommonHeader, 424 bool HasPromoted, TypePromotionTransaction &TPT, 425 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 426 bool splitBranchCondition(Function &F, bool &ModifiedDT); 427 bool simplifyOffsetableRelocate(GCStatepointInst &I); 428 429 bool tryToSinkFreeOperands(Instruction *I); 430 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 431 Value *Arg1, CmpInst *Cmp, 432 Intrinsic::ID IID); 433 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 434 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 435 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 436 void verifyBFIUpdates(Function &F); 437 }; 438 439 } // end anonymous namespace 440 441 char CodeGenPrepare::ID = 0; 442 443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 444 "Optimize for code generation", false, false) 445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 451 "Optimize for code generation", false, false) 452 453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 454 455 bool CodeGenPrepare::runOnFunction(Function &F) { 456 if (skipFunction(F)) 457 return false; 458 459 DL = &F.getParent()->getDataLayout(); 460 461 bool EverMadeChange = false; 462 // Clear per function information. 463 InsertedInsts.clear(); 464 PromotedInsts.clear(); 465 466 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 467 SubtargetInfo = TM->getSubtargetImpl(F); 468 TLI = SubtargetInfo->getTargetLowering(); 469 TRI = SubtargetInfo->getRegisterInfo(); 470 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 471 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 473 BPI.reset(new BranchProbabilityInfo(F, *LI)); 474 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 475 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 476 OptSize = F.hasOptSize(); 477 if (ProfileGuidedSectionPrefix) { 478 // The hot attribute overwrites profile count based hotness while profile 479 // counts based hotness overwrite the cold attribute. 480 // This is a conservative behabvior. 481 if (F.hasFnAttribute(Attribute::Hot) || 482 PSI->isFunctionHotInCallGraph(&F, *BFI)) 483 F.setSectionPrefix("hot"); 484 // If PSI shows this function is not hot, we will placed the function 485 // into unlikely section if (1) PSI shows this is a cold function, or 486 // (2) the function has a attribute of cold. 487 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 488 F.hasFnAttribute(Attribute::Cold)) 489 F.setSectionPrefix("unlikely"); 490 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 491 PSI->isFunctionHotnessUnknown(F)) 492 F.setSectionPrefix("unknown"); 493 } 494 495 /// This optimization identifies DIV instructions that can be 496 /// profitably bypassed and carried out with a shorter, faster divide. 497 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 498 const DenseMap<unsigned int, unsigned int> &BypassWidths = 499 TLI->getBypassSlowDivWidths(); 500 BasicBlock* BB = &*F.begin(); 501 while (BB != nullptr) { 502 // bypassSlowDivision may create new BBs, but we don't want to reapply the 503 // optimization to those blocks. 504 BasicBlock* Next = BB->getNextNode(); 505 // F.hasOptSize is already checked in the outer if statement. 506 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 507 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 508 BB = Next; 509 } 510 } 511 512 // Get rid of @llvm.assume builtins before attempting to eliminate empty 513 // blocks, since there might be blocks that only contain @llvm.assume calls 514 // (plus arguments that we can get rid of). 515 EverMadeChange |= eliminateAssumptions(F); 516 517 // Eliminate blocks that contain only PHI nodes and an 518 // unconditional branch. 519 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 520 521 bool ModifiedDT = false; 522 if (!DisableBranchOpts) 523 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 524 525 // Split some critical edges where one of the sources is an indirect branch, 526 // to help generate sane code for PHIs involving such edges. 527 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 528 529 bool MadeChange = true; 530 while (MadeChange) { 531 MadeChange = false; 532 DT.reset(); 533 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 534 bool ModifiedDTOnIteration = false; 535 MadeChange |= optimizeBlock(BB, ModifiedDTOnIteration); 536 537 // Restart BB iteration if the dominator tree of the Function was changed 538 if (ModifiedDTOnIteration) 539 break; 540 } 541 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 542 MadeChange |= mergeSExts(F); 543 if (!LargeOffsetGEPMap.empty()) 544 MadeChange |= splitLargeGEPOffsets(); 545 MadeChange |= optimizePhiTypes(F); 546 547 if (MadeChange) 548 eliminateFallThrough(F); 549 550 // Really free removed instructions during promotion. 551 for (Instruction *I : RemovedInsts) 552 I->deleteValue(); 553 554 EverMadeChange |= MadeChange; 555 SeenChainsForSExt.clear(); 556 ValToSExtendedUses.clear(); 557 RemovedInsts.clear(); 558 LargeOffsetGEPMap.clear(); 559 LargeOffsetGEPID.clear(); 560 } 561 562 NewGEPBases.clear(); 563 SunkAddrs.clear(); 564 565 if (!DisableBranchOpts) { 566 MadeChange = false; 567 // Use a set vector to get deterministic iteration order. The order the 568 // blocks are removed may affect whether or not PHI nodes in successors 569 // are removed. 570 SmallSetVector<BasicBlock*, 8> WorkList; 571 for (BasicBlock &BB : F) { 572 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 573 MadeChange |= ConstantFoldTerminator(&BB, true); 574 if (!MadeChange) continue; 575 576 for (BasicBlock *Succ : Successors) 577 if (pred_empty(Succ)) 578 WorkList.insert(Succ); 579 } 580 581 // Delete the dead blocks and any of their dead successors. 582 MadeChange |= !WorkList.empty(); 583 while (!WorkList.empty()) { 584 BasicBlock *BB = WorkList.pop_back_val(); 585 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 586 587 DeleteDeadBlock(BB); 588 589 for (BasicBlock *Succ : Successors) 590 if (pred_empty(Succ)) 591 WorkList.insert(Succ); 592 } 593 594 // Merge pairs of basic blocks with unconditional branches, connected by 595 // a single edge. 596 if (EverMadeChange || MadeChange) 597 MadeChange |= eliminateFallThrough(F); 598 599 EverMadeChange |= MadeChange; 600 } 601 602 if (!DisableGCOpts) { 603 SmallVector<GCStatepointInst *, 2> Statepoints; 604 for (BasicBlock &BB : F) 605 for (Instruction &I : BB) 606 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 607 Statepoints.push_back(SP); 608 for (auto &I : Statepoints) 609 EverMadeChange |= simplifyOffsetableRelocate(*I); 610 } 611 612 // Do this last to clean up use-before-def scenarios introduced by other 613 // preparatory transforms. 614 EverMadeChange |= placeDbgValues(F); 615 EverMadeChange |= placePseudoProbes(F); 616 617 #ifndef NDEBUG 618 if (VerifyBFIUpdates) 619 verifyBFIUpdates(F); 620 #endif 621 622 return EverMadeChange; 623 } 624 625 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 626 bool MadeChange = false; 627 for (BasicBlock &BB : F) { 628 CurInstIterator = BB.begin(); 629 while (CurInstIterator != BB.end()) { 630 Instruction *I = &*(CurInstIterator++); 631 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 632 MadeChange = true; 633 Value *Operand = Assume->getOperand(0); 634 Assume->eraseFromParent(); 635 636 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 637 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 638 }); 639 } 640 } 641 } 642 return MadeChange; 643 } 644 645 /// An instruction is about to be deleted, so remove all references to it in our 646 /// GEP-tracking data strcutures. 647 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 648 LargeOffsetGEPMap.erase(V); 649 NewGEPBases.erase(V); 650 651 auto GEP = dyn_cast<GetElementPtrInst>(V); 652 if (!GEP) 653 return; 654 655 LargeOffsetGEPID.erase(GEP); 656 657 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 658 if (VecI == LargeOffsetGEPMap.end()) 659 return; 660 661 auto &GEPVector = VecI->second; 662 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 663 664 if (GEPVector.empty()) 665 LargeOffsetGEPMap.erase(VecI); 666 } 667 668 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 669 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 670 DominatorTree NewDT(F); 671 LoopInfo NewLI(NewDT); 672 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 673 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 674 NewBFI.verifyMatch(*BFI); 675 } 676 677 /// Merge basic blocks which are connected by a single edge, where one of the 678 /// basic blocks has a single successor pointing to the other basic block, 679 /// which has a single predecessor. 680 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 681 bool Changed = false; 682 // Scan all of the blocks in the function, except for the entry block. 683 // Use a temporary array to avoid iterator being invalidated when 684 // deleting blocks. 685 SmallVector<WeakTrackingVH, 16> Blocks; 686 for (auto &Block : llvm::drop_begin(F)) 687 Blocks.push_back(&Block); 688 689 SmallSet<WeakTrackingVH, 16> Preds; 690 for (auto &Block : Blocks) { 691 auto *BB = cast_or_null<BasicBlock>(Block); 692 if (!BB) 693 continue; 694 // If the destination block has a single pred, then this is a trivial 695 // edge, just collapse it. 696 BasicBlock *SinglePred = BB->getSinglePredecessor(); 697 698 // Don't merge if BB's address is taken. 699 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 700 701 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 702 if (Term && !Term->isConditional()) { 703 Changed = true; 704 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 705 706 // Merge BB into SinglePred and delete it. 707 MergeBlockIntoPredecessor(BB); 708 Preds.insert(SinglePred); 709 } 710 } 711 712 // (Repeatedly) merging blocks into their predecessors can create redundant 713 // debug intrinsics. 714 for (auto &Pred : Preds) 715 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 716 RemoveRedundantDbgInstrs(BB); 717 718 return Changed; 719 } 720 721 /// Find a destination block from BB if BB is mergeable empty block. 722 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 723 // If this block doesn't end with an uncond branch, ignore it. 724 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 725 if (!BI || !BI->isUnconditional()) 726 return nullptr; 727 728 // If the instruction before the branch (skipping debug info) isn't a phi 729 // node, then other stuff is happening here. 730 BasicBlock::iterator BBI = BI->getIterator(); 731 if (BBI != BB->begin()) { 732 --BBI; 733 while (isa<DbgInfoIntrinsic>(BBI)) { 734 if (BBI == BB->begin()) 735 break; 736 --BBI; 737 } 738 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 739 return nullptr; 740 } 741 742 // Do not break infinite loops. 743 BasicBlock *DestBB = BI->getSuccessor(0); 744 if (DestBB == BB) 745 return nullptr; 746 747 if (!canMergeBlocks(BB, DestBB)) 748 DestBB = nullptr; 749 750 return DestBB; 751 } 752 753 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 754 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 755 /// edges in ways that are non-optimal for isel. Start by eliminating these 756 /// blocks so we can split them the way we want them. 757 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 758 SmallPtrSet<BasicBlock *, 16> Preheaders; 759 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 760 while (!LoopList.empty()) { 761 Loop *L = LoopList.pop_back_val(); 762 llvm::append_range(LoopList, *L); 763 if (BasicBlock *Preheader = L->getLoopPreheader()) 764 Preheaders.insert(Preheader); 765 } 766 767 bool MadeChange = false; 768 // Copy blocks into a temporary array to avoid iterator invalidation issues 769 // as we remove them. 770 // Note that this intentionally skips the entry block. 771 SmallVector<WeakTrackingVH, 16> Blocks; 772 for (auto &Block : llvm::drop_begin(F)) 773 Blocks.push_back(&Block); 774 775 for (auto &Block : Blocks) { 776 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 777 if (!BB) 778 continue; 779 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 780 if (!DestBB || 781 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 782 continue; 783 784 eliminateMostlyEmptyBlock(BB); 785 MadeChange = true; 786 } 787 return MadeChange; 788 } 789 790 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 791 BasicBlock *DestBB, 792 bool isPreheader) { 793 // Do not delete loop preheaders if doing so would create a critical edge. 794 // Loop preheaders can be good locations to spill registers. If the 795 // preheader is deleted and we create a critical edge, registers may be 796 // spilled in the loop body instead. 797 if (!DisablePreheaderProtect && isPreheader && 798 !(BB->getSinglePredecessor() && 799 BB->getSinglePredecessor()->getSingleSuccessor())) 800 return false; 801 802 // Skip merging if the block's successor is also a successor to any callbr 803 // that leads to this block. 804 // FIXME: Is this really needed? Is this a correctness issue? 805 for (BasicBlock *Pred : predecessors(BB)) { 806 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 807 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 808 if (DestBB == CBI->getSuccessor(i)) 809 return false; 810 } 811 812 // Try to skip merging if the unique predecessor of BB is terminated by a 813 // switch or indirect branch instruction, and BB is used as an incoming block 814 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 815 // add COPY instructions in the predecessor of BB instead of BB (if it is not 816 // merged). Note that the critical edge created by merging such blocks wont be 817 // split in MachineSink because the jump table is not analyzable. By keeping 818 // such empty block (BB), ISel will place COPY instructions in BB, not in the 819 // predecessor of BB. 820 BasicBlock *Pred = BB->getUniquePredecessor(); 821 if (!Pred || 822 !(isa<SwitchInst>(Pred->getTerminator()) || 823 isa<IndirectBrInst>(Pred->getTerminator()))) 824 return true; 825 826 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 827 return true; 828 829 // We use a simple cost heuristic which determine skipping merging is 830 // profitable if the cost of skipping merging is less than the cost of 831 // merging : Cost(skipping merging) < Cost(merging BB), where the 832 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 833 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 834 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 835 // Freq(Pred) / Freq(BB) > 2. 836 // Note that if there are multiple empty blocks sharing the same incoming 837 // value for the PHIs in the DestBB, we consider them together. In such 838 // case, Cost(merging BB) will be the sum of their frequencies. 839 840 if (!isa<PHINode>(DestBB->begin())) 841 return true; 842 843 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 844 845 // Find all other incoming blocks from which incoming values of all PHIs in 846 // DestBB are the same as the ones from BB. 847 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 848 if (DestBBPred == BB) 849 continue; 850 851 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 852 return DestPN.getIncomingValueForBlock(BB) == 853 DestPN.getIncomingValueForBlock(DestBBPred); 854 })) 855 SameIncomingValueBBs.insert(DestBBPred); 856 } 857 858 // See if all BB's incoming values are same as the value from Pred. In this 859 // case, no reason to skip merging because COPYs are expected to be place in 860 // Pred already. 861 if (SameIncomingValueBBs.count(Pred)) 862 return true; 863 864 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 865 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 866 867 for (auto *SameValueBB : SameIncomingValueBBs) 868 if (SameValueBB->getUniquePredecessor() == Pred && 869 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 870 BBFreq += BFI->getBlockFreq(SameValueBB); 871 872 return PredFreq.getFrequency() <= 873 BBFreq.getFrequency() * FreqRatioToSkipMerge; 874 } 875 876 /// Return true if we can merge BB into DestBB if there is a single 877 /// unconditional branch between them, and BB contains no other non-phi 878 /// instructions. 879 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 880 const BasicBlock *DestBB) const { 881 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 882 // the successor. If there are more complex condition (e.g. preheaders), 883 // don't mess around with them. 884 for (const PHINode &PN : BB->phis()) { 885 for (const User *U : PN.users()) { 886 const Instruction *UI = cast<Instruction>(U); 887 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 888 return false; 889 // If User is inside DestBB block and it is a PHINode then check 890 // incoming value. If incoming value is not from BB then this is 891 // a complex condition (e.g. preheaders) we want to avoid here. 892 if (UI->getParent() == DestBB) { 893 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 894 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 895 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 896 if (Insn && Insn->getParent() == BB && 897 Insn->getParent() != UPN->getIncomingBlock(I)) 898 return false; 899 } 900 } 901 } 902 } 903 904 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 905 // and DestBB may have conflicting incoming values for the block. If so, we 906 // can't merge the block. 907 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 908 if (!DestBBPN) return true; // no conflict. 909 910 // Collect the preds of BB. 911 SmallPtrSet<const BasicBlock*, 16> BBPreds; 912 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 913 // It is faster to get preds from a PHI than with pred_iterator. 914 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 915 BBPreds.insert(BBPN->getIncomingBlock(i)); 916 } else { 917 BBPreds.insert(pred_begin(BB), pred_end(BB)); 918 } 919 920 // Walk the preds of DestBB. 921 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 922 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 923 if (BBPreds.count(Pred)) { // Common predecessor? 924 for (const PHINode &PN : DestBB->phis()) { 925 const Value *V1 = PN.getIncomingValueForBlock(Pred); 926 const Value *V2 = PN.getIncomingValueForBlock(BB); 927 928 // If V2 is a phi node in BB, look up what the mapped value will be. 929 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 930 if (V2PN->getParent() == BB) 931 V2 = V2PN->getIncomingValueForBlock(Pred); 932 933 // If there is a conflict, bail out. 934 if (V1 != V2) return false; 935 } 936 } 937 } 938 939 return true; 940 } 941 942 /// Eliminate a basic block that has only phi's and an unconditional branch in 943 /// it. 944 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 945 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 946 BasicBlock *DestBB = BI->getSuccessor(0); 947 948 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 949 << *BB << *DestBB); 950 951 // If the destination block has a single pred, then this is a trivial edge, 952 // just collapse it. 953 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 954 if (SinglePred != DestBB) { 955 assert(SinglePred == BB && 956 "Single predecessor not the same as predecessor"); 957 // Merge DestBB into SinglePred/BB and delete it. 958 MergeBlockIntoPredecessor(DestBB); 959 // Note: BB(=SinglePred) will not be deleted on this path. 960 // DestBB(=its single successor) is the one that was deleted. 961 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 962 return; 963 } 964 } 965 966 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 967 // to handle the new incoming edges it is about to have. 968 for (PHINode &PN : DestBB->phis()) { 969 // Remove the incoming value for BB, and remember it. 970 Value *InVal = PN.removeIncomingValue(BB, false); 971 972 // Two options: either the InVal is a phi node defined in BB or it is some 973 // value that dominates BB. 974 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 975 if (InValPhi && InValPhi->getParent() == BB) { 976 // Add all of the input values of the input PHI as inputs of this phi. 977 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 978 PN.addIncoming(InValPhi->getIncomingValue(i), 979 InValPhi->getIncomingBlock(i)); 980 } else { 981 // Otherwise, add one instance of the dominating value for each edge that 982 // we will be adding. 983 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 984 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 985 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 986 } else { 987 for (BasicBlock *Pred : predecessors(BB)) 988 PN.addIncoming(InVal, Pred); 989 } 990 } 991 } 992 993 // The PHIs are now updated, change everything that refers to BB to use 994 // DestBB and remove BB. 995 BB->replaceAllUsesWith(DestBB); 996 BB->eraseFromParent(); 997 ++NumBlocksElim; 998 999 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1000 } 1001 1002 // Computes a map of base pointer relocation instructions to corresponding 1003 // derived pointer relocation instructions given a vector of all relocate calls 1004 static void computeBaseDerivedRelocateMap( 1005 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1006 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1007 &RelocateInstMap) { 1008 // Collect information in two maps: one primarily for locating the base object 1009 // while filling the second map; the second map is the final structure holding 1010 // a mapping between Base and corresponding Derived relocate calls 1011 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1012 for (auto *ThisRelocate : AllRelocateCalls) { 1013 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1014 ThisRelocate->getDerivedPtrIndex()); 1015 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1016 } 1017 for (auto &Item : RelocateIdxMap) { 1018 std::pair<unsigned, unsigned> Key = Item.first; 1019 if (Key.first == Key.second) 1020 // Base relocation: nothing to insert 1021 continue; 1022 1023 GCRelocateInst *I = Item.second; 1024 auto BaseKey = std::make_pair(Key.first, Key.first); 1025 1026 // We're iterating over RelocateIdxMap so we cannot modify it. 1027 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1028 if (MaybeBase == RelocateIdxMap.end()) 1029 // TODO: We might want to insert a new base object relocate and gep off 1030 // that, if there are enough derived object relocates. 1031 continue; 1032 1033 RelocateInstMap[MaybeBase->second].push_back(I); 1034 } 1035 } 1036 1037 // Accepts a GEP and extracts the operands into a vector provided they're all 1038 // small integer constants 1039 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1040 SmallVectorImpl<Value *> &OffsetV) { 1041 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1042 // Only accept small constant integer operands 1043 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1044 if (!Op || Op->getZExtValue() > 20) 1045 return false; 1046 } 1047 1048 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1049 OffsetV.push_back(GEP->getOperand(i)); 1050 return true; 1051 } 1052 1053 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1054 // replace, computes a replacement, and affects it. 1055 static bool 1056 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1057 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1058 bool MadeChange = false; 1059 // We must ensure the relocation of derived pointer is defined after 1060 // relocation of base pointer. If we find a relocation corresponding to base 1061 // defined earlier than relocation of base then we move relocation of base 1062 // right before found relocation. We consider only relocation in the same 1063 // basic block as relocation of base. Relocations from other basic block will 1064 // be skipped by optimization and we do not care about them. 1065 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1066 &*R != RelocatedBase; ++R) 1067 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1068 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1069 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1070 RelocatedBase->moveBefore(RI); 1071 break; 1072 } 1073 1074 for (GCRelocateInst *ToReplace : Targets) { 1075 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1076 "Not relocating a derived object of the original base object"); 1077 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1078 // A duplicate relocate call. TODO: coalesce duplicates. 1079 continue; 1080 } 1081 1082 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1083 // Base and derived relocates are in different basic blocks. 1084 // In this case transform is only valid when base dominates derived 1085 // relocate. However it would be too expensive to check dominance 1086 // for each such relocate, so we skip the whole transformation. 1087 continue; 1088 } 1089 1090 Value *Base = ToReplace->getBasePtr(); 1091 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1092 if (!Derived || Derived->getPointerOperand() != Base) 1093 continue; 1094 1095 SmallVector<Value *, 2> OffsetV; 1096 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1097 continue; 1098 1099 // Create a Builder and replace the target callsite with a gep 1100 assert(RelocatedBase->getNextNode() && 1101 "Should always have one since it's not a terminator"); 1102 1103 // Insert after RelocatedBase 1104 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1105 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1106 1107 // If gc_relocate does not match the actual type, cast it to the right type. 1108 // In theory, there must be a bitcast after gc_relocate if the type does not 1109 // match, and we should reuse it to get the derived pointer. But it could be 1110 // cases like this: 1111 // bb1: 1112 // ... 1113 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1114 // br label %merge 1115 // 1116 // bb2: 1117 // ... 1118 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1119 // br label %merge 1120 // 1121 // merge: 1122 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1123 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1124 // 1125 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1126 // no matter there is already one or not. In this way, we can handle all cases, and 1127 // the extra bitcast should be optimized away in later passes. 1128 Value *ActualRelocatedBase = RelocatedBase; 1129 if (RelocatedBase->getType() != Base->getType()) { 1130 ActualRelocatedBase = 1131 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1132 } 1133 Value *Replacement = Builder.CreateGEP( 1134 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1135 Replacement->takeName(ToReplace); 1136 // If the newly generated derived pointer's type does not match the original derived 1137 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1138 Value *ActualReplacement = Replacement; 1139 if (Replacement->getType() != ToReplace->getType()) { 1140 ActualReplacement = 1141 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1142 } 1143 ToReplace->replaceAllUsesWith(ActualReplacement); 1144 ToReplace->eraseFromParent(); 1145 1146 MadeChange = true; 1147 } 1148 return MadeChange; 1149 } 1150 1151 // Turns this: 1152 // 1153 // %base = ... 1154 // %ptr = gep %base + 15 1155 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1156 // %base' = relocate(%tok, i32 4, i32 4) 1157 // %ptr' = relocate(%tok, i32 4, i32 5) 1158 // %val = load %ptr' 1159 // 1160 // into this: 1161 // 1162 // %base = ... 1163 // %ptr = gep %base + 15 1164 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1165 // %base' = gc.relocate(%tok, i32 4, i32 4) 1166 // %ptr' = gep %base' + 15 1167 // %val = load %ptr' 1168 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1169 bool MadeChange = false; 1170 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1171 for (auto *U : I.users()) 1172 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1173 // Collect all the relocate calls associated with a statepoint 1174 AllRelocateCalls.push_back(Relocate); 1175 1176 // We need at least one base pointer relocation + one derived pointer 1177 // relocation to mangle 1178 if (AllRelocateCalls.size() < 2) 1179 return false; 1180 1181 // RelocateInstMap is a mapping from the base relocate instruction to the 1182 // corresponding derived relocate instructions 1183 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1184 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1185 if (RelocateInstMap.empty()) 1186 return false; 1187 1188 for (auto &Item : RelocateInstMap) 1189 // Item.first is the RelocatedBase to offset against 1190 // Item.second is the vector of Targets to replace 1191 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1192 return MadeChange; 1193 } 1194 1195 /// Sink the specified cast instruction into its user blocks. 1196 static bool SinkCast(CastInst *CI) { 1197 BasicBlock *DefBB = CI->getParent(); 1198 1199 /// InsertedCasts - Only insert a cast in each block once. 1200 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1201 1202 bool MadeChange = false; 1203 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1204 UI != E; ) { 1205 Use &TheUse = UI.getUse(); 1206 Instruction *User = cast<Instruction>(*UI); 1207 1208 // Figure out which BB this cast is used in. For PHI's this is the 1209 // appropriate predecessor block. 1210 BasicBlock *UserBB = User->getParent(); 1211 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1212 UserBB = PN->getIncomingBlock(TheUse); 1213 } 1214 1215 // Preincrement use iterator so we don't invalidate it. 1216 ++UI; 1217 1218 // The first insertion point of a block containing an EH pad is after the 1219 // pad. If the pad is the user, we cannot sink the cast past the pad. 1220 if (User->isEHPad()) 1221 continue; 1222 1223 // If the block selected to receive the cast is an EH pad that does not 1224 // allow non-PHI instructions before the terminator, we can't sink the 1225 // cast. 1226 if (UserBB->getTerminator()->isEHPad()) 1227 continue; 1228 1229 // If this user is in the same block as the cast, don't change the cast. 1230 if (UserBB == DefBB) continue; 1231 1232 // If we have already inserted a cast into this block, use it. 1233 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1234 1235 if (!InsertedCast) { 1236 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1237 assert(InsertPt != UserBB->end()); 1238 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1239 CI->getType(), "", &*InsertPt); 1240 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1241 } 1242 1243 // Replace a use of the cast with a use of the new cast. 1244 TheUse = InsertedCast; 1245 MadeChange = true; 1246 ++NumCastUses; 1247 } 1248 1249 // If we removed all uses, nuke the cast. 1250 if (CI->use_empty()) { 1251 salvageDebugInfo(*CI); 1252 CI->eraseFromParent(); 1253 MadeChange = true; 1254 } 1255 1256 return MadeChange; 1257 } 1258 1259 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1260 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1261 /// reduce the number of virtual registers that must be created and coalesced. 1262 /// 1263 /// Return true if any changes are made. 1264 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1265 const DataLayout &DL) { 1266 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1267 // than sinking only nop casts, but is helpful on some platforms. 1268 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1269 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1270 ASC->getDestAddressSpace())) 1271 return false; 1272 } 1273 1274 // If this is a noop copy, 1275 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1276 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1277 1278 // This is an fp<->int conversion? 1279 if (SrcVT.isInteger() != DstVT.isInteger()) 1280 return false; 1281 1282 // If this is an extension, it will be a zero or sign extension, which 1283 // isn't a noop. 1284 if (SrcVT.bitsLT(DstVT)) return false; 1285 1286 // If these values will be promoted, find out what they will be promoted 1287 // to. This helps us consider truncates on PPC as noop copies when they 1288 // are. 1289 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1290 TargetLowering::TypePromoteInteger) 1291 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1292 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1293 TargetLowering::TypePromoteInteger) 1294 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1295 1296 // If, after promotion, these are the same types, this is a noop copy. 1297 if (SrcVT != DstVT) 1298 return false; 1299 1300 return SinkCast(CI); 1301 } 1302 1303 // Match a simple increment by constant operation. Note that if a sub is 1304 // matched, the step is negated (as if the step had been canonicalized to 1305 // an add, even though we leave the instruction alone.) 1306 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1307 Constant *&Step) { 1308 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1309 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1310 m_Instruction(LHS), m_Constant(Step))))) 1311 return true; 1312 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1313 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1314 m_Instruction(LHS), m_Constant(Step))))) { 1315 Step = ConstantExpr::getNeg(Step); 1316 return true; 1317 } 1318 return false; 1319 } 1320 1321 /// If given \p PN is an inductive variable with value IVInc coming from the 1322 /// backedge, and on each iteration it gets increased by Step, return pair 1323 /// <IVInc, Step>. Otherwise, return None. 1324 static Optional<std::pair<Instruction *, Constant *> > 1325 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1326 const Loop *L = LI->getLoopFor(PN->getParent()); 1327 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1328 return None; 1329 auto *IVInc = 1330 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1331 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1332 return None; 1333 Instruction *LHS = nullptr; 1334 Constant *Step = nullptr; 1335 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1336 return std::make_pair(IVInc, Step); 1337 return None; 1338 } 1339 1340 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1341 auto *I = dyn_cast<Instruction>(V); 1342 if (!I) 1343 return false; 1344 Instruction *LHS = nullptr; 1345 Constant *Step = nullptr; 1346 if (!matchIncrement(I, LHS, Step)) 1347 return false; 1348 if (auto *PN = dyn_cast<PHINode>(LHS)) 1349 if (auto IVInc = getIVIncrement(PN, LI)) 1350 return IVInc->first == I; 1351 return false; 1352 } 1353 1354 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1355 Value *Arg0, Value *Arg1, 1356 CmpInst *Cmp, 1357 Intrinsic::ID IID) { 1358 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1359 if (!isIVIncrement(BO, LI)) 1360 return false; 1361 const Loop *L = LI->getLoopFor(BO->getParent()); 1362 assert(L && "L should not be null after isIVIncrement()"); 1363 // Do not risk on moving increment into a child loop. 1364 if (LI->getLoopFor(Cmp->getParent()) != L) 1365 return false; 1366 1367 // Finally, we need to ensure that the insert point will dominate all 1368 // existing uses of the increment. 1369 1370 auto &DT = getDT(*BO->getParent()->getParent()); 1371 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1372 // If we're moving up the dom tree, all uses are trivially dominated. 1373 // (This is the common case for code produced by LSR.) 1374 return true; 1375 1376 // Otherwise, special case the single use in the phi recurrence. 1377 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1378 }; 1379 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1380 // We used to use a dominator tree here to allow multi-block optimization. 1381 // But that was problematic because: 1382 // 1. It could cause a perf regression by hoisting the math op into the 1383 // critical path. 1384 // 2. It could cause a perf regression by creating a value that was live 1385 // across multiple blocks and increasing register pressure. 1386 // 3. Use of a dominator tree could cause large compile-time regression. 1387 // This is because we recompute the DT on every change in the main CGP 1388 // run-loop. The recomputing is probably unnecessary in many cases, so if 1389 // that was fixed, using a DT here would be ok. 1390 // 1391 // There is one important particular case we still want to handle: if BO is 1392 // the IV increment. Important properties that make it profitable: 1393 // - We can speculate IV increment anywhere in the loop (as long as the 1394 // indvar Phi is its only user); 1395 // - Upon computing Cmp, we effectively compute something equivalent to the 1396 // IV increment (despite it loops differently in the IR). So moving it up 1397 // to the cmp point does not really increase register pressure. 1398 return false; 1399 } 1400 1401 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1402 if (BO->getOpcode() == Instruction::Add && 1403 IID == Intrinsic::usub_with_overflow) { 1404 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1405 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1406 } 1407 1408 // Insert at the first instruction of the pair. 1409 Instruction *InsertPt = nullptr; 1410 for (Instruction &Iter : *Cmp->getParent()) { 1411 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1412 // the overflow intrinsic are defined. 1413 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1414 InsertPt = &Iter; 1415 break; 1416 } 1417 } 1418 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1419 1420 IRBuilder<> Builder(InsertPt); 1421 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1422 if (BO->getOpcode() != Instruction::Xor) { 1423 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1424 BO->replaceAllUsesWith(Math); 1425 } else 1426 assert(BO->hasOneUse() && 1427 "Patterns with XOr should use the BO only in the compare"); 1428 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1429 Cmp->replaceAllUsesWith(OV); 1430 Cmp->eraseFromParent(); 1431 BO->eraseFromParent(); 1432 return true; 1433 } 1434 1435 /// Match special-case patterns that check for unsigned add overflow. 1436 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1437 BinaryOperator *&Add) { 1438 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1439 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1440 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1441 1442 // We are not expecting non-canonical/degenerate code. Just bail out. 1443 if (isa<Constant>(A)) 1444 return false; 1445 1446 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1447 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1448 B = ConstantInt::get(B->getType(), 1); 1449 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1450 B = ConstantInt::get(B->getType(), -1); 1451 else 1452 return false; 1453 1454 // Check the users of the variable operand of the compare looking for an add 1455 // with the adjusted constant. 1456 for (User *U : A->users()) { 1457 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1458 Add = cast<BinaryOperator>(U); 1459 return true; 1460 } 1461 } 1462 return false; 1463 } 1464 1465 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1466 /// intrinsic. Return true if any changes were made. 1467 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1468 bool &ModifiedDT) { 1469 Value *A, *B; 1470 BinaryOperator *Add; 1471 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1472 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1473 return false; 1474 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1475 A = Add->getOperand(0); 1476 B = Add->getOperand(1); 1477 } 1478 1479 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1480 TLI->getValueType(*DL, Add->getType()), 1481 Add->hasNUsesOrMore(2))) 1482 return false; 1483 1484 // We don't want to move around uses of condition values this late, so we 1485 // check if it is legal to create the call to the intrinsic in the basic 1486 // block containing the icmp. 1487 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1488 return false; 1489 1490 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1491 Intrinsic::uadd_with_overflow)) 1492 return false; 1493 1494 // Reset callers - do not crash by iterating over a dead instruction. 1495 ModifiedDT = true; 1496 return true; 1497 } 1498 1499 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1500 bool &ModifiedDT) { 1501 // We are not expecting non-canonical/degenerate code. Just bail out. 1502 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1503 if (isa<Constant>(A) && isa<Constant>(B)) 1504 return false; 1505 1506 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1507 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1508 if (Pred == ICmpInst::ICMP_UGT) { 1509 std::swap(A, B); 1510 Pred = ICmpInst::ICMP_ULT; 1511 } 1512 // Convert special-case: (A == 0) is the same as (A u< 1). 1513 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1514 B = ConstantInt::get(B->getType(), 1); 1515 Pred = ICmpInst::ICMP_ULT; 1516 } 1517 // Convert special-case: (A != 0) is the same as (0 u< A). 1518 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1519 std::swap(A, B); 1520 Pred = ICmpInst::ICMP_ULT; 1521 } 1522 if (Pred != ICmpInst::ICMP_ULT) 1523 return false; 1524 1525 // Walk the users of a variable operand of a compare looking for a subtract or 1526 // add with that same operand. Also match the 2nd operand of the compare to 1527 // the add/sub, but that may be a negated constant operand of an add. 1528 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1529 BinaryOperator *Sub = nullptr; 1530 for (User *U : CmpVariableOperand->users()) { 1531 // A - B, A u< B --> usubo(A, B) 1532 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1533 Sub = cast<BinaryOperator>(U); 1534 break; 1535 } 1536 1537 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1538 const APInt *CmpC, *AddC; 1539 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1540 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1541 Sub = cast<BinaryOperator>(U); 1542 break; 1543 } 1544 } 1545 if (!Sub) 1546 return false; 1547 1548 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1549 TLI->getValueType(*DL, Sub->getType()), 1550 Sub->hasNUsesOrMore(2))) 1551 return false; 1552 1553 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1554 Cmp, Intrinsic::usub_with_overflow)) 1555 return false; 1556 1557 // Reset callers - do not crash by iterating over a dead instruction. 1558 ModifiedDT = true; 1559 return true; 1560 } 1561 1562 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1563 /// registers that must be created and coalesced. This is a clear win except on 1564 /// targets with multiple condition code registers (PowerPC), where it might 1565 /// lose; some adjustment may be wanted there. 1566 /// 1567 /// Return true if any changes are made. 1568 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1569 if (TLI.hasMultipleConditionRegisters()) 1570 return false; 1571 1572 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1573 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1574 return false; 1575 1576 // Only insert a cmp in each block once. 1577 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1578 1579 bool MadeChange = false; 1580 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1581 UI != E; ) { 1582 Use &TheUse = UI.getUse(); 1583 Instruction *User = cast<Instruction>(*UI); 1584 1585 // Preincrement use iterator so we don't invalidate it. 1586 ++UI; 1587 1588 // Don't bother for PHI nodes. 1589 if (isa<PHINode>(User)) 1590 continue; 1591 1592 // Figure out which BB this cmp is used in. 1593 BasicBlock *UserBB = User->getParent(); 1594 BasicBlock *DefBB = Cmp->getParent(); 1595 1596 // If this user is in the same block as the cmp, don't change the cmp. 1597 if (UserBB == DefBB) continue; 1598 1599 // If we have already inserted a cmp into this block, use it. 1600 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1601 1602 if (!InsertedCmp) { 1603 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1604 assert(InsertPt != UserBB->end()); 1605 InsertedCmp = 1606 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1607 Cmp->getOperand(0), Cmp->getOperand(1), "", 1608 &*InsertPt); 1609 // Propagate the debug info. 1610 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1611 } 1612 1613 // Replace a use of the cmp with a use of the new cmp. 1614 TheUse = InsertedCmp; 1615 MadeChange = true; 1616 ++NumCmpUses; 1617 } 1618 1619 // If we removed all uses, nuke the cmp. 1620 if (Cmp->use_empty()) { 1621 Cmp->eraseFromParent(); 1622 MadeChange = true; 1623 } 1624 1625 return MadeChange; 1626 } 1627 1628 /// For pattern like: 1629 /// 1630 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1631 /// ... 1632 /// DomBB: 1633 /// ... 1634 /// br DomCond, TrueBB, CmpBB 1635 /// CmpBB: (with DomBB being the single predecessor) 1636 /// ... 1637 /// Cmp = icmp eq CmpOp0, CmpOp1 1638 /// ... 1639 /// 1640 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1641 /// different from lowering of icmp eq (PowerPC). This function try to convert 1642 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1643 /// After that, DomCond and Cmp can use the same comparison so reduce one 1644 /// comparison. 1645 /// 1646 /// Return true if any changes are made. 1647 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1648 const TargetLowering &TLI) { 1649 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1650 return false; 1651 1652 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1653 if (Pred != ICmpInst::ICMP_EQ) 1654 return false; 1655 1656 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1657 // icmp slt/sgt would introduce more redundant LLVM IR. 1658 for (User *U : Cmp->users()) { 1659 if (isa<BranchInst>(U)) 1660 continue; 1661 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1662 continue; 1663 return false; 1664 } 1665 1666 // This is a cheap/incomplete check for dominance - just match a single 1667 // predecessor with a conditional branch. 1668 BasicBlock *CmpBB = Cmp->getParent(); 1669 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1670 if (!DomBB) 1671 return false; 1672 1673 // We want to ensure that the only way control gets to the comparison of 1674 // interest is that a less/greater than comparison on the same operands is 1675 // false. 1676 Value *DomCond; 1677 BasicBlock *TrueBB, *FalseBB; 1678 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1679 return false; 1680 if (CmpBB != FalseBB) 1681 return false; 1682 1683 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1684 ICmpInst::Predicate DomPred; 1685 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1686 return false; 1687 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1688 return false; 1689 1690 // Convert the equality comparison to the opposite of the dominating 1691 // comparison and swap the direction for all branch/select users. 1692 // We have conceptually converted: 1693 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1694 // to 1695 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1696 // And similarly for branches. 1697 for (User *U : Cmp->users()) { 1698 if (auto *BI = dyn_cast<BranchInst>(U)) { 1699 assert(BI->isConditional() && "Must be conditional"); 1700 BI->swapSuccessors(); 1701 continue; 1702 } 1703 if (auto *SI = dyn_cast<SelectInst>(U)) { 1704 // Swap operands 1705 SI->swapValues(); 1706 SI->swapProfMetadata(); 1707 continue; 1708 } 1709 llvm_unreachable("Must be a branch or a select"); 1710 } 1711 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1712 return true; 1713 } 1714 1715 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1716 if (sinkCmpExpression(Cmp, *TLI)) 1717 return true; 1718 1719 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1720 return true; 1721 1722 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1723 return true; 1724 1725 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1726 return true; 1727 1728 return false; 1729 } 1730 1731 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1732 /// used in a compare to allow isel to generate better code for targets where 1733 /// this operation can be combined. 1734 /// 1735 /// Return true if any changes are made. 1736 static bool sinkAndCmp0Expression(Instruction *AndI, 1737 const TargetLowering &TLI, 1738 SetOfInstrs &InsertedInsts) { 1739 // Double-check that we're not trying to optimize an instruction that was 1740 // already optimized by some other part of this pass. 1741 assert(!InsertedInsts.count(AndI) && 1742 "Attempting to optimize already optimized and instruction"); 1743 (void) InsertedInsts; 1744 1745 // Nothing to do for single use in same basic block. 1746 if (AndI->hasOneUse() && 1747 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1748 return false; 1749 1750 // Try to avoid cases where sinking/duplicating is likely to increase register 1751 // pressure. 1752 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1753 !isa<ConstantInt>(AndI->getOperand(1)) && 1754 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1755 return false; 1756 1757 for (auto *U : AndI->users()) { 1758 Instruction *User = cast<Instruction>(U); 1759 1760 // Only sink 'and' feeding icmp with 0. 1761 if (!isa<ICmpInst>(User)) 1762 return false; 1763 1764 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1765 if (!CmpC || !CmpC->isZero()) 1766 return false; 1767 } 1768 1769 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1770 return false; 1771 1772 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1773 LLVM_DEBUG(AndI->getParent()->dump()); 1774 1775 // Push the 'and' into the same block as the icmp 0. There should only be 1776 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1777 // others, so we don't need to keep track of which BBs we insert into. 1778 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1779 UI != E; ) { 1780 Use &TheUse = UI.getUse(); 1781 Instruction *User = cast<Instruction>(*UI); 1782 1783 // Preincrement use iterator so we don't invalidate it. 1784 ++UI; 1785 1786 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1787 1788 // Keep the 'and' in the same place if the use is already in the same block. 1789 Instruction *InsertPt = 1790 User->getParent() == AndI->getParent() ? AndI : User; 1791 Instruction *InsertedAnd = 1792 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1793 AndI->getOperand(1), "", InsertPt); 1794 // Propagate the debug info. 1795 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1796 1797 // Replace a use of the 'and' with a use of the new 'and'. 1798 TheUse = InsertedAnd; 1799 ++NumAndUses; 1800 LLVM_DEBUG(User->getParent()->dump()); 1801 } 1802 1803 // We removed all uses, nuke the and. 1804 AndI->eraseFromParent(); 1805 return true; 1806 } 1807 1808 /// Check if the candidates could be combined with a shift instruction, which 1809 /// includes: 1810 /// 1. Truncate instruction 1811 /// 2. And instruction and the imm is a mask of the low bits: 1812 /// imm & (imm+1) == 0 1813 static bool isExtractBitsCandidateUse(Instruction *User) { 1814 if (!isa<TruncInst>(User)) { 1815 if (User->getOpcode() != Instruction::And || 1816 !isa<ConstantInt>(User->getOperand(1))) 1817 return false; 1818 1819 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1820 1821 if ((Cimm & (Cimm + 1)).getBoolValue()) 1822 return false; 1823 } 1824 return true; 1825 } 1826 1827 /// Sink both shift and truncate instruction to the use of truncate's BB. 1828 static bool 1829 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1830 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1831 const TargetLowering &TLI, const DataLayout &DL) { 1832 BasicBlock *UserBB = User->getParent(); 1833 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1834 auto *TruncI = cast<TruncInst>(User); 1835 bool MadeChange = false; 1836 1837 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1838 TruncE = TruncI->user_end(); 1839 TruncUI != TruncE;) { 1840 1841 Use &TruncTheUse = TruncUI.getUse(); 1842 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1843 // Preincrement use iterator so we don't invalidate it. 1844 1845 ++TruncUI; 1846 1847 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1848 if (!ISDOpcode) 1849 continue; 1850 1851 // If the use is actually a legal node, there will not be an 1852 // implicit truncate. 1853 // FIXME: always querying the result type is just an 1854 // approximation; some nodes' legality is determined by the 1855 // operand or other means. There's no good way to find out though. 1856 if (TLI.isOperationLegalOrCustom( 1857 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1858 continue; 1859 1860 // Don't bother for PHI nodes. 1861 if (isa<PHINode>(TruncUser)) 1862 continue; 1863 1864 BasicBlock *TruncUserBB = TruncUser->getParent(); 1865 1866 if (UserBB == TruncUserBB) 1867 continue; 1868 1869 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1870 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1871 1872 if (!InsertedShift && !InsertedTrunc) { 1873 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1874 assert(InsertPt != TruncUserBB->end()); 1875 // Sink the shift 1876 if (ShiftI->getOpcode() == Instruction::AShr) 1877 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1878 "", &*InsertPt); 1879 else 1880 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1881 "", &*InsertPt); 1882 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1883 1884 // Sink the trunc 1885 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1886 TruncInsertPt++; 1887 assert(TruncInsertPt != TruncUserBB->end()); 1888 1889 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1890 TruncI->getType(), "", &*TruncInsertPt); 1891 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1892 1893 MadeChange = true; 1894 1895 TruncTheUse = InsertedTrunc; 1896 } 1897 } 1898 return MadeChange; 1899 } 1900 1901 /// Sink the shift *right* instruction into user blocks if the uses could 1902 /// potentially be combined with this shift instruction and generate BitExtract 1903 /// instruction. It will only be applied if the architecture supports BitExtract 1904 /// instruction. Here is an example: 1905 /// BB1: 1906 /// %x.extract.shift = lshr i64 %arg1, 32 1907 /// BB2: 1908 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1909 /// ==> 1910 /// 1911 /// BB2: 1912 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1913 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1914 /// 1915 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1916 /// instruction. 1917 /// Return true if any changes are made. 1918 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1919 const TargetLowering &TLI, 1920 const DataLayout &DL) { 1921 BasicBlock *DefBB = ShiftI->getParent(); 1922 1923 /// Only insert instructions in each block once. 1924 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1925 1926 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1927 1928 bool MadeChange = false; 1929 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1930 UI != E;) { 1931 Use &TheUse = UI.getUse(); 1932 Instruction *User = cast<Instruction>(*UI); 1933 // Preincrement use iterator so we don't invalidate it. 1934 ++UI; 1935 1936 // Don't bother for PHI nodes. 1937 if (isa<PHINode>(User)) 1938 continue; 1939 1940 if (!isExtractBitsCandidateUse(User)) 1941 continue; 1942 1943 BasicBlock *UserBB = User->getParent(); 1944 1945 if (UserBB == DefBB) { 1946 // If the shift and truncate instruction are in the same BB. The use of 1947 // the truncate(TruncUse) may still introduce another truncate if not 1948 // legal. In this case, we would like to sink both shift and truncate 1949 // instruction to the BB of TruncUse. 1950 // for example: 1951 // BB1: 1952 // i64 shift.result = lshr i64 opnd, imm 1953 // trunc.result = trunc shift.result to i16 1954 // 1955 // BB2: 1956 // ----> We will have an implicit truncate here if the architecture does 1957 // not have i16 compare. 1958 // cmp i16 trunc.result, opnd2 1959 // 1960 if (isa<TruncInst>(User) && shiftIsLegal 1961 // If the type of the truncate is legal, no truncate will be 1962 // introduced in other basic blocks. 1963 && 1964 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1965 MadeChange = 1966 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1967 1968 continue; 1969 } 1970 // If we have already inserted a shift into this block, use it. 1971 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1972 1973 if (!InsertedShift) { 1974 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1975 assert(InsertPt != UserBB->end()); 1976 1977 if (ShiftI->getOpcode() == Instruction::AShr) 1978 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1979 "", &*InsertPt); 1980 else 1981 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1982 "", &*InsertPt); 1983 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1984 1985 MadeChange = true; 1986 } 1987 1988 // Replace a use of the shift with a use of the new shift. 1989 TheUse = InsertedShift; 1990 } 1991 1992 // If we removed all uses, or there are none, nuke the shift. 1993 if (ShiftI->use_empty()) { 1994 salvageDebugInfo(*ShiftI); 1995 ShiftI->eraseFromParent(); 1996 MadeChange = true; 1997 } 1998 1999 return MadeChange; 2000 } 2001 2002 /// If counting leading or trailing zeros is an expensive operation and a zero 2003 /// input is defined, add a check for zero to avoid calling the intrinsic. 2004 /// 2005 /// We want to transform: 2006 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2007 /// 2008 /// into: 2009 /// entry: 2010 /// %cmpz = icmp eq i64 %A, 0 2011 /// br i1 %cmpz, label %cond.end, label %cond.false 2012 /// cond.false: 2013 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2014 /// br label %cond.end 2015 /// cond.end: 2016 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2017 /// 2018 /// If the transform is performed, return true and set ModifiedDT to true. 2019 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2020 const TargetLowering *TLI, 2021 const DataLayout *DL, 2022 bool &ModifiedDT) { 2023 // If a zero input is undefined, it doesn't make sense to despeculate that. 2024 if (match(CountZeros->getOperand(1), m_One())) 2025 return false; 2026 2027 // If it's cheap to speculate, there's nothing to do. 2028 auto IntrinsicID = CountZeros->getIntrinsicID(); 2029 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2030 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2031 return false; 2032 2033 // Only handle legal scalar cases. Anything else requires too much work. 2034 Type *Ty = CountZeros->getType(); 2035 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2036 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2037 return false; 2038 2039 // Bail if the value is never zero. 2040 if (llvm::isKnownNonZero(CountZeros->getOperand(0), *DL)) 2041 return false; 2042 2043 // The intrinsic will be sunk behind a compare against zero and branch. 2044 BasicBlock *StartBlock = CountZeros->getParent(); 2045 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2046 2047 // Create another block after the count zero intrinsic. A PHI will be added 2048 // in this block to select the result of the intrinsic or the bit-width 2049 // constant if the input to the intrinsic is zero. 2050 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2051 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2052 2053 // Set up a builder to create a compare, conditional branch, and PHI. 2054 IRBuilder<> Builder(CountZeros->getContext()); 2055 Builder.SetInsertPoint(StartBlock->getTerminator()); 2056 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2057 2058 // Replace the unconditional branch that was created by the first split with 2059 // a compare against zero and a conditional branch. 2060 Value *Zero = Constant::getNullValue(Ty); 2061 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2062 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2063 StartBlock->getTerminator()->eraseFromParent(); 2064 2065 // Create a PHI in the end block to select either the output of the intrinsic 2066 // or the bit width of the operand. 2067 Builder.SetInsertPoint(&EndBlock->front()); 2068 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2069 CountZeros->replaceAllUsesWith(PN); 2070 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2071 PN->addIncoming(BitWidth, StartBlock); 2072 PN->addIncoming(CountZeros, CallBlock); 2073 2074 // We are explicitly handling the zero case, so we can set the intrinsic's 2075 // undefined zero argument to 'true'. This will also prevent reprocessing the 2076 // intrinsic; we only despeculate when a zero input is defined. 2077 CountZeros->setArgOperand(1, Builder.getTrue()); 2078 ModifiedDT = true; 2079 return true; 2080 } 2081 2082 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2083 BasicBlock *BB = CI->getParent(); 2084 2085 // Lower inline assembly if we can. 2086 // If we found an inline asm expession, and if the target knows how to 2087 // lower it to normal LLVM code, do so now. 2088 if (CI->isInlineAsm()) { 2089 if (TLI->ExpandInlineAsm(CI)) { 2090 // Avoid invalidating the iterator. 2091 CurInstIterator = BB->begin(); 2092 // Avoid processing instructions out of order, which could cause 2093 // reuse before a value is defined. 2094 SunkAddrs.clear(); 2095 return true; 2096 } 2097 // Sink address computing for memory operands into the block. 2098 if (optimizeInlineAsmInst(CI)) 2099 return true; 2100 } 2101 2102 // Align the pointer arguments to this call if the target thinks it's a good 2103 // idea 2104 unsigned MinSize, PrefAlign; 2105 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2106 for (auto &Arg : CI->args()) { 2107 // We want to align both objects whose address is used directly and 2108 // objects whose address is used in casts and GEPs, though it only makes 2109 // sense for GEPs if the offset is a multiple of the desired alignment and 2110 // if size - offset meets the size threshold. 2111 if (!Arg->getType()->isPointerTy()) 2112 continue; 2113 APInt Offset(DL->getIndexSizeInBits( 2114 cast<PointerType>(Arg->getType())->getAddressSpace()), 2115 0); 2116 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2117 uint64_t Offset2 = Offset.getLimitedValue(); 2118 if ((Offset2 & (PrefAlign-1)) != 0) 2119 continue; 2120 AllocaInst *AI; 2121 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2122 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2123 AI->setAlignment(Align(PrefAlign)); 2124 // Global variables can only be aligned if they are defined in this 2125 // object (i.e. they are uniquely initialized in this object), and 2126 // over-aligning global variables that have an explicit section is 2127 // forbidden. 2128 GlobalVariable *GV; 2129 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2130 GV->getPointerAlignment(*DL) < PrefAlign && 2131 DL->getTypeAllocSize(GV->getValueType()) >= 2132 MinSize + Offset2) 2133 GV->setAlignment(MaybeAlign(PrefAlign)); 2134 } 2135 // If this is a memcpy (or similar) then we may be able to improve the 2136 // alignment 2137 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2138 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2139 MaybeAlign MIDestAlign = MI->getDestAlign(); 2140 if (!MIDestAlign || DestAlign > *MIDestAlign) 2141 MI->setDestAlignment(DestAlign); 2142 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2143 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2144 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2145 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2146 MTI->setSourceAlignment(SrcAlign); 2147 } 2148 } 2149 } 2150 2151 // If we have a cold call site, try to sink addressing computation into the 2152 // cold block. This interacts with our handling for loads and stores to 2153 // ensure that we can fold all uses of a potential addressing computation 2154 // into their uses. TODO: generalize this to work over profiling data 2155 if (CI->hasFnAttr(Attribute::Cold) && 2156 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2157 for (auto &Arg : CI->args()) { 2158 if (!Arg->getType()->isPointerTy()) 2159 continue; 2160 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2161 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2162 } 2163 2164 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2165 if (II) { 2166 switch (II->getIntrinsicID()) { 2167 default: break; 2168 case Intrinsic::assume: 2169 llvm_unreachable("llvm.assume should have been removed already"); 2170 case Intrinsic::experimental_widenable_condition: { 2171 // Give up on future widening oppurtunties so that we can fold away dead 2172 // paths and merge blocks before going into block-local instruction 2173 // selection. 2174 if (II->use_empty()) { 2175 II->eraseFromParent(); 2176 return true; 2177 } 2178 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2179 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2180 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2181 }); 2182 return true; 2183 } 2184 case Intrinsic::objectsize: 2185 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2186 case Intrinsic::is_constant: 2187 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2188 case Intrinsic::aarch64_stlxr: 2189 case Intrinsic::aarch64_stxr: { 2190 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2191 if (!ExtVal || !ExtVal->hasOneUse() || 2192 ExtVal->getParent() == CI->getParent()) 2193 return false; 2194 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2195 ExtVal->moveBefore(CI); 2196 // Mark this instruction as "inserted by CGP", so that other 2197 // optimizations don't touch it. 2198 InsertedInsts.insert(ExtVal); 2199 return true; 2200 } 2201 2202 case Intrinsic::launder_invariant_group: 2203 case Intrinsic::strip_invariant_group: { 2204 Value *ArgVal = II->getArgOperand(0); 2205 auto it = LargeOffsetGEPMap.find(II); 2206 if (it != LargeOffsetGEPMap.end()) { 2207 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2208 // Make sure not to have to deal with iterator invalidation 2209 // after possibly adding ArgVal to LargeOffsetGEPMap. 2210 auto GEPs = std::move(it->second); 2211 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2212 LargeOffsetGEPMap.erase(II); 2213 } 2214 2215 II->replaceAllUsesWith(ArgVal); 2216 II->eraseFromParent(); 2217 return true; 2218 } 2219 case Intrinsic::cttz: 2220 case Intrinsic::ctlz: 2221 // If counting zeros is expensive, try to avoid it. 2222 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2223 case Intrinsic::fshl: 2224 case Intrinsic::fshr: 2225 return optimizeFunnelShift(II); 2226 case Intrinsic::dbg_value: 2227 return fixupDbgValue(II); 2228 case Intrinsic::vscale: { 2229 // If datalayout has no special restrictions on vector data layout, 2230 // replace `llvm.vscale` by an equivalent constant expression 2231 // to benefit from cheap constant propagation. 2232 Type *ScalableVectorTy = 2233 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2234 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2235 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2236 auto *One = ConstantInt::getSigned(II->getType(), 1); 2237 auto *CGep = 2238 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2239 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2240 II->eraseFromParent(); 2241 return true; 2242 } 2243 break; 2244 } 2245 case Intrinsic::masked_gather: 2246 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2247 case Intrinsic::masked_scatter: 2248 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2249 } 2250 2251 SmallVector<Value *, 2> PtrOps; 2252 Type *AccessTy; 2253 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2254 while (!PtrOps.empty()) { 2255 Value *PtrVal = PtrOps.pop_back_val(); 2256 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2257 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2258 return true; 2259 } 2260 } 2261 2262 // From here on out we're working with named functions. 2263 if (!CI->getCalledFunction()) return false; 2264 2265 // Lower all default uses of _chk calls. This is very similar 2266 // to what InstCombineCalls does, but here we are only lowering calls 2267 // to fortified library functions (e.g. __memcpy_chk) that have the default 2268 // "don't know" as the objectsize. Anything else should be left alone. 2269 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2270 IRBuilder<> Builder(CI); 2271 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2272 CI->replaceAllUsesWith(V); 2273 CI->eraseFromParent(); 2274 return true; 2275 } 2276 2277 return false; 2278 } 2279 2280 /// Look for opportunities to duplicate return instructions to the predecessor 2281 /// to enable tail call optimizations. The case it is currently looking for is: 2282 /// @code 2283 /// bb0: 2284 /// %tmp0 = tail call i32 @f0() 2285 /// br label %return 2286 /// bb1: 2287 /// %tmp1 = tail call i32 @f1() 2288 /// br label %return 2289 /// bb2: 2290 /// %tmp2 = tail call i32 @f2() 2291 /// br label %return 2292 /// return: 2293 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2294 /// ret i32 %retval 2295 /// @endcode 2296 /// 2297 /// => 2298 /// 2299 /// @code 2300 /// bb0: 2301 /// %tmp0 = tail call i32 @f0() 2302 /// ret i32 %tmp0 2303 /// bb1: 2304 /// %tmp1 = tail call i32 @f1() 2305 /// ret i32 %tmp1 2306 /// bb2: 2307 /// %tmp2 = tail call i32 @f2() 2308 /// ret i32 %tmp2 2309 /// @endcode 2310 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2311 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2312 if (!RetI) 2313 return false; 2314 2315 PHINode *PN = nullptr; 2316 ExtractValueInst *EVI = nullptr; 2317 BitCastInst *BCI = nullptr; 2318 Value *V = RetI->getReturnValue(); 2319 if (V) { 2320 BCI = dyn_cast<BitCastInst>(V); 2321 if (BCI) 2322 V = BCI->getOperand(0); 2323 2324 EVI = dyn_cast<ExtractValueInst>(V); 2325 if (EVI) { 2326 V = EVI->getOperand(0); 2327 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2328 return false; 2329 } 2330 2331 PN = dyn_cast<PHINode>(V); 2332 if (!PN) 2333 return false; 2334 } 2335 2336 if (PN && PN->getParent() != BB) 2337 return false; 2338 2339 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2340 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2341 if (BC && BC->hasOneUse()) 2342 Inst = BC->user_back(); 2343 2344 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2345 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2346 return false; 2347 }; 2348 2349 // Make sure there are no instructions between the first instruction 2350 // and return. 2351 const Instruction *BI = BB->getFirstNonPHI(); 2352 // Skip over debug and the bitcast. 2353 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2354 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2355 BI = BI->getNextNode(); 2356 if (BI != RetI) 2357 return false; 2358 2359 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2360 /// call. 2361 const Function *F = BB->getParent(); 2362 SmallVector<BasicBlock*, 4> TailCallBBs; 2363 if (PN) { 2364 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2365 // Look through bitcasts. 2366 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2367 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2368 BasicBlock *PredBB = PN->getIncomingBlock(I); 2369 // Make sure the phi value is indeed produced by the tail call. 2370 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2371 TLI->mayBeEmittedAsTailCall(CI) && 2372 attributesPermitTailCall(F, CI, RetI, *TLI)) 2373 TailCallBBs.push_back(PredBB); 2374 } 2375 } else { 2376 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2377 for (BasicBlock *Pred : predecessors(BB)) { 2378 if (!VisitedBBs.insert(Pred).second) 2379 continue; 2380 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2381 CallInst *CI = dyn_cast<CallInst>(I); 2382 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2383 attributesPermitTailCall(F, CI, RetI, *TLI)) 2384 TailCallBBs.push_back(Pred); 2385 } 2386 } 2387 } 2388 2389 bool Changed = false; 2390 for (auto const &TailCallBB : TailCallBBs) { 2391 // Make sure the call instruction is followed by an unconditional branch to 2392 // the return block. 2393 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2394 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2395 continue; 2396 2397 // Duplicate the return into TailCallBB. 2398 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2399 assert(!VerifyBFIUpdates || 2400 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2401 BFI->setBlockFreq( 2402 BB, 2403 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2404 ModifiedDT = Changed = true; 2405 ++NumRetsDup; 2406 } 2407 2408 // If we eliminated all predecessors of the block, delete the block now. 2409 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2410 BB->eraseFromParent(); 2411 2412 return Changed; 2413 } 2414 2415 //===----------------------------------------------------------------------===// 2416 // Memory Optimization 2417 //===----------------------------------------------------------------------===// 2418 2419 namespace { 2420 2421 /// This is an extended version of TargetLowering::AddrMode 2422 /// which holds actual Value*'s for register values. 2423 struct ExtAddrMode : public TargetLowering::AddrMode { 2424 Value *BaseReg = nullptr; 2425 Value *ScaledReg = nullptr; 2426 Value *OriginalValue = nullptr; 2427 bool InBounds = true; 2428 2429 enum FieldName { 2430 NoField = 0x00, 2431 BaseRegField = 0x01, 2432 BaseGVField = 0x02, 2433 BaseOffsField = 0x04, 2434 ScaledRegField = 0x08, 2435 ScaleField = 0x10, 2436 MultipleFields = 0xff 2437 }; 2438 2439 2440 ExtAddrMode() = default; 2441 2442 void print(raw_ostream &OS) const; 2443 void dump() const; 2444 2445 FieldName compare(const ExtAddrMode &other) { 2446 // First check that the types are the same on each field, as differing types 2447 // is something we can't cope with later on. 2448 if (BaseReg && other.BaseReg && 2449 BaseReg->getType() != other.BaseReg->getType()) 2450 return MultipleFields; 2451 if (BaseGV && other.BaseGV && 2452 BaseGV->getType() != other.BaseGV->getType()) 2453 return MultipleFields; 2454 if (ScaledReg && other.ScaledReg && 2455 ScaledReg->getType() != other.ScaledReg->getType()) 2456 return MultipleFields; 2457 2458 // Conservatively reject 'inbounds' mismatches. 2459 if (InBounds != other.InBounds) 2460 return MultipleFields; 2461 2462 // Check each field to see if it differs. 2463 unsigned Result = NoField; 2464 if (BaseReg != other.BaseReg) 2465 Result |= BaseRegField; 2466 if (BaseGV != other.BaseGV) 2467 Result |= BaseGVField; 2468 if (BaseOffs != other.BaseOffs) 2469 Result |= BaseOffsField; 2470 if (ScaledReg != other.ScaledReg) 2471 Result |= ScaledRegField; 2472 // Don't count 0 as being a different scale, because that actually means 2473 // unscaled (which will already be counted by having no ScaledReg). 2474 if (Scale && other.Scale && Scale != other.Scale) 2475 Result |= ScaleField; 2476 2477 if (countPopulation(Result) > 1) 2478 return MultipleFields; 2479 else 2480 return static_cast<FieldName>(Result); 2481 } 2482 2483 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2484 // with no offset. 2485 bool isTrivial() { 2486 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2487 // trivial if at most one of these terms is nonzero, except that BaseGV and 2488 // BaseReg both being zero actually means a null pointer value, which we 2489 // consider to be 'non-zero' here. 2490 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2491 } 2492 2493 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2494 switch (Field) { 2495 default: 2496 return nullptr; 2497 case BaseRegField: 2498 return BaseReg; 2499 case BaseGVField: 2500 return BaseGV; 2501 case ScaledRegField: 2502 return ScaledReg; 2503 case BaseOffsField: 2504 return ConstantInt::get(IntPtrTy, BaseOffs); 2505 } 2506 } 2507 2508 void SetCombinedField(FieldName Field, Value *V, 2509 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2510 switch (Field) { 2511 default: 2512 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2513 break; 2514 case ExtAddrMode::BaseRegField: 2515 BaseReg = V; 2516 break; 2517 case ExtAddrMode::BaseGVField: 2518 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2519 // in the BaseReg field. 2520 assert(BaseReg == nullptr); 2521 BaseReg = V; 2522 BaseGV = nullptr; 2523 break; 2524 case ExtAddrMode::ScaledRegField: 2525 ScaledReg = V; 2526 // If we have a mix of scaled and unscaled addrmodes then we want scale 2527 // to be the scale and not zero. 2528 if (!Scale) 2529 for (const ExtAddrMode &AM : AddrModes) 2530 if (AM.Scale) { 2531 Scale = AM.Scale; 2532 break; 2533 } 2534 break; 2535 case ExtAddrMode::BaseOffsField: 2536 // The offset is no longer a constant, so it goes in ScaledReg with a 2537 // scale of 1. 2538 assert(ScaledReg == nullptr); 2539 ScaledReg = V; 2540 Scale = 1; 2541 BaseOffs = 0; 2542 break; 2543 } 2544 } 2545 }; 2546 2547 } // end anonymous namespace 2548 2549 #ifndef NDEBUG 2550 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2551 AM.print(OS); 2552 return OS; 2553 } 2554 #endif 2555 2556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2557 void ExtAddrMode::print(raw_ostream &OS) const { 2558 bool NeedPlus = false; 2559 OS << "["; 2560 if (InBounds) 2561 OS << "inbounds "; 2562 if (BaseGV) { 2563 OS << (NeedPlus ? " + " : "") 2564 << "GV:"; 2565 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2566 NeedPlus = true; 2567 } 2568 2569 if (BaseOffs) { 2570 OS << (NeedPlus ? " + " : "") 2571 << BaseOffs; 2572 NeedPlus = true; 2573 } 2574 2575 if (BaseReg) { 2576 OS << (NeedPlus ? " + " : "") 2577 << "Base:"; 2578 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2579 NeedPlus = true; 2580 } 2581 if (Scale) { 2582 OS << (NeedPlus ? " + " : "") 2583 << Scale << "*"; 2584 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2585 } 2586 2587 OS << ']'; 2588 } 2589 2590 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2591 print(dbgs()); 2592 dbgs() << '\n'; 2593 } 2594 #endif 2595 2596 namespace { 2597 2598 /// This class provides transaction based operation on the IR. 2599 /// Every change made through this class is recorded in the internal state and 2600 /// can be undone (rollback) until commit is called. 2601 /// CGP does not check if instructions could be speculatively executed when 2602 /// moved. Preserving the original location would pessimize the debugging 2603 /// experience, as well as negatively impact the quality of sample PGO. 2604 class TypePromotionTransaction { 2605 /// This represents the common interface of the individual transaction. 2606 /// Each class implements the logic for doing one specific modification on 2607 /// the IR via the TypePromotionTransaction. 2608 class TypePromotionAction { 2609 protected: 2610 /// The Instruction modified. 2611 Instruction *Inst; 2612 2613 public: 2614 /// Constructor of the action. 2615 /// The constructor performs the related action on the IR. 2616 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2617 2618 virtual ~TypePromotionAction() = default; 2619 2620 /// Undo the modification done by this action. 2621 /// When this method is called, the IR must be in the same state as it was 2622 /// before this action was applied. 2623 /// \pre Undoing the action works if and only if the IR is in the exact same 2624 /// state as it was directly after this action was applied. 2625 virtual void undo() = 0; 2626 2627 /// Advocate every change made by this action. 2628 /// When the results on the IR of the action are to be kept, it is important 2629 /// to call this function, otherwise hidden information may be kept forever. 2630 virtual void commit() { 2631 // Nothing to be done, this action is not doing anything. 2632 } 2633 }; 2634 2635 /// Utility to remember the position of an instruction. 2636 class InsertionHandler { 2637 /// Position of an instruction. 2638 /// Either an instruction: 2639 /// - Is the first in a basic block: BB is used. 2640 /// - Has a previous instruction: PrevInst is used. 2641 union { 2642 Instruction *PrevInst; 2643 BasicBlock *BB; 2644 } Point; 2645 2646 /// Remember whether or not the instruction had a previous instruction. 2647 bool HasPrevInstruction; 2648 2649 public: 2650 /// Record the position of \p Inst. 2651 InsertionHandler(Instruction *Inst) { 2652 BasicBlock::iterator It = Inst->getIterator(); 2653 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2654 if (HasPrevInstruction) 2655 Point.PrevInst = &*--It; 2656 else 2657 Point.BB = Inst->getParent(); 2658 } 2659 2660 /// Insert \p Inst at the recorded position. 2661 void insert(Instruction *Inst) { 2662 if (HasPrevInstruction) { 2663 if (Inst->getParent()) 2664 Inst->removeFromParent(); 2665 Inst->insertAfter(Point.PrevInst); 2666 } else { 2667 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2668 if (Inst->getParent()) 2669 Inst->moveBefore(Position); 2670 else 2671 Inst->insertBefore(Position); 2672 } 2673 } 2674 }; 2675 2676 /// Move an instruction before another. 2677 class InstructionMoveBefore : public TypePromotionAction { 2678 /// Original position of the instruction. 2679 InsertionHandler Position; 2680 2681 public: 2682 /// Move \p Inst before \p Before. 2683 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2684 : TypePromotionAction(Inst), Position(Inst) { 2685 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2686 << "\n"); 2687 Inst->moveBefore(Before); 2688 } 2689 2690 /// Move the instruction back to its original position. 2691 void undo() override { 2692 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2693 Position.insert(Inst); 2694 } 2695 }; 2696 2697 /// Set the operand of an instruction with a new value. 2698 class OperandSetter : public TypePromotionAction { 2699 /// Original operand of the instruction. 2700 Value *Origin; 2701 2702 /// Index of the modified instruction. 2703 unsigned Idx; 2704 2705 public: 2706 /// Set \p Idx operand of \p Inst with \p NewVal. 2707 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2708 : TypePromotionAction(Inst), Idx(Idx) { 2709 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2710 << "for:" << *Inst << "\n" 2711 << "with:" << *NewVal << "\n"); 2712 Origin = Inst->getOperand(Idx); 2713 Inst->setOperand(Idx, NewVal); 2714 } 2715 2716 /// Restore the original value of the instruction. 2717 void undo() override { 2718 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2719 << "for: " << *Inst << "\n" 2720 << "with: " << *Origin << "\n"); 2721 Inst->setOperand(Idx, Origin); 2722 } 2723 }; 2724 2725 /// Hide the operands of an instruction. 2726 /// Do as if this instruction was not using any of its operands. 2727 class OperandsHider : public TypePromotionAction { 2728 /// The list of original operands. 2729 SmallVector<Value *, 4> OriginalValues; 2730 2731 public: 2732 /// Remove \p Inst from the uses of the operands of \p Inst. 2733 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2734 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2735 unsigned NumOpnds = Inst->getNumOperands(); 2736 OriginalValues.reserve(NumOpnds); 2737 for (unsigned It = 0; It < NumOpnds; ++It) { 2738 // Save the current operand. 2739 Value *Val = Inst->getOperand(It); 2740 OriginalValues.push_back(Val); 2741 // Set a dummy one. 2742 // We could use OperandSetter here, but that would imply an overhead 2743 // that we are not willing to pay. 2744 Inst->setOperand(It, UndefValue::get(Val->getType())); 2745 } 2746 } 2747 2748 /// Restore the original list of uses. 2749 void undo() override { 2750 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2751 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2752 Inst->setOperand(It, OriginalValues[It]); 2753 } 2754 }; 2755 2756 /// Build a truncate instruction. 2757 class TruncBuilder : public TypePromotionAction { 2758 Value *Val; 2759 2760 public: 2761 /// Build a truncate instruction of \p Opnd producing a \p Ty 2762 /// result. 2763 /// trunc Opnd to Ty. 2764 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2765 IRBuilder<> Builder(Opnd); 2766 Builder.SetCurrentDebugLocation(DebugLoc()); 2767 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2768 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2769 } 2770 2771 /// Get the built value. 2772 Value *getBuiltValue() { return Val; } 2773 2774 /// Remove the built instruction. 2775 void undo() override { 2776 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2777 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2778 IVal->eraseFromParent(); 2779 } 2780 }; 2781 2782 /// Build a sign extension instruction. 2783 class SExtBuilder : public TypePromotionAction { 2784 Value *Val; 2785 2786 public: 2787 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2788 /// result. 2789 /// sext Opnd to Ty. 2790 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2791 : TypePromotionAction(InsertPt) { 2792 IRBuilder<> Builder(InsertPt); 2793 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2794 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2795 } 2796 2797 /// Get the built value. 2798 Value *getBuiltValue() { return Val; } 2799 2800 /// Remove the built instruction. 2801 void undo() override { 2802 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2803 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2804 IVal->eraseFromParent(); 2805 } 2806 }; 2807 2808 /// Build a zero extension instruction. 2809 class ZExtBuilder : public TypePromotionAction { 2810 Value *Val; 2811 2812 public: 2813 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2814 /// result. 2815 /// zext Opnd to Ty. 2816 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2817 : TypePromotionAction(InsertPt) { 2818 IRBuilder<> Builder(InsertPt); 2819 Builder.SetCurrentDebugLocation(DebugLoc()); 2820 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2821 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2822 } 2823 2824 /// Get the built value. 2825 Value *getBuiltValue() { return Val; } 2826 2827 /// Remove the built instruction. 2828 void undo() override { 2829 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2830 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2831 IVal->eraseFromParent(); 2832 } 2833 }; 2834 2835 /// Mutate an instruction to another type. 2836 class TypeMutator : public TypePromotionAction { 2837 /// Record the original type. 2838 Type *OrigTy; 2839 2840 public: 2841 /// Mutate the type of \p Inst into \p NewTy. 2842 TypeMutator(Instruction *Inst, Type *NewTy) 2843 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2844 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2845 << "\n"); 2846 Inst->mutateType(NewTy); 2847 } 2848 2849 /// Mutate the instruction back to its original type. 2850 void undo() override { 2851 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2852 << "\n"); 2853 Inst->mutateType(OrigTy); 2854 } 2855 }; 2856 2857 /// Replace the uses of an instruction by another instruction. 2858 class UsesReplacer : public TypePromotionAction { 2859 /// Helper structure to keep track of the replaced uses. 2860 struct InstructionAndIdx { 2861 /// The instruction using the instruction. 2862 Instruction *Inst; 2863 2864 /// The index where this instruction is used for Inst. 2865 unsigned Idx; 2866 2867 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2868 : Inst(Inst), Idx(Idx) {} 2869 }; 2870 2871 /// Keep track of the original uses (pair Instruction, Index). 2872 SmallVector<InstructionAndIdx, 4> OriginalUses; 2873 /// Keep track of the debug users. 2874 SmallVector<DbgValueInst *, 1> DbgValues; 2875 2876 /// Keep track of the new value so that we can undo it by replacing 2877 /// instances of the new value with the original value. 2878 Value *New; 2879 2880 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2881 2882 public: 2883 /// Replace all the use of \p Inst by \p New. 2884 UsesReplacer(Instruction *Inst, Value *New) 2885 : TypePromotionAction(Inst), New(New) { 2886 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2887 << "\n"); 2888 // Record the original uses. 2889 for (Use &U : Inst->uses()) { 2890 Instruction *UserI = cast<Instruction>(U.getUser()); 2891 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2892 } 2893 // Record the debug uses separately. They are not in the instruction's 2894 // use list, but they are replaced by RAUW. 2895 findDbgValues(DbgValues, Inst); 2896 2897 // Now, we can replace the uses. 2898 Inst->replaceAllUsesWith(New); 2899 } 2900 2901 /// Reassign the original uses of Inst to Inst. 2902 void undo() override { 2903 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2904 for (InstructionAndIdx &Use : OriginalUses) 2905 Use.Inst->setOperand(Use.Idx, Inst); 2906 // RAUW has replaced all original uses with references to the new value, 2907 // including the debug uses. Since we are undoing the replacements, 2908 // the original debug uses must also be reinstated to maintain the 2909 // correctness and utility of debug value instructions. 2910 for (auto *DVI : DbgValues) 2911 DVI->replaceVariableLocationOp(New, Inst); 2912 } 2913 }; 2914 2915 /// Remove an instruction from the IR. 2916 class InstructionRemover : public TypePromotionAction { 2917 /// Original position of the instruction. 2918 InsertionHandler Inserter; 2919 2920 /// Helper structure to hide all the link to the instruction. In other 2921 /// words, this helps to do as if the instruction was removed. 2922 OperandsHider Hider; 2923 2924 /// Keep track of the uses replaced, if any. 2925 UsesReplacer *Replacer = nullptr; 2926 2927 /// Keep track of instructions removed. 2928 SetOfInstrs &RemovedInsts; 2929 2930 public: 2931 /// Remove all reference of \p Inst and optionally replace all its 2932 /// uses with New. 2933 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2934 /// \pre If !Inst->use_empty(), then New != nullptr 2935 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2936 Value *New = nullptr) 2937 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2938 RemovedInsts(RemovedInsts) { 2939 if (New) 2940 Replacer = new UsesReplacer(Inst, New); 2941 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2942 RemovedInsts.insert(Inst); 2943 /// The instructions removed here will be freed after completing 2944 /// optimizeBlock() for all blocks as we need to keep track of the 2945 /// removed instructions during promotion. 2946 Inst->removeFromParent(); 2947 } 2948 2949 ~InstructionRemover() override { delete Replacer; } 2950 2951 /// Resurrect the instruction and reassign it to the proper uses if 2952 /// new value was provided when build this action. 2953 void undo() override { 2954 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2955 Inserter.insert(Inst); 2956 if (Replacer) 2957 Replacer->undo(); 2958 Hider.undo(); 2959 RemovedInsts.erase(Inst); 2960 } 2961 }; 2962 2963 public: 2964 /// Restoration point. 2965 /// The restoration point is a pointer to an action instead of an iterator 2966 /// because the iterator may be invalidated but not the pointer. 2967 using ConstRestorationPt = const TypePromotionAction *; 2968 2969 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2970 : RemovedInsts(RemovedInsts) {} 2971 2972 /// Advocate every changes made in that transaction. Return true if any change 2973 /// happen. 2974 bool commit(); 2975 2976 /// Undo all the changes made after the given point. 2977 void rollback(ConstRestorationPt Point); 2978 2979 /// Get the current restoration point. 2980 ConstRestorationPt getRestorationPoint() const; 2981 2982 /// \name API for IR modification with state keeping to support rollback. 2983 /// @{ 2984 /// Same as Instruction::setOperand. 2985 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2986 2987 /// Same as Instruction::eraseFromParent. 2988 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2989 2990 /// Same as Value::replaceAllUsesWith. 2991 void replaceAllUsesWith(Instruction *Inst, Value *New); 2992 2993 /// Same as Value::mutateType. 2994 void mutateType(Instruction *Inst, Type *NewTy); 2995 2996 /// Same as IRBuilder::createTrunc. 2997 Value *createTrunc(Instruction *Opnd, Type *Ty); 2998 2999 /// Same as IRBuilder::createSExt. 3000 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3001 3002 /// Same as IRBuilder::createZExt. 3003 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3004 3005 /// Same as Instruction::moveBefore. 3006 void moveBefore(Instruction *Inst, Instruction *Before); 3007 /// @} 3008 3009 private: 3010 /// The ordered list of actions made so far. 3011 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3012 3013 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3014 3015 SetOfInstrs &RemovedInsts; 3016 }; 3017 3018 } // end anonymous namespace 3019 3020 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3021 Value *NewVal) { 3022 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3023 Inst, Idx, NewVal)); 3024 } 3025 3026 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3027 Value *NewVal) { 3028 Actions.push_back( 3029 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3030 Inst, RemovedInsts, NewVal)); 3031 } 3032 3033 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3034 Value *New) { 3035 Actions.push_back( 3036 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3037 } 3038 3039 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3040 Actions.push_back( 3041 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3042 } 3043 3044 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3045 Type *Ty) { 3046 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3047 Value *Val = Ptr->getBuiltValue(); 3048 Actions.push_back(std::move(Ptr)); 3049 return Val; 3050 } 3051 3052 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3053 Value *Opnd, Type *Ty) { 3054 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3055 Value *Val = Ptr->getBuiltValue(); 3056 Actions.push_back(std::move(Ptr)); 3057 return Val; 3058 } 3059 3060 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3061 Value *Opnd, Type *Ty) { 3062 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3063 Value *Val = Ptr->getBuiltValue(); 3064 Actions.push_back(std::move(Ptr)); 3065 return Val; 3066 } 3067 3068 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3069 Instruction *Before) { 3070 Actions.push_back( 3071 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3072 Inst, Before)); 3073 } 3074 3075 TypePromotionTransaction::ConstRestorationPt 3076 TypePromotionTransaction::getRestorationPoint() const { 3077 return !Actions.empty() ? Actions.back().get() : nullptr; 3078 } 3079 3080 bool TypePromotionTransaction::commit() { 3081 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3082 Action->commit(); 3083 bool Modified = !Actions.empty(); 3084 Actions.clear(); 3085 return Modified; 3086 } 3087 3088 void TypePromotionTransaction::rollback( 3089 TypePromotionTransaction::ConstRestorationPt Point) { 3090 while (!Actions.empty() && Point != Actions.back().get()) { 3091 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3092 Curr->undo(); 3093 } 3094 } 3095 3096 namespace { 3097 3098 /// A helper class for matching addressing modes. 3099 /// 3100 /// This encapsulates the logic for matching the target-legal addressing modes. 3101 class AddressingModeMatcher { 3102 SmallVectorImpl<Instruction*> &AddrModeInsts; 3103 const TargetLowering &TLI; 3104 const TargetRegisterInfo &TRI; 3105 const DataLayout &DL; 3106 const LoopInfo &LI; 3107 const std::function<const DominatorTree &()> getDTFn; 3108 3109 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3110 /// the memory instruction that we're computing this address for. 3111 Type *AccessTy; 3112 unsigned AddrSpace; 3113 Instruction *MemoryInst; 3114 3115 /// This is the addressing mode that we're building up. This is 3116 /// part of the return value of this addressing mode matching stuff. 3117 ExtAddrMode &AddrMode; 3118 3119 /// The instructions inserted by other CodeGenPrepare optimizations. 3120 const SetOfInstrs &InsertedInsts; 3121 3122 /// A map from the instructions to their type before promotion. 3123 InstrToOrigTy &PromotedInsts; 3124 3125 /// The ongoing transaction where every action should be registered. 3126 TypePromotionTransaction &TPT; 3127 3128 // A GEP which has too large offset to be folded into the addressing mode. 3129 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3130 3131 /// This is set to true when we should not do profitability checks. 3132 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3133 bool IgnoreProfitability; 3134 3135 /// True if we are optimizing for size. 3136 bool OptSize; 3137 3138 ProfileSummaryInfo *PSI; 3139 BlockFrequencyInfo *BFI; 3140 3141 AddressingModeMatcher( 3142 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3143 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3144 const std::function<const DominatorTree &()> getDTFn, 3145 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3146 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3147 TypePromotionTransaction &TPT, 3148 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3149 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3150 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3151 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3152 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3153 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3154 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3155 IgnoreProfitability = false; 3156 } 3157 3158 public: 3159 /// Find the maximal addressing mode that a load/store of V can fold, 3160 /// give an access type of AccessTy. This returns a list of involved 3161 /// instructions in AddrModeInsts. 3162 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3163 /// optimizations. 3164 /// \p PromotedInsts maps the instructions to their type before promotion. 3165 /// \p The ongoing transaction where every action should be registered. 3166 static ExtAddrMode 3167 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3168 SmallVectorImpl<Instruction *> &AddrModeInsts, 3169 const TargetLowering &TLI, const LoopInfo &LI, 3170 const std::function<const DominatorTree &()> getDTFn, 3171 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3172 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3173 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3174 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3175 ExtAddrMode Result; 3176 3177 bool Success = AddressingModeMatcher( 3178 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3179 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3180 BFI).matchAddr(V, 0); 3181 (void)Success; assert(Success && "Couldn't select *anything*?"); 3182 return Result; 3183 } 3184 3185 private: 3186 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3187 bool matchAddr(Value *Addr, unsigned Depth); 3188 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3189 bool *MovedAway = nullptr); 3190 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3191 ExtAddrMode &AMBefore, 3192 ExtAddrMode &AMAfter); 3193 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3194 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3195 Value *PromotedOperand) const; 3196 }; 3197 3198 class PhiNodeSet; 3199 3200 /// An iterator for PhiNodeSet. 3201 class PhiNodeSetIterator { 3202 PhiNodeSet * const Set; 3203 size_t CurrentIndex = 0; 3204 3205 public: 3206 /// The constructor. Start should point to either a valid element, or be equal 3207 /// to the size of the underlying SmallVector of the PhiNodeSet. 3208 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3209 PHINode * operator*() const; 3210 PhiNodeSetIterator& operator++(); 3211 bool operator==(const PhiNodeSetIterator &RHS) const; 3212 bool operator!=(const PhiNodeSetIterator &RHS) const; 3213 }; 3214 3215 /// Keeps a set of PHINodes. 3216 /// 3217 /// This is a minimal set implementation for a specific use case: 3218 /// It is very fast when there are very few elements, but also provides good 3219 /// performance when there are many. It is similar to SmallPtrSet, but also 3220 /// provides iteration by insertion order, which is deterministic and stable 3221 /// across runs. It is also similar to SmallSetVector, but provides removing 3222 /// elements in O(1) time. This is achieved by not actually removing the element 3223 /// from the underlying vector, so comes at the cost of using more memory, but 3224 /// that is fine, since PhiNodeSets are used as short lived objects. 3225 class PhiNodeSet { 3226 friend class PhiNodeSetIterator; 3227 3228 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3229 using iterator = PhiNodeSetIterator; 3230 3231 /// Keeps the elements in the order of their insertion in the underlying 3232 /// vector. To achieve constant time removal, it never deletes any element. 3233 SmallVector<PHINode *, 32> NodeList; 3234 3235 /// Keeps the elements in the underlying set implementation. This (and not the 3236 /// NodeList defined above) is the source of truth on whether an element 3237 /// is actually in the collection. 3238 MapType NodeMap; 3239 3240 /// Points to the first valid (not deleted) element when the set is not empty 3241 /// and the value is not zero. Equals to the size of the underlying vector 3242 /// when the set is empty. When the value is 0, as in the beginning, the 3243 /// first element may or may not be valid. 3244 size_t FirstValidElement = 0; 3245 3246 public: 3247 /// Inserts a new element to the collection. 3248 /// \returns true if the element is actually added, i.e. was not in the 3249 /// collection before the operation. 3250 bool insert(PHINode *Ptr) { 3251 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3252 NodeList.push_back(Ptr); 3253 return true; 3254 } 3255 return false; 3256 } 3257 3258 /// Removes the element from the collection. 3259 /// \returns whether the element is actually removed, i.e. was in the 3260 /// collection before the operation. 3261 bool erase(PHINode *Ptr) { 3262 if (NodeMap.erase(Ptr)) { 3263 SkipRemovedElements(FirstValidElement); 3264 return true; 3265 } 3266 return false; 3267 } 3268 3269 /// Removes all elements and clears the collection. 3270 void clear() { 3271 NodeMap.clear(); 3272 NodeList.clear(); 3273 FirstValidElement = 0; 3274 } 3275 3276 /// \returns an iterator that will iterate the elements in the order of 3277 /// insertion. 3278 iterator begin() { 3279 if (FirstValidElement == 0) 3280 SkipRemovedElements(FirstValidElement); 3281 return PhiNodeSetIterator(this, FirstValidElement); 3282 } 3283 3284 /// \returns an iterator that points to the end of the collection. 3285 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3286 3287 /// Returns the number of elements in the collection. 3288 size_t size() const { 3289 return NodeMap.size(); 3290 } 3291 3292 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3293 size_t count(PHINode *Ptr) const { 3294 return NodeMap.count(Ptr); 3295 } 3296 3297 private: 3298 /// Updates the CurrentIndex so that it will point to a valid element. 3299 /// 3300 /// If the element of NodeList at CurrentIndex is valid, it does not 3301 /// change it. If there are no more valid elements, it updates CurrentIndex 3302 /// to point to the end of the NodeList. 3303 void SkipRemovedElements(size_t &CurrentIndex) { 3304 while (CurrentIndex < NodeList.size()) { 3305 auto it = NodeMap.find(NodeList[CurrentIndex]); 3306 // If the element has been deleted and added again later, NodeMap will 3307 // point to a different index, so CurrentIndex will still be invalid. 3308 if (it != NodeMap.end() && it->second == CurrentIndex) 3309 break; 3310 ++CurrentIndex; 3311 } 3312 } 3313 }; 3314 3315 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3316 : Set(Set), CurrentIndex(Start) {} 3317 3318 PHINode * PhiNodeSetIterator::operator*() const { 3319 assert(CurrentIndex < Set->NodeList.size() && 3320 "PhiNodeSet access out of range"); 3321 return Set->NodeList[CurrentIndex]; 3322 } 3323 3324 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3325 assert(CurrentIndex < Set->NodeList.size() && 3326 "PhiNodeSet access out of range"); 3327 ++CurrentIndex; 3328 Set->SkipRemovedElements(CurrentIndex); 3329 return *this; 3330 } 3331 3332 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3333 return CurrentIndex == RHS.CurrentIndex; 3334 } 3335 3336 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3337 return !((*this) == RHS); 3338 } 3339 3340 /// Keep track of simplification of Phi nodes. 3341 /// Accept the set of all phi nodes and erase phi node from this set 3342 /// if it is simplified. 3343 class SimplificationTracker { 3344 DenseMap<Value *, Value *> Storage; 3345 const SimplifyQuery &SQ; 3346 // Tracks newly created Phi nodes. The elements are iterated by insertion 3347 // order. 3348 PhiNodeSet AllPhiNodes; 3349 // Tracks newly created Select nodes. 3350 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3351 3352 public: 3353 SimplificationTracker(const SimplifyQuery &sq) 3354 : SQ(sq) {} 3355 3356 Value *Get(Value *V) { 3357 do { 3358 auto SV = Storage.find(V); 3359 if (SV == Storage.end()) 3360 return V; 3361 V = SV->second; 3362 } while (true); 3363 } 3364 3365 Value *Simplify(Value *Val) { 3366 SmallVector<Value *, 32> WorkList; 3367 SmallPtrSet<Value *, 32> Visited; 3368 WorkList.push_back(Val); 3369 while (!WorkList.empty()) { 3370 auto *P = WorkList.pop_back_val(); 3371 if (!Visited.insert(P).second) 3372 continue; 3373 if (auto *PI = dyn_cast<Instruction>(P)) 3374 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3375 for (auto *U : PI->users()) 3376 WorkList.push_back(cast<Value>(U)); 3377 Put(PI, V); 3378 PI->replaceAllUsesWith(V); 3379 if (auto *PHI = dyn_cast<PHINode>(PI)) 3380 AllPhiNodes.erase(PHI); 3381 if (auto *Select = dyn_cast<SelectInst>(PI)) 3382 AllSelectNodes.erase(Select); 3383 PI->eraseFromParent(); 3384 } 3385 } 3386 return Get(Val); 3387 } 3388 3389 void Put(Value *From, Value *To) { 3390 Storage.insert({ From, To }); 3391 } 3392 3393 void ReplacePhi(PHINode *From, PHINode *To) { 3394 Value* OldReplacement = Get(From); 3395 while (OldReplacement != From) { 3396 From = To; 3397 To = dyn_cast<PHINode>(OldReplacement); 3398 OldReplacement = Get(From); 3399 } 3400 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3401 Put(From, To); 3402 From->replaceAllUsesWith(To); 3403 AllPhiNodes.erase(From); 3404 From->eraseFromParent(); 3405 } 3406 3407 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3408 3409 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3410 3411 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3412 3413 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3414 3415 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3416 3417 void destroyNewNodes(Type *CommonType) { 3418 // For safe erasing, replace the uses with dummy value first. 3419 auto *Dummy = UndefValue::get(CommonType); 3420 for (auto *I : AllPhiNodes) { 3421 I->replaceAllUsesWith(Dummy); 3422 I->eraseFromParent(); 3423 } 3424 AllPhiNodes.clear(); 3425 for (auto *I : AllSelectNodes) { 3426 I->replaceAllUsesWith(Dummy); 3427 I->eraseFromParent(); 3428 } 3429 AllSelectNodes.clear(); 3430 } 3431 }; 3432 3433 /// A helper class for combining addressing modes. 3434 class AddressingModeCombiner { 3435 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3436 typedef std::pair<PHINode *, PHINode *> PHIPair; 3437 3438 private: 3439 /// The addressing modes we've collected. 3440 SmallVector<ExtAddrMode, 16> AddrModes; 3441 3442 /// The field in which the AddrModes differ, when we have more than one. 3443 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3444 3445 /// Are the AddrModes that we have all just equal to their original values? 3446 bool AllAddrModesTrivial = true; 3447 3448 /// Common Type for all different fields in addressing modes. 3449 Type *CommonType = nullptr; 3450 3451 /// SimplifyQuery for simplifyInstruction utility. 3452 const SimplifyQuery &SQ; 3453 3454 /// Original Address. 3455 Value *Original; 3456 3457 public: 3458 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3459 : SQ(_SQ), Original(OriginalValue) {} 3460 3461 /// Get the combined AddrMode 3462 const ExtAddrMode &getAddrMode() const { 3463 return AddrModes[0]; 3464 } 3465 3466 /// Add a new AddrMode if it's compatible with the AddrModes we already 3467 /// have. 3468 /// \return True iff we succeeded in doing so. 3469 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3470 // Take note of if we have any non-trivial AddrModes, as we need to detect 3471 // when all AddrModes are trivial as then we would introduce a phi or select 3472 // which just duplicates what's already there. 3473 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3474 3475 // If this is the first addrmode then everything is fine. 3476 if (AddrModes.empty()) { 3477 AddrModes.emplace_back(NewAddrMode); 3478 return true; 3479 } 3480 3481 // Figure out how different this is from the other address modes, which we 3482 // can do just by comparing against the first one given that we only care 3483 // about the cumulative difference. 3484 ExtAddrMode::FieldName ThisDifferentField = 3485 AddrModes[0].compare(NewAddrMode); 3486 if (DifferentField == ExtAddrMode::NoField) 3487 DifferentField = ThisDifferentField; 3488 else if (DifferentField != ThisDifferentField) 3489 DifferentField = ExtAddrMode::MultipleFields; 3490 3491 // If NewAddrMode differs in more than one dimension we cannot handle it. 3492 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3493 3494 // If Scale Field is different then we reject. 3495 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3496 3497 // We also must reject the case when base offset is different and 3498 // scale reg is not null, we cannot handle this case due to merge of 3499 // different offsets will be used as ScaleReg. 3500 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3501 !NewAddrMode.ScaledReg); 3502 3503 // We also must reject the case when GV is different and BaseReg installed 3504 // due to we want to use base reg as a merge of GV values. 3505 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3506 !NewAddrMode.HasBaseReg); 3507 3508 // Even if NewAddMode is the same we still need to collect it due to 3509 // original value is different. And later we will need all original values 3510 // as anchors during finding the common Phi node. 3511 if (CanHandle) 3512 AddrModes.emplace_back(NewAddrMode); 3513 else 3514 AddrModes.clear(); 3515 3516 return CanHandle; 3517 } 3518 3519 /// Combine the addressing modes we've collected into a single 3520 /// addressing mode. 3521 /// \return True iff we successfully combined them or we only had one so 3522 /// didn't need to combine them anyway. 3523 bool combineAddrModes() { 3524 // If we have no AddrModes then they can't be combined. 3525 if (AddrModes.size() == 0) 3526 return false; 3527 3528 // A single AddrMode can trivially be combined. 3529 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3530 return true; 3531 3532 // If the AddrModes we collected are all just equal to the value they are 3533 // derived from then combining them wouldn't do anything useful. 3534 if (AllAddrModesTrivial) 3535 return false; 3536 3537 if (!addrModeCombiningAllowed()) 3538 return false; 3539 3540 // Build a map between <original value, basic block where we saw it> to 3541 // value of base register. 3542 // Bail out if there is no common type. 3543 FoldAddrToValueMapping Map; 3544 if (!initializeMap(Map)) 3545 return false; 3546 3547 Value *CommonValue = findCommon(Map); 3548 if (CommonValue) 3549 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3550 return CommonValue != nullptr; 3551 } 3552 3553 private: 3554 /// Initialize Map with anchor values. For address seen 3555 /// we set the value of different field saw in this address. 3556 /// At the same time we find a common type for different field we will 3557 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3558 /// Return false if there is no common type found. 3559 bool initializeMap(FoldAddrToValueMapping &Map) { 3560 // Keep track of keys where the value is null. We will need to replace it 3561 // with constant null when we know the common type. 3562 SmallVector<Value *, 2> NullValue; 3563 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3564 for (auto &AM : AddrModes) { 3565 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3566 if (DV) { 3567 auto *Type = DV->getType(); 3568 if (CommonType && CommonType != Type) 3569 return false; 3570 CommonType = Type; 3571 Map[AM.OriginalValue] = DV; 3572 } else { 3573 NullValue.push_back(AM.OriginalValue); 3574 } 3575 } 3576 assert(CommonType && "At least one non-null value must be!"); 3577 for (auto *V : NullValue) 3578 Map[V] = Constant::getNullValue(CommonType); 3579 return true; 3580 } 3581 3582 /// We have mapping between value A and other value B where B was a field in 3583 /// addressing mode represented by A. Also we have an original value C 3584 /// representing an address we start with. Traversing from C through phi and 3585 /// selects we ended up with A's in a map. This utility function tries to find 3586 /// a value V which is a field in addressing mode C and traversing through phi 3587 /// nodes and selects we will end up in corresponded values B in a map. 3588 /// The utility will create a new Phi/Selects if needed. 3589 // The simple example looks as follows: 3590 // BB1: 3591 // p1 = b1 + 40 3592 // br cond BB2, BB3 3593 // BB2: 3594 // p2 = b2 + 40 3595 // br BB3 3596 // BB3: 3597 // p = phi [p1, BB1], [p2, BB2] 3598 // v = load p 3599 // Map is 3600 // p1 -> b1 3601 // p2 -> b2 3602 // Request is 3603 // p -> ? 3604 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3605 Value *findCommon(FoldAddrToValueMapping &Map) { 3606 // Tracks the simplification of newly created phi nodes. The reason we use 3607 // this mapping is because we will add new created Phi nodes in AddrToBase. 3608 // Simplification of Phi nodes is recursive, so some Phi node may 3609 // be simplified after we added it to AddrToBase. In reality this 3610 // simplification is possible only if original phi/selects were not 3611 // simplified yet. 3612 // Using this mapping we can find the current value in AddrToBase. 3613 SimplificationTracker ST(SQ); 3614 3615 // First step, DFS to create PHI nodes for all intermediate blocks. 3616 // Also fill traverse order for the second step. 3617 SmallVector<Value *, 32> TraverseOrder; 3618 InsertPlaceholders(Map, TraverseOrder, ST); 3619 3620 // Second Step, fill new nodes by merged values and simplify if possible. 3621 FillPlaceholders(Map, TraverseOrder, ST); 3622 3623 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3624 ST.destroyNewNodes(CommonType); 3625 return nullptr; 3626 } 3627 3628 // Now we'd like to match New Phi nodes to existed ones. 3629 unsigned PhiNotMatchedCount = 0; 3630 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3631 ST.destroyNewNodes(CommonType); 3632 return nullptr; 3633 } 3634 3635 auto *Result = ST.Get(Map.find(Original)->second); 3636 if (Result) { 3637 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3638 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3639 } 3640 return Result; 3641 } 3642 3643 /// Try to match PHI node to Candidate. 3644 /// Matcher tracks the matched Phi nodes. 3645 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3646 SmallSetVector<PHIPair, 8> &Matcher, 3647 PhiNodeSet &PhiNodesToMatch) { 3648 SmallVector<PHIPair, 8> WorkList; 3649 Matcher.insert({ PHI, Candidate }); 3650 SmallSet<PHINode *, 8> MatchedPHIs; 3651 MatchedPHIs.insert(PHI); 3652 WorkList.push_back({ PHI, Candidate }); 3653 SmallSet<PHIPair, 8> Visited; 3654 while (!WorkList.empty()) { 3655 auto Item = WorkList.pop_back_val(); 3656 if (!Visited.insert(Item).second) 3657 continue; 3658 // We iterate over all incoming values to Phi to compare them. 3659 // If values are different and both of them Phi and the first one is a 3660 // Phi we added (subject to match) and both of them is in the same basic 3661 // block then we can match our pair if values match. So we state that 3662 // these values match and add it to work list to verify that. 3663 for (auto B : Item.first->blocks()) { 3664 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3665 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3666 if (FirstValue == SecondValue) 3667 continue; 3668 3669 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3670 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3671 3672 // One of them is not Phi or 3673 // The first one is not Phi node from the set we'd like to match or 3674 // Phi nodes from different basic blocks then 3675 // we will not be able to match. 3676 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3677 FirstPhi->getParent() != SecondPhi->getParent()) 3678 return false; 3679 3680 // If we already matched them then continue. 3681 if (Matcher.count({ FirstPhi, SecondPhi })) 3682 continue; 3683 // So the values are different and does not match. So we need them to 3684 // match. (But we register no more than one match per PHI node, so that 3685 // we won't later try to replace them twice.) 3686 if (MatchedPHIs.insert(FirstPhi).second) 3687 Matcher.insert({ FirstPhi, SecondPhi }); 3688 // But me must check it. 3689 WorkList.push_back({ FirstPhi, SecondPhi }); 3690 } 3691 } 3692 return true; 3693 } 3694 3695 /// For the given set of PHI nodes (in the SimplificationTracker) try 3696 /// to find their equivalents. 3697 /// Returns false if this matching fails and creation of new Phi is disabled. 3698 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3699 unsigned &PhiNotMatchedCount) { 3700 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3701 // order, so the replacements (ReplacePhi) are also done in a deterministic 3702 // order. 3703 SmallSetVector<PHIPair, 8> Matched; 3704 SmallPtrSet<PHINode *, 8> WillNotMatch; 3705 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3706 while (PhiNodesToMatch.size()) { 3707 PHINode *PHI = *PhiNodesToMatch.begin(); 3708 3709 // Add us, if no Phi nodes in the basic block we do not match. 3710 WillNotMatch.clear(); 3711 WillNotMatch.insert(PHI); 3712 3713 // Traverse all Phis until we found equivalent or fail to do that. 3714 bool IsMatched = false; 3715 for (auto &P : PHI->getParent()->phis()) { 3716 // Skip new Phi nodes. 3717 if (PhiNodesToMatch.count(&P)) 3718 continue; 3719 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3720 break; 3721 // If it does not match, collect all Phi nodes from matcher. 3722 // if we end up with no match, them all these Phi nodes will not match 3723 // later. 3724 for (auto M : Matched) 3725 WillNotMatch.insert(M.first); 3726 Matched.clear(); 3727 } 3728 if (IsMatched) { 3729 // Replace all matched values and erase them. 3730 for (auto MV : Matched) 3731 ST.ReplacePhi(MV.first, MV.second); 3732 Matched.clear(); 3733 continue; 3734 } 3735 // If we are not allowed to create new nodes then bail out. 3736 if (!AllowNewPhiNodes) 3737 return false; 3738 // Just remove all seen values in matcher. They will not match anything. 3739 PhiNotMatchedCount += WillNotMatch.size(); 3740 for (auto *P : WillNotMatch) 3741 PhiNodesToMatch.erase(P); 3742 } 3743 return true; 3744 } 3745 /// Fill the placeholders with values from predecessors and simplify them. 3746 void FillPlaceholders(FoldAddrToValueMapping &Map, 3747 SmallVectorImpl<Value *> &TraverseOrder, 3748 SimplificationTracker &ST) { 3749 while (!TraverseOrder.empty()) { 3750 Value *Current = TraverseOrder.pop_back_val(); 3751 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3752 Value *V = Map[Current]; 3753 3754 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3755 // CurrentValue also must be Select. 3756 auto *CurrentSelect = cast<SelectInst>(Current); 3757 auto *TrueValue = CurrentSelect->getTrueValue(); 3758 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3759 Select->setTrueValue(ST.Get(Map[TrueValue])); 3760 auto *FalseValue = CurrentSelect->getFalseValue(); 3761 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3762 Select->setFalseValue(ST.Get(Map[FalseValue])); 3763 } else { 3764 // Must be a Phi node then. 3765 auto *PHI = cast<PHINode>(V); 3766 // Fill the Phi node with values from predecessors. 3767 for (auto *B : predecessors(PHI->getParent())) { 3768 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3769 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3770 PHI->addIncoming(ST.Get(Map[PV]), B); 3771 } 3772 } 3773 Map[Current] = ST.Simplify(V); 3774 } 3775 } 3776 3777 /// Starting from original value recursively iterates over def-use chain up to 3778 /// known ending values represented in a map. For each traversed phi/select 3779 /// inserts a placeholder Phi or Select. 3780 /// Reports all new created Phi/Select nodes by adding them to set. 3781 /// Also reports and order in what values have been traversed. 3782 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3783 SmallVectorImpl<Value *> &TraverseOrder, 3784 SimplificationTracker &ST) { 3785 SmallVector<Value *, 32> Worklist; 3786 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3787 "Address must be a Phi or Select node"); 3788 auto *Dummy = UndefValue::get(CommonType); 3789 Worklist.push_back(Original); 3790 while (!Worklist.empty()) { 3791 Value *Current = Worklist.pop_back_val(); 3792 // if it is already visited or it is an ending value then skip it. 3793 if (Map.find(Current) != Map.end()) 3794 continue; 3795 TraverseOrder.push_back(Current); 3796 3797 // CurrentValue must be a Phi node or select. All others must be covered 3798 // by anchors. 3799 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3800 // Is it OK to get metadata from OrigSelect?! 3801 // Create a Select placeholder with dummy value. 3802 SelectInst *Select = SelectInst::Create( 3803 CurrentSelect->getCondition(), Dummy, Dummy, 3804 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3805 Map[Current] = Select; 3806 ST.insertNewSelect(Select); 3807 // We are interested in True and False values. 3808 Worklist.push_back(CurrentSelect->getTrueValue()); 3809 Worklist.push_back(CurrentSelect->getFalseValue()); 3810 } else { 3811 // It must be a Phi node then. 3812 PHINode *CurrentPhi = cast<PHINode>(Current); 3813 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3814 PHINode *PHI = 3815 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3816 Map[Current] = PHI; 3817 ST.insertNewPhi(PHI); 3818 append_range(Worklist, CurrentPhi->incoming_values()); 3819 } 3820 } 3821 } 3822 3823 bool addrModeCombiningAllowed() { 3824 if (DisableComplexAddrModes) 3825 return false; 3826 switch (DifferentField) { 3827 default: 3828 return false; 3829 case ExtAddrMode::BaseRegField: 3830 return AddrSinkCombineBaseReg; 3831 case ExtAddrMode::BaseGVField: 3832 return AddrSinkCombineBaseGV; 3833 case ExtAddrMode::BaseOffsField: 3834 return AddrSinkCombineBaseOffs; 3835 case ExtAddrMode::ScaledRegField: 3836 return AddrSinkCombineScaledReg; 3837 } 3838 } 3839 }; 3840 } // end anonymous namespace 3841 3842 /// Try adding ScaleReg*Scale to the current addressing mode. 3843 /// Return true and update AddrMode if this addr mode is legal for the target, 3844 /// false if not. 3845 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3846 unsigned Depth) { 3847 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3848 // mode. Just process that directly. 3849 if (Scale == 1) 3850 return matchAddr(ScaleReg, Depth); 3851 3852 // If the scale is 0, it takes nothing to add this. 3853 if (Scale == 0) 3854 return true; 3855 3856 // If we already have a scale of this value, we can add to it, otherwise, we 3857 // need an available scale field. 3858 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3859 return false; 3860 3861 ExtAddrMode TestAddrMode = AddrMode; 3862 3863 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3864 // [A+B + A*7] -> [B+A*8]. 3865 TestAddrMode.Scale += Scale; 3866 TestAddrMode.ScaledReg = ScaleReg; 3867 3868 // If the new address isn't legal, bail out. 3869 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3870 return false; 3871 3872 // It was legal, so commit it. 3873 AddrMode = TestAddrMode; 3874 3875 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3876 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3877 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3878 // go any further: we can reuse it and cannot eliminate it. 3879 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3880 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3881 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3882 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3883 TestAddrMode.InBounds = false; 3884 TestAddrMode.ScaledReg = AddLHS; 3885 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3886 3887 // If this addressing mode is legal, commit it and remember that we folded 3888 // this instruction. 3889 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3890 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3891 AddrMode = TestAddrMode; 3892 return true; 3893 } 3894 // Restore status quo. 3895 TestAddrMode = AddrMode; 3896 } 3897 3898 // If this is an add recurrence with a constant step, return the increment 3899 // instruction and the canonicalized step. 3900 auto GetConstantStep = [this](const Value * V) 3901 ->Optional<std::pair<Instruction *, APInt> > { 3902 auto *PN = dyn_cast<PHINode>(V); 3903 if (!PN) 3904 return None; 3905 auto IVInc = getIVIncrement(PN, &LI); 3906 if (!IVInc) 3907 return None; 3908 // TODO: The result of the intrinsics above is two-compliment. However when 3909 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3910 // If it has nuw or nsw flags, we need to make sure that these flags are 3911 // inferrable at the point of memory instruction. Otherwise we are replacing 3912 // well-defined two-compliment computation with poison. Currently, to avoid 3913 // potentially complex analysis needed to prove this, we reject such cases. 3914 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3915 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3916 return None; 3917 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3918 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3919 return None; 3920 }; 3921 3922 // Try to account for the following special case: 3923 // 1. ScaleReg is an inductive variable; 3924 // 2. We use it with non-zero offset; 3925 // 3. IV's increment is available at the point of memory instruction. 3926 // 3927 // In this case, we may reuse the IV increment instead of the IV Phi to 3928 // achieve the following advantages: 3929 // 1. If IV step matches the offset, we will have no need in the offset; 3930 // 2. Even if they don't match, we will reduce the overlap of living IV 3931 // and IV increment, that will potentially lead to better register 3932 // assignment. 3933 if (AddrMode.BaseOffs) { 3934 if (auto IVStep = GetConstantStep(ScaleReg)) { 3935 Instruction *IVInc = IVStep->first; 3936 // The following assert is important to ensure a lack of infinite loops. 3937 // This transforms is (intentionally) the inverse of the one just above. 3938 // If they don't agree on the definition of an increment, we'd alternate 3939 // back and forth indefinitely. 3940 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3941 APInt Step = IVStep->second; 3942 APInt Offset = Step * AddrMode.Scale; 3943 if (Offset.isSignedIntN(64)) { 3944 TestAddrMode.InBounds = false; 3945 TestAddrMode.ScaledReg = IVInc; 3946 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3947 // If this addressing mode is legal, commit it.. 3948 // (Note that we defer the (expensive) domtree base legality check 3949 // to the very last possible point.) 3950 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3951 getDTFn().dominates(IVInc, MemoryInst)) { 3952 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3953 AddrMode = TestAddrMode; 3954 return true; 3955 } 3956 // Restore status quo. 3957 TestAddrMode = AddrMode; 3958 } 3959 } 3960 } 3961 3962 // Otherwise, just return what we have. 3963 return true; 3964 } 3965 3966 /// This is a little filter, which returns true if an addressing computation 3967 /// involving I might be folded into a load/store accessing it. 3968 /// This doesn't need to be perfect, but needs to accept at least 3969 /// the set of instructions that MatchOperationAddr can. 3970 static bool MightBeFoldableInst(Instruction *I) { 3971 switch (I->getOpcode()) { 3972 case Instruction::BitCast: 3973 case Instruction::AddrSpaceCast: 3974 // Don't touch identity bitcasts. 3975 if (I->getType() == I->getOperand(0)->getType()) 3976 return false; 3977 return I->getType()->isIntOrPtrTy(); 3978 case Instruction::PtrToInt: 3979 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3980 return true; 3981 case Instruction::IntToPtr: 3982 // We know the input is intptr_t, so this is foldable. 3983 return true; 3984 case Instruction::Add: 3985 return true; 3986 case Instruction::Mul: 3987 case Instruction::Shl: 3988 // Can only handle X*C and X << C. 3989 return isa<ConstantInt>(I->getOperand(1)); 3990 case Instruction::GetElementPtr: 3991 return true; 3992 default: 3993 return false; 3994 } 3995 } 3996 3997 /// Check whether or not \p Val is a legal instruction for \p TLI. 3998 /// \note \p Val is assumed to be the product of some type promotion. 3999 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4000 /// to be legal, as the non-promoted value would have had the same state. 4001 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4002 const DataLayout &DL, Value *Val) { 4003 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4004 if (!PromotedInst) 4005 return false; 4006 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4007 // If the ISDOpcode is undefined, it was undefined before the promotion. 4008 if (!ISDOpcode) 4009 return true; 4010 // Otherwise, check if the promoted instruction is legal or not. 4011 return TLI.isOperationLegalOrCustom( 4012 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4013 } 4014 4015 namespace { 4016 4017 /// Hepler class to perform type promotion. 4018 class TypePromotionHelper { 4019 /// Utility function to add a promoted instruction \p ExtOpnd to 4020 /// \p PromotedInsts and record the type of extension we have seen. 4021 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4022 Instruction *ExtOpnd, 4023 bool IsSExt) { 4024 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4025 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4026 if (It != PromotedInsts.end()) { 4027 // If the new extension is same as original, the information in 4028 // PromotedInsts[ExtOpnd] is still correct. 4029 if (It->second.getInt() == ExtTy) 4030 return; 4031 4032 // Now the new extension is different from old extension, we make 4033 // the type information invalid by setting extension type to 4034 // BothExtension. 4035 ExtTy = BothExtension; 4036 } 4037 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4038 } 4039 4040 /// Utility function to query the original type of instruction \p Opnd 4041 /// with a matched extension type. If the extension doesn't match, we 4042 /// cannot use the information we had on the original type. 4043 /// BothExtension doesn't match any extension type. 4044 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4045 Instruction *Opnd, 4046 bool IsSExt) { 4047 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4048 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4049 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4050 return It->second.getPointer(); 4051 return nullptr; 4052 } 4053 4054 /// Utility function to check whether or not a sign or zero extension 4055 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4056 /// either using the operands of \p Inst or promoting \p Inst. 4057 /// The type of the extension is defined by \p IsSExt. 4058 /// In other words, check if: 4059 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4060 /// #1 Promotion applies: 4061 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4062 /// #2 Operand reuses: 4063 /// ext opnd1 to ConsideredExtType. 4064 /// \p PromotedInsts maps the instructions to their type before promotion. 4065 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4066 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4067 4068 /// Utility function to determine if \p OpIdx should be promoted when 4069 /// promoting \p Inst. 4070 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4071 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4072 } 4073 4074 /// Utility function to promote the operand of \p Ext when this 4075 /// operand is a promotable trunc or sext or zext. 4076 /// \p PromotedInsts maps the instructions to their type before promotion. 4077 /// \p CreatedInstsCost[out] contains the cost of all instructions 4078 /// created to promote the operand of Ext. 4079 /// Newly added extensions are inserted in \p Exts. 4080 /// Newly added truncates are inserted in \p Truncs. 4081 /// Should never be called directly. 4082 /// \return The promoted value which is used instead of Ext. 4083 static Value *promoteOperandForTruncAndAnyExt( 4084 Instruction *Ext, TypePromotionTransaction &TPT, 4085 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4086 SmallVectorImpl<Instruction *> *Exts, 4087 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4088 4089 /// Utility function to promote the operand of \p Ext when this 4090 /// operand is promotable and is not a supported trunc or sext. 4091 /// \p PromotedInsts maps the instructions to their type before promotion. 4092 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4093 /// created to promote the operand of Ext. 4094 /// Newly added extensions are inserted in \p Exts. 4095 /// Newly added truncates are inserted in \p Truncs. 4096 /// Should never be called directly. 4097 /// \return The promoted value which is used instead of Ext. 4098 static Value *promoteOperandForOther(Instruction *Ext, 4099 TypePromotionTransaction &TPT, 4100 InstrToOrigTy &PromotedInsts, 4101 unsigned &CreatedInstsCost, 4102 SmallVectorImpl<Instruction *> *Exts, 4103 SmallVectorImpl<Instruction *> *Truncs, 4104 const TargetLowering &TLI, bool IsSExt); 4105 4106 /// \see promoteOperandForOther. 4107 static Value *signExtendOperandForOther( 4108 Instruction *Ext, TypePromotionTransaction &TPT, 4109 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4110 SmallVectorImpl<Instruction *> *Exts, 4111 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4112 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4113 Exts, Truncs, TLI, true); 4114 } 4115 4116 /// \see promoteOperandForOther. 4117 static Value *zeroExtendOperandForOther( 4118 Instruction *Ext, TypePromotionTransaction &TPT, 4119 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4120 SmallVectorImpl<Instruction *> *Exts, 4121 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4122 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4123 Exts, Truncs, TLI, false); 4124 } 4125 4126 public: 4127 /// Type for the utility function that promotes the operand of Ext. 4128 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4129 InstrToOrigTy &PromotedInsts, 4130 unsigned &CreatedInstsCost, 4131 SmallVectorImpl<Instruction *> *Exts, 4132 SmallVectorImpl<Instruction *> *Truncs, 4133 const TargetLowering &TLI); 4134 4135 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4136 /// action to promote the operand of \p Ext instead of using Ext. 4137 /// \return NULL if no promotable action is possible with the current 4138 /// sign extension. 4139 /// \p InsertedInsts keeps track of all the instructions inserted by the 4140 /// other CodeGenPrepare optimizations. This information is important 4141 /// because we do not want to promote these instructions as CodeGenPrepare 4142 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4143 /// \p PromotedInsts maps the instructions to their type before promotion. 4144 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4145 const TargetLowering &TLI, 4146 const InstrToOrigTy &PromotedInsts); 4147 }; 4148 4149 } // end anonymous namespace 4150 4151 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4152 Type *ConsideredExtType, 4153 const InstrToOrigTy &PromotedInsts, 4154 bool IsSExt) { 4155 // The promotion helper does not know how to deal with vector types yet. 4156 // To be able to fix that, we would need to fix the places where we 4157 // statically extend, e.g., constants and such. 4158 if (Inst->getType()->isVectorTy()) 4159 return false; 4160 4161 // We can always get through zext. 4162 if (isa<ZExtInst>(Inst)) 4163 return true; 4164 4165 // sext(sext) is ok too. 4166 if (IsSExt && isa<SExtInst>(Inst)) 4167 return true; 4168 4169 // We can get through binary operator, if it is legal. In other words, the 4170 // binary operator must have a nuw or nsw flag. 4171 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4172 if (isa<OverflowingBinaryOperator>(BinOp) && 4173 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4174 (IsSExt && BinOp->hasNoSignedWrap()))) 4175 return true; 4176 4177 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4178 if ((Inst->getOpcode() == Instruction::And || 4179 Inst->getOpcode() == Instruction::Or)) 4180 return true; 4181 4182 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4183 if (Inst->getOpcode() == Instruction::Xor) { 4184 // Make sure it is not a NOT. 4185 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4186 if (!Cst->getValue().isAllOnes()) 4187 return true; 4188 } 4189 4190 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4191 // It may change a poisoned value into a regular value, like 4192 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4193 // poisoned value regular value 4194 // It should be OK since undef covers valid value. 4195 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4196 return true; 4197 4198 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4199 // It may change a poisoned value into a regular value, like 4200 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4201 // poisoned value regular value 4202 // It should be OK since undef covers valid value. 4203 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4204 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4205 if (ExtInst->hasOneUse()) { 4206 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4207 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4208 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4209 if (Cst && 4210 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4211 return true; 4212 } 4213 } 4214 } 4215 4216 // Check if we can do the following simplification. 4217 // ext(trunc(opnd)) --> ext(opnd) 4218 if (!isa<TruncInst>(Inst)) 4219 return false; 4220 4221 Value *OpndVal = Inst->getOperand(0); 4222 // Check if we can use this operand in the extension. 4223 // If the type is larger than the result type of the extension, we cannot. 4224 if (!OpndVal->getType()->isIntegerTy() || 4225 OpndVal->getType()->getIntegerBitWidth() > 4226 ConsideredExtType->getIntegerBitWidth()) 4227 return false; 4228 4229 // If the operand of the truncate is not an instruction, we will not have 4230 // any information on the dropped bits. 4231 // (Actually we could for constant but it is not worth the extra logic). 4232 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4233 if (!Opnd) 4234 return false; 4235 4236 // Check if the source of the type is narrow enough. 4237 // I.e., check that trunc just drops extended bits of the same kind of 4238 // the extension. 4239 // #1 get the type of the operand and check the kind of the extended bits. 4240 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4241 if (OpndType) 4242 ; 4243 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4244 OpndType = Opnd->getOperand(0)->getType(); 4245 else 4246 return false; 4247 4248 // #2 check that the truncate just drops extended bits. 4249 return Inst->getType()->getIntegerBitWidth() >= 4250 OpndType->getIntegerBitWidth(); 4251 } 4252 4253 TypePromotionHelper::Action TypePromotionHelper::getAction( 4254 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4255 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4256 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4257 "Unexpected instruction type"); 4258 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4259 Type *ExtTy = Ext->getType(); 4260 bool IsSExt = isa<SExtInst>(Ext); 4261 // If the operand of the extension is not an instruction, we cannot 4262 // get through. 4263 // If it, check we can get through. 4264 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4265 return nullptr; 4266 4267 // Do not promote if the operand has been added by codegenprepare. 4268 // Otherwise, it means we are undoing an optimization that is likely to be 4269 // redone, thus causing potential infinite loop. 4270 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4271 return nullptr; 4272 4273 // SExt or Trunc instructions. 4274 // Return the related handler. 4275 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4276 isa<ZExtInst>(ExtOpnd)) 4277 return promoteOperandForTruncAndAnyExt; 4278 4279 // Regular instruction. 4280 // Abort early if we will have to insert non-free instructions. 4281 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4282 return nullptr; 4283 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4284 } 4285 4286 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4287 Instruction *SExt, TypePromotionTransaction &TPT, 4288 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4289 SmallVectorImpl<Instruction *> *Exts, 4290 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4291 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4292 // get through it and this method should not be called. 4293 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4294 Value *ExtVal = SExt; 4295 bool HasMergedNonFreeExt = false; 4296 if (isa<ZExtInst>(SExtOpnd)) { 4297 // Replace s|zext(zext(opnd)) 4298 // => zext(opnd). 4299 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4300 Value *ZExt = 4301 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4302 TPT.replaceAllUsesWith(SExt, ZExt); 4303 TPT.eraseInstruction(SExt); 4304 ExtVal = ZExt; 4305 } else { 4306 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4307 // => z|sext(opnd). 4308 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4309 } 4310 CreatedInstsCost = 0; 4311 4312 // Remove dead code. 4313 if (SExtOpnd->use_empty()) 4314 TPT.eraseInstruction(SExtOpnd); 4315 4316 // Check if the extension is still needed. 4317 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4318 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4319 if (ExtInst) { 4320 if (Exts) 4321 Exts->push_back(ExtInst); 4322 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4323 } 4324 return ExtVal; 4325 } 4326 4327 // At this point we have: ext ty opnd to ty. 4328 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4329 Value *NextVal = ExtInst->getOperand(0); 4330 TPT.eraseInstruction(ExtInst, NextVal); 4331 return NextVal; 4332 } 4333 4334 Value *TypePromotionHelper::promoteOperandForOther( 4335 Instruction *Ext, TypePromotionTransaction &TPT, 4336 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4337 SmallVectorImpl<Instruction *> *Exts, 4338 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4339 bool IsSExt) { 4340 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4341 // get through it and this method should not be called. 4342 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4343 CreatedInstsCost = 0; 4344 if (!ExtOpnd->hasOneUse()) { 4345 // ExtOpnd will be promoted. 4346 // All its uses, but Ext, will need to use a truncated value of the 4347 // promoted version. 4348 // Create the truncate now. 4349 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4350 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4351 // Insert it just after the definition. 4352 ITrunc->moveAfter(ExtOpnd); 4353 if (Truncs) 4354 Truncs->push_back(ITrunc); 4355 } 4356 4357 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4358 // Restore the operand of Ext (which has been replaced by the previous call 4359 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4360 TPT.setOperand(Ext, 0, ExtOpnd); 4361 } 4362 4363 // Get through the Instruction: 4364 // 1. Update its type. 4365 // 2. Replace the uses of Ext by Inst. 4366 // 3. Extend each operand that needs to be extended. 4367 4368 // Remember the original type of the instruction before promotion. 4369 // This is useful to know that the high bits are sign extended bits. 4370 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4371 // Step #1. 4372 TPT.mutateType(ExtOpnd, Ext->getType()); 4373 // Step #2. 4374 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4375 // Step #3. 4376 Instruction *ExtForOpnd = Ext; 4377 4378 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4379 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4380 ++OpIdx) { 4381 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4382 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4383 !shouldExtOperand(ExtOpnd, OpIdx)) { 4384 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4385 continue; 4386 } 4387 // Check if we can statically extend the operand. 4388 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4389 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4390 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4391 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4392 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4393 : Cst->getValue().zext(BitWidth); 4394 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4395 continue; 4396 } 4397 // UndefValue are typed, so we have to statically sign extend them. 4398 if (isa<UndefValue>(Opnd)) { 4399 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4400 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4401 continue; 4402 } 4403 4404 // Otherwise we have to explicitly sign extend the operand. 4405 // Check if Ext was reused to extend an operand. 4406 if (!ExtForOpnd) { 4407 // If yes, create a new one. 4408 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4409 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4410 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4411 if (!isa<Instruction>(ValForExtOpnd)) { 4412 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4413 continue; 4414 } 4415 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4416 } 4417 if (Exts) 4418 Exts->push_back(ExtForOpnd); 4419 TPT.setOperand(ExtForOpnd, 0, Opnd); 4420 4421 // Move the sign extension before the insertion point. 4422 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4423 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4424 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4425 // If more sext are required, new instructions will have to be created. 4426 ExtForOpnd = nullptr; 4427 } 4428 if (ExtForOpnd == Ext) { 4429 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4430 TPT.eraseInstruction(Ext); 4431 } 4432 return ExtOpnd; 4433 } 4434 4435 /// Check whether or not promoting an instruction to a wider type is profitable. 4436 /// \p NewCost gives the cost of extension instructions created by the 4437 /// promotion. 4438 /// \p OldCost gives the cost of extension instructions before the promotion 4439 /// plus the number of instructions that have been 4440 /// matched in the addressing mode the promotion. 4441 /// \p PromotedOperand is the value that has been promoted. 4442 /// \return True if the promotion is profitable, false otherwise. 4443 bool AddressingModeMatcher::isPromotionProfitable( 4444 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4445 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4446 << '\n'); 4447 // The cost of the new extensions is greater than the cost of the 4448 // old extension plus what we folded. 4449 // This is not profitable. 4450 if (NewCost > OldCost) 4451 return false; 4452 if (NewCost < OldCost) 4453 return true; 4454 // The promotion is neutral but it may help folding the sign extension in 4455 // loads for instance. 4456 // Check that we did not create an illegal instruction. 4457 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4458 } 4459 4460 /// Given an instruction or constant expr, see if we can fold the operation 4461 /// into the addressing mode. If so, update the addressing mode and return 4462 /// true, otherwise return false without modifying AddrMode. 4463 /// If \p MovedAway is not NULL, it contains the information of whether or 4464 /// not AddrInst has to be folded into the addressing mode on success. 4465 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4466 /// because it has been moved away. 4467 /// Thus AddrInst must not be added in the matched instructions. 4468 /// This state can happen when AddrInst is a sext, since it may be moved away. 4469 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4470 /// not be referenced anymore. 4471 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4472 unsigned Depth, 4473 bool *MovedAway) { 4474 // Avoid exponential behavior on extremely deep expression trees. 4475 if (Depth >= 5) return false; 4476 4477 // By default, all matched instructions stay in place. 4478 if (MovedAway) 4479 *MovedAway = false; 4480 4481 switch (Opcode) { 4482 case Instruction::PtrToInt: 4483 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4484 return matchAddr(AddrInst->getOperand(0), Depth); 4485 case Instruction::IntToPtr: { 4486 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4487 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4488 // This inttoptr is a no-op if the integer type is pointer sized. 4489 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4490 return matchAddr(AddrInst->getOperand(0), Depth); 4491 return false; 4492 } 4493 case Instruction::BitCast: 4494 // BitCast is always a noop, and we can handle it as long as it is 4495 // int->int or pointer->pointer (we don't want int<->fp or something). 4496 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4497 // Don't touch identity bitcasts. These were probably put here by LSR, 4498 // and we don't want to mess around with them. Assume it knows what it 4499 // is doing. 4500 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4501 return matchAddr(AddrInst->getOperand(0), Depth); 4502 return false; 4503 case Instruction::AddrSpaceCast: { 4504 unsigned SrcAS 4505 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4506 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4507 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4508 return matchAddr(AddrInst->getOperand(0), Depth); 4509 return false; 4510 } 4511 case Instruction::Add: { 4512 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4513 ExtAddrMode BackupAddrMode = AddrMode; 4514 unsigned OldSize = AddrModeInsts.size(); 4515 // Start a transaction at this point. 4516 // The LHS may match but not the RHS. 4517 // Therefore, we need a higher level restoration point to undo partially 4518 // matched operation. 4519 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4520 TPT.getRestorationPoint(); 4521 4522 AddrMode.InBounds = false; 4523 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4524 matchAddr(AddrInst->getOperand(0), Depth+1)) 4525 return true; 4526 4527 // Restore the old addr mode info. 4528 AddrMode = BackupAddrMode; 4529 AddrModeInsts.resize(OldSize); 4530 TPT.rollback(LastKnownGood); 4531 4532 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4533 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4534 matchAddr(AddrInst->getOperand(1), Depth+1)) 4535 return true; 4536 4537 // Otherwise we definitely can't merge the ADD in. 4538 AddrMode = BackupAddrMode; 4539 AddrModeInsts.resize(OldSize); 4540 TPT.rollback(LastKnownGood); 4541 break; 4542 } 4543 //case Instruction::Or: 4544 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4545 //break; 4546 case Instruction::Mul: 4547 case Instruction::Shl: { 4548 // Can only handle X*C and X << C. 4549 AddrMode.InBounds = false; 4550 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4551 if (!RHS || RHS->getBitWidth() > 64) 4552 return false; 4553 int64_t Scale = RHS->getSExtValue(); 4554 if (Opcode == Instruction::Shl) 4555 Scale = 1LL << Scale; 4556 4557 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4558 } 4559 case Instruction::GetElementPtr: { 4560 // Scan the GEP. We check it if it contains constant offsets and at most 4561 // one variable offset. 4562 int VariableOperand = -1; 4563 unsigned VariableScale = 0; 4564 4565 int64_t ConstantOffset = 0; 4566 gep_type_iterator GTI = gep_type_begin(AddrInst); 4567 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4568 if (StructType *STy = GTI.getStructTypeOrNull()) { 4569 const StructLayout *SL = DL.getStructLayout(STy); 4570 unsigned Idx = 4571 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4572 ConstantOffset += SL->getElementOffset(Idx); 4573 } else { 4574 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4575 if (TS.isNonZero()) { 4576 // The optimisations below currently only work for fixed offsets. 4577 if (TS.isScalable()) 4578 return false; 4579 int64_t TypeSize = TS.getFixedSize(); 4580 if (ConstantInt *CI = 4581 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4582 const APInt &CVal = CI->getValue(); 4583 if (CVal.getMinSignedBits() <= 64) { 4584 ConstantOffset += CVal.getSExtValue() * TypeSize; 4585 continue; 4586 } 4587 } 4588 // We only allow one variable index at the moment. 4589 if (VariableOperand != -1) 4590 return false; 4591 4592 // Remember the variable index. 4593 VariableOperand = i; 4594 VariableScale = TypeSize; 4595 } 4596 } 4597 } 4598 4599 // A common case is for the GEP to only do a constant offset. In this case, 4600 // just add it to the disp field and check validity. 4601 if (VariableOperand == -1) { 4602 AddrMode.BaseOffs += ConstantOffset; 4603 if (ConstantOffset == 0 || 4604 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4605 // Check to see if we can fold the base pointer in too. 4606 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4607 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4608 AddrMode.InBounds = false; 4609 return true; 4610 } 4611 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4612 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4613 ConstantOffset > 0) { 4614 // Record GEPs with non-zero offsets as candidates for splitting in the 4615 // event that the offset cannot fit into the r+i addressing mode. 4616 // Simple and common case that only one GEP is used in calculating the 4617 // address for the memory access. 4618 Value *Base = AddrInst->getOperand(0); 4619 auto *BaseI = dyn_cast<Instruction>(Base); 4620 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4621 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4622 (BaseI && !isa<CastInst>(BaseI) && 4623 !isa<GetElementPtrInst>(BaseI))) { 4624 // Make sure the parent block allows inserting non-PHI instructions 4625 // before the terminator. 4626 BasicBlock *Parent = 4627 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4628 if (!Parent->getTerminator()->isEHPad()) 4629 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4630 } 4631 } 4632 AddrMode.BaseOffs -= ConstantOffset; 4633 return false; 4634 } 4635 4636 // Save the valid addressing mode in case we can't match. 4637 ExtAddrMode BackupAddrMode = AddrMode; 4638 unsigned OldSize = AddrModeInsts.size(); 4639 4640 // See if the scale and offset amount is valid for this target. 4641 AddrMode.BaseOffs += ConstantOffset; 4642 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4643 AddrMode.InBounds = false; 4644 4645 // Match the base operand of the GEP. 4646 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4647 // If it couldn't be matched, just stuff the value in a register. 4648 if (AddrMode.HasBaseReg) { 4649 AddrMode = BackupAddrMode; 4650 AddrModeInsts.resize(OldSize); 4651 return false; 4652 } 4653 AddrMode.HasBaseReg = true; 4654 AddrMode.BaseReg = AddrInst->getOperand(0); 4655 } 4656 4657 // Match the remaining variable portion of the GEP. 4658 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4659 Depth)) { 4660 // If it couldn't be matched, try stuffing the base into a register 4661 // instead of matching it, and retrying the match of the scale. 4662 AddrMode = BackupAddrMode; 4663 AddrModeInsts.resize(OldSize); 4664 if (AddrMode.HasBaseReg) 4665 return false; 4666 AddrMode.HasBaseReg = true; 4667 AddrMode.BaseReg = AddrInst->getOperand(0); 4668 AddrMode.BaseOffs += ConstantOffset; 4669 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4670 VariableScale, Depth)) { 4671 // If even that didn't work, bail. 4672 AddrMode = BackupAddrMode; 4673 AddrModeInsts.resize(OldSize); 4674 return false; 4675 } 4676 } 4677 4678 return true; 4679 } 4680 case Instruction::SExt: 4681 case Instruction::ZExt: { 4682 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4683 if (!Ext) 4684 return false; 4685 4686 // Try to move this ext out of the way of the addressing mode. 4687 // Ask for a method for doing so. 4688 TypePromotionHelper::Action TPH = 4689 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4690 if (!TPH) 4691 return false; 4692 4693 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4694 TPT.getRestorationPoint(); 4695 unsigned CreatedInstsCost = 0; 4696 unsigned ExtCost = !TLI.isExtFree(Ext); 4697 Value *PromotedOperand = 4698 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4699 // SExt has been moved away. 4700 // Thus either it will be rematched later in the recursive calls or it is 4701 // gone. Anyway, we must not fold it into the addressing mode at this point. 4702 // E.g., 4703 // op = add opnd, 1 4704 // idx = ext op 4705 // addr = gep base, idx 4706 // is now: 4707 // promotedOpnd = ext opnd <- no match here 4708 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4709 // addr = gep base, op <- match 4710 if (MovedAway) 4711 *MovedAway = true; 4712 4713 assert(PromotedOperand && 4714 "TypePromotionHelper should have filtered out those cases"); 4715 4716 ExtAddrMode BackupAddrMode = AddrMode; 4717 unsigned OldSize = AddrModeInsts.size(); 4718 4719 if (!matchAddr(PromotedOperand, Depth) || 4720 // The total of the new cost is equal to the cost of the created 4721 // instructions. 4722 // The total of the old cost is equal to the cost of the extension plus 4723 // what we have saved in the addressing mode. 4724 !isPromotionProfitable(CreatedInstsCost, 4725 ExtCost + (AddrModeInsts.size() - OldSize), 4726 PromotedOperand)) { 4727 AddrMode = BackupAddrMode; 4728 AddrModeInsts.resize(OldSize); 4729 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4730 TPT.rollback(LastKnownGood); 4731 return false; 4732 } 4733 return true; 4734 } 4735 } 4736 return false; 4737 } 4738 4739 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4740 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4741 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4742 /// for the target. 4743 /// 4744 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4745 // Start a transaction at this point that we will rollback if the matching 4746 // fails. 4747 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4748 TPT.getRestorationPoint(); 4749 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4750 if (CI->getValue().isSignedIntN(64)) { 4751 // Fold in immediates if legal for the target. 4752 AddrMode.BaseOffs += CI->getSExtValue(); 4753 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4754 return true; 4755 AddrMode.BaseOffs -= CI->getSExtValue(); 4756 } 4757 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4758 // If this is a global variable, try to fold it into the addressing mode. 4759 if (!AddrMode.BaseGV) { 4760 AddrMode.BaseGV = GV; 4761 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4762 return true; 4763 AddrMode.BaseGV = nullptr; 4764 } 4765 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4766 ExtAddrMode BackupAddrMode = AddrMode; 4767 unsigned OldSize = AddrModeInsts.size(); 4768 4769 // Check to see if it is possible to fold this operation. 4770 bool MovedAway = false; 4771 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4772 // This instruction may have been moved away. If so, there is nothing 4773 // to check here. 4774 if (MovedAway) 4775 return true; 4776 // Okay, it's possible to fold this. Check to see if it is actually 4777 // *profitable* to do so. We use a simple cost model to avoid increasing 4778 // register pressure too much. 4779 if (I->hasOneUse() || 4780 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4781 AddrModeInsts.push_back(I); 4782 return true; 4783 } 4784 4785 // It isn't profitable to do this, roll back. 4786 //cerr << "NOT FOLDING: " << *I; 4787 AddrMode = BackupAddrMode; 4788 AddrModeInsts.resize(OldSize); 4789 TPT.rollback(LastKnownGood); 4790 } 4791 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4792 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4793 return true; 4794 TPT.rollback(LastKnownGood); 4795 } else if (isa<ConstantPointerNull>(Addr)) { 4796 // Null pointer gets folded without affecting the addressing mode. 4797 return true; 4798 } 4799 4800 // Worse case, the target should support [reg] addressing modes. :) 4801 if (!AddrMode.HasBaseReg) { 4802 AddrMode.HasBaseReg = true; 4803 AddrMode.BaseReg = Addr; 4804 // Still check for legality in case the target supports [imm] but not [i+r]. 4805 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4806 return true; 4807 AddrMode.HasBaseReg = false; 4808 AddrMode.BaseReg = nullptr; 4809 } 4810 4811 // If the base register is already taken, see if we can do [r+r]. 4812 if (AddrMode.Scale == 0) { 4813 AddrMode.Scale = 1; 4814 AddrMode.ScaledReg = Addr; 4815 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4816 return true; 4817 AddrMode.Scale = 0; 4818 AddrMode.ScaledReg = nullptr; 4819 } 4820 // Couldn't match. 4821 TPT.rollback(LastKnownGood); 4822 return false; 4823 } 4824 4825 /// Check to see if all uses of OpVal by the specified inline asm call are due 4826 /// to memory operands. If so, return true, otherwise return false. 4827 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4828 const TargetLowering &TLI, 4829 const TargetRegisterInfo &TRI) { 4830 const Function *F = CI->getFunction(); 4831 TargetLowering::AsmOperandInfoVector TargetConstraints = 4832 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4833 4834 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 4835 // Compute the constraint code and ConstraintType to use. 4836 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4837 4838 // If this asm operand is our Value*, and if it isn't an indirect memory 4839 // operand, we can't fold it! 4840 if (OpInfo.CallOperandVal == OpVal && 4841 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4842 !OpInfo.isIndirect)) 4843 return false; 4844 } 4845 4846 return true; 4847 } 4848 4849 // Max number of memory uses to look at before aborting the search to conserve 4850 // compile time. 4851 static constexpr int MaxMemoryUsesToScan = 20; 4852 4853 /// Recursively walk all the uses of I until we find a memory use. 4854 /// If we find an obviously non-foldable instruction, return true. 4855 /// Add accessed addresses and types to MemoryUses. 4856 static bool FindAllMemoryUses( 4857 Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, 4858 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4859 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4860 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4861 // If we already considered this instruction, we're done. 4862 if (!ConsideredInsts.insert(I).second) 4863 return false; 4864 4865 // If this is an obviously unfoldable instruction, bail out. 4866 if (!MightBeFoldableInst(I)) 4867 return true; 4868 4869 // Loop over all the uses, recursively processing them. 4870 for (Use &U : I->uses()) { 4871 // Conservatively return true if we're seeing a large number or a deep chain 4872 // of users. This avoids excessive compilation times in pathological cases. 4873 if (SeenInsts++ >= MaxMemoryUsesToScan) 4874 return true; 4875 4876 Instruction *UserI = cast<Instruction>(U.getUser()); 4877 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4878 MemoryUses.push_back({U.get(), LI->getType()}); 4879 continue; 4880 } 4881 4882 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4883 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 4884 return true; // Storing addr, not into addr. 4885 MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); 4886 continue; 4887 } 4888 4889 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4890 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 4891 return true; // Storing addr, not into addr. 4892 MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); 4893 continue; 4894 } 4895 4896 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4897 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 4898 return true; // Storing addr, not into addr. 4899 MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); 4900 continue; 4901 } 4902 4903 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4904 if (CI->hasFnAttr(Attribute::Cold)) { 4905 // If this is a cold call, we can sink the addressing calculation into 4906 // the cold path. See optimizeCallInst 4907 bool OptForSize = OptSize || 4908 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4909 if (!OptForSize) 4910 continue; 4911 } 4912 4913 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4914 if (!IA) return true; 4915 4916 // If this is a memory operand, we're cool, otherwise bail out. 4917 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4918 return true; 4919 continue; 4920 } 4921 4922 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4923 PSI, BFI, SeenInsts)) 4924 return true; 4925 } 4926 4927 return false; 4928 } 4929 4930 /// Return true if Val is already known to be live at the use site that we're 4931 /// folding it into. If so, there is no cost to include it in the addressing 4932 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4933 /// instruction already. 4934 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4935 Value *KnownLive2) { 4936 // If Val is either of the known-live values, we know it is live! 4937 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4938 return true; 4939 4940 // All values other than instructions and arguments (e.g. constants) are live. 4941 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4942 4943 // If Val is a constant sized alloca in the entry block, it is live, this is 4944 // true because it is just a reference to the stack/frame pointer, which is 4945 // live for the whole function. 4946 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4947 if (AI->isStaticAlloca()) 4948 return true; 4949 4950 // Check to see if this value is already used in the memory instruction's 4951 // block. If so, it's already live into the block at the very least, so we 4952 // can reasonably fold it. 4953 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4954 } 4955 4956 /// It is possible for the addressing mode of the machine to fold the specified 4957 /// instruction into a load or store that ultimately uses it. 4958 /// However, the specified instruction has multiple uses. 4959 /// Given this, it may actually increase register pressure to fold it 4960 /// into the load. For example, consider this code: 4961 /// 4962 /// X = ... 4963 /// Y = X+1 4964 /// use(Y) -> nonload/store 4965 /// Z = Y+1 4966 /// load Z 4967 /// 4968 /// In this case, Y has multiple uses, and can be folded into the load of Z 4969 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4970 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4971 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4972 /// number of computations either. 4973 /// 4974 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4975 /// X was live across 'load Z' for other reasons, we actually *would* want to 4976 /// fold the addressing mode in the Z case. This would make Y die earlier. 4977 bool AddressingModeMatcher:: 4978 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4979 ExtAddrMode &AMAfter) { 4980 if (IgnoreProfitability) return true; 4981 4982 // AMBefore is the addressing mode before this instruction was folded into it, 4983 // and AMAfter is the addressing mode after the instruction was folded. Get 4984 // the set of registers referenced by AMAfter and subtract out those 4985 // referenced by AMBefore: this is the set of values which folding in this 4986 // address extends the lifetime of. 4987 // 4988 // Note that there are only two potential values being referenced here, 4989 // BaseReg and ScaleReg (global addresses are always available, as are any 4990 // folded immediates). 4991 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4992 4993 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4994 // lifetime wasn't extended by adding this instruction. 4995 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4996 BaseReg = nullptr; 4997 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4998 ScaledReg = nullptr; 4999 5000 // If folding this instruction (and it's subexprs) didn't extend any live 5001 // ranges, we're ok with it. 5002 if (!BaseReg && !ScaledReg) 5003 return true; 5004 5005 // If all uses of this instruction can have the address mode sunk into them, 5006 // we can remove the addressing mode and effectively trade one live register 5007 // for another (at worst.) In this context, folding an addressing mode into 5008 // the use is just a particularly nice way of sinking it. 5009 SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; 5010 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5011 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5012 PSI, BFI)) 5013 return false; // Has a non-memory, non-foldable use! 5014 5015 // Now that we know that all uses of this instruction are part of a chain of 5016 // computation involving only operations that could theoretically be folded 5017 // into a memory use, loop over each of these memory operation uses and see 5018 // if they could *actually* fold the instruction. The assumption is that 5019 // addressing modes are cheap and that duplicating the computation involved 5020 // many times is worthwhile, even on a fastpath. For sinking candidates 5021 // (i.e. cold call sites), this serves as a way to prevent excessive code 5022 // growth since most architectures have some reasonable small and fast way to 5023 // compute an effective address. (i.e LEA on x86) 5024 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5025 for (const std::pair<Value *, Type *> &Pair : MemoryUses) { 5026 Value *Address = Pair.first; 5027 Type *AddressAccessTy = Pair.second; 5028 unsigned AS = Address->getType()->getPointerAddressSpace(); 5029 5030 // Do a match against the root of this address, ignoring profitability. This 5031 // will tell us if the addressing mode for the memory operation will 5032 // *actually* cover the shared instruction. 5033 ExtAddrMode Result; 5034 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5035 0); 5036 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5037 TPT.getRestorationPoint(); 5038 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5039 AddressAccessTy, AS, MemoryInst, Result, 5040 InsertedInsts, PromotedInsts, TPT, 5041 LargeOffsetGEP, OptSize, PSI, BFI); 5042 Matcher.IgnoreProfitability = true; 5043 bool Success = Matcher.matchAddr(Address, 0); 5044 (void)Success; assert(Success && "Couldn't select *anything*?"); 5045 5046 // The match was to check the profitability, the changes made are not 5047 // part of the original matcher. Therefore, they should be dropped 5048 // otherwise the original matcher will not present the right state. 5049 TPT.rollback(LastKnownGood); 5050 5051 // If the match didn't cover I, then it won't be shared by it. 5052 if (!is_contained(MatchedAddrModeInsts, I)) 5053 return false; 5054 5055 MatchedAddrModeInsts.clear(); 5056 } 5057 5058 return true; 5059 } 5060 5061 /// Return true if the specified values are defined in a 5062 /// different basic block than BB. 5063 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5064 if (Instruction *I = dyn_cast<Instruction>(V)) 5065 return I->getParent() != BB; 5066 return false; 5067 } 5068 5069 /// Sink addressing mode computation immediate before MemoryInst if doing so 5070 /// can be done without increasing register pressure. The need for the 5071 /// register pressure constraint means this can end up being an all or nothing 5072 /// decision for all uses of the same addressing computation. 5073 /// 5074 /// Load and Store Instructions often have addressing modes that can do 5075 /// significant amounts of computation. As such, instruction selection will try 5076 /// to get the load or store to do as much computation as possible for the 5077 /// program. The problem is that isel can only see within a single block. As 5078 /// such, we sink as much legal addressing mode work into the block as possible. 5079 /// 5080 /// This method is used to optimize both load/store and inline asms with memory 5081 /// operands. It's also used to sink addressing computations feeding into cold 5082 /// call sites into their (cold) basic block. 5083 /// 5084 /// The motivation for handling sinking into cold blocks is that doing so can 5085 /// both enable other address mode sinking (by satisfying the register pressure 5086 /// constraint above), and reduce register pressure globally (by removing the 5087 /// addressing mode computation from the fast path entirely.). 5088 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5089 Type *AccessTy, unsigned AddrSpace) { 5090 Value *Repl = Addr; 5091 5092 // Try to collapse single-value PHI nodes. This is necessary to undo 5093 // unprofitable PRE transformations. 5094 SmallVector<Value*, 8> worklist; 5095 SmallPtrSet<Value*, 16> Visited; 5096 worklist.push_back(Addr); 5097 5098 // Use a worklist to iteratively look through PHI and select nodes, and 5099 // ensure that the addressing mode obtained from the non-PHI/select roots of 5100 // the graph are compatible. 5101 bool PhiOrSelectSeen = false; 5102 SmallVector<Instruction*, 16> AddrModeInsts; 5103 const SimplifyQuery SQ(*DL, TLInfo); 5104 AddressingModeCombiner AddrModes(SQ, Addr); 5105 TypePromotionTransaction TPT(RemovedInsts); 5106 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5107 TPT.getRestorationPoint(); 5108 while (!worklist.empty()) { 5109 Value *V = worklist.pop_back_val(); 5110 5111 // We allow traversing cyclic Phi nodes. 5112 // In case of success after this loop we ensure that traversing through 5113 // Phi nodes ends up with all cases to compute address of the form 5114 // BaseGV + Base + Scale * Index + Offset 5115 // where Scale and Offset are constans and BaseGV, Base and Index 5116 // are exactly the same Values in all cases. 5117 // It means that BaseGV, Scale and Offset dominate our memory instruction 5118 // and have the same value as they had in address computation represented 5119 // as Phi. So we can safely sink address computation to memory instruction. 5120 if (!Visited.insert(V).second) 5121 continue; 5122 5123 // For a PHI node, push all of its incoming values. 5124 if (PHINode *P = dyn_cast<PHINode>(V)) { 5125 append_range(worklist, P->incoming_values()); 5126 PhiOrSelectSeen = true; 5127 continue; 5128 } 5129 // Similar for select. 5130 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5131 worklist.push_back(SI->getFalseValue()); 5132 worklist.push_back(SI->getTrueValue()); 5133 PhiOrSelectSeen = true; 5134 continue; 5135 } 5136 5137 // For non-PHIs, determine the addressing mode being computed. Note that 5138 // the result may differ depending on what other uses our candidate 5139 // addressing instructions might have. 5140 AddrModeInsts.clear(); 5141 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5142 0); 5143 // Defer the query (and possible computation of) the dom tree to point of 5144 // actual use. It's expected that most address matches don't actually need 5145 // the domtree. 5146 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5147 Function *F = MemoryInst->getParent()->getParent(); 5148 return this->getDT(*F); 5149 }; 5150 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5151 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5152 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5153 BFI.get()); 5154 5155 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5156 if (GEP && !NewGEPBases.count(GEP)) { 5157 // If splitting the underlying data structure can reduce the offset of a 5158 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5159 // previously split data structures. 5160 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5161 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5162 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5163 } 5164 5165 NewAddrMode.OriginalValue = V; 5166 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5167 break; 5168 } 5169 5170 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5171 // or we have multiple but either couldn't combine them or combining them 5172 // wouldn't do anything useful, bail out now. 5173 if (!AddrModes.combineAddrModes()) { 5174 TPT.rollback(LastKnownGood); 5175 return false; 5176 } 5177 bool Modified = TPT.commit(); 5178 5179 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5180 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5181 5182 // If all the instructions matched are already in this BB, don't do anything. 5183 // If we saw a Phi node then it is not local definitely, and if we saw a select 5184 // then we want to push the address calculation past it even if it's already 5185 // in this BB. 5186 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5187 return IsNonLocalValue(V, MemoryInst->getParent()); 5188 })) { 5189 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5190 << "\n"); 5191 return Modified; 5192 } 5193 5194 // Insert this computation right after this user. Since our caller is 5195 // scanning from the top of the BB to the bottom, reuse of the expr are 5196 // guaranteed to happen later. 5197 IRBuilder<> Builder(MemoryInst); 5198 5199 // Now that we determined the addressing expression we want to use and know 5200 // that we have to sink it into this block. Check to see if we have already 5201 // done this for some other load/store instr in this block. If so, reuse 5202 // the computation. Before attempting reuse, check if the address is valid 5203 // as it may have been erased. 5204 5205 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5206 5207 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5208 if (SunkAddr) { 5209 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5210 << " for " << *MemoryInst << "\n"); 5211 if (SunkAddr->getType() != Addr->getType()) 5212 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5213 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5214 SubtargetInfo->addrSinkUsingGEPs())) { 5215 // By default, we use the GEP-based method when AA is used later. This 5216 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5217 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5218 << " for " << *MemoryInst << "\n"); 5219 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5220 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5221 5222 // First, find the pointer. 5223 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5224 ResultPtr = AddrMode.BaseReg; 5225 AddrMode.BaseReg = nullptr; 5226 } 5227 5228 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5229 // We can't add more than one pointer together, nor can we scale a 5230 // pointer (both of which seem meaningless). 5231 if (ResultPtr || AddrMode.Scale != 1) 5232 return Modified; 5233 5234 ResultPtr = AddrMode.ScaledReg; 5235 AddrMode.Scale = 0; 5236 } 5237 5238 // It is only safe to sign extend the BaseReg if we know that the math 5239 // required to create it did not overflow before we extend it. Since 5240 // the original IR value was tossed in favor of a constant back when 5241 // the AddrMode was created we need to bail out gracefully if widths 5242 // do not match instead of extending it. 5243 // 5244 // (See below for code to add the scale.) 5245 if (AddrMode.Scale) { 5246 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5247 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5248 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5249 return Modified; 5250 } 5251 5252 if (AddrMode.BaseGV) { 5253 if (ResultPtr) 5254 return Modified; 5255 5256 ResultPtr = AddrMode.BaseGV; 5257 } 5258 5259 // If the real base value actually came from an inttoptr, then the matcher 5260 // will look through it and provide only the integer value. In that case, 5261 // use it here. 5262 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5263 if (!ResultPtr && AddrMode.BaseReg) { 5264 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5265 "sunkaddr"); 5266 AddrMode.BaseReg = nullptr; 5267 } else if (!ResultPtr && AddrMode.Scale == 1) { 5268 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5269 "sunkaddr"); 5270 AddrMode.Scale = 0; 5271 } 5272 } 5273 5274 if (!ResultPtr && 5275 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5276 SunkAddr = Constant::getNullValue(Addr->getType()); 5277 } else if (!ResultPtr) { 5278 return Modified; 5279 } else { 5280 Type *I8PtrTy = 5281 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5282 Type *I8Ty = Builder.getInt8Ty(); 5283 5284 // Start with the base register. Do this first so that subsequent address 5285 // matching finds it last, which will prevent it from trying to match it 5286 // as the scaled value in case it happens to be a mul. That would be 5287 // problematic if we've sunk a different mul for the scale, because then 5288 // we'd end up sinking both muls. 5289 if (AddrMode.BaseReg) { 5290 Value *V = AddrMode.BaseReg; 5291 if (V->getType() != IntPtrTy) 5292 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5293 5294 ResultIndex = V; 5295 } 5296 5297 // Add the scale value. 5298 if (AddrMode.Scale) { 5299 Value *V = AddrMode.ScaledReg; 5300 if (V->getType() == IntPtrTy) { 5301 // done. 5302 } else { 5303 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5304 cast<IntegerType>(V->getType())->getBitWidth() && 5305 "We can't transform if ScaledReg is too narrow"); 5306 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5307 } 5308 5309 if (AddrMode.Scale != 1) 5310 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5311 "sunkaddr"); 5312 if (ResultIndex) 5313 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5314 else 5315 ResultIndex = V; 5316 } 5317 5318 // Add in the Base Offset if present. 5319 if (AddrMode.BaseOffs) { 5320 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5321 if (ResultIndex) { 5322 // We need to add this separately from the scale above to help with 5323 // SDAG consecutive load/store merging. 5324 if (ResultPtr->getType() != I8PtrTy) 5325 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5326 ResultPtr = 5327 AddrMode.InBounds 5328 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5329 "sunkaddr") 5330 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5331 } 5332 5333 ResultIndex = V; 5334 } 5335 5336 if (!ResultIndex) { 5337 SunkAddr = ResultPtr; 5338 } else { 5339 if (ResultPtr->getType() != I8PtrTy) 5340 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5341 SunkAddr = 5342 AddrMode.InBounds 5343 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5344 "sunkaddr") 5345 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5346 } 5347 5348 if (SunkAddr->getType() != Addr->getType()) 5349 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5350 } 5351 } else { 5352 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5353 // non-integral pointers, so in that case bail out now. 5354 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5355 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5356 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5357 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5358 if (DL->isNonIntegralPointerType(Addr->getType()) || 5359 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5360 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5361 (AddrMode.BaseGV && 5362 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5363 return Modified; 5364 5365 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5366 << " for " << *MemoryInst << "\n"); 5367 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5368 Value *Result = nullptr; 5369 5370 // Start with the base register. Do this first so that subsequent address 5371 // matching finds it last, which will prevent it from trying to match it 5372 // as the scaled value in case it happens to be a mul. That would be 5373 // problematic if we've sunk a different mul for the scale, because then 5374 // we'd end up sinking both muls. 5375 if (AddrMode.BaseReg) { 5376 Value *V = AddrMode.BaseReg; 5377 if (V->getType()->isPointerTy()) 5378 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5379 if (V->getType() != IntPtrTy) 5380 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5381 Result = V; 5382 } 5383 5384 // Add the scale value. 5385 if (AddrMode.Scale) { 5386 Value *V = AddrMode.ScaledReg; 5387 if (V->getType() == IntPtrTy) { 5388 // done. 5389 } else if (V->getType()->isPointerTy()) { 5390 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5391 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5392 cast<IntegerType>(V->getType())->getBitWidth()) { 5393 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5394 } else { 5395 // It is only safe to sign extend the BaseReg if we know that the math 5396 // required to create it did not overflow before we extend it. Since 5397 // the original IR value was tossed in favor of a constant back when 5398 // the AddrMode was created we need to bail out gracefully if widths 5399 // do not match instead of extending it. 5400 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5401 if (I && (Result != AddrMode.BaseReg)) 5402 I->eraseFromParent(); 5403 return Modified; 5404 } 5405 if (AddrMode.Scale != 1) 5406 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5407 "sunkaddr"); 5408 if (Result) 5409 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5410 else 5411 Result = V; 5412 } 5413 5414 // Add in the BaseGV if present. 5415 if (AddrMode.BaseGV) { 5416 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5417 if (Result) 5418 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5419 else 5420 Result = V; 5421 } 5422 5423 // Add in the Base Offset if present. 5424 if (AddrMode.BaseOffs) { 5425 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5426 if (Result) 5427 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5428 else 5429 Result = V; 5430 } 5431 5432 if (!Result) 5433 SunkAddr = Constant::getNullValue(Addr->getType()); 5434 else 5435 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5436 } 5437 5438 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5439 // Store the newly computed address into the cache. In the case we reused a 5440 // value, this should be idempotent. 5441 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5442 5443 // If we have no uses, recursively delete the value and all dead instructions 5444 // using it. 5445 if (Repl->use_empty()) { 5446 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5447 RecursivelyDeleteTriviallyDeadInstructions( 5448 Repl, TLInfo, nullptr, 5449 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5450 }); 5451 } 5452 ++NumMemoryInsts; 5453 return true; 5454 } 5455 5456 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5457 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5458 /// only handle a 2 operand GEP in the same basic block or a splat constant 5459 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5460 /// index. 5461 /// 5462 /// If the existing GEP has a vector base pointer that is splat, we can look 5463 /// through the splat to find the scalar pointer. If we can't find a scalar 5464 /// pointer there's nothing we can do. 5465 /// 5466 /// If we have a GEP with more than 2 indices where the middle indices are all 5467 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5468 /// 5469 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5470 /// followed by a GEP with an all zeroes vector index. This will enable 5471 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5472 /// zero index. 5473 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5474 Value *Ptr) { 5475 Value *NewAddr; 5476 5477 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5478 // Don't optimize GEPs that don't have indices. 5479 if (!GEP->hasIndices()) 5480 return false; 5481 5482 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5483 // FIXME: We should support this by sinking the GEP. 5484 if (MemoryInst->getParent() != GEP->getParent()) 5485 return false; 5486 5487 SmallVector<Value *, 2> Ops(GEP->operands()); 5488 5489 bool RewriteGEP = false; 5490 5491 if (Ops[0]->getType()->isVectorTy()) { 5492 Ops[0] = getSplatValue(Ops[0]); 5493 if (!Ops[0]) 5494 return false; 5495 RewriteGEP = true; 5496 } 5497 5498 unsigned FinalIndex = Ops.size() - 1; 5499 5500 // Ensure all but the last index is 0. 5501 // FIXME: This isn't strictly required. All that's required is that they are 5502 // all scalars or splats. 5503 for (unsigned i = 1; i < FinalIndex; ++i) { 5504 auto *C = dyn_cast<Constant>(Ops[i]); 5505 if (!C) 5506 return false; 5507 if (isa<VectorType>(C->getType())) 5508 C = C->getSplatValue(); 5509 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5510 if (!CI || !CI->isZero()) 5511 return false; 5512 // Scalarize the index if needed. 5513 Ops[i] = CI; 5514 } 5515 5516 // Try to scalarize the final index. 5517 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5518 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5519 auto *C = dyn_cast<ConstantInt>(V); 5520 // Don't scalarize all zeros vector. 5521 if (!C || !C->isZero()) { 5522 Ops[FinalIndex] = V; 5523 RewriteGEP = true; 5524 } 5525 } 5526 } 5527 5528 // If we made any changes or the we have extra operands, we need to generate 5529 // new instructions. 5530 if (!RewriteGEP && Ops.size() == 2) 5531 return false; 5532 5533 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5534 5535 IRBuilder<> Builder(MemoryInst); 5536 5537 Type *SourceTy = GEP->getSourceElementType(); 5538 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5539 5540 // If the final index isn't a vector, emit a scalar GEP containing all ops 5541 // and a vector GEP with all zeroes final index. 5542 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5543 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5544 makeArrayRef(Ops).drop_front()); 5545 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5546 auto *SecondTy = GetElementPtrInst::getIndexedType( 5547 SourceTy, makeArrayRef(Ops).drop_front()); 5548 NewAddr = 5549 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5550 } else { 5551 Value *Base = Ops[0]; 5552 Value *Index = Ops[FinalIndex]; 5553 5554 // Create a scalar GEP if there are more than 2 operands. 5555 if (Ops.size() != 2) { 5556 // Replace the last index with 0. 5557 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5558 Base = Builder.CreateGEP(SourceTy, Base, 5559 makeArrayRef(Ops).drop_front()); 5560 SourceTy = GetElementPtrInst::getIndexedType( 5561 SourceTy, makeArrayRef(Ops).drop_front()); 5562 } 5563 5564 // Now create the GEP with scalar pointer and vector index. 5565 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5566 } 5567 } else if (!isa<Constant>(Ptr)) { 5568 // Not a GEP, maybe its a splat and we can create a GEP to enable 5569 // SelectionDAGBuilder to use it as a uniform base. 5570 Value *V = getSplatValue(Ptr); 5571 if (!V) 5572 return false; 5573 5574 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5575 5576 IRBuilder<> Builder(MemoryInst); 5577 5578 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5579 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5580 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5581 Type *ScalarTy; 5582 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5583 Intrinsic::masked_gather) { 5584 ScalarTy = MemoryInst->getType()->getScalarType(); 5585 } else { 5586 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5587 Intrinsic::masked_scatter); 5588 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5589 } 5590 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5591 } else { 5592 // Constant, SelectionDAGBuilder knows to check if its a splat. 5593 return false; 5594 } 5595 5596 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5597 5598 // If we have no uses, recursively delete the value and all dead instructions 5599 // using it. 5600 if (Ptr->use_empty()) 5601 RecursivelyDeleteTriviallyDeadInstructions( 5602 Ptr, TLInfo, nullptr, 5603 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5604 5605 return true; 5606 } 5607 5608 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5609 /// address computing into the block when possible / profitable. 5610 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5611 bool MadeChange = false; 5612 5613 const TargetRegisterInfo *TRI = 5614 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5615 TargetLowering::AsmOperandInfoVector TargetConstraints = 5616 TLI->ParseConstraints(*DL, TRI, *CS); 5617 unsigned ArgNo = 0; 5618 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5619 // Compute the constraint code and ConstraintType to use. 5620 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5621 5622 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5623 OpInfo.isIndirect) { 5624 Value *OpVal = CS->getArgOperand(ArgNo++); 5625 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5626 } else if (OpInfo.Type == InlineAsm::isInput) 5627 ArgNo++; 5628 } 5629 5630 return MadeChange; 5631 } 5632 5633 /// Check if all the uses of \p Val are equivalent (or free) zero or 5634 /// sign extensions. 5635 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5636 assert(!Val->use_empty() && "Input must have at least one use"); 5637 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5638 bool IsSExt = isa<SExtInst>(FirstUser); 5639 Type *ExtTy = FirstUser->getType(); 5640 for (const User *U : Val->users()) { 5641 const Instruction *UI = cast<Instruction>(U); 5642 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5643 return false; 5644 Type *CurTy = UI->getType(); 5645 // Same input and output types: Same instruction after CSE. 5646 if (CurTy == ExtTy) 5647 continue; 5648 5649 // If IsSExt is true, we are in this situation: 5650 // a = Val 5651 // b = sext ty1 a to ty2 5652 // c = sext ty1 a to ty3 5653 // Assuming ty2 is shorter than ty3, this could be turned into: 5654 // a = Val 5655 // b = sext ty1 a to ty2 5656 // c = sext ty2 b to ty3 5657 // However, the last sext is not free. 5658 if (IsSExt) 5659 return false; 5660 5661 // This is a ZExt, maybe this is free to extend from one type to another. 5662 // In that case, we would not account for a different use. 5663 Type *NarrowTy; 5664 Type *LargeTy; 5665 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5666 CurTy->getScalarType()->getIntegerBitWidth()) { 5667 NarrowTy = CurTy; 5668 LargeTy = ExtTy; 5669 } else { 5670 NarrowTy = ExtTy; 5671 LargeTy = CurTy; 5672 } 5673 5674 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5675 return false; 5676 } 5677 // All uses are the same or can be derived from one another for free. 5678 return true; 5679 } 5680 5681 /// Try to speculatively promote extensions in \p Exts and continue 5682 /// promoting through newly promoted operands recursively as far as doing so is 5683 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5684 /// When some promotion happened, \p TPT contains the proper state to revert 5685 /// them. 5686 /// 5687 /// \return true if some promotion happened, false otherwise. 5688 bool CodeGenPrepare::tryToPromoteExts( 5689 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5690 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5691 unsigned CreatedInstsCost) { 5692 bool Promoted = false; 5693 5694 // Iterate over all the extensions to try to promote them. 5695 for (auto *I : Exts) { 5696 // Early check if we directly have ext(load). 5697 if (isa<LoadInst>(I->getOperand(0))) { 5698 ProfitablyMovedExts.push_back(I); 5699 continue; 5700 } 5701 5702 // Check whether or not we want to do any promotion. The reason we have 5703 // this check inside the for loop is to catch the case where an extension 5704 // is directly fed by a load because in such case the extension can be moved 5705 // up without any promotion on its operands. 5706 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5707 return false; 5708 5709 // Get the action to perform the promotion. 5710 TypePromotionHelper::Action TPH = 5711 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5712 // Check if we can promote. 5713 if (!TPH) { 5714 // Save the current extension as we cannot move up through its operand. 5715 ProfitablyMovedExts.push_back(I); 5716 continue; 5717 } 5718 5719 // Save the current state. 5720 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5721 TPT.getRestorationPoint(); 5722 SmallVector<Instruction *, 4> NewExts; 5723 unsigned NewCreatedInstsCost = 0; 5724 unsigned ExtCost = !TLI->isExtFree(I); 5725 // Promote. 5726 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5727 &NewExts, nullptr, *TLI); 5728 assert(PromotedVal && 5729 "TypePromotionHelper should have filtered out those cases"); 5730 5731 // We would be able to merge only one extension in a load. 5732 // Therefore, if we have more than 1 new extension we heuristically 5733 // cut this search path, because it means we degrade the code quality. 5734 // With exactly 2, the transformation is neutral, because we will merge 5735 // one extension but leave one. However, we optimistically keep going, 5736 // because the new extension may be removed too. 5737 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5738 // FIXME: It would be possible to propagate a negative value instead of 5739 // conservatively ceiling it to 0. 5740 TotalCreatedInstsCost = 5741 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5742 if (!StressExtLdPromotion && 5743 (TotalCreatedInstsCost > 1 || 5744 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5745 // This promotion is not profitable, rollback to the previous state, and 5746 // save the current extension in ProfitablyMovedExts as the latest 5747 // speculative promotion turned out to be unprofitable. 5748 TPT.rollback(LastKnownGood); 5749 ProfitablyMovedExts.push_back(I); 5750 continue; 5751 } 5752 // Continue promoting NewExts as far as doing so is profitable. 5753 SmallVector<Instruction *, 2> NewlyMovedExts; 5754 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5755 bool NewPromoted = false; 5756 for (auto *ExtInst : NewlyMovedExts) { 5757 Instruction *MovedExt = cast<Instruction>(ExtInst); 5758 Value *ExtOperand = MovedExt->getOperand(0); 5759 // If we have reached to a load, we need this extra profitability check 5760 // as it could potentially be merged into an ext(load). 5761 if (isa<LoadInst>(ExtOperand) && 5762 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5763 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5764 continue; 5765 5766 ProfitablyMovedExts.push_back(MovedExt); 5767 NewPromoted = true; 5768 } 5769 5770 // If none of speculative promotions for NewExts is profitable, rollback 5771 // and save the current extension (I) as the last profitable extension. 5772 if (!NewPromoted) { 5773 TPT.rollback(LastKnownGood); 5774 ProfitablyMovedExts.push_back(I); 5775 continue; 5776 } 5777 // The promotion is profitable. 5778 Promoted = true; 5779 } 5780 return Promoted; 5781 } 5782 5783 /// Merging redundant sexts when one is dominating the other. 5784 bool CodeGenPrepare::mergeSExts(Function &F) { 5785 bool Changed = false; 5786 for (auto &Entry : ValToSExtendedUses) { 5787 SExts &Insts = Entry.second; 5788 SExts CurPts; 5789 for (Instruction *Inst : Insts) { 5790 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5791 Inst->getOperand(0) != Entry.first) 5792 continue; 5793 bool inserted = false; 5794 for (auto &Pt : CurPts) { 5795 if (getDT(F).dominates(Inst, Pt)) { 5796 Pt->replaceAllUsesWith(Inst); 5797 RemovedInsts.insert(Pt); 5798 Pt->removeFromParent(); 5799 Pt = Inst; 5800 inserted = true; 5801 Changed = true; 5802 break; 5803 } 5804 if (!getDT(F).dominates(Pt, Inst)) 5805 // Give up if we need to merge in a common dominator as the 5806 // experiments show it is not profitable. 5807 continue; 5808 Inst->replaceAllUsesWith(Pt); 5809 RemovedInsts.insert(Inst); 5810 Inst->removeFromParent(); 5811 inserted = true; 5812 Changed = true; 5813 break; 5814 } 5815 if (!inserted) 5816 CurPts.push_back(Inst); 5817 } 5818 } 5819 return Changed; 5820 } 5821 5822 // Splitting large data structures so that the GEPs accessing them can have 5823 // smaller offsets so that they can be sunk to the same blocks as their users. 5824 // For example, a large struct starting from %base is split into two parts 5825 // where the second part starts from %new_base. 5826 // 5827 // Before: 5828 // BB0: 5829 // %base = 5830 // 5831 // BB1: 5832 // %gep0 = gep %base, off0 5833 // %gep1 = gep %base, off1 5834 // %gep2 = gep %base, off2 5835 // 5836 // BB2: 5837 // %load1 = load %gep0 5838 // %load2 = load %gep1 5839 // %load3 = load %gep2 5840 // 5841 // After: 5842 // BB0: 5843 // %base = 5844 // %new_base = gep %base, off0 5845 // 5846 // BB1: 5847 // %new_gep0 = %new_base 5848 // %new_gep1 = gep %new_base, off1 - off0 5849 // %new_gep2 = gep %new_base, off2 - off0 5850 // 5851 // BB2: 5852 // %load1 = load i32, i32* %new_gep0 5853 // %load2 = load i32, i32* %new_gep1 5854 // %load3 = load i32, i32* %new_gep2 5855 // 5856 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5857 // their offsets are smaller enough to fit into the addressing mode. 5858 bool CodeGenPrepare::splitLargeGEPOffsets() { 5859 bool Changed = false; 5860 for (auto &Entry : LargeOffsetGEPMap) { 5861 Value *OldBase = Entry.first; 5862 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5863 &LargeOffsetGEPs = Entry.second; 5864 auto compareGEPOffset = 5865 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5866 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5867 if (LHS.first == RHS.first) 5868 return false; 5869 if (LHS.second != RHS.second) 5870 return LHS.second < RHS.second; 5871 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5872 }; 5873 // Sorting all the GEPs of the same data structures based on the offsets. 5874 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5875 LargeOffsetGEPs.erase( 5876 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5877 LargeOffsetGEPs.end()); 5878 // Skip if all the GEPs have the same offsets. 5879 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5880 continue; 5881 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5882 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5883 Value *NewBaseGEP = nullptr; 5884 5885 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5886 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5887 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5888 int64_t Offset = LargeOffsetGEP->second; 5889 if (Offset != BaseOffset) { 5890 TargetLowering::AddrMode AddrMode; 5891 AddrMode.BaseOffs = Offset - BaseOffset; 5892 // The result type of the GEP might not be the type of the memory 5893 // access. 5894 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5895 GEP->getResultElementType(), 5896 GEP->getAddressSpace())) { 5897 // We need to create a new base if the offset to the current base is 5898 // too large to fit into the addressing mode. So, a very large struct 5899 // may be split into several parts. 5900 BaseGEP = GEP; 5901 BaseOffset = Offset; 5902 NewBaseGEP = nullptr; 5903 } 5904 } 5905 5906 // Generate a new GEP to replace the current one. 5907 LLVMContext &Ctx = GEP->getContext(); 5908 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5909 Type *I8PtrTy = 5910 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5911 Type *I8Ty = Type::getInt8Ty(Ctx); 5912 5913 if (!NewBaseGEP) { 5914 // Create a new base if we don't have one yet. Find the insertion 5915 // pointer for the new base first. 5916 BasicBlock::iterator NewBaseInsertPt; 5917 BasicBlock *NewBaseInsertBB; 5918 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5919 // If the base of the struct is an instruction, the new base will be 5920 // inserted close to it. 5921 NewBaseInsertBB = BaseI->getParent(); 5922 if (isa<PHINode>(BaseI)) 5923 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5924 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5925 NewBaseInsertBB = 5926 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5927 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5928 } else 5929 NewBaseInsertPt = std::next(BaseI->getIterator()); 5930 } else { 5931 // If the current base is an argument or global value, the new base 5932 // will be inserted to the entry block. 5933 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5934 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5935 } 5936 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5937 // Create a new base. 5938 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5939 NewBaseGEP = OldBase; 5940 if (NewBaseGEP->getType() != I8PtrTy) 5941 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5942 NewBaseGEP = 5943 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5944 NewGEPBases.insert(NewBaseGEP); 5945 } 5946 5947 IRBuilder<> Builder(GEP); 5948 Value *NewGEP = NewBaseGEP; 5949 if (Offset == BaseOffset) { 5950 if (GEP->getType() != I8PtrTy) 5951 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5952 } else { 5953 // Calculate the new offset for the new GEP. 5954 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5955 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5956 5957 if (GEP->getType() != I8PtrTy) 5958 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5959 } 5960 GEP->replaceAllUsesWith(NewGEP); 5961 LargeOffsetGEPID.erase(GEP); 5962 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5963 GEP->eraseFromParent(); 5964 Changed = true; 5965 } 5966 } 5967 return Changed; 5968 } 5969 5970 bool CodeGenPrepare::optimizePhiType( 5971 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5972 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5973 // We are looking for a collection on interconnected phi nodes that together 5974 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5975 // are of the same type. Convert the whole set of nodes to the type of the 5976 // bitcast. 5977 Type *PhiTy = I->getType(); 5978 Type *ConvertTy = nullptr; 5979 if (Visited.count(I) || 5980 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5981 return false; 5982 5983 SmallVector<Instruction *, 4> Worklist; 5984 Worklist.push_back(cast<Instruction>(I)); 5985 SmallPtrSet<PHINode *, 4> PhiNodes; 5986 PhiNodes.insert(I); 5987 Visited.insert(I); 5988 SmallPtrSet<Instruction *, 4> Defs; 5989 SmallPtrSet<Instruction *, 4> Uses; 5990 // This works by adding extra bitcasts between load/stores and removing 5991 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5992 // we can get in the situation where we remove a bitcast in one iteration 5993 // just to add it again in the next. We need to ensure that at least one 5994 // bitcast we remove are anchored to something that will not change back. 5995 bool AnyAnchored = false; 5996 5997 while (!Worklist.empty()) { 5998 Instruction *II = Worklist.pop_back_val(); 5999 6000 if (auto *Phi = dyn_cast<PHINode>(II)) { 6001 // Handle Defs, which might also be PHI's 6002 for (Value *V : Phi->incoming_values()) { 6003 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6004 if (!PhiNodes.count(OpPhi)) { 6005 if (Visited.count(OpPhi)) 6006 return false; 6007 PhiNodes.insert(OpPhi); 6008 Visited.insert(OpPhi); 6009 Worklist.push_back(OpPhi); 6010 } 6011 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6012 if (!OpLoad->isSimple()) 6013 return false; 6014 if (!Defs.count(OpLoad)) { 6015 Defs.insert(OpLoad); 6016 Worklist.push_back(OpLoad); 6017 } 6018 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6019 if (!Defs.count(OpEx)) { 6020 Defs.insert(OpEx); 6021 Worklist.push_back(OpEx); 6022 } 6023 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6024 if (!ConvertTy) 6025 ConvertTy = OpBC->getOperand(0)->getType(); 6026 if (OpBC->getOperand(0)->getType() != ConvertTy) 6027 return false; 6028 if (!Defs.count(OpBC)) { 6029 Defs.insert(OpBC); 6030 Worklist.push_back(OpBC); 6031 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6032 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6033 } 6034 } else if (!isa<UndefValue>(V)) { 6035 return false; 6036 } 6037 } 6038 } 6039 6040 // Handle uses which might also be phi's 6041 for (User *V : II->users()) { 6042 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6043 if (!PhiNodes.count(OpPhi)) { 6044 if (Visited.count(OpPhi)) 6045 return false; 6046 PhiNodes.insert(OpPhi); 6047 Visited.insert(OpPhi); 6048 Worklist.push_back(OpPhi); 6049 } 6050 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6051 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6052 return false; 6053 Uses.insert(OpStore); 6054 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6055 if (!ConvertTy) 6056 ConvertTy = OpBC->getType(); 6057 if (OpBC->getType() != ConvertTy) 6058 return false; 6059 Uses.insert(OpBC); 6060 AnyAnchored |= 6061 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6062 } else { 6063 return false; 6064 } 6065 } 6066 } 6067 6068 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6069 return false; 6070 6071 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6072 << *ConvertTy << "\n"); 6073 6074 // Create all the new phi nodes of the new type, and bitcast any loads to the 6075 // correct type. 6076 ValueToValueMap ValMap; 6077 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6078 for (Instruction *D : Defs) { 6079 if (isa<BitCastInst>(D)) { 6080 ValMap[D] = D->getOperand(0); 6081 DeletedInstrs.insert(D); 6082 } else { 6083 ValMap[D] = 6084 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6085 } 6086 } 6087 for (PHINode *Phi : PhiNodes) 6088 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6089 Phi->getName() + ".tc", Phi); 6090 // Pipe together all the PhiNodes. 6091 for (PHINode *Phi : PhiNodes) { 6092 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6093 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6094 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6095 Phi->getIncomingBlock(i)); 6096 Visited.insert(NewPhi); 6097 } 6098 // And finally pipe up the stores and bitcasts 6099 for (Instruction *U : Uses) { 6100 if (isa<BitCastInst>(U)) { 6101 DeletedInstrs.insert(U); 6102 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6103 } else { 6104 U->setOperand(0, 6105 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6106 } 6107 } 6108 6109 // Save the removed phis to be deleted later. 6110 for (PHINode *Phi : PhiNodes) 6111 DeletedInstrs.insert(Phi); 6112 return true; 6113 } 6114 6115 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6116 if (!OptimizePhiTypes) 6117 return false; 6118 6119 bool Changed = false; 6120 SmallPtrSet<PHINode *, 4> Visited; 6121 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6122 6123 // Attempt to optimize all the phis in the functions to the correct type. 6124 for (auto &BB : F) 6125 for (auto &Phi : BB.phis()) 6126 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6127 6128 // Remove any old phi's that have been converted. 6129 for (auto *I : DeletedInstrs) { 6130 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6131 I->eraseFromParent(); 6132 } 6133 6134 return Changed; 6135 } 6136 6137 /// Return true, if an ext(load) can be formed from an extension in 6138 /// \p MovedExts. 6139 bool CodeGenPrepare::canFormExtLd( 6140 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6141 Instruction *&Inst, bool HasPromoted) { 6142 for (auto *MovedExtInst : MovedExts) { 6143 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6144 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6145 Inst = MovedExtInst; 6146 break; 6147 } 6148 } 6149 if (!LI) 6150 return false; 6151 6152 // If they're already in the same block, there's nothing to do. 6153 // Make the cheap checks first if we did not promote. 6154 // If we promoted, we need to check if it is indeed profitable. 6155 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6156 return false; 6157 6158 return TLI->isExtLoad(LI, Inst, *DL); 6159 } 6160 6161 /// Move a zext or sext fed by a load into the same basic block as the load, 6162 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6163 /// extend into the load. 6164 /// 6165 /// E.g., 6166 /// \code 6167 /// %ld = load i32* %addr 6168 /// %add = add nuw i32 %ld, 4 6169 /// %zext = zext i32 %add to i64 6170 // \endcode 6171 /// => 6172 /// \code 6173 /// %ld = load i32* %addr 6174 /// %zext = zext i32 %ld to i64 6175 /// %add = add nuw i64 %zext, 4 6176 /// \encode 6177 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6178 /// allow us to match zext(load i32*) to i64. 6179 /// 6180 /// Also, try to promote the computations used to obtain a sign extended 6181 /// value used into memory accesses. 6182 /// E.g., 6183 /// \code 6184 /// a = add nsw i32 b, 3 6185 /// d = sext i32 a to i64 6186 /// e = getelementptr ..., i64 d 6187 /// \endcode 6188 /// => 6189 /// \code 6190 /// f = sext i32 b to i64 6191 /// a = add nsw i64 f, 3 6192 /// e = getelementptr ..., i64 a 6193 /// \endcode 6194 /// 6195 /// \p Inst[in/out] the extension may be modified during the process if some 6196 /// promotions apply. 6197 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6198 bool AllowPromotionWithoutCommonHeader = false; 6199 /// See if it is an interesting sext operations for the address type 6200 /// promotion before trying to promote it, e.g., the ones with the right 6201 /// type and used in memory accesses. 6202 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6203 *Inst, AllowPromotionWithoutCommonHeader); 6204 TypePromotionTransaction TPT(RemovedInsts); 6205 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6206 TPT.getRestorationPoint(); 6207 SmallVector<Instruction *, 1> Exts; 6208 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6209 Exts.push_back(Inst); 6210 6211 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6212 6213 // Look for a load being extended. 6214 LoadInst *LI = nullptr; 6215 Instruction *ExtFedByLoad; 6216 6217 // Try to promote a chain of computation if it allows to form an extended 6218 // load. 6219 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6220 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6221 TPT.commit(); 6222 // Move the extend into the same block as the load. 6223 ExtFedByLoad->moveAfter(LI); 6224 ++NumExtsMoved; 6225 Inst = ExtFedByLoad; 6226 return true; 6227 } 6228 6229 // Continue promoting SExts if known as considerable depending on targets. 6230 if (ATPConsiderable && 6231 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6232 HasPromoted, TPT, SpeculativelyMovedExts)) 6233 return true; 6234 6235 TPT.rollback(LastKnownGood); 6236 return false; 6237 } 6238 6239 // Perform address type promotion if doing so is profitable. 6240 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6241 // instructions that sign extended the same initial value. However, if 6242 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6243 // extension is just profitable. 6244 bool CodeGenPrepare::performAddressTypePromotion( 6245 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6246 bool HasPromoted, TypePromotionTransaction &TPT, 6247 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6248 bool Promoted = false; 6249 SmallPtrSet<Instruction *, 1> UnhandledExts; 6250 bool AllSeenFirst = true; 6251 for (auto *I : SpeculativelyMovedExts) { 6252 Value *HeadOfChain = I->getOperand(0); 6253 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6254 SeenChainsForSExt.find(HeadOfChain); 6255 // If there is an unhandled SExt which has the same header, try to promote 6256 // it as well. 6257 if (AlreadySeen != SeenChainsForSExt.end()) { 6258 if (AlreadySeen->second != nullptr) 6259 UnhandledExts.insert(AlreadySeen->second); 6260 AllSeenFirst = false; 6261 } 6262 } 6263 6264 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6265 SpeculativelyMovedExts.size() == 1)) { 6266 TPT.commit(); 6267 if (HasPromoted) 6268 Promoted = true; 6269 for (auto *I : SpeculativelyMovedExts) { 6270 Value *HeadOfChain = I->getOperand(0); 6271 SeenChainsForSExt[HeadOfChain] = nullptr; 6272 ValToSExtendedUses[HeadOfChain].push_back(I); 6273 } 6274 // Update Inst as promotion happen. 6275 Inst = SpeculativelyMovedExts.pop_back_val(); 6276 } else { 6277 // This is the first chain visited from the header, keep the current chain 6278 // as unhandled. Defer to promote this until we encounter another SExt 6279 // chain derived from the same header. 6280 for (auto *I : SpeculativelyMovedExts) { 6281 Value *HeadOfChain = I->getOperand(0); 6282 SeenChainsForSExt[HeadOfChain] = Inst; 6283 } 6284 return false; 6285 } 6286 6287 if (!AllSeenFirst && !UnhandledExts.empty()) 6288 for (auto *VisitedSExt : UnhandledExts) { 6289 if (RemovedInsts.count(VisitedSExt)) 6290 continue; 6291 TypePromotionTransaction TPT(RemovedInsts); 6292 SmallVector<Instruction *, 1> Exts; 6293 SmallVector<Instruction *, 2> Chains; 6294 Exts.push_back(VisitedSExt); 6295 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6296 TPT.commit(); 6297 if (HasPromoted) 6298 Promoted = true; 6299 for (auto *I : Chains) { 6300 Value *HeadOfChain = I->getOperand(0); 6301 // Mark this as handled. 6302 SeenChainsForSExt[HeadOfChain] = nullptr; 6303 ValToSExtendedUses[HeadOfChain].push_back(I); 6304 } 6305 } 6306 return Promoted; 6307 } 6308 6309 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6310 BasicBlock *DefBB = I->getParent(); 6311 6312 // If the result of a {s|z}ext and its source are both live out, rewrite all 6313 // other uses of the source with result of extension. 6314 Value *Src = I->getOperand(0); 6315 if (Src->hasOneUse()) 6316 return false; 6317 6318 // Only do this xform if truncating is free. 6319 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6320 return false; 6321 6322 // Only safe to perform the optimization if the source is also defined in 6323 // this block. 6324 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6325 return false; 6326 6327 bool DefIsLiveOut = false; 6328 for (User *U : I->users()) { 6329 Instruction *UI = cast<Instruction>(U); 6330 6331 // Figure out which BB this ext is used in. 6332 BasicBlock *UserBB = UI->getParent(); 6333 if (UserBB == DefBB) continue; 6334 DefIsLiveOut = true; 6335 break; 6336 } 6337 if (!DefIsLiveOut) 6338 return false; 6339 6340 // Make sure none of the uses are PHI nodes. 6341 for (User *U : Src->users()) { 6342 Instruction *UI = cast<Instruction>(U); 6343 BasicBlock *UserBB = UI->getParent(); 6344 if (UserBB == DefBB) continue; 6345 // Be conservative. We don't want this xform to end up introducing 6346 // reloads just before load / store instructions. 6347 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6348 return false; 6349 } 6350 6351 // InsertedTruncs - Only insert one trunc in each block once. 6352 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6353 6354 bool MadeChange = false; 6355 for (Use &U : Src->uses()) { 6356 Instruction *User = cast<Instruction>(U.getUser()); 6357 6358 // Figure out which BB this ext is used in. 6359 BasicBlock *UserBB = User->getParent(); 6360 if (UserBB == DefBB) continue; 6361 6362 // Both src and def are live in this block. Rewrite the use. 6363 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6364 6365 if (!InsertedTrunc) { 6366 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6367 assert(InsertPt != UserBB->end()); 6368 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6369 InsertedInsts.insert(InsertedTrunc); 6370 } 6371 6372 // Replace a use of the {s|z}ext source with a use of the result. 6373 U = InsertedTrunc; 6374 ++NumExtUses; 6375 MadeChange = true; 6376 } 6377 6378 return MadeChange; 6379 } 6380 6381 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6382 // just after the load if the target can fold this into one extload instruction, 6383 // with the hope of eliminating some of the other later "and" instructions using 6384 // the loaded value. "and"s that are made trivially redundant by the insertion 6385 // of the new "and" are removed by this function, while others (e.g. those whose 6386 // path from the load goes through a phi) are left for isel to potentially 6387 // remove. 6388 // 6389 // For example: 6390 // 6391 // b0: 6392 // x = load i32 6393 // ... 6394 // b1: 6395 // y = and x, 0xff 6396 // z = use y 6397 // 6398 // becomes: 6399 // 6400 // b0: 6401 // x = load i32 6402 // x' = and x, 0xff 6403 // ... 6404 // b1: 6405 // z = use x' 6406 // 6407 // whereas: 6408 // 6409 // b0: 6410 // x1 = load i32 6411 // ... 6412 // b1: 6413 // x2 = load i32 6414 // ... 6415 // b2: 6416 // x = phi x1, x2 6417 // y = and x, 0xff 6418 // 6419 // becomes (after a call to optimizeLoadExt for each load): 6420 // 6421 // b0: 6422 // x1 = load i32 6423 // x1' = and x1, 0xff 6424 // ... 6425 // b1: 6426 // x2 = load i32 6427 // x2' = and x2, 0xff 6428 // ... 6429 // b2: 6430 // x = phi x1', x2' 6431 // y = and x, 0xff 6432 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6433 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6434 return false; 6435 6436 // Skip loads we've already transformed. 6437 if (Load->hasOneUse() && 6438 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6439 return false; 6440 6441 // Look at all uses of Load, looking through phis, to determine how many bits 6442 // of the loaded value are needed. 6443 SmallVector<Instruction *, 8> WorkList; 6444 SmallPtrSet<Instruction *, 16> Visited; 6445 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6446 for (auto *U : Load->users()) 6447 WorkList.push_back(cast<Instruction>(U)); 6448 6449 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6450 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6451 // If the BitWidth is 0, do not try to optimize the type 6452 if (BitWidth == 0) 6453 return false; 6454 6455 APInt DemandBits(BitWidth, 0); 6456 APInt WidestAndBits(BitWidth, 0); 6457 6458 while (!WorkList.empty()) { 6459 Instruction *I = WorkList.pop_back_val(); 6460 6461 // Break use-def graph loops. 6462 if (!Visited.insert(I).second) 6463 continue; 6464 6465 // For a PHI node, push all of its users. 6466 if (auto *Phi = dyn_cast<PHINode>(I)) { 6467 for (auto *U : Phi->users()) 6468 WorkList.push_back(cast<Instruction>(U)); 6469 continue; 6470 } 6471 6472 switch (I->getOpcode()) { 6473 case Instruction::And: { 6474 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6475 if (!AndC) 6476 return false; 6477 APInt AndBits = AndC->getValue(); 6478 DemandBits |= AndBits; 6479 // Keep track of the widest and mask we see. 6480 if (AndBits.ugt(WidestAndBits)) 6481 WidestAndBits = AndBits; 6482 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6483 AndsToMaybeRemove.push_back(I); 6484 break; 6485 } 6486 6487 case Instruction::Shl: { 6488 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6489 if (!ShlC) 6490 return false; 6491 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6492 DemandBits.setLowBits(BitWidth - ShiftAmt); 6493 break; 6494 } 6495 6496 case Instruction::Trunc: { 6497 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6498 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6499 DemandBits.setLowBits(TruncBitWidth); 6500 break; 6501 } 6502 6503 default: 6504 return false; 6505 } 6506 } 6507 6508 uint32_t ActiveBits = DemandBits.getActiveBits(); 6509 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6510 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6511 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6512 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6513 // followed by an AND. 6514 // TODO: Look into removing this restriction by fixing backends to either 6515 // return false for isLoadExtLegal for i1 or have them select this pattern to 6516 // a single instruction. 6517 // 6518 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6519 // mask, since these are the only ands that will be removed by isel. 6520 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6521 WidestAndBits != DemandBits) 6522 return false; 6523 6524 LLVMContext &Ctx = Load->getType()->getContext(); 6525 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6526 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6527 6528 // Reject cases that won't be matched as extloads. 6529 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6530 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6531 return false; 6532 6533 IRBuilder<> Builder(Load->getNextNode()); 6534 auto *NewAnd = cast<Instruction>( 6535 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6536 // Mark this instruction as "inserted by CGP", so that other 6537 // optimizations don't touch it. 6538 InsertedInsts.insert(NewAnd); 6539 6540 // Replace all uses of load with new and (except for the use of load in the 6541 // new and itself). 6542 Load->replaceAllUsesWith(NewAnd); 6543 NewAnd->setOperand(0, Load); 6544 6545 // Remove any and instructions that are now redundant. 6546 for (auto *And : AndsToMaybeRemove) 6547 // Check that the and mask is the same as the one we decided to put on the 6548 // new and. 6549 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6550 And->replaceAllUsesWith(NewAnd); 6551 if (&*CurInstIterator == And) 6552 CurInstIterator = std::next(And->getIterator()); 6553 And->eraseFromParent(); 6554 ++NumAndUses; 6555 } 6556 6557 ++NumAndsAdded; 6558 return true; 6559 } 6560 6561 /// Check if V (an operand of a select instruction) is an expensive instruction 6562 /// that is only used once. 6563 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6564 auto *I = dyn_cast<Instruction>(V); 6565 // If it's safe to speculatively execute, then it should not have side 6566 // effects; therefore, it's safe to sink and possibly *not* execute. 6567 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6568 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6569 TargetTransformInfo::TCC_Expensive; 6570 } 6571 6572 /// Returns true if a SelectInst should be turned into an explicit branch. 6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6574 const TargetLowering *TLI, 6575 SelectInst *SI) { 6576 // If even a predictable select is cheap, then a branch can't be cheaper. 6577 if (!TLI->isPredictableSelectExpensive()) 6578 return false; 6579 6580 // FIXME: This should use the same heuristics as IfConversion to determine 6581 // whether a select is better represented as a branch. 6582 6583 // If metadata tells us that the select condition is obviously predictable, 6584 // then we want to replace the select with a branch. 6585 uint64_t TrueWeight, FalseWeight; 6586 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6587 uint64_t Max = std::max(TrueWeight, FalseWeight); 6588 uint64_t Sum = TrueWeight + FalseWeight; 6589 if (Sum != 0) { 6590 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6591 if (Probability > TTI->getPredictableBranchThreshold()) 6592 return true; 6593 } 6594 } 6595 6596 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6597 6598 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6599 // comparison condition. If the compare has more than one use, there's 6600 // probably another cmov or setcc around, so it's not worth emitting a branch. 6601 if (!Cmp || !Cmp->hasOneUse()) 6602 return false; 6603 6604 // If either operand of the select is expensive and only needed on one side 6605 // of the select, we should form a branch. 6606 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6607 sinkSelectOperand(TTI, SI->getFalseValue())) 6608 return true; 6609 6610 return false; 6611 } 6612 6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6614 /// false value of \p SI. If the true/false value of \p SI is defined by any 6615 /// select instructions in \p Selects, look through the defining select 6616 /// instruction until the true/false value is not defined in \p Selects. 6617 static Value *getTrueOrFalseValue( 6618 SelectInst *SI, bool isTrue, 6619 const SmallPtrSet<const Instruction *, 2> &Selects) { 6620 Value *V = nullptr; 6621 6622 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6623 DefSI = dyn_cast<SelectInst>(V)) { 6624 assert(DefSI->getCondition() == SI->getCondition() && 6625 "The condition of DefSI does not match with SI"); 6626 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6627 } 6628 6629 assert(V && "Failed to get select true/false value"); 6630 return V; 6631 } 6632 6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6634 assert(Shift->isShift() && "Expected a shift"); 6635 6636 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6637 // general vector shifts, and (3) the shift amount is a select-of-splatted 6638 // values, hoist the shifts before the select: 6639 // shift Op0, (select Cond, TVal, FVal) --> 6640 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6641 // 6642 // This is inverting a generic IR transform when we know that the cost of a 6643 // general vector shift is more than the cost of 2 shift-by-scalars. 6644 // We can't do this effectively in SDAG because we may not be able to 6645 // determine if the select operands are splats from within a basic block. 6646 Type *Ty = Shift->getType(); 6647 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6648 return false; 6649 Value *Cond, *TVal, *FVal; 6650 if (!match(Shift->getOperand(1), 6651 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6652 return false; 6653 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6654 return false; 6655 6656 IRBuilder<> Builder(Shift); 6657 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6658 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6659 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6660 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6661 Shift->replaceAllUsesWith(NewSel); 6662 Shift->eraseFromParent(); 6663 return true; 6664 } 6665 6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6667 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6668 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6669 "Expected a funnel shift"); 6670 6671 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6672 // than general vector shifts, and (3) the shift amount is select-of-splatted 6673 // values, hoist the funnel shifts before the select: 6674 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6675 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6676 // 6677 // This is inverting a generic IR transform when we know that the cost of a 6678 // general vector shift is more than the cost of 2 shift-by-scalars. 6679 // We can't do this effectively in SDAG because we may not be able to 6680 // determine if the select operands are splats from within a basic block. 6681 Type *Ty = Fsh->getType(); 6682 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6683 return false; 6684 Value *Cond, *TVal, *FVal; 6685 if (!match(Fsh->getOperand(2), 6686 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6687 return false; 6688 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6689 return false; 6690 6691 IRBuilder<> Builder(Fsh); 6692 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6693 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6694 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6695 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6696 Fsh->replaceAllUsesWith(NewSel); 6697 Fsh->eraseFromParent(); 6698 return true; 6699 } 6700 6701 /// If we have a SelectInst that will likely profit from branch prediction, 6702 /// turn it into a branch. 6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6704 if (DisableSelectToBranch) 6705 return false; 6706 6707 // Find all consecutive select instructions that share the same condition. 6708 SmallVector<SelectInst *, 2> ASI; 6709 ASI.push_back(SI); 6710 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6711 It != SI->getParent()->end(); ++It) { 6712 SelectInst *I = dyn_cast<SelectInst>(&*It); 6713 if (I && SI->getCondition() == I->getCondition()) { 6714 ASI.push_back(I); 6715 } else { 6716 break; 6717 } 6718 } 6719 6720 SelectInst *LastSI = ASI.back(); 6721 // Increment the current iterator to skip all the rest of select instructions 6722 // because they will be either "not lowered" or "all lowered" to branch. 6723 CurInstIterator = std::next(LastSI->getIterator()); 6724 6725 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6726 6727 // Can we convert the 'select' to CF ? 6728 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6729 return false; 6730 6731 TargetLowering::SelectSupportKind SelectKind; 6732 if (VectorCond) 6733 SelectKind = TargetLowering::VectorMaskSelect; 6734 else if (SI->getType()->isVectorTy()) 6735 SelectKind = TargetLowering::ScalarCondVectorVal; 6736 else 6737 SelectKind = TargetLowering::ScalarValSelect; 6738 6739 if (TLI->isSelectSupported(SelectKind) && 6740 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6741 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6742 return false; 6743 6744 // The DominatorTree needs to be rebuilt by any consumers after this 6745 // transformation. We simply reset here rather than setting the ModifiedDT 6746 // flag to avoid restarting the function walk in runOnFunction for each 6747 // select optimized. 6748 DT.reset(); 6749 6750 // Transform a sequence like this: 6751 // start: 6752 // %cmp = cmp uge i32 %a, %b 6753 // %sel = select i1 %cmp, i32 %c, i32 %d 6754 // 6755 // Into: 6756 // start: 6757 // %cmp = cmp uge i32 %a, %b 6758 // %cmp.frozen = freeze %cmp 6759 // br i1 %cmp.frozen, label %select.true, label %select.false 6760 // select.true: 6761 // br label %select.end 6762 // select.false: 6763 // br label %select.end 6764 // select.end: 6765 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6766 // 6767 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6768 // In addition, we may sink instructions that produce %c or %d from 6769 // the entry block into the destination(s) of the new branch. 6770 // If the true or false blocks do not contain a sunken instruction, that 6771 // block and its branch may be optimized away. In that case, one side of the 6772 // first branch will point directly to select.end, and the corresponding PHI 6773 // predecessor block will be the start block. 6774 6775 // First, we split the block containing the select into 2 blocks. 6776 BasicBlock *StartBlock = SI->getParent(); 6777 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6778 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6779 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6780 6781 // Delete the unconditional branch that was just created by the split. 6782 StartBlock->getTerminator()->eraseFromParent(); 6783 6784 // These are the new basic blocks for the conditional branch. 6785 // At least one will become an actual new basic block. 6786 BasicBlock *TrueBlock = nullptr; 6787 BasicBlock *FalseBlock = nullptr; 6788 BranchInst *TrueBranch = nullptr; 6789 BranchInst *FalseBranch = nullptr; 6790 6791 // Sink expensive instructions into the conditional blocks to avoid executing 6792 // them speculatively. 6793 for (SelectInst *SI : ASI) { 6794 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6795 if (TrueBlock == nullptr) { 6796 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6797 EndBlock->getParent(), EndBlock); 6798 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6799 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6800 } 6801 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6802 TrueInst->moveBefore(TrueBranch); 6803 } 6804 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6805 if (FalseBlock == nullptr) { 6806 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6807 EndBlock->getParent(), EndBlock); 6808 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6809 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6810 } 6811 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6812 FalseInst->moveBefore(FalseBranch); 6813 } 6814 } 6815 6816 // If there was nothing to sink, then arbitrarily choose the 'false' side 6817 // for a new input value to the PHI. 6818 if (TrueBlock == FalseBlock) { 6819 assert(TrueBlock == nullptr && 6820 "Unexpected basic block transform while optimizing select"); 6821 6822 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6823 EndBlock->getParent(), EndBlock); 6824 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6825 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6826 } 6827 6828 // Insert the real conditional branch based on the original condition. 6829 // If we did not create a new block for one of the 'true' or 'false' paths 6830 // of the condition, it means that side of the branch goes to the end block 6831 // directly and the path originates from the start block from the point of 6832 // view of the new PHI. 6833 BasicBlock *TT, *FT; 6834 if (TrueBlock == nullptr) { 6835 TT = EndBlock; 6836 FT = FalseBlock; 6837 TrueBlock = StartBlock; 6838 } else if (FalseBlock == nullptr) { 6839 TT = TrueBlock; 6840 FT = EndBlock; 6841 FalseBlock = StartBlock; 6842 } else { 6843 TT = TrueBlock; 6844 FT = FalseBlock; 6845 } 6846 IRBuilder<> IB(SI); 6847 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6848 IB.CreateCondBr(CondFr, TT, FT, SI); 6849 6850 SmallPtrSet<const Instruction *, 2> INS; 6851 INS.insert(ASI.begin(), ASI.end()); 6852 // Use reverse iterator because later select may use the value of the 6853 // earlier select, and we need to propagate value through earlier select 6854 // to get the PHI operand. 6855 for (SelectInst *SI : llvm::reverse(ASI)) { 6856 // The select itself is replaced with a PHI Node. 6857 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6858 PN->takeName(SI); 6859 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6860 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6861 PN->setDebugLoc(SI->getDebugLoc()); 6862 6863 SI->replaceAllUsesWith(PN); 6864 SI->eraseFromParent(); 6865 INS.erase(SI); 6866 ++NumSelectsExpanded; 6867 } 6868 6869 // Instruct OptimizeBlock to skip to the next block. 6870 CurInstIterator = StartBlock->end(); 6871 return true; 6872 } 6873 6874 /// Some targets only accept certain types for splat inputs. For example a VDUP 6875 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6876 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6877 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6878 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6879 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6880 m_Undef(), m_ZeroMask()))) 6881 return false; 6882 Type *NewType = TLI->shouldConvertSplatType(SVI); 6883 if (!NewType) 6884 return false; 6885 6886 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6887 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6888 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6889 "Expected a type of the same size!"); 6890 auto *NewVecType = 6891 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6892 6893 // Create a bitcast (shuffle (insert (bitcast(..)))) 6894 IRBuilder<> Builder(SVI->getContext()); 6895 Builder.SetInsertPoint(SVI); 6896 Value *BC1 = Builder.CreateBitCast( 6897 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6898 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6899 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6900 6901 SVI->replaceAllUsesWith(BC2); 6902 RecursivelyDeleteTriviallyDeadInstructions( 6903 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6904 6905 // Also hoist the bitcast up to its operand if it they are not in the same 6906 // block. 6907 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6908 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6909 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6910 !Op->isTerminator() && !Op->isEHPad()) 6911 BCI->moveAfter(Op); 6912 6913 return true; 6914 } 6915 6916 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6917 // If the operands of I can be folded into a target instruction together with 6918 // I, duplicate and sink them. 6919 SmallVector<Use *, 4> OpsToSink; 6920 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6921 return false; 6922 6923 // OpsToSink can contain multiple uses in a use chain (e.g. 6924 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6925 // uses must come first, so we process the ops in reverse order so as to not 6926 // create invalid IR. 6927 BasicBlock *TargetBB = I->getParent(); 6928 bool Changed = false; 6929 SmallVector<Use *, 4> ToReplace; 6930 Instruction *InsertPoint = I; 6931 DenseMap<const Instruction *, unsigned long> InstOrdering; 6932 unsigned long InstNumber = 0; 6933 for (const auto &I : *TargetBB) 6934 InstOrdering[&I] = InstNumber++; 6935 6936 for (Use *U : reverse(OpsToSink)) { 6937 auto *UI = cast<Instruction>(U->get()); 6938 if (isa<PHINode>(UI)) 6939 continue; 6940 if (UI->getParent() == TargetBB) { 6941 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 6942 InsertPoint = UI; 6943 continue; 6944 } 6945 ToReplace.push_back(U); 6946 } 6947 6948 SetVector<Instruction *> MaybeDead; 6949 DenseMap<Instruction *, Instruction *> NewInstructions; 6950 for (Use *U : ToReplace) { 6951 auto *UI = cast<Instruction>(U->get()); 6952 Instruction *NI = UI->clone(); 6953 NewInstructions[UI] = NI; 6954 MaybeDead.insert(UI); 6955 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6956 NI->insertBefore(InsertPoint); 6957 InsertPoint = NI; 6958 InsertedInsts.insert(NI); 6959 6960 // Update the use for the new instruction, making sure that we update the 6961 // sunk instruction uses, if it is part of a chain that has already been 6962 // sunk. 6963 Instruction *OldI = cast<Instruction>(U->getUser()); 6964 if (NewInstructions.count(OldI)) 6965 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6966 else 6967 U->set(NI); 6968 Changed = true; 6969 } 6970 6971 // Remove instructions that are dead after sinking. 6972 for (auto *I : MaybeDead) { 6973 if (!I->hasNUsesOrMore(1)) { 6974 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6975 I->eraseFromParent(); 6976 } 6977 } 6978 6979 return Changed; 6980 } 6981 6982 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6983 Value *Cond = SI->getCondition(); 6984 Type *OldType = Cond->getType(); 6985 LLVMContext &Context = Cond->getContext(); 6986 EVT OldVT = TLI->getValueType(*DL, OldType); 6987 MVT RegType = TLI->getRegisterType(Context, OldVT); 6988 unsigned RegWidth = RegType.getSizeInBits(); 6989 6990 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6991 return false; 6992 6993 // If the register width is greater than the type width, expand the condition 6994 // of the switch instruction and each case constant to the width of the 6995 // register. By widening the type of the switch condition, subsequent 6996 // comparisons (for case comparisons) will not need to be extended to the 6997 // preferred register width, so we will potentially eliminate N-1 extends, 6998 // where N is the number of cases in the switch. 6999 auto *NewType = Type::getIntNTy(Context, RegWidth); 7000 7001 // Extend the switch condition and case constants using the target preferred 7002 // extend unless the switch condition is a function argument with an extend 7003 // attribute. In that case, we can avoid an unnecessary mask/extension by 7004 // matching the argument extension instead. 7005 Instruction::CastOps ExtType = Instruction::ZExt; 7006 // Some targets prefer SExt over ZExt. 7007 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7008 ExtType = Instruction::SExt; 7009 7010 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7011 if (Arg->hasSExtAttr()) 7012 ExtType = Instruction::SExt; 7013 if (Arg->hasZExtAttr()) 7014 ExtType = Instruction::ZExt; 7015 } 7016 7017 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7018 ExtInst->insertBefore(SI); 7019 ExtInst->setDebugLoc(SI->getDebugLoc()); 7020 SI->setCondition(ExtInst); 7021 for (auto Case : SI->cases()) { 7022 APInt NarrowConst = Case.getCaseValue()->getValue(); 7023 APInt WideConst = (ExtType == Instruction::ZExt) ? 7024 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7025 Case.setValue(ConstantInt::get(Context, WideConst)); 7026 } 7027 7028 return true; 7029 } 7030 7031 7032 namespace { 7033 7034 /// Helper class to promote a scalar operation to a vector one. 7035 /// This class is used to move downward extractelement transition. 7036 /// E.g., 7037 /// a = vector_op <2 x i32> 7038 /// b = extractelement <2 x i32> a, i32 0 7039 /// c = scalar_op b 7040 /// store c 7041 /// 7042 /// => 7043 /// a = vector_op <2 x i32> 7044 /// c = vector_op a (equivalent to scalar_op on the related lane) 7045 /// * d = extractelement <2 x i32> c, i32 0 7046 /// * store d 7047 /// Assuming both extractelement and store can be combine, we get rid of the 7048 /// transition. 7049 class VectorPromoteHelper { 7050 /// DataLayout associated with the current module. 7051 const DataLayout &DL; 7052 7053 /// Used to perform some checks on the legality of vector operations. 7054 const TargetLowering &TLI; 7055 7056 /// Used to estimated the cost of the promoted chain. 7057 const TargetTransformInfo &TTI; 7058 7059 /// The transition being moved downwards. 7060 Instruction *Transition; 7061 7062 /// The sequence of instructions to be promoted. 7063 SmallVector<Instruction *, 4> InstsToBePromoted; 7064 7065 /// Cost of combining a store and an extract. 7066 unsigned StoreExtractCombineCost; 7067 7068 /// Instruction that will be combined with the transition. 7069 Instruction *CombineInst = nullptr; 7070 7071 /// The instruction that represents the current end of the transition. 7072 /// Since we are faking the promotion until we reach the end of the chain 7073 /// of computation, we need a way to get the current end of the transition. 7074 Instruction *getEndOfTransition() const { 7075 if (InstsToBePromoted.empty()) 7076 return Transition; 7077 return InstsToBePromoted.back(); 7078 } 7079 7080 /// Return the index of the original value in the transition. 7081 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7082 /// c, is at index 0. 7083 unsigned getTransitionOriginalValueIdx() const { 7084 assert(isa<ExtractElementInst>(Transition) && 7085 "Other kind of transitions are not supported yet"); 7086 return 0; 7087 } 7088 7089 /// Return the index of the index in the transition. 7090 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7091 /// is at index 1. 7092 unsigned getTransitionIdx() const { 7093 assert(isa<ExtractElementInst>(Transition) && 7094 "Other kind of transitions are not supported yet"); 7095 return 1; 7096 } 7097 7098 /// Get the type of the transition. 7099 /// This is the type of the original value. 7100 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7101 /// transition is <2 x i32>. 7102 Type *getTransitionType() const { 7103 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7104 } 7105 7106 /// Promote \p ToBePromoted by moving \p Def downward through. 7107 /// I.e., we have the following sequence: 7108 /// Def = Transition <ty1> a to <ty2> 7109 /// b = ToBePromoted <ty2> Def, ... 7110 /// => 7111 /// b = ToBePromoted <ty1> a, ... 7112 /// Def = Transition <ty1> ToBePromoted to <ty2> 7113 void promoteImpl(Instruction *ToBePromoted); 7114 7115 /// Check whether or not it is profitable to promote all the 7116 /// instructions enqueued to be promoted. 7117 bool isProfitableToPromote() { 7118 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7119 unsigned Index = isa<ConstantInt>(ValIdx) 7120 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7121 : -1; 7122 Type *PromotedType = getTransitionType(); 7123 7124 StoreInst *ST = cast<StoreInst>(CombineInst); 7125 unsigned AS = ST->getPointerAddressSpace(); 7126 // Check if this store is supported. 7127 if (!TLI.allowsMisalignedMemoryAccesses( 7128 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7129 ST->getAlign())) { 7130 // If this is not supported, there is no way we can combine 7131 // the extract with the store. 7132 return false; 7133 } 7134 7135 // The scalar chain of computation has to pay for the transition 7136 // scalar to vector. 7137 // The vector chain has to account for the combining cost. 7138 InstructionCost ScalarCost = 7139 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7140 InstructionCost VectorCost = StoreExtractCombineCost; 7141 enum TargetTransformInfo::TargetCostKind CostKind = 7142 TargetTransformInfo::TCK_RecipThroughput; 7143 for (const auto &Inst : InstsToBePromoted) { 7144 // Compute the cost. 7145 // By construction, all instructions being promoted are arithmetic ones. 7146 // Moreover, one argument is a constant that can be viewed as a splat 7147 // constant. 7148 Value *Arg0 = Inst->getOperand(0); 7149 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7150 isa<ConstantFP>(Arg0); 7151 TargetTransformInfo::OperandValueKind Arg0OVK = 7152 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7153 : TargetTransformInfo::OK_AnyValue; 7154 TargetTransformInfo::OperandValueKind Arg1OVK = 7155 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7156 : TargetTransformInfo::OK_AnyValue; 7157 ScalarCost += TTI.getArithmeticInstrCost( 7158 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7159 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7160 CostKind, 7161 Arg0OVK, Arg1OVK); 7162 } 7163 LLVM_DEBUG( 7164 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7165 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7166 return ScalarCost > VectorCost; 7167 } 7168 7169 /// Generate a constant vector with \p Val with the same 7170 /// number of elements as the transition. 7171 /// \p UseSplat defines whether or not \p Val should be replicated 7172 /// across the whole vector. 7173 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7174 /// otherwise we generate a vector with as many undef as possible: 7175 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7176 /// used at the index of the extract. 7177 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7178 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7179 if (!UseSplat) { 7180 // If we cannot determine where the constant must be, we have to 7181 // use a splat constant. 7182 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7183 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7184 ExtractIdx = CstVal->getSExtValue(); 7185 else 7186 UseSplat = true; 7187 } 7188 7189 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7190 if (UseSplat) 7191 return ConstantVector::getSplat(EC, Val); 7192 7193 if (!EC.isScalable()) { 7194 SmallVector<Constant *, 4> ConstVec; 7195 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7196 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7197 if (Idx == ExtractIdx) 7198 ConstVec.push_back(Val); 7199 else 7200 ConstVec.push_back(UndefVal); 7201 } 7202 return ConstantVector::get(ConstVec); 7203 } else 7204 llvm_unreachable( 7205 "Generate scalable vector for non-splat is unimplemented"); 7206 } 7207 7208 /// Check if promoting to a vector type an operand at \p OperandIdx 7209 /// in \p Use can trigger undefined behavior. 7210 static bool canCauseUndefinedBehavior(const Instruction *Use, 7211 unsigned OperandIdx) { 7212 // This is not safe to introduce undef when the operand is on 7213 // the right hand side of a division-like instruction. 7214 if (OperandIdx != 1) 7215 return false; 7216 switch (Use->getOpcode()) { 7217 default: 7218 return false; 7219 case Instruction::SDiv: 7220 case Instruction::UDiv: 7221 case Instruction::SRem: 7222 case Instruction::URem: 7223 return true; 7224 case Instruction::FDiv: 7225 case Instruction::FRem: 7226 return !Use->hasNoNaNs(); 7227 } 7228 llvm_unreachable(nullptr); 7229 } 7230 7231 public: 7232 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7233 const TargetTransformInfo &TTI, Instruction *Transition, 7234 unsigned CombineCost) 7235 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7236 StoreExtractCombineCost(CombineCost) { 7237 assert(Transition && "Do not know how to promote null"); 7238 } 7239 7240 /// Check if we can promote \p ToBePromoted to \p Type. 7241 bool canPromote(const Instruction *ToBePromoted) const { 7242 // We could support CastInst too. 7243 return isa<BinaryOperator>(ToBePromoted); 7244 } 7245 7246 /// Check if it is profitable to promote \p ToBePromoted 7247 /// by moving downward the transition through. 7248 bool shouldPromote(const Instruction *ToBePromoted) const { 7249 // Promote only if all the operands can be statically expanded. 7250 // Indeed, we do not want to introduce any new kind of transitions. 7251 for (const Use &U : ToBePromoted->operands()) { 7252 const Value *Val = U.get(); 7253 if (Val == getEndOfTransition()) { 7254 // If the use is a division and the transition is on the rhs, 7255 // we cannot promote the operation, otherwise we may create a 7256 // division by zero. 7257 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7258 return false; 7259 continue; 7260 } 7261 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7262 !isa<ConstantFP>(Val)) 7263 return false; 7264 } 7265 // Check that the resulting operation is legal. 7266 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7267 if (!ISDOpcode) 7268 return false; 7269 return StressStoreExtract || 7270 TLI.isOperationLegalOrCustom( 7271 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7272 } 7273 7274 /// Check whether or not \p Use can be combined 7275 /// with the transition. 7276 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7277 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7278 7279 /// Record \p ToBePromoted as part of the chain to be promoted. 7280 void enqueueForPromotion(Instruction *ToBePromoted) { 7281 InstsToBePromoted.push_back(ToBePromoted); 7282 } 7283 7284 /// Set the instruction that will be combined with the transition. 7285 void recordCombineInstruction(Instruction *ToBeCombined) { 7286 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7287 CombineInst = ToBeCombined; 7288 } 7289 7290 /// Promote all the instructions enqueued for promotion if it is 7291 /// is profitable. 7292 /// \return True if the promotion happened, false otherwise. 7293 bool promote() { 7294 // Check if there is something to promote. 7295 // Right now, if we do not have anything to combine with, 7296 // we assume the promotion is not profitable. 7297 if (InstsToBePromoted.empty() || !CombineInst) 7298 return false; 7299 7300 // Check cost. 7301 if (!StressStoreExtract && !isProfitableToPromote()) 7302 return false; 7303 7304 // Promote. 7305 for (auto &ToBePromoted : InstsToBePromoted) 7306 promoteImpl(ToBePromoted); 7307 InstsToBePromoted.clear(); 7308 return true; 7309 } 7310 }; 7311 7312 } // end anonymous namespace 7313 7314 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7315 // At this point, we know that all the operands of ToBePromoted but Def 7316 // can be statically promoted. 7317 // For Def, we need to use its parameter in ToBePromoted: 7318 // b = ToBePromoted ty1 a 7319 // Def = Transition ty1 b to ty2 7320 // Move the transition down. 7321 // 1. Replace all uses of the promoted operation by the transition. 7322 // = ... b => = ... Def. 7323 assert(ToBePromoted->getType() == Transition->getType() && 7324 "The type of the result of the transition does not match " 7325 "the final type"); 7326 ToBePromoted->replaceAllUsesWith(Transition); 7327 // 2. Update the type of the uses. 7328 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7329 Type *TransitionTy = getTransitionType(); 7330 ToBePromoted->mutateType(TransitionTy); 7331 // 3. Update all the operands of the promoted operation with promoted 7332 // operands. 7333 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7334 for (Use &U : ToBePromoted->operands()) { 7335 Value *Val = U.get(); 7336 Value *NewVal = nullptr; 7337 if (Val == Transition) 7338 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7339 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7340 isa<ConstantFP>(Val)) { 7341 // Use a splat constant if it is not safe to use undef. 7342 NewVal = getConstantVector( 7343 cast<Constant>(Val), 7344 isa<UndefValue>(Val) || 7345 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7346 } else 7347 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7348 "this?"); 7349 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7350 } 7351 Transition->moveAfter(ToBePromoted); 7352 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7353 } 7354 7355 /// Some targets can do store(extractelement) with one instruction. 7356 /// Try to push the extractelement towards the stores when the target 7357 /// has this feature and this is profitable. 7358 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7359 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7360 if (DisableStoreExtract || 7361 (!StressStoreExtract && 7362 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7363 Inst->getOperand(1), CombineCost))) 7364 return false; 7365 7366 // At this point we know that Inst is a vector to scalar transition. 7367 // Try to move it down the def-use chain, until: 7368 // - We can combine the transition with its single use 7369 // => we got rid of the transition. 7370 // - We escape the current basic block 7371 // => we would need to check that we are moving it at a cheaper place and 7372 // we do not do that for now. 7373 BasicBlock *Parent = Inst->getParent(); 7374 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7375 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7376 // If the transition has more than one use, assume this is not going to be 7377 // beneficial. 7378 while (Inst->hasOneUse()) { 7379 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7380 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7381 7382 if (ToBePromoted->getParent() != Parent) { 7383 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7384 << ToBePromoted->getParent()->getName() 7385 << ") than the transition (" << Parent->getName() 7386 << ").\n"); 7387 return false; 7388 } 7389 7390 if (VPH.canCombine(ToBePromoted)) { 7391 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7392 << "will be combined with: " << *ToBePromoted << '\n'); 7393 VPH.recordCombineInstruction(ToBePromoted); 7394 bool Changed = VPH.promote(); 7395 NumStoreExtractExposed += Changed; 7396 return Changed; 7397 } 7398 7399 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7400 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7401 return false; 7402 7403 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7404 7405 VPH.enqueueForPromotion(ToBePromoted); 7406 Inst = ToBePromoted; 7407 } 7408 return false; 7409 } 7410 7411 /// For the instruction sequence of store below, F and I values 7412 /// are bundled together as an i64 value before being stored into memory. 7413 /// Sometimes it is more efficient to generate separate stores for F and I, 7414 /// which can remove the bitwise instructions or sink them to colder places. 7415 /// 7416 /// (store (or (zext (bitcast F to i32) to i64), 7417 /// (shl (zext I to i64), 32)), addr) --> 7418 /// (store F, addr) and (store I, addr+4) 7419 /// 7420 /// Similarly, splitting for other merged store can also be beneficial, like: 7421 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7422 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7423 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7424 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7425 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7426 /// 7427 /// We allow each target to determine specifically which kind of splitting is 7428 /// supported. 7429 /// 7430 /// The store patterns are commonly seen from the simple code snippet below 7431 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7432 /// void goo(const std::pair<int, float> &); 7433 /// hoo() { 7434 /// ... 7435 /// goo(std::make_pair(tmp, ftmp)); 7436 /// ... 7437 /// } 7438 /// 7439 /// Although we already have similar splitting in DAG Combine, we duplicate 7440 /// it in CodeGenPrepare to catch the case in which pattern is across 7441 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7442 /// during code expansion. 7443 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7444 const TargetLowering &TLI) { 7445 // Handle simple but common cases only. 7446 Type *StoreType = SI.getValueOperand()->getType(); 7447 7448 // The code below assumes shifting a value by <number of bits>, 7449 // whereas scalable vectors would have to be shifted by 7450 // <2log(vscale) + number of bits> in order to store the 7451 // low/high parts. Bailing out for now. 7452 if (isa<ScalableVectorType>(StoreType)) 7453 return false; 7454 7455 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7456 DL.getTypeSizeInBits(StoreType) == 0) 7457 return false; 7458 7459 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7460 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7461 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7462 return false; 7463 7464 // Don't split the store if it is volatile. 7465 if (SI.isVolatile()) 7466 return false; 7467 7468 // Match the following patterns: 7469 // (store (or (zext LValue to i64), 7470 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7471 // or 7472 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7473 // (zext LValue to i64), 7474 // Expect both operands of OR and the first operand of SHL have only 7475 // one use. 7476 Value *LValue, *HValue; 7477 if (!match(SI.getValueOperand(), 7478 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7479 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7480 m_SpecificInt(HalfValBitSize)))))) 7481 return false; 7482 7483 // Check LValue and HValue are int with size less or equal than 32. 7484 if (!LValue->getType()->isIntegerTy() || 7485 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7486 !HValue->getType()->isIntegerTy() || 7487 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7488 return false; 7489 7490 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7491 // as the input of target query. 7492 auto *LBC = dyn_cast<BitCastInst>(LValue); 7493 auto *HBC = dyn_cast<BitCastInst>(HValue); 7494 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7495 : EVT::getEVT(LValue->getType()); 7496 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7497 : EVT::getEVT(HValue->getType()); 7498 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7499 return false; 7500 7501 // Start to split store. 7502 IRBuilder<> Builder(SI.getContext()); 7503 Builder.SetInsertPoint(&SI); 7504 7505 // If LValue/HValue is a bitcast in another BB, create a new one in current 7506 // BB so it may be merged with the splitted stores by dag combiner. 7507 if (LBC && LBC->getParent() != SI.getParent()) 7508 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7509 if (HBC && HBC->getParent() != SI.getParent()) 7510 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7511 7512 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7513 auto CreateSplitStore = [&](Value *V, bool Upper) { 7514 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7515 Value *Addr = Builder.CreateBitCast( 7516 SI.getOperand(1), 7517 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7518 Align Alignment = SI.getAlign(); 7519 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7520 if (IsOffsetStore) { 7521 Addr = Builder.CreateGEP( 7522 SplitStoreType, Addr, 7523 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7524 7525 // When splitting the store in half, naturally one half will retain the 7526 // alignment of the original wider store, regardless of whether it was 7527 // over-aligned or not, while the other will require adjustment. 7528 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7529 } 7530 Builder.CreateAlignedStore(V, Addr, Alignment); 7531 }; 7532 7533 CreateSplitStore(LValue, false); 7534 CreateSplitStore(HValue, true); 7535 7536 // Delete the old store. 7537 SI.eraseFromParent(); 7538 return true; 7539 } 7540 7541 // Return true if the GEP has two operands, the first operand is of a sequential 7542 // type, and the second operand is a constant. 7543 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7544 gep_type_iterator I = gep_type_begin(*GEP); 7545 return GEP->getNumOperands() == 2 && 7546 I.isSequential() && 7547 isa<ConstantInt>(GEP->getOperand(1)); 7548 } 7549 7550 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7551 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7552 // reducing liveness interference across those edges benefits global register 7553 // allocation. Currently handles only certain cases. 7554 // 7555 // For example, unmerge %GEPI and %UGEPI as below. 7556 // 7557 // ---------- BEFORE ---------- 7558 // SrcBlock: 7559 // ... 7560 // %GEPIOp = ... 7561 // ... 7562 // %GEPI = gep %GEPIOp, Idx 7563 // ... 7564 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7565 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7566 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7567 // %UGEPI) 7568 // 7569 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7570 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7571 // ... 7572 // 7573 // DstBi: 7574 // ... 7575 // %UGEPI = gep %GEPIOp, UIdx 7576 // ... 7577 // --------------------------- 7578 // 7579 // ---------- AFTER ---------- 7580 // SrcBlock: 7581 // ... (same as above) 7582 // (* %GEPI is still alive on the indirectbr edges) 7583 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7584 // unmerging) 7585 // ... 7586 // 7587 // DstBi: 7588 // ... 7589 // %UGEPI = gep %GEPI, (UIdx-Idx) 7590 // ... 7591 // --------------------------- 7592 // 7593 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7594 // no longer alive on them. 7595 // 7596 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7597 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7598 // not to disable further simplications and optimizations as a result of GEP 7599 // merging. 7600 // 7601 // Note this unmerging may increase the length of the data flow critical path 7602 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7603 // between the register pressure and the length of data-flow critical 7604 // path. Restricting this to the uncommon IndirectBr case would minimize the 7605 // impact of potentially longer critical path, if any, and the impact on compile 7606 // time. 7607 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7608 const TargetTransformInfo *TTI) { 7609 BasicBlock *SrcBlock = GEPI->getParent(); 7610 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7611 // (non-IndirectBr) cases exit early here. 7612 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7613 return false; 7614 // Check that GEPI is a simple gep with a single constant index. 7615 if (!GEPSequentialConstIndexed(GEPI)) 7616 return false; 7617 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7618 // Check that GEPI is a cheap one. 7619 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7620 TargetTransformInfo::TCK_SizeAndLatency) 7621 > TargetTransformInfo::TCC_Basic) 7622 return false; 7623 Value *GEPIOp = GEPI->getOperand(0); 7624 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7625 if (!isa<Instruction>(GEPIOp)) 7626 return false; 7627 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7628 if (GEPIOpI->getParent() != SrcBlock) 7629 return false; 7630 // Check that GEP is used outside the block, meaning it's alive on the 7631 // IndirectBr edge(s). 7632 if (find_if(GEPI->users(), [&](User *Usr) { 7633 if (auto *I = dyn_cast<Instruction>(Usr)) { 7634 if (I->getParent() != SrcBlock) { 7635 return true; 7636 } 7637 } 7638 return false; 7639 }) == GEPI->users().end()) 7640 return false; 7641 // The second elements of the GEP chains to be unmerged. 7642 std::vector<GetElementPtrInst *> UGEPIs; 7643 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7644 // on IndirectBr edges. 7645 for (User *Usr : GEPIOp->users()) { 7646 if (Usr == GEPI) continue; 7647 // Check if Usr is an Instruction. If not, give up. 7648 if (!isa<Instruction>(Usr)) 7649 return false; 7650 auto *UI = cast<Instruction>(Usr); 7651 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7652 if (UI->getParent() == SrcBlock) 7653 continue; 7654 // Check if Usr is a GEP. If not, give up. 7655 if (!isa<GetElementPtrInst>(Usr)) 7656 return false; 7657 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7658 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7659 // the pointer operand to it. If so, record it in the vector. If not, give 7660 // up. 7661 if (!GEPSequentialConstIndexed(UGEPI)) 7662 return false; 7663 if (UGEPI->getOperand(0) != GEPIOp) 7664 return false; 7665 if (GEPIIdx->getType() != 7666 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7667 return false; 7668 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7669 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7670 TargetTransformInfo::TCK_SizeAndLatency) 7671 > TargetTransformInfo::TCC_Basic) 7672 return false; 7673 UGEPIs.push_back(UGEPI); 7674 } 7675 if (UGEPIs.size() == 0) 7676 return false; 7677 // Check the materializing cost of (Uidx-Idx). 7678 for (GetElementPtrInst *UGEPI : UGEPIs) { 7679 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7680 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7681 InstructionCost ImmCost = TTI->getIntImmCost( 7682 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 7683 if (ImmCost > TargetTransformInfo::TCC_Basic) 7684 return false; 7685 } 7686 // Now unmerge between GEPI and UGEPIs. 7687 for (GetElementPtrInst *UGEPI : UGEPIs) { 7688 UGEPI->setOperand(0, GEPI); 7689 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7690 Constant *NewUGEPIIdx = 7691 ConstantInt::get(GEPIIdx->getType(), 7692 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7693 UGEPI->setOperand(1, NewUGEPIIdx); 7694 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7695 // inbounds to avoid UB. 7696 if (!GEPI->isInBounds()) { 7697 UGEPI->setIsInBounds(false); 7698 } 7699 } 7700 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7701 // alive on IndirectBr edges). 7702 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7703 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7704 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7705 return true; 7706 } 7707 7708 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) { 7709 // Try and convert 7710 // %c = icmp ult %x, 8 7711 // br %c, bla, blb 7712 // %tc = lshr %x, 3 7713 // to 7714 // %tc = lshr %x, 3 7715 // %c = icmp eq %tc, 0 7716 // br %c, bla, blb 7717 // Creating the cmp to zero can be better for the backend, especially if the 7718 // lshr produces flags that can be used automatically. 7719 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 7720 return false; 7721 7722 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 7723 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 7724 return false; 7725 7726 Value *X = Cmp->getOperand(0); 7727 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 7728 7729 for (auto *U : X->users()) { 7730 Instruction *UI = dyn_cast<Instruction>(U); 7731 // A quick dominance check 7732 if (!UI || 7733 (UI->getParent() != Branch->getParent() && 7734 UI->getParent() != Branch->getSuccessor(0) && 7735 UI->getParent() != Branch->getSuccessor(1)) || 7736 (UI->getParent() != Branch->getParent() && 7737 !UI->getParent()->getSinglePredecessor())) 7738 continue; 7739 7740 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 7741 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 7742 IRBuilder<> Builder(Branch); 7743 if (UI->getParent() != Branch->getParent()) 7744 UI->moveBefore(Branch); 7745 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 7746 ConstantInt::get(UI->getType(), 0)); 7747 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7748 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7749 Cmp->replaceAllUsesWith(NewCmp); 7750 return true; 7751 } 7752 if (Cmp->isEquality() && 7753 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 7754 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 7755 IRBuilder<> Builder(Branch); 7756 if (UI->getParent() != Branch->getParent()) 7757 UI->moveBefore(Branch); 7758 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 7759 ConstantInt::get(UI->getType(), 0)); 7760 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 7761 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 7762 Cmp->replaceAllUsesWith(NewCmp); 7763 return true; 7764 } 7765 } 7766 return false; 7767 } 7768 7769 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7770 // Bail out if we inserted the instruction to prevent optimizations from 7771 // stepping on each other's toes. 7772 if (InsertedInsts.count(I)) 7773 return false; 7774 7775 // TODO: Move into the switch on opcode below here. 7776 if (PHINode *P = dyn_cast<PHINode>(I)) { 7777 // It is possible for very late stage optimizations (such as SimplifyCFG) 7778 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7779 // trivial PHI, go ahead and zap it here. 7780 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7781 LargeOffsetGEPMap.erase(P); 7782 P->replaceAllUsesWith(V); 7783 P->eraseFromParent(); 7784 ++NumPHIsElim; 7785 return true; 7786 } 7787 return false; 7788 } 7789 7790 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7791 // If the source of the cast is a constant, then this should have 7792 // already been constant folded. The only reason NOT to constant fold 7793 // it is if something (e.g. LSR) was careful to place the constant 7794 // evaluation in a block other than then one that uses it (e.g. to hoist 7795 // the address of globals out of a loop). If this is the case, we don't 7796 // want to forward-subst the cast. 7797 if (isa<Constant>(CI->getOperand(0))) 7798 return false; 7799 7800 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7801 return true; 7802 7803 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7804 /// Sink a zext or sext into its user blocks if the target type doesn't 7805 /// fit in one register 7806 if (TLI->getTypeAction(CI->getContext(), 7807 TLI->getValueType(*DL, CI->getType())) == 7808 TargetLowering::TypeExpandInteger) { 7809 return SinkCast(CI); 7810 } else { 7811 bool MadeChange = optimizeExt(I); 7812 return MadeChange | optimizeExtUses(I); 7813 } 7814 } 7815 return false; 7816 } 7817 7818 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7819 if (optimizeCmp(Cmp, ModifiedDT)) 7820 return true; 7821 7822 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7823 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7824 bool Modified = optimizeLoadExt(LI); 7825 unsigned AS = LI->getPointerAddressSpace(); 7826 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7827 return Modified; 7828 } 7829 7830 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7831 if (splitMergedValStore(*SI, *DL, *TLI)) 7832 return true; 7833 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7834 unsigned AS = SI->getPointerAddressSpace(); 7835 return optimizeMemoryInst(I, SI->getOperand(1), 7836 SI->getOperand(0)->getType(), AS); 7837 } 7838 7839 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7840 unsigned AS = RMW->getPointerAddressSpace(); 7841 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7842 RMW->getType(), AS); 7843 } 7844 7845 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7846 unsigned AS = CmpX->getPointerAddressSpace(); 7847 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7848 CmpX->getCompareOperand()->getType(), AS); 7849 } 7850 7851 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7852 7853 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 7854 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 7855 return true; 7856 7857 // TODO: Move this into the switch on opcode - it handles shifts already. 7858 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7859 BinOp->getOpcode() == Instruction::LShr)) { 7860 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7861 if (CI && TLI->hasExtractBitsInsn()) 7862 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7863 return true; 7864 } 7865 7866 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7867 if (GEPI->hasAllZeroIndices()) { 7868 /// The GEP operand must be a pointer, so must its result -> BitCast 7869 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7870 GEPI->getName(), GEPI); 7871 NC->setDebugLoc(GEPI->getDebugLoc()); 7872 GEPI->replaceAllUsesWith(NC); 7873 GEPI->eraseFromParent(); 7874 ++NumGEPsElim; 7875 optimizeInst(NC, ModifiedDT); 7876 return true; 7877 } 7878 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7879 return true; 7880 } 7881 return false; 7882 } 7883 7884 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7885 // freeze(icmp a, const)) -> icmp (freeze a), const 7886 // This helps generate efficient conditional jumps. 7887 Instruction *CmpI = nullptr; 7888 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7889 CmpI = II; 7890 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7891 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7892 7893 if (CmpI && CmpI->hasOneUse()) { 7894 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7895 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7896 isa<ConstantPointerNull>(Op0); 7897 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7898 isa<ConstantPointerNull>(Op1); 7899 if (Const0 || Const1) { 7900 if (!Const0 || !Const1) { 7901 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7902 F->takeName(FI); 7903 CmpI->setOperand(Const0 ? 1 : 0, F); 7904 } 7905 FI->replaceAllUsesWith(CmpI); 7906 FI->eraseFromParent(); 7907 return true; 7908 } 7909 } 7910 return false; 7911 } 7912 7913 if (tryToSinkFreeOperands(I)) 7914 return true; 7915 7916 switch (I->getOpcode()) { 7917 case Instruction::Shl: 7918 case Instruction::LShr: 7919 case Instruction::AShr: 7920 return optimizeShiftInst(cast<BinaryOperator>(I)); 7921 case Instruction::Call: 7922 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7923 case Instruction::Select: 7924 return optimizeSelectInst(cast<SelectInst>(I)); 7925 case Instruction::ShuffleVector: 7926 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7927 case Instruction::Switch: 7928 return optimizeSwitchInst(cast<SwitchInst>(I)); 7929 case Instruction::ExtractElement: 7930 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7931 case Instruction::Br: 7932 return optimizeBranch(cast<BranchInst>(I), *TLI); 7933 } 7934 7935 return false; 7936 } 7937 7938 /// Given an OR instruction, check to see if this is a bitreverse 7939 /// idiom. If so, insert the new intrinsic and return true. 7940 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7941 if (!I.getType()->isIntegerTy() || 7942 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7943 TLI->getValueType(*DL, I.getType(), true))) 7944 return false; 7945 7946 SmallVector<Instruction*, 4> Insts; 7947 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7948 return false; 7949 Instruction *LastInst = Insts.back(); 7950 I.replaceAllUsesWith(LastInst); 7951 RecursivelyDeleteTriviallyDeadInstructions( 7952 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7953 return true; 7954 } 7955 7956 // In this pass we look for GEP and cast instructions that are used 7957 // across basic blocks and rewrite them to improve basic-block-at-a-time 7958 // selection. 7959 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7960 SunkAddrs.clear(); 7961 bool MadeChange = false; 7962 7963 CurInstIterator = BB.begin(); 7964 while (CurInstIterator != BB.end()) { 7965 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7966 if (ModifiedDT) 7967 return true; 7968 } 7969 7970 bool MadeBitReverse = true; 7971 while (MadeBitReverse) { 7972 MadeBitReverse = false; 7973 for (auto &I : reverse(BB)) { 7974 if (makeBitReverse(I)) { 7975 MadeBitReverse = MadeChange = true; 7976 break; 7977 } 7978 } 7979 } 7980 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7981 7982 return MadeChange; 7983 } 7984 7985 // Some CGP optimizations may move or alter what's computed in a block. Check 7986 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7987 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7988 assert(isa<DbgValueInst>(I)); 7989 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7990 7991 // Does this dbg.value refer to a sunk address calculation? 7992 bool AnyChange = false; 7993 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 7994 DVI.location_ops().end()); 7995 for (Value *Location : LocationOps) { 7996 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7997 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7998 if (SunkAddr) { 7999 // Point dbg.value at locally computed address, which should give the best 8000 // opportunity to be accurately lowered. This update may change the type 8001 // of pointer being referred to; however this makes no difference to 8002 // debugging information, and we can't generate bitcasts that may affect 8003 // codegen. 8004 DVI.replaceVariableLocationOp(Location, SunkAddr); 8005 AnyChange = true; 8006 } 8007 } 8008 return AnyChange; 8009 } 8010 8011 // A llvm.dbg.value may be using a value before its definition, due to 8012 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8013 // them by moving the dbg.value to immediately after the value definition. 8014 // FIXME: Ideally this should never be necessary, and this has the potential 8015 // to re-order dbg.value intrinsics. 8016 bool CodeGenPrepare::placeDbgValues(Function &F) { 8017 bool MadeChange = false; 8018 DominatorTree DT(F); 8019 8020 for (BasicBlock &BB : F) { 8021 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8022 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8023 if (!DVI) 8024 continue; 8025 8026 SmallVector<Instruction *, 4> VIs; 8027 for (Value *V : DVI->getValues()) 8028 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8029 VIs.push_back(VI); 8030 8031 // This DVI may depend on multiple instructions, complicating any 8032 // potential sink. This block takes the defensive approach, opting to 8033 // "undef" the DVI if it has more than one instruction and any of them do 8034 // not dominate DVI. 8035 for (Instruction *VI : VIs) { 8036 if (VI->isTerminator()) 8037 continue; 8038 8039 // If VI is a phi in a block with an EHPad terminator, we can't insert 8040 // after it. 8041 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8042 continue; 8043 8044 // If the defining instruction dominates the dbg.value, we do not need 8045 // to move the dbg.value. 8046 if (DT.dominates(VI, DVI)) 8047 continue; 8048 8049 // If we depend on multiple instructions and any of them doesn't 8050 // dominate this DVI, we probably can't salvage it: moving it to 8051 // after any of the instructions could cause us to lose the others. 8052 if (VIs.size() > 1) { 8053 LLVM_DEBUG( 8054 dbgs() 8055 << "Unable to find valid location for Debug Value, undefing:\n" 8056 << *DVI); 8057 DVI->setUndef(); 8058 break; 8059 } 8060 8061 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8062 << *DVI << ' ' << *VI); 8063 DVI->removeFromParent(); 8064 if (isa<PHINode>(VI)) 8065 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8066 else 8067 DVI->insertAfter(VI); 8068 MadeChange = true; 8069 ++NumDbgValueMoved; 8070 } 8071 } 8072 } 8073 return MadeChange; 8074 } 8075 8076 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8077 // probes can be chained dependencies of other regular DAG nodes and block DAG 8078 // combine optimizations. 8079 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8080 bool MadeChange = false; 8081 for (auto &Block : F) { 8082 // Move the rest probes to the beginning of the block. 8083 auto FirstInst = Block.getFirstInsertionPt(); 8084 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8085 ++FirstInst; 8086 BasicBlock::iterator I(FirstInst); 8087 I++; 8088 while (I != Block.end()) { 8089 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8090 II->moveBefore(&*FirstInst); 8091 MadeChange = true; 8092 } 8093 } 8094 } 8095 return MadeChange; 8096 } 8097 8098 /// Scale down both weights to fit into uint32_t. 8099 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8100 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8101 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8102 NewTrue = NewTrue / Scale; 8103 NewFalse = NewFalse / Scale; 8104 } 8105 8106 /// Some targets prefer to split a conditional branch like: 8107 /// \code 8108 /// %0 = icmp ne i32 %a, 0 8109 /// %1 = icmp ne i32 %b, 0 8110 /// %or.cond = or i1 %0, %1 8111 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8112 /// \endcode 8113 /// into multiple branch instructions like: 8114 /// \code 8115 /// bb1: 8116 /// %0 = icmp ne i32 %a, 0 8117 /// br i1 %0, label %TrueBB, label %bb2 8118 /// bb2: 8119 /// %1 = icmp ne i32 %b, 0 8120 /// br i1 %1, label %TrueBB, label %FalseBB 8121 /// \endcode 8122 /// This usually allows instruction selection to do even further optimizations 8123 /// and combine the compare with the branch instruction. Currently this is 8124 /// applied for targets which have "cheap" jump instructions. 8125 /// 8126 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8127 /// 8128 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8129 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8130 return false; 8131 8132 bool MadeChange = false; 8133 for (auto &BB : F) { 8134 // Does this BB end with the following? 8135 // %cond1 = icmp|fcmp|binary instruction ... 8136 // %cond2 = icmp|fcmp|binary instruction ... 8137 // %cond.or = or|and i1 %cond1, cond2 8138 // br i1 %cond.or label %dest1, label %dest2" 8139 Instruction *LogicOp; 8140 BasicBlock *TBB, *FBB; 8141 if (!match(BB.getTerminator(), 8142 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8143 continue; 8144 8145 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8146 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8147 continue; 8148 8149 // The merging of mostly empty BB can cause a degenerate branch. 8150 if (TBB == FBB) 8151 continue; 8152 8153 unsigned Opc; 8154 Value *Cond1, *Cond2; 8155 if (match(LogicOp, 8156 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8157 Opc = Instruction::And; 8158 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8159 m_OneUse(m_Value(Cond2))))) 8160 Opc = Instruction::Or; 8161 else 8162 continue; 8163 8164 auto IsGoodCond = [](Value *Cond) { 8165 return match( 8166 Cond, 8167 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8168 m_LogicalOr(m_Value(), m_Value())))); 8169 }; 8170 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8171 continue; 8172 8173 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8174 8175 // Create a new BB. 8176 auto *TmpBB = 8177 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8178 BB.getParent(), BB.getNextNode()); 8179 8180 // Update original basic block by using the first condition directly by the 8181 // branch instruction and removing the no longer needed and/or instruction. 8182 Br1->setCondition(Cond1); 8183 LogicOp->eraseFromParent(); 8184 8185 // Depending on the condition we have to either replace the true or the 8186 // false successor of the original branch instruction. 8187 if (Opc == Instruction::And) 8188 Br1->setSuccessor(0, TmpBB); 8189 else 8190 Br1->setSuccessor(1, TmpBB); 8191 8192 // Fill in the new basic block. 8193 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8194 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8195 I->removeFromParent(); 8196 I->insertBefore(Br2); 8197 } 8198 8199 // Update PHI nodes in both successors. The original BB needs to be 8200 // replaced in one successor's PHI nodes, because the branch comes now from 8201 // the newly generated BB (NewBB). In the other successor we need to add one 8202 // incoming edge to the PHI nodes, because both branch instructions target 8203 // now the same successor. Depending on the original branch condition 8204 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8205 // we perform the correct update for the PHI nodes. 8206 // This doesn't change the successor order of the just created branch 8207 // instruction (or any other instruction). 8208 if (Opc == Instruction::Or) 8209 std::swap(TBB, FBB); 8210 8211 // Replace the old BB with the new BB. 8212 TBB->replacePhiUsesWith(&BB, TmpBB); 8213 8214 // Add another incoming edge form the new BB. 8215 for (PHINode &PN : FBB->phis()) { 8216 auto *Val = PN.getIncomingValueForBlock(&BB); 8217 PN.addIncoming(Val, TmpBB); 8218 } 8219 8220 // Update the branch weights (from SelectionDAGBuilder:: 8221 // FindMergedConditions). 8222 if (Opc == Instruction::Or) { 8223 // Codegen X | Y as: 8224 // BB1: 8225 // jmp_if_X TBB 8226 // jmp TmpBB 8227 // TmpBB: 8228 // jmp_if_Y TBB 8229 // jmp FBB 8230 // 8231 8232 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8233 // The requirement is that 8234 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8235 // = TrueProb for original BB. 8236 // Assuming the original weights are A and B, one choice is to set BB1's 8237 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8238 // assumes that 8239 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8240 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8241 // TmpBB, but the math is more complicated. 8242 uint64_t TrueWeight, FalseWeight; 8243 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8244 uint64_t NewTrueWeight = TrueWeight; 8245 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8246 scaleWeights(NewTrueWeight, NewFalseWeight); 8247 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8248 .createBranchWeights(TrueWeight, FalseWeight)); 8249 8250 NewTrueWeight = TrueWeight; 8251 NewFalseWeight = 2 * FalseWeight; 8252 scaleWeights(NewTrueWeight, NewFalseWeight); 8253 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8254 .createBranchWeights(TrueWeight, FalseWeight)); 8255 } 8256 } else { 8257 // Codegen X & Y as: 8258 // BB1: 8259 // jmp_if_X TmpBB 8260 // jmp FBB 8261 // TmpBB: 8262 // jmp_if_Y TBB 8263 // jmp FBB 8264 // 8265 // This requires creation of TmpBB after CurBB. 8266 8267 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8268 // The requirement is that 8269 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8270 // = FalseProb for original BB. 8271 // Assuming the original weights are A and B, one choice is to set BB1's 8272 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8273 // assumes that 8274 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8275 uint64_t TrueWeight, FalseWeight; 8276 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8277 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8278 uint64_t NewFalseWeight = FalseWeight; 8279 scaleWeights(NewTrueWeight, NewFalseWeight); 8280 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8281 .createBranchWeights(TrueWeight, FalseWeight)); 8282 8283 NewTrueWeight = 2 * TrueWeight; 8284 NewFalseWeight = FalseWeight; 8285 scaleWeights(NewTrueWeight, NewFalseWeight); 8286 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8287 .createBranchWeights(TrueWeight, FalseWeight)); 8288 } 8289 } 8290 8291 ModifiedDT = true; 8292 MadeChange = true; 8293 8294 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8295 TmpBB->dump()); 8296 } 8297 return MadeChange; 8298 } 8299