xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/IntrinsicsAArch64.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/Local.h"
92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
93 #include "llvm/Transforms/Utils/SizeOpts.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <limits>
99 #include <memory>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 
106 #define DEBUG_TYPE "codegenprepare"
107 
108 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
109 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
110 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
112                       "sunken Cmps");
113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
114                        "of sunken Casts");
115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
116                           "computations were sunk");
117 STATISTIC(NumMemoryInstsPhiCreated,
118           "Number of phis created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumMemoryInstsSelectCreated,
121           "Number of select created when address "
122           "computations were sunk to memory instructions");
123 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
124 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
125 STATISTIC(NumAndsAdded,
126           "Number of and mask instructions added to form ext loads");
127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
128 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
132 
133 static cl::opt<bool> DisableBranchOpts(
134   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
135   cl::desc("Disable branch optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool>
138     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
139                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
140 
141 static cl::opt<bool> DisableSelectToBranch(
142   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
143   cl::desc("Disable select to branch conversion."));
144 
145 static cl::opt<bool> AddrSinkUsingGEPs(
146   "addr-sink-using-gep", cl::Hidden, cl::init(true),
147   cl::desc("Address sinking in CGP using GEPs."));
148 
149 static cl::opt<bool> EnableAndCmpSinking(
150    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
151    cl::desc("Enable sinkinig and/cmp into branches."));
152 
153 static cl::opt<bool> DisableStoreExtract(
154     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> StressStoreExtract(
158     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
159     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
160 
161 static cl::opt<bool> DisableExtLdPromotion(
162     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
163     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
164              "CodeGenPrepare"));
165 
166 static cl::opt<bool> StressExtLdPromotion(
167     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
168     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
169              "optimization in CodeGenPrepare"));
170 
171 static cl::opt<bool> DisablePreheaderProtect(
172     "disable-preheader-prot", cl::Hidden, cl::init(false),
173     cl::desc("Disable protection against removing loop preheaders"));
174 
175 static cl::opt<bool> ProfileGuidedSectionPrefix(
176     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
177     cl::desc("Use profile info to add section prefix for hot/cold functions"));
178 
179 static cl::opt<bool> ProfileUnknownInSpecialSection(
180     "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
181     cl::ZeroOrMore,
182     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
183              "profile, we cannot tell the function is cold for sure because "
184              "it may be a function newly added without ever being sampled. "
185              "With the flag enabled, compiler can put such profile unknown "
186              "functions into a special section, so runtime system can choose "
187              "to handle it in a different way than .text section, to save "
188              "RAM for example. "));
189 
190 static cl::opt<unsigned> FreqRatioToSkipMerge(
191     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
192     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
193              "(frequency of destination block) is greater than this ratio"));
194 
195 static cl::opt<bool> ForceSplitStore(
196     "force-split-store", cl::Hidden, cl::init(false),
197     cl::desc("Force store splitting no matter what the target query says."));
198 
199 static cl::opt<bool>
200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
201     cl::desc("Enable merging of redundant sexts when one is dominating"
202     " the other."), cl::init(true));
203 
204 static cl::opt<bool> DisableComplexAddrModes(
205     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
206     cl::desc("Disables combining addressing modes with different parts "
207              "in optimizeMemoryInst."));
208 
209 static cl::opt<bool>
210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
211                 cl::desc("Allow creation of Phis in Address sinking."));
212 
213 static cl::opt<bool>
214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
215                    cl::desc("Allow creation of selects in Address sinking."));
216 
217 static cl::opt<bool> AddrSinkCombineBaseReg(
218     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
219     cl::desc("Allow combining of BaseReg field in Address sinking."));
220 
221 static cl::opt<bool> AddrSinkCombineBaseGV(
222     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
223     cl::desc("Allow combining of BaseGV field in Address sinking."));
224 
225 static cl::opt<bool> AddrSinkCombineBaseOffs(
226     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
227     cl::desc("Allow combining of BaseOffs field in Address sinking."));
228 
229 static cl::opt<bool> AddrSinkCombineScaledReg(
230     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
231     cl::desc("Allow combining of ScaledReg field in Address sinking."));
232 
233 static cl::opt<bool>
234     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
235                          cl::init(true),
236                          cl::desc("Enable splitting large offset of GEP."));
237 
238 static cl::opt<bool> EnableICMP_EQToICMP_ST(
239     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
240     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
241 
242 static cl::opt<bool>
243     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
244                      cl::desc("Enable BFI update verification for "
245                               "CodeGenPrepare."));
246 
247 static cl::opt<bool> OptimizePhiTypes(
248     "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
249     cl::desc("Enable converting phi types in CodeGenPrepare"));
250 
251 namespace {
252 
253 enum ExtType {
254   ZeroExtension,   // Zero extension has been seen.
255   SignExtension,   // Sign extension has been seen.
256   BothExtension    // This extension type is used if we saw sext after
257                    // ZeroExtension had been set, or if we saw zext after
258                    // SignExtension had been set. It makes the type
259                    // information of a promoted instruction invalid.
260 };
261 
262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
265 using SExts = SmallVector<Instruction *, 16>;
266 using ValueToSExts = DenseMap<Value *, SExts>;
267 
268 class TypePromotionTransaction;
269 
270   class CodeGenPrepare : public FunctionPass {
271     const TargetMachine *TM = nullptr;
272     const TargetSubtargetInfo *SubtargetInfo;
273     const TargetLowering *TLI = nullptr;
274     const TargetRegisterInfo *TRI;
275     const TargetTransformInfo *TTI = nullptr;
276     const TargetLibraryInfo *TLInfo;
277     const LoopInfo *LI;
278     std::unique_ptr<BlockFrequencyInfo> BFI;
279     std::unique_ptr<BranchProbabilityInfo> BPI;
280     ProfileSummaryInfo *PSI;
281 
282     /// As we scan instructions optimizing them, this is the next instruction
283     /// to optimize. Transforms that can invalidate this should update it.
284     BasicBlock::iterator CurInstIterator;
285 
286     /// Keeps track of non-local addresses that have been sunk into a block.
287     /// This allows us to avoid inserting duplicate code for blocks with
288     /// multiple load/stores of the same address. The usage of WeakTrackingVH
289     /// enables SunkAddrs to be treated as a cache whose entries can be
290     /// invalidated if a sunken address computation has been erased.
291     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
292 
293     /// Keeps track of all instructions inserted for the current function.
294     SetOfInstrs InsertedInsts;
295 
296     /// Keeps track of the type of the related instruction before their
297     /// promotion for the current function.
298     InstrToOrigTy PromotedInsts;
299 
300     /// Keep track of instructions removed during promotion.
301     SetOfInstrs RemovedInsts;
302 
303     /// Keep track of sext chains based on their initial value.
304     DenseMap<Value *, Instruction *> SeenChainsForSExt;
305 
306     /// Keep track of GEPs accessing the same data structures such as structs or
307     /// arrays that are candidates to be split later because of their large
308     /// size.
309     MapVector<
310         AssertingVH<Value>,
311         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
312         LargeOffsetGEPMap;
313 
314     /// Keep track of new GEP base after splitting the GEPs having large offset.
315     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
316 
317     /// Map serial numbers to Large offset GEPs.
318     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
319 
320     /// Keep track of SExt promoted.
321     ValueToSExts ValToSExtendedUses;
322 
323     /// True if the function has the OptSize attribute.
324     bool OptSize;
325 
326     /// DataLayout for the Function being processed.
327     const DataLayout *DL = nullptr;
328 
329     /// Building the dominator tree can be expensive, so we only build it
330     /// lazily and update it when required.
331     std::unique_ptr<DominatorTree> DT;
332 
333   public:
334     static char ID; // Pass identification, replacement for typeid
335 
336     CodeGenPrepare() : FunctionPass(ID) {
337       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
338     }
339 
340     bool runOnFunction(Function &F) override;
341 
342     StringRef getPassName() const override { return "CodeGen Prepare"; }
343 
344     void getAnalysisUsage(AnalysisUsage &AU) const override {
345       // FIXME: When we can selectively preserve passes, preserve the domtree.
346       AU.addRequired<ProfileSummaryInfoWrapperPass>();
347       AU.addRequired<TargetLibraryInfoWrapperPass>();
348       AU.addRequired<TargetPassConfig>();
349       AU.addRequired<TargetTransformInfoWrapperPass>();
350       AU.addRequired<LoopInfoWrapperPass>();
351     }
352 
353   private:
354     template <typename F>
355     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
356       // Substituting can cause recursive simplifications, which can invalidate
357       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
358       // happens.
359       Value *CurValue = &*CurInstIterator;
360       WeakTrackingVH IterHandle(CurValue);
361 
362       f();
363 
364       // If the iterator instruction was recursively deleted, start over at the
365       // start of the block.
366       if (IterHandle != CurValue) {
367         CurInstIterator = BB->begin();
368         SunkAddrs.clear();
369       }
370     }
371 
372     // Get the DominatorTree, building if necessary.
373     DominatorTree &getDT(Function &F) {
374       if (!DT)
375         DT = std::make_unique<DominatorTree>(F);
376       return *DT;
377     }
378 
379     void removeAllAssertingVHReferences(Value *V);
380     bool eliminateFallThrough(Function &F);
381     bool eliminateMostlyEmptyBlocks(Function &F);
382     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
383     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
384     void eliminateMostlyEmptyBlock(BasicBlock *BB);
385     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
386                                        bool isPreheader);
387     bool makeBitReverse(Instruction &I);
388     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
389     bool optimizeInst(Instruction *I, bool &ModifiedDT);
390     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
391                             Type *AccessTy, unsigned AddrSpace);
392     bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
393     bool optimizeInlineAsmInst(CallInst *CS);
394     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
395     bool optimizeExt(Instruction *&I);
396     bool optimizeExtUses(Instruction *I);
397     bool optimizeLoadExt(LoadInst *Load);
398     bool optimizeShiftInst(BinaryOperator *BO);
399     bool optimizeFunnelShift(IntrinsicInst *Fsh);
400     bool optimizeSelectInst(SelectInst *SI);
401     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
402     bool optimizeSwitchInst(SwitchInst *SI);
403     bool optimizeExtractElementInst(Instruction *Inst);
404     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
405     bool fixupDbgValue(Instruction *I);
406     bool placeDbgValues(Function &F);
407     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
408                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
409     bool tryToPromoteExts(TypePromotionTransaction &TPT,
410                           const SmallVectorImpl<Instruction *> &Exts,
411                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
412                           unsigned CreatedInstsCost = 0);
413     bool mergeSExts(Function &F);
414     bool splitLargeGEPOffsets();
415     bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
416                          SmallPtrSetImpl<Instruction *> &DeletedInstrs);
417     bool optimizePhiTypes(Function &F);
418     bool performAddressTypePromotion(
419         Instruction *&Inst,
420         bool AllowPromotionWithoutCommonHeader,
421         bool HasPromoted, TypePromotionTransaction &TPT,
422         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
423     bool splitBranchCondition(Function &F, bool &ModifiedDT);
424     bool simplifyOffsetableRelocate(GCStatepointInst &I);
425 
426     bool tryToSinkFreeOperands(Instruction *I);
427     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
428                                      Value *Arg1, CmpInst *Cmp,
429                                      Intrinsic::ID IID);
430     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
431     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
432     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
433     void verifyBFIUpdates(Function &F);
434   };
435 
436 } // end anonymous namespace
437 
438 char CodeGenPrepare::ID = 0;
439 
440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
441                       "Optimize for code generation", false, false)
442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
448                     "Optimize for code generation", false, false)
449 
450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
451 
452 bool CodeGenPrepare::runOnFunction(Function &F) {
453   if (skipFunction(F))
454     return false;
455 
456   DL = &F.getParent()->getDataLayout();
457 
458   bool EverMadeChange = false;
459   // Clear per function information.
460   InsertedInsts.clear();
461   PromotedInsts.clear();
462 
463   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
464   SubtargetInfo = TM->getSubtargetImpl(F);
465   TLI = SubtargetInfo->getTargetLowering();
466   TRI = SubtargetInfo->getRegisterInfo();
467   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
468   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
469   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
470   BPI.reset(new BranchProbabilityInfo(F, *LI));
471   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
472   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
473   OptSize = F.hasOptSize();
474   if (ProfileGuidedSectionPrefix) {
475     // The hot attribute overwrites profile count based hotness while profile
476     // counts based hotness overwrite the cold attribute.
477     // This is a conservative behabvior.
478     if (F.hasFnAttribute(Attribute::Hot) ||
479         PSI->isFunctionHotInCallGraph(&F, *BFI))
480       F.setSectionPrefix("hot");
481     // If PSI shows this function is not hot, we will placed the function
482     // into unlikely section if (1) PSI shows this is a cold function, or
483     // (2) the function has a attribute of cold.
484     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
485              F.hasFnAttribute(Attribute::Cold))
486       F.setSectionPrefix("unlikely");
487     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
488              PSI->isFunctionHotnessUnknown(F))
489       F.setSectionPrefix("unknown");
490   }
491 
492   /// This optimization identifies DIV instructions that can be
493   /// profitably bypassed and carried out with a shorter, faster divide.
494   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
495     const DenseMap<unsigned int, unsigned int> &BypassWidths =
496         TLI->getBypassSlowDivWidths();
497     BasicBlock* BB = &*F.begin();
498     while (BB != nullptr) {
499       // bypassSlowDivision may create new BBs, but we don't want to reapply the
500       // optimization to those blocks.
501       BasicBlock* Next = BB->getNextNode();
502       // F.hasOptSize is already checked in the outer if statement.
503       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
504         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
505       BB = Next;
506     }
507   }
508 
509   // Eliminate blocks that contain only PHI nodes and an
510   // unconditional branch.
511   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
512 
513   bool ModifiedDT = false;
514   if (!DisableBranchOpts)
515     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
516 
517   // Split some critical edges where one of the sources is an indirect branch,
518   // to help generate sane code for PHIs involving such edges.
519   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
520 
521   bool MadeChange = true;
522   while (MadeChange) {
523     MadeChange = false;
524     DT.reset();
525     for (Function::iterator I = F.begin(); I != F.end(); ) {
526       BasicBlock *BB = &*I++;
527       bool ModifiedDTOnIteration = false;
528       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
529 
530       // Restart BB iteration if the dominator tree of the Function was changed
531       if (ModifiedDTOnIteration)
532         break;
533     }
534     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
535       MadeChange |= mergeSExts(F);
536     if (!LargeOffsetGEPMap.empty())
537       MadeChange |= splitLargeGEPOffsets();
538     MadeChange |= optimizePhiTypes(F);
539 
540     if (MadeChange)
541       eliminateFallThrough(F);
542 
543     // Really free removed instructions during promotion.
544     for (Instruction *I : RemovedInsts)
545       I->deleteValue();
546 
547     EverMadeChange |= MadeChange;
548     SeenChainsForSExt.clear();
549     ValToSExtendedUses.clear();
550     RemovedInsts.clear();
551     LargeOffsetGEPMap.clear();
552     LargeOffsetGEPID.clear();
553   }
554 
555   NewGEPBases.clear();
556   SunkAddrs.clear();
557 
558   if (!DisableBranchOpts) {
559     MadeChange = false;
560     // Use a set vector to get deterministic iteration order. The order the
561     // blocks are removed may affect whether or not PHI nodes in successors
562     // are removed.
563     SmallSetVector<BasicBlock*, 8> WorkList;
564     for (BasicBlock &BB : F) {
565       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
566       MadeChange |= ConstantFoldTerminator(&BB, true);
567       if (!MadeChange) continue;
568 
569       for (SmallVectorImpl<BasicBlock*>::iterator
570              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
571         if (pred_empty(*II))
572           WorkList.insert(*II);
573     }
574 
575     // Delete the dead blocks and any of their dead successors.
576     MadeChange |= !WorkList.empty();
577     while (!WorkList.empty()) {
578       BasicBlock *BB = WorkList.pop_back_val();
579       SmallVector<BasicBlock*, 2> Successors(successors(BB));
580 
581       DeleteDeadBlock(BB);
582 
583       for (SmallVectorImpl<BasicBlock*>::iterator
584              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
585         if (pred_empty(*II))
586           WorkList.insert(*II);
587     }
588 
589     // Merge pairs of basic blocks with unconditional branches, connected by
590     // a single edge.
591     if (EverMadeChange || MadeChange)
592       MadeChange |= eliminateFallThrough(F);
593 
594     EverMadeChange |= MadeChange;
595   }
596 
597   if (!DisableGCOpts) {
598     SmallVector<GCStatepointInst *, 2> Statepoints;
599     for (BasicBlock &BB : F)
600       for (Instruction &I : BB)
601         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
602           Statepoints.push_back(SP);
603     for (auto &I : Statepoints)
604       EverMadeChange |= simplifyOffsetableRelocate(*I);
605   }
606 
607   // Do this last to clean up use-before-def scenarios introduced by other
608   // preparatory transforms.
609   EverMadeChange |= placeDbgValues(F);
610 
611 #ifndef NDEBUG
612   if (VerifyBFIUpdates)
613     verifyBFIUpdates(F);
614 #endif
615 
616   return EverMadeChange;
617 }
618 
619 /// An instruction is about to be deleted, so remove all references to it in our
620 /// GEP-tracking data strcutures.
621 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
622   LargeOffsetGEPMap.erase(V);
623   NewGEPBases.erase(V);
624 
625   auto GEP = dyn_cast<GetElementPtrInst>(V);
626   if (!GEP)
627     return;
628 
629   LargeOffsetGEPID.erase(GEP);
630 
631   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
632   if (VecI == LargeOffsetGEPMap.end())
633     return;
634 
635   auto &GEPVector = VecI->second;
636   const auto &I =
637       llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
638   if (I == GEPVector.end())
639     return;
640 
641   GEPVector.erase(I);
642   if (GEPVector.empty())
643     LargeOffsetGEPMap.erase(VecI);
644 }
645 
646 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
647 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
648   DominatorTree NewDT(F);
649   LoopInfo NewLI(NewDT);
650   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
651   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
652   NewBFI.verifyMatch(*BFI);
653 }
654 
655 /// Merge basic blocks which are connected by a single edge, where one of the
656 /// basic blocks has a single successor pointing to the other basic block,
657 /// which has a single predecessor.
658 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
659   bool Changed = false;
660   // Scan all of the blocks in the function, except for the entry block.
661   // Use a temporary array to avoid iterator being invalidated when
662   // deleting blocks.
663   SmallVector<WeakTrackingVH, 16> Blocks;
664   for (auto &Block : llvm::drop_begin(F))
665     Blocks.push_back(&Block);
666 
667   SmallSet<WeakTrackingVH, 16> Preds;
668   for (auto &Block : Blocks) {
669     auto *BB = cast_or_null<BasicBlock>(Block);
670     if (!BB)
671       continue;
672     // If the destination block has a single pred, then this is a trivial
673     // edge, just collapse it.
674     BasicBlock *SinglePred = BB->getSinglePredecessor();
675 
676     // Don't merge if BB's address is taken.
677     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
678 
679     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
680     if (Term && !Term->isConditional()) {
681       Changed = true;
682       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
683 
684       // Merge BB into SinglePred and delete it.
685       MergeBlockIntoPredecessor(BB);
686       Preds.insert(SinglePred);
687     }
688   }
689 
690   // (Repeatedly) merging blocks into their predecessors can create redundant
691   // debug intrinsics.
692   for (auto &Pred : Preds)
693     if (auto *BB = cast_or_null<BasicBlock>(Pred))
694       RemoveRedundantDbgInstrs(BB);
695 
696   return Changed;
697 }
698 
699 /// Find a destination block from BB if BB is mergeable empty block.
700 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
701   // If this block doesn't end with an uncond branch, ignore it.
702   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
703   if (!BI || !BI->isUnconditional())
704     return nullptr;
705 
706   // If the instruction before the branch (skipping debug info) isn't a phi
707   // node, then other stuff is happening here.
708   BasicBlock::iterator BBI = BI->getIterator();
709   if (BBI != BB->begin()) {
710     --BBI;
711     while (isa<DbgInfoIntrinsic>(BBI)) {
712       if (BBI == BB->begin())
713         break;
714       --BBI;
715     }
716     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
717       return nullptr;
718   }
719 
720   // Do not break infinite loops.
721   BasicBlock *DestBB = BI->getSuccessor(0);
722   if (DestBB == BB)
723     return nullptr;
724 
725   if (!canMergeBlocks(BB, DestBB))
726     DestBB = nullptr;
727 
728   return DestBB;
729 }
730 
731 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
732 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
733 /// edges in ways that are non-optimal for isel. Start by eliminating these
734 /// blocks so we can split them the way we want them.
735 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
736   SmallPtrSet<BasicBlock *, 16> Preheaders;
737   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
738   while (!LoopList.empty()) {
739     Loop *L = LoopList.pop_back_val();
740     llvm::append_range(LoopList, *L);
741     if (BasicBlock *Preheader = L->getLoopPreheader())
742       Preheaders.insert(Preheader);
743   }
744 
745   bool MadeChange = false;
746   // Copy blocks into a temporary array to avoid iterator invalidation issues
747   // as we remove them.
748   // Note that this intentionally skips the entry block.
749   SmallVector<WeakTrackingVH, 16> Blocks;
750   for (auto &Block : llvm::drop_begin(F))
751     Blocks.push_back(&Block);
752 
753   for (auto &Block : Blocks) {
754     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
755     if (!BB)
756       continue;
757     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
758     if (!DestBB ||
759         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
760       continue;
761 
762     eliminateMostlyEmptyBlock(BB);
763     MadeChange = true;
764   }
765   return MadeChange;
766 }
767 
768 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
769                                                    BasicBlock *DestBB,
770                                                    bool isPreheader) {
771   // Do not delete loop preheaders if doing so would create a critical edge.
772   // Loop preheaders can be good locations to spill registers. If the
773   // preheader is deleted and we create a critical edge, registers may be
774   // spilled in the loop body instead.
775   if (!DisablePreheaderProtect && isPreheader &&
776       !(BB->getSinglePredecessor() &&
777         BB->getSinglePredecessor()->getSingleSuccessor()))
778     return false;
779 
780   // Skip merging if the block's successor is also a successor to any callbr
781   // that leads to this block.
782   // FIXME: Is this really needed? Is this a correctness issue?
783   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
784     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
785       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
786         if (DestBB == CBI->getSuccessor(i))
787           return false;
788   }
789 
790   // Try to skip merging if the unique predecessor of BB is terminated by a
791   // switch or indirect branch instruction, and BB is used as an incoming block
792   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
793   // add COPY instructions in the predecessor of BB instead of BB (if it is not
794   // merged). Note that the critical edge created by merging such blocks wont be
795   // split in MachineSink because the jump table is not analyzable. By keeping
796   // such empty block (BB), ISel will place COPY instructions in BB, not in the
797   // predecessor of BB.
798   BasicBlock *Pred = BB->getUniquePredecessor();
799   if (!Pred ||
800       !(isa<SwitchInst>(Pred->getTerminator()) ||
801         isa<IndirectBrInst>(Pred->getTerminator())))
802     return true;
803 
804   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
805     return true;
806 
807   // We use a simple cost heuristic which determine skipping merging is
808   // profitable if the cost of skipping merging is less than the cost of
809   // merging : Cost(skipping merging) < Cost(merging BB), where the
810   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
811   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
812   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
813   //   Freq(Pred) / Freq(BB) > 2.
814   // Note that if there are multiple empty blocks sharing the same incoming
815   // value for the PHIs in the DestBB, we consider them together. In such
816   // case, Cost(merging BB) will be the sum of their frequencies.
817 
818   if (!isa<PHINode>(DestBB->begin()))
819     return true;
820 
821   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
822 
823   // Find all other incoming blocks from which incoming values of all PHIs in
824   // DestBB are the same as the ones from BB.
825   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
826        ++PI) {
827     BasicBlock *DestBBPred = *PI;
828     if (DestBBPred == BB)
829       continue;
830 
831     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
832           return DestPN.getIncomingValueForBlock(BB) ==
833                  DestPN.getIncomingValueForBlock(DestBBPred);
834         }))
835       SameIncomingValueBBs.insert(DestBBPred);
836   }
837 
838   // See if all BB's incoming values are same as the value from Pred. In this
839   // case, no reason to skip merging because COPYs are expected to be place in
840   // Pred already.
841   if (SameIncomingValueBBs.count(Pred))
842     return true;
843 
844   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
845   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
846 
847   for (auto *SameValueBB : SameIncomingValueBBs)
848     if (SameValueBB->getUniquePredecessor() == Pred &&
849         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
850       BBFreq += BFI->getBlockFreq(SameValueBB);
851 
852   return PredFreq.getFrequency() <=
853          BBFreq.getFrequency() * FreqRatioToSkipMerge;
854 }
855 
856 /// Return true if we can merge BB into DestBB if there is a single
857 /// unconditional branch between them, and BB contains no other non-phi
858 /// instructions.
859 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
860                                     const BasicBlock *DestBB) const {
861   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
862   // the successor.  If there are more complex condition (e.g. preheaders),
863   // don't mess around with them.
864   for (const PHINode &PN : BB->phis()) {
865     for (const User *U : PN.users()) {
866       const Instruction *UI = cast<Instruction>(U);
867       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
868         return false;
869       // If User is inside DestBB block and it is a PHINode then check
870       // incoming value. If incoming value is not from BB then this is
871       // a complex condition (e.g. preheaders) we want to avoid here.
872       if (UI->getParent() == DestBB) {
873         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
874           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
875             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
876             if (Insn && Insn->getParent() == BB &&
877                 Insn->getParent() != UPN->getIncomingBlock(I))
878               return false;
879           }
880       }
881     }
882   }
883 
884   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
885   // and DestBB may have conflicting incoming values for the block.  If so, we
886   // can't merge the block.
887   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
888   if (!DestBBPN) return true;  // no conflict.
889 
890   // Collect the preds of BB.
891   SmallPtrSet<const BasicBlock*, 16> BBPreds;
892   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
893     // It is faster to get preds from a PHI than with pred_iterator.
894     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
895       BBPreds.insert(BBPN->getIncomingBlock(i));
896   } else {
897     BBPreds.insert(pred_begin(BB), pred_end(BB));
898   }
899 
900   // Walk the preds of DestBB.
901   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
902     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
903     if (BBPreds.count(Pred)) {   // Common predecessor?
904       for (const PHINode &PN : DestBB->phis()) {
905         const Value *V1 = PN.getIncomingValueForBlock(Pred);
906         const Value *V2 = PN.getIncomingValueForBlock(BB);
907 
908         // If V2 is a phi node in BB, look up what the mapped value will be.
909         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
910           if (V2PN->getParent() == BB)
911             V2 = V2PN->getIncomingValueForBlock(Pred);
912 
913         // If there is a conflict, bail out.
914         if (V1 != V2) return false;
915       }
916     }
917   }
918 
919   return true;
920 }
921 
922 /// Eliminate a basic block that has only phi's and an unconditional branch in
923 /// it.
924 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
925   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
926   BasicBlock *DestBB = BI->getSuccessor(0);
927 
928   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
929                     << *BB << *DestBB);
930 
931   // If the destination block has a single pred, then this is a trivial edge,
932   // just collapse it.
933   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
934     if (SinglePred != DestBB) {
935       assert(SinglePred == BB &&
936              "Single predecessor not the same as predecessor");
937       // Merge DestBB into SinglePred/BB and delete it.
938       MergeBlockIntoPredecessor(DestBB);
939       // Note: BB(=SinglePred) will not be deleted on this path.
940       // DestBB(=its single successor) is the one that was deleted.
941       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
942       return;
943     }
944   }
945 
946   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
947   // to handle the new incoming edges it is about to have.
948   for (PHINode &PN : DestBB->phis()) {
949     // Remove the incoming value for BB, and remember it.
950     Value *InVal = PN.removeIncomingValue(BB, false);
951 
952     // Two options: either the InVal is a phi node defined in BB or it is some
953     // value that dominates BB.
954     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
955     if (InValPhi && InValPhi->getParent() == BB) {
956       // Add all of the input values of the input PHI as inputs of this phi.
957       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
958         PN.addIncoming(InValPhi->getIncomingValue(i),
959                        InValPhi->getIncomingBlock(i));
960     } else {
961       // Otherwise, add one instance of the dominating value for each edge that
962       // we will be adding.
963       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
964         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
965           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
966       } else {
967         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
968           PN.addIncoming(InVal, *PI);
969       }
970     }
971   }
972 
973   // The PHIs are now updated, change everything that refers to BB to use
974   // DestBB and remove BB.
975   BB->replaceAllUsesWith(DestBB);
976   BB->eraseFromParent();
977   ++NumBlocksElim;
978 
979   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
980 }
981 
982 // Computes a map of base pointer relocation instructions to corresponding
983 // derived pointer relocation instructions given a vector of all relocate calls
984 static void computeBaseDerivedRelocateMap(
985     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
986     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
987         &RelocateInstMap) {
988   // Collect information in two maps: one primarily for locating the base object
989   // while filling the second map; the second map is the final structure holding
990   // a mapping between Base and corresponding Derived relocate calls
991   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
992   for (auto *ThisRelocate : AllRelocateCalls) {
993     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
994                             ThisRelocate->getDerivedPtrIndex());
995     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
996   }
997   for (auto &Item : RelocateIdxMap) {
998     std::pair<unsigned, unsigned> Key = Item.first;
999     if (Key.first == Key.second)
1000       // Base relocation: nothing to insert
1001       continue;
1002 
1003     GCRelocateInst *I = Item.second;
1004     auto BaseKey = std::make_pair(Key.first, Key.first);
1005 
1006     // We're iterating over RelocateIdxMap so we cannot modify it.
1007     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1008     if (MaybeBase == RelocateIdxMap.end())
1009       // TODO: We might want to insert a new base object relocate and gep off
1010       // that, if there are enough derived object relocates.
1011       continue;
1012 
1013     RelocateInstMap[MaybeBase->second].push_back(I);
1014   }
1015 }
1016 
1017 // Accepts a GEP and extracts the operands into a vector provided they're all
1018 // small integer constants
1019 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1020                                           SmallVectorImpl<Value *> &OffsetV) {
1021   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1022     // Only accept small constant integer operands
1023     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1024     if (!Op || Op->getZExtValue() > 20)
1025       return false;
1026   }
1027 
1028   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1029     OffsetV.push_back(GEP->getOperand(i));
1030   return true;
1031 }
1032 
1033 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1034 // replace, computes a replacement, and affects it.
1035 static bool
1036 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1037                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1038   bool MadeChange = false;
1039   // We must ensure the relocation of derived pointer is defined after
1040   // relocation of base pointer. If we find a relocation corresponding to base
1041   // defined earlier than relocation of base then we move relocation of base
1042   // right before found relocation. We consider only relocation in the same
1043   // basic block as relocation of base. Relocations from other basic block will
1044   // be skipped by optimization and we do not care about them.
1045   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1046        &*R != RelocatedBase; ++R)
1047     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1048       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1049         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1050           RelocatedBase->moveBefore(RI);
1051           break;
1052         }
1053 
1054   for (GCRelocateInst *ToReplace : Targets) {
1055     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1056            "Not relocating a derived object of the original base object");
1057     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1058       // A duplicate relocate call. TODO: coalesce duplicates.
1059       continue;
1060     }
1061 
1062     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1063       // Base and derived relocates are in different basic blocks.
1064       // In this case transform is only valid when base dominates derived
1065       // relocate. However it would be too expensive to check dominance
1066       // for each such relocate, so we skip the whole transformation.
1067       continue;
1068     }
1069 
1070     Value *Base = ToReplace->getBasePtr();
1071     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1072     if (!Derived || Derived->getPointerOperand() != Base)
1073       continue;
1074 
1075     SmallVector<Value *, 2> OffsetV;
1076     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1077       continue;
1078 
1079     // Create a Builder and replace the target callsite with a gep
1080     assert(RelocatedBase->getNextNode() &&
1081            "Should always have one since it's not a terminator");
1082 
1083     // Insert after RelocatedBase
1084     IRBuilder<> Builder(RelocatedBase->getNextNode());
1085     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1086 
1087     // If gc_relocate does not match the actual type, cast it to the right type.
1088     // In theory, there must be a bitcast after gc_relocate if the type does not
1089     // match, and we should reuse it to get the derived pointer. But it could be
1090     // cases like this:
1091     // bb1:
1092     //  ...
1093     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1094     //  br label %merge
1095     //
1096     // bb2:
1097     //  ...
1098     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1099     //  br label %merge
1100     //
1101     // merge:
1102     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1103     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1104     //
1105     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1106     // no matter there is already one or not. In this way, we can handle all cases, and
1107     // the extra bitcast should be optimized away in later passes.
1108     Value *ActualRelocatedBase = RelocatedBase;
1109     if (RelocatedBase->getType() != Base->getType()) {
1110       ActualRelocatedBase =
1111           Builder.CreateBitCast(RelocatedBase, Base->getType());
1112     }
1113     Value *Replacement = Builder.CreateGEP(
1114         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1115     Replacement->takeName(ToReplace);
1116     // If the newly generated derived pointer's type does not match the original derived
1117     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1118     Value *ActualReplacement = Replacement;
1119     if (Replacement->getType() != ToReplace->getType()) {
1120       ActualReplacement =
1121           Builder.CreateBitCast(Replacement, ToReplace->getType());
1122     }
1123     ToReplace->replaceAllUsesWith(ActualReplacement);
1124     ToReplace->eraseFromParent();
1125 
1126     MadeChange = true;
1127   }
1128   return MadeChange;
1129 }
1130 
1131 // Turns this:
1132 //
1133 // %base = ...
1134 // %ptr = gep %base + 15
1135 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1136 // %base' = relocate(%tok, i32 4, i32 4)
1137 // %ptr' = relocate(%tok, i32 4, i32 5)
1138 // %val = load %ptr'
1139 //
1140 // into this:
1141 //
1142 // %base = ...
1143 // %ptr = gep %base + 15
1144 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1145 // %base' = gc.relocate(%tok, i32 4, i32 4)
1146 // %ptr' = gep %base' + 15
1147 // %val = load %ptr'
1148 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1149   bool MadeChange = false;
1150   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1151   for (auto *U : I.users())
1152     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1153       // Collect all the relocate calls associated with a statepoint
1154       AllRelocateCalls.push_back(Relocate);
1155 
1156   // We need at least one base pointer relocation + one derived pointer
1157   // relocation to mangle
1158   if (AllRelocateCalls.size() < 2)
1159     return false;
1160 
1161   // RelocateInstMap is a mapping from the base relocate instruction to the
1162   // corresponding derived relocate instructions
1163   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1164   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1165   if (RelocateInstMap.empty())
1166     return false;
1167 
1168   for (auto &Item : RelocateInstMap)
1169     // Item.first is the RelocatedBase to offset against
1170     // Item.second is the vector of Targets to replace
1171     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1172   return MadeChange;
1173 }
1174 
1175 /// Sink the specified cast instruction into its user blocks.
1176 static bool SinkCast(CastInst *CI) {
1177   BasicBlock *DefBB = CI->getParent();
1178 
1179   /// InsertedCasts - Only insert a cast in each block once.
1180   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1181 
1182   bool MadeChange = false;
1183   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1184        UI != E; ) {
1185     Use &TheUse = UI.getUse();
1186     Instruction *User = cast<Instruction>(*UI);
1187 
1188     // Figure out which BB this cast is used in.  For PHI's this is the
1189     // appropriate predecessor block.
1190     BasicBlock *UserBB = User->getParent();
1191     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1192       UserBB = PN->getIncomingBlock(TheUse);
1193     }
1194 
1195     // Preincrement use iterator so we don't invalidate it.
1196     ++UI;
1197 
1198     // The first insertion point of a block containing an EH pad is after the
1199     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1200     if (User->isEHPad())
1201       continue;
1202 
1203     // If the block selected to receive the cast is an EH pad that does not
1204     // allow non-PHI instructions before the terminator, we can't sink the
1205     // cast.
1206     if (UserBB->getTerminator()->isEHPad())
1207       continue;
1208 
1209     // If this user is in the same block as the cast, don't change the cast.
1210     if (UserBB == DefBB) continue;
1211 
1212     // If we have already inserted a cast into this block, use it.
1213     CastInst *&InsertedCast = InsertedCasts[UserBB];
1214 
1215     if (!InsertedCast) {
1216       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1217       assert(InsertPt != UserBB->end());
1218       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1219                                       CI->getType(), "", &*InsertPt);
1220       InsertedCast->setDebugLoc(CI->getDebugLoc());
1221     }
1222 
1223     // Replace a use of the cast with a use of the new cast.
1224     TheUse = InsertedCast;
1225     MadeChange = true;
1226     ++NumCastUses;
1227   }
1228 
1229   // If we removed all uses, nuke the cast.
1230   if (CI->use_empty()) {
1231     salvageDebugInfo(*CI);
1232     CI->eraseFromParent();
1233     MadeChange = true;
1234   }
1235 
1236   return MadeChange;
1237 }
1238 
1239 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1240 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1241 /// reduce the number of virtual registers that must be created and coalesced.
1242 ///
1243 /// Return true if any changes are made.
1244 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1245                                        const DataLayout &DL) {
1246   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1247   // than sinking only nop casts, but is helpful on some platforms.
1248   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1249     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1250                                  ASC->getDestAddressSpace()))
1251       return false;
1252   }
1253 
1254   // If this is a noop copy,
1255   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1256   EVT DstVT = TLI.getValueType(DL, CI->getType());
1257 
1258   // This is an fp<->int conversion?
1259   if (SrcVT.isInteger() != DstVT.isInteger())
1260     return false;
1261 
1262   // If this is an extension, it will be a zero or sign extension, which
1263   // isn't a noop.
1264   if (SrcVT.bitsLT(DstVT)) return false;
1265 
1266   // If these values will be promoted, find out what they will be promoted
1267   // to.  This helps us consider truncates on PPC as noop copies when they
1268   // are.
1269   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1270       TargetLowering::TypePromoteInteger)
1271     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1272   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1273       TargetLowering::TypePromoteInteger)
1274     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1275 
1276   // If, after promotion, these are the same types, this is a noop copy.
1277   if (SrcVT != DstVT)
1278     return false;
1279 
1280   return SinkCast(CI);
1281 }
1282 
1283 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1284                                                  Value *Arg0, Value *Arg1,
1285                                                  CmpInst *Cmp,
1286                                                  Intrinsic::ID IID) {
1287   if (BO->getParent() != Cmp->getParent()) {
1288     // We used to use a dominator tree here to allow multi-block optimization.
1289     // But that was problematic because:
1290     // 1. It could cause a perf regression by hoisting the math op into the
1291     //    critical path.
1292     // 2. It could cause a perf regression by creating a value that was live
1293     //    across multiple blocks and increasing register pressure.
1294     // 3. Use of a dominator tree could cause large compile-time regression.
1295     //    This is because we recompute the DT on every change in the main CGP
1296     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1297     //    that was fixed, using a DT here would be ok.
1298     return false;
1299   }
1300 
1301   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1302   if (BO->getOpcode() == Instruction::Add &&
1303       IID == Intrinsic::usub_with_overflow) {
1304     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1305     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1306   }
1307 
1308   // Insert at the first instruction of the pair.
1309   Instruction *InsertPt = nullptr;
1310   for (Instruction &Iter : *Cmp->getParent()) {
1311     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1312     // the overflow intrinsic are defined.
1313     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1314       InsertPt = &Iter;
1315       break;
1316     }
1317   }
1318   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1319 
1320   IRBuilder<> Builder(InsertPt);
1321   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1322   if (BO->getOpcode() != Instruction::Xor) {
1323     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1324     BO->replaceAllUsesWith(Math);
1325   } else
1326     assert(BO->hasOneUse() &&
1327            "Patterns with XOr should use the BO only in the compare");
1328   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1329   Cmp->replaceAllUsesWith(OV);
1330   Cmp->eraseFromParent();
1331   BO->eraseFromParent();
1332   return true;
1333 }
1334 
1335 /// Match special-case patterns that check for unsigned add overflow.
1336 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1337                                                    BinaryOperator *&Add) {
1338   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1339   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1340   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1341 
1342   // We are not expecting non-canonical/degenerate code. Just bail out.
1343   if (isa<Constant>(A))
1344     return false;
1345 
1346   ICmpInst::Predicate Pred = Cmp->getPredicate();
1347   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1348     B = ConstantInt::get(B->getType(), 1);
1349   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1350     B = ConstantInt::get(B->getType(), -1);
1351   else
1352     return false;
1353 
1354   // Check the users of the variable operand of the compare looking for an add
1355   // with the adjusted constant.
1356   for (User *U : A->users()) {
1357     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1358       Add = cast<BinaryOperator>(U);
1359       return true;
1360     }
1361   }
1362   return false;
1363 }
1364 
1365 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1366 /// intrinsic. Return true if any changes were made.
1367 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1368                                                bool &ModifiedDT) {
1369   Value *A, *B;
1370   BinaryOperator *Add;
1371   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1372     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1373       return false;
1374     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1375     A = Add->getOperand(0);
1376     B = Add->getOperand(1);
1377   }
1378 
1379   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1380                                  TLI->getValueType(*DL, Add->getType()),
1381                                  Add->hasNUsesOrMore(2)))
1382     return false;
1383 
1384   // We don't want to move around uses of condition values this late, so we
1385   // check if it is legal to create the call to the intrinsic in the basic
1386   // block containing the icmp.
1387   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1388     return false;
1389 
1390   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1391                                    Intrinsic::uadd_with_overflow))
1392     return false;
1393 
1394   // Reset callers - do not crash by iterating over a dead instruction.
1395   ModifiedDT = true;
1396   return true;
1397 }
1398 
1399 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1400                                                bool &ModifiedDT) {
1401   // We are not expecting non-canonical/degenerate code. Just bail out.
1402   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1403   if (isa<Constant>(A) && isa<Constant>(B))
1404     return false;
1405 
1406   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1407   ICmpInst::Predicate Pred = Cmp->getPredicate();
1408   if (Pred == ICmpInst::ICMP_UGT) {
1409     std::swap(A, B);
1410     Pred = ICmpInst::ICMP_ULT;
1411   }
1412   // Convert special-case: (A == 0) is the same as (A u< 1).
1413   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1414     B = ConstantInt::get(B->getType(), 1);
1415     Pred = ICmpInst::ICMP_ULT;
1416   }
1417   // Convert special-case: (A != 0) is the same as (0 u< A).
1418   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1419     std::swap(A, B);
1420     Pred = ICmpInst::ICMP_ULT;
1421   }
1422   if (Pred != ICmpInst::ICMP_ULT)
1423     return false;
1424 
1425   // Walk the users of a variable operand of a compare looking for a subtract or
1426   // add with that same operand. Also match the 2nd operand of the compare to
1427   // the add/sub, but that may be a negated constant operand of an add.
1428   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1429   BinaryOperator *Sub = nullptr;
1430   for (User *U : CmpVariableOperand->users()) {
1431     // A - B, A u< B --> usubo(A, B)
1432     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1433       Sub = cast<BinaryOperator>(U);
1434       break;
1435     }
1436 
1437     // A + (-C), A u< C (canonicalized form of (sub A, C))
1438     const APInt *CmpC, *AddC;
1439     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1440         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1441       Sub = cast<BinaryOperator>(U);
1442       break;
1443     }
1444   }
1445   if (!Sub)
1446     return false;
1447 
1448   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1449                                  TLI->getValueType(*DL, Sub->getType()),
1450                                  Sub->hasNUsesOrMore(2)))
1451     return false;
1452 
1453   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1454                                    Cmp, Intrinsic::usub_with_overflow))
1455     return false;
1456 
1457   // Reset callers - do not crash by iterating over a dead instruction.
1458   ModifiedDT = true;
1459   return true;
1460 }
1461 
1462 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1463 /// registers that must be created and coalesced. This is a clear win except on
1464 /// targets with multiple condition code registers (PowerPC), where it might
1465 /// lose; some adjustment may be wanted there.
1466 ///
1467 /// Return true if any changes are made.
1468 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1469   if (TLI.hasMultipleConditionRegisters())
1470     return false;
1471 
1472   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1473   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1474     return false;
1475 
1476   // Only insert a cmp in each block once.
1477   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1478 
1479   bool MadeChange = false;
1480   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1481        UI != E; ) {
1482     Use &TheUse = UI.getUse();
1483     Instruction *User = cast<Instruction>(*UI);
1484 
1485     // Preincrement use iterator so we don't invalidate it.
1486     ++UI;
1487 
1488     // Don't bother for PHI nodes.
1489     if (isa<PHINode>(User))
1490       continue;
1491 
1492     // Figure out which BB this cmp is used in.
1493     BasicBlock *UserBB = User->getParent();
1494     BasicBlock *DefBB = Cmp->getParent();
1495 
1496     // If this user is in the same block as the cmp, don't change the cmp.
1497     if (UserBB == DefBB) continue;
1498 
1499     // If we have already inserted a cmp into this block, use it.
1500     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1501 
1502     if (!InsertedCmp) {
1503       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1504       assert(InsertPt != UserBB->end());
1505       InsertedCmp =
1506           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1507                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1508                           &*InsertPt);
1509       // Propagate the debug info.
1510       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1511     }
1512 
1513     // Replace a use of the cmp with a use of the new cmp.
1514     TheUse = InsertedCmp;
1515     MadeChange = true;
1516     ++NumCmpUses;
1517   }
1518 
1519   // If we removed all uses, nuke the cmp.
1520   if (Cmp->use_empty()) {
1521     Cmp->eraseFromParent();
1522     MadeChange = true;
1523   }
1524 
1525   return MadeChange;
1526 }
1527 
1528 /// For pattern like:
1529 ///
1530 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1531 ///   ...
1532 /// DomBB:
1533 ///   ...
1534 ///   br DomCond, TrueBB, CmpBB
1535 /// CmpBB: (with DomBB being the single predecessor)
1536 ///   ...
1537 ///   Cmp = icmp eq CmpOp0, CmpOp1
1538 ///   ...
1539 ///
1540 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1541 /// different from lowering of icmp eq (PowerPC). This function try to convert
1542 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1543 /// After that, DomCond and Cmp can use the same comparison so reduce one
1544 /// comparison.
1545 ///
1546 /// Return true if any changes are made.
1547 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1548                                        const TargetLowering &TLI) {
1549   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1550     return false;
1551 
1552   ICmpInst::Predicate Pred = Cmp->getPredicate();
1553   if (Pred != ICmpInst::ICMP_EQ)
1554     return false;
1555 
1556   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1557   // icmp slt/sgt would introduce more redundant LLVM IR.
1558   for (User *U : Cmp->users()) {
1559     if (isa<BranchInst>(U))
1560       continue;
1561     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1562       continue;
1563     return false;
1564   }
1565 
1566   // This is a cheap/incomplete check for dominance - just match a single
1567   // predecessor with a conditional branch.
1568   BasicBlock *CmpBB = Cmp->getParent();
1569   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1570   if (!DomBB)
1571     return false;
1572 
1573   // We want to ensure that the only way control gets to the comparison of
1574   // interest is that a less/greater than comparison on the same operands is
1575   // false.
1576   Value *DomCond;
1577   BasicBlock *TrueBB, *FalseBB;
1578   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1579     return false;
1580   if (CmpBB != FalseBB)
1581     return false;
1582 
1583   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1584   ICmpInst::Predicate DomPred;
1585   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1586     return false;
1587   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1588     return false;
1589 
1590   // Convert the equality comparison to the opposite of the dominating
1591   // comparison and swap the direction for all branch/select users.
1592   // We have conceptually converted:
1593   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1594   // to
1595   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1596   // And similarly for branches.
1597   for (User *U : Cmp->users()) {
1598     if (auto *BI = dyn_cast<BranchInst>(U)) {
1599       assert(BI->isConditional() && "Must be conditional");
1600       BI->swapSuccessors();
1601       continue;
1602     }
1603     if (auto *SI = dyn_cast<SelectInst>(U)) {
1604       // Swap operands
1605       SI->swapValues();
1606       SI->swapProfMetadata();
1607       continue;
1608     }
1609     llvm_unreachable("Must be a branch or a select");
1610   }
1611   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1612   return true;
1613 }
1614 
1615 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1616   if (sinkCmpExpression(Cmp, *TLI))
1617     return true;
1618 
1619   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1620     return true;
1621 
1622   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1623     return true;
1624 
1625   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1626     return true;
1627 
1628   return false;
1629 }
1630 
1631 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1632 /// used in a compare to allow isel to generate better code for targets where
1633 /// this operation can be combined.
1634 ///
1635 /// Return true if any changes are made.
1636 static bool sinkAndCmp0Expression(Instruction *AndI,
1637                                   const TargetLowering &TLI,
1638                                   SetOfInstrs &InsertedInsts) {
1639   // Double-check that we're not trying to optimize an instruction that was
1640   // already optimized by some other part of this pass.
1641   assert(!InsertedInsts.count(AndI) &&
1642          "Attempting to optimize already optimized and instruction");
1643   (void) InsertedInsts;
1644 
1645   // Nothing to do for single use in same basic block.
1646   if (AndI->hasOneUse() &&
1647       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1648     return false;
1649 
1650   // Try to avoid cases where sinking/duplicating is likely to increase register
1651   // pressure.
1652   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1653       !isa<ConstantInt>(AndI->getOperand(1)) &&
1654       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1655     return false;
1656 
1657   for (auto *U : AndI->users()) {
1658     Instruction *User = cast<Instruction>(U);
1659 
1660     // Only sink 'and' feeding icmp with 0.
1661     if (!isa<ICmpInst>(User))
1662       return false;
1663 
1664     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1665     if (!CmpC || !CmpC->isZero())
1666       return false;
1667   }
1668 
1669   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1670     return false;
1671 
1672   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1673   LLVM_DEBUG(AndI->getParent()->dump());
1674 
1675   // Push the 'and' into the same block as the icmp 0.  There should only be
1676   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1677   // others, so we don't need to keep track of which BBs we insert into.
1678   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1679        UI != E; ) {
1680     Use &TheUse = UI.getUse();
1681     Instruction *User = cast<Instruction>(*UI);
1682 
1683     // Preincrement use iterator so we don't invalidate it.
1684     ++UI;
1685 
1686     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1687 
1688     // Keep the 'and' in the same place if the use is already in the same block.
1689     Instruction *InsertPt =
1690         User->getParent() == AndI->getParent() ? AndI : User;
1691     Instruction *InsertedAnd =
1692         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1693                                AndI->getOperand(1), "", InsertPt);
1694     // Propagate the debug info.
1695     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1696 
1697     // Replace a use of the 'and' with a use of the new 'and'.
1698     TheUse = InsertedAnd;
1699     ++NumAndUses;
1700     LLVM_DEBUG(User->getParent()->dump());
1701   }
1702 
1703   // We removed all uses, nuke the and.
1704   AndI->eraseFromParent();
1705   return true;
1706 }
1707 
1708 /// Check if the candidates could be combined with a shift instruction, which
1709 /// includes:
1710 /// 1. Truncate instruction
1711 /// 2. And instruction and the imm is a mask of the low bits:
1712 /// imm & (imm+1) == 0
1713 static bool isExtractBitsCandidateUse(Instruction *User) {
1714   if (!isa<TruncInst>(User)) {
1715     if (User->getOpcode() != Instruction::And ||
1716         !isa<ConstantInt>(User->getOperand(1)))
1717       return false;
1718 
1719     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1720 
1721     if ((Cimm & (Cimm + 1)).getBoolValue())
1722       return false;
1723   }
1724   return true;
1725 }
1726 
1727 /// Sink both shift and truncate instruction to the use of truncate's BB.
1728 static bool
1729 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1730                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1731                      const TargetLowering &TLI, const DataLayout &DL) {
1732   BasicBlock *UserBB = User->getParent();
1733   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1734   auto *TruncI = cast<TruncInst>(User);
1735   bool MadeChange = false;
1736 
1737   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1738                             TruncE = TruncI->user_end();
1739        TruncUI != TruncE;) {
1740 
1741     Use &TruncTheUse = TruncUI.getUse();
1742     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1743     // Preincrement use iterator so we don't invalidate it.
1744 
1745     ++TruncUI;
1746 
1747     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1748     if (!ISDOpcode)
1749       continue;
1750 
1751     // If the use is actually a legal node, there will not be an
1752     // implicit truncate.
1753     // FIXME: always querying the result type is just an
1754     // approximation; some nodes' legality is determined by the
1755     // operand or other means. There's no good way to find out though.
1756     if (TLI.isOperationLegalOrCustom(
1757             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1758       continue;
1759 
1760     // Don't bother for PHI nodes.
1761     if (isa<PHINode>(TruncUser))
1762       continue;
1763 
1764     BasicBlock *TruncUserBB = TruncUser->getParent();
1765 
1766     if (UserBB == TruncUserBB)
1767       continue;
1768 
1769     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1770     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1771 
1772     if (!InsertedShift && !InsertedTrunc) {
1773       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1774       assert(InsertPt != TruncUserBB->end());
1775       // Sink the shift
1776       if (ShiftI->getOpcode() == Instruction::AShr)
1777         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1778                                                    "", &*InsertPt);
1779       else
1780         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1781                                                    "", &*InsertPt);
1782       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1783 
1784       // Sink the trunc
1785       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1786       TruncInsertPt++;
1787       assert(TruncInsertPt != TruncUserBB->end());
1788 
1789       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1790                                        TruncI->getType(), "", &*TruncInsertPt);
1791       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1792 
1793       MadeChange = true;
1794 
1795       TruncTheUse = InsertedTrunc;
1796     }
1797   }
1798   return MadeChange;
1799 }
1800 
1801 /// Sink the shift *right* instruction into user blocks if the uses could
1802 /// potentially be combined with this shift instruction and generate BitExtract
1803 /// instruction. It will only be applied if the architecture supports BitExtract
1804 /// instruction. Here is an example:
1805 /// BB1:
1806 ///   %x.extract.shift = lshr i64 %arg1, 32
1807 /// BB2:
1808 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1809 /// ==>
1810 ///
1811 /// BB2:
1812 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1813 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1814 ///
1815 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1816 /// instruction.
1817 /// Return true if any changes are made.
1818 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1819                                 const TargetLowering &TLI,
1820                                 const DataLayout &DL) {
1821   BasicBlock *DefBB = ShiftI->getParent();
1822 
1823   /// Only insert instructions in each block once.
1824   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1825 
1826   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1827 
1828   bool MadeChange = false;
1829   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1830        UI != E;) {
1831     Use &TheUse = UI.getUse();
1832     Instruction *User = cast<Instruction>(*UI);
1833     // Preincrement use iterator so we don't invalidate it.
1834     ++UI;
1835 
1836     // Don't bother for PHI nodes.
1837     if (isa<PHINode>(User))
1838       continue;
1839 
1840     if (!isExtractBitsCandidateUse(User))
1841       continue;
1842 
1843     BasicBlock *UserBB = User->getParent();
1844 
1845     if (UserBB == DefBB) {
1846       // If the shift and truncate instruction are in the same BB. The use of
1847       // the truncate(TruncUse) may still introduce another truncate if not
1848       // legal. In this case, we would like to sink both shift and truncate
1849       // instruction to the BB of TruncUse.
1850       // for example:
1851       // BB1:
1852       // i64 shift.result = lshr i64 opnd, imm
1853       // trunc.result = trunc shift.result to i16
1854       //
1855       // BB2:
1856       //   ----> We will have an implicit truncate here if the architecture does
1857       //   not have i16 compare.
1858       // cmp i16 trunc.result, opnd2
1859       //
1860       if (isa<TruncInst>(User) && shiftIsLegal
1861           // If the type of the truncate is legal, no truncate will be
1862           // introduced in other basic blocks.
1863           &&
1864           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1865         MadeChange =
1866             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1867 
1868       continue;
1869     }
1870     // If we have already inserted a shift into this block, use it.
1871     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1872 
1873     if (!InsertedShift) {
1874       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1875       assert(InsertPt != UserBB->end());
1876 
1877       if (ShiftI->getOpcode() == Instruction::AShr)
1878         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1879                                                    "", &*InsertPt);
1880       else
1881         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1882                                                    "", &*InsertPt);
1883       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1884 
1885       MadeChange = true;
1886     }
1887 
1888     // Replace a use of the shift with a use of the new shift.
1889     TheUse = InsertedShift;
1890   }
1891 
1892   // If we removed all uses, or there are none, nuke the shift.
1893   if (ShiftI->use_empty()) {
1894     salvageDebugInfo(*ShiftI);
1895     ShiftI->eraseFromParent();
1896     MadeChange = true;
1897   }
1898 
1899   return MadeChange;
1900 }
1901 
1902 /// If counting leading or trailing zeros is an expensive operation and a zero
1903 /// input is defined, add a check for zero to avoid calling the intrinsic.
1904 ///
1905 /// We want to transform:
1906 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1907 ///
1908 /// into:
1909 ///   entry:
1910 ///     %cmpz = icmp eq i64 %A, 0
1911 ///     br i1 %cmpz, label %cond.end, label %cond.false
1912 ///   cond.false:
1913 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1914 ///     br label %cond.end
1915 ///   cond.end:
1916 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1917 ///
1918 /// If the transform is performed, return true and set ModifiedDT to true.
1919 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1920                                   const TargetLowering *TLI,
1921                                   const DataLayout *DL,
1922                                   bool &ModifiedDT) {
1923   // If a zero input is undefined, it doesn't make sense to despeculate that.
1924   if (match(CountZeros->getOperand(1), m_One()))
1925     return false;
1926 
1927   // If it's cheap to speculate, there's nothing to do.
1928   auto IntrinsicID = CountZeros->getIntrinsicID();
1929   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1930       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1931     return false;
1932 
1933   // Only handle legal scalar cases. Anything else requires too much work.
1934   Type *Ty = CountZeros->getType();
1935   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1936   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1937     return false;
1938 
1939   // The intrinsic will be sunk behind a compare against zero and branch.
1940   BasicBlock *StartBlock = CountZeros->getParent();
1941   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1942 
1943   // Create another block after the count zero intrinsic. A PHI will be added
1944   // in this block to select the result of the intrinsic or the bit-width
1945   // constant if the input to the intrinsic is zero.
1946   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1947   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1948 
1949   // Set up a builder to create a compare, conditional branch, and PHI.
1950   IRBuilder<> Builder(CountZeros->getContext());
1951   Builder.SetInsertPoint(StartBlock->getTerminator());
1952   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1953 
1954   // Replace the unconditional branch that was created by the first split with
1955   // a compare against zero and a conditional branch.
1956   Value *Zero = Constant::getNullValue(Ty);
1957   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1958   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1959   StartBlock->getTerminator()->eraseFromParent();
1960 
1961   // Create a PHI in the end block to select either the output of the intrinsic
1962   // or the bit width of the operand.
1963   Builder.SetInsertPoint(&EndBlock->front());
1964   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1965   CountZeros->replaceAllUsesWith(PN);
1966   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1967   PN->addIncoming(BitWidth, StartBlock);
1968   PN->addIncoming(CountZeros, CallBlock);
1969 
1970   // We are explicitly handling the zero case, so we can set the intrinsic's
1971   // undefined zero argument to 'true'. This will also prevent reprocessing the
1972   // intrinsic; we only despeculate when a zero input is defined.
1973   CountZeros->setArgOperand(1, Builder.getTrue());
1974   ModifiedDT = true;
1975   return true;
1976 }
1977 
1978 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1979   BasicBlock *BB = CI->getParent();
1980 
1981   // Lower inline assembly if we can.
1982   // If we found an inline asm expession, and if the target knows how to
1983   // lower it to normal LLVM code, do so now.
1984   if (CI->isInlineAsm()) {
1985     if (TLI->ExpandInlineAsm(CI)) {
1986       // Avoid invalidating the iterator.
1987       CurInstIterator = BB->begin();
1988       // Avoid processing instructions out of order, which could cause
1989       // reuse before a value is defined.
1990       SunkAddrs.clear();
1991       return true;
1992     }
1993     // Sink address computing for memory operands into the block.
1994     if (optimizeInlineAsmInst(CI))
1995       return true;
1996   }
1997 
1998   // Align the pointer arguments to this call if the target thinks it's a good
1999   // idea
2000   unsigned MinSize, PrefAlign;
2001   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2002     for (auto &Arg : CI->arg_operands()) {
2003       // We want to align both objects whose address is used directly and
2004       // objects whose address is used in casts and GEPs, though it only makes
2005       // sense for GEPs if the offset is a multiple of the desired alignment and
2006       // if size - offset meets the size threshold.
2007       if (!Arg->getType()->isPointerTy())
2008         continue;
2009       APInt Offset(DL->getIndexSizeInBits(
2010                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2011                    0);
2012       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2013       uint64_t Offset2 = Offset.getLimitedValue();
2014       if ((Offset2 & (PrefAlign-1)) != 0)
2015         continue;
2016       AllocaInst *AI;
2017       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2018           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2019         AI->setAlignment(Align(PrefAlign));
2020       // Global variables can only be aligned if they are defined in this
2021       // object (i.e. they are uniquely initialized in this object), and
2022       // over-aligning global variables that have an explicit section is
2023       // forbidden.
2024       GlobalVariable *GV;
2025       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2026           GV->getPointerAlignment(*DL) < PrefAlign &&
2027           DL->getTypeAllocSize(GV->getValueType()) >=
2028               MinSize + Offset2)
2029         GV->setAlignment(MaybeAlign(PrefAlign));
2030     }
2031     // If this is a memcpy (or similar) then we may be able to improve the
2032     // alignment
2033     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2034       Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2035       MaybeAlign MIDestAlign = MI->getDestAlign();
2036       if (!MIDestAlign || DestAlign > *MIDestAlign)
2037         MI->setDestAlignment(DestAlign);
2038       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2039         MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2040         Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2041         if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2042           MTI->setSourceAlignment(SrcAlign);
2043       }
2044     }
2045   }
2046 
2047   // If we have a cold call site, try to sink addressing computation into the
2048   // cold block.  This interacts with our handling for loads and stores to
2049   // ensure that we can fold all uses of a potential addressing computation
2050   // into their uses.  TODO: generalize this to work over profiling data
2051   if (CI->hasFnAttr(Attribute::Cold) &&
2052       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2053     for (auto &Arg : CI->arg_operands()) {
2054       if (!Arg->getType()->isPointerTy())
2055         continue;
2056       unsigned AS = Arg->getType()->getPointerAddressSpace();
2057       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2058     }
2059 
2060   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2061   if (II) {
2062     switch (II->getIntrinsicID()) {
2063     default: break;
2064     case Intrinsic::assume: {
2065       Value *Operand = II->getOperand(0);
2066       II->eraseFromParent();
2067       // Prune the operand, it's most likely dead.
2068       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2069         RecursivelyDeleteTriviallyDeadInstructions(
2070             Operand, TLInfo, nullptr,
2071             [&](Value *V) { removeAllAssertingVHReferences(V); });
2072       });
2073       return true;
2074     }
2075 
2076     case Intrinsic::experimental_widenable_condition: {
2077       // Give up on future widening oppurtunties so that we can fold away dead
2078       // paths and merge blocks before going into block-local instruction
2079       // selection.
2080       if (II->use_empty()) {
2081         II->eraseFromParent();
2082         return true;
2083       }
2084       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2085       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2086         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2087       });
2088       return true;
2089     }
2090     case Intrinsic::objectsize:
2091       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2092     case Intrinsic::is_constant:
2093       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2094     case Intrinsic::aarch64_stlxr:
2095     case Intrinsic::aarch64_stxr: {
2096       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2097       if (!ExtVal || !ExtVal->hasOneUse() ||
2098           ExtVal->getParent() == CI->getParent())
2099         return false;
2100       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2101       ExtVal->moveBefore(CI);
2102       // Mark this instruction as "inserted by CGP", so that other
2103       // optimizations don't touch it.
2104       InsertedInsts.insert(ExtVal);
2105       return true;
2106     }
2107 
2108     case Intrinsic::launder_invariant_group:
2109     case Intrinsic::strip_invariant_group: {
2110       Value *ArgVal = II->getArgOperand(0);
2111       auto it = LargeOffsetGEPMap.find(II);
2112       if (it != LargeOffsetGEPMap.end()) {
2113           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2114           // Make sure not to have to deal with iterator invalidation
2115           // after possibly adding ArgVal to LargeOffsetGEPMap.
2116           auto GEPs = std::move(it->second);
2117           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2118           LargeOffsetGEPMap.erase(II);
2119       }
2120 
2121       II->replaceAllUsesWith(ArgVal);
2122       II->eraseFromParent();
2123       return true;
2124     }
2125     case Intrinsic::cttz:
2126     case Intrinsic::ctlz:
2127       // If counting zeros is expensive, try to avoid it.
2128       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2129     case Intrinsic::fshl:
2130     case Intrinsic::fshr:
2131       return optimizeFunnelShift(II);
2132     case Intrinsic::dbg_value:
2133       return fixupDbgValue(II);
2134     case Intrinsic::vscale: {
2135       // If datalayout has no special restrictions on vector data layout,
2136       // replace `llvm.vscale` by an equivalent constant expression
2137       // to benefit from cheap constant propagation.
2138       Type *ScalableVectorTy =
2139           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2140       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2141         auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2142         auto *One = ConstantInt::getSigned(II->getType(), 1);
2143         auto *CGep =
2144             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2145         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2146         II->eraseFromParent();
2147         return true;
2148       }
2149       break;
2150     }
2151     case Intrinsic::masked_gather:
2152       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2153     case Intrinsic::masked_scatter:
2154       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2155     }
2156 
2157     SmallVector<Value *, 2> PtrOps;
2158     Type *AccessTy;
2159     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2160       while (!PtrOps.empty()) {
2161         Value *PtrVal = PtrOps.pop_back_val();
2162         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2163         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2164           return true;
2165       }
2166   }
2167 
2168   // From here on out we're working with named functions.
2169   if (!CI->getCalledFunction()) return false;
2170 
2171   // Lower all default uses of _chk calls.  This is very similar
2172   // to what InstCombineCalls does, but here we are only lowering calls
2173   // to fortified library functions (e.g. __memcpy_chk) that have the default
2174   // "don't know" as the objectsize.  Anything else should be left alone.
2175   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2176   IRBuilder<> Builder(CI);
2177   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2178     CI->replaceAllUsesWith(V);
2179     CI->eraseFromParent();
2180     return true;
2181   }
2182 
2183   return false;
2184 }
2185 
2186 /// Look for opportunities to duplicate return instructions to the predecessor
2187 /// to enable tail call optimizations. The case it is currently looking for is:
2188 /// @code
2189 /// bb0:
2190 ///   %tmp0 = tail call i32 @f0()
2191 ///   br label %return
2192 /// bb1:
2193 ///   %tmp1 = tail call i32 @f1()
2194 ///   br label %return
2195 /// bb2:
2196 ///   %tmp2 = tail call i32 @f2()
2197 ///   br label %return
2198 /// return:
2199 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2200 ///   ret i32 %retval
2201 /// @endcode
2202 ///
2203 /// =>
2204 ///
2205 /// @code
2206 /// bb0:
2207 ///   %tmp0 = tail call i32 @f0()
2208 ///   ret i32 %tmp0
2209 /// bb1:
2210 ///   %tmp1 = tail call i32 @f1()
2211 ///   ret i32 %tmp1
2212 /// bb2:
2213 ///   %tmp2 = tail call i32 @f2()
2214 ///   ret i32 %tmp2
2215 /// @endcode
2216 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2217   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2218   if (!RetI)
2219     return false;
2220 
2221   PHINode *PN = nullptr;
2222   ExtractValueInst *EVI = nullptr;
2223   BitCastInst *BCI = nullptr;
2224   Value *V = RetI->getReturnValue();
2225   if (V) {
2226     BCI = dyn_cast<BitCastInst>(V);
2227     if (BCI)
2228       V = BCI->getOperand(0);
2229 
2230     EVI = dyn_cast<ExtractValueInst>(V);
2231     if (EVI) {
2232       V = EVI->getOperand(0);
2233       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2234         return false;
2235     }
2236 
2237     PN = dyn_cast<PHINode>(V);
2238     if (!PN)
2239       return false;
2240   }
2241 
2242   if (PN && PN->getParent() != BB)
2243     return false;
2244 
2245   // Make sure there are no instructions between the PHI and return, or that the
2246   // return is the first instruction in the block.
2247   if (PN) {
2248     BasicBlock::iterator BI = BB->begin();
2249     // Skip over debug and the bitcast.
2250     do {
2251       ++BI;
2252     } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI ||
2253              isa<PseudoProbeInst>(BI));
2254     if (&*BI != RetI)
2255       return false;
2256   } else {
2257     if (BB->getFirstNonPHIOrDbg(true) != RetI)
2258       return false;
2259   }
2260 
2261   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2262   /// call.
2263   const Function *F = BB->getParent();
2264   SmallVector<BasicBlock*, 4> TailCallBBs;
2265   if (PN) {
2266     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2267       // Look through bitcasts.
2268       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2269       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2270       BasicBlock *PredBB = PN->getIncomingBlock(I);
2271       // Make sure the phi value is indeed produced by the tail call.
2272       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2273           TLI->mayBeEmittedAsTailCall(CI) &&
2274           attributesPermitTailCall(F, CI, RetI, *TLI))
2275         TailCallBBs.push_back(PredBB);
2276     }
2277   } else {
2278     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2279     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2280       if (!VisitedBBs.insert(*PI).second)
2281         continue;
2282       if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) {
2283         CallInst *CI = dyn_cast<CallInst>(I);
2284         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2285             attributesPermitTailCall(F, CI, RetI, *TLI))
2286           TailCallBBs.push_back(*PI);
2287       }
2288     }
2289   }
2290 
2291   bool Changed = false;
2292   for (auto const &TailCallBB : TailCallBBs) {
2293     // Make sure the call instruction is followed by an unconditional branch to
2294     // the return block.
2295     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2296     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2297       continue;
2298 
2299     // Duplicate the return into TailCallBB.
2300     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2301     assert(!VerifyBFIUpdates ||
2302            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2303     BFI->setBlockFreq(
2304         BB,
2305         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2306     ModifiedDT = Changed = true;
2307     ++NumRetsDup;
2308   }
2309 
2310   // If we eliminated all predecessors of the block, delete the block now.
2311   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2312     BB->eraseFromParent();
2313 
2314   return Changed;
2315 }
2316 
2317 //===----------------------------------------------------------------------===//
2318 // Memory Optimization
2319 //===----------------------------------------------------------------------===//
2320 
2321 namespace {
2322 
2323 /// This is an extended version of TargetLowering::AddrMode
2324 /// which holds actual Value*'s for register values.
2325 struct ExtAddrMode : public TargetLowering::AddrMode {
2326   Value *BaseReg = nullptr;
2327   Value *ScaledReg = nullptr;
2328   Value *OriginalValue = nullptr;
2329   bool InBounds = true;
2330 
2331   enum FieldName {
2332     NoField        = 0x00,
2333     BaseRegField   = 0x01,
2334     BaseGVField    = 0x02,
2335     BaseOffsField  = 0x04,
2336     ScaledRegField = 0x08,
2337     ScaleField     = 0x10,
2338     MultipleFields = 0xff
2339   };
2340 
2341 
2342   ExtAddrMode() = default;
2343 
2344   void print(raw_ostream &OS) const;
2345   void dump() const;
2346 
2347   FieldName compare(const ExtAddrMode &other) {
2348     // First check that the types are the same on each field, as differing types
2349     // is something we can't cope with later on.
2350     if (BaseReg && other.BaseReg &&
2351         BaseReg->getType() != other.BaseReg->getType())
2352       return MultipleFields;
2353     if (BaseGV && other.BaseGV &&
2354         BaseGV->getType() != other.BaseGV->getType())
2355       return MultipleFields;
2356     if (ScaledReg && other.ScaledReg &&
2357         ScaledReg->getType() != other.ScaledReg->getType())
2358       return MultipleFields;
2359 
2360     // Conservatively reject 'inbounds' mismatches.
2361     if (InBounds != other.InBounds)
2362       return MultipleFields;
2363 
2364     // Check each field to see if it differs.
2365     unsigned Result = NoField;
2366     if (BaseReg != other.BaseReg)
2367       Result |= BaseRegField;
2368     if (BaseGV != other.BaseGV)
2369       Result |= BaseGVField;
2370     if (BaseOffs != other.BaseOffs)
2371       Result |= BaseOffsField;
2372     if (ScaledReg != other.ScaledReg)
2373       Result |= ScaledRegField;
2374     // Don't count 0 as being a different scale, because that actually means
2375     // unscaled (which will already be counted by having no ScaledReg).
2376     if (Scale && other.Scale && Scale != other.Scale)
2377       Result |= ScaleField;
2378 
2379     if (countPopulation(Result) > 1)
2380       return MultipleFields;
2381     else
2382       return static_cast<FieldName>(Result);
2383   }
2384 
2385   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2386   // with no offset.
2387   bool isTrivial() {
2388     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2389     // trivial if at most one of these terms is nonzero, except that BaseGV and
2390     // BaseReg both being zero actually means a null pointer value, which we
2391     // consider to be 'non-zero' here.
2392     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2393   }
2394 
2395   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2396     switch (Field) {
2397     default:
2398       return nullptr;
2399     case BaseRegField:
2400       return BaseReg;
2401     case BaseGVField:
2402       return BaseGV;
2403     case ScaledRegField:
2404       return ScaledReg;
2405     case BaseOffsField:
2406       return ConstantInt::get(IntPtrTy, BaseOffs);
2407     }
2408   }
2409 
2410   void SetCombinedField(FieldName Field, Value *V,
2411                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2412     switch (Field) {
2413     default:
2414       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2415       break;
2416     case ExtAddrMode::BaseRegField:
2417       BaseReg = V;
2418       break;
2419     case ExtAddrMode::BaseGVField:
2420       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2421       // in the BaseReg field.
2422       assert(BaseReg == nullptr);
2423       BaseReg = V;
2424       BaseGV = nullptr;
2425       break;
2426     case ExtAddrMode::ScaledRegField:
2427       ScaledReg = V;
2428       // If we have a mix of scaled and unscaled addrmodes then we want scale
2429       // to be the scale and not zero.
2430       if (!Scale)
2431         for (const ExtAddrMode &AM : AddrModes)
2432           if (AM.Scale) {
2433             Scale = AM.Scale;
2434             break;
2435           }
2436       break;
2437     case ExtAddrMode::BaseOffsField:
2438       // The offset is no longer a constant, so it goes in ScaledReg with a
2439       // scale of 1.
2440       assert(ScaledReg == nullptr);
2441       ScaledReg = V;
2442       Scale = 1;
2443       BaseOffs = 0;
2444       break;
2445     }
2446   }
2447 };
2448 
2449 } // end anonymous namespace
2450 
2451 #ifndef NDEBUG
2452 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2453   AM.print(OS);
2454   return OS;
2455 }
2456 #endif
2457 
2458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2459 void ExtAddrMode::print(raw_ostream &OS) const {
2460   bool NeedPlus = false;
2461   OS << "[";
2462   if (InBounds)
2463     OS << "inbounds ";
2464   if (BaseGV) {
2465     OS << (NeedPlus ? " + " : "")
2466        << "GV:";
2467     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2468     NeedPlus = true;
2469   }
2470 
2471   if (BaseOffs) {
2472     OS << (NeedPlus ? " + " : "")
2473        << BaseOffs;
2474     NeedPlus = true;
2475   }
2476 
2477   if (BaseReg) {
2478     OS << (NeedPlus ? " + " : "")
2479        << "Base:";
2480     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2481     NeedPlus = true;
2482   }
2483   if (Scale) {
2484     OS << (NeedPlus ? " + " : "")
2485        << Scale << "*";
2486     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2487   }
2488 
2489   OS << ']';
2490 }
2491 
2492 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2493   print(dbgs());
2494   dbgs() << '\n';
2495 }
2496 #endif
2497 
2498 namespace {
2499 
2500 /// This class provides transaction based operation on the IR.
2501 /// Every change made through this class is recorded in the internal state and
2502 /// can be undone (rollback) until commit is called.
2503 /// CGP does not check if instructions could be speculatively executed when
2504 /// moved. Preserving the original location would pessimize the debugging
2505 /// experience, as well as negatively impact the quality of sample PGO.
2506 class TypePromotionTransaction {
2507   /// This represents the common interface of the individual transaction.
2508   /// Each class implements the logic for doing one specific modification on
2509   /// the IR via the TypePromotionTransaction.
2510   class TypePromotionAction {
2511   protected:
2512     /// The Instruction modified.
2513     Instruction *Inst;
2514 
2515   public:
2516     /// Constructor of the action.
2517     /// The constructor performs the related action on the IR.
2518     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2519 
2520     virtual ~TypePromotionAction() = default;
2521 
2522     /// Undo the modification done by this action.
2523     /// When this method is called, the IR must be in the same state as it was
2524     /// before this action was applied.
2525     /// \pre Undoing the action works if and only if the IR is in the exact same
2526     /// state as it was directly after this action was applied.
2527     virtual void undo() = 0;
2528 
2529     /// Advocate every change made by this action.
2530     /// When the results on the IR of the action are to be kept, it is important
2531     /// to call this function, otherwise hidden information may be kept forever.
2532     virtual void commit() {
2533       // Nothing to be done, this action is not doing anything.
2534     }
2535   };
2536 
2537   /// Utility to remember the position of an instruction.
2538   class InsertionHandler {
2539     /// Position of an instruction.
2540     /// Either an instruction:
2541     /// - Is the first in a basic block: BB is used.
2542     /// - Has a previous instruction: PrevInst is used.
2543     union {
2544       Instruction *PrevInst;
2545       BasicBlock *BB;
2546     } Point;
2547 
2548     /// Remember whether or not the instruction had a previous instruction.
2549     bool HasPrevInstruction;
2550 
2551   public:
2552     /// Record the position of \p Inst.
2553     InsertionHandler(Instruction *Inst) {
2554       BasicBlock::iterator It = Inst->getIterator();
2555       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2556       if (HasPrevInstruction)
2557         Point.PrevInst = &*--It;
2558       else
2559         Point.BB = Inst->getParent();
2560     }
2561 
2562     /// Insert \p Inst at the recorded position.
2563     void insert(Instruction *Inst) {
2564       if (HasPrevInstruction) {
2565         if (Inst->getParent())
2566           Inst->removeFromParent();
2567         Inst->insertAfter(Point.PrevInst);
2568       } else {
2569         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2570         if (Inst->getParent())
2571           Inst->moveBefore(Position);
2572         else
2573           Inst->insertBefore(Position);
2574       }
2575     }
2576   };
2577 
2578   /// Move an instruction before another.
2579   class InstructionMoveBefore : public TypePromotionAction {
2580     /// Original position of the instruction.
2581     InsertionHandler Position;
2582 
2583   public:
2584     /// Move \p Inst before \p Before.
2585     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2586         : TypePromotionAction(Inst), Position(Inst) {
2587       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2588                         << "\n");
2589       Inst->moveBefore(Before);
2590     }
2591 
2592     /// Move the instruction back to its original position.
2593     void undo() override {
2594       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2595       Position.insert(Inst);
2596     }
2597   };
2598 
2599   /// Set the operand of an instruction with a new value.
2600   class OperandSetter : public TypePromotionAction {
2601     /// Original operand of the instruction.
2602     Value *Origin;
2603 
2604     /// Index of the modified instruction.
2605     unsigned Idx;
2606 
2607   public:
2608     /// Set \p Idx operand of \p Inst with \p NewVal.
2609     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2610         : TypePromotionAction(Inst), Idx(Idx) {
2611       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2612                         << "for:" << *Inst << "\n"
2613                         << "with:" << *NewVal << "\n");
2614       Origin = Inst->getOperand(Idx);
2615       Inst->setOperand(Idx, NewVal);
2616     }
2617 
2618     /// Restore the original value of the instruction.
2619     void undo() override {
2620       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2621                         << "for: " << *Inst << "\n"
2622                         << "with: " << *Origin << "\n");
2623       Inst->setOperand(Idx, Origin);
2624     }
2625   };
2626 
2627   /// Hide the operands of an instruction.
2628   /// Do as if this instruction was not using any of its operands.
2629   class OperandsHider : public TypePromotionAction {
2630     /// The list of original operands.
2631     SmallVector<Value *, 4> OriginalValues;
2632 
2633   public:
2634     /// Remove \p Inst from the uses of the operands of \p Inst.
2635     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2636       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2637       unsigned NumOpnds = Inst->getNumOperands();
2638       OriginalValues.reserve(NumOpnds);
2639       for (unsigned It = 0; It < NumOpnds; ++It) {
2640         // Save the current operand.
2641         Value *Val = Inst->getOperand(It);
2642         OriginalValues.push_back(Val);
2643         // Set a dummy one.
2644         // We could use OperandSetter here, but that would imply an overhead
2645         // that we are not willing to pay.
2646         Inst->setOperand(It, UndefValue::get(Val->getType()));
2647       }
2648     }
2649 
2650     /// Restore the original list of uses.
2651     void undo() override {
2652       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2653       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2654         Inst->setOperand(It, OriginalValues[It]);
2655     }
2656   };
2657 
2658   /// Build a truncate instruction.
2659   class TruncBuilder : public TypePromotionAction {
2660     Value *Val;
2661 
2662   public:
2663     /// Build a truncate instruction of \p Opnd producing a \p Ty
2664     /// result.
2665     /// trunc Opnd to Ty.
2666     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2667       IRBuilder<> Builder(Opnd);
2668       Builder.SetCurrentDebugLocation(DebugLoc());
2669       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2670       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2671     }
2672 
2673     /// Get the built value.
2674     Value *getBuiltValue() { return Val; }
2675 
2676     /// Remove the built instruction.
2677     void undo() override {
2678       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2679       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2680         IVal->eraseFromParent();
2681     }
2682   };
2683 
2684   /// Build a sign extension instruction.
2685   class SExtBuilder : public TypePromotionAction {
2686     Value *Val;
2687 
2688   public:
2689     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2690     /// result.
2691     /// sext Opnd to Ty.
2692     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2693         : TypePromotionAction(InsertPt) {
2694       IRBuilder<> Builder(InsertPt);
2695       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2696       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2697     }
2698 
2699     /// Get the built value.
2700     Value *getBuiltValue() { return Val; }
2701 
2702     /// Remove the built instruction.
2703     void undo() override {
2704       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2705       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2706         IVal->eraseFromParent();
2707     }
2708   };
2709 
2710   /// Build a zero extension instruction.
2711   class ZExtBuilder : public TypePromotionAction {
2712     Value *Val;
2713 
2714   public:
2715     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2716     /// result.
2717     /// zext Opnd to Ty.
2718     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2719         : TypePromotionAction(InsertPt) {
2720       IRBuilder<> Builder(InsertPt);
2721       Builder.SetCurrentDebugLocation(DebugLoc());
2722       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2723       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2724     }
2725 
2726     /// Get the built value.
2727     Value *getBuiltValue() { return Val; }
2728 
2729     /// Remove the built instruction.
2730     void undo() override {
2731       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2732       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2733         IVal->eraseFromParent();
2734     }
2735   };
2736 
2737   /// Mutate an instruction to another type.
2738   class TypeMutator : public TypePromotionAction {
2739     /// Record the original type.
2740     Type *OrigTy;
2741 
2742   public:
2743     /// Mutate the type of \p Inst into \p NewTy.
2744     TypeMutator(Instruction *Inst, Type *NewTy)
2745         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2746       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2747                         << "\n");
2748       Inst->mutateType(NewTy);
2749     }
2750 
2751     /// Mutate the instruction back to its original type.
2752     void undo() override {
2753       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2754                         << "\n");
2755       Inst->mutateType(OrigTy);
2756     }
2757   };
2758 
2759   /// Replace the uses of an instruction by another instruction.
2760   class UsesReplacer : public TypePromotionAction {
2761     /// Helper structure to keep track of the replaced uses.
2762     struct InstructionAndIdx {
2763       /// The instruction using the instruction.
2764       Instruction *Inst;
2765 
2766       /// The index where this instruction is used for Inst.
2767       unsigned Idx;
2768 
2769       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2770           : Inst(Inst), Idx(Idx) {}
2771     };
2772 
2773     /// Keep track of the original uses (pair Instruction, Index).
2774     SmallVector<InstructionAndIdx, 4> OriginalUses;
2775     /// Keep track of the debug users.
2776     SmallVector<DbgValueInst *, 1> DbgValues;
2777 
2778     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2779 
2780   public:
2781     /// Replace all the use of \p Inst by \p New.
2782     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2783       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2784                         << "\n");
2785       // Record the original uses.
2786       for (Use &U : Inst->uses()) {
2787         Instruction *UserI = cast<Instruction>(U.getUser());
2788         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2789       }
2790       // Record the debug uses separately. They are not in the instruction's
2791       // use list, but they are replaced by RAUW.
2792       findDbgValues(DbgValues, Inst);
2793 
2794       // Now, we can replace the uses.
2795       Inst->replaceAllUsesWith(New);
2796     }
2797 
2798     /// Reassign the original uses of Inst to Inst.
2799     void undo() override {
2800       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2801       for (use_iterator UseIt = OriginalUses.begin(),
2802                         EndIt = OriginalUses.end();
2803            UseIt != EndIt; ++UseIt) {
2804         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2805       }
2806       // RAUW has replaced all original uses with references to the new value,
2807       // including the debug uses. Since we are undoing the replacements,
2808       // the original debug uses must also be reinstated to maintain the
2809       // correctness and utility of debug value instructions.
2810       for (auto *DVI: DbgValues) {
2811         LLVMContext &Ctx = Inst->getType()->getContext();
2812         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2813         DVI->setOperand(0, MV);
2814       }
2815     }
2816   };
2817 
2818   /// Remove an instruction from the IR.
2819   class InstructionRemover : public TypePromotionAction {
2820     /// Original position of the instruction.
2821     InsertionHandler Inserter;
2822 
2823     /// Helper structure to hide all the link to the instruction. In other
2824     /// words, this helps to do as if the instruction was removed.
2825     OperandsHider Hider;
2826 
2827     /// Keep track of the uses replaced, if any.
2828     UsesReplacer *Replacer = nullptr;
2829 
2830     /// Keep track of instructions removed.
2831     SetOfInstrs &RemovedInsts;
2832 
2833   public:
2834     /// Remove all reference of \p Inst and optionally replace all its
2835     /// uses with New.
2836     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2837     /// \pre If !Inst->use_empty(), then New != nullptr
2838     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2839                        Value *New = nullptr)
2840         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2841           RemovedInsts(RemovedInsts) {
2842       if (New)
2843         Replacer = new UsesReplacer(Inst, New);
2844       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2845       RemovedInsts.insert(Inst);
2846       /// The instructions removed here will be freed after completing
2847       /// optimizeBlock() for all blocks as we need to keep track of the
2848       /// removed instructions during promotion.
2849       Inst->removeFromParent();
2850     }
2851 
2852     ~InstructionRemover() override { delete Replacer; }
2853 
2854     /// Resurrect the instruction and reassign it to the proper uses if
2855     /// new value was provided when build this action.
2856     void undo() override {
2857       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2858       Inserter.insert(Inst);
2859       if (Replacer)
2860         Replacer->undo();
2861       Hider.undo();
2862       RemovedInsts.erase(Inst);
2863     }
2864   };
2865 
2866 public:
2867   /// Restoration point.
2868   /// The restoration point is a pointer to an action instead of an iterator
2869   /// because the iterator may be invalidated but not the pointer.
2870   using ConstRestorationPt = const TypePromotionAction *;
2871 
2872   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2873       : RemovedInsts(RemovedInsts) {}
2874 
2875   /// Advocate every changes made in that transaction. Return true if any change
2876   /// happen.
2877   bool commit();
2878 
2879   /// Undo all the changes made after the given point.
2880   void rollback(ConstRestorationPt Point);
2881 
2882   /// Get the current restoration point.
2883   ConstRestorationPt getRestorationPoint() const;
2884 
2885   /// \name API for IR modification with state keeping to support rollback.
2886   /// @{
2887   /// Same as Instruction::setOperand.
2888   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2889 
2890   /// Same as Instruction::eraseFromParent.
2891   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2892 
2893   /// Same as Value::replaceAllUsesWith.
2894   void replaceAllUsesWith(Instruction *Inst, Value *New);
2895 
2896   /// Same as Value::mutateType.
2897   void mutateType(Instruction *Inst, Type *NewTy);
2898 
2899   /// Same as IRBuilder::createTrunc.
2900   Value *createTrunc(Instruction *Opnd, Type *Ty);
2901 
2902   /// Same as IRBuilder::createSExt.
2903   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2904 
2905   /// Same as IRBuilder::createZExt.
2906   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2907 
2908   /// Same as Instruction::moveBefore.
2909   void moveBefore(Instruction *Inst, Instruction *Before);
2910   /// @}
2911 
2912 private:
2913   /// The ordered list of actions made so far.
2914   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2915 
2916   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2917 
2918   SetOfInstrs &RemovedInsts;
2919 };
2920 
2921 } // end anonymous namespace
2922 
2923 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2924                                           Value *NewVal) {
2925   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2926       Inst, Idx, NewVal));
2927 }
2928 
2929 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2930                                                 Value *NewVal) {
2931   Actions.push_back(
2932       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2933           Inst, RemovedInsts, NewVal));
2934 }
2935 
2936 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2937                                                   Value *New) {
2938   Actions.push_back(
2939       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2940 }
2941 
2942 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2943   Actions.push_back(
2944       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2945 }
2946 
2947 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2948                                              Type *Ty) {
2949   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2950   Value *Val = Ptr->getBuiltValue();
2951   Actions.push_back(std::move(Ptr));
2952   return Val;
2953 }
2954 
2955 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2956                                             Value *Opnd, Type *Ty) {
2957   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2958   Value *Val = Ptr->getBuiltValue();
2959   Actions.push_back(std::move(Ptr));
2960   return Val;
2961 }
2962 
2963 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2964                                             Value *Opnd, Type *Ty) {
2965   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2966   Value *Val = Ptr->getBuiltValue();
2967   Actions.push_back(std::move(Ptr));
2968   return Val;
2969 }
2970 
2971 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2972                                           Instruction *Before) {
2973   Actions.push_back(
2974       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2975           Inst, Before));
2976 }
2977 
2978 TypePromotionTransaction::ConstRestorationPt
2979 TypePromotionTransaction::getRestorationPoint() const {
2980   return !Actions.empty() ? Actions.back().get() : nullptr;
2981 }
2982 
2983 bool TypePromotionTransaction::commit() {
2984   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2985        ++It)
2986     (*It)->commit();
2987   bool Modified = !Actions.empty();
2988   Actions.clear();
2989   return Modified;
2990 }
2991 
2992 void TypePromotionTransaction::rollback(
2993     TypePromotionTransaction::ConstRestorationPt Point) {
2994   while (!Actions.empty() && Point != Actions.back().get()) {
2995     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2996     Curr->undo();
2997   }
2998 }
2999 
3000 namespace {
3001 
3002 /// A helper class for matching addressing modes.
3003 ///
3004 /// This encapsulates the logic for matching the target-legal addressing modes.
3005 class AddressingModeMatcher {
3006   SmallVectorImpl<Instruction*> &AddrModeInsts;
3007   const TargetLowering &TLI;
3008   const TargetRegisterInfo &TRI;
3009   const DataLayout &DL;
3010 
3011   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3012   /// the memory instruction that we're computing this address for.
3013   Type *AccessTy;
3014   unsigned AddrSpace;
3015   Instruction *MemoryInst;
3016 
3017   /// This is the addressing mode that we're building up. This is
3018   /// part of the return value of this addressing mode matching stuff.
3019   ExtAddrMode &AddrMode;
3020 
3021   /// The instructions inserted by other CodeGenPrepare optimizations.
3022   const SetOfInstrs &InsertedInsts;
3023 
3024   /// A map from the instructions to their type before promotion.
3025   InstrToOrigTy &PromotedInsts;
3026 
3027   /// The ongoing transaction where every action should be registered.
3028   TypePromotionTransaction &TPT;
3029 
3030   // A GEP which has too large offset to be folded into the addressing mode.
3031   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3032 
3033   /// This is set to true when we should not do profitability checks.
3034   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3035   bool IgnoreProfitability;
3036 
3037   /// True if we are optimizing for size.
3038   bool OptSize;
3039 
3040   ProfileSummaryInfo *PSI;
3041   BlockFrequencyInfo *BFI;
3042 
3043   AddressingModeMatcher(
3044       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3045       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
3046       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
3047       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3048       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3049       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3050       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3051         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3052         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3053         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
3054         OptSize(OptSize), PSI(PSI), BFI(BFI) {
3055     IgnoreProfitability = false;
3056   }
3057 
3058 public:
3059   /// Find the maximal addressing mode that a load/store of V can fold,
3060   /// give an access type of AccessTy.  This returns a list of involved
3061   /// instructions in AddrModeInsts.
3062   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3063   /// optimizations.
3064   /// \p PromotedInsts maps the instructions to their type before promotion.
3065   /// \p The ongoing transaction where every action should be registered.
3066   static ExtAddrMode
3067   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3068         SmallVectorImpl<Instruction *> &AddrModeInsts,
3069         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
3070         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3071         TypePromotionTransaction &TPT,
3072         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3073         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3074     ExtAddrMode Result;
3075 
3076     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
3077                                          MemoryInst, Result, InsertedInsts,
3078                                          PromotedInsts, TPT, LargeOffsetGEP,
3079                                          OptSize, PSI, BFI)
3080                        .matchAddr(V, 0);
3081     (void)Success; assert(Success && "Couldn't select *anything*?");
3082     return Result;
3083   }
3084 
3085 private:
3086   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3087   bool matchAddr(Value *Addr, unsigned Depth);
3088   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3089                           bool *MovedAway = nullptr);
3090   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3091                                             ExtAddrMode &AMBefore,
3092                                             ExtAddrMode &AMAfter);
3093   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3094   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3095                              Value *PromotedOperand) const;
3096 };
3097 
3098 class PhiNodeSet;
3099 
3100 /// An iterator for PhiNodeSet.
3101 class PhiNodeSetIterator {
3102   PhiNodeSet * const Set;
3103   size_t CurrentIndex = 0;
3104 
3105 public:
3106   /// The constructor. Start should point to either a valid element, or be equal
3107   /// to the size of the underlying SmallVector of the PhiNodeSet.
3108   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3109   PHINode * operator*() const;
3110   PhiNodeSetIterator& operator++();
3111   bool operator==(const PhiNodeSetIterator &RHS) const;
3112   bool operator!=(const PhiNodeSetIterator &RHS) const;
3113 };
3114 
3115 /// Keeps a set of PHINodes.
3116 ///
3117 /// This is a minimal set implementation for a specific use case:
3118 /// It is very fast when there are very few elements, but also provides good
3119 /// performance when there are many. It is similar to SmallPtrSet, but also
3120 /// provides iteration by insertion order, which is deterministic and stable
3121 /// across runs. It is also similar to SmallSetVector, but provides removing
3122 /// elements in O(1) time. This is achieved by not actually removing the element
3123 /// from the underlying vector, so comes at the cost of using more memory, but
3124 /// that is fine, since PhiNodeSets are used as short lived objects.
3125 class PhiNodeSet {
3126   friend class PhiNodeSetIterator;
3127 
3128   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3129   using iterator =  PhiNodeSetIterator;
3130 
3131   /// Keeps the elements in the order of their insertion in the underlying
3132   /// vector. To achieve constant time removal, it never deletes any element.
3133   SmallVector<PHINode *, 32> NodeList;
3134 
3135   /// Keeps the elements in the underlying set implementation. This (and not the
3136   /// NodeList defined above) is the source of truth on whether an element
3137   /// is actually in the collection.
3138   MapType NodeMap;
3139 
3140   /// Points to the first valid (not deleted) element when the set is not empty
3141   /// and the value is not zero. Equals to the size of the underlying vector
3142   /// when the set is empty. When the value is 0, as in the beginning, the
3143   /// first element may or may not be valid.
3144   size_t FirstValidElement = 0;
3145 
3146 public:
3147   /// Inserts a new element to the collection.
3148   /// \returns true if the element is actually added, i.e. was not in the
3149   /// collection before the operation.
3150   bool insert(PHINode *Ptr) {
3151     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3152       NodeList.push_back(Ptr);
3153       return true;
3154     }
3155     return false;
3156   }
3157 
3158   /// Removes the element from the collection.
3159   /// \returns whether the element is actually removed, i.e. was in the
3160   /// collection before the operation.
3161   bool erase(PHINode *Ptr) {
3162     if (NodeMap.erase(Ptr)) {
3163       SkipRemovedElements(FirstValidElement);
3164       return true;
3165     }
3166     return false;
3167   }
3168 
3169   /// Removes all elements and clears the collection.
3170   void clear() {
3171     NodeMap.clear();
3172     NodeList.clear();
3173     FirstValidElement = 0;
3174   }
3175 
3176   /// \returns an iterator that will iterate the elements in the order of
3177   /// insertion.
3178   iterator begin() {
3179     if (FirstValidElement == 0)
3180       SkipRemovedElements(FirstValidElement);
3181     return PhiNodeSetIterator(this, FirstValidElement);
3182   }
3183 
3184   /// \returns an iterator that points to the end of the collection.
3185   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3186 
3187   /// Returns the number of elements in the collection.
3188   size_t size() const {
3189     return NodeMap.size();
3190   }
3191 
3192   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3193   size_t count(PHINode *Ptr) const {
3194     return NodeMap.count(Ptr);
3195   }
3196 
3197 private:
3198   /// Updates the CurrentIndex so that it will point to a valid element.
3199   ///
3200   /// If the element of NodeList at CurrentIndex is valid, it does not
3201   /// change it. If there are no more valid elements, it updates CurrentIndex
3202   /// to point to the end of the NodeList.
3203   void SkipRemovedElements(size_t &CurrentIndex) {
3204     while (CurrentIndex < NodeList.size()) {
3205       auto it = NodeMap.find(NodeList[CurrentIndex]);
3206       // If the element has been deleted and added again later, NodeMap will
3207       // point to a different index, so CurrentIndex will still be invalid.
3208       if (it != NodeMap.end() && it->second == CurrentIndex)
3209         break;
3210       ++CurrentIndex;
3211     }
3212   }
3213 };
3214 
3215 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3216     : Set(Set), CurrentIndex(Start) {}
3217 
3218 PHINode * PhiNodeSetIterator::operator*() const {
3219   assert(CurrentIndex < Set->NodeList.size() &&
3220          "PhiNodeSet access out of range");
3221   return Set->NodeList[CurrentIndex];
3222 }
3223 
3224 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3225   assert(CurrentIndex < Set->NodeList.size() &&
3226          "PhiNodeSet access out of range");
3227   ++CurrentIndex;
3228   Set->SkipRemovedElements(CurrentIndex);
3229   return *this;
3230 }
3231 
3232 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3233   return CurrentIndex == RHS.CurrentIndex;
3234 }
3235 
3236 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3237   return !((*this) == RHS);
3238 }
3239 
3240 /// Keep track of simplification of Phi nodes.
3241 /// Accept the set of all phi nodes and erase phi node from this set
3242 /// if it is simplified.
3243 class SimplificationTracker {
3244   DenseMap<Value *, Value *> Storage;
3245   const SimplifyQuery &SQ;
3246   // Tracks newly created Phi nodes. The elements are iterated by insertion
3247   // order.
3248   PhiNodeSet AllPhiNodes;
3249   // Tracks newly created Select nodes.
3250   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3251 
3252 public:
3253   SimplificationTracker(const SimplifyQuery &sq)
3254       : SQ(sq) {}
3255 
3256   Value *Get(Value *V) {
3257     do {
3258       auto SV = Storage.find(V);
3259       if (SV == Storage.end())
3260         return V;
3261       V = SV->second;
3262     } while (true);
3263   }
3264 
3265   Value *Simplify(Value *Val) {
3266     SmallVector<Value *, 32> WorkList;
3267     SmallPtrSet<Value *, 32> Visited;
3268     WorkList.push_back(Val);
3269     while (!WorkList.empty()) {
3270       auto *P = WorkList.pop_back_val();
3271       if (!Visited.insert(P).second)
3272         continue;
3273       if (auto *PI = dyn_cast<Instruction>(P))
3274         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3275           for (auto *U : PI->users())
3276             WorkList.push_back(cast<Value>(U));
3277           Put(PI, V);
3278           PI->replaceAllUsesWith(V);
3279           if (auto *PHI = dyn_cast<PHINode>(PI))
3280             AllPhiNodes.erase(PHI);
3281           if (auto *Select = dyn_cast<SelectInst>(PI))
3282             AllSelectNodes.erase(Select);
3283           PI->eraseFromParent();
3284         }
3285     }
3286     return Get(Val);
3287   }
3288 
3289   void Put(Value *From, Value *To) {
3290     Storage.insert({ From, To });
3291   }
3292 
3293   void ReplacePhi(PHINode *From, PHINode *To) {
3294     Value* OldReplacement = Get(From);
3295     while (OldReplacement != From) {
3296       From = To;
3297       To = dyn_cast<PHINode>(OldReplacement);
3298       OldReplacement = Get(From);
3299     }
3300     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3301     Put(From, To);
3302     From->replaceAllUsesWith(To);
3303     AllPhiNodes.erase(From);
3304     From->eraseFromParent();
3305   }
3306 
3307   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3308 
3309   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3310 
3311   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3312 
3313   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3314 
3315   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3316 
3317   void destroyNewNodes(Type *CommonType) {
3318     // For safe erasing, replace the uses with dummy value first.
3319     auto *Dummy = UndefValue::get(CommonType);
3320     for (auto *I : AllPhiNodes) {
3321       I->replaceAllUsesWith(Dummy);
3322       I->eraseFromParent();
3323     }
3324     AllPhiNodes.clear();
3325     for (auto *I : AllSelectNodes) {
3326       I->replaceAllUsesWith(Dummy);
3327       I->eraseFromParent();
3328     }
3329     AllSelectNodes.clear();
3330   }
3331 };
3332 
3333 /// A helper class for combining addressing modes.
3334 class AddressingModeCombiner {
3335   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3336   typedef std::pair<PHINode *, PHINode *> PHIPair;
3337 
3338 private:
3339   /// The addressing modes we've collected.
3340   SmallVector<ExtAddrMode, 16> AddrModes;
3341 
3342   /// The field in which the AddrModes differ, when we have more than one.
3343   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3344 
3345   /// Are the AddrModes that we have all just equal to their original values?
3346   bool AllAddrModesTrivial = true;
3347 
3348   /// Common Type for all different fields in addressing modes.
3349   Type *CommonType;
3350 
3351   /// SimplifyQuery for simplifyInstruction utility.
3352   const SimplifyQuery &SQ;
3353 
3354   /// Original Address.
3355   Value *Original;
3356 
3357 public:
3358   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3359       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3360 
3361   /// Get the combined AddrMode
3362   const ExtAddrMode &getAddrMode() const {
3363     return AddrModes[0];
3364   }
3365 
3366   /// Add a new AddrMode if it's compatible with the AddrModes we already
3367   /// have.
3368   /// \return True iff we succeeded in doing so.
3369   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3370     // Take note of if we have any non-trivial AddrModes, as we need to detect
3371     // when all AddrModes are trivial as then we would introduce a phi or select
3372     // which just duplicates what's already there.
3373     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3374 
3375     // If this is the first addrmode then everything is fine.
3376     if (AddrModes.empty()) {
3377       AddrModes.emplace_back(NewAddrMode);
3378       return true;
3379     }
3380 
3381     // Figure out how different this is from the other address modes, which we
3382     // can do just by comparing against the first one given that we only care
3383     // about the cumulative difference.
3384     ExtAddrMode::FieldName ThisDifferentField =
3385       AddrModes[0].compare(NewAddrMode);
3386     if (DifferentField == ExtAddrMode::NoField)
3387       DifferentField = ThisDifferentField;
3388     else if (DifferentField != ThisDifferentField)
3389       DifferentField = ExtAddrMode::MultipleFields;
3390 
3391     // If NewAddrMode differs in more than one dimension we cannot handle it.
3392     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3393 
3394     // If Scale Field is different then we reject.
3395     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3396 
3397     // We also must reject the case when base offset is different and
3398     // scale reg is not null, we cannot handle this case due to merge of
3399     // different offsets will be used as ScaleReg.
3400     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3401                               !NewAddrMode.ScaledReg);
3402 
3403     // We also must reject the case when GV is different and BaseReg installed
3404     // due to we want to use base reg as a merge of GV values.
3405     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3406                               !NewAddrMode.HasBaseReg);
3407 
3408     // Even if NewAddMode is the same we still need to collect it due to
3409     // original value is different. And later we will need all original values
3410     // as anchors during finding the common Phi node.
3411     if (CanHandle)
3412       AddrModes.emplace_back(NewAddrMode);
3413     else
3414       AddrModes.clear();
3415 
3416     return CanHandle;
3417   }
3418 
3419   /// Combine the addressing modes we've collected into a single
3420   /// addressing mode.
3421   /// \return True iff we successfully combined them or we only had one so
3422   /// didn't need to combine them anyway.
3423   bool combineAddrModes() {
3424     // If we have no AddrModes then they can't be combined.
3425     if (AddrModes.size() == 0)
3426       return false;
3427 
3428     // A single AddrMode can trivially be combined.
3429     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3430       return true;
3431 
3432     // If the AddrModes we collected are all just equal to the value they are
3433     // derived from then combining them wouldn't do anything useful.
3434     if (AllAddrModesTrivial)
3435       return false;
3436 
3437     if (!addrModeCombiningAllowed())
3438       return false;
3439 
3440     // Build a map between <original value, basic block where we saw it> to
3441     // value of base register.
3442     // Bail out if there is no common type.
3443     FoldAddrToValueMapping Map;
3444     if (!initializeMap(Map))
3445       return false;
3446 
3447     Value *CommonValue = findCommon(Map);
3448     if (CommonValue)
3449       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3450     return CommonValue != nullptr;
3451   }
3452 
3453 private:
3454   /// Initialize Map with anchor values. For address seen
3455   /// we set the value of different field saw in this address.
3456   /// At the same time we find a common type for different field we will
3457   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3458   /// Return false if there is no common type found.
3459   bool initializeMap(FoldAddrToValueMapping &Map) {
3460     // Keep track of keys where the value is null. We will need to replace it
3461     // with constant null when we know the common type.
3462     SmallVector<Value *, 2> NullValue;
3463     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3464     for (auto &AM : AddrModes) {
3465       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3466       if (DV) {
3467         auto *Type = DV->getType();
3468         if (CommonType && CommonType != Type)
3469           return false;
3470         CommonType = Type;
3471         Map[AM.OriginalValue] = DV;
3472       } else {
3473         NullValue.push_back(AM.OriginalValue);
3474       }
3475     }
3476     assert(CommonType && "At least one non-null value must be!");
3477     for (auto *V : NullValue)
3478       Map[V] = Constant::getNullValue(CommonType);
3479     return true;
3480   }
3481 
3482   /// We have mapping between value A and other value B where B was a field in
3483   /// addressing mode represented by A. Also we have an original value C
3484   /// representing an address we start with. Traversing from C through phi and
3485   /// selects we ended up with A's in a map. This utility function tries to find
3486   /// a value V which is a field in addressing mode C and traversing through phi
3487   /// nodes and selects we will end up in corresponded values B in a map.
3488   /// The utility will create a new Phi/Selects if needed.
3489   // The simple example looks as follows:
3490   // BB1:
3491   //   p1 = b1 + 40
3492   //   br cond BB2, BB3
3493   // BB2:
3494   //   p2 = b2 + 40
3495   //   br BB3
3496   // BB3:
3497   //   p = phi [p1, BB1], [p2, BB2]
3498   //   v = load p
3499   // Map is
3500   //   p1 -> b1
3501   //   p2 -> b2
3502   // Request is
3503   //   p -> ?
3504   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3505   Value *findCommon(FoldAddrToValueMapping &Map) {
3506     // Tracks the simplification of newly created phi nodes. The reason we use
3507     // this mapping is because we will add new created Phi nodes in AddrToBase.
3508     // Simplification of Phi nodes is recursive, so some Phi node may
3509     // be simplified after we added it to AddrToBase. In reality this
3510     // simplification is possible only if original phi/selects were not
3511     // simplified yet.
3512     // Using this mapping we can find the current value in AddrToBase.
3513     SimplificationTracker ST(SQ);
3514 
3515     // First step, DFS to create PHI nodes for all intermediate blocks.
3516     // Also fill traverse order for the second step.
3517     SmallVector<Value *, 32> TraverseOrder;
3518     InsertPlaceholders(Map, TraverseOrder, ST);
3519 
3520     // Second Step, fill new nodes by merged values and simplify if possible.
3521     FillPlaceholders(Map, TraverseOrder, ST);
3522 
3523     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3524       ST.destroyNewNodes(CommonType);
3525       return nullptr;
3526     }
3527 
3528     // Now we'd like to match New Phi nodes to existed ones.
3529     unsigned PhiNotMatchedCount = 0;
3530     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3531       ST.destroyNewNodes(CommonType);
3532       return nullptr;
3533     }
3534 
3535     auto *Result = ST.Get(Map.find(Original)->second);
3536     if (Result) {
3537       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3538       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3539     }
3540     return Result;
3541   }
3542 
3543   /// Try to match PHI node to Candidate.
3544   /// Matcher tracks the matched Phi nodes.
3545   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3546                     SmallSetVector<PHIPair, 8> &Matcher,
3547                     PhiNodeSet &PhiNodesToMatch) {
3548     SmallVector<PHIPair, 8> WorkList;
3549     Matcher.insert({ PHI, Candidate });
3550     SmallSet<PHINode *, 8> MatchedPHIs;
3551     MatchedPHIs.insert(PHI);
3552     WorkList.push_back({ PHI, Candidate });
3553     SmallSet<PHIPair, 8> Visited;
3554     while (!WorkList.empty()) {
3555       auto Item = WorkList.pop_back_val();
3556       if (!Visited.insert(Item).second)
3557         continue;
3558       // We iterate over all incoming values to Phi to compare them.
3559       // If values are different and both of them Phi and the first one is a
3560       // Phi we added (subject to match) and both of them is in the same basic
3561       // block then we can match our pair if values match. So we state that
3562       // these values match and add it to work list to verify that.
3563       for (auto B : Item.first->blocks()) {
3564         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3565         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3566         if (FirstValue == SecondValue)
3567           continue;
3568 
3569         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3570         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3571 
3572         // One of them is not Phi or
3573         // The first one is not Phi node from the set we'd like to match or
3574         // Phi nodes from different basic blocks then
3575         // we will not be able to match.
3576         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3577             FirstPhi->getParent() != SecondPhi->getParent())
3578           return false;
3579 
3580         // If we already matched them then continue.
3581         if (Matcher.count({ FirstPhi, SecondPhi }))
3582           continue;
3583         // So the values are different and does not match. So we need them to
3584         // match. (But we register no more than one match per PHI node, so that
3585         // we won't later try to replace them twice.)
3586         if (MatchedPHIs.insert(FirstPhi).second)
3587           Matcher.insert({ FirstPhi, SecondPhi });
3588         // But me must check it.
3589         WorkList.push_back({ FirstPhi, SecondPhi });
3590       }
3591     }
3592     return true;
3593   }
3594 
3595   /// For the given set of PHI nodes (in the SimplificationTracker) try
3596   /// to find their equivalents.
3597   /// Returns false if this matching fails and creation of new Phi is disabled.
3598   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3599                    unsigned &PhiNotMatchedCount) {
3600     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3601     // order, so the replacements (ReplacePhi) are also done in a deterministic
3602     // order.
3603     SmallSetVector<PHIPair, 8> Matched;
3604     SmallPtrSet<PHINode *, 8> WillNotMatch;
3605     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3606     while (PhiNodesToMatch.size()) {
3607       PHINode *PHI = *PhiNodesToMatch.begin();
3608 
3609       // Add us, if no Phi nodes in the basic block we do not match.
3610       WillNotMatch.clear();
3611       WillNotMatch.insert(PHI);
3612 
3613       // Traverse all Phis until we found equivalent or fail to do that.
3614       bool IsMatched = false;
3615       for (auto &P : PHI->getParent()->phis()) {
3616         if (&P == PHI)
3617           continue;
3618         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3619           break;
3620         // If it does not match, collect all Phi nodes from matcher.
3621         // if we end up with no match, them all these Phi nodes will not match
3622         // later.
3623         for (auto M : Matched)
3624           WillNotMatch.insert(M.first);
3625         Matched.clear();
3626       }
3627       if (IsMatched) {
3628         // Replace all matched values and erase them.
3629         for (auto MV : Matched)
3630           ST.ReplacePhi(MV.first, MV.second);
3631         Matched.clear();
3632         continue;
3633       }
3634       // If we are not allowed to create new nodes then bail out.
3635       if (!AllowNewPhiNodes)
3636         return false;
3637       // Just remove all seen values in matcher. They will not match anything.
3638       PhiNotMatchedCount += WillNotMatch.size();
3639       for (auto *P : WillNotMatch)
3640         PhiNodesToMatch.erase(P);
3641     }
3642     return true;
3643   }
3644   /// Fill the placeholders with values from predecessors and simplify them.
3645   void FillPlaceholders(FoldAddrToValueMapping &Map,
3646                         SmallVectorImpl<Value *> &TraverseOrder,
3647                         SimplificationTracker &ST) {
3648     while (!TraverseOrder.empty()) {
3649       Value *Current = TraverseOrder.pop_back_val();
3650       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3651       Value *V = Map[Current];
3652 
3653       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3654         // CurrentValue also must be Select.
3655         auto *CurrentSelect = cast<SelectInst>(Current);
3656         auto *TrueValue = CurrentSelect->getTrueValue();
3657         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3658         Select->setTrueValue(ST.Get(Map[TrueValue]));
3659         auto *FalseValue = CurrentSelect->getFalseValue();
3660         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3661         Select->setFalseValue(ST.Get(Map[FalseValue]));
3662       } else {
3663         // Must be a Phi node then.
3664         auto *PHI = cast<PHINode>(V);
3665         // Fill the Phi node with values from predecessors.
3666         for (auto *B : predecessors(PHI->getParent())) {
3667           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3668           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3669           PHI->addIncoming(ST.Get(Map[PV]), B);
3670         }
3671       }
3672       Map[Current] = ST.Simplify(V);
3673     }
3674   }
3675 
3676   /// Starting from original value recursively iterates over def-use chain up to
3677   /// known ending values represented in a map. For each traversed phi/select
3678   /// inserts a placeholder Phi or Select.
3679   /// Reports all new created Phi/Select nodes by adding them to set.
3680   /// Also reports and order in what values have been traversed.
3681   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3682                           SmallVectorImpl<Value *> &TraverseOrder,
3683                           SimplificationTracker &ST) {
3684     SmallVector<Value *, 32> Worklist;
3685     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3686            "Address must be a Phi or Select node");
3687     auto *Dummy = UndefValue::get(CommonType);
3688     Worklist.push_back(Original);
3689     while (!Worklist.empty()) {
3690       Value *Current = Worklist.pop_back_val();
3691       // if it is already visited or it is an ending value then skip it.
3692       if (Map.find(Current) != Map.end())
3693         continue;
3694       TraverseOrder.push_back(Current);
3695 
3696       // CurrentValue must be a Phi node or select. All others must be covered
3697       // by anchors.
3698       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3699         // Is it OK to get metadata from OrigSelect?!
3700         // Create a Select placeholder with dummy value.
3701         SelectInst *Select = SelectInst::Create(
3702             CurrentSelect->getCondition(), Dummy, Dummy,
3703             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3704         Map[Current] = Select;
3705         ST.insertNewSelect(Select);
3706         // We are interested in True and False values.
3707         Worklist.push_back(CurrentSelect->getTrueValue());
3708         Worklist.push_back(CurrentSelect->getFalseValue());
3709       } else {
3710         // It must be a Phi node then.
3711         PHINode *CurrentPhi = cast<PHINode>(Current);
3712         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3713         PHINode *PHI =
3714             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3715         Map[Current] = PHI;
3716         ST.insertNewPhi(PHI);
3717         append_range(Worklist, CurrentPhi->incoming_values());
3718       }
3719     }
3720   }
3721 
3722   bool addrModeCombiningAllowed() {
3723     if (DisableComplexAddrModes)
3724       return false;
3725     switch (DifferentField) {
3726     default:
3727       return false;
3728     case ExtAddrMode::BaseRegField:
3729       return AddrSinkCombineBaseReg;
3730     case ExtAddrMode::BaseGVField:
3731       return AddrSinkCombineBaseGV;
3732     case ExtAddrMode::BaseOffsField:
3733       return AddrSinkCombineBaseOffs;
3734     case ExtAddrMode::ScaledRegField:
3735       return AddrSinkCombineScaledReg;
3736     }
3737   }
3738 };
3739 } // end anonymous namespace
3740 
3741 /// Try adding ScaleReg*Scale to the current addressing mode.
3742 /// Return true and update AddrMode if this addr mode is legal for the target,
3743 /// false if not.
3744 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3745                                              unsigned Depth) {
3746   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3747   // mode.  Just process that directly.
3748   if (Scale == 1)
3749     return matchAddr(ScaleReg, Depth);
3750 
3751   // If the scale is 0, it takes nothing to add this.
3752   if (Scale == 0)
3753     return true;
3754 
3755   // If we already have a scale of this value, we can add to it, otherwise, we
3756   // need an available scale field.
3757   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3758     return false;
3759 
3760   ExtAddrMode TestAddrMode = AddrMode;
3761 
3762   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3763   // [A+B + A*7] -> [B+A*8].
3764   TestAddrMode.Scale += Scale;
3765   TestAddrMode.ScaledReg = ScaleReg;
3766 
3767   // If the new address isn't legal, bail out.
3768   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3769     return false;
3770 
3771   // It was legal, so commit it.
3772   AddrMode = TestAddrMode;
3773 
3774   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3775   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3776   // X*Scale + C*Scale to addr mode.
3777   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3778   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3779       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3780       CI->getValue().isSignedIntN(64)) {
3781     TestAddrMode.InBounds = false;
3782     TestAddrMode.ScaledReg = AddLHS;
3783     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3784 
3785     // If this addressing mode is legal, commit it and remember that we folded
3786     // this instruction.
3787     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3788       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3789       AddrMode = TestAddrMode;
3790       return true;
3791     }
3792   }
3793 
3794   // Otherwise, not (x+c)*scale, just return what we have.
3795   return true;
3796 }
3797 
3798 /// This is a little filter, which returns true if an addressing computation
3799 /// involving I might be folded into a load/store accessing it.
3800 /// This doesn't need to be perfect, but needs to accept at least
3801 /// the set of instructions that MatchOperationAddr can.
3802 static bool MightBeFoldableInst(Instruction *I) {
3803   switch (I->getOpcode()) {
3804   case Instruction::BitCast:
3805   case Instruction::AddrSpaceCast:
3806     // Don't touch identity bitcasts.
3807     if (I->getType() == I->getOperand(0)->getType())
3808       return false;
3809     return I->getType()->isIntOrPtrTy();
3810   case Instruction::PtrToInt:
3811     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3812     return true;
3813   case Instruction::IntToPtr:
3814     // We know the input is intptr_t, so this is foldable.
3815     return true;
3816   case Instruction::Add:
3817     return true;
3818   case Instruction::Mul:
3819   case Instruction::Shl:
3820     // Can only handle X*C and X << C.
3821     return isa<ConstantInt>(I->getOperand(1));
3822   case Instruction::GetElementPtr:
3823     return true;
3824   default:
3825     return false;
3826   }
3827 }
3828 
3829 /// Check whether or not \p Val is a legal instruction for \p TLI.
3830 /// \note \p Val is assumed to be the product of some type promotion.
3831 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3832 /// to be legal, as the non-promoted value would have had the same state.
3833 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3834                                        const DataLayout &DL, Value *Val) {
3835   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3836   if (!PromotedInst)
3837     return false;
3838   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3839   // If the ISDOpcode is undefined, it was undefined before the promotion.
3840   if (!ISDOpcode)
3841     return true;
3842   // Otherwise, check if the promoted instruction is legal or not.
3843   return TLI.isOperationLegalOrCustom(
3844       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3845 }
3846 
3847 namespace {
3848 
3849 /// Hepler class to perform type promotion.
3850 class TypePromotionHelper {
3851   /// Utility function to add a promoted instruction \p ExtOpnd to
3852   /// \p PromotedInsts and record the type of extension we have seen.
3853   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3854                               Instruction *ExtOpnd,
3855                               bool IsSExt) {
3856     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3857     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3858     if (It != PromotedInsts.end()) {
3859       // If the new extension is same as original, the information in
3860       // PromotedInsts[ExtOpnd] is still correct.
3861       if (It->second.getInt() == ExtTy)
3862         return;
3863 
3864       // Now the new extension is different from old extension, we make
3865       // the type information invalid by setting extension type to
3866       // BothExtension.
3867       ExtTy = BothExtension;
3868     }
3869     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3870   }
3871 
3872   /// Utility function to query the original type of instruction \p Opnd
3873   /// with a matched extension type. If the extension doesn't match, we
3874   /// cannot use the information we had on the original type.
3875   /// BothExtension doesn't match any extension type.
3876   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3877                                  Instruction *Opnd,
3878                                  bool IsSExt) {
3879     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3880     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3881     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3882       return It->second.getPointer();
3883     return nullptr;
3884   }
3885 
3886   /// Utility function to check whether or not a sign or zero extension
3887   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3888   /// either using the operands of \p Inst or promoting \p Inst.
3889   /// The type of the extension is defined by \p IsSExt.
3890   /// In other words, check if:
3891   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3892   /// #1 Promotion applies:
3893   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3894   /// #2 Operand reuses:
3895   /// ext opnd1 to ConsideredExtType.
3896   /// \p PromotedInsts maps the instructions to their type before promotion.
3897   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3898                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3899 
3900   /// Utility function to determine if \p OpIdx should be promoted when
3901   /// promoting \p Inst.
3902   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3903     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3904   }
3905 
3906   /// Utility function to promote the operand of \p Ext when this
3907   /// operand is a promotable trunc or sext or zext.
3908   /// \p PromotedInsts maps the instructions to their type before promotion.
3909   /// \p CreatedInstsCost[out] contains the cost of all instructions
3910   /// created to promote the operand of Ext.
3911   /// Newly added extensions are inserted in \p Exts.
3912   /// Newly added truncates are inserted in \p Truncs.
3913   /// Should never be called directly.
3914   /// \return The promoted value which is used instead of Ext.
3915   static Value *promoteOperandForTruncAndAnyExt(
3916       Instruction *Ext, TypePromotionTransaction &TPT,
3917       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3918       SmallVectorImpl<Instruction *> *Exts,
3919       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3920 
3921   /// Utility function to promote the operand of \p Ext when this
3922   /// operand is promotable and is not a supported trunc or sext.
3923   /// \p PromotedInsts maps the instructions to their type before promotion.
3924   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3925   /// created to promote the operand of Ext.
3926   /// Newly added extensions are inserted in \p Exts.
3927   /// Newly added truncates are inserted in \p Truncs.
3928   /// Should never be called directly.
3929   /// \return The promoted value which is used instead of Ext.
3930   static Value *promoteOperandForOther(Instruction *Ext,
3931                                        TypePromotionTransaction &TPT,
3932                                        InstrToOrigTy &PromotedInsts,
3933                                        unsigned &CreatedInstsCost,
3934                                        SmallVectorImpl<Instruction *> *Exts,
3935                                        SmallVectorImpl<Instruction *> *Truncs,
3936                                        const TargetLowering &TLI, bool IsSExt);
3937 
3938   /// \see promoteOperandForOther.
3939   static Value *signExtendOperandForOther(
3940       Instruction *Ext, TypePromotionTransaction &TPT,
3941       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3942       SmallVectorImpl<Instruction *> *Exts,
3943       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3944     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3945                                   Exts, Truncs, TLI, true);
3946   }
3947 
3948   /// \see promoteOperandForOther.
3949   static Value *zeroExtendOperandForOther(
3950       Instruction *Ext, TypePromotionTransaction &TPT,
3951       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3952       SmallVectorImpl<Instruction *> *Exts,
3953       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3954     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3955                                   Exts, Truncs, TLI, false);
3956   }
3957 
3958 public:
3959   /// Type for the utility function that promotes the operand of Ext.
3960   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3961                             InstrToOrigTy &PromotedInsts,
3962                             unsigned &CreatedInstsCost,
3963                             SmallVectorImpl<Instruction *> *Exts,
3964                             SmallVectorImpl<Instruction *> *Truncs,
3965                             const TargetLowering &TLI);
3966 
3967   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3968   /// action to promote the operand of \p Ext instead of using Ext.
3969   /// \return NULL if no promotable action is possible with the current
3970   /// sign extension.
3971   /// \p InsertedInsts keeps track of all the instructions inserted by the
3972   /// other CodeGenPrepare optimizations. This information is important
3973   /// because we do not want to promote these instructions as CodeGenPrepare
3974   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3975   /// \p PromotedInsts maps the instructions to their type before promotion.
3976   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3977                           const TargetLowering &TLI,
3978                           const InstrToOrigTy &PromotedInsts);
3979 };
3980 
3981 } // end anonymous namespace
3982 
3983 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3984                                         Type *ConsideredExtType,
3985                                         const InstrToOrigTy &PromotedInsts,
3986                                         bool IsSExt) {
3987   // The promotion helper does not know how to deal with vector types yet.
3988   // To be able to fix that, we would need to fix the places where we
3989   // statically extend, e.g., constants and such.
3990   if (Inst->getType()->isVectorTy())
3991     return false;
3992 
3993   // We can always get through zext.
3994   if (isa<ZExtInst>(Inst))
3995     return true;
3996 
3997   // sext(sext) is ok too.
3998   if (IsSExt && isa<SExtInst>(Inst))
3999     return true;
4000 
4001   // We can get through binary operator, if it is legal. In other words, the
4002   // binary operator must have a nuw or nsw flag.
4003   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
4004   if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
4005       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4006        (IsSExt && BinOp->hasNoSignedWrap())))
4007     return true;
4008 
4009   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4010   if ((Inst->getOpcode() == Instruction::And ||
4011        Inst->getOpcode() == Instruction::Or))
4012     return true;
4013 
4014   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4015   if (Inst->getOpcode() == Instruction::Xor) {
4016     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
4017     // Make sure it is not a NOT.
4018     if (Cst && !Cst->getValue().isAllOnesValue())
4019       return true;
4020   }
4021 
4022   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4023   // It may change a poisoned value into a regular value, like
4024   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4025   //          poisoned value                    regular value
4026   // It should be OK since undef covers valid value.
4027   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4028     return true;
4029 
4030   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4031   // It may change a poisoned value into a regular value, like
4032   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4033   //          poisoned value                    regular value
4034   // It should be OK since undef covers valid value.
4035   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4036     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4037     if (ExtInst->hasOneUse()) {
4038       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4039       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4040         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4041         if (Cst &&
4042             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4043           return true;
4044       }
4045     }
4046   }
4047 
4048   // Check if we can do the following simplification.
4049   // ext(trunc(opnd)) --> ext(opnd)
4050   if (!isa<TruncInst>(Inst))
4051     return false;
4052 
4053   Value *OpndVal = Inst->getOperand(0);
4054   // Check if we can use this operand in the extension.
4055   // If the type is larger than the result type of the extension, we cannot.
4056   if (!OpndVal->getType()->isIntegerTy() ||
4057       OpndVal->getType()->getIntegerBitWidth() >
4058           ConsideredExtType->getIntegerBitWidth())
4059     return false;
4060 
4061   // If the operand of the truncate is not an instruction, we will not have
4062   // any information on the dropped bits.
4063   // (Actually we could for constant but it is not worth the extra logic).
4064   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4065   if (!Opnd)
4066     return false;
4067 
4068   // Check if the source of the type is narrow enough.
4069   // I.e., check that trunc just drops extended bits of the same kind of
4070   // the extension.
4071   // #1 get the type of the operand and check the kind of the extended bits.
4072   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4073   if (OpndType)
4074     ;
4075   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4076     OpndType = Opnd->getOperand(0)->getType();
4077   else
4078     return false;
4079 
4080   // #2 check that the truncate just drops extended bits.
4081   return Inst->getType()->getIntegerBitWidth() >=
4082          OpndType->getIntegerBitWidth();
4083 }
4084 
4085 TypePromotionHelper::Action TypePromotionHelper::getAction(
4086     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4087     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4088   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4089          "Unexpected instruction type");
4090   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4091   Type *ExtTy = Ext->getType();
4092   bool IsSExt = isa<SExtInst>(Ext);
4093   // If the operand of the extension is not an instruction, we cannot
4094   // get through.
4095   // If it, check we can get through.
4096   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4097     return nullptr;
4098 
4099   // Do not promote if the operand has been added by codegenprepare.
4100   // Otherwise, it means we are undoing an optimization that is likely to be
4101   // redone, thus causing potential infinite loop.
4102   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4103     return nullptr;
4104 
4105   // SExt or Trunc instructions.
4106   // Return the related handler.
4107   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4108       isa<ZExtInst>(ExtOpnd))
4109     return promoteOperandForTruncAndAnyExt;
4110 
4111   // Regular instruction.
4112   // Abort early if we will have to insert non-free instructions.
4113   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4114     return nullptr;
4115   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4116 }
4117 
4118 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4119     Instruction *SExt, TypePromotionTransaction &TPT,
4120     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4121     SmallVectorImpl<Instruction *> *Exts,
4122     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4123   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4124   // get through it and this method should not be called.
4125   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4126   Value *ExtVal = SExt;
4127   bool HasMergedNonFreeExt = false;
4128   if (isa<ZExtInst>(SExtOpnd)) {
4129     // Replace s|zext(zext(opnd))
4130     // => zext(opnd).
4131     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4132     Value *ZExt =
4133         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4134     TPT.replaceAllUsesWith(SExt, ZExt);
4135     TPT.eraseInstruction(SExt);
4136     ExtVal = ZExt;
4137   } else {
4138     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4139     // => z|sext(opnd).
4140     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4141   }
4142   CreatedInstsCost = 0;
4143 
4144   // Remove dead code.
4145   if (SExtOpnd->use_empty())
4146     TPT.eraseInstruction(SExtOpnd);
4147 
4148   // Check if the extension is still needed.
4149   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4150   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4151     if (ExtInst) {
4152       if (Exts)
4153         Exts->push_back(ExtInst);
4154       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4155     }
4156     return ExtVal;
4157   }
4158 
4159   // At this point we have: ext ty opnd to ty.
4160   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4161   Value *NextVal = ExtInst->getOperand(0);
4162   TPT.eraseInstruction(ExtInst, NextVal);
4163   return NextVal;
4164 }
4165 
4166 Value *TypePromotionHelper::promoteOperandForOther(
4167     Instruction *Ext, TypePromotionTransaction &TPT,
4168     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4169     SmallVectorImpl<Instruction *> *Exts,
4170     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4171     bool IsSExt) {
4172   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4173   // get through it and this method should not be called.
4174   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4175   CreatedInstsCost = 0;
4176   if (!ExtOpnd->hasOneUse()) {
4177     // ExtOpnd will be promoted.
4178     // All its uses, but Ext, will need to use a truncated value of the
4179     // promoted version.
4180     // Create the truncate now.
4181     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4182     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4183       // Insert it just after the definition.
4184       ITrunc->moveAfter(ExtOpnd);
4185       if (Truncs)
4186         Truncs->push_back(ITrunc);
4187     }
4188 
4189     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4190     // Restore the operand of Ext (which has been replaced by the previous call
4191     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4192     TPT.setOperand(Ext, 0, ExtOpnd);
4193   }
4194 
4195   // Get through the Instruction:
4196   // 1. Update its type.
4197   // 2. Replace the uses of Ext by Inst.
4198   // 3. Extend each operand that needs to be extended.
4199 
4200   // Remember the original type of the instruction before promotion.
4201   // This is useful to know that the high bits are sign extended bits.
4202   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4203   // Step #1.
4204   TPT.mutateType(ExtOpnd, Ext->getType());
4205   // Step #2.
4206   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4207   // Step #3.
4208   Instruction *ExtForOpnd = Ext;
4209 
4210   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4211   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4212        ++OpIdx) {
4213     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4214     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4215         !shouldExtOperand(ExtOpnd, OpIdx)) {
4216       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4217       continue;
4218     }
4219     // Check if we can statically extend the operand.
4220     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4221     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4222       LLVM_DEBUG(dbgs() << "Statically extend\n");
4223       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4224       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4225                             : Cst->getValue().zext(BitWidth);
4226       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4227       continue;
4228     }
4229     // UndefValue are typed, so we have to statically sign extend them.
4230     if (isa<UndefValue>(Opnd)) {
4231       LLVM_DEBUG(dbgs() << "Statically extend\n");
4232       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4233       continue;
4234     }
4235 
4236     // Otherwise we have to explicitly sign extend the operand.
4237     // Check if Ext was reused to extend an operand.
4238     if (!ExtForOpnd) {
4239       // If yes, create a new one.
4240       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4241       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4242         : TPT.createZExt(Ext, Opnd, Ext->getType());
4243       if (!isa<Instruction>(ValForExtOpnd)) {
4244         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4245         continue;
4246       }
4247       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4248     }
4249     if (Exts)
4250       Exts->push_back(ExtForOpnd);
4251     TPT.setOperand(ExtForOpnd, 0, Opnd);
4252 
4253     // Move the sign extension before the insertion point.
4254     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4255     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4256     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4257     // If more sext are required, new instructions will have to be created.
4258     ExtForOpnd = nullptr;
4259   }
4260   if (ExtForOpnd == Ext) {
4261     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4262     TPT.eraseInstruction(Ext);
4263   }
4264   return ExtOpnd;
4265 }
4266 
4267 /// Check whether or not promoting an instruction to a wider type is profitable.
4268 /// \p NewCost gives the cost of extension instructions created by the
4269 /// promotion.
4270 /// \p OldCost gives the cost of extension instructions before the promotion
4271 /// plus the number of instructions that have been
4272 /// matched in the addressing mode the promotion.
4273 /// \p PromotedOperand is the value that has been promoted.
4274 /// \return True if the promotion is profitable, false otherwise.
4275 bool AddressingModeMatcher::isPromotionProfitable(
4276     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4277   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4278                     << '\n');
4279   // The cost of the new extensions is greater than the cost of the
4280   // old extension plus what we folded.
4281   // This is not profitable.
4282   if (NewCost > OldCost)
4283     return false;
4284   if (NewCost < OldCost)
4285     return true;
4286   // The promotion is neutral but it may help folding the sign extension in
4287   // loads for instance.
4288   // Check that we did not create an illegal instruction.
4289   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4290 }
4291 
4292 /// Given an instruction or constant expr, see if we can fold the operation
4293 /// into the addressing mode. If so, update the addressing mode and return
4294 /// true, otherwise return false without modifying AddrMode.
4295 /// If \p MovedAway is not NULL, it contains the information of whether or
4296 /// not AddrInst has to be folded into the addressing mode on success.
4297 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4298 /// because it has been moved away.
4299 /// Thus AddrInst must not be added in the matched instructions.
4300 /// This state can happen when AddrInst is a sext, since it may be moved away.
4301 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4302 /// not be referenced anymore.
4303 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4304                                                unsigned Depth,
4305                                                bool *MovedAway) {
4306   // Avoid exponential behavior on extremely deep expression trees.
4307   if (Depth >= 5) return false;
4308 
4309   // By default, all matched instructions stay in place.
4310   if (MovedAway)
4311     *MovedAway = false;
4312 
4313   switch (Opcode) {
4314   case Instruction::PtrToInt:
4315     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4316     return matchAddr(AddrInst->getOperand(0), Depth);
4317   case Instruction::IntToPtr: {
4318     auto AS = AddrInst->getType()->getPointerAddressSpace();
4319     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4320     // This inttoptr is a no-op if the integer type is pointer sized.
4321     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4322       return matchAddr(AddrInst->getOperand(0), Depth);
4323     return false;
4324   }
4325   case Instruction::BitCast:
4326     // BitCast is always a noop, and we can handle it as long as it is
4327     // int->int or pointer->pointer (we don't want int<->fp or something).
4328     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4329         // Don't touch identity bitcasts.  These were probably put here by LSR,
4330         // and we don't want to mess around with them.  Assume it knows what it
4331         // is doing.
4332         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4333       return matchAddr(AddrInst->getOperand(0), Depth);
4334     return false;
4335   case Instruction::AddrSpaceCast: {
4336     unsigned SrcAS
4337       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4338     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4339     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4340       return matchAddr(AddrInst->getOperand(0), Depth);
4341     return false;
4342   }
4343   case Instruction::Add: {
4344     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4345     ExtAddrMode BackupAddrMode = AddrMode;
4346     unsigned OldSize = AddrModeInsts.size();
4347     // Start a transaction at this point.
4348     // The LHS may match but not the RHS.
4349     // Therefore, we need a higher level restoration point to undo partially
4350     // matched operation.
4351     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4352         TPT.getRestorationPoint();
4353 
4354     AddrMode.InBounds = false;
4355     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4356         matchAddr(AddrInst->getOperand(0), Depth+1))
4357       return true;
4358 
4359     // Restore the old addr mode info.
4360     AddrMode = BackupAddrMode;
4361     AddrModeInsts.resize(OldSize);
4362     TPT.rollback(LastKnownGood);
4363 
4364     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4365     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4366         matchAddr(AddrInst->getOperand(1), Depth+1))
4367       return true;
4368 
4369     // Otherwise we definitely can't merge the ADD in.
4370     AddrMode = BackupAddrMode;
4371     AddrModeInsts.resize(OldSize);
4372     TPT.rollback(LastKnownGood);
4373     break;
4374   }
4375   //case Instruction::Or:
4376   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4377   //break;
4378   case Instruction::Mul:
4379   case Instruction::Shl: {
4380     // Can only handle X*C and X << C.
4381     AddrMode.InBounds = false;
4382     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4383     if (!RHS || RHS->getBitWidth() > 64)
4384       return false;
4385     int64_t Scale = RHS->getSExtValue();
4386     if (Opcode == Instruction::Shl)
4387       Scale = 1LL << Scale;
4388 
4389     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4390   }
4391   case Instruction::GetElementPtr: {
4392     // Scan the GEP.  We check it if it contains constant offsets and at most
4393     // one variable offset.
4394     int VariableOperand = -1;
4395     unsigned VariableScale = 0;
4396 
4397     int64_t ConstantOffset = 0;
4398     gep_type_iterator GTI = gep_type_begin(AddrInst);
4399     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4400       if (StructType *STy = GTI.getStructTypeOrNull()) {
4401         const StructLayout *SL = DL.getStructLayout(STy);
4402         unsigned Idx =
4403           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4404         ConstantOffset += SL->getElementOffset(Idx);
4405       } else {
4406         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4407         if (TS.isNonZero()) {
4408           // The optimisations below currently only work for fixed offsets.
4409           if (TS.isScalable())
4410             return false;
4411           int64_t TypeSize = TS.getFixedSize();
4412           if (ConstantInt *CI =
4413                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4414             const APInt &CVal = CI->getValue();
4415             if (CVal.getMinSignedBits() <= 64) {
4416               ConstantOffset += CVal.getSExtValue() * TypeSize;
4417               continue;
4418             }
4419           }
4420           // We only allow one variable index at the moment.
4421           if (VariableOperand != -1)
4422             return false;
4423 
4424           // Remember the variable index.
4425           VariableOperand = i;
4426           VariableScale = TypeSize;
4427         }
4428       }
4429     }
4430 
4431     // A common case is for the GEP to only do a constant offset.  In this case,
4432     // just add it to the disp field and check validity.
4433     if (VariableOperand == -1) {
4434       AddrMode.BaseOffs += ConstantOffset;
4435       if (ConstantOffset == 0 ||
4436           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4437         // Check to see if we can fold the base pointer in too.
4438         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4439           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4440             AddrMode.InBounds = false;
4441           return true;
4442         }
4443       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4444                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4445                  ConstantOffset > 0) {
4446         // Record GEPs with non-zero offsets as candidates for splitting in the
4447         // event that the offset cannot fit into the r+i addressing mode.
4448         // Simple and common case that only one GEP is used in calculating the
4449         // address for the memory access.
4450         Value *Base = AddrInst->getOperand(0);
4451         auto *BaseI = dyn_cast<Instruction>(Base);
4452         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4453         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4454             (BaseI && !isa<CastInst>(BaseI) &&
4455              !isa<GetElementPtrInst>(BaseI))) {
4456           // Make sure the parent block allows inserting non-PHI instructions
4457           // before the terminator.
4458           BasicBlock *Parent =
4459               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4460           if (!Parent->getTerminator()->isEHPad())
4461             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4462         }
4463       }
4464       AddrMode.BaseOffs -= ConstantOffset;
4465       return false;
4466     }
4467 
4468     // Save the valid addressing mode in case we can't match.
4469     ExtAddrMode BackupAddrMode = AddrMode;
4470     unsigned OldSize = AddrModeInsts.size();
4471 
4472     // See if the scale and offset amount is valid for this target.
4473     AddrMode.BaseOffs += ConstantOffset;
4474     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4475       AddrMode.InBounds = false;
4476 
4477     // Match the base operand of the GEP.
4478     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4479       // If it couldn't be matched, just stuff the value in a register.
4480       if (AddrMode.HasBaseReg) {
4481         AddrMode = BackupAddrMode;
4482         AddrModeInsts.resize(OldSize);
4483         return false;
4484       }
4485       AddrMode.HasBaseReg = true;
4486       AddrMode.BaseReg = AddrInst->getOperand(0);
4487     }
4488 
4489     // Match the remaining variable portion of the GEP.
4490     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4491                           Depth)) {
4492       // If it couldn't be matched, try stuffing the base into a register
4493       // instead of matching it, and retrying the match of the scale.
4494       AddrMode = BackupAddrMode;
4495       AddrModeInsts.resize(OldSize);
4496       if (AddrMode.HasBaseReg)
4497         return false;
4498       AddrMode.HasBaseReg = true;
4499       AddrMode.BaseReg = AddrInst->getOperand(0);
4500       AddrMode.BaseOffs += ConstantOffset;
4501       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4502                             VariableScale, Depth)) {
4503         // If even that didn't work, bail.
4504         AddrMode = BackupAddrMode;
4505         AddrModeInsts.resize(OldSize);
4506         return false;
4507       }
4508     }
4509 
4510     return true;
4511   }
4512   case Instruction::SExt:
4513   case Instruction::ZExt: {
4514     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4515     if (!Ext)
4516       return false;
4517 
4518     // Try to move this ext out of the way of the addressing mode.
4519     // Ask for a method for doing so.
4520     TypePromotionHelper::Action TPH =
4521         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4522     if (!TPH)
4523       return false;
4524 
4525     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4526         TPT.getRestorationPoint();
4527     unsigned CreatedInstsCost = 0;
4528     unsigned ExtCost = !TLI.isExtFree(Ext);
4529     Value *PromotedOperand =
4530         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4531     // SExt has been moved away.
4532     // Thus either it will be rematched later in the recursive calls or it is
4533     // gone. Anyway, we must not fold it into the addressing mode at this point.
4534     // E.g.,
4535     // op = add opnd, 1
4536     // idx = ext op
4537     // addr = gep base, idx
4538     // is now:
4539     // promotedOpnd = ext opnd            <- no match here
4540     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4541     // addr = gep base, op                <- match
4542     if (MovedAway)
4543       *MovedAway = true;
4544 
4545     assert(PromotedOperand &&
4546            "TypePromotionHelper should have filtered out those cases");
4547 
4548     ExtAddrMode BackupAddrMode = AddrMode;
4549     unsigned OldSize = AddrModeInsts.size();
4550 
4551     if (!matchAddr(PromotedOperand, Depth) ||
4552         // The total of the new cost is equal to the cost of the created
4553         // instructions.
4554         // The total of the old cost is equal to the cost of the extension plus
4555         // what we have saved in the addressing mode.
4556         !isPromotionProfitable(CreatedInstsCost,
4557                                ExtCost + (AddrModeInsts.size() - OldSize),
4558                                PromotedOperand)) {
4559       AddrMode = BackupAddrMode;
4560       AddrModeInsts.resize(OldSize);
4561       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4562       TPT.rollback(LastKnownGood);
4563       return false;
4564     }
4565     return true;
4566   }
4567   }
4568   return false;
4569 }
4570 
4571 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4572 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4573 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4574 /// for the target.
4575 ///
4576 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4577   // Start a transaction at this point that we will rollback if the matching
4578   // fails.
4579   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4580       TPT.getRestorationPoint();
4581   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4582     if (CI->getValue().isSignedIntN(64)) {
4583       // Fold in immediates if legal for the target.
4584       AddrMode.BaseOffs += CI->getSExtValue();
4585       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4586         return true;
4587       AddrMode.BaseOffs -= CI->getSExtValue();
4588     }
4589   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4590     // If this is a global variable, try to fold it into the addressing mode.
4591     if (!AddrMode.BaseGV) {
4592       AddrMode.BaseGV = GV;
4593       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4594         return true;
4595       AddrMode.BaseGV = nullptr;
4596     }
4597   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4598     ExtAddrMode BackupAddrMode = AddrMode;
4599     unsigned OldSize = AddrModeInsts.size();
4600 
4601     // Check to see if it is possible to fold this operation.
4602     bool MovedAway = false;
4603     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4604       // This instruction may have been moved away. If so, there is nothing
4605       // to check here.
4606       if (MovedAway)
4607         return true;
4608       // Okay, it's possible to fold this.  Check to see if it is actually
4609       // *profitable* to do so.  We use a simple cost model to avoid increasing
4610       // register pressure too much.
4611       if (I->hasOneUse() ||
4612           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4613         AddrModeInsts.push_back(I);
4614         return true;
4615       }
4616 
4617       // It isn't profitable to do this, roll back.
4618       //cerr << "NOT FOLDING: " << *I;
4619       AddrMode = BackupAddrMode;
4620       AddrModeInsts.resize(OldSize);
4621       TPT.rollback(LastKnownGood);
4622     }
4623   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4624     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4625       return true;
4626     TPT.rollback(LastKnownGood);
4627   } else if (isa<ConstantPointerNull>(Addr)) {
4628     // Null pointer gets folded without affecting the addressing mode.
4629     return true;
4630   }
4631 
4632   // Worse case, the target should support [reg] addressing modes. :)
4633   if (!AddrMode.HasBaseReg) {
4634     AddrMode.HasBaseReg = true;
4635     AddrMode.BaseReg = Addr;
4636     // Still check for legality in case the target supports [imm] but not [i+r].
4637     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4638       return true;
4639     AddrMode.HasBaseReg = false;
4640     AddrMode.BaseReg = nullptr;
4641   }
4642 
4643   // If the base register is already taken, see if we can do [r+r].
4644   if (AddrMode.Scale == 0) {
4645     AddrMode.Scale = 1;
4646     AddrMode.ScaledReg = Addr;
4647     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4648       return true;
4649     AddrMode.Scale = 0;
4650     AddrMode.ScaledReg = nullptr;
4651   }
4652   // Couldn't match.
4653   TPT.rollback(LastKnownGood);
4654   return false;
4655 }
4656 
4657 /// Check to see if all uses of OpVal by the specified inline asm call are due
4658 /// to memory operands. If so, return true, otherwise return false.
4659 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4660                                     const TargetLowering &TLI,
4661                                     const TargetRegisterInfo &TRI) {
4662   const Function *F = CI->getFunction();
4663   TargetLowering::AsmOperandInfoVector TargetConstraints =
4664       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4665 
4666   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4667     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4668 
4669     // Compute the constraint code and ConstraintType to use.
4670     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4671 
4672     // If this asm operand is our Value*, and if it isn't an indirect memory
4673     // operand, we can't fold it!
4674     if (OpInfo.CallOperandVal == OpVal &&
4675         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4676          !OpInfo.isIndirect))
4677       return false;
4678   }
4679 
4680   return true;
4681 }
4682 
4683 // Max number of memory uses to look at before aborting the search to conserve
4684 // compile time.
4685 static constexpr int MaxMemoryUsesToScan = 20;
4686 
4687 /// Recursively walk all the uses of I until we find a memory use.
4688 /// If we find an obviously non-foldable instruction, return true.
4689 /// Add the ultimately found memory instructions to MemoryUses.
4690 static bool FindAllMemoryUses(
4691     Instruction *I,
4692     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4693     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4694     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4695     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4696   // If we already considered this instruction, we're done.
4697   if (!ConsideredInsts.insert(I).second)
4698     return false;
4699 
4700   // If this is an obviously unfoldable instruction, bail out.
4701   if (!MightBeFoldableInst(I))
4702     return true;
4703 
4704   // Loop over all the uses, recursively processing them.
4705   for (Use &U : I->uses()) {
4706     // Conservatively return true if we're seeing a large number or a deep chain
4707     // of users. This avoids excessive compilation times in pathological cases.
4708     if (SeenInsts++ >= MaxMemoryUsesToScan)
4709       return true;
4710 
4711     Instruction *UserI = cast<Instruction>(U.getUser());
4712     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4713       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4714       continue;
4715     }
4716 
4717     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4718       unsigned opNo = U.getOperandNo();
4719       if (opNo != StoreInst::getPointerOperandIndex())
4720         return true; // Storing addr, not into addr.
4721       MemoryUses.push_back(std::make_pair(SI, opNo));
4722       continue;
4723     }
4724 
4725     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4726       unsigned opNo = U.getOperandNo();
4727       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4728         return true; // Storing addr, not into addr.
4729       MemoryUses.push_back(std::make_pair(RMW, opNo));
4730       continue;
4731     }
4732 
4733     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4734       unsigned opNo = U.getOperandNo();
4735       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4736         return true; // Storing addr, not into addr.
4737       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4738       continue;
4739     }
4740 
4741     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4742       if (CI->hasFnAttr(Attribute::Cold)) {
4743         // If this is a cold call, we can sink the addressing calculation into
4744         // the cold path.  See optimizeCallInst
4745         bool OptForSize = OptSize ||
4746           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4747         if (!OptForSize)
4748           continue;
4749       }
4750 
4751       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4752       if (!IA) return true;
4753 
4754       // If this is a memory operand, we're cool, otherwise bail out.
4755       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4756         return true;
4757       continue;
4758     }
4759 
4760     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4761                           PSI, BFI, SeenInsts))
4762       return true;
4763   }
4764 
4765   return false;
4766 }
4767 
4768 /// Return true if Val is already known to be live at the use site that we're
4769 /// folding it into. If so, there is no cost to include it in the addressing
4770 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4771 /// instruction already.
4772 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4773                                                    Value *KnownLive2) {
4774   // If Val is either of the known-live values, we know it is live!
4775   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4776     return true;
4777 
4778   // All values other than instructions and arguments (e.g. constants) are live.
4779   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4780 
4781   // If Val is a constant sized alloca in the entry block, it is live, this is
4782   // true because it is just a reference to the stack/frame pointer, which is
4783   // live for the whole function.
4784   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4785     if (AI->isStaticAlloca())
4786       return true;
4787 
4788   // Check to see if this value is already used in the memory instruction's
4789   // block.  If so, it's already live into the block at the very least, so we
4790   // can reasonably fold it.
4791   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4792 }
4793 
4794 /// It is possible for the addressing mode of the machine to fold the specified
4795 /// instruction into a load or store that ultimately uses it.
4796 /// However, the specified instruction has multiple uses.
4797 /// Given this, it may actually increase register pressure to fold it
4798 /// into the load. For example, consider this code:
4799 ///
4800 ///     X = ...
4801 ///     Y = X+1
4802 ///     use(Y)   -> nonload/store
4803 ///     Z = Y+1
4804 ///     load Z
4805 ///
4806 /// In this case, Y has multiple uses, and can be folded into the load of Z
4807 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4808 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4809 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4810 /// number of computations either.
4811 ///
4812 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4813 /// X was live across 'load Z' for other reasons, we actually *would* want to
4814 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4815 bool AddressingModeMatcher::
4816 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4817                                      ExtAddrMode &AMAfter) {
4818   if (IgnoreProfitability) return true;
4819 
4820   // AMBefore is the addressing mode before this instruction was folded into it,
4821   // and AMAfter is the addressing mode after the instruction was folded.  Get
4822   // the set of registers referenced by AMAfter and subtract out those
4823   // referenced by AMBefore: this is the set of values which folding in this
4824   // address extends the lifetime of.
4825   //
4826   // Note that there are only two potential values being referenced here,
4827   // BaseReg and ScaleReg (global addresses are always available, as are any
4828   // folded immediates).
4829   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4830 
4831   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4832   // lifetime wasn't extended by adding this instruction.
4833   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4834     BaseReg = nullptr;
4835   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4836     ScaledReg = nullptr;
4837 
4838   // If folding this instruction (and it's subexprs) didn't extend any live
4839   // ranges, we're ok with it.
4840   if (!BaseReg && !ScaledReg)
4841     return true;
4842 
4843   // If all uses of this instruction can have the address mode sunk into them,
4844   // we can remove the addressing mode and effectively trade one live register
4845   // for another (at worst.)  In this context, folding an addressing mode into
4846   // the use is just a particularly nice way of sinking it.
4847   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4848   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4849   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4850                         PSI, BFI))
4851     return false;  // Has a non-memory, non-foldable use!
4852 
4853   // Now that we know that all uses of this instruction are part of a chain of
4854   // computation involving only operations that could theoretically be folded
4855   // into a memory use, loop over each of these memory operation uses and see
4856   // if they could  *actually* fold the instruction.  The assumption is that
4857   // addressing modes are cheap and that duplicating the computation involved
4858   // many times is worthwhile, even on a fastpath. For sinking candidates
4859   // (i.e. cold call sites), this serves as a way to prevent excessive code
4860   // growth since most architectures have some reasonable small and fast way to
4861   // compute an effective address.  (i.e LEA on x86)
4862   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4863   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4864     Instruction *User = MemoryUses[i].first;
4865     unsigned OpNo = MemoryUses[i].second;
4866 
4867     // Get the access type of this use.  If the use isn't a pointer, we don't
4868     // know what it accesses.
4869     Value *Address = User->getOperand(OpNo);
4870     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4871     if (!AddrTy)
4872       return false;
4873     Type *AddressAccessTy = AddrTy->getElementType();
4874     unsigned AS = AddrTy->getAddressSpace();
4875 
4876     // Do a match against the root of this address, ignoring profitability. This
4877     // will tell us if the addressing mode for the memory operation will
4878     // *actually* cover the shared instruction.
4879     ExtAddrMode Result;
4880     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4881                                                                       0);
4882     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4883         TPT.getRestorationPoint();
4884     AddressingModeMatcher Matcher(
4885         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4886         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4887     Matcher.IgnoreProfitability = true;
4888     bool Success = Matcher.matchAddr(Address, 0);
4889     (void)Success; assert(Success && "Couldn't select *anything*?");
4890 
4891     // The match was to check the profitability, the changes made are not
4892     // part of the original matcher. Therefore, they should be dropped
4893     // otherwise the original matcher will not present the right state.
4894     TPT.rollback(LastKnownGood);
4895 
4896     // If the match didn't cover I, then it won't be shared by it.
4897     if (!is_contained(MatchedAddrModeInsts, I))
4898       return false;
4899 
4900     MatchedAddrModeInsts.clear();
4901   }
4902 
4903   return true;
4904 }
4905 
4906 /// Return true if the specified values are defined in a
4907 /// different basic block than BB.
4908 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4909   if (Instruction *I = dyn_cast<Instruction>(V))
4910     return I->getParent() != BB;
4911   return false;
4912 }
4913 
4914 /// Sink addressing mode computation immediate before MemoryInst if doing so
4915 /// can be done without increasing register pressure.  The need for the
4916 /// register pressure constraint means this can end up being an all or nothing
4917 /// decision for all uses of the same addressing computation.
4918 ///
4919 /// Load and Store Instructions often have addressing modes that can do
4920 /// significant amounts of computation. As such, instruction selection will try
4921 /// to get the load or store to do as much computation as possible for the
4922 /// program. The problem is that isel can only see within a single block. As
4923 /// such, we sink as much legal addressing mode work into the block as possible.
4924 ///
4925 /// This method is used to optimize both load/store and inline asms with memory
4926 /// operands.  It's also used to sink addressing computations feeding into cold
4927 /// call sites into their (cold) basic block.
4928 ///
4929 /// The motivation for handling sinking into cold blocks is that doing so can
4930 /// both enable other address mode sinking (by satisfying the register pressure
4931 /// constraint above), and reduce register pressure globally (by removing the
4932 /// addressing mode computation from the fast path entirely.).
4933 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4934                                         Type *AccessTy, unsigned AddrSpace) {
4935   Value *Repl = Addr;
4936 
4937   // Try to collapse single-value PHI nodes.  This is necessary to undo
4938   // unprofitable PRE transformations.
4939   SmallVector<Value*, 8> worklist;
4940   SmallPtrSet<Value*, 16> Visited;
4941   worklist.push_back(Addr);
4942 
4943   // Use a worklist to iteratively look through PHI and select nodes, and
4944   // ensure that the addressing mode obtained from the non-PHI/select roots of
4945   // the graph are compatible.
4946   bool PhiOrSelectSeen = false;
4947   SmallVector<Instruction*, 16> AddrModeInsts;
4948   const SimplifyQuery SQ(*DL, TLInfo);
4949   AddressingModeCombiner AddrModes(SQ, Addr);
4950   TypePromotionTransaction TPT(RemovedInsts);
4951   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4952       TPT.getRestorationPoint();
4953   while (!worklist.empty()) {
4954     Value *V = worklist.back();
4955     worklist.pop_back();
4956 
4957     // We allow traversing cyclic Phi nodes.
4958     // In case of success after this loop we ensure that traversing through
4959     // Phi nodes ends up with all cases to compute address of the form
4960     //    BaseGV + Base + Scale * Index + Offset
4961     // where Scale and Offset are constans and BaseGV, Base and Index
4962     // are exactly the same Values in all cases.
4963     // It means that BaseGV, Scale and Offset dominate our memory instruction
4964     // and have the same value as they had in address computation represented
4965     // as Phi. So we can safely sink address computation to memory instruction.
4966     if (!Visited.insert(V).second)
4967       continue;
4968 
4969     // For a PHI node, push all of its incoming values.
4970     if (PHINode *P = dyn_cast<PHINode>(V)) {
4971       append_range(worklist, P->incoming_values());
4972       PhiOrSelectSeen = true;
4973       continue;
4974     }
4975     // Similar for select.
4976     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4977       worklist.push_back(SI->getFalseValue());
4978       worklist.push_back(SI->getTrueValue());
4979       PhiOrSelectSeen = true;
4980       continue;
4981     }
4982 
4983     // For non-PHIs, determine the addressing mode being computed.  Note that
4984     // the result may differ depending on what other uses our candidate
4985     // addressing instructions might have.
4986     AddrModeInsts.clear();
4987     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4988                                                                       0);
4989     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4990         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4991         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4992         BFI.get());
4993 
4994     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4995     if (GEP && !NewGEPBases.count(GEP)) {
4996       // If splitting the underlying data structure can reduce the offset of a
4997       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4998       // previously split data structures.
4999       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5000       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5001         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5002     }
5003 
5004     NewAddrMode.OriginalValue = V;
5005     if (!AddrModes.addNewAddrMode(NewAddrMode))
5006       break;
5007   }
5008 
5009   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5010   // or we have multiple but either couldn't combine them or combining them
5011   // wouldn't do anything useful, bail out now.
5012   if (!AddrModes.combineAddrModes()) {
5013     TPT.rollback(LastKnownGood);
5014     return false;
5015   }
5016   bool Modified = TPT.commit();
5017 
5018   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5019   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5020 
5021   // If all the instructions matched are already in this BB, don't do anything.
5022   // If we saw a Phi node then it is not local definitely, and if we saw a select
5023   // then we want to push the address calculation past it even if it's already
5024   // in this BB.
5025   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5026         return IsNonLocalValue(V, MemoryInst->getParent());
5027                   })) {
5028     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5029                       << "\n");
5030     return Modified;
5031   }
5032 
5033   // Insert this computation right after this user.  Since our caller is
5034   // scanning from the top of the BB to the bottom, reuse of the expr are
5035   // guaranteed to happen later.
5036   IRBuilder<> Builder(MemoryInst);
5037 
5038   // Now that we determined the addressing expression we want to use and know
5039   // that we have to sink it into this block.  Check to see if we have already
5040   // done this for some other load/store instr in this block.  If so, reuse
5041   // the computation.  Before attempting reuse, check if the address is valid
5042   // as it may have been erased.
5043 
5044   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5045 
5046   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5047   if (SunkAddr) {
5048     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5049                       << " for " << *MemoryInst << "\n");
5050     if (SunkAddr->getType() != Addr->getType())
5051       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5052   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5053                                    SubtargetInfo->addrSinkUsingGEPs())) {
5054     // By default, we use the GEP-based method when AA is used later. This
5055     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5056     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5057                       << " for " << *MemoryInst << "\n");
5058     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5059     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5060 
5061     // First, find the pointer.
5062     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5063       ResultPtr = AddrMode.BaseReg;
5064       AddrMode.BaseReg = nullptr;
5065     }
5066 
5067     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5068       // We can't add more than one pointer together, nor can we scale a
5069       // pointer (both of which seem meaningless).
5070       if (ResultPtr || AddrMode.Scale != 1)
5071         return Modified;
5072 
5073       ResultPtr = AddrMode.ScaledReg;
5074       AddrMode.Scale = 0;
5075     }
5076 
5077     // It is only safe to sign extend the BaseReg if we know that the math
5078     // required to create it did not overflow before we extend it. Since
5079     // the original IR value was tossed in favor of a constant back when
5080     // the AddrMode was created we need to bail out gracefully if widths
5081     // do not match instead of extending it.
5082     //
5083     // (See below for code to add the scale.)
5084     if (AddrMode.Scale) {
5085       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5086       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5087           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5088         return Modified;
5089     }
5090 
5091     if (AddrMode.BaseGV) {
5092       if (ResultPtr)
5093         return Modified;
5094 
5095       ResultPtr = AddrMode.BaseGV;
5096     }
5097 
5098     // If the real base value actually came from an inttoptr, then the matcher
5099     // will look through it and provide only the integer value. In that case,
5100     // use it here.
5101     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5102       if (!ResultPtr && AddrMode.BaseReg) {
5103         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5104                                            "sunkaddr");
5105         AddrMode.BaseReg = nullptr;
5106       } else if (!ResultPtr && AddrMode.Scale == 1) {
5107         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5108                                            "sunkaddr");
5109         AddrMode.Scale = 0;
5110       }
5111     }
5112 
5113     if (!ResultPtr &&
5114         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5115       SunkAddr = Constant::getNullValue(Addr->getType());
5116     } else if (!ResultPtr) {
5117       return Modified;
5118     } else {
5119       Type *I8PtrTy =
5120           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5121       Type *I8Ty = Builder.getInt8Ty();
5122 
5123       // Start with the base register. Do this first so that subsequent address
5124       // matching finds it last, which will prevent it from trying to match it
5125       // as the scaled value in case it happens to be a mul. That would be
5126       // problematic if we've sunk a different mul for the scale, because then
5127       // we'd end up sinking both muls.
5128       if (AddrMode.BaseReg) {
5129         Value *V = AddrMode.BaseReg;
5130         if (V->getType() != IntPtrTy)
5131           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5132 
5133         ResultIndex = V;
5134       }
5135 
5136       // Add the scale value.
5137       if (AddrMode.Scale) {
5138         Value *V = AddrMode.ScaledReg;
5139         if (V->getType() == IntPtrTy) {
5140           // done.
5141         } else {
5142           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5143                  cast<IntegerType>(V->getType())->getBitWidth() &&
5144                  "We can't transform if ScaledReg is too narrow");
5145           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5146         }
5147 
5148         if (AddrMode.Scale != 1)
5149           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5150                                 "sunkaddr");
5151         if (ResultIndex)
5152           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5153         else
5154           ResultIndex = V;
5155       }
5156 
5157       // Add in the Base Offset if present.
5158       if (AddrMode.BaseOffs) {
5159         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5160         if (ResultIndex) {
5161           // We need to add this separately from the scale above to help with
5162           // SDAG consecutive load/store merging.
5163           if (ResultPtr->getType() != I8PtrTy)
5164             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5165           ResultPtr =
5166               AddrMode.InBounds
5167                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5168                                               "sunkaddr")
5169                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5170         }
5171 
5172         ResultIndex = V;
5173       }
5174 
5175       if (!ResultIndex) {
5176         SunkAddr = ResultPtr;
5177       } else {
5178         if (ResultPtr->getType() != I8PtrTy)
5179           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5180         SunkAddr =
5181             AddrMode.InBounds
5182                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5183                                             "sunkaddr")
5184                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5185       }
5186 
5187       if (SunkAddr->getType() != Addr->getType())
5188         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5189     }
5190   } else {
5191     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5192     // non-integral pointers, so in that case bail out now.
5193     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5194     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5195     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5196     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5197     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5198         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5199         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5200         (AddrMode.BaseGV &&
5201          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5202       return Modified;
5203 
5204     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5205                       << " for " << *MemoryInst << "\n");
5206     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5207     Value *Result = nullptr;
5208 
5209     // Start with the base register. Do this first so that subsequent address
5210     // matching finds it last, which will prevent it from trying to match it
5211     // as the scaled value in case it happens to be a mul. That would be
5212     // problematic if we've sunk a different mul for the scale, because then
5213     // we'd end up sinking both muls.
5214     if (AddrMode.BaseReg) {
5215       Value *V = AddrMode.BaseReg;
5216       if (V->getType()->isPointerTy())
5217         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5218       if (V->getType() != IntPtrTy)
5219         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5220       Result = V;
5221     }
5222 
5223     // Add the scale value.
5224     if (AddrMode.Scale) {
5225       Value *V = AddrMode.ScaledReg;
5226       if (V->getType() == IntPtrTy) {
5227         // done.
5228       } else if (V->getType()->isPointerTy()) {
5229         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5230       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5231                  cast<IntegerType>(V->getType())->getBitWidth()) {
5232         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5233       } else {
5234         // It is only safe to sign extend the BaseReg if we know that the math
5235         // required to create it did not overflow before we extend it. Since
5236         // the original IR value was tossed in favor of a constant back when
5237         // the AddrMode was created we need to bail out gracefully if widths
5238         // do not match instead of extending it.
5239         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5240         if (I && (Result != AddrMode.BaseReg))
5241           I->eraseFromParent();
5242         return Modified;
5243       }
5244       if (AddrMode.Scale != 1)
5245         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5246                               "sunkaddr");
5247       if (Result)
5248         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5249       else
5250         Result = V;
5251     }
5252 
5253     // Add in the BaseGV if present.
5254     if (AddrMode.BaseGV) {
5255       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5256       if (Result)
5257         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5258       else
5259         Result = V;
5260     }
5261 
5262     // Add in the Base Offset if present.
5263     if (AddrMode.BaseOffs) {
5264       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5265       if (Result)
5266         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5267       else
5268         Result = V;
5269     }
5270 
5271     if (!Result)
5272       SunkAddr = Constant::getNullValue(Addr->getType());
5273     else
5274       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5275   }
5276 
5277   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5278   // Store the newly computed address into the cache. In the case we reused a
5279   // value, this should be idempotent.
5280   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5281 
5282   // If we have no uses, recursively delete the value and all dead instructions
5283   // using it.
5284   if (Repl->use_empty()) {
5285     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5286       RecursivelyDeleteTriviallyDeadInstructions(
5287           Repl, TLInfo, nullptr,
5288           [&](Value *V) { removeAllAssertingVHReferences(V); });
5289     });
5290   }
5291   ++NumMemoryInsts;
5292   return true;
5293 }
5294 
5295 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5296 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5297 /// only handle a 2 operand GEP in the same basic block or a splat constant
5298 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5299 /// index.
5300 ///
5301 /// If the existing GEP has a vector base pointer that is splat, we can look
5302 /// through the splat to find the scalar pointer. If we can't find a scalar
5303 /// pointer there's nothing we can do.
5304 ///
5305 /// If we have a GEP with more than 2 indices where the middle indices are all
5306 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5307 ///
5308 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5309 /// followed by a GEP with an all zeroes vector index. This will enable
5310 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5311 /// zero index.
5312 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5313                                                Value *Ptr) {
5314   Value *NewAddr;
5315 
5316   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5317     // Don't optimize GEPs that don't have indices.
5318     if (!GEP->hasIndices())
5319       return false;
5320 
5321     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5322     // FIXME: We should support this by sinking the GEP.
5323     if (MemoryInst->getParent() != GEP->getParent())
5324       return false;
5325 
5326     SmallVector<Value *, 2> Ops(GEP->operands());
5327 
5328     bool RewriteGEP = false;
5329 
5330     if (Ops[0]->getType()->isVectorTy()) {
5331       Ops[0] = getSplatValue(Ops[0]);
5332       if (!Ops[0])
5333         return false;
5334       RewriteGEP = true;
5335     }
5336 
5337     unsigned FinalIndex = Ops.size() - 1;
5338 
5339     // Ensure all but the last index is 0.
5340     // FIXME: This isn't strictly required. All that's required is that they are
5341     // all scalars or splats.
5342     for (unsigned i = 1; i < FinalIndex; ++i) {
5343       auto *C = dyn_cast<Constant>(Ops[i]);
5344       if (!C)
5345         return false;
5346       if (isa<VectorType>(C->getType()))
5347         C = C->getSplatValue();
5348       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5349       if (!CI || !CI->isZero())
5350         return false;
5351       // Scalarize the index if needed.
5352       Ops[i] = CI;
5353     }
5354 
5355     // Try to scalarize the final index.
5356     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5357       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5358         auto *C = dyn_cast<ConstantInt>(V);
5359         // Don't scalarize all zeros vector.
5360         if (!C || !C->isZero()) {
5361           Ops[FinalIndex] = V;
5362           RewriteGEP = true;
5363         }
5364       }
5365     }
5366 
5367     // If we made any changes or the we have extra operands, we need to generate
5368     // new instructions.
5369     if (!RewriteGEP && Ops.size() == 2)
5370       return false;
5371 
5372     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5373 
5374     IRBuilder<> Builder(MemoryInst);
5375 
5376     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5377 
5378     // If the final index isn't a vector, emit a scalar GEP containing all ops
5379     // and a vector GEP with all zeroes final index.
5380     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5381       NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front());
5382       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5383       NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy));
5384     } else {
5385       Value *Base = Ops[0];
5386       Value *Index = Ops[FinalIndex];
5387 
5388       // Create a scalar GEP if there are more than 2 operands.
5389       if (Ops.size() != 2) {
5390         // Replace the last index with 0.
5391         Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5392         Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front());
5393       }
5394 
5395       // Now create the GEP with scalar pointer and vector index.
5396       NewAddr = Builder.CreateGEP(Base, Index);
5397     }
5398   } else if (!isa<Constant>(Ptr)) {
5399     // Not a GEP, maybe its a splat and we can create a GEP to enable
5400     // SelectionDAGBuilder to use it as a uniform base.
5401     Value *V = getSplatValue(Ptr);
5402     if (!V)
5403       return false;
5404 
5405     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5406 
5407     IRBuilder<> Builder(MemoryInst);
5408 
5409     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5410     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5411     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5412     NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy));
5413   } else {
5414     // Constant, SelectionDAGBuilder knows to check if its a splat.
5415     return false;
5416   }
5417 
5418   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5419 
5420   // If we have no uses, recursively delete the value and all dead instructions
5421   // using it.
5422   if (Ptr->use_empty())
5423     RecursivelyDeleteTriviallyDeadInstructions(
5424         Ptr, TLInfo, nullptr,
5425         [&](Value *V) { removeAllAssertingVHReferences(V); });
5426 
5427   return true;
5428 }
5429 
5430 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5431 /// address computing into the block when possible / profitable.
5432 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5433   bool MadeChange = false;
5434 
5435   const TargetRegisterInfo *TRI =
5436       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5437   TargetLowering::AsmOperandInfoVector TargetConstraints =
5438       TLI->ParseConstraints(*DL, TRI, *CS);
5439   unsigned ArgNo = 0;
5440   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5441     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5442 
5443     // Compute the constraint code and ConstraintType to use.
5444     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5445 
5446     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5447         OpInfo.isIndirect) {
5448       Value *OpVal = CS->getArgOperand(ArgNo++);
5449       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5450     } else if (OpInfo.Type == InlineAsm::isInput)
5451       ArgNo++;
5452   }
5453 
5454   return MadeChange;
5455 }
5456 
5457 /// Check if all the uses of \p Val are equivalent (or free) zero or
5458 /// sign extensions.
5459 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5460   assert(!Val->use_empty() && "Input must have at least one use");
5461   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5462   bool IsSExt = isa<SExtInst>(FirstUser);
5463   Type *ExtTy = FirstUser->getType();
5464   for (const User *U : Val->users()) {
5465     const Instruction *UI = cast<Instruction>(U);
5466     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5467       return false;
5468     Type *CurTy = UI->getType();
5469     // Same input and output types: Same instruction after CSE.
5470     if (CurTy == ExtTy)
5471       continue;
5472 
5473     // If IsSExt is true, we are in this situation:
5474     // a = Val
5475     // b = sext ty1 a to ty2
5476     // c = sext ty1 a to ty3
5477     // Assuming ty2 is shorter than ty3, this could be turned into:
5478     // a = Val
5479     // b = sext ty1 a to ty2
5480     // c = sext ty2 b to ty3
5481     // However, the last sext is not free.
5482     if (IsSExt)
5483       return false;
5484 
5485     // This is a ZExt, maybe this is free to extend from one type to another.
5486     // In that case, we would not account for a different use.
5487     Type *NarrowTy;
5488     Type *LargeTy;
5489     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5490         CurTy->getScalarType()->getIntegerBitWidth()) {
5491       NarrowTy = CurTy;
5492       LargeTy = ExtTy;
5493     } else {
5494       NarrowTy = ExtTy;
5495       LargeTy = CurTy;
5496     }
5497 
5498     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5499       return false;
5500   }
5501   // All uses are the same or can be derived from one another for free.
5502   return true;
5503 }
5504 
5505 /// Try to speculatively promote extensions in \p Exts and continue
5506 /// promoting through newly promoted operands recursively as far as doing so is
5507 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5508 /// When some promotion happened, \p TPT contains the proper state to revert
5509 /// them.
5510 ///
5511 /// \return true if some promotion happened, false otherwise.
5512 bool CodeGenPrepare::tryToPromoteExts(
5513     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5514     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5515     unsigned CreatedInstsCost) {
5516   bool Promoted = false;
5517 
5518   // Iterate over all the extensions to try to promote them.
5519   for (auto *I : Exts) {
5520     // Early check if we directly have ext(load).
5521     if (isa<LoadInst>(I->getOperand(0))) {
5522       ProfitablyMovedExts.push_back(I);
5523       continue;
5524     }
5525 
5526     // Check whether or not we want to do any promotion.  The reason we have
5527     // this check inside the for loop is to catch the case where an extension
5528     // is directly fed by a load because in such case the extension can be moved
5529     // up without any promotion on its operands.
5530     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5531       return false;
5532 
5533     // Get the action to perform the promotion.
5534     TypePromotionHelper::Action TPH =
5535         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5536     // Check if we can promote.
5537     if (!TPH) {
5538       // Save the current extension as we cannot move up through its operand.
5539       ProfitablyMovedExts.push_back(I);
5540       continue;
5541     }
5542 
5543     // Save the current state.
5544     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5545         TPT.getRestorationPoint();
5546     SmallVector<Instruction *, 4> NewExts;
5547     unsigned NewCreatedInstsCost = 0;
5548     unsigned ExtCost = !TLI->isExtFree(I);
5549     // Promote.
5550     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5551                              &NewExts, nullptr, *TLI);
5552     assert(PromotedVal &&
5553            "TypePromotionHelper should have filtered out those cases");
5554 
5555     // We would be able to merge only one extension in a load.
5556     // Therefore, if we have more than 1 new extension we heuristically
5557     // cut this search path, because it means we degrade the code quality.
5558     // With exactly 2, the transformation is neutral, because we will merge
5559     // one extension but leave one. However, we optimistically keep going,
5560     // because the new extension may be removed too.
5561     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5562     // FIXME: It would be possible to propagate a negative value instead of
5563     // conservatively ceiling it to 0.
5564     TotalCreatedInstsCost =
5565         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5566     if (!StressExtLdPromotion &&
5567         (TotalCreatedInstsCost > 1 ||
5568          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5569       // This promotion is not profitable, rollback to the previous state, and
5570       // save the current extension in ProfitablyMovedExts as the latest
5571       // speculative promotion turned out to be unprofitable.
5572       TPT.rollback(LastKnownGood);
5573       ProfitablyMovedExts.push_back(I);
5574       continue;
5575     }
5576     // Continue promoting NewExts as far as doing so is profitable.
5577     SmallVector<Instruction *, 2> NewlyMovedExts;
5578     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5579     bool NewPromoted = false;
5580     for (auto *ExtInst : NewlyMovedExts) {
5581       Instruction *MovedExt = cast<Instruction>(ExtInst);
5582       Value *ExtOperand = MovedExt->getOperand(0);
5583       // If we have reached to a load, we need this extra profitability check
5584       // as it could potentially be merged into an ext(load).
5585       if (isa<LoadInst>(ExtOperand) &&
5586           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5587             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5588         continue;
5589 
5590       ProfitablyMovedExts.push_back(MovedExt);
5591       NewPromoted = true;
5592     }
5593 
5594     // If none of speculative promotions for NewExts is profitable, rollback
5595     // and save the current extension (I) as the last profitable extension.
5596     if (!NewPromoted) {
5597       TPT.rollback(LastKnownGood);
5598       ProfitablyMovedExts.push_back(I);
5599       continue;
5600     }
5601     // The promotion is profitable.
5602     Promoted = true;
5603   }
5604   return Promoted;
5605 }
5606 
5607 /// Merging redundant sexts when one is dominating the other.
5608 bool CodeGenPrepare::mergeSExts(Function &F) {
5609   bool Changed = false;
5610   for (auto &Entry : ValToSExtendedUses) {
5611     SExts &Insts = Entry.second;
5612     SExts CurPts;
5613     for (Instruction *Inst : Insts) {
5614       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5615           Inst->getOperand(0) != Entry.first)
5616         continue;
5617       bool inserted = false;
5618       for (auto &Pt : CurPts) {
5619         if (getDT(F).dominates(Inst, Pt)) {
5620           Pt->replaceAllUsesWith(Inst);
5621           RemovedInsts.insert(Pt);
5622           Pt->removeFromParent();
5623           Pt = Inst;
5624           inserted = true;
5625           Changed = true;
5626           break;
5627         }
5628         if (!getDT(F).dominates(Pt, Inst))
5629           // Give up if we need to merge in a common dominator as the
5630           // experiments show it is not profitable.
5631           continue;
5632         Inst->replaceAllUsesWith(Pt);
5633         RemovedInsts.insert(Inst);
5634         Inst->removeFromParent();
5635         inserted = true;
5636         Changed = true;
5637         break;
5638       }
5639       if (!inserted)
5640         CurPts.push_back(Inst);
5641     }
5642   }
5643   return Changed;
5644 }
5645 
5646 // Splitting large data structures so that the GEPs accessing them can have
5647 // smaller offsets so that they can be sunk to the same blocks as their users.
5648 // For example, a large struct starting from %base is split into two parts
5649 // where the second part starts from %new_base.
5650 //
5651 // Before:
5652 // BB0:
5653 //   %base     =
5654 //
5655 // BB1:
5656 //   %gep0     = gep %base, off0
5657 //   %gep1     = gep %base, off1
5658 //   %gep2     = gep %base, off2
5659 //
5660 // BB2:
5661 //   %load1    = load %gep0
5662 //   %load2    = load %gep1
5663 //   %load3    = load %gep2
5664 //
5665 // After:
5666 // BB0:
5667 //   %base     =
5668 //   %new_base = gep %base, off0
5669 //
5670 // BB1:
5671 //   %new_gep0 = %new_base
5672 //   %new_gep1 = gep %new_base, off1 - off0
5673 //   %new_gep2 = gep %new_base, off2 - off0
5674 //
5675 // BB2:
5676 //   %load1    = load i32, i32* %new_gep0
5677 //   %load2    = load i32, i32* %new_gep1
5678 //   %load3    = load i32, i32* %new_gep2
5679 //
5680 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5681 // their offsets are smaller enough to fit into the addressing mode.
5682 bool CodeGenPrepare::splitLargeGEPOffsets() {
5683   bool Changed = false;
5684   for (auto &Entry : LargeOffsetGEPMap) {
5685     Value *OldBase = Entry.first;
5686     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5687         &LargeOffsetGEPs = Entry.second;
5688     auto compareGEPOffset =
5689         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5690             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5691           if (LHS.first == RHS.first)
5692             return false;
5693           if (LHS.second != RHS.second)
5694             return LHS.second < RHS.second;
5695           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5696         };
5697     // Sorting all the GEPs of the same data structures based on the offsets.
5698     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5699     LargeOffsetGEPs.erase(
5700         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5701         LargeOffsetGEPs.end());
5702     // Skip if all the GEPs have the same offsets.
5703     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5704       continue;
5705     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5706     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5707     Value *NewBaseGEP = nullptr;
5708 
5709     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5710     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5711       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5712       int64_t Offset = LargeOffsetGEP->second;
5713       if (Offset != BaseOffset) {
5714         TargetLowering::AddrMode AddrMode;
5715         AddrMode.BaseOffs = Offset - BaseOffset;
5716         // The result type of the GEP might not be the type of the memory
5717         // access.
5718         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5719                                         GEP->getResultElementType(),
5720                                         GEP->getAddressSpace())) {
5721           // We need to create a new base if the offset to the current base is
5722           // too large to fit into the addressing mode. So, a very large struct
5723           // may be split into several parts.
5724           BaseGEP = GEP;
5725           BaseOffset = Offset;
5726           NewBaseGEP = nullptr;
5727         }
5728       }
5729 
5730       // Generate a new GEP to replace the current one.
5731       LLVMContext &Ctx = GEP->getContext();
5732       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5733       Type *I8PtrTy =
5734           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5735       Type *I8Ty = Type::getInt8Ty(Ctx);
5736 
5737       if (!NewBaseGEP) {
5738         // Create a new base if we don't have one yet.  Find the insertion
5739         // pointer for the new base first.
5740         BasicBlock::iterator NewBaseInsertPt;
5741         BasicBlock *NewBaseInsertBB;
5742         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5743           // If the base of the struct is an instruction, the new base will be
5744           // inserted close to it.
5745           NewBaseInsertBB = BaseI->getParent();
5746           if (isa<PHINode>(BaseI))
5747             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5748           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5749             NewBaseInsertBB =
5750                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5751             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5752           } else
5753             NewBaseInsertPt = std::next(BaseI->getIterator());
5754         } else {
5755           // If the current base is an argument or global value, the new base
5756           // will be inserted to the entry block.
5757           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5758           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5759         }
5760         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5761         // Create a new base.
5762         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5763         NewBaseGEP = OldBase;
5764         if (NewBaseGEP->getType() != I8PtrTy)
5765           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5766         NewBaseGEP =
5767             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5768         NewGEPBases.insert(NewBaseGEP);
5769       }
5770 
5771       IRBuilder<> Builder(GEP);
5772       Value *NewGEP = NewBaseGEP;
5773       if (Offset == BaseOffset) {
5774         if (GEP->getType() != I8PtrTy)
5775           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5776       } else {
5777         // Calculate the new offset for the new GEP.
5778         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5779         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5780 
5781         if (GEP->getType() != I8PtrTy)
5782           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5783       }
5784       GEP->replaceAllUsesWith(NewGEP);
5785       LargeOffsetGEPID.erase(GEP);
5786       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5787       GEP->eraseFromParent();
5788       Changed = true;
5789     }
5790   }
5791   return Changed;
5792 }
5793 
5794 bool CodeGenPrepare::optimizePhiType(
5795     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5796     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5797   // We are looking for a collection on interconnected phi nodes that together
5798   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5799   // are of the same type. Convert the whole set of nodes to the type of the
5800   // bitcast.
5801   Type *PhiTy = I->getType();
5802   Type *ConvertTy = nullptr;
5803   if (Visited.count(I) ||
5804       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
5805     return false;
5806 
5807   SmallVector<Instruction *, 4> Worklist;
5808   Worklist.push_back(cast<Instruction>(I));
5809   SmallPtrSet<PHINode *, 4> PhiNodes;
5810   PhiNodes.insert(I);
5811   Visited.insert(I);
5812   SmallPtrSet<Instruction *, 4> Defs;
5813   SmallPtrSet<Instruction *, 4> Uses;
5814   // This works by adding extra bitcasts between load/stores and removing
5815   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5816   // we can get in the situation where we remove a bitcast in one iteration
5817   // just to add it again in the next. We need to ensure that at least one
5818   // bitcast we remove are anchored to something that will not change back.
5819   bool AnyAnchored = false;
5820 
5821   while (!Worklist.empty()) {
5822     Instruction *II = Worklist.pop_back_val();
5823 
5824     if (auto *Phi = dyn_cast<PHINode>(II)) {
5825       // Handle Defs, which might also be PHI's
5826       for (Value *V : Phi->incoming_values()) {
5827         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5828           if (!PhiNodes.count(OpPhi)) {
5829             if (Visited.count(OpPhi))
5830               return false;
5831             PhiNodes.insert(OpPhi);
5832             Visited.insert(OpPhi);
5833             Worklist.push_back(OpPhi);
5834           }
5835         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
5836           if (!OpLoad->isSimple())
5837             return false;
5838           if (!Defs.count(OpLoad)) {
5839             Defs.insert(OpLoad);
5840             Worklist.push_back(OpLoad);
5841           }
5842         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
5843           if (!Defs.count(OpEx)) {
5844             Defs.insert(OpEx);
5845             Worklist.push_back(OpEx);
5846           }
5847         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5848           if (!ConvertTy)
5849             ConvertTy = OpBC->getOperand(0)->getType();
5850           if (OpBC->getOperand(0)->getType() != ConvertTy)
5851             return false;
5852           if (!Defs.count(OpBC)) {
5853             Defs.insert(OpBC);
5854             Worklist.push_back(OpBC);
5855             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
5856                            !isa<ExtractElementInst>(OpBC->getOperand(0));
5857           }
5858         } else if (!isa<UndefValue>(V)) {
5859           return false;
5860         }
5861       }
5862     }
5863 
5864     // Handle uses which might also be phi's
5865     for (User *V : II->users()) {
5866       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5867         if (!PhiNodes.count(OpPhi)) {
5868           if (Visited.count(OpPhi))
5869             return false;
5870           PhiNodes.insert(OpPhi);
5871           Visited.insert(OpPhi);
5872           Worklist.push_back(OpPhi);
5873         }
5874       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
5875         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
5876           return false;
5877         Uses.insert(OpStore);
5878       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5879         if (!ConvertTy)
5880           ConvertTy = OpBC->getType();
5881         if (OpBC->getType() != ConvertTy)
5882           return false;
5883         Uses.insert(OpBC);
5884         AnyAnchored |=
5885             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
5886       } else {
5887         return false;
5888       }
5889     }
5890   }
5891 
5892   if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
5893     return false;
5894 
5895   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
5896                     << *ConvertTy << "\n");
5897 
5898   // Create all the new phi nodes of the new type, and bitcast any loads to the
5899   // correct type.
5900   ValueToValueMap ValMap;
5901   ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
5902   for (Instruction *D : Defs) {
5903     if (isa<BitCastInst>(D)) {
5904       ValMap[D] = D->getOperand(0);
5905       DeletedInstrs.insert(D);
5906     } else {
5907       ValMap[D] =
5908           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
5909     }
5910   }
5911   for (PHINode *Phi : PhiNodes)
5912     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
5913                                   Phi->getName() + ".tc", Phi);
5914   // Pipe together all the PhiNodes.
5915   for (PHINode *Phi : PhiNodes) {
5916     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
5917     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
5918       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
5919                           Phi->getIncomingBlock(i));
5920     Visited.insert(NewPhi);
5921   }
5922   // And finally pipe up the stores and bitcasts
5923   for (Instruction *U : Uses) {
5924     if (isa<BitCastInst>(U)) {
5925       DeletedInstrs.insert(U);
5926       U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
5927     } else {
5928       U->setOperand(0,
5929                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
5930     }
5931   }
5932 
5933   // Save the removed phis to be deleted later.
5934   for (PHINode *Phi : PhiNodes)
5935     DeletedInstrs.insert(Phi);
5936   return true;
5937 }
5938 
5939 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
5940   if (!OptimizePhiTypes)
5941     return false;
5942 
5943   bool Changed = false;
5944   SmallPtrSet<PHINode *, 4> Visited;
5945   SmallPtrSet<Instruction *, 4> DeletedInstrs;
5946 
5947   // Attempt to optimize all the phis in the functions to the correct type.
5948   for (auto &BB : F)
5949     for (auto &Phi : BB.phis())
5950       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
5951 
5952   // Remove any old phi's that have been converted.
5953   for (auto *I : DeletedInstrs) {
5954     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5955     I->eraseFromParent();
5956   }
5957 
5958   return Changed;
5959 }
5960 
5961 /// Return true, if an ext(load) can be formed from an extension in
5962 /// \p MovedExts.
5963 bool CodeGenPrepare::canFormExtLd(
5964     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5965     Instruction *&Inst, bool HasPromoted) {
5966   for (auto *MovedExtInst : MovedExts) {
5967     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5968       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5969       Inst = MovedExtInst;
5970       break;
5971     }
5972   }
5973   if (!LI)
5974     return false;
5975 
5976   // If they're already in the same block, there's nothing to do.
5977   // Make the cheap checks first if we did not promote.
5978   // If we promoted, we need to check if it is indeed profitable.
5979   if (!HasPromoted && LI->getParent() == Inst->getParent())
5980     return false;
5981 
5982   return TLI->isExtLoad(LI, Inst, *DL);
5983 }
5984 
5985 /// Move a zext or sext fed by a load into the same basic block as the load,
5986 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5987 /// extend into the load.
5988 ///
5989 /// E.g.,
5990 /// \code
5991 /// %ld = load i32* %addr
5992 /// %add = add nuw i32 %ld, 4
5993 /// %zext = zext i32 %add to i64
5994 // \endcode
5995 /// =>
5996 /// \code
5997 /// %ld = load i32* %addr
5998 /// %zext = zext i32 %ld to i64
5999 /// %add = add nuw i64 %zext, 4
6000 /// \encode
6001 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6002 /// allow us to match zext(load i32*) to i64.
6003 ///
6004 /// Also, try to promote the computations used to obtain a sign extended
6005 /// value used into memory accesses.
6006 /// E.g.,
6007 /// \code
6008 /// a = add nsw i32 b, 3
6009 /// d = sext i32 a to i64
6010 /// e = getelementptr ..., i64 d
6011 /// \endcode
6012 /// =>
6013 /// \code
6014 /// f = sext i32 b to i64
6015 /// a = add nsw i64 f, 3
6016 /// e = getelementptr ..., i64 a
6017 /// \endcode
6018 ///
6019 /// \p Inst[in/out] the extension may be modified during the process if some
6020 /// promotions apply.
6021 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6022   bool AllowPromotionWithoutCommonHeader = false;
6023   /// See if it is an interesting sext operations for the address type
6024   /// promotion before trying to promote it, e.g., the ones with the right
6025   /// type and used in memory accesses.
6026   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6027       *Inst, AllowPromotionWithoutCommonHeader);
6028   TypePromotionTransaction TPT(RemovedInsts);
6029   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6030       TPT.getRestorationPoint();
6031   SmallVector<Instruction *, 1> Exts;
6032   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6033   Exts.push_back(Inst);
6034 
6035   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6036 
6037   // Look for a load being extended.
6038   LoadInst *LI = nullptr;
6039   Instruction *ExtFedByLoad;
6040 
6041   // Try to promote a chain of computation if it allows to form an extended
6042   // load.
6043   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6044     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6045     TPT.commit();
6046     // Move the extend into the same block as the load.
6047     ExtFedByLoad->moveAfter(LI);
6048     ++NumExtsMoved;
6049     Inst = ExtFedByLoad;
6050     return true;
6051   }
6052 
6053   // Continue promoting SExts if known as considerable depending on targets.
6054   if (ATPConsiderable &&
6055       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6056                                   HasPromoted, TPT, SpeculativelyMovedExts))
6057     return true;
6058 
6059   TPT.rollback(LastKnownGood);
6060   return false;
6061 }
6062 
6063 // Perform address type promotion if doing so is profitable.
6064 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6065 // instructions that sign extended the same initial value. However, if
6066 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6067 // extension is just profitable.
6068 bool CodeGenPrepare::performAddressTypePromotion(
6069     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6070     bool HasPromoted, TypePromotionTransaction &TPT,
6071     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6072   bool Promoted = false;
6073   SmallPtrSet<Instruction *, 1> UnhandledExts;
6074   bool AllSeenFirst = true;
6075   for (auto *I : SpeculativelyMovedExts) {
6076     Value *HeadOfChain = I->getOperand(0);
6077     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6078         SeenChainsForSExt.find(HeadOfChain);
6079     // If there is an unhandled SExt which has the same header, try to promote
6080     // it as well.
6081     if (AlreadySeen != SeenChainsForSExt.end()) {
6082       if (AlreadySeen->second != nullptr)
6083         UnhandledExts.insert(AlreadySeen->second);
6084       AllSeenFirst = false;
6085     }
6086   }
6087 
6088   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6089                         SpeculativelyMovedExts.size() == 1)) {
6090     TPT.commit();
6091     if (HasPromoted)
6092       Promoted = true;
6093     for (auto *I : SpeculativelyMovedExts) {
6094       Value *HeadOfChain = I->getOperand(0);
6095       SeenChainsForSExt[HeadOfChain] = nullptr;
6096       ValToSExtendedUses[HeadOfChain].push_back(I);
6097     }
6098     // Update Inst as promotion happen.
6099     Inst = SpeculativelyMovedExts.pop_back_val();
6100   } else {
6101     // This is the first chain visited from the header, keep the current chain
6102     // as unhandled. Defer to promote this until we encounter another SExt
6103     // chain derived from the same header.
6104     for (auto *I : SpeculativelyMovedExts) {
6105       Value *HeadOfChain = I->getOperand(0);
6106       SeenChainsForSExt[HeadOfChain] = Inst;
6107     }
6108     return false;
6109   }
6110 
6111   if (!AllSeenFirst && !UnhandledExts.empty())
6112     for (auto *VisitedSExt : UnhandledExts) {
6113       if (RemovedInsts.count(VisitedSExt))
6114         continue;
6115       TypePromotionTransaction TPT(RemovedInsts);
6116       SmallVector<Instruction *, 1> Exts;
6117       SmallVector<Instruction *, 2> Chains;
6118       Exts.push_back(VisitedSExt);
6119       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6120       TPT.commit();
6121       if (HasPromoted)
6122         Promoted = true;
6123       for (auto *I : Chains) {
6124         Value *HeadOfChain = I->getOperand(0);
6125         // Mark this as handled.
6126         SeenChainsForSExt[HeadOfChain] = nullptr;
6127         ValToSExtendedUses[HeadOfChain].push_back(I);
6128       }
6129     }
6130   return Promoted;
6131 }
6132 
6133 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6134   BasicBlock *DefBB = I->getParent();
6135 
6136   // If the result of a {s|z}ext and its source are both live out, rewrite all
6137   // other uses of the source with result of extension.
6138   Value *Src = I->getOperand(0);
6139   if (Src->hasOneUse())
6140     return false;
6141 
6142   // Only do this xform if truncating is free.
6143   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6144     return false;
6145 
6146   // Only safe to perform the optimization if the source is also defined in
6147   // this block.
6148   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6149     return false;
6150 
6151   bool DefIsLiveOut = false;
6152   for (User *U : I->users()) {
6153     Instruction *UI = cast<Instruction>(U);
6154 
6155     // Figure out which BB this ext is used in.
6156     BasicBlock *UserBB = UI->getParent();
6157     if (UserBB == DefBB) continue;
6158     DefIsLiveOut = true;
6159     break;
6160   }
6161   if (!DefIsLiveOut)
6162     return false;
6163 
6164   // Make sure none of the uses are PHI nodes.
6165   for (User *U : Src->users()) {
6166     Instruction *UI = cast<Instruction>(U);
6167     BasicBlock *UserBB = UI->getParent();
6168     if (UserBB == DefBB) continue;
6169     // Be conservative. We don't want this xform to end up introducing
6170     // reloads just before load / store instructions.
6171     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6172       return false;
6173   }
6174 
6175   // InsertedTruncs - Only insert one trunc in each block once.
6176   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6177 
6178   bool MadeChange = false;
6179   for (Use &U : Src->uses()) {
6180     Instruction *User = cast<Instruction>(U.getUser());
6181 
6182     // Figure out which BB this ext is used in.
6183     BasicBlock *UserBB = User->getParent();
6184     if (UserBB == DefBB) continue;
6185 
6186     // Both src and def are live in this block. Rewrite the use.
6187     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6188 
6189     if (!InsertedTrunc) {
6190       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6191       assert(InsertPt != UserBB->end());
6192       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6193       InsertedInsts.insert(InsertedTrunc);
6194     }
6195 
6196     // Replace a use of the {s|z}ext source with a use of the result.
6197     U = InsertedTrunc;
6198     ++NumExtUses;
6199     MadeChange = true;
6200   }
6201 
6202   return MadeChange;
6203 }
6204 
6205 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6206 // just after the load if the target can fold this into one extload instruction,
6207 // with the hope of eliminating some of the other later "and" instructions using
6208 // the loaded value.  "and"s that are made trivially redundant by the insertion
6209 // of the new "and" are removed by this function, while others (e.g. those whose
6210 // path from the load goes through a phi) are left for isel to potentially
6211 // remove.
6212 //
6213 // For example:
6214 //
6215 // b0:
6216 //   x = load i32
6217 //   ...
6218 // b1:
6219 //   y = and x, 0xff
6220 //   z = use y
6221 //
6222 // becomes:
6223 //
6224 // b0:
6225 //   x = load i32
6226 //   x' = and x, 0xff
6227 //   ...
6228 // b1:
6229 //   z = use x'
6230 //
6231 // whereas:
6232 //
6233 // b0:
6234 //   x1 = load i32
6235 //   ...
6236 // b1:
6237 //   x2 = load i32
6238 //   ...
6239 // b2:
6240 //   x = phi x1, x2
6241 //   y = and x, 0xff
6242 //
6243 // becomes (after a call to optimizeLoadExt for each load):
6244 //
6245 // b0:
6246 //   x1 = load i32
6247 //   x1' = and x1, 0xff
6248 //   ...
6249 // b1:
6250 //   x2 = load i32
6251 //   x2' = and x2, 0xff
6252 //   ...
6253 // b2:
6254 //   x = phi x1', x2'
6255 //   y = and x, 0xff
6256 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6257   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6258     return false;
6259 
6260   // Skip loads we've already transformed.
6261   if (Load->hasOneUse() &&
6262       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6263     return false;
6264 
6265   // Look at all uses of Load, looking through phis, to determine how many bits
6266   // of the loaded value are needed.
6267   SmallVector<Instruction *, 8> WorkList;
6268   SmallPtrSet<Instruction *, 16> Visited;
6269   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6270   for (auto *U : Load->users())
6271     WorkList.push_back(cast<Instruction>(U));
6272 
6273   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6274   unsigned BitWidth = LoadResultVT.getSizeInBits();
6275   APInt DemandBits(BitWidth, 0);
6276   APInt WidestAndBits(BitWidth, 0);
6277 
6278   while (!WorkList.empty()) {
6279     Instruction *I = WorkList.back();
6280     WorkList.pop_back();
6281 
6282     // Break use-def graph loops.
6283     if (!Visited.insert(I).second)
6284       continue;
6285 
6286     // For a PHI node, push all of its users.
6287     if (auto *Phi = dyn_cast<PHINode>(I)) {
6288       for (auto *U : Phi->users())
6289         WorkList.push_back(cast<Instruction>(U));
6290       continue;
6291     }
6292 
6293     switch (I->getOpcode()) {
6294     case Instruction::And: {
6295       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6296       if (!AndC)
6297         return false;
6298       APInt AndBits = AndC->getValue();
6299       DemandBits |= AndBits;
6300       // Keep track of the widest and mask we see.
6301       if (AndBits.ugt(WidestAndBits))
6302         WidestAndBits = AndBits;
6303       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6304         AndsToMaybeRemove.push_back(I);
6305       break;
6306     }
6307 
6308     case Instruction::Shl: {
6309       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6310       if (!ShlC)
6311         return false;
6312       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6313       DemandBits.setLowBits(BitWidth - ShiftAmt);
6314       break;
6315     }
6316 
6317     case Instruction::Trunc: {
6318       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6319       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6320       DemandBits.setLowBits(TruncBitWidth);
6321       break;
6322     }
6323 
6324     default:
6325       return false;
6326     }
6327   }
6328 
6329   uint32_t ActiveBits = DemandBits.getActiveBits();
6330   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6331   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6332   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6333   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6334   // followed by an AND.
6335   // TODO: Look into removing this restriction by fixing backends to either
6336   // return false for isLoadExtLegal for i1 or have them select this pattern to
6337   // a single instruction.
6338   //
6339   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6340   // mask, since these are the only ands that will be removed by isel.
6341   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6342       WidestAndBits != DemandBits)
6343     return false;
6344 
6345   LLVMContext &Ctx = Load->getType()->getContext();
6346   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6347   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6348 
6349   // Reject cases that won't be matched as extloads.
6350   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6351       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6352     return false;
6353 
6354   IRBuilder<> Builder(Load->getNextNode());
6355   auto *NewAnd = cast<Instruction>(
6356       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6357   // Mark this instruction as "inserted by CGP", so that other
6358   // optimizations don't touch it.
6359   InsertedInsts.insert(NewAnd);
6360 
6361   // Replace all uses of load with new and (except for the use of load in the
6362   // new and itself).
6363   Load->replaceAllUsesWith(NewAnd);
6364   NewAnd->setOperand(0, Load);
6365 
6366   // Remove any and instructions that are now redundant.
6367   for (auto *And : AndsToMaybeRemove)
6368     // Check that the and mask is the same as the one we decided to put on the
6369     // new and.
6370     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6371       And->replaceAllUsesWith(NewAnd);
6372       if (&*CurInstIterator == And)
6373         CurInstIterator = std::next(And->getIterator());
6374       And->eraseFromParent();
6375       ++NumAndUses;
6376     }
6377 
6378   ++NumAndsAdded;
6379   return true;
6380 }
6381 
6382 /// Check if V (an operand of a select instruction) is an expensive instruction
6383 /// that is only used once.
6384 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6385   auto *I = dyn_cast<Instruction>(V);
6386   // If it's safe to speculatively execute, then it should not have side
6387   // effects; therefore, it's safe to sink and possibly *not* execute.
6388   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6389          TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6390          TargetTransformInfo::TCC_Expensive;
6391 }
6392 
6393 /// Returns true if a SelectInst should be turned into an explicit branch.
6394 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6395                                                 const TargetLowering *TLI,
6396                                                 SelectInst *SI) {
6397   // If even a predictable select is cheap, then a branch can't be cheaper.
6398   if (!TLI->isPredictableSelectExpensive())
6399     return false;
6400 
6401   // FIXME: This should use the same heuristics as IfConversion to determine
6402   // whether a select is better represented as a branch.
6403 
6404   // If metadata tells us that the select condition is obviously predictable,
6405   // then we want to replace the select with a branch.
6406   uint64_t TrueWeight, FalseWeight;
6407   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6408     uint64_t Max = std::max(TrueWeight, FalseWeight);
6409     uint64_t Sum = TrueWeight + FalseWeight;
6410     if (Sum != 0) {
6411       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6412       if (Probability > TLI->getPredictableBranchThreshold())
6413         return true;
6414     }
6415   }
6416 
6417   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6418 
6419   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6420   // comparison condition. If the compare has more than one use, there's
6421   // probably another cmov or setcc around, so it's not worth emitting a branch.
6422   if (!Cmp || !Cmp->hasOneUse())
6423     return false;
6424 
6425   // If either operand of the select is expensive and only needed on one side
6426   // of the select, we should form a branch.
6427   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6428       sinkSelectOperand(TTI, SI->getFalseValue()))
6429     return true;
6430 
6431   return false;
6432 }
6433 
6434 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6435 /// false value of \p SI. If the true/false value of \p SI is defined by any
6436 /// select instructions in \p Selects, look through the defining select
6437 /// instruction until the true/false value is not defined in \p Selects.
6438 static Value *getTrueOrFalseValue(
6439     SelectInst *SI, bool isTrue,
6440     const SmallPtrSet<const Instruction *, 2> &Selects) {
6441   Value *V = nullptr;
6442 
6443   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6444        DefSI = dyn_cast<SelectInst>(V)) {
6445     assert(DefSI->getCondition() == SI->getCondition() &&
6446            "The condition of DefSI does not match with SI");
6447     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6448   }
6449 
6450   assert(V && "Failed to get select true/false value");
6451   return V;
6452 }
6453 
6454 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6455   assert(Shift->isShift() && "Expected a shift");
6456 
6457   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6458   // general vector shifts, and (3) the shift amount is a select-of-splatted
6459   // values, hoist the shifts before the select:
6460   //   shift Op0, (select Cond, TVal, FVal) -->
6461   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6462   //
6463   // This is inverting a generic IR transform when we know that the cost of a
6464   // general vector shift is more than the cost of 2 shift-by-scalars.
6465   // We can't do this effectively in SDAG because we may not be able to
6466   // determine if the select operands are splats from within a basic block.
6467   Type *Ty = Shift->getType();
6468   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6469     return false;
6470   Value *Cond, *TVal, *FVal;
6471   if (!match(Shift->getOperand(1),
6472              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6473     return false;
6474   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6475     return false;
6476 
6477   IRBuilder<> Builder(Shift);
6478   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6479   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6480   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6481   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6482   Shift->replaceAllUsesWith(NewSel);
6483   Shift->eraseFromParent();
6484   return true;
6485 }
6486 
6487 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6488   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6489   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6490          "Expected a funnel shift");
6491 
6492   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6493   // than general vector shifts, and (3) the shift amount is select-of-splatted
6494   // values, hoist the funnel shifts before the select:
6495   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6496   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6497   //
6498   // This is inverting a generic IR transform when we know that the cost of a
6499   // general vector shift is more than the cost of 2 shift-by-scalars.
6500   // We can't do this effectively in SDAG because we may not be able to
6501   // determine if the select operands are splats from within a basic block.
6502   Type *Ty = Fsh->getType();
6503   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6504     return false;
6505   Value *Cond, *TVal, *FVal;
6506   if (!match(Fsh->getOperand(2),
6507              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6508     return false;
6509   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6510     return false;
6511 
6512   IRBuilder<> Builder(Fsh);
6513   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6514   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6515   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6516   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6517   Fsh->replaceAllUsesWith(NewSel);
6518   Fsh->eraseFromParent();
6519   return true;
6520 }
6521 
6522 /// If we have a SelectInst that will likely profit from branch prediction,
6523 /// turn it into a branch.
6524 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6525   if (DisableSelectToBranch)
6526     return false;
6527 
6528   // Find all consecutive select instructions that share the same condition.
6529   SmallVector<SelectInst *, 2> ASI;
6530   ASI.push_back(SI);
6531   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6532        It != SI->getParent()->end(); ++It) {
6533     SelectInst *I = dyn_cast<SelectInst>(&*It);
6534     if (I && SI->getCondition() == I->getCondition()) {
6535       ASI.push_back(I);
6536     } else {
6537       break;
6538     }
6539   }
6540 
6541   SelectInst *LastSI = ASI.back();
6542   // Increment the current iterator to skip all the rest of select instructions
6543   // because they will be either "not lowered" or "all lowered" to branch.
6544   CurInstIterator = std::next(LastSI->getIterator());
6545 
6546   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6547 
6548   // Can we convert the 'select' to CF ?
6549   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6550     return false;
6551 
6552   TargetLowering::SelectSupportKind SelectKind;
6553   if (VectorCond)
6554     SelectKind = TargetLowering::VectorMaskSelect;
6555   else if (SI->getType()->isVectorTy())
6556     SelectKind = TargetLowering::ScalarCondVectorVal;
6557   else
6558     SelectKind = TargetLowering::ScalarValSelect;
6559 
6560   if (TLI->isSelectSupported(SelectKind) &&
6561       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6562        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6563     return false;
6564 
6565   // The DominatorTree needs to be rebuilt by any consumers after this
6566   // transformation. We simply reset here rather than setting the ModifiedDT
6567   // flag to avoid restarting the function walk in runOnFunction for each
6568   // select optimized.
6569   DT.reset();
6570 
6571   // Transform a sequence like this:
6572   //    start:
6573   //       %cmp = cmp uge i32 %a, %b
6574   //       %sel = select i1 %cmp, i32 %c, i32 %d
6575   //
6576   // Into:
6577   //    start:
6578   //       %cmp = cmp uge i32 %a, %b
6579   //       %cmp.frozen = freeze %cmp
6580   //       br i1 %cmp.frozen, label %select.true, label %select.false
6581   //    select.true:
6582   //       br label %select.end
6583   //    select.false:
6584   //       br label %select.end
6585   //    select.end:
6586   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6587   //
6588   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6589   // In addition, we may sink instructions that produce %c or %d from
6590   // the entry block into the destination(s) of the new branch.
6591   // If the true or false blocks do not contain a sunken instruction, that
6592   // block and its branch may be optimized away. In that case, one side of the
6593   // first branch will point directly to select.end, and the corresponding PHI
6594   // predecessor block will be the start block.
6595 
6596   // First, we split the block containing the select into 2 blocks.
6597   BasicBlock *StartBlock = SI->getParent();
6598   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6599   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6600   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6601 
6602   // Delete the unconditional branch that was just created by the split.
6603   StartBlock->getTerminator()->eraseFromParent();
6604 
6605   // These are the new basic blocks for the conditional branch.
6606   // At least one will become an actual new basic block.
6607   BasicBlock *TrueBlock = nullptr;
6608   BasicBlock *FalseBlock = nullptr;
6609   BranchInst *TrueBranch = nullptr;
6610   BranchInst *FalseBranch = nullptr;
6611 
6612   // Sink expensive instructions into the conditional blocks to avoid executing
6613   // them speculatively.
6614   for (SelectInst *SI : ASI) {
6615     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6616       if (TrueBlock == nullptr) {
6617         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6618                                        EndBlock->getParent(), EndBlock);
6619         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6620         TrueBranch->setDebugLoc(SI->getDebugLoc());
6621       }
6622       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6623       TrueInst->moveBefore(TrueBranch);
6624     }
6625     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6626       if (FalseBlock == nullptr) {
6627         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6628                                         EndBlock->getParent(), EndBlock);
6629         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6630         FalseBranch->setDebugLoc(SI->getDebugLoc());
6631       }
6632       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6633       FalseInst->moveBefore(FalseBranch);
6634     }
6635   }
6636 
6637   // If there was nothing to sink, then arbitrarily choose the 'false' side
6638   // for a new input value to the PHI.
6639   if (TrueBlock == FalseBlock) {
6640     assert(TrueBlock == nullptr &&
6641            "Unexpected basic block transform while optimizing select");
6642 
6643     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6644                                     EndBlock->getParent(), EndBlock);
6645     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6646     FalseBranch->setDebugLoc(SI->getDebugLoc());
6647   }
6648 
6649   // Insert the real conditional branch based on the original condition.
6650   // If we did not create a new block for one of the 'true' or 'false' paths
6651   // of the condition, it means that side of the branch goes to the end block
6652   // directly and the path originates from the start block from the point of
6653   // view of the new PHI.
6654   BasicBlock *TT, *FT;
6655   if (TrueBlock == nullptr) {
6656     TT = EndBlock;
6657     FT = FalseBlock;
6658     TrueBlock = StartBlock;
6659   } else if (FalseBlock == nullptr) {
6660     TT = TrueBlock;
6661     FT = EndBlock;
6662     FalseBlock = StartBlock;
6663   } else {
6664     TT = TrueBlock;
6665     FT = FalseBlock;
6666   }
6667   IRBuilder<> IB(SI);
6668   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6669   IB.CreateCondBr(CondFr, TT, FT, SI);
6670 
6671   SmallPtrSet<const Instruction *, 2> INS;
6672   INS.insert(ASI.begin(), ASI.end());
6673   // Use reverse iterator because later select may use the value of the
6674   // earlier select, and we need to propagate value through earlier select
6675   // to get the PHI operand.
6676   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6677     SelectInst *SI = *It;
6678     // The select itself is replaced with a PHI Node.
6679     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6680     PN->takeName(SI);
6681     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6682     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6683     PN->setDebugLoc(SI->getDebugLoc());
6684 
6685     SI->replaceAllUsesWith(PN);
6686     SI->eraseFromParent();
6687     INS.erase(SI);
6688     ++NumSelectsExpanded;
6689   }
6690 
6691   // Instruct OptimizeBlock to skip to the next block.
6692   CurInstIterator = StartBlock->end();
6693   return true;
6694 }
6695 
6696 /// Some targets only accept certain types for splat inputs. For example a VDUP
6697 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6698 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
6699 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6700   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6701   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6702                             m_Undef(), m_ZeroMask())))
6703     return false;
6704   Type *NewType = TLI->shouldConvertSplatType(SVI);
6705   if (!NewType)
6706     return false;
6707 
6708   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6709   assert(!NewType->isVectorTy() && "Expected a scalar type!");
6710   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6711          "Expected a type of the same size!");
6712   auto *NewVecType =
6713       FixedVectorType::get(NewType, SVIVecType->getNumElements());
6714 
6715   // Create a bitcast (shuffle (insert (bitcast(..))))
6716   IRBuilder<> Builder(SVI->getContext());
6717   Builder.SetInsertPoint(SVI);
6718   Value *BC1 = Builder.CreateBitCast(
6719       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6720   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
6721   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6722 
6723   SVI->replaceAllUsesWith(BC2);
6724   RecursivelyDeleteTriviallyDeadInstructions(
6725       SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6726 
6727   // Also hoist the bitcast up to its operand if it they are not in the same
6728   // block.
6729   if (auto *BCI = dyn_cast<Instruction>(BC1))
6730     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6731       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6732           !Op->isTerminator() && !Op->isEHPad())
6733         BCI->moveAfter(Op);
6734 
6735   return true;
6736 }
6737 
6738 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6739   // If the operands of I can be folded into a target instruction together with
6740   // I, duplicate and sink them.
6741   SmallVector<Use *, 4> OpsToSink;
6742   if (!TLI->shouldSinkOperands(I, OpsToSink))
6743     return false;
6744 
6745   // OpsToSink can contain multiple uses in a use chain (e.g.
6746   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6747   // uses must come first, so we process the ops in reverse order so as to not
6748   // create invalid IR.
6749   BasicBlock *TargetBB = I->getParent();
6750   bool Changed = false;
6751   SmallVector<Use *, 4> ToReplace;
6752   for (Use *U : reverse(OpsToSink)) {
6753     auto *UI = cast<Instruction>(U->get());
6754     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6755       continue;
6756     ToReplace.push_back(U);
6757   }
6758 
6759   SetVector<Instruction *> MaybeDead;
6760   DenseMap<Instruction *, Instruction *> NewInstructions;
6761   Instruction *InsertPoint = I;
6762   for (Use *U : ToReplace) {
6763     auto *UI = cast<Instruction>(U->get());
6764     Instruction *NI = UI->clone();
6765     NewInstructions[UI] = NI;
6766     MaybeDead.insert(UI);
6767     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6768     NI->insertBefore(InsertPoint);
6769     InsertPoint = NI;
6770     InsertedInsts.insert(NI);
6771 
6772     // Update the use for the new instruction, making sure that we update the
6773     // sunk instruction uses, if it is part of a chain that has already been
6774     // sunk.
6775     Instruction *OldI = cast<Instruction>(U->getUser());
6776     if (NewInstructions.count(OldI))
6777       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6778     else
6779       U->set(NI);
6780     Changed = true;
6781   }
6782 
6783   // Remove instructions that are dead after sinking.
6784   for (auto *I : MaybeDead) {
6785     if (!I->hasNUsesOrMore(1)) {
6786       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6787       I->eraseFromParent();
6788     }
6789   }
6790 
6791   return Changed;
6792 }
6793 
6794 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6795   Value *Cond = SI->getCondition();
6796   Type *OldType = Cond->getType();
6797   LLVMContext &Context = Cond->getContext();
6798   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6799   unsigned RegWidth = RegType.getSizeInBits();
6800 
6801   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6802     return false;
6803 
6804   // If the register width is greater than the type width, expand the condition
6805   // of the switch instruction and each case constant to the width of the
6806   // register. By widening the type of the switch condition, subsequent
6807   // comparisons (for case comparisons) will not need to be extended to the
6808   // preferred register width, so we will potentially eliminate N-1 extends,
6809   // where N is the number of cases in the switch.
6810   auto *NewType = Type::getIntNTy(Context, RegWidth);
6811 
6812   // Zero-extend the switch condition and case constants unless the switch
6813   // condition is a function argument that is already being sign-extended.
6814   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6815   // everything instead.
6816   Instruction::CastOps ExtType = Instruction::ZExt;
6817   if (auto *Arg = dyn_cast<Argument>(Cond))
6818     if (Arg->hasSExtAttr())
6819       ExtType = Instruction::SExt;
6820 
6821   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6822   ExtInst->insertBefore(SI);
6823   ExtInst->setDebugLoc(SI->getDebugLoc());
6824   SI->setCondition(ExtInst);
6825   for (auto Case : SI->cases()) {
6826     APInt NarrowConst = Case.getCaseValue()->getValue();
6827     APInt WideConst = (ExtType == Instruction::ZExt) ?
6828                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6829     Case.setValue(ConstantInt::get(Context, WideConst));
6830   }
6831 
6832   return true;
6833 }
6834 
6835 
6836 namespace {
6837 
6838 /// Helper class to promote a scalar operation to a vector one.
6839 /// This class is used to move downward extractelement transition.
6840 /// E.g.,
6841 /// a = vector_op <2 x i32>
6842 /// b = extractelement <2 x i32> a, i32 0
6843 /// c = scalar_op b
6844 /// store c
6845 ///
6846 /// =>
6847 /// a = vector_op <2 x i32>
6848 /// c = vector_op a (equivalent to scalar_op on the related lane)
6849 /// * d = extractelement <2 x i32> c, i32 0
6850 /// * store d
6851 /// Assuming both extractelement and store can be combine, we get rid of the
6852 /// transition.
6853 class VectorPromoteHelper {
6854   /// DataLayout associated with the current module.
6855   const DataLayout &DL;
6856 
6857   /// Used to perform some checks on the legality of vector operations.
6858   const TargetLowering &TLI;
6859 
6860   /// Used to estimated the cost of the promoted chain.
6861   const TargetTransformInfo &TTI;
6862 
6863   /// The transition being moved downwards.
6864   Instruction *Transition;
6865 
6866   /// The sequence of instructions to be promoted.
6867   SmallVector<Instruction *, 4> InstsToBePromoted;
6868 
6869   /// Cost of combining a store and an extract.
6870   unsigned StoreExtractCombineCost;
6871 
6872   /// Instruction that will be combined with the transition.
6873   Instruction *CombineInst = nullptr;
6874 
6875   /// The instruction that represents the current end of the transition.
6876   /// Since we are faking the promotion until we reach the end of the chain
6877   /// of computation, we need a way to get the current end of the transition.
6878   Instruction *getEndOfTransition() const {
6879     if (InstsToBePromoted.empty())
6880       return Transition;
6881     return InstsToBePromoted.back();
6882   }
6883 
6884   /// Return the index of the original value in the transition.
6885   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6886   /// c, is at index 0.
6887   unsigned getTransitionOriginalValueIdx() const {
6888     assert(isa<ExtractElementInst>(Transition) &&
6889            "Other kind of transitions are not supported yet");
6890     return 0;
6891   }
6892 
6893   /// Return the index of the index in the transition.
6894   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6895   /// is at index 1.
6896   unsigned getTransitionIdx() const {
6897     assert(isa<ExtractElementInst>(Transition) &&
6898            "Other kind of transitions are not supported yet");
6899     return 1;
6900   }
6901 
6902   /// Get the type of the transition.
6903   /// This is the type of the original value.
6904   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6905   /// transition is <2 x i32>.
6906   Type *getTransitionType() const {
6907     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6908   }
6909 
6910   /// Promote \p ToBePromoted by moving \p Def downward through.
6911   /// I.e., we have the following sequence:
6912   /// Def = Transition <ty1> a to <ty2>
6913   /// b = ToBePromoted <ty2> Def, ...
6914   /// =>
6915   /// b = ToBePromoted <ty1> a, ...
6916   /// Def = Transition <ty1> ToBePromoted to <ty2>
6917   void promoteImpl(Instruction *ToBePromoted);
6918 
6919   /// Check whether or not it is profitable to promote all the
6920   /// instructions enqueued to be promoted.
6921   bool isProfitableToPromote() {
6922     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6923     unsigned Index = isa<ConstantInt>(ValIdx)
6924                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6925                          : -1;
6926     Type *PromotedType = getTransitionType();
6927 
6928     StoreInst *ST = cast<StoreInst>(CombineInst);
6929     unsigned AS = ST->getPointerAddressSpace();
6930     unsigned Align = ST->getAlignment();
6931     // Check if this store is supported.
6932     if (!TLI.allowsMisalignedMemoryAccesses(
6933             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6934             Align)) {
6935       // If this is not supported, there is no way we can combine
6936       // the extract with the store.
6937       return false;
6938     }
6939 
6940     // The scalar chain of computation has to pay for the transition
6941     // scalar to vector.
6942     // The vector chain has to account for the combining cost.
6943     uint64_t ScalarCost =
6944         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6945     uint64_t VectorCost = StoreExtractCombineCost;
6946     enum TargetTransformInfo::TargetCostKind CostKind =
6947       TargetTransformInfo::TCK_RecipThroughput;
6948     for (const auto &Inst : InstsToBePromoted) {
6949       // Compute the cost.
6950       // By construction, all instructions being promoted are arithmetic ones.
6951       // Moreover, one argument is a constant that can be viewed as a splat
6952       // constant.
6953       Value *Arg0 = Inst->getOperand(0);
6954       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6955                             isa<ConstantFP>(Arg0);
6956       TargetTransformInfo::OperandValueKind Arg0OVK =
6957           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6958                          : TargetTransformInfo::OK_AnyValue;
6959       TargetTransformInfo::OperandValueKind Arg1OVK =
6960           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6961                           : TargetTransformInfo::OK_AnyValue;
6962       ScalarCost += TTI.getArithmeticInstrCost(
6963           Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
6964       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6965                                                CostKind,
6966                                                Arg0OVK, Arg1OVK);
6967     }
6968     LLVM_DEBUG(
6969         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6970                << ScalarCost << "\nVector: " << VectorCost << '\n');
6971     return ScalarCost > VectorCost;
6972   }
6973 
6974   /// Generate a constant vector with \p Val with the same
6975   /// number of elements as the transition.
6976   /// \p UseSplat defines whether or not \p Val should be replicated
6977   /// across the whole vector.
6978   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6979   /// otherwise we generate a vector with as many undef as possible:
6980   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6981   /// used at the index of the extract.
6982   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6983     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6984     if (!UseSplat) {
6985       // If we cannot determine where the constant must be, we have to
6986       // use a splat constant.
6987       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6988       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6989         ExtractIdx = CstVal->getSExtValue();
6990       else
6991         UseSplat = true;
6992     }
6993 
6994     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
6995     if (UseSplat)
6996       return ConstantVector::getSplat(EC, Val);
6997 
6998     if (!EC.isScalable()) {
6999       SmallVector<Constant *, 4> ConstVec;
7000       UndefValue *UndefVal = UndefValue::get(Val->getType());
7001       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7002         if (Idx == ExtractIdx)
7003           ConstVec.push_back(Val);
7004         else
7005           ConstVec.push_back(UndefVal);
7006       }
7007       return ConstantVector::get(ConstVec);
7008     } else
7009       llvm_unreachable(
7010           "Generate scalable vector for non-splat is unimplemented");
7011   }
7012 
7013   /// Check if promoting to a vector type an operand at \p OperandIdx
7014   /// in \p Use can trigger undefined behavior.
7015   static bool canCauseUndefinedBehavior(const Instruction *Use,
7016                                         unsigned OperandIdx) {
7017     // This is not safe to introduce undef when the operand is on
7018     // the right hand side of a division-like instruction.
7019     if (OperandIdx != 1)
7020       return false;
7021     switch (Use->getOpcode()) {
7022     default:
7023       return false;
7024     case Instruction::SDiv:
7025     case Instruction::UDiv:
7026     case Instruction::SRem:
7027     case Instruction::URem:
7028       return true;
7029     case Instruction::FDiv:
7030     case Instruction::FRem:
7031       return !Use->hasNoNaNs();
7032     }
7033     llvm_unreachable(nullptr);
7034   }
7035 
7036 public:
7037   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7038                       const TargetTransformInfo &TTI, Instruction *Transition,
7039                       unsigned CombineCost)
7040       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7041         StoreExtractCombineCost(CombineCost) {
7042     assert(Transition && "Do not know how to promote null");
7043   }
7044 
7045   /// Check if we can promote \p ToBePromoted to \p Type.
7046   bool canPromote(const Instruction *ToBePromoted) const {
7047     // We could support CastInst too.
7048     return isa<BinaryOperator>(ToBePromoted);
7049   }
7050 
7051   /// Check if it is profitable to promote \p ToBePromoted
7052   /// by moving downward the transition through.
7053   bool shouldPromote(const Instruction *ToBePromoted) const {
7054     // Promote only if all the operands can be statically expanded.
7055     // Indeed, we do not want to introduce any new kind of transitions.
7056     for (const Use &U : ToBePromoted->operands()) {
7057       const Value *Val = U.get();
7058       if (Val == getEndOfTransition()) {
7059         // If the use is a division and the transition is on the rhs,
7060         // we cannot promote the operation, otherwise we may create a
7061         // division by zero.
7062         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7063           return false;
7064         continue;
7065       }
7066       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7067           !isa<ConstantFP>(Val))
7068         return false;
7069     }
7070     // Check that the resulting operation is legal.
7071     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7072     if (!ISDOpcode)
7073       return false;
7074     return StressStoreExtract ||
7075            TLI.isOperationLegalOrCustom(
7076                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7077   }
7078 
7079   /// Check whether or not \p Use can be combined
7080   /// with the transition.
7081   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7082   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7083 
7084   /// Record \p ToBePromoted as part of the chain to be promoted.
7085   void enqueueForPromotion(Instruction *ToBePromoted) {
7086     InstsToBePromoted.push_back(ToBePromoted);
7087   }
7088 
7089   /// Set the instruction that will be combined with the transition.
7090   void recordCombineInstruction(Instruction *ToBeCombined) {
7091     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7092     CombineInst = ToBeCombined;
7093   }
7094 
7095   /// Promote all the instructions enqueued for promotion if it is
7096   /// is profitable.
7097   /// \return True if the promotion happened, false otherwise.
7098   bool promote() {
7099     // Check if there is something to promote.
7100     // Right now, if we do not have anything to combine with,
7101     // we assume the promotion is not profitable.
7102     if (InstsToBePromoted.empty() || !CombineInst)
7103       return false;
7104 
7105     // Check cost.
7106     if (!StressStoreExtract && !isProfitableToPromote())
7107       return false;
7108 
7109     // Promote.
7110     for (auto &ToBePromoted : InstsToBePromoted)
7111       promoteImpl(ToBePromoted);
7112     InstsToBePromoted.clear();
7113     return true;
7114   }
7115 };
7116 
7117 } // end anonymous namespace
7118 
7119 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7120   // At this point, we know that all the operands of ToBePromoted but Def
7121   // can be statically promoted.
7122   // For Def, we need to use its parameter in ToBePromoted:
7123   // b = ToBePromoted ty1 a
7124   // Def = Transition ty1 b to ty2
7125   // Move the transition down.
7126   // 1. Replace all uses of the promoted operation by the transition.
7127   // = ... b => = ... Def.
7128   assert(ToBePromoted->getType() == Transition->getType() &&
7129          "The type of the result of the transition does not match "
7130          "the final type");
7131   ToBePromoted->replaceAllUsesWith(Transition);
7132   // 2. Update the type of the uses.
7133   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7134   Type *TransitionTy = getTransitionType();
7135   ToBePromoted->mutateType(TransitionTy);
7136   // 3. Update all the operands of the promoted operation with promoted
7137   // operands.
7138   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7139   for (Use &U : ToBePromoted->operands()) {
7140     Value *Val = U.get();
7141     Value *NewVal = nullptr;
7142     if (Val == Transition)
7143       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7144     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7145              isa<ConstantFP>(Val)) {
7146       // Use a splat constant if it is not safe to use undef.
7147       NewVal = getConstantVector(
7148           cast<Constant>(Val),
7149           isa<UndefValue>(Val) ||
7150               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7151     } else
7152       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7153                        "this?");
7154     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7155   }
7156   Transition->moveAfter(ToBePromoted);
7157   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7158 }
7159 
7160 /// Some targets can do store(extractelement) with one instruction.
7161 /// Try to push the extractelement towards the stores when the target
7162 /// has this feature and this is profitable.
7163 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7164   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7165   if (DisableStoreExtract ||
7166       (!StressStoreExtract &&
7167        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7168                                        Inst->getOperand(1), CombineCost)))
7169     return false;
7170 
7171   // At this point we know that Inst is a vector to scalar transition.
7172   // Try to move it down the def-use chain, until:
7173   // - We can combine the transition with its single use
7174   //   => we got rid of the transition.
7175   // - We escape the current basic block
7176   //   => we would need to check that we are moving it at a cheaper place and
7177   //      we do not do that for now.
7178   BasicBlock *Parent = Inst->getParent();
7179   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7180   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7181   // If the transition has more than one use, assume this is not going to be
7182   // beneficial.
7183   while (Inst->hasOneUse()) {
7184     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7185     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7186 
7187     if (ToBePromoted->getParent() != Parent) {
7188       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7189                         << ToBePromoted->getParent()->getName()
7190                         << ") than the transition (" << Parent->getName()
7191                         << ").\n");
7192       return false;
7193     }
7194 
7195     if (VPH.canCombine(ToBePromoted)) {
7196       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7197                         << "will be combined with: " << *ToBePromoted << '\n');
7198       VPH.recordCombineInstruction(ToBePromoted);
7199       bool Changed = VPH.promote();
7200       NumStoreExtractExposed += Changed;
7201       return Changed;
7202     }
7203 
7204     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7205     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7206       return false;
7207 
7208     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7209 
7210     VPH.enqueueForPromotion(ToBePromoted);
7211     Inst = ToBePromoted;
7212   }
7213   return false;
7214 }
7215 
7216 /// For the instruction sequence of store below, F and I values
7217 /// are bundled together as an i64 value before being stored into memory.
7218 /// Sometimes it is more efficient to generate separate stores for F and I,
7219 /// which can remove the bitwise instructions or sink them to colder places.
7220 ///
7221 ///   (store (or (zext (bitcast F to i32) to i64),
7222 ///              (shl (zext I to i64), 32)), addr)  -->
7223 ///   (store F, addr) and (store I, addr+4)
7224 ///
7225 /// Similarly, splitting for other merged store can also be beneficial, like:
7226 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7227 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7228 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7229 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7230 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7231 ///
7232 /// We allow each target to determine specifically which kind of splitting is
7233 /// supported.
7234 ///
7235 /// The store patterns are commonly seen from the simple code snippet below
7236 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7237 ///   void goo(const std::pair<int, float> &);
7238 ///   hoo() {
7239 ///     ...
7240 ///     goo(std::make_pair(tmp, ftmp));
7241 ///     ...
7242 ///   }
7243 ///
7244 /// Although we already have similar splitting in DAG Combine, we duplicate
7245 /// it in CodeGenPrepare to catch the case in which pattern is across
7246 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7247 /// during code expansion.
7248 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7249                                 const TargetLowering &TLI) {
7250   // Handle simple but common cases only.
7251   Type *StoreType = SI.getValueOperand()->getType();
7252 
7253   // The code below assumes shifting a value by <number of bits>,
7254   // whereas scalable vectors would have to be shifted by
7255   // <2log(vscale) + number of bits> in order to store the
7256   // low/high parts. Bailing out for now.
7257   if (isa<ScalableVectorType>(StoreType))
7258     return false;
7259 
7260   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7261       DL.getTypeSizeInBits(StoreType) == 0)
7262     return false;
7263 
7264   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7265   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7266   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7267     return false;
7268 
7269   // Don't split the store if it is volatile.
7270   if (SI.isVolatile())
7271     return false;
7272 
7273   // Match the following patterns:
7274   // (store (or (zext LValue to i64),
7275   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7276   //  or
7277   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7278   //            (zext LValue to i64),
7279   // Expect both operands of OR and the first operand of SHL have only
7280   // one use.
7281   Value *LValue, *HValue;
7282   if (!match(SI.getValueOperand(),
7283              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7284                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7285                                    m_SpecificInt(HalfValBitSize))))))
7286     return false;
7287 
7288   // Check LValue and HValue are int with size less or equal than 32.
7289   if (!LValue->getType()->isIntegerTy() ||
7290       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7291       !HValue->getType()->isIntegerTy() ||
7292       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7293     return false;
7294 
7295   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7296   // as the input of target query.
7297   auto *LBC = dyn_cast<BitCastInst>(LValue);
7298   auto *HBC = dyn_cast<BitCastInst>(HValue);
7299   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7300                   : EVT::getEVT(LValue->getType());
7301   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7302                    : EVT::getEVT(HValue->getType());
7303   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7304     return false;
7305 
7306   // Start to split store.
7307   IRBuilder<> Builder(SI.getContext());
7308   Builder.SetInsertPoint(&SI);
7309 
7310   // If LValue/HValue is a bitcast in another BB, create a new one in current
7311   // BB so it may be merged with the splitted stores by dag combiner.
7312   if (LBC && LBC->getParent() != SI.getParent())
7313     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7314   if (HBC && HBC->getParent() != SI.getParent())
7315     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7316 
7317   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7318   auto CreateSplitStore = [&](Value *V, bool Upper) {
7319     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7320     Value *Addr = Builder.CreateBitCast(
7321         SI.getOperand(1),
7322         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7323     Align Alignment = SI.getAlign();
7324     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7325     if (IsOffsetStore) {
7326       Addr = Builder.CreateGEP(
7327           SplitStoreType, Addr,
7328           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7329 
7330       // When splitting the store in half, naturally one half will retain the
7331       // alignment of the original wider store, regardless of whether it was
7332       // over-aligned or not, while the other will require adjustment.
7333       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7334     }
7335     Builder.CreateAlignedStore(V, Addr, Alignment);
7336   };
7337 
7338   CreateSplitStore(LValue, false);
7339   CreateSplitStore(HValue, true);
7340 
7341   // Delete the old store.
7342   SI.eraseFromParent();
7343   return true;
7344 }
7345 
7346 // Return true if the GEP has two operands, the first operand is of a sequential
7347 // type, and the second operand is a constant.
7348 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7349   gep_type_iterator I = gep_type_begin(*GEP);
7350   return GEP->getNumOperands() == 2 &&
7351       I.isSequential() &&
7352       isa<ConstantInt>(GEP->getOperand(1));
7353 }
7354 
7355 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7356 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7357 // reducing liveness interference across those edges benefits global register
7358 // allocation. Currently handles only certain cases.
7359 //
7360 // For example, unmerge %GEPI and %UGEPI as below.
7361 //
7362 // ---------- BEFORE ----------
7363 // SrcBlock:
7364 //   ...
7365 //   %GEPIOp = ...
7366 //   ...
7367 //   %GEPI = gep %GEPIOp, Idx
7368 //   ...
7369 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7370 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7371 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7372 //   %UGEPI)
7373 //
7374 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7375 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7376 // ...
7377 //
7378 // DstBi:
7379 //   ...
7380 //   %UGEPI = gep %GEPIOp, UIdx
7381 // ...
7382 // ---------------------------
7383 //
7384 // ---------- AFTER ----------
7385 // SrcBlock:
7386 //   ... (same as above)
7387 //    (* %GEPI is still alive on the indirectbr edges)
7388 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7389 //    unmerging)
7390 // ...
7391 //
7392 // DstBi:
7393 //   ...
7394 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7395 //   ...
7396 // ---------------------------
7397 //
7398 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7399 // no longer alive on them.
7400 //
7401 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7402 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7403 // not to disable further simplications and optimizations as a result of GEP
7404 // merging.
7405 //
7406 // Note this unmerging may increase the length of the data flow critical path
7407 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7408 // between the register pressure and the length of data-flow critical
7409 // path. Restricting this to the uncommon IndirectBr case would minimize the
7410 // impact of potentially longer critical path, if any, and the impact on compile
7411 // time.
7412 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7413                                              const TargetTransformInfo *TTI) {
7414   BasicBlock *SrcBlock = GEPI->getParent();
7415   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7416   // (non-IndirectBr) cases exit early here.
7417   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7418     return false;
7419   // Check that GEPI is a simple gep with a single constant index.
7420   if (!GEPSequentialConstIndexed(GEPI))
7421     return false;
7422   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7423   // Check that GEPI is a cheap one.
7424   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7425                          TargetTransformInfo::TCK_SizeAndLatency)
7426       > TargetTransformInfo::TCC_Basic)
7427     return false;
7428   Value *GEPIOp = GEPI->getOperand(0);
7429   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7430   if (!isa<Instruction>(GEPIOp))
7431     return false;
7432   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7433   if (GEPIOpI->getParent() != SrcBlock)
7434     return false;
7435   // Check that GEP is used outside the block, meaning it's alive on the
7436   // IndirectBr edge(s).
7437   if (find_if(GEPI->users(), [&](User *Usr) {
7438         if (auto *I = dyn_cast<Instruction>(Usr)) {
7439           if (I->getParent() != SrcBlock) {
7440             return true;
7441           }
7442         }
7443         return false;
7444       }) == GEPI->users().end())
7445     return false;
7446   // The second elements of the GEP chains to be unmerged.
7447   std::vector<GetElementPtrInst *> UGEPIs;
7448   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7449   // on IndirectBr edges.
7450   for (User *Usr : GEPIOp->users()) {
7451     if (Usr == GEPI) continue;
7452     // Check if Usr is an Instruction. If not, give up.
7453     if (!isa<Instruction>(Usr))
7454       return false;
7455     auto *UI = cast<Instruction>(Usr);
7456     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7457     if (UI->getParent() == SrcBlock)
7458       continue;
7459     // Check if Usr is a GEP. If not, give up.
7460     if (!isa<GetElementPtrInst>(Usr))
7461       return false;
7462     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7463     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7464     // the pointer operand to it. If so, record it in the vector. If not, give
7465     // up.
7466     if (!GEPSequentialConstIndexed(UGEPI))
7467       return false;
7468     if (UGEPI->getOperand(0) != GEPIOp)
7469       return false;
7470     if (GEPIIdx->getType() !=
7471         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7472       return false;
7473     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7474     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7475                            TargetTransformInfo::TCK_SizeAndLatency)
7476         > TargetTransformInfo::TCC_Basic)
7477       return false;
7478     UGEPIs.push_back(UGEPI);
7479   }
7480   if (UGEPIs.size() == 0)
7481     return false;
7482   // Check the materializing cost of (Uidx-Idx).
7483   for (GetElementPtrInst *UGEPI : UGEPIs) {
7484     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7485     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7486     unsigned ImmCost =
7487       TTI->getIntImmCost(NewIdx, GEPIIdx->getType(),
7488                          TargetTransformInfo::TCK_SizeAndLatency);
7489     if (ImmCost > TargetTransformInfo::TCC_Basic)
7490       return false;
7491   }
7492   // Now unmerge between GEPI and UGEPIs.
7493   for (GetElementPtrInst *UGEPI : UGEPIs) {
7494     UGEPI->setOperand(0, GEPI);
7495     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7496     Constant *NewUGEPIIdx =
7497         ConstantInt::get(GEPIIdx->getType(),
7498                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7499     UGEPI->setOperand(1, NewUGEPIIdx);
7500     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7501     // inbounds to avoid UB.
7502     if (!GEPI->isInBounds()) {
7503       UGEPI->setIsInBounds(false);
7504     }
7505   }
7506   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7507   // alive on IndirectBr edges).
7508   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7509         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7510       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7511   return true;
7512 }
7513 
7514 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7515   // Bail out if we inserted the instruction to prevent optimizations from
7516   // stepping on each other's toes.
7517   if (InsertedInsts.count(I))
7518     return false;
7519 
7520   // TODO: Move into the switch on opcode below here.
7521   if (PHINode *P = dyn_cast<PHINode>(I)) {
7522     // It is possible for very late stage optimizations (such as SimplifyCFG)
7523     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7524     // trivial PHI, go ahead and zap it here.
7525     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7526       LargeOffsetGEPMap.erase(P);
7527       P->replaceAllUsesWith(V);
7528       P->eraseFromParent();
7529       ++NumPHIsElim;
7530       return true;
7531     }
7532     return false;
7533   }
7534 
7535   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7536     // If the source of the cast is a constant, then this should have
7537     // already been constant folded.  The only reason NOT to constant fold
7538     // it is if something (e.g. LSR) was careful to place the constant
7539     // evaluation in a block other than then one that uses it (e.g. to hoist
7540     // the address of globals out of a loop).  If this is the case, we don't
7541     // want to forward-subst the cast.
7542     if (isa<Constant>(CI->getOperand(0)))
7543       return false;
7544 
7545     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7546       return true;
7547 
7548     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7549       /// Sink a zext or sext into its user blocks if the target type doesn't
7550       /// fit in one register
7551       if (TLI->getTypeAction(CI->getContext(),
7552                              TLI->getValueType(*DL, CI->getType())) ==
7553           TargetLowering::TypeExpandInteger) {
7554         return SinkCast(CI);
7555       } else {
7556         bool MadeChange = optimizeExt(I);
7557         return MadeChange | optimizeExtUses(I);
7558       }
7559     }
7560     return false;
7561   }
7562 
7563   if (auto *Cmp = dyn_cast<CmpInst>(I))
7564     if (optimizeCmp(Cmp, ModifiedDT))
7565       return true;
7566 
7567   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7568     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7569     bool Modified = optimizeLoadExt(LI);
7570     unsigned AS = LI->getPointerAddressSpace();
7571     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7572     return Modified;
7573   }
7574 
7575   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7576     if (splitMergedValStore(*SI, *DL, *TLI))
7577       return true;
7578     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7579     unsigned AS = SI->getPointerAddressSpace();
7580     return optimizeMemoryInst(I, SI->getOperand(1),
7581                               SI->getOperand(0)->getType(), AS);
7582   }
7583 
7584   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7585       unsigned AS = RMW->getPointerAddressSpace();
7586       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7587                                 RMW->getType(), AS);
7588   }
7589 
7590   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7591       unsigned AS = CmpX->getPointerAddressSpace();
7592       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7593                                 CmpX->getCompareOperand()->getType(), AS);
7594   }
7595 
7596   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7597 
7598   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7599     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7600 
7601   // TODO: Move this into the switch on opcode - it handles shifts already.
7602   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7603                 BinOp->getOpcode() == Instruction::LShr)) {
7604     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7605     if (CI && TLI->hasExtractBitsInsn())
7606       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7607         return true;
7608   }
7609 
7610   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7611     if (GEPI->hasAllZeroIndices()) {
7612       /// The GEP operand must be a pointer, so must its result -> BitCast
7613       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7614                                         GEPI->getName(), GEPI);
7615       NC->setDebugLoc(GEPI->getDebugLoc());
7616       GEPI->replaceAllUsesWith(NC);
7617       GEPI->eraseFromParent();
7618       ++NumGEPsElim;
7619       optimizeInst(NC, ModifiedDT);
7620       return true;
7621     }
7622     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7623       return true;
7624     }
7625     return false;
7626   }
7627 
7628   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7629     // freeze(icmp a, const)) -> icmp (freeze a), const
7630     // This helps generate efficient conditional jumps.
7631     Instruction *CmpI = nullptr;
7632     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7633       CmpI = II;
7634     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7635       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7636 
7637     if (CmpI && CmpI->hasOneUse()) {
7638       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7639       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7640                     isa<ConstantPointerNull>(Op0);
7641       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7642                     isa<ConstantPointerNull>(Op1);
7643       if (Const0 || Const1) {
7644         if (!Const0 || !Const1) {
7645           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7646           F->takeName(FI);
7647           CmpI->setOperand(Const0 ? 1 : 0, F);
7648         }
7649         FI->replaceAllUsesWith(CmpI);
7650         FI->eraseFromParent();
7651         return true;
7652       }
7653     }
7654     return false;
7655   }
7656 
7657   if (tryToSinkFreeOperands(I))
7658     return true;
7659 
7660   switch (I->getOpcode()) {
7661   case Instruction::Shl:
7662   case Instruction::LShr:
7663   case Instruction::AShr:
7664     return optimizeShiftInst(cast<BinaryOperator>(I));
7665   case Instruction::Call:
7666     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7667   case Instruction::Select:
7668     return optimizeSelectInst(cast<SelectInst>(I));
7669   case Instruction::ShuffleVector:
7670     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7671   case Instruction::Switch:
7672     return optimizeSwitchInst(cast<SwitchInst>(I));
7673   case Instruction::ExtractElement:
7674     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7675   }
7676 
7677   return false;
7678 }
7679 
7680 /// Given an OR instruction, check to see if this is a bitreverse
7681 /// idiom. If so, insert the new intrinsic and return true.
7682 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
7683   if (!I.getType()->isIntegerTy() ||
7684       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
7685                                      TLI->getValueType(*DL, I.getType(), true)))
7686     return false;
7687 
7688   SmallVector<Instruction*, 4> Insts;
7689   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7690     return false;
7691   Instruction *LastInst = Insts.back();
7692   I.replaceAllUsesWith(LastInst);
7693   RecursivelyDeleteTriviallyDeadInstructions(
7694       &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
7695   return true;
7696 }
7697 
7698 // In this pass we look for GEP and cast instructions that are used
7699 // across basic blocks and rewrite them to improve basic-block-at-a-time
7700 // selection.
7701 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7702   SunkAddrs.clear();
7703   bool MadeChange = false;
7704 
7705   CurInstIterator = BB.begin();
7706   while (CurInstIterator != BB.end()) {
7707     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7708     if (ModifiedDT)
7709       return true;
7710   }
7711 
7712   bool MadeBitReverse = true;
7713   while (MadeBitReverse) {
7714     MadeBitReverse = false;
7715     for (auto &I : reverse(BB)) {
7716       if (makeBitReverse(I)) {
7717         MadeBitReverse = MadeChange = true;
7718         break;
7719       }
7720     }
7721   }
7722   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7723 
7724   return MadeChange;
7725 }
7726 
7727 // Some CGP optimizations may move or alter what's computed in a block. Check
7728 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7729 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7730   assert(isa<DbgValueInst>(I));
7731   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7732 
7733   // Does this dbg.value refer to a sunk address calculation?
7734   Value *Location = DVI.getVariableLocation();
7735   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7736   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7737   if (SunkAddr) {
7738     // Point dbg.value at locally computed address, which should give the best
7739     // opportunity to be accurately lowered. This update may change the type of
7740     // pointer being referred to; however this makes no difference to debugging
7741     // information, and we can't generate bitcasts that may affect codegen.
7742     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7743                                            ValueAsMetadata::get(SunkAddr)));
7744     return true;
7745   }
7746   return false;
7747 }
7748 
7749 // A llvm.dbg.value may be using a value before its definition, due to
7750 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7751 // them by moving the dbg.value to immediately after the value definition.
7752 // FIXME: Ideally this should never be necessary, and this has the potential
7753 // to re-order dbg.value intrinsics.
7754 bool CodeGenPrepare::placeDbgValues(Function &F) {
7755   bool MadeChange = false;
7756   DominatorTree DT(F);
7757 
7758   for (BasicBlock &BB : F) {
7759     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7760       Instruction *Insn = &*BI++;
7761       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7762       if (!DVI)
7763         continue;
7764 
7765       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7766 
7767       if (!VI || VI->isTerminator())
7768         continue;
7769 
7770       // If VI is a phi in a block with an EHPad terminator, we can't insert
7771       // after it.
7772       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7773         continue;
7774 
7775       // If the defining instruction dominates the dbg.value, we do not need
7776       // to move the dbg.value.
7777       if (DT.dominates(VI, DVI))
7778         continue;
7779 
7780       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7781                         << *DVI << ' ' << *VI);
7782       DVI->removeFromParent();
7783       if (isa<PHINode>(VI))
7784         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7785       else
7786         DVI->insertAfter(VI);
7787       MadeChange = true;
7788       ++NumDbgValueMoved;
7789     }
7790   }
7791   return MadeChange;
7792 }
7793 
7794 /// Scale down both weights to fit into uint32_t.
7795 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7796   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7797   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7798   NewTrue = NewTrue / Scale;
7799   NewFalse = NewFalse / Scale;
7800 }
7801 
7802 /// Some targets prefer to split a conditional branch like:
7803 /// \code
7804 ///   %0 = icmp ne i32 %a, 0
7805 ///   %1 = icmp ne i32 %b, 0
7806 ///   %or.cond = or i1 %0, %1
7807 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7808 /// \endcode
7809 /// into multiple branch instructions like:
7810 /// \code
7811 ///   bb1:
7812 ///     %0 = icmp ne i32 %a, 0
7813 ///     br i1 %0, label %TrueBB, label %bb2
7814 ///   bb2:
7815 ///     %1 = icmp ne i32 %b, 0
7816 ///     br i1 %1, label %TrueBB, label %FalseBB
7817 /// \endcode
7818 /// This usually allows instruction selection to do even further optimizations
7819 /// and combine the compare with the branch instruction. Currently this is
7820 /// applied for targets which have "cheap" jump instructions.
7821 ///
7822 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7823 ///
7824 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7825   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
7826     return false;
7827 
7828   bool MadeChange = false;
7829   for (auto &BB : F) {
7830     // Does this BB end with the following?
7831     //   %cond1 = icmp|fcmp|binary instruction ...
7832     //   %cond2 = icmp|fcmp|binary instruction ...
7833     //   %cond.or = or|and i1 %cond1, cond2
7834     //   br i1 %cond.or label %dest1, label %dest2"
7835     Instruction *LogicOp;
7836     BasicBlock *TBB, *FBB;
7837     if (!match(BB.getTerminator(),
7838                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
7839       continue;
7840 
7841     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7842     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7843       continue;
7844 
7845     // The merging of mostly empty BB can cause a degenerate branch.
7846     if (TBB == FBB)
7847       continue;
7848 
7849     unsigned Opc;
7850     Value *Cond1, *Cond2;
7851     if (match(LogicOp,
7852               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
7853       Opc = Instruction::And;
7854     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
7855                                         m_OneUse(m_Value(Cond2)))))
7856       Opc = Instruction::Or;
7857     else
7858       continue;
7859 
7860     auto IsGoodCond = [](Value *Cond) {
7861       return match(
7862           Cond,
7863           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
7864                                            m_LogicalOr(m_Value(), m_Value()))));
7865     };
7866     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
7867       continue;
7868 
7869     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7870 
7871     // Create a new BB.
7872     auto *TmpBB =
7873         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7874                            BB.getParent(), BB.getNextNode());
7875 
7876     // Update original basic block by using the first condition directly by the
7877     // branch instruction and removing the no longer needed and/or instruction.
7878     Br1->setCondition(Cond1);
7879     LogicOp->eraseFromParent();
7880 
7881     // Depending on the condition we have to either replace the true or the
7882     // false successor of the original branch instruction.
7883     if (Opc == Instruction::And)
7884       Br1->setSuccessor(0, TmpBB);
7885     else
7886       Br1->setSuccessor(1, TmpBB);
7887 
7888     // Fill in the new basic block.
7889     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7890     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7891       I->removeFromParent();
7892       I->insertBefore(Br2);
7893     }
7894 
7895     // Update PHI nodes in both successors. The original BB needs to be
7896     // replaced in one successor's PHI nodes, because the branch comes now from
7897     // the newly generated BB (NewBB). In the other successor we need to add one
7898     // incoming edge to the PHI nodes, because both branch instructions target
7899     // now the same successor. Depending on the original branch condition
7900     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7901     // we perform the correct update for the PHI nodes.
7902     // This doesn't change the successor order of the just created branch
7903     // instruction (or any other instruction).
7904     if (Opc == Instruction::Or)
7905       std::swap(TBB, FBB);
7906 
7907     // Replace the old BB with the new BB.
7908     TBB->replacePhiUsesWith(&BB, TmpBB);
7909 
7910     // Add another incoming edge form the new BB.
7911     for (PHINode &PN : FBB->phis()) {
7912       auto *Val = PN.getIncomingValueForBlock(&BB);
7913       PN.addIncoming(Val, TmpBB);
7914     }
7915 
7916     // Update the branch weights (from SelectionDAGBuilder::
7917     // FindMergedConditions).
7918     if (Opc == Instruction::Or) {
7919       // Codegen X | Y as:
7920       // BB1:
7921       //   jmp_if_X TBB
7922       //   jmp TmpBB
7923       // TmpBB:
7924       //   jmp_if_Y TBB
7925       //   jmp FBB
7926       //
7927 
7928       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7929       // The requirement is that
7930       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7931       //     = TrueProb for original BB.
7932       // Assuming the original weights are A and B, one choice is to set BB1's
7933       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7934       // assumes that
7935       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7936       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7937       // TmpBB, but the math is more complicated.
7938       uint64_t TrueWeight, FalseWeight;
7939       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7940         uint64_t NewTrueWeight = TrueWeight;
7941         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7942         scaleWeights(NewTrueWeight, NewFalseWeight);
7943         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7944                          .createBranchWeights(TrueWeight, FalseWeight));
7945 
7946         NewTrueWeight = TrueWeight;
7947         NewFalseWeight = 2 * FalseWeight;
7948         scaleWeights(NewTrueWeight, NewFalseWeight);
7949         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7950                          .createBranchWeights(TrueWeight, FalseWeight));
7951       }
7952     } else {
7953       // Codegen X & Y as:
7954       // BB1:
7955       //   jmp_if_X TmpBB
7956       //   jmp FBB
7957       // TmpBB:
7958       //   jmp_if_Y TBB
7959       //   jmp FBB
7960       //
7961       //  This requires creation of TmpBB after CurBB.
7962 
7963       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7964       // The requirement is that
7965       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7966       //     = FalseProb for original BB.
7967       // Assuming the original weights are A and B, one choice is to set BB1's
7968       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7969       // assumes that
7970       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7971       uint64_t TrueWeight, FalseWeight;
7972       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7973         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7974         uint64_t NewFalseWeight = FalseWeight;
7975         scaleWeights(NewTrueWeight, NewFalseWeight);
7976         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7977                          .createBranchWeights(TrueWeight, FalseWeight));
7978 
7979         NewTrueWeight = 2 * TrueWeight;
7980         NewFalseWeight = FalseWeight;
7981         scaleWeights(NewTrueWeight, NewFalseWeight);
7982         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7983                          .createBranchWeights(TrueWeight, FalseWeight));
7984       }
7985     }
7986 
7987     ModifiedDT = true;
7988     MadeChange = true;
7989 
7990     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7991                TmpBB->dump());
7992   }
7993   return MadeChange;
7994 }
7995