xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/CodeGenPrepare.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/CodeGenTypes/MachineValueType.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfo.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/IntrinsicsAArch64.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/ProfDataUtils.h"
71 #include "llvm/IR/Statepoint.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/User.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/IR/ValueHandle.h"
77 #include "llvm/IR/ValueMap.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BlockFrequency.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <optional>
103 #include <utility>
104 #include <vector>
105 
106 using namespace llvm;
107 using namespace llvm::PatternMatch;
108 
109 #define DEBUG_TYPE "codegenprepare"
110 
111 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
112 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
113 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
114 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
115                       "sunken Cmps");
116 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
117                        "of sunken Casts");
118 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
119                           "computations were sunk");
120 STATISTIC(NumMemoryInstsPhiCreated,
121           "Number of phis created when address "
122           "computations were sunk to memory instructions");
123 STATISTIC(NumMemoryInstsSelectCreated,
124           "Number of select created when address "
125           "computations were sunk to memory instructions");
126 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
127 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
128 STATISTIC(NumAndsAdded,
129           "Number of and mask instructions added to form ext loads");
130 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
131 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
132 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
133 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
134 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
135 
136 static cl::opt<bool> DisableBranchOpts(
137     "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
138     cl::desc("Disable branch optimizations in CodeGenPrepare"));
139 
140 static cl::opt<bool>
141     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
142                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
143 
144 static cl::opt<bool>
145     DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
146                           cl::init(false),
147                           cl::desc("Disable select to branch conversion."));
148 
149 static cl::opt<bool>
150     AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
151                       cl::desc("Address sinking in CGP using GEPs."));
152 
153 static cl::opt<bool>
154     EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
155                         cl::desc("Enable sinkinig and/cmp into branches."));
156 
157 static cl::opt<bool> DisableStoreExtract(
158     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
159     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
160 
161 static cl::opt<bool> StressStoreExtract(
162     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
163     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
164 
165 static cl::opt<bool> DisableExtLdPromotion(
166     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
168              "CodeGenPrepare"));
169 
170 static cl::opt<bool> StressExtLdPromotion(
171     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
172     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
173              "optimization in CodeGenPrepare"));
174 
175 static cl::opt<bool> DisablePreheaderProtect(
176     "disable-preheader-prot", cl::Hidden, cl::init(false),
177     cl::desc("Disable protection against removing loop preheaders"));
178 
179 static cl::opt<bool> ProfileGuidedSectionPrefix(
180     "profile-guided-section-prefix", cl::Hidden, cl::init(true),
181     cl::desc("Use profile info to add section prefix for hot/cold functions"));
182 
183 static cl::opt<bool> ProfileUnknownInSpecialSection(
184     "profile-unknown-in-special-section", cl::Hidden,
185     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
186              "profile, we cannot tell the function is cold for sure because "
187              "it may be a function newly added without ever being sampled. "
188              "With the flag enabled, compiler can put such profile unknown "
189              "functions into a special section, so runtime system can choose "
190              "to handle it in a different way than .text section, to save "
191              "RAM for example. "));
192 
193 static cl::opt<bool> BBSectionsGuidedSectionPrefix(
194     "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
195     cl::desc("Use the basic-block-sections profile to determine the text "
196              "section prefix for hot functions. Functions with "
197              "basic-block-sections profile will be placed in `.text.hot` "
198              "regardless of their FDO profile info. Other functions won't be "
199              "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
200              "profiles."));
201 
202 static cl::opt<uint64_t> FreqRatioToSkipMerge(
203     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
204     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
205              "(frequency of destination block) is greater than this ratio"));
206 
207 static cl::opt<bool> ForceSplitStore(
208     "force-split-store", cl::Hidden, cl::init(false),
209     cl::desc("Force store splitting no matter what the target query says."));
210 
211 static cl::opt<bool> EnableTypePromotionMerge(
212     "cgp-type-promotion-merge", cl::Hidden,
213     cl::desc("Enable merging of redundant sexts when one is dominating"
214              " the other."),
215     cl::init(true));
216 
217 static cl::opt<bool> DisableComplexAddrModes(
218     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
219     cl::desc("Disables combining addressing modes with different parts "
220              "in optimizeMemoryInst."));
221 
222 static cl::opt<bool>
223     AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
224                     cl::desc("Allow creation of Phis in Address sinking."));
225 
226 static cl::opt<bool> AddrSinkNewSelects(
227     "addr-sink-new-select", cl::Hidden, cl::init(true),
228     cl::desc("Allow creation of selects in Address sinking."));
229 
230 static cl::opt<bool> AddrSinkCombineBaseReg(
231     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
232     cl::desc("Allow combining of BaseReg field in Address sinking."));
233 
234 static cl::opt<bool> AddrSinkCombineBaseGV(
235     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
236     cl::desc("Allow combining of BaseGV field in Address sinking."));
237 
238 static cl::opt<bool> AddrSinkCombineBaseOffs(
239     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
240     cl::desc("Allow combining of BaseOffs field in Address sinking."));
241 
242 static cl::opt<bool> AddrSinkCombineScaledReg(
243     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
244     cl::desc("Allow combining of ScaledReg field in Address sinking."));
245 
246 static cl::opt<bool>
247     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
248                          cl::init(true),
249                          cl::desc("Enable splitting large offset of GEP."));
250 
251 static cl::opt<bool> EnableICMP_EQToICMP_ST(
252     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
253     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
254 
255 static cl::opt<bool>
256     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
257                      cl::desc("Enable BFI update verification for "
258                               "CodeGenPrepare."));
259 
260 static cl::opt<bool>
261     OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
262                      cl::desc("Enable converting phi types in CodeGenPrepare"));
263 
264 static cl::opt<unsigned>
265     HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
266                             cl::desc("Least BB number of huge function."));
267 
268 static cl::opt<unsigned>
269     MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
270                           cl::Hidden,
271                           cl::desc("Max number of address users to look at"));
272 
273 static cl::opt<bool>
274     DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false),
275                       cl::desc("Disable elimination of dead PHI nodes."));
276 
277 namespace {
278 
279 enum ExtType {
280   ZeroExtension, // Zero extension has been seen.
281   SignExtension, // Sign extension has been seen.
282   BothExtension  // This extension type is used if we saw sext after
283                  // ZeroExtension had been set, or if we saw zext after
284                  // SignExtension had been set. It makes the type
285                  // information of a promoted instruction invalid.
286 };
287 
288 enum ModifyDT {
289   NotModifyDT, // Not Modify any DT.
290   ModifyBBDT,  // Modify the Basic Block Dominator Tree.
291   ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
292                // This usually means we move/delete/insert instruction
293                // in a Basic Block. So we should re-iterate instructions
294                // in such Basic Block.
295 };
296 
297 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
298 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
299 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
300 using SExts = SmallVector<Instruction *, 16>;
301 using ValueToSExts = MapVector<Value *, SExts>;
302 
303 class TypePromotionTransaction;
304 
305 class CodeGenPrepare {
306   friend class CodeGenPrepareLegacyPass;
307   const TargetMachine *TM = nullptr;
308   const TargetSubtargetInfo *SubtargetInfo = nullptr;
309   const TargetLowering *TLI = nullptr;
310   const TargetRegisterInfo *TRI = nullptr;
311   const TargetTransformInfo *TTI = nullptr;
312   const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
313   const TargetLibraryInfo *TLInfo = nullptr;
314   LoopInfo *LI = nullptr;
315   std::unique_ptr<BlockFrequencyInfo> BFI;
316   std::unique_ptr<BranchProbabilityInfo> BPI;
317   ProfileSummaryInfo *PSI = nullptr;
318 
319   /// As we scan instructions optimizing them, this is the next instruction
320   /// to optimize. Transforms that can invalidate this should update it.
321   BasicBlock::iterator CurInstIterator;
322 
323   /// Keeps track of non-local addresses that have been sunk into a block.
324   /// This allows us to avoid inserting duplicate code for blocks with
325   /// multiple load/stores of the same address. The usage of WeakTrackingVH
326   /// enables SunkAddrs to be treated as a cache whose entries can be
327   /// invalidated if a sunken address computation has been erased.
328   ValueMap<Value *, WeakTrackingVH> SunkAddrs;
329 
330   /// Keeps track of all instructions inserted for the current function.
331   SetOfInstrs InsertedInsts;
332 
333   /// Keeps track of the type of the related instruction before their
334   /// promotion for the current function.
335   InstrToOrigTy PromotedInsts;
336 
337   /// Keep track of instructions removed during promotion.
338   SetOfInstrs RemovedInsts;
339 
340   /// Keep track of sext chains based on their initial value.
341   DenseMap<Value *, Instruction *> SeenChainsForSExt;
342 
343   /// Keep track of GEPs accessing the same data structures such as structs or
344   /// arrays that are candidates to be split later because of their large
345   /// size.
346   MapVector<AssertingVH<Value>,
347             SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
348       LargeOffsetGEPMap;
349 
350   /// Keep track of new GEP base after splitting the GEPs having large offset.
351   SmallSet<AssertingVH<Value>, 2> NewGEPBases;
352 
353   /// Map serial numbers to Large offset GEPs.
354   DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
355 
356   /// Keep track of SExt promoted.
357   ValueToSExts ValToSExtendedUses;
358 
359   /// True if the function has the OptSize attribute.
360   bool OptSize;
361 
362   /// DataLayout for the Function being processed.
363   const DataLayout *DL = nullptr;
364 
365   /// Building the dominator tree can be expensive, so we only build it
366   /// lazily and update it when required.
367   std::unique_ptr<DominatorTree> DT;
368 
369 public:
370   CodeGenPrepare(){};
371   CodeGenPrepare(const TargetMachine *TM) : TM(TM){};
372   /// If encounter huge function, we need to limit the build time.
373   bool IsHugeFunc = false;
374 
375   /// FreshBBs is like worklist, it collected the updated BBs which need
376   /// to be optimized again.
377   /// Note: Consider building time in this pass, when a BB updated, we need
378   /// to insert such BB into FreshBBs for huge function.
379   SmallSet<BasicBlock *, 32> FreshBBs;
380 
381   void releaseMemory() {
382     // Clear per function information.
383     InsertedInsts.clear();
384     PromotedInsts.clear();
385     FreshBBs.clear();
386     BPI.reset();
387     BFI.reset();
388   }
389 
390   bool run(Function &F, FunctionAnalysisManager &AM);
391 
392 private:
393   template <typename F>
394   void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
395     // Substituting can cause recursive simplifications, which can invalidate
396     // our iterator.  Use a WeakTrackingVH to hold onto it in case this
397     // happens.
398     Value *CurValue = &*CurInstIterator;
399     WeakTrackingVH IterHandle(CurValue);
400 
401     f();
402 
403     // If the iterator instruction was recursively deleted, start over at the
404     // start of the block.
405     if (IterHandle != CurValue) {
406       CurInstIterator = BB->begin();
407       SunkAddrs.clear();
408     }
409   }
410 
411   // Get the DominatorTree, building if necessary.
412   DominatorTree &getDT(Function &F) {
413     if (!DT)
414       DT = std::make_unique<DominatorTree>(F);
415     return *DT;
416   }
417 
418   void removeAllAssertingVHReferences(Value *V);
419   bool eliminateAssumptions(Function &F);
420   bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
421   bool eliminateMostlyEmptyBlocks(Function &F);
422   BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
423   bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
424   void eliminateMostlyEmptyBlock(BasicBlock *BB);
425   bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
426                                      bool isPreheader);
427   bool makeBitReverse(Instruction &I);
428   bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
429   bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
430   bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
431                           unsigned AddrSpace);
432   bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
433   bool optimizeInlineAsmInst(CallInst *CS);
434   bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
435   bool optimizeExt(Instruction *&I);
436   bool optimizeExtUses(Instruction *I);
437   bool optimizeLoadExt(LoadInst *Load);
438   bool optimizeShiftInst(BinaryOperator *BO);
439   bool optimizeFunnelShift(IntrinsicInst *Fsh);
440   bool optimizeSelectInst(SelectInst *SI);
441   bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
442   bool optimizeSwitchType(SwitchInst *SI);
443   bool optimizeSwitchPhiConstants(SwitchInst *SI);
444   bool optimizeSwitchInst(SwitchInst *SI);
445   bool optimizeExtractElementInst(Instruction *Inst);
446   bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
447   bool fixupDbgValue(Instruction *I);
448   bool fixupDbgVariableRecord(DbgVariableRecord &I);
449   bool fixupDbgVariableRecordsOnInst(Instruction &I);
450   bool placeDbgValues(Function &F);
451   bool placePseudoProbes(Function &F);
452   bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
453                     LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
454   bool tryToPromoteExts(TypePromotionTransaction &TPT,
455                         const SmallVectorImpl<Instruction *> &Exts,
456                         SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
457                         unsigned CreatedInstsCost = 0);
458   bool mergeSExts(Function &F);
459   bool splitLargeGEPOffsets();
460   bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
461                        SmallPtrSetImpl<Instruction *> &DeletedInstrs);
462   bool optimizePhiTypes(Function &F);
463   bool performAddressTypePromotion(
464       Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
465       bool HasPromoted, TypePromotionTransaction &TPT,
466       SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
467   bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
468   bool simplifyOffsetableRelocate(GCStatepointInst &I);
469 
470   bool tryToSinkFreeOperands(Instruction *I);
471   bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
472                                    CmpInst *Cmp, Intrinsic::ID IID);
473   bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
474   bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
475   bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
476   void verifyBFIUpdates(Function &F);
477   bool _run(Function &F);
478 };
479 
480 class CodeGenPrepareLegacyPass : public FunctionPass {
481 public:
482   static char ID; // Pass identification, replacement for typeid
483 
484   CodeGenPrepareLegacyPass() : FunctionPass(ID) {
485     initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
486   }
487 
488   bool runOnFunction(Function &F) override;
489 
490   StringRef getPassName() const override { return "CodeGen Prepare"; }
491 
492   void getAnalysisUsage(AnalysisUsage &AU) const override {
493     // FIXME: When we can selectively preserve passes, preserve the domtree.
494     AU.addRequired<ProfileSummaryInfoWrapperPass>();
495     AU.addRequired<TargetLibraryInfoWrapperPass>();
496     AU.addRequired<TargetPassConfig>();
497     AU.addRequired<TargetTransformInfoWrapperPass>();
498     AU.addRequired<LoopInfoWrapperPass>();
499     AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
500   }
501 };
502 
503 } // end anonymous namespace
504 
505 char CodeGenPrepareLegacyPass::ID = 0;
506 
507 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) {
508   if (skipFunction(F))
509     return false;
510   auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
511   CodeGenPrepare CGP(TM);
512   CGP.DL = &F.getDataLayout();
513   CGP.SubtargetInfo = TM->getSubtargetImpl(F);
514   CGP.TLI = CGP.SubtargetInfo->getTargetLowering();
515   CGP.TRI = CGP.SubtargetInfo->getRegisterInfo();
516   CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
517   CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
518   CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
519   CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI));
520   CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI));
521   CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
522   auto BBSPRWP =
523       getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
524   CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr;
525 
526   return CGP._run(F);
527 }
528 
529 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE,
530                       "Optimize for code generation", false, false)
531 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
532 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
533 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
534 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
535 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
536 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
537 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE,
538                     "Optimize for code generation", false, false)
539 
540 FunctionPass *llvm::createCodeGenPrepareLegacyPass() {
541   return new CodeGenPrepareLegacyPass();
542 }
543 
544 PreservedAnalyses CodeGenPreparePass::run(Function &F,
545                                           FunctionAnalysisManager &AM) {
546   CodeGenPrepare CGP(TM);
547 
548   bool Changed = CGP.run(F, AM);
549   if (!Changed)
550     return PreservedAnalyses::all();
551 
552   PreservedAnalyses PA;
553   PA.preserve<TargetLibraryAnalysis>();
554   PA.preserve<TargetIRAnalysis>();
555   PA.preserve<LoopAnalysis>();
556   return PA;
557 }
558 
559 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) {
560   DL = &F.getDataLayout();
561   SubtargetInfo = TM->getSubtargetImpl(F);
562   TLI = SubtargetInfo->getTargetLowering();
563   TRI = SubtargetInfo->getRegisterInfo();
564   TLInfo = &AM.getResult<TargetLibraryAnalysis>(F);
565   TTI = &AM.getResult<TargetIRAnalysis>(F);
566   LI = &AM.getResult<LoopAnalysis>(F);
567   BPI.reset(new BranchProbabilityInfo(F, *LI));
568   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
569   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
570   PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
571   BBSectionsProfileReader =
572       AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F);
573   return _run(F);
574 }
575 
576 bool CodeGenPrepare::_run(Function &F) {
577   bool EverMadeChange = false;
578 
579   OptSize = F.hasOptSize();
580   // Use the basic-block-sections profile to promote hot functions to .text.hot
581   // if requested.
582   if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
583       BBSectionsProfileReader->isFunctionHot(F.getName())) {
584     F.setSectionPrefix("hot");
585   } else if (ProfileGuidedSectionPrefix) {
586     // The hot attribute overwrites profile count based hotness while profile
587     // counts based hotness overwrite the cold attribute.
588     // This is a conservative behabvior.
589     if (F.hasFnAttribute(Attribute::Hot) ||
590         PSI->isFunctionHotInCallGraph(&F, *BFI))
591       F.setSectionPrefix("hot");
592     // If PSI shows this function is not hot, we will placed the function
593     // into unlikely section if (1) PSI shows this is a cold function, or
594     // (2) the function has a attribute of cold.
595     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
596              F.hasFnAttribute(Attribute::Cold))
597       F.setSectionPrefix("unlikely");
598     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
599              PSI->isFunctionHotnessUnknown(F))
600       F.setSectionPrefix("unknown");
601   }
602 
603   /// This optimization identifies DIV instructions that can be
604   /// profitably bypassed and carried out with a shorter, faster divide.
605   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
606     const DenseMap<unsigned int, unsigned int> &BypassWidths =
607         TLI->getBypassSlowDivWidths();
608     BasicBlock *BB = &*F.begin();
609     while (BB != nullptr) {
610       // bypassSlowDivision may create new BBs, but we don't want to reapply the
611       // optimization to those blocks.
612       BasicBlock *Next = BB->getNextNode();
613       // F.hasOptSize is already checked in the outer if statement.
614       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
615         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
616       BB = Next;
617     }
618   }
619 
620   // Get rid of @llvm.assume builtins before attempting to eliminate empty
621   // blocks, since there might be blocks that only contain @llvm.assume calls
622   // (plus arguments that we can get rid of).
623   EverMadeChange |= eliminateAssumptions(F);
624 
625   // Eliminate blocks that contain only PHI nodes and an
626   // unconditional branch.
627   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
628 
629   ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
630   if (!DisableBranchOpts)
631     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
632 
633   // Split some critical edges where one of the sources is an indirect branch,
634   // to help generate sane code for PHIs involving such edges.
635   EverMadeChange |=
636       SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
637 
638   // If we are optimzing huge function, we need to consider the build time.
639   // Because the basic algorithm's complex is near O(N!).
640   IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
641 
642   // Transformations above may invalidate dominator tree and/or loop info.
643   DT.reset();
644   LI->releaseMemory();
645   LI->analyze(getDT(F));
646 
647   bool MadeChange = true;
648   bool FuncIterated = false;
649   while (MadeChange) {
650     MadeChange = false;
651 
652     for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
653       if (FuncIterated && !FreshBBs.contains(&BB))
654         continue;
655 
656       ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
657       bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
658 
659       if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
660         DT.reset();
661 
662       MadeChange |= Changed;
663       if (IsHugeFunc) {
664         // If the BB is updated, it may still has chance to be optimized.
665         // This usually happen at sink optimization.
666         // For example:
667         //
668         // bb0:
669         // %and = and i32 %a, 4
670         // %cmp = icmp eq i32 %and, 0
671         //
672         // If the %cmp sink to other BB, the %and will has chance to sink.
673         if (Changed)
674           FreshBBs.insert(&BB);
675         else if (FuncIterated)
676           FreshBBs.erase(&BB);
677       } else {
678         // For small/normal functions, we restart BB iteration if the dominator
679         // tree of the Function was changed.
680         if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
681           break;
682       }
683     }
684     // We have iterated all the BB in the (only work for huge) function.
685     FuncIterated = IsHugeFunc;
686 
687     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
688       MadeChange |= mergeSExts(F);
689     if (!LargeOffsetGEPMap.empty())
690       MadeChange |= splitLargeGEPOffsets();
691     MadeChange |= optimizePhiTypes(F);
692 
693     if (MadeChange)
694       eliminateFallThrough(F, DT.get());
695 
696 #ifndef NDEBUG
697     if (MadeChange && VerifyLoopInfo)
698       LI->verify(getDT(F));
699 #endif
700 
701     // Really free removed instructions during promotion.
702     for (Instruction *I : RemovedInsts)
703       I->deleteValue();
704 
705     EverMadeChange |= MadeChange;
706     SeenChainsForSExt.clear();
707     ValToSExtendedUses.clear();
708     RemovedInsts.clear();
709     LargeOffsetGEPMap.clear();
710     LargeOffsetGEPID.clear();
711   }
712 
713   NewGEPBases.clear();
714   SunkAddrs.clear();
715 
716   if (!DisableBranchOpts) {
717     MadeChange = false;
718     // Use a set vector to get deterministic iteration order. The order the
719     // blocks are removed may affect whether or not PHI nodes in successors
720     // are removed.
721     SmallSetVector<BasicBlock *, 8> WorkList;
722     for (BasicBlock &BB : F) {
723       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
724       MadeChange |= ConstantFoldTerminator(&BB, true);
725       if (!MadeChange)
726         continue;
727 
728       for (BasicBlock *Succ : Successors)
729         if (pred_empty(Succ))
730           WorkList.insert(Succ);
731     }
732 
733     // Delete the dead blocks and any of their dead successors.
734     MadeChange |= !WorkList.empty();
735     while (!WorkList.empty()) {
736       BasicBlock *BB = WorkList.pop_back_val();
737       SmallVector<BasicBlock *, 2> Successors(successors(BB));
738 
739       DeleteDeadBlock(BB);
740 
741       for (BasicBlock *Succ : Successors)
742         if (pred_empty(Succ))
743           WorkList.insert(Succ);
744     }
745 
746     // Merge pairs of basic blocks with unconditional branches, connected by
747     // a single edge.
748     if (EverMadeChange || MadeChange)
749       MadeChange |= eliminateFallThrough(F);
750 
751     EverMadeChange |= MadeChange;
752   }
753 
754   if (!DisableGCOpts) {
755     SmallVector<GCStatepointInst *, 2> Statepoints;
756     for (BasicBlock &BB : F)
757       for (Instruction &I : BB)
758         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
759           Statepoints.push_back(SP);
760     for (auto &I : Statepoints)
761       EverMadeChange |= simplifyOffsetableRelocate(*I);
762   }
763 
764   // Do this last to clean up use-before-def scenarios introduced by other
765   // preparatory transforms.
766   EverMadeChange |= placeDbgValues(F);
767   EverMadeChange |= placePseudoProbes(F);
768 
769 #ifndef NDEBUG
770   if (VerifyBFIUpdates)
771     verifyBFIUpdates(F);
772 #endif
773 
774   return EverMadeChange;
775 }
776 
777 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
778   bool MadeChange = false;
779   for (BasicBlock &BB : F) {
780     CurInstIterator = BB.begin();
781     while (CurInstIterator != BB.end()) {
782       Instruction *I = &*(CurInstIterator++);
783       if (auto *Assume = dyn_cast<AssumeInst>(I)) {
784         MadeChange = true;
785         Value *Operand = Assume->getOperand(0);
786         Assume->eraseFromParent();
787 
788         resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
789           RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
790         });
791       }
792     }
793   }
794   return MadeChange;
795 }
796 
797 /// An instruction is about to be deleted, so remove all references to it in our
798 /// GEP-tracking data strcutures.
799 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
800   LargeOffsetGEPMap.erase(V);
801   NewGEPBases.erase(V);
802 
803   auto GEP = dyn_cast<GetElementPtrInst>(V);
804   if (!GEP)
805     return;
806 
807   LargeOffsetGEPID.erase(GEP);
808 
809   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
810   if (VecI == LargeOffsetGEPMap.end())
811     return;
812 
813   auto &GEPVector = VecI->second;
814   llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
815 
816   if (GEPVector.empty())
817     LargeOffsetGEPMap.erase(VecI);
818 }
819 
820 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
821 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
822   DominatorTree NewDT(F);
823   LoopInfo NewLI(NewDT);
824   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
825   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
826   NewBFI.verifyMatch(*BFI);
827 }
828 
829 /// Merge basic blocks which are connected by a single edge, where one of the
830 /// basic blocks has a single successor pointing to the other basic block,
831 /// which has a single predecessor.
832 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
833   bool Changed = false;
834   // Scan all of the blocks in the function, except for the entry block.
835   // Use a temporary array to avoid iterator being invalidated when
836   // deleting blocks.
837   SmallVector<WeakTrackingVH, 16> Blocks;
838   for (auto &Block : llvm::drop_begin(F))
839     Blocks.push_back(&Block);
840 
841   SmallSet<WeakTrackingVH, 16> Preds;
842   for (auto &Block : Blocks) {
843     auto *BB = cast_or_null<BasicBlock>(Block);
844     if (!BB)
845       continue;
846     // If the destination block has a single pred, then this is a trivial
847     // edge, just collapse it.
848     BasicBlock *SinglePred = BB->getSinglePredecessor();
849 
850     // Don't merge if BB's address is taken.
851     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
852       continue;
853 
854     // Make an effort to skip unreachable blocks.
855     if (DT && !DT->isReachableFromEntry(BB))
856       continue;
857 
858     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
859     if (Term && !Term->isConditional()) {
860       Changed = true;
861       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
862 
863       // Merge BB into SinglePred and delete it.
864       MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
865                                 /* MemDep */ nullptr,
866                                 /* PredecessorWithTwoSuccessors */ false, DT);
867       Preds.insert(SinglePred);
868 
869       if (IsHugeFunc) {
870         // Update FreshBBs to optimize the merged BB.
871         FreshBBs.insert(SinglePred);
872         FreshBBs.erase(BB);
873       }
874     }
875   }
876 
877   // (Repeatedly) merging blocks into their predecessors can create redundant
878   // debug intrinsics.
879   for (const auto &Pred : Preds)
880     if (auto *BB = cast_or_null<BasicBlock>(Pred))
881       RemoveRedundantDbgInstrs(BB);
882 
883   return Changed;
884 }
885 
886 /// Find a destination block from BB if BB is mergeable empty block.
887 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
888   // If this block doesn't end with an uncond branch, ignore it.
889   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
890   if (!BI || !BI->isUnconditional())
891     return nullptr;
892 
893   // If the instruction before the branch (skipping debug info) isn't a phi
894   // node, then other stuff is happening here.
895   BasicBlock::iterator BBI = BI->getIterator();
896   if (BBI != BB->begin()) {
897     --BBI;
898     while (isa<DbgInfoIntrinsic>(BBI)) {
899       if (BBI == BB->begin())
900         break;
901       --BBI;
902     }
903     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
904       return nullptr;
905   }
906 
907   // Do not break infinite loops.
908   BasicBlock *DestBB = BI->getSuccessor(0);
909   if (DestBB == BB)
910     return nullptr;
911 
912   if (!canMergeBlocks(BB, DestBB))
913     DestBB = nullptr;
914 
915   return DestBB;
916 }
917 
918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
920 /// edges in ways that are non-optimal for isel. Start by eliminating these
921 /// blocks so we can split them the way we want them.
922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
923   SmallPtrSet<BasicBlock *, 16> Preheaders;
924   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
925   while (!LoopList.empty()) {
926     Loop *L = LoopList.pop_back_val();
927     llvm::append_range(LoopList, *L);
928     if (BasicBlock *Preheader = L->getLoopPreheader())
929       Preheaders.insert(Preheader);
930   }
931 
932   bool MadeChange = false;
933   // Copy blocks into a temporary array to avoid iterator invalidation issues
934   // as we remove them.
935   // Note that this intentionally skips the entry block.
936   SmallVector<WeakTrackingVH, 16> Blocks;
937   for (auto &Block : llvm::drop_begin(F)) {
938     // Delete phi nodes that could block deleting other empty blocks.
939     if (!DisableDeletePHIs)
940       MadeChange |= DeleteDeadPHIs(&Block, TLInfo);
941     Blocks.push_back(&Block);
942   }
943 
944   for (auto &Block : Blocks) {
945     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
946     if (!BB)
947       continue;
948     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
949     if (!DestBB ||
950         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
951       continue;
952 
953     eliminateMostlyEmptyBlock(BB);
954     MadeChange = true;
955   }
956   return MadeChange;
957 }
958 
959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
960                                                    BasicBlock *DestBB,
961                                                    bool isPreheader) {
962   // Do not delete loop preheaders if doing so would create a critical edge.
963   // Loop preheaders can be good locations to spill registers. If the
964   // preheader is deleted and we create a critical edge, registers may be
965   // spilled in the loop body instead.
966   if (!DisablePreheaderProtect && isPreheader &&
967       !(BB->getSinglePredecessor() &&
968         BB->getSinglePredecessor()->getSingleSuccessor()))
969     return false;
970 
971   // Skip merging if the block's successor is also a successor to any callbr
972   // that leads to this block.
973   // FIXME: Is this really needed? Is this a correctness issue?
974   for (BasicBlock *Pred : predecessors(BB)) {
975     if (isa<CallBrInst>(Pred->getTerminator()) &&
976         llvm::is_contained(successors(Pred), DestBB))
977       return false;
978   }
979 
980   // Try to skip merging if the unique predecessor of BB is terminated by a
981   // switch or indirect branch instruction, and BB is used as an incoming block
982   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
983   // add COPY instructions in the predecessor of BB instead of BB (if it is not
984   // merged). Note that the critical edge created by merging such blocks wont be
985   // split in MachineSink because the jump table is not analyzable. By keeping
986   // such empty block (BB), ISel will place COPY instructions in BB, not in the
987   // predecessor of BB.
988   BasicBlock *Pred = BB->getUniquePredecessor();
989   if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
990                  isa<IndirectBrInst>(Pred->getTerminator())))
991     return true;
992 
993   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
994     return true;
995 
996   // We use a simple cost heuristic which determine skipping merging is
997   // profitable if the cost of skipping merging is less than the cost of
998   // merging : Cost(skipping merging) < Cost(merging BB), where the
999   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1000   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1001   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1002   //   Freq(Pred) / Freq(BB) > 2.
1003   // Note that if there are multiple empty blocks sharing the same incoming
1004   // value for the PHIs in the DestBB, we consider them together. In such
1005   // case, Cost(merging BB) will be the sum of their frequencies.
1006 
1007   if (!isa<PHINode>(DestBB->begin()))
1008     return true;
1009 
1010   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
1011 
1012   // Find all other incoming blocks from which incoming values of all PHIs in
1013   // DestBB are the same as the ones from BB.
1014   for (BasicBlock *DestBBPred : predecessors(DestBB)) {
1015     if (DestBBPred == BB)
1016       continue;
1017 
1018     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
1019           return DestPN.getIncomingValueForBlock(BB) ==
1020                  DestPN.getIncomingValueForBlock(DestBBPred);
1021         }))
1022       SameIncomingValueBBs.insert(DestBBPred);
1023   }
1024 
1025   // See if all BB's incoming values are same as the value from Pred. In this
1026   // case, no reason to skip merging because COPYs are expected to be place in
1027   // Pred already.
1028   if (SameIncomingValueBBs.count(Pred))
1029     return true;
1030 
1031   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
1032   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
1033 
1034   for (auto *SameValueBB : SameIncomingValueBBs)
1035     if (SameValueBB->getUniquePredecessor() == Pred &&
1036         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
1037       BBFreq += BFI->getBlockFreq(SameValueBB);
1038 
1039   std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge);
1040   return !Limit || PredFreq <= *Limit;
1041 }
1042 
1043 /// Return true if we can merge BB into DestBB if there is a single
1044 /// unconditional branch between them, and BB contains no other non-phi
1045 /// instructions.
1046 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1047                                     const BasicBlock *DestBB) const {
1048   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1049   // the successor.  If there are more complex condition (e.g. preheaders),
1050   // don't mess around with them.
1051   for (const PHINode &PN : BB->phis()) {
1052     for (const User *U : PN.users()) {
1053       const Instruction *UI = cast<Instruction>(U);
1054       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1055         return false;
1056       // If User is inside DestBB block and it is a PHINode then check
1057       // incoming value. If incoming value is not from BB then this is
1058       // a complex condition (e.g. preheaders) we want to avoid here.
1059       if (UI->getParent() == DestBB) {
1060         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1061           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1062             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1063             if (Insn && Insn->getParent() == BB &&
1064                 Insn->getParent() != UPN->getIncomingBlock(I))
1065               return false;
1066           }
1067       }
1068     }
1069   }
1070 
1071   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1072   // and DestBB may have conflicting incoming values for the block.  If so, we
1073   // can't merge the block.
1074   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1075   if (!DestBBPN)
1076     return true; // no conflict.
1077 
1078   // Collect the preds of BB.
1079   SmallPtrSet<const BasicBlock *, 16> BBPreds;
1080   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1081     // It is faster to get preds from a PHI than with pred_iterator.
1082     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1083       BBPreds.insert(BBPN->getIncomingBlock(i));
1084   } else {
1085     BBPreds.insert(pred_begin(BB), pred_end(BB));
1086   }
1087 
1088   // Walk the preds of DestBB.
1089   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1090     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1091     if (BBPreds.count(Pred)) { // Common predecessor?
1092       for (const PHINode &PN : DestBB->phis()) {
1093         const Value *V1 = PN.getIncomingValueForBlock(Pred);
1094         const Value *V2 = PN.getIncomingValueForBlock(BB);
1095 
1096         // If V2 is a phi node in BB, look up what the mapped value will be.
1097         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1098           if (V2PN->getParent() == BB)
1099             V2 = V2PN->getIncomingValueForBlock(Pred);
1100 
1101         // If there is a conflict, bail out.
1102         if (V1 != V2)
1103           return false;
1104       }
1105     }
1106   }
1107 
1108   return true;
1109 }
1110 
1111 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1112 static void replaceAllUsesWith(Value *Old, Value *New,
1113                                SmallSet<BasicBlock *, 32> &FreshBBs,
1114                                bool IsHuge) {
1115   auto *OldI = dyn_cast<Instruction>(Old);
1116   if (OldI) {
1117     for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1118          UI != E; ++UI) {
1119       Instruction *User = cast<Instruction>(*UI);
1120       if (IsHuge)
1121         FreshBBs.insert(User->getParent());
1122     }
1123   }
1124   Old->replaceAllUsesWith(New);
1125 }
1126 
1127 /// Eliminate a basic block that has only phi's and an unconditional branch in
1128 /// it.
1129 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1130   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1131   BasicBlock *DestBB = BI->getSuccessor(0);
1132 
1133   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1134                     << *BB << *DestBB);
1135 
1136   // If the destination block has a single pred, then this is a trivial edge,
1137   // just collapse it.
1138   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1139     if (SinglePred != DestBB) {
1140       assert(SinglePred == BB &&
1141              "Single predecessor not the same as predecessor");
1142       // Merge DestBB into SinglePred/BB and delete it.
1143       MergeBlockIntoPredecessor(DestBB);
1144       // Note: BB(=SinglePred) will not be deleted on this path.
1145       // DestBB(=its single successor) is the one that was deleted.
1146       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1147 
1148       if (IsHugeFunc) {
1149         // Update FreshBBs to optimize the merged BB.
1150         FreshBBs.insert(SinglePred);
1151         FreshBBs.erase(DestBB);
1152       }
1153       return;
1154     }
1155   }
1156 
1157   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
1158   // to handle the new incoming edges it is about to have.
1159   for (PHINode &PN : DestBB->phis()) {
1160     // Remove the incoming value for BB, and remember it.
1161     Value *InVal = PN.removeIncomingValue(BB, false);
1162 
1163     // Two options: either the InVal is a phi node defined in BB or it is some
1164     // value that dominates BB.
1165     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1166     if (InValPhi && InValPhi->getParent() == BB) {
1167       // Add all of the input values of the input PHI as inputs of this phi.
1168       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1169         PN.addIncoming(InValPhi->getIncomingValue(i),
1170                        InValPhi->getIncomingBlock(i));
1171     } else {
1172       // Otherwise, add one instance of the dominating value for each edge that
1173       // we will be adding.
1174       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1175         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1176           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1177       } else {
1178         for (BasicBlock *Pred : predecessors(BB))
1179           PN.addIncoming(InVal, Pred);
1180       }
1181     }
1182   }
1183 
1184   // The PHIs are now updated, change everything that refers to BB to use
1185   // DestBB and remove BB.
1186   BB->replaceAllUsesWith(DestBB);
1187   BB->eraseFromParent();
1188   ++NumBlocksElim;
1189 
1190   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1191 }
1192 
1193 // Computes a map of base pointer relocation instructions to corresponding
1194 // derived pointer relocation instructions given a vector of all relocate calls
1195 static void computeBaseDerivedRelocateMap(
1196     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1197     MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>>
1198         &RelocateInstMap) {
1199   // Collect information in two maps: one primarily for locating the base object
1200   // while filling the second map; the second map is the final structure holding
1201   // a mapping between Base and corresponding Derived relocate calls
1202   MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1203   for (auto *ThisRelocate : AllRelocateCalls) {
1204     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1205                             ThisRelocate->getDerivedPtrIndex());
1206     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1207   }
1208   for (auto &Item : RelocateIdxMap) {
1209     std::pair<unsigned, unsigned> Key = Item.first;
1210     if (Key.first == Key.second)
1211       // Base relocation: nothing to insert
1212       continue;
1213 
1214     GCRelocateInst *I = Item.second;
1215     auto BaseKey = std::make_pair(Key.first, Key.first);
1216 
1217     // We're iterating over RelocateIdxMap so we cannot modify it.
1218     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1219     if (MaybeBase == RelocateIdxMap.end())
1220       // TODO: We might want to insert a new base object relocate and gep off
1221       // that, if there are enough derived object relocates.
1222       continue;
1223 
1224     RelocateInstMap[MaybeBase->second].push_back(I);
1225   }
1226 }
1227 
1228 // Accepts a GEP and extracts the operands into a vector provided they're all
1229 // small integer constants
1230 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1231                                           SmallVectorImpl<Value *> &OffsetV) {
1232   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1233     // Only accept small constant integer operands
1234     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1235     if (!Op || Op->getZExtValue() > 20)
1236       return false;
1237   }
1238 
1239   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1240     OffsetV.push_back(GEP->getOperand(i));
1241   return true;
1242 }
1243 
1244 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1245 // replace, computes a replacement, and affects it.
1246 static bool
1247 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1248                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1249   bool MadeChange = false;
1250   // We must ensure the relocation of derived pointer is defined after
1251   // relocation of base pointer. If we find a relocation corresponding to base
1252   // defined earlier than relocation of base then we move relocation of base
1253   // right before found relocation. We consider only relocation in the same
1254   // basic block as relocation of base. Relocations from other basic block will
1255   // be skipped by optimization and we do not care about them.
1256   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1257        &*R != RelocatedBase; ++R)
1258     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1259       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1260         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1261           RelocatedBase->moveBefore(RI);
1262           MadeChange = true;
1263           break;
1264         }
1265 
1266   for (GCRelocateInst *ToReplace : Targets) {
1267     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1268            "Not relocating a derived object of the original base object");
1269     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1270       // A duplicate relocate call. TODO: coalesce duplicates.
1271       continue;
1272     }
1273 
1274     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1275       // Base and derived relocates are in different basic blocks.
1276       // In this case transform is only valid when base dominates derived
1277       // relocate. However it would be too expensive to check dominance
1278       // for each such relocate, so we skip the whole transformation.
1279       continue;
1280     }
1281 
1282     Value *Base = ToReplace->getBasePtr();
1283     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1284     if (!Derived || Derived->getPointerOperand() != Base)
1285       continue;
1286 
1287     SmallVector<Value *, 2> OffsetV;
1288     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1289       continue;
1290 
1291     // Create a Builder and replace the target callsite with a gep
1292     assert(RelocatedBase->getNextNode() &&
1293            "Should always have one since it's not a terminator");
1294 
1295     // Insert after RelocatedBase
1296     IRBuilder<> Builder(RelocatedBase->getNextNode());
1297     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1298 
1299     // If gc_relocate does not match the actual type, cast it to the right type.
1300     // In theory, there must be a bitcast after gc_relocate if the type does not
1301     // match, and we should reuse it to get the derived pointer. But it could be
1302     // cases like this:
1303     // bb1:
1304     //  ...
1305     //  %g1 = call coldcc i8 addrspace(1)*
1306     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1307     //
1308     // bb2:
1309     //  ...
1310     //  %g2 = call coldcc i8 addrspace(1)*
1311     //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1312     //
1313     // merge:
1314     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1315     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1316     //
1317     // In this case, we can not find the bitcast any more. So we insert a new
1318     // bitcast no matter there is already one or not. In this way, we can handle
1319     // all cases, and the extra bitcast should be optimized away in later
1320     // passes.
1321     Value *ActualRelocatedBase = RelocatedBase;
1322     if (RelocatedBase->getType() != Base->getType()) {
1323       ActualRelocatedBase =
1324           Builder.CreateBitCast(RelocatedBase, Base->getType());
1325     }
1326     Value *Replacement =
1327         Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1328                           ArrayRef(OffsetV));
1329     Replacement->takeName(ToReplace);
1330     // If the newly generated derived pointer's type does not match the original
1331     // derived pointer's type, cast the new derived pointer to match it. Same
1332     // reasoning as above.
1333     Value *ActualReplacement = Replacement;
1334     if (Replacement->getType() != ToReplace->getType()) {
1335       ActualReplacement =
1336           Builder.CreateBitCast(Replacement, ToReplace->getType());
1337     }
1338     ToReplace->replaceAllUsesWith(ActualReplacement);
1339     ToReplace->eraseFromParent();
1340 
1341     MadeChange = true;
1342   }
1343   return MadeChange;
1344 }
1345 
1346 // Turns this:
1347 //
1348 // %base = ...
1349 // %ptr = gep %base + 15
1350 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1351 // %base' = relocate(%tok, i32 4, i32 4)
1352 // %ptr' = relocate(%tok, i32 4, i32 5)
1353 // %val = load %ptr'
1354 //
1355 // into this:
1356 //
1357 // %base = ...
1358 // %ptr = gep %base + 15
1359 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1360 // %base' = gc.relocate(%tok, i32 4, i32 4)
1361 // %ptr' = gep %base' + 15
1362 // %val = load %ptr'
1363 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1364   bool MadeChange = false;
1365   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1366   for (auto *U : I.users())
1367     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1368       // Collect all the relocate calls associated with a statepoint
1369       AllRelocateCalls.push_back(Relocate);
1370 
1371   // We need at least one base pointer relocation + one derived pointer
1372   // relocation to mangle
1373   if (AllRelocateCalls.size() < 2)
1374     return false;
1375 
1376   // RelocateInstMap is a mapping from the base relocate instruction to the
1377   // corresponding derived relocate instructions
1378   MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap;
1379   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1380   if (RelocateInstMap.empty())
1381     return false;
1382 
1383   for (auto &Item : RelocateInstMap)
1384     // Item.first is the RelocatedBase to offset against
1385     // Item.second is the vector of Targets to replace
1386     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1387   return MadeChange;
1388 }
1389 
1390 /// Sink the specified cast instruction into its user blocks.
1391 static bool SinkCast(CastInst *CI) {
1392   BasicBlock *DefBB = CI->getParent();
1393 
1394   /// InsertedCasts - Only insert a cast in each block once.
1395   DenseMap<BasicBlock *, CastInst *> InsertedCasts;
1396 
1397   bool MadeChange = false;
1398   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1399        UI != E;) {
1400     Use &TheUse = UI.getUse();
1401     Instruction *User = cast<Instruction>(*UI);
1402 
1403     // Figure out which BB this cast is used in.  For PHI's this is the
1404     // appropriate predecessor block.
1405     BasicBlock *UserBB = User->getParent();
1406     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1407       UserBB = PN->getIncomingBlock(TheUse);
1408     }
1409 
1410     // Preincrement use iterator so we don't invalidate it.
1411     ++UI;
1412 
1413     // The first insertion point of a block containing an EH pad is after the
1414     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1415     if (User->isEHPad())
1416       continue;
1417 
1418     // If the block selected to receive the cast is an EH pad that does not
1419     // allow non-PHI instructions before the terminator, we can't sink the
1420     // cast.
1421     if (UserBB->getTerminator()->isEHPad())
1422       continue;
1423 
1424     // If this user is in the same block as the cast, don't change the cast.
1425     if (UserBB == DefBB)
1426       continue;
1427 
1428     // If we have already inserted a cast into this block, use it.
1429     CastInst *&InsertedCast = InsertedCasts[UserBB];
1430 
1431     if (!InsertedCast) {
1432       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1433       assert(InsertPt != UserBB->end());
1434       InsertedCast = cast<CastInst>(CI->clone());
1435       InsertedCast->insertBefore(*UserBB, InsertPt);
1436     }
1437 
1438     // Replace a use of the cast with a use of the new cast.
1439     TheUse = InsertedCast;
1440     MadeChange = true;
1441     ++NumCastUses;
1442   }
1443 
1444   // If we removed all uses, nuke the cast.
1445   if (CI->use_empty()) {
1446     salvageDebugInfo(*CI);
1447     CI->eraseFromParent();
1448     MadeChange = true;
1449   }
1450 
1451   return MadeChange;
1452 }
1453 
1454 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1455 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1456 /// reduce the number of virtual registers that must be created and coalesced.
1457 ///
1458 /// Return true if any changes are made.
1459 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1460                                        const DataLayout &DL) {
1461   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1462   // than sinking only nop casts, but is helpful on some platforms.
1463   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1464     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1465                                  ASC->getDestAddressSpace()))
1466       return false;
1467   }
1468 
1469   // If this is a noop copy,
1470   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1471   EVT DstVT = TLI.getValueType(DL, CI->getType());
1472 
1473   // This is an fp<->int conversion?
1474   if (SrcVT.isInteger() != DstVT.isInteger())
1475     return false;
1476 
1477   // If this is an extension, it will be a zero or sign extension, which
1478   // isn't a noop.
1479   if (SrcVT.bitsLT(DstVT))
1480     return false;
1481 
1482   // If these values will be promoted, find out what they will be promoted
1483   // to.  This helps us consider truncates on PPC as noop copies when they
1484   // are.
1485   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1486       TargetLowering::TypePromoteInteger)
1487     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1488   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1489       TargetLowering::TypePromoteInteger)
1490     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1491 
1492   // If, after promotion, these are the same types, this is a noop copy.
1493   if (SrcVT != DstVT)
1494     return false;
1495 
1496   return SinkCast(CI);
1497 }
1498 
1499 // Match a simple increment by constant operation.  Note that if a sub is
1500 // matched, the step is negated (as if the step had been canonicalized to
1501 // an add, even though we leave the instruction alone.)
1502 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1503                            Constant *&Step) {
1504   if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1505       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1506                        m_Instruction(LHS), m_Constant(Step)))))
1507     return true;
1508   if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1509       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1510                        m_Instruction(LHS), m_Constant(Step))))) {
1511     Step = ConstantExpr::getNeg(Step);
1512     return true;
1513   }
1514   return false;
1515 }
1516 
1517 /// If given \p PN is an inductive variable with value IVInc coming from the
1518 /// backedge, and on each iteration it gets increased by Step, return pair
1519 /// <IVInc, Step>. Otherwise, return std::nullopt.
1520 static std::optional<std::pair<Instruction *, Constant *>>
1521 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1522   const Loop *L = LI->getLoopFor(PN->getParent());
1523   if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1524     return std::nullopt;
1525   auto *IVInc =
1526       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1527   if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1528     return std::nullopt;
1529   Instruction *LHS = nullptr;
1530   Constant *Step = nullptr;
1531   if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1532     return std::make_pair(IVInc, Step);
1533   return std::nullopt;
1534 }
1535 
1536 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1537   auto *I = dyn_cast<Instruction>(V);
1538   if (!I)
1539     return false;
1540   Instruction *LHS = nullptr;
1541   Constant *Step = nullptr;
1542   if (!matchIncrement(I, LHS, Step))
1543     return false;
1544   if (auto *PN = dyn_cast<PHINode>(LHS))
1545     if (auto IVInc = getIVIncrement(PN, LI))
1546       return IVInc->first == I;
1547   return false;
1548 }
1549 
1550 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1551                                                  Value *Arg0, Value *Arg1,
1552                                                  CmpInst *Cmp,
1553                                                  Intrinsic::ID IID) {
1554   auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1555     if (!isIVIncrement(BO, LI))
1556       return false;
1557     const Loop *L = LI->getLoopFor(BO->getParent());
1558     assert(L && "L should not be null after isIVIncrement()");
1559     // Do not risk on moving increment into a child loop.
1560     if (LI->getLoopFor(Cmp->getParent()) != L)
1561       return false;
1562 
1563     // Finally, we need to ensure that the insert point will dominate all
1564     // existing uses of the increment.
1565 
1566     auto &DT = getDT(*BO->getParent()->getParent());
1567     if (DT.dominates(Cmp->getParent(), BO->getParent()))
1568       // If we're moving up the dom tree, all uses are trivially dominated.
1569       // (This is the common case for code produced by LSR.)
1570       return true;
1571 
1572     // Otherwise, special case the single use in the phi recurrence.
1573     return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1574   };
1575   if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1576     // We used to use a dominator tree here to allow multi-block optimization.
1577     // But that was problematic because:
1578     // 1. It could cause a perf regression by hoisting the math op into the
1579     //    critical path.
1580     // 2. It could cause a perf regression by creating a value that was live
1581     //    across multiple blocks and increasing register pressure.
1582     // 3. Use of a dominator tree could cause large compile-time regression.
1583     //    This is because we recompute the DT on every change in the main CGP
1584     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1585     //    that was fixed, using a DT here would be ok.
1586     //
1587     // There is one important particular case we still want to handle: if BO is
1588     // the IV increment. Important properties that make it profitable:
1589     // - We can speculate IV increment anywhere in the loop (as long as the
1590     //   indvar Phi is its only user);
1591     // - Upon computing Cmp, we effectively compute something equivalent to the
1592     //   IV increment (despite it loops differently in the IR). So moving it up
1593     //   to the cmp point does not really increase register pressure.
1594     return false;
1595   }
1596 
1597   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1598   if (BO->getOpcode() == Instruction::Add &&
1599       IID == Intrinsic::usub_with_overflow) {
1600     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1601     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1602   }
1603 
1604   // Insert at the first instruction of the pair.
1605   Instruction *InsertPt = nullptr;
1606   for (Instruction &Iter : *Cmp->getParent()) {
1607     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1608     // the overflow intrinsic are defined.
1609     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1610       InsertPt = &Iter;
1611       break;
1612     }
1613   }
1614   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1615 
1616   IRBuilder<> Builder(InsertPt);
1617   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1618   if (BO->getOpcode() != Instruction::Xor) {
1619     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1620     replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1621   } else
1622     assert(BO->hasOneUse() &&
1623            "Patterns with XOr should use the BO only in the compare");
1624   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1625   replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1626   Cmp->eraseFromParent();
1627   BO->eraseFromParent();
1628   return true;
1629 }
1630 
1631 /// Match special-case patterns that check for unsigned add overflow.
1632 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1633                                                    BinaryOperator *&Add) {
1634   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1635   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1636   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1637 
1638   // We are not expecting non-canonical/degenerate code. Just bail out.
1639   if (isa<Constant>(A))
1640     return false;
1641 
1642   ICmpInst::Predicate Pred = Cmp->getPredicate();
1643   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1644     B = ConstantInt::get(B->getType(), 1);
1645   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1646     B = ConstantInt::get(B->getType(), -1);
1647   else
1648     return false;
1649 
1650   // Check the users of the variable operand of the compare looking for an add
1651   // with the adjusted constant.
1652   for (User *U : A->users()) {
1653     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1654       Add = cast<BinaryOperator>(U);
1655       return true;
1656     }
1657   }
1658   return false;
1659 }
1660 
1661 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1662 /// intrinsic. Return true if any changes were made.
1663 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1664                                                ModifyDT &ModifiedDT) {
1665   bool EdgeCase = false;
1666   Value *A, *B;
1667   BinaryOperator *Add;
1668   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1669     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1670       return false;
1671     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1672     A = Add->getOperand(0);
1673     B = Add->getOperand(1);
1674     EdgeCase = true;
1675   }
1676 
1677   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1678                                  TLI->getValueType(*DL, Add->getType()),
1679                                  Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1680     return false;
1681 
1682   // We don't want to move around uses of condition values this late, so we
1683   // check if it is legal to create the call to the intrinsic in the basic
1684   // block containing the icmp.
1685   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1686     return false;
1687 
1688   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1689                                    Intrinsic::uadd_with_overflow))
1690     return false;
1691 
1692   // Reset callers - do not crash by iterating over a dead instruction.
1693   ModifiedDT = ModifyDT::ModifyInstDT;
1694   return true;
1695 }
1696 
1697 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1698                                                ModifyDT &ModifiedDT) {
1699   // We are not expecting non-canonical/degenerate code. Just bail out.
1700   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1701   if (isa<Constant>(A) && isa<Constant>(B))
1702     return false;
1703 
1704   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1705   ICmpInst::Predicate Pred = Cmp->getPredicate();
1706   if (Pred == ICmpInst::ICMP_UGT) {
1707     std::swap(A, B);
1708     Pred = ICmpInst::ICMP_ULT;
1709   }
1710   // Convert special-case: (A == 0) is the same as (A u< 1).
1711   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1712     B = ConstantInt::get(B->getType(), 1);
1713     Pred = ICmpInst::ICMP_ULT;
1714   }
1715   // Convert special-case: (A != 0) is the same as (0 u< A).
1716   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1717     std::swap(A, B);
1718     Pred = ICmpInst::ICMP_ULT;
1719   }
1720   if (Pred != ICmpInst::ICMP_ULT)
1721     return false;
1722 
1723   // Walk the users of a variable operand of a compare looking for a subtract or
1724   // add with that same operand. Also match the 2nd operand of the compare to
1725   // the add/sub, but that may be a negated constant operand of an add.
1726   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1727   BinaryOperator *Sub = nullptr;
1728   for (User *U : CmpVariableOperand->users()) {
1729     // A - B, A u< B --> usubo(A, B)
1730     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1731       Sub = cast<BinaryOperator>(U);
1732       break;
1733     }
1734 
1735     // A + (-C), A u< C (canonicalized form of (sub A, C))
1736     const APInt *CmpC, *AddC;
1737     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1738         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1739       Sub = cast<BinaryOperator>(U);
1740       break;
1741     }
1742   }
1743   if (!Sub)
1744     return false;
1745 
1746   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1747                                  TLI->getValueType(*DL, Sub->getType()),
1748                                  Sub->hasNUsesOrMore(1)))
1749     return false;
1750 
1751   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1752                                    Cmp, Intrinsic::usub_with_overflow))
1753     return false;
1754 
1755   // Reset callers - do not crash by iterating over a dead instruction.
1756   ModifiedDT = ModifyDT::ModifyInstDT;
1757   return true;
1758 }
1759 
1760 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1761 /// registers that must be created and coalesced. This is a clear win except on
1762 /// targets with multiple condition code registers (PowerPC), where it might
1763 /// lose; some adjustment may be wanted there.
1764 ///
1765 /// Return true if any changes are made.
1766 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1767   if (TLI.hasMultipleConditionRegisters())
1768     return false;
1769 
1770   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1771   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1772     return false;
1773 
1774   // Only insert a cmp in each block once.
1775   DenseMap<BasicBlock *, CmpInst *> InsertedCmps;
1776 
1777   bool MadeChange = false;
1778   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1779        UI != E;) {
1780     Use &TheUse = UI.getUse();
1781     Instruction *User = cast<Instruction>(*UI);
1782 
1783     // Preincrement use iterator so we don't invalidate it.
1784     ++UI;
1785 
1786     // Don't bother for PHI nodes.
1787     if (isa<PHINode>(User))
1788       continue;
1789 
1790     // Figure out which BB this cmp is used in.
1791     BasicBlock *UserBB = User->getParent();
1792     BasicBlock *DefBB = Cmp->getParent();
1793 
1794     // If this user is in the same block as the cmp, don't change the cmp.
1795     if (UserBB == DefBB)
1796       continue;
1797 
1798     // If we have already inserted a cmp into this block, use it.
1799     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1800 
1801     if (!InsertedCmp) {
1802       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1803       assert(InsertPt != UserBB->end());
1804       InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1805                                     Cmp->getOperand(0), Cmp->getOperand(1), "");
1806       InsertedCmp->insertBefore(*UserBB, InsertPt);
1807       // Propagate the debug info.
1808       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1809     }
1810 
1811     // Replace a use of the cmp with a use of the new cmp.
1812     TheUse = InsertedCmp;
1813     MadeChange = true;
1814     ++NumCmpUses;
1815   }
1816 
1817   // If we removed all uses, nuke the cmp.
1818   if (Cmp->use_empty()) {
1819     Cmp->eraseFromParent();
1820     MadeChange = true;
1821   }
1822 
1823   return MadeChange;
1824 }
1825 
1826 /// For pattern like:
1827 ///
1828 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1829 ///   ...
1830 /// DomBB:
1831 ///   ...
1832 ///   br DomCond, TrueBB, CmpBB
1833 /// CmpBB: (with DomBB being the single predecessor)
1834 ///   ...
1835 ///   Cmp = icmp eq CmpOp0, CmpOp1
1836 ///   ...
1837 ///
1838 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1839 /// different from lowering of icmp eq (PowerPC). This function try to convert
1840 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1841 /// After that, DomCond and Cmp can use the same comparison so reduce one
1842 /// comparison.
1843 ///
1844 /// Return true if any changes are made.
1845 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1846                                        const TargetLowering &TLI) {
1847   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1848     return false;
1849 
1850   ICmpInst::Predicate Pred = Cmp->getPredicate();
1851   if (Pred != ICmpInst::ICMP_EQ)
1852     return false;
1853 
1854   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1855   // icmp slt/sgt would introduce more redundant LLVM IR.
1856   for (User *U : Cmp->users()) {
1857     if (isa<BranchInst>(U))
1858       continue;
1859     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1860       continue;
1861     return false;
1862   }
1863 
1864   // This is a cheap/incomplete check for dominance - just match a single
1865   // predecessor with a conditional branch.
1866   BasicBlock *CmpBB = Cmp->getParent();
1867   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1868   if (!DomBB)
1869     return false;
1870 
1871   // We want to ensure that the only way control gets to the comparison of
1872   // interest is that a less/greater than comparison on the same operands is
1873   // false.
1874   Value *DomCond;
1875   BasicBlock *TrueBB, *FalseBB;
1876   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1877     return false;
1878   if (CmpBB != FalseBB)
1879     return false;
1880 
1881   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1882   ICmpInst::Predicate DomPred;
1883   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1884     return false;
1885   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1886     return false;
1887 
1888   // Convert the equality comparison to the opposite of the dominating
1889   // comparison and swap the direction for all branch/select users.
1890   // We have conceptually converted:
1891   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1892   // to
1893   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1894   // And similarly for branches.
1895   for (User *U : Cmp->users()) {
1896     if (auto *BI = dyn_cast<BranchInst>(U)) {
1897       assert(BI->isConditional() && "Must be conditional");
1898       BI->swapSuccessors();
1899       continue;
1900     }
1901     if (auto *SI = dyn_cast<SelectInst>(U)) {
1902       // Swap operands
1903       SI->swapValues();
1904       SI->swapProfMetadata();
1905       continue;
1906     }
1907     llvm_unreachable("Must be a branch or a select");
1908   }
1909   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1910   return true;
1911 }
1912 
1913 /// Many architectures use the same instruction for both subtract and cmp. Try
1914 /// to swap cmp operands to match subtract operations to allow for CSE.
1915 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) {
1916   Value *Op0 = Cmp->getOperand(0);
1917   Value *Op1 = Cmp->getOperand(1);
1918   if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
1919       isa<Constant>(Op1) || Op0 == Op1)
1920     return false;
1921 
1922   // If a subtract already has the same operands as a compare, swapping would be
1923   // bad. If a subtract has the same operands as a compare but in reverse order,
1924   // then swapping is good.
1925   int GoodToSwap = 0;
1926   unsigned NumInspected = 0;
1927   for (const User *U : Op0->users()) {
1928     // Avoid walking many users.
1929     if (++NumInspected > 128)
1930       return false;
1931     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
1932       GoodToSwap++;
1933     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
1934       GoodToSwap--;
1935   }
1936 
1937   if (GoodToSwap > 0) {
1938     Cmp->swapOperands();
1939     return true;
1940   }
1941   return false;
1942 }
1943 
1944 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI,
1945                                   const DataLayout &DL) {
1946   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp);
1947   if (!FCmp)
1948     return false;
1949 
1950   // Don't fold if the target offers free fabs and the predicate is legal.
1951   EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType());
1952   if (TLI.isFAbsFree(VT) &&
1953       TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()),
1954                           VT.getSimpleVT()))
1955     return false;
1956 
1957   // Reverse the canonicalization if it is a FP class test
1958   auto ShouldReverseTransform = [](FPClassTest ClassTest) {
1959     return ClassTest == fcInf || ClassTest == (fcInf | fcNan);
1960   };
1961   auto [ClassVal, ClassTest] =
1962       fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1963                       FCmp->getOperand(0), FCmp->getOperand(1));
1964   if (!ClassVal)
1965     return false;
1966 
1967   if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest))
1968     return false;
1969 
1970   IRBuilder<> Builder(Cmp);
1971   Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest);
1972   Cmp->replaceAllUsesWith(IsFPClass);
1973   RecursivelyDeleteTriviallyDeadInstructions(Cmp);
1974   return true;
1975 }
1976 
1977 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
1978   if (sinkCmpExpression(Cmp, *TLI))
1979     return true;
1980 
1981   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1982     return true;
1983 
1984   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1985     return true;
1986 
1987   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1988     return true;
1989 
1990   if (swapICmpOperandsToExposeCSEOpportunities(Cmp))
1991     return true;
1992 
1993   if (foldFCmpToFPClassTest(Cmp, *TLI, *DL))
1994     return true;
1995 
1996   return false;
1997 }
1998 
1999 /// Duplicate and sink the given 'and' instruction into user blocks where it is
2000 /// used in a compare to allow isel to generate better code for targets where
2001 /// this operation can be combined.
2002 ///
2003 /// Return true if any changes are made.
2004 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI,
2005                                   SetOfInstrs &InsertedInsts) {
2006   // Double-check that we're not trying to optimize an instruction that was
2007   // already optimized by some other part of this pass.
2008   assert(!InsertedInsts.count(AndI) &&
2009          "Attempting to optimize already optimized and instruction");
2010   (void)InsertedInsts;
2011 
2012   // Nothing to do for single use in same basic block.
2013   if (AndI->hasOneUse() &&
2014       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
2015     return false;
2016 
2017   // Try to avoid cases where sinking/duplicating is likely to increase register
2018   // pressure.
2019   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
2020       !isa<ConstantInt>(AndI->getOperand(1)) &&
2021       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
2022     return false;
2023 
2024   for (auto *U : AndI->users()) {
2025     Instruction *User = cast<Instruction>(U);
2026 
2027     // Only sink 'and' feeding icmp with 0.
2028     if (!isa<ICmpInst>(User))
2029       return false;
2030 
2031     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
2032     if (!CmpC || !CmpC->isZero())
2033       return false;
2034   }
2035 
2036   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
2037     return false;
2038 
2039   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2040   LLVM_DEBUG(AndI->getParent()->dump());
2041 
2042   // Push the 'and' into the same block as the icmp 0.  There should only be
2043   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2044   // others, so we don't need to keep track of which BBs we insert into.
2045   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
2046        UI != E;) {
2047     Use &TheUse = UI.getUse();
2048     Instruction *User = cast<Instruction>(*UI);
2049 
2050     // Preincrement use iterator so we don't invalidate it.
2051     ++UI;
2052 
2053     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
2054 
2055     // Keep the 'and' in the same place if the use is already in the same block.
2056     Instruction *InsertPt =
2057         User->getParent() == AndI->getParent() ? AndI : User;
2058     Instruction *InsertedAnd = BinaryOperator::Create(
2059         Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "",
2060         InsertPt->getIterator());
2061     // Propagate the debug info.
2062     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
2063 
2064     // Replace a use of the 'and' with a use of the new 'and'.
2065     TheUse = InsertedAnd;
2066     ++NumAndUses;
2067     LLVM_DEBUG(User->getParent()->dump());
2068   }
2069 
2070   // We removed all uses, nuke the and.
2071   AndI->eraseFromParent();
2072   return true;
2073 }
2074 
2075 /// Check if the candidates could be combined with a shift instruction, which
2076 /// includes:
2077 /// 1. Truncate instruction
2078 /// 2. And instruction and the imm is a mask of the low bits:
2079 /// imm & (imm+1) == 0
2080 static bool isExtractBitsCandidateUse(Instruction *User) {
2081   if (!isa<TruncInst>(User)) {
2082     if (User->getOpcode() != Instruction::And ||
2083         !isa<ConstantInt>(User->getOperand(1)))
2084       return false;
2085 
2086     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
2087 
2088     if ((Cimm & (Cimm + 1)).getBoolValue())
2089       return false;
2090   }
2091   return true;
2092 }
2093 
2094 /// Sink both shift and truncate instruction to the use of truncate's BB.
2095 static bool
2096 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
2097                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
2098                      const TargetLowering &TLI, const DataLayout &DL) {
2099   BasicBlock *UserBB = User->getParent();
2100   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
2101   auto *TruncI = cast<TruncInst>(User);
2102   bool MadeChange = false;
2103 
2104   for (Value::user_iterator TruncUI = TruncI->user_begin(),
2105                             TruncE = TruncI->user_end();
2106        TruncUI != TruncE;) {
2107 
2108     Use &TruncTheUse = TruncUI.getUse();
2109     Instruction *TruncUser = cast<Instruction>(*TruncUI);
2110     // Preincrement use iterator so we don't invalidate it.
2111 
2112     ++TruncUI;
2113 
2114     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2115     if (!ISDOpcode)
2116       continue;
2117 
2118     // If the use is actually a legal node, there will not be an
2119     // implicit truncate.
2120     // FIXME: always querying the result type is just an
2121     // approximation; some nodes' legality is determined by the
2122     // operand or other means. There's no good way to find out though.
2123     if (TLI.isOperationLegalOrCustom(
2124             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2125       continue;
2126 
2127     // Don't bother for PHI nodes.
2128     if (isa<PHINode>(TruncUser))
2129       continue;
2130 
2131     BasicBlock *TruncUserBB = TruncUser->getParent();
2132 
2133     if (UserBB == TruncUserBB)
2134       continue;
2135 
2136     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2137     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2138 
2139     if (!InsertedShift && !InsertedTrunc) {
2140       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2141       assert(InsertPt != TruncUserBB->end());
2142       // Sink the shift
2143       if (ShiftI->getOpcode() == Instruction::AShr)
2144         InsertedShift =
2145             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2146       else
2147         InsertedShift =
2148             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2149       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2150       InsertedShift->insertBefore(*TruncUserBB, InsertPt);
2151 
2152       // Sink the trunc
2153       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2154       TruncInsertPt++;
2155       // It will go ahead of any debug-info.
2156       TruncInsertPt.setHeadBit(true);
2157       assert(TruncInsertPt != TruncUserBB->end());
2158 
2159       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2160                                        TruncI->getType(), "");
2161       InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt);
2162       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2163 
2164       MadeChange = true;
2165 
2166       TruncTheUse = InsertedTrunc;
2167     }
2168   }
2169   return MadeChange;
2170 }
2171 
2172 /// Sink the shift *right* instruction into user blocks if the uses could
2173 /// potentially be combined with this shift instruction and generate BitExtract
2174 /// instruction. It will only be applied if the architecture supports BitExtract
2175 /// instruction. Here is an example:
2176 /// BB1:
2177 ///   %x.extract.shift = lshr i64 %arg1, 32
2178 /// BB2:
2179 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
2180 /// ==>
2181 ///
2182 /// BB2:
2183 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
2184 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2185 ///
2186 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2187 /// instruction.
2188 /// Return true if any changes are made.
2189 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
2190                                 const TargetLowering &TLI,
2191                                 const DataLayout &DL) {
2192   BasicBlock *DefBB = ShiftI->getParent();
2193 
2194   /// Only insert instructions in each block once.
2195   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
2196 
2197   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2198 
2199   bool MadeChange = false;
2200   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2201        UI != E;) {
2202     Use &TheUse = UI.getUse();
2203     Instruction *User = cast<Instruction>(*UI);
2204     // Preincrement use iterator so we don't invalidate it.
2205     ++UI;
2206 
2207     // Don't bother for PHI nodes.
2208     if (isa<PHINode>(User))
2209       continue;
2210 
2211     if (!isExtractBitsCandidateUse(User))
2212       continue;
2213 
2214     BasicBlock *UserBB = User->getParent();
2215 
2216     if (UserBB == DefBB) {
2217       // If the shift and truncate instruction are in the same BB. The use of
2218       // the truncate(TruncUse) may still introduce another truncate if not
2219       // legal. In this case, we would like to sink both shift and truncate
2220       // instruction to the BB of TruncUse.
2221       // for example:
2222       // BB1:
2223       // i64 shift.result = lshr i64 opnd, imm
2224       // trunc.result = trunc shift.result to i16
2225       //
2226       // BB2:
2227       //   ----> We will have an implicit truncate here if the architecture does
2228       //   not have i16 compare.
2229       // cmp i16 trunc.result, opnd2
2230       //
2231       if (isa<TruncInst>(User) &&
2232           shiftIsLegal
2233           // If the type of the truncate is legal, no truncate will be
2234           // introduced in other basic blocks.
2235           && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2236         MadeChange =
2237             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2238 
2239       continue;
2240     }
2241     // If we have already inserted a shift into this block, use it.
2242     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2243 
2244     if (!InsertedShift) {
2245       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2246       assert(InsertPt != UserBB->end());
2247 
2248       if (ShiftI->getOpcode() == Instruction::AShr)
2249         InsertedShift =
2250             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2251       else
2252         InsertedShift =
2253             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2254       InsertedShift->insertBefore(*UserBB, InsertPt);
2255       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2256 
2257       MadeChange = true;
2258     }
2259 
2260     // Replace a use of the shift with a use of the new shift.
2261     TheUse = InsertedShift;
2262   }
2263 
2264   // If we removed all uses, or there are none, nuke the shift.
2265   if (ShiftI->use_empty()) {
2266     salvageDebugInfo(*ShiftI);
2267     ShiftI->eraseFromParent();
2268     MadeChange = true;
2269   }
2270 
2271   return MadeChange;
2272 }
2273 
2274 /// If counting leading or trailing zeros is an expensive operation and a zero
2275 /// input is defined, add a check for zero to avoid calling the intrinsic.
2276 ///
2277 /// We want to transform:
2278 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2279 ///
2280 /// into:
2281 ///   entry:
2282 ///     %cmpz = icmp eq i64 %A, 0
2283 ///     br i1 %cmpz, label %cond.end, label %cond.false
2284 ///   cond.false:
2285 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2286 ///     br label %cond.end
2287 ///   cond.end:
2288 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2289 ///
2290 /// If the transform is performed, return true and set ModifiedDT to true.
2291 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2292                                   LoopInfo &LI,
2293                                   const TargetLowering *TLI,
2294                                   const DataLayout *DL, ModifyDT &ModifiedDT,
2295                                   SmallSet<BasicBlock *, 32> &FreshBBs,
2296                                   bool IsHugeFunc) {
2297   // If a zero input is undefined, it doesn't make sense to despeculate that.
2298   if (match(CountZeros->getOperand(1), m_One()))
2299     return false;
2300 
2301   // If it's cheap to speculate, there's nothing to do.
2302   Type *Ty = CountZeros->getType();
2303   auto IntrinsicID = CountZeros->getIntrinsicID();
2304   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2305       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2306     return false;
2307 
2308   // Only handle legal scalar cases. Anything else requires too much work.
2309   unsigned SizeInBits = Ty->getScalarSizeInBits();
2310   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2311     return false;
2312 
2313   // Bail if the value is never zero.
2314   Use &Op = CountZeros->getOperandUse(0);
2315   if (isKnownNonZero(Op, *DL))
2316     return false;
2317 
2318   // The intrinsic will be sunk behind a compare against zero and branch.
2319   BasicBlock *StartBlock = CountZeros->getParent();
2320   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2321   if (IsHugeFunc)
2322     FreshBBs.insert(CallBlock);
2323 
2324   // Create another block after the count zero intrinsic. A PHI will be added
2325   // in this block to select the result of the intrinsic or the bit-width
2326   // constant if the input to the intrinsic is zero.
2327   BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros));
2328   // Any debug-info after CountZeros should not be included.
2329   SplitPt.setHeadBit(true);
2330   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2331   if (IsHugeFunc)
2332     FreshBBs.insert(EndBlock);
2333 
2334   // Update the LoopInfo. The new blocks are in the same loop as the start
2335   // block.
2336   if (Loop *L = LI.getLoopFor(StartBlock)) {
2337     L->addBasicBlockToLoop(CallBlock, LI);
2338     L->addBasicBlockToLoop(EndBlock, LI);
2339   }
2340 
2341   // Set up a builder to create a compare, conditional branch, and PHI.
2342   IRBuilder<> Builder(CountZeros->getContext());
2343   Builder.SetInsertPoint(StartBlock->getTerminator());
2344   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2345 
2346   // Replace the unconditional branch that was created by the first split with
2347   // a compare against zero and a conditional branch.
2348   Value *Zero = Constant::getNullValue(Ty);
2349   // Avoid introducing branch on poison. This also replaces the ctz operand.
2350   if (!isGuaranteedNotToBeUndefOrPoison(Op))
2351     Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2352   Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2353   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2354   StartBlock->getTerminator()->eraseFromParent();
2355 
2356   // Create a PHI in the end block to select either the output of the intrinsic
2357   // or the bit width of the operand.
2358   Builder.SetInsertPoint(EndBlock, EndBlock->begin());
2359   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2360   replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2361   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2362   PN->addIncoming(BitWidth, StartBlock);
2363   PN->addIncoming(CountZeros, CallBlock);
2364 
2365   // We are explicitly handling the zero case, so we can set the intrinsic's
2366   // undefined zero argument to 'true'. This will also prevent reprocessing the
2367   // intrinsic; we only despeculate when a zero input is defined.
2368   CountZeros->setArgOperand(1, Builder.getTrue());
2369   ModifiedDT = ModifyDT::ModifyBBDT;
2370   return true;
2371 }
2372 
2373 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2374   BasicBlock *BB = CI->getParent();
2375 
2376   // Lower inline assembly if we can.
2377   // If we found an inline asm expession, and if the target knows how to
2378   // lower it to normal LLVM code, do so now.
2379   if (CI->isInlineAsm()) {
2380     if (TLI->ExpandInlineAsm(CI)) {
2381       // Avoid invalidating the iterator.
2382       CurInstIterator = BB->begin();
2383       // Avoid processing instructions out of order, which could cause
2384       // reuse before a value is defined.
2385       SunkAddrs.clear();
2386       return true;
2387     }
2388     // Sink address computing for memory operands into the block.
2389     if (optimizeInlineAsmInst(CI))
2390       return true;
2391   }
2392 
2393   // Align the pointer arguments to this call if the target thinks it's a good
2394   // idea
2395   unsigned MinSize;
2396   Align PrefAlign;
2397   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2398     for (auto &Arg : CI->args()) {
2399       // We want to align both objects whose address is used directly and
2400       // objects whose address is used in casts and GEPs, though it only makes
2401       // sense for GEPs if the offset is a multiple of the desired alignment and
2402       // if size - offset meets the size threshold.
2403       if (!Arg->getType()->isPointerTy())
2404         continue;
2405       APInt Offset(DL->getIndexSizeInBits(
2406                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2407                    0);
2408       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2409       uint64_t Offset2 = Offset.getLimitedValue();
2410       if (!isAligned(PrefAlign, Offset2))
2411         continue;
2412       AllocaInst *AI;
2413       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2414           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2415         AI->setAlignment(PrefAlign);
2416       // Global variables can only be aligned if they are defined in this
2417       // object (i.e. they are uniquely initialized in this object), and
2418       // over-aligning global variables that have an explicit section is
2419       // forbidden.
2420       GlobalVariable *GV;
2421       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2422           GV->getPointerAlignment(*DL) < PrefAlign &&
2423           DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2424         GV->setAlignment(PrefAlign);
2425     }
2426   }
2427   // If this is a memcpy (or similar) then we may be able to improve the
2428   // alignment.
2429   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2430     Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2431     MaybeAlign MIDestAlign = MI->getDestAlign();
2432     if (!MIDestAlign || DestAlign > *MIDestAlign)
2433       MI->setDestAlignment(DestAlign);
2434     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2435       MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2436       Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2437       if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2438         MTI->setSourceAlignment(SrcAlign);
2439     }
2440   }
2441 
2442   // If we have a cold call site, try to sink addressing computation into the
2443   // cold block.  This interacts with our handling for loads and stores to
2444   // ensure that we can fold all uses of a potential addressing computation
2445   // into their uses.  TODO: generalize this to work over profiling data
2446   if (CI->hasFnAttr(Attribute::Cold) && !OptSize &&
2447       !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2448     for (auto &Arg : CI->args()) {
2449       if (!Arg->getType()->isPointerTy())
2450         continue;
2451       unsigned AS = Arg->getType()->getPointerAddressSpace();
2452       if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2453         return true;
2454     }
2455 
2456   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2457   if (II) {
2458     switch (II->getIntrinsicID()) {
2459     default:
2460       break;
2461     case Intrinsic::assume:
2462       llvm_unreachable("llvm.assume should have been removed already");
2463     case Intrinsic::allow_runtime_check:
2464     case Intrinsic::allow_ubsan_check:
2465     case Intrinsic::experimental_widenable_condition: {
2466       // Give up on future widening opportunities so that we can fold away dead
2467       // paths and merge blocks before going into block-local instruction
2468       // selection.
2469       if (II->use_empty()) {
2470         II->eraseFromParent();
2471         return true;
2472       }
2473       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2474       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2475         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2476       });
2477       return true;
2478     }
2479     case Intrinsic::objectsize:
2480       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2481     case Intrinsic::is_constant:
2482       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2483     case Intrinsic::aarch64_stlxr:
2484     case Intrinsic::aarch64_stxr: {
2485       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2486       if (!ExtVal || !ExtVal->hasOneUse() ||
2487           ExtVal->getParent() == CI->getParent())
2488         return false;
2489       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2490       ExtVal->moveBefore(CI);
2491       // Mark this instruction as "inserted by CGP", so that other
2492       // optimizations don't touch it.
2493       InsertedInsts.insert(ExtVal);
2494       return true;
2495     }
2496 
2497     case Intrinsic::launder_invariant_group:
2498     case Intrinsic::strip_invariant_group: {
2499       Value *ArgVal = II->getArgOperand(0);
2500       auto it = LargeOffsetGEPMap.find(II);
2501       if (it != LargeOffsetGEPMap.end()) {
2502         // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2503         // Make sure not to have to deal with iterator invalidation
2504         // after possibly adding ArgVal to LargeOffsetGEPMap.
2505         auto GEPs = std::move(it->second);
2506         LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2507         LargeOffsetGEPMap.erase(II);
2508       }
2509 
2510       replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2511       II->eraseFromParent();
2512       return true;
2513     }
2514     case Intrinsic::cttz:
2515     case Intrinsic::ctlz:
2516       // If counting zeros is expensive, try to avoid it.
2517       return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2518                                    IsHugeFunc);
2519     case Intrinsic::fshl:
2520     case Intrinsic::fshr:
2521       return optimizeFunnelShift(II);
2522     case Intrinsic::dbg_assign:
2523     case Intrinsic::dbg_value:
2524       return fixupDbgValue(II);
2525     case Intrinsic::masked_gather:
2526       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2527     case Intrinsic::masked_scatter:
2528       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2529     }
2530 
2531     SmallVector<Value *, 2> PtrOps;
2532     Type *AccessTy;
2533     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2534       while (!PtrOps.empty()) {
2535         Value *PtrVal = PtrOps.pop_back_val();
2536         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2537         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2538           return true;
2539       }
2540   }
2541 
2542   // From here on out we're working with named functions.
2543   if (!CI->getCalledFunction())
2544     return false;
2545 
2546   // Lower all default uses of _chk calls.  This is very similar
2547   // to what InstCombineCalls does, but here we are only lowering calls
2548   // to fortified library functions (e.g. __memcpy_chk) that have the default
2549   // "don't know" as the objectsize.  Anything else should be left alone.
2550   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2551   IRBuilder<> Builder(CI);
2552   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2553     replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2554     CI->eraseFromParent();
2555     return true;
2556   }
2557 
2558   return false;
2559 }
2560 
2561 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo,
2562                                           const CallInst *CI) {
2563   assert(CI && CI->use_empty());
2564 
2565   if (const auto *II = dyn_cast<IntrinsicInst>(CI))
2566     switch (II->getIntrinsicID()) {
2567     case Intrinsic::memset:
2568     case Intrinsic::memcpy:
2569     case Intrinsic::memmove:
2570       return true;
2571     default:
2572       return false;
2573     }
2574 
2575   LibFunc LF;
2576   Function *Callee = CI->getCalledFunction();
2577   if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF))
2578     switch (LF) {
2579     case LibFunc_strcpy:
2580     case LibFunc_strncpy:
2581     case LibFunc_strcat:
2582     case LibFunc_strncat:
2583       return true;
2584     default:
2585       return false;
2586     }
2587 
2588   return false;
2589 }
2590 
2591 /// Look for opportunities to duplicate return instructions to the predecessor
2592 /// to enable tail call optimizations. The case it is currently looking for is
2593 /// the following one. Known intrinsics or library function that may be tail
2594 /// called are taken into account as well.
2595 /// @code
2596 /// bb0:
2597 ///   %tmp0 = tail call i32 @f0()
2598 ///   br label %return
2599 /// bb1:
2600 ///   %tmp1 = tail call i32 @f1()
2601 ///   br label %return
2602 /// bb2:
2603 ///   %tmp2 = tail call i32 @f2()
2604 ///   br label %return
2605 /// return:
2606 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2607 ///   ret i32 %retval
2608 /// @endcode
2609 ///
2610 /// =>
2611 ///
2612 /// @code
2613 /// bb0:
2614 ///   %tmp0 = tail call i32 @f0()
2615 ///   ret i32 %tmp0
2616 /// bb1:
2617 ///   %tmp1 = tail call i32 @f1()
2618 ///   ret i32 %tmp1
2619 /// bb2:
2620 ///   %tmp2 = tail call i32 @f2()
2621 ///   ret i32 %tmp2
2622 /// @endcode
2623 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2624                                                 ModifyDT &ModifiedDT) {
2625   if (!BB->getTerminator())
2626     return false;
2627 
2628   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2629   if (!RetI)
2630     return false;
2631 
2632   assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2633 
2634   PHINode *PN = nullptr;
2635   ExtractValueInst *EVI = nullptr;
2636   BitCastInst *BCI = nullptr;
2637   Value *V = RetI->getReturnValue();
2638   if (V) {
2639     BCI = dyn_cast<BitCastInst>(V);
2640     if (BCI)
2641       V = BCI->getOperand(0);
2642 
2643     EVI = dyn_cast<ExtractValueInst>(V);
2644     if (EVI) {
2645       V = EVI->getOperand(0);
2646       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2647         return false;
2648     }
2649 
2650     PN = dyn_cast<PHINode>(V);
2651   }
2652 
2653   if (PN && PN->getParent() != BB)
2654     return false;
2655 
2656   auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2657     const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2658     if (BC && BC->hasOneUse())
2659       Inst = BC->user_back();
2660 
2661     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2662       return II->getIntrinsicID() == Intrinsic::lifetime_end;
2663     return false;
2664   };
2665 
2666   // Make sure there are no instructions between the first instruction
2667   // and return.
2668   const Instruction *BI = BB->getFirstNonPHI();
2669   // Skip over debug and the bitcast.
2670   while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2671          isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2672     BI = BI->getNextNode();
2673   if (BI != RetI)
2674     return false;
2675 
2676   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2677   /// call.
2678   const Function *F = BB->getParent();
2679   SmallVector<BasicBlock *, 4> TailCallBBs;
2680   if (PN) {
2681     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2682       // Look through bitcasts.
2683       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2684       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2685       BasicBlock *PredBB = PN->getIncomingBlock(I);
2686       // Make sure the phi value is indeed produced by the tail call.
2687       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2688           TLI->mayBeEmittedAsTailCall(CI) &&
2689           attributesPermitTailCall(F, CI, RetI, *TLI)) {
2690         TailCallBBs.push_back(PredBB);
2691       } else {
2692         // Consider the cases in which the phi value is indirectly produced by
2693         // the tail call, for example when encountering memset(), memmove(),
2694         // strcpy(), whose return value may have been optimized out. In such
2695         // cases, the value needs to be the first function argument.
2696         //
2697         // bb0:
2698         //   tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1)
2699         //   br label %return
2700         // return:
2701         //   %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ]
2702         if (PredBB && PredBB->getSingleSuccessor() == BB)
2703           CI = dyn_cast_or_null<CallInst>(
2704               PredBB->getTerminator()->getPrevNonDebugInstruction(true));
2705 
2706         if (CI && CI->use_empty() &&
2707             isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
2708             IncomingVal == CI->getArgOperand(0) &&
2709             TLI->mayBeEmittedAsTailCall(CI) &&
2710             attributesPermitTailCall(F, CI, RetI, *TLI))
2711           TailCallBBs.push_back(PredBB);
2712       }
2713     }
2714   } else {
2715     SmallPtrSet<BasicBlock *, 4> VisitedBBs;
2716     for (BasicBlock *Pred : predecessors(BB)) {
2717       if (!VisitedBBs.insert(Pred).second)
2718         continue;
2719       if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2720         CallInst *CI = dyn_cast<CallInst>(I);
2721         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2722             attributesPermitTailCall(F, CI, RetI, *TLI)) {
2723           // Either we return void or the return value must be the first
2724           // argument of a known intrinsic or library function.
2725           if (!V || isa<UndefValue>(V) ||
2726               (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
2727                V == CI->getArgOperand(0))) {
2728             TailCallBBs.push_back(Pred);
2729           }
2730         }
2731       }
2732     }
2733   }
2734 
2735   bool Changed = false;
2736   for (auto const &TailCallBB : TailCallBBs) {
2737     // Make sure the call instruction is followed by an unconditional branch to
2738     // the return block.
2739     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2740     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2741       continue;
2742 
2743     // Duplicate the return into TailCallBB.
2744     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2745     assert(!VerifyBFIUpdates ||
2746            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2747     BFI->setBlockFreq(BB,
2748                       (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)));
2749     ModifiedDT = ModifyDT::ModifyBBDT;
2750     Changed = true;
2751     ++NumRetsDup;
2752   }
2753 
2754   // If we eliminated all predecessors of the block, delete the block now.
2755   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2756     BB->eraseFromParent();
2757 
2758   return Changed;
2759 }
2760 
2761 //===----------------------------------------------------------------------===//
2762 // Memory Optimization
2763 //===----------------------------------------------------------------------===//
2764 
2765 namespace {
2766 
2767 /// This is an extended version of TargetLowering::AddrMode
2768 /// which holds actual Value*'s for register values.
2769 struct ExtAddrMode : public TargetLowering::AddrMode {
2770   Value *BaseReg = nullptr;
2771   Value *ScaledReg = nullptr;
2772   Value *OriginalValue = nullptr;
2773   bool InBounds = true;
2774 
2775   enum FieldName {
2776     NoField = 0x00,
2777     BaseRegField = 0x01,
2778     BaseGVField = 0x02,
2779     BaseOffsField = 0x04,
2780     ScaledRegField = 0x08,
2781     ScaleField = 0x10,
2782     MultipleFields = 0xff
2783   };
2784 
2785   ExtAddrMode() = default;
2786 
2787   void print(raw_ostream &OS) const;
2788   void dump() const;
2789 
2790   FieldName compare(const ExtAddrMode &other) {
2791     // First check that the types are the same on each field, as differing types
2792     // is something we can't cope with later on.
2793     if (BaseReg && other.BaseReg &&
2794         BaseReg->getType() != other.BaseReg->getType())
2795       return MultipleFields;
2796     if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
2797       return MultipleFields;
2798     if (ScaledReg && other.ScaledReg &&
2799         ScaledReg->getType() != other.ScaledReg->getType())
2800       return MultipleFields;
2801 
2802     // Conservatively reject 'inbounds' mismatches.
2803     if (InBounds != other.InBounds)
2804       return MultipleFields;
2805 
2806     // Check each field to see if it differs.
2807     unsigned Result = NoField;
2808     if (BaseReg != other.BaseReg)
2809       Result |= BaseRegField;
2810     if (BaseGV != other.BaseGV)
2811       Result |= BaseGVField;
2812     if (BaseOffs != other.BaseOffs)
2813       Result |= BaseOffsField;
2814     if (ScaledReg != other.ScaledReg)
2815       Result |= ScaledRegField;
2816     // Don't count 0 as being a different scale, because that actually means
2817     // unscaled (which will already be counted by having no ScaledReg).
2818     if (Scale && other.Scale && Scale != other.Scale)
2819       Result |= ScaleField;
2820 
2821     if (llvm::popcount(Result) > 1)
2822       return MultipleFields;
2823     else
2824       return static_cast<FieldName>(Result);
2825   }
2826 
2827   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2828   // with no offset.
2829   bool isTrivial() {
2830     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2831     // trivial if at most one of these terms is nonzero, except that BaseGV and
2832     // BaseReg both being zero actually means a null pointer value, which we
2833     // consider to be 'non-zero' here.
2834     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2835   }
2836 
2837   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2838     switch (Field) {
2839     default:
2840       return nullptr;
2841     case BaseRegField:
2842       return BaseReg;
2843     case BaseGVField:
2844       return BaseGV;
2845     case ScaledRegField:
2846       return ScaledReg;
2847     case BaseOffsField:
2848       return ConstantInt::get(IntPtrTy, BaseOffs);
2849     }
2850   }
2851 
2852   void SetCombinedField(FieldName Field, Value *V,
2853                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2854     switch (Field) {
2855     default:
2856       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2857       break;
2858     case ExtAddrMode::BaseRegField:
2859       BaseReg = V;
2860       break;
2861     case ExtAddrMode::BaseGVField:
2862       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2863       // in the BaseReg field.
2864       assert(BaseReg == nullptr);
2865       BaseReg = V;
2866       BaseGV = nullptr;
2867       break;
2868     case ExtAddrMode::ScaledRegField:
2869       ScaledReg = V;
2870       // If we have a mix of scaled and unscaled addrmodes then we want scale
2871       // to be the scale and not zero.
2872       if (!Scale)
2873         for (const ExtAddrMode &AM : AddrModes)
2874           if (AM.Scale) {
2875             Scale = AM.Scale;
2876             break;
2877           }
2878       break;
2879     case ExtAddrMode::BaseOffsField:
2880       // The offset is no longer a constant, so it goes in ScaledReg with a
2881       // scale of 1.
2882       assert(ScaledReg == nullptr);
2883       ScaledReg = V;
2884       Scale = 1;
2885       BaseOffs = 0;
2886       break;
2887     }
2888   }
2889 };
2890 
2891 #ifndef NDEBUG
2892 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2893   AM.print(OS);
2894   return OS;
2895 }
2896 #endif
2897 
2898 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2899 void ExtAddrMode::print(raw_ostream &OS) const {
2900   bool NeedPlus = false;
2901   OS << "[";
2902   if (InBounds)
2903     OS << "inbounds ";
2904   if (BaseGV) {
2905     OS << "GV:";
2906     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2907     NeedPlus = true;
2908   }
2909 
2910   if (BaseOffs) {
2911     OS << (NeedPlus ? " + " : "") << BaseOffs;
2912     NeedPlus = true;
2913   }
2914 
2915   if (BaseReg) {
2916     OS << (NeedPlus ? " + " : "") << "Base:";
2917     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2918     NeedPlus = true;
2919   }
2920   if (Scale) {
2921     OS << (NeedPlus ? " + " : "") << Scale << "*";
2922     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2923   }
2924 
2925   OS << ']';
2926 }
2927 
2928 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2929   print(dbgs());
2930   dbgs() << '\n';
2931 }
2932 #endif
2933 
2934 } // end anonymous namespace
2935 
2936 namespace {
2937 
2938 /// This class provides transaction based operation on the IR.
2939 /// Every change made through this class is recorded in the internal state and
2940 /// can be undone (rollback) until commit is called.
2941 /// CGP does not check if instructions could be speculatively executed when
2942 /// moved. Preserving the original location would pessimize the debugging
2943 /// experience, as well as negatively impact the quality of sample PGO.
2944 class TypePromotionTransaction {
2945   /// This represents the common interface of the individual transaction.
2946   /// Each class implements the logic for doing one specific modification on
2947   /// the IR via the TypePromotionTransaction.
2948   class TypePromotionAction {
2949   protected:
2950     /// The Instruction modified.
2951     Instruction *Inst;
2952 
2953   public:
2954     /// Constructor of the action.
2955     /// The constructor performs the related action on the IR.
2956     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2957 
2958     virtual ~TypePromotionAction() = default;
2959 
2960     /// Undo the modification done by this action.
2961     /// When this method is called, the IR must be in the same state as it was
2962     /// before this action was applied.
2963     /// \pre Undoing the action works if and only if the IR is in the exact same
2964     /// state as it was directly after this action was applied.
2965     virtual void undo() = 0;
2966 
2967     /// Advocate every change made by this action.
2968     /// When the results on the IR of the action are to be kept, it is important
2969     /// to call this function, otherwise hidden information may be kept forever.
2970     virtual void commit() {
2971       // Nothing to be done, this action is not doing anything.
2972     }
2973   };
2974 
2975   /// Utility to remember the position of an instruction.
2976   class InsertionHandler {
2977     /// Position of an instruction.
2978     /// Either an instruction:
2979     /// - Is the first in a basic block: BB is used.
2980     /// - Has a previous instruction: PrevInst is used.
2981     union {
2982       Instruction *PrevInst;
2983       BasicBlock *BB;
2984     } Point;
2985     std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt;
2986 
2987     /// Remember whether or not the instruction had a previous instruction.
2988     bool HasPrevInstruction;
2989 
2990   public:
2991     /// Record the position of \p Inst.
2992     InsertionHandler(Instruction *Inst) {
2993       HasPrevInstruction = (Inst != &*(Inst->getParent()->begin()));
2994       BasicBlock *BB = Inst->getParent();
2995 
2996       // Record where we would have to re-insert the instruction in the sequence
2997       // of DbgRecords, if we ended up reinserting.
2998       if (BB->IsNewDbgInfoFormat)
2999         BeforeDbgRecord = Inst->getDbgReinsertionPosition();
3000 
3001       if (HasPrevInstruction) {
3002         Point.PrevInst = &*std::prev(Inst->getIterator());
3003       } else {
3004         Point.BB = BB;
3005       }
3006     }
3007 
3008     /// Insert \p Inst at the recorded position.
3009     void insert(Instruction *Inst) {
3010       if (HasPrevInstruction) {
3011         if (Inst->getParent())
3012           Inst->removeFromParent();
3013         Inst->insertAfter(&*Point.PrevInst);
3014       } else {
3015         BasicBlock::iterator Position = Point.BB->getFirstInsertionPt();
3016         if (Inst->getParent())
3017           Inst->moveBefore(*Point.BB, Position);
3018         else
3019           Inst->insertBefore(*Point.BB, Position);
3020       }
3021 
3022       Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord);
3023     }
3024   };
3025 
3026   /// Move an instruction before another.
3027   class InstructionMoveBefore : public TypePromotionAction {
3028     /// Original position of the instruction.
3029     InsertionHandler Position;
3030 
3031   public:
3032     /// Move \p Inst before \p Before.
3033     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
3034         : TypePromotionAction(Inst), Position(Inst) {
3035       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
3036                         << "\n");
3037       Inst->moveBefore(Before);
3038     }
3039 
3040     /// Move the instruction back to its original position.
3041     void undo() override {
3042       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
3043       Position.insert(Inst);
3044     }
3045   };
3046 
3047   /// Set the operand of an instruction with a new value.
3048   class OperandSetter : public TypePromotionAction {
3049     /// Original operand of the instruction.
3050     Value *Origin;
3051 
3052     /// Index of the modified instruction.
3053     unsigned Idx;
3054 
3055   public:
3056     /// Set \p Idx operand of \p Inst with \p NewVal.
3057     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
3058         : TypePromotionAction(Inst), Idx(Idx) {
3059       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
3060                         << "for:" << *Inst << "\n"
3061                         << "with:" << *NewVal << "\n");
3062       Origin = Inst->getOperand(Idx);
3063       Inst->setOperand(Idx, NewVal);
3064     }
3065 
3066     /// Restore the original value of the instruction.
3067     void undo() override {
3068       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
3069                         << "for: " << *Inst << "\n"
3070                         << "with: " << *Origin << "\n");
3071       Inst->setOperand(Idx, Origin);
3072     }
3073   };
3074 
3075   /// Hide the operands of an instruction.
3076   /// Do as if this instruction was not using any of its operands.
3077   class OperandsHider : public TypePromotionAction {
3078     /// The list of original operands.
3079     SmallVector<Value *, 4> OriginalValues;
3080 
3081   public:
3082     /// Remove \p Inst from the uses of the operands of \p Inst.
3083     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
3084       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
3085       unsigned NumOpnds = Inst->getNumOperands();
3086       OriginalValues.reserve(NumOpnds);
3087       for (unsigned It = 0; It < NumOpnds; ++It) {
3088         // Save the current operand.
3089         Value *Val = Inst->getOperand(It);
3090         OriginalValues.push_back(Val);
3091         // Set a dummy one.
3092         // We could use OperandSetter here, but that would imply an overhead
3093         // that we are not willing to pay.
3094         Inst->setOperand(It, UndefValue::get(Val->getType()));
3095       }
3096     }
3097 
3098     /// Restore the original list of uses.
3099     void undo() override {
3100       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3101       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3102         Inst->setOperand(It, OriginalValues[It]);
3103     }
3104   };
3105 
3106   /// Build a truncate instruction.
3107   class TruncBuilder : public TypePromotionAction {
3108     Value *Val;
3109 
3110   public:
3111     /// Build a truncate instruction of \p Opnd producing a \p Ty
3112     /// result.
3113     /// trunc Opnd to Ty.
3114     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3115       IRBuilder<> Builder(Opnd);
3116       Builder.SetCurrentDebugLocation(DebugLoc());
3117       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3118       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3119     }
3120 
3121     /// Get the built value.
3122     Value *getBuiltValue() { return Val; }
3123 
3124     /// Remove the built instruction.
3125     void undo() override {
3126       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3127       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3128         IVal->eraseFromParent();
3129     }
3130   };
3131 
3132   /// Build a sign extension instruction.
3133   class SExtBuilder : public TypePromotionAction {
3134     Value *Val;
3135 
3136   public:
3137     /// Build a sign extension instruction of \p Opnd producing a \p Ty
3138     /// result.
3139     /// sext Opnd to Ty.
3140     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3141         : TypePromotionAction(InsertPt) {
3142       IRBuilder<> Builder(InsertPt);
3143       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3144       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3145     }
3146 
3147     /// Get the built value.
3148     Value *getBuiltValue() { return Val; }
3149 
3150     /// Remove the built instruction.
3151     void undo() override {
3152       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3153       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3154         IVal->eraseFromParent();
3155     }
3156   };
3157 
3158   /// Build a zero extension instruction.
3159   class ZExtBuilder : public TypePromotionAction {
3160     Value *Val;
3161 
3162   public:
3163     /// Build a zero extension instruction of \p Opnd producing a \p Ty
3164     /// result.
3165     /// zext Opnd to Ty.
3166     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3167         : TypePromotionAction(InsertPt) {
3168       IRBuilder<> Builder(InsertPt);
3169       Builder.SetCurrentDebugLocation(DebugLoc());
3170       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3171       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3172     }
3173 
3174     /// Get the built value.
3175     Value *getBuiltValue() { return Val; }
3176 
3177     /// Remove the built instruction.
3178     void undo() override {
3179       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3180       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3181         IVal->eraseFromParent();
3182     }
3183   };
3184 
3185   /// Mutate an instruction to another type.
3186   class TypeMutator : public TypePromotionAction {
3187     /// Record the original type.
3188     Type *OrigTy;
3189 
3190   public:
3191     /// Mutate the type of \p Inst into \p NewTy.
3192     TypeMutator(Instruction *Inst, Type *NewTy)
3193         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3194       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3195                         << "\n");
3196       Inst->mutateType(NewTy);
3197     }
3198 
3199     /// Mutate the instruction back to its original type.
3200     void undo() override {
3201       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3202                         << "\n");
3203       Inst->mutateType(OrigTy);
3204     }
3205   };
3206 
3207   /// Replace the uses of an instruction by another instruction.
3208   class UsesReplacer : public TypePromotionAction {
3209     /// Helper structure to keep track of the replaced uses.
3210     struct InstructionAndIdx {
3211       /// The instruction using the instruction.
3212       Instruction *Inst;
3213 
3214       /// The index where this instruction is used for Inst.
3215       unsigned Idx;
3216 
3217       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3218           : Inst(Inst), Idx(Idx) {}
3219     };
3220 
3221     /// Keep track of the original uses (pair Instruction, Index).
3222     SmallVector<InstructionAndIdx, 4> OriginalUses;
3223     /// Keep track of the debug users.
3224     SmallVector<DbgValueInst *, 1> DbgValues;
3225     /// And non-instruction debug-users too.
3226     SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
3227 
3228     /// Keep track of the new value so that we can undo it by replacing
3229     /// instances of the new value with the original value.
3230     Value *New;
3231 
3232     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3233 
3234   public:
3235     /// Replace all the use of \p Inst by \p New.
3236     UsesReplacer(Instruction *Inst, Value *New)
3237         : TypePromotionAction(Inst), New(New) {
3238       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3239                         << "\n");
3240       // Record the original uses.
3241       for (Use &U : Inst->uses()) {
3242         Instruction *UserI = cast<Instruction>(U.getUser());
3243         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3244       }
3245       // Record the debug uses separately. They are not in the instruction's
3246       // use list, but they are replaced by RAUW.
3247       findDbgValues(DbgValues, Inst, &DbgVariableRecords);
3248 
3249       // Now, we can replace the uses.
3250       Inst->replaceAllUsesWith(New);
3251     }
3252 
3253     /// Reassign the original uses of Inst to Inst.
3254     void undo() override {
3255       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3256       for (InstructionAndIdx &Use : OriginalUses)
3257         Use.Inst->setOperand(Use.Idx, Inst);
3258       // RAUW has replaced all original uses with references to the new value,
3259       // including the debug uses. Since we are undoing the replacements,
3260       // the original debug uses must also be reinstated to maintain the
3261       // correctness and utility of debug value instructions.
3262       for (auto *DVI : DbgValues)
3263         DVI->replaceVariableLocationOp(New, Inst);
3264       // Similar story with DbgVariableRecords, the non-instruction
3265       // representation of dbg.values.
3266       for (DbgVariableRecord *DVR : DbgVariableRecords)
3267         DVR->replaceVariableLocationOp(New, Inst);
3268     }
3269   };
3270 
3271   /// Remove an instruction from the IR.
3272   class InstructionRemover : public TypePromotionAction {
3273     /// Original position of the instruction.
3274     InsertionHandler Inserter;
3275 
3276     /// Helper structure to hide all the link to the instruction. In other
3277     /// words, this helps to do as if the instruction was removed.
3278     OperandsHider Hider;
3279 
3280     /// Keep track of the uses replaced, if any.
3281     UsesReplacer *Replacer = nullptr;
3282 
3283     /// Keep track of instructions removed.
3284     SetOfInstrs &RemovedInsts;
3285 
3286   public:
3287     /// Remove all reference of \p Inst and optionally replace all its
3288     /// uses with New.
3289     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3290     /// \pre If !Inst->use_empty(), then New != nullptr
3291     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3292                        Value *New = nullptr)
3293         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3294           RemovedInsts(RemovedInsts) {
3295       if (New)
3296         Replacer = new UsesReplacer(Inst, New);
3297       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3298       RemovedInsts.insert(Inst);
3299       /// The instructions removed here will be freed after completing
3300       /// optimizeBlock() for all blocks as we need to keep track of the
3301       /// removed instructions during promotion.
3302       Inst->removeFromParent();
3303     }
3304 
3305     ~InstructionRemover() override { delete Replacer; }
3306 
3307     InstructionRemover &operator=(const InstructionRemover &other) = delete;
3308     InstructionRemover(const InstructionRemover &other) = delete;
3309 
3310     /// Resurrect the instruction and reassign it to the proper uses if
3311     /// new value was provided when build this action.
3312     void undo() override {
3313       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3314       Inserter.insert(Inst);
3315       if (Replacer)
3316         Replacer->undo();
3317       Hider.undo();
3318       RemovedInsts.erase(Inst);
3319     }
3320   };
3321 
3322 public:
3323   /// Restoration point.
3324   /// The restoration point is a pointer to an action instead of an iterator
3325   /// because the iterator may be invalidated but not the pointer.
3326   using ConstRestorationPt = const TypePromotionAction *;
3327 
3328   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3329       : RemovedInsts(RemovedInsts) {}
3330 
3331   /// Advocate every changes made in that transaction. Return true if any change
3332   /// happen.
3333   bool commit();
3334 
3335   /// Undo all the changes made after the given point.
3336   void rollback(ConstRestorationPt Point);
3337 
3338   /// Get the current restoration point.
3339   ConstRestorationPt getRestorationPoint() const;
3340 
3341   /// \name API for IR modification with state keeping to support rollback.
3342   /// @{
3343   /// Same as Instruction::setOperand.
3344   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3345 
3346   /// Same as Instruction::eraseFromParent.
3347   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3348 
3349   /// Same as Value::replaceAllUsesWith.
3350   void replaceAllUsesWith(Instruction *Inst, Value *New);
3351 
3352   /// Same as Value::mutateType.
3353   void mutateType(Instruction *Inst, Type *NewTy);
3354 
3355   /// Same as IRBuilder::createTrunc.
3356   Value *createTrunc(Instruction *Opnd, Type *Ty);
3357 
3358   /// Same as IRBuilder::createSExt.
3359   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3360 
3361   /// Same as IRBuilder::createZExt.
3362   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3363 
3364 private:
3365   /// The ordered list of actions made so far.
3366   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3367 
3368   using CommitPt =
3369       SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3370 
3371   SetOfInstrs &RemovedInsts;
3372 };
3373 
3374 } // end anonymous namespace
3375 
3376 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3377                                           Value *NewVal) {
3378   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3379       Inst, Idx, NewVal));
3380 }
3381 
3382 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3383                                                 Value *NewVal) {
3384   Actions.push_back(
3385       std::make_unique<TypePromotionTransaction::InstructionRemover>(
3386           Inst, RemovedInsts, NewVal));
3387 }
3388 
3389 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3390                                                   Value *New) {
3391   Actions.push_back(
3392       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3393 }
3394 
3395 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3396   Actions.push_back(
3397       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3398 }
3399 
3400 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3401   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3402   Value *Val = Ptr->getBuiltValue();
3403   Actions.push_back(std::move(Ptr));
3404   return Val;
3405 }
3406 
3407 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3408                                             Type *Ty) {
3409   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3410   Value *Val = Ptr->getBuiltValue();
3411   Actions.push_back(std::move(Ptr));
3412   return Val;
3413 }
3414 
3415 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3416                                             Type *Ty) {
3417   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3418   Value *Val = Ptr->getBuiltValue();
3419   Actions.push_back(std::move(Ptr));
3420   return Val;
3421 }
3422 
3423 TypePromotionTransaction::ConstRestorationPt
3424 TypePromotionTransaction::getRestorationPoint() const {
3425   return !Actions.empty() ? Actions.back().get() : nullptr;
3426 }
3427 
3428 bool TypePromotionTransaction::commit() {
3429   for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3430     Action->commit();
3431   bool Modified = !Actions.empty();
3432   Actions.clear();
3433   return Modified;
3434 }
3435 
3436 void TypePromotionTransaction::rollback(
3437     TypePromotionTransaction::ConstRestorationPt Point) {
3438   while (!Actions.empty() && Point != Actions.back().get()) {
3439     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3440     Curr->undo();
3441   }
3442 }
3443 
3444 namespace {
3445 
3446 /// A helper class for matching addressing modes.
3447 ///
3448 /// This encapsulates the logic for matching the target-legal addressing modes.
3449 class AddressingModeMatcher {
3450   SmallVectorImpl<Instruction *> &AddrModeInsts;
3451   const TargetLowering &TLI;
3452   const TargetRegisterInfo &TRI;
3453   const DataLayout &DL;
3454   const LoopInfo &LI;
3455   const std::function<const DominatorTree &()> getDTFn;
3456 
3457   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3458   /// the memory instruction that we're computing this address for.
3459   Type *AccessTy;
3460   unsigned AddrSpace;
3461   Instruction *MemoryInst;
3462 
3463   /// This is the addressing mode that we're building up. This is
3464   /// part of the return value of this addressing mode matching stuff.
3465   ExtAddrMode &AddrMode;
3466 
3467   /// The instructions inserted by other CodeGenPrepare optimizations.
3468   const SetOfInstrs &InsertedInsts;
3469 
3470   /// A map from the instructions to their type before promotion.
3471   InstrToOrigTy &PromotedInsts;
3472 
3473   /// The ongoing transaction where every action should be registered.
3474   TypePromotionTransaction &TPT;
3475 
3476   // A GEP which has too large offset to be folded into the addressing mode.
3477   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3478 
3479   /// This is set to true when we should not do profitability checks.
3480   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3481   bool IgnoreProfitability;
3482 
3483   /// True if we are optimizing for size.
3484   bool OptSize = false;
3485 
3486   ProfileSummaryInfo *PSI;
3487   BlockFrequencyInfo *BFI;
3488 
3489   AddressingModeMatcher(
3490       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3491       const TargetRegisterInfo &TRI, const LoopInfo &LI,
3492       const std::function<const DominatorTree &()> getDTFn, Type *AT,
3493       unsigned AS, Instruction *MI, ExtAddrMode &AM,
3494       const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3495       TypePromotionTransaction &TPT,
3496       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3497       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3498       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3499         DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn),
3500         AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3501         InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3502         LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3503     IgnoreProfitability = false;
3504   }
3505 
3506 public:
3507   /// Find the maximal addressing mode that a load/store of V can fold,
3508   /// give an access type of AccessTy.  This returns a list of involved
3509   /// instructions in AddrModeInsts.
3510   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3511   /// optimizations.
3512   /// \p PromotedInsts maps the instructions to their type before promotion.
3513   /// \p The ongoing transaction where every action should be registered.
3514   static ExtAddrMode
3515   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3516         SmallVectorImpl<Instruction *> &AddrModeInsts,
3517         const TargetLowering &TLI, const LoopInfo &LI,
3518         const std::function<const DominatorTree &()> getDTFn,
3519         const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3520         InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3521         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3522         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3523     ExtAddrMode Result;
3524 
3525     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3526                                          AccessTy, AS, MemoryInst, Result,
3527                                          InsertedInsts, PromotedInsts, TPT,
3528                                          LargeOffsetGEP, OptSize, PSI, BFI)
3529                        .matchAddr(V, 0);
3530     (void)Success;
3531     assert(Success && "Couldn't select *anything*?");
3532     return Result;
3533   }
3534 
3535 private:
3536   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3537   bool matchAddr(Value *Addr, unsigned Depth);
3538   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3539                           bool *MovedAway = nullptr);
3540   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3541                                             ExtAddrMode &AMBefore,
3542                                             ExtAddrMode &AMAfter);
3543   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3544   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3545                              Value *PromotedOperand) const;
3546 };
3547 
3548 class PhiNodeSet;
3549 
3550 /// An iterator for PhiNodeSet.
3551 class PhiNodeSetIterator {
3552   PhiNodeSet *const Set;
3553   size_t CurrentIndex = 0;
3554 
3555 public:
3556   /// The constructor. Start should point to either a valid element, or be equal
3557   /// to the size of the underlying SmallVector of the PhiNodeSet.
3558   PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3559   PHINode *operator*() const;
3560   PhiNodeSetIterator &operator++();
3561   bool operator==(const PhiNodeSetIterator &RHS) const;
3562   bool operator!=(const PhiNodeSetIterator &RHS) const;
3563 };
3564 
3565 /// Keeps a set of PHINodes.
3566 ///
3567 /// This is a minimal set implementation for a specific use case:
3568 /// It is very fast when there are very few elements, but also provides good
3569 /// performance when there are many. It is similar to SmallPtrSet, but also
3570 /// provides iteration by insertion order, which is deterministic and stable
3571 /// across runs. It is also similar to SmallSetVector, but provides removing
3572 /// elements in O(1) time. This is achieved by not actually removing the element
3573 /// from the underlying vector, so comes at the cost of using more memory, but
3574 /// that is fine, since PhiNodeSets are used as short lived objects.
3575 class PhiNodeSet {
3576   friend class PhiNodeSetIterator;
3577 
3578   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3579   using iterator = PhiNodeSetIterator;
3580 
3581   /// Keeps the elements in the order of their insertion in the underlying
3582   /// vector. To achieve constant time removal, it never deletes any element.
3583   SmallVector<PHINode *, 32> NodeList;
3584 
3585   /// Keeps the elements in the underlying set implementation. This (and not the
3586   /// NodeList defined above) is the source of truth on whether an element
3587   /// is actually in the collection.
3588   MapType NodeMap;
3589 
3590   /// Points to the first valid (not deleted) element when the set is not empty
3591   /// and the value is not zero. Equals to the size of the underlying vector
3592   /// when the set is empty. When the value is 0, as in the beginning, the
3593   /// first element may or may not be valid.
3594   size_t FirstValidElement = 0;
3595 
3596 public:
3597   /// Inserts a new element to the collection.
3598   /// \returns true if the element is actually added, i.e. was not in the
3599   /// collection before the operation.
3600   bool insert(PHINode *Ptr) {
3601     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3602       NodeList.push_back(Ptr);
3603       return true;
3604     }
3605     return false;
3606   }
3607 
3608   /// Removes the element from the collection.
3609   /// \returns whether the element is actually removed, i.e. was in the
3610   /// collection before the operation.
3611   bool erase(PHINode *Ptr) {
3612     if (NodeMap.erase(Ptr)) {
3613       SkipRemovedElements(FirstValidElement);
3614       return true;
3615     }
3616     return false;
3617   }
3618 
3619   /// Removes all elements and clears the collection.
3620   void clear() {
3621     NodeMap.clear();
3622     NodeList.clear();
3623     FirstValidElement = 0;
3624   }
3625 
3626   /// \returns an iterator that will iterate the elements in the order of
3627   /// insertion.
3628   iterator begin() {
3629     if (FirstValidElement == 0)
3630       SkipRemovedElements(FirstValidElement);
3631     return PhiNodeSetIterator(this, FirstValidElement);
3632   }
3633 
3634   /// \returns an iterator that points to the end of the collection.
3635   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3636 
3637   /// Returns the number of elements in the collection.
3638   size_t size() const { return NodeMap.size(); }
3639 
3640   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3641   size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
3642 
3643 private:
3644   /// Updates the CurrentIndex so that it will point to a valid element.
3645   ///
3646   /// If the element of NodeList at CurrentIndex is valid, it does not
3647   /// change it. If there are no more valid elements, it updates CurrentIndex
3648   /// to point to the end of the NodeList.
3649   void SkipRemovedElements(size_t &CurrentIndex) {
3650     while (CurrentIndex < NodeList.size()) {
3651       auto it = NodeMap.find(NodeList[CurrentIndex]);
3652       // If the element has been deleted and added again later, NodeMap will
3653       // point to a different index, so CurrentIndex will still be invalid.
3654       if (it != NodeMap.end() && it->second == CurrentIndex)
3655         break;
3656       ++CurrentIndex;
3657     }
3658   }
3659 };
3660 
3661 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3662     : Set(Set), CurrentIndex(Start) {}
3663 
3664 PHINode *PhiNodeSetIterator::operator*() const {
3665   assert(CurrentIndex < Set->NodeList.size() &&
3666          "PhiNodeSet access out of range");
3667   return Set->NodeList[CurrentIndex];
3668 }
3669 
3670 PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
3671   assert(CurrentIndex < Set->NodeList.size() &&
3672          "PhiNodeSet access out of range");
3673   ++CurrentIndex;
3674   Set->SkipRemovedElements(CurrentIndex);
3675   return *this;
3676 }
3677 
3678 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3679   return CurrentIndex == RHS.CurrentIndex;
3680 }
3681 
3682 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3683   return !((*this) == RHS);
3684 }
3685 
3686 /// Keep track of simplification of Phi nodes.
3687 /// Accept the set of all phi nodes and erase phi node from this set
3688 /// if it is simplified.
3689 class SimplificationTracker {
3690   DenseMap<Value *, Value *> Storage;
3691   const SimplifyQuery &SQ;
3692   // Tracks newly created Phi nodes. The elements are iterated by insertion
3693   // order.
3694   PhiNodeSet AllPhiNodes;
3695   // Tracks newly created Select nodes.
3696   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3697 
3698 public:
3699   SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {}
3700 
3701   Value *Get(Value *V) {
3702     do {
3703       auto SV = Storage.find(V);
3704       if (SV == Storage.end())
3705         return V;
3706       V = SV->second;
3707     } while (true);
3708   }
3709 
3710   Value *Simplify(Value *Val) {
3711     SmallVector<Value *, 32> WorkList;
3712     SmallPtrSet<Value *, 32> Visited;
3713     WorkList.push_back(Val);
3714     while (!WorkList.empty()) {
3715       auto *P = WorkList.pop_back_val();
3716       if (!Visited.insert(P).second)
3717         continue;
3718       if (auto *PI = dyn_cast<Instruction>(P))
3719         if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
3720           for (auto *U : PI->users())
3721             WorkList.push_back(cast<Value>(U));
3722           Put(PI, V);
3723           PI->replaceAllUsesWith(V);
3724           if (auto *PHI = dyn_cast<PHINode>(PI))
3725             AllPhiNodes.erase(PHI);
3726           if (auto *Select = dyn_cast<SelectInst>(PI))
3727             AllSelectNodes.erase(Select);
3728           PI->eraseFromParent();
3729         }
3730     }
3731     return Get(Val);
3732   }
3733 
3734   void Put(Value *From, Value *To) { Storage.insert({From, To}); }
3735 
3736   void ReplacePhi(PHINode *From, PHINode *To) {
3737     Value *OldReplacement = Get(From);
3738     while (OldReplacement != From) {
3739       From = To;
3740       To = dyn_cast<PHINode>(OldReplacement);
3741       OldReplacement = Get(From);
3742     }
3743     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3744     Put(From, To);
3745     From->replaceAllUsesWith(To);
3746     AllPhiNodes.erase(From);
3747     From->eraseFromParent();
3748   }
3749 
3750   PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
3751 
3752   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3753 
3754   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3755 
3756   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3757 
3758   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3759 
3760   void destroyNewNodes(Type *CommonType) {
3761     // For safe erasing, replace the uses with dummy value first.
3762     auto *Dummy = PoisonValue::get(CommonType);
3763     for (auto *I : AllPhiNodes) {
3764       I->replaceAllUsesWith(Dummy);
3765       I->eraseFromParent();
3766     }
3767     AllPhiNodes.clear();
3768     for (auto *I : AllSelectNodes) {
3769       I->replaceAllUsesWith(Dummy);
3770       I->eraseFromParent();
3771     }
3772     AllSelectNodes.clear();
3773   }
3774 };
3775 
3776 /// A helper class for combining addressing modes.
3777 class AddressingModeCombiner {
3778   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3779   typedef std::pair<PHINode *, PHINode *> PHIPair;
3780 
3781 private:
3782   /// The addressing modes we've collected.
3783   SmallVector<ExtAddrMode, 16> AddrModes;
3784 
3785   /// The field in which the AddrModes differ, when we have more than one.
3786   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3787 
3788   /// Are the AddrModes that we have all just equal to their original values?
3789   bool AllAddrModesTrivial = true;
3790 
3791   /// Common Type for all different fields in addressing modes.
3792   Type *CommonType = nullptr;
3793 
3794   /// SimplifyQuery for simplifyInstruction utility.
3795   const SimplifyQuery &SQ;
3796 
3797   /// Original Address.
3798   Value *Original;
3799 
3800   /// Common value among addresses
3801   Value *CommonValue = nullptr;
3802 
3803 public:
3804   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3805       : SQ(_SQ), Original(OriginalValue) {}
3806 
3807   ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3808 
3809   /// Get the combined AddrMode
3810   const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
3811 
3812   /// Add a new AddrMode if it's compatible with the AddrModes we already
3813   /// have.
3814   /// \return True iff we succeeded in doing so.
3815   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3816     // Take note of if we have any non-trivial AddrModes, as we need to detect
3817     // when all AddrModes are trivial as then we would introduce a phi or select
3818     // which just duplicates what's already there.
3819     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3820 
3821     // If this is the first addrmode then everything is fine.
3822     if (AddrModes.empty()) {
3823       AddrModes.emplace_back(NewAddrMode);
3824       return true;
3825     }
3826 
3827     // Figure out how different this is from the other address modes, which we
3828     // can do just by comparing against the first one given that we only care
3829     // about the cumulative difference.
3830     ExtAddrMode::FieldName ThisDifferentField =
3831         AddrModes[0].compare(NewAddrMode);
3832     if (DifferentField == ExtAddrMode::NoField)
3833       DifferentField = ThisDifferentField;
3834     else if (DifferentField != ThisDifferentField)
3835       DifferentField = ExtAddrMode::MultipleFields;
3836 
3837     // If NewAddrMode differs in more than one dimension we cannot handle it.
3838     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3839 
3840     // If Scale Field is different then we reject.
3841     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3842 
3843     // We also must reject the case when base offset is different and
3844     // scale reg is not null, we cannot handle this case due to merge of
3845     // different offsets will be used as ScaleReg.
3846     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3847                               !NewAddrMode.ScaledReg);
3848 
3849     // We also must reject the case when GV is different and BaseReg installed
3850     // due to we want to use base reg as a merge of GV values.
3851     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3852                               !NewAddrMode.HasBaseReg);
3853 
3854     // Even if NewAddMode is the same we still need to collect it due to
3855     // original value is different. And later we will need all original values
3856     // as anchors during finding the common Phi node.
3857     if (CanHandle)
3858       AddrModes.emplace_back(NewAddrMode);
3859     else
3860       AddrModes.clear();
3861 
3862     return CanHandle;
3863   }
3864 
3865   /// Combine the addressing modes we've collected into a single
3866   /// addressing mode.
3867   /// \return True iff we successfully combined them or we only had one so
3868   /// didn't need to combine them anyway.
3869   bool combineAddrModes() {
3870     // If we have no AddrModes then they can't be combined.
3871     if (AddrModes.size() == 0)
3872       return false;
3873 
3874     // A single AddrMode can trivially be combined.
3875     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3876       return true;
3877 
3878     // If the AddrModes we collected are all just equal to the value they are
3879     // derived from then combining them wouldn't do anything useful.
3880     if (AllAddrModesTrivial)
3881       return false;
3882 
3883     if (!addrModeCombiningAllowed())
3884       return false;
3885 
3886     // Build a map between <original value, basic block where we saw it> to
3887     // value of base register.
3888     // Bail out if there is no common type.
3889     FoldAddrToValueMapping Map;
3890     if (!initializeMap(Map))
3891       return false;
3892 
3893     CommonValue = findCommon(Map);
3894     if (CommonValue)
3895       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3896     return CommonValue != nullptr;
3897   }
3898 
3899 private:
3900   /// `CommonValue` may be a placeholder inserted by us.
3901   /// If the placeholder is not used, we should remove this dead instruction.
3902   void eraseCommonValueIfDead() {
3903     if (CommonValue && CommonValue->getNumUses() == 0)
3904       if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
3905         CommonInst->eraseFromParent();
3906   }
3907 
3908   /// Initialize Map with anchor values. For address seen
3909   /// we set the value of different field saw in this address.
3910   /// At the same time we find a common type for different field we will
3911   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3912   /// Return false if there is no common type found.
3913   bool initializeMap(FoldAddrToValueMapping &Map) {
3914     // Keep track of keys where the value is null. We will need to replace it
3915     // with constant null when we know the common type.
3916     SmallVector<Value *, 2> NullValue;
3917     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3918     for (auto &AM : AddrModes) {
3919       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3920       if (DV) {
3921         auto *Type = DV->getType();
3922         if (CommonType && CommonType != Type)
3923           return false;
3924         CommonType = Type;
3925         Map[AM.OriginalValue] = DV;
3926       } else {
3927         NullValue.push_back(AM.OriginalValue);
3928       }
3929     }
3930     assert(CommonType && "At least one non-null value must be!");
3931     for (auto *V : NullValue)
3932       Map[V] = Constant::getNullValue(CommonType);
3933     return true;
3934   }
3935 
3936   /// We have mapping between value A and other value B where B was a field in
3937   /// addressing mode represented by A. Also we have an original value C
3938   /// representing an address we start with. Traversing from C through phi and
3939   /// selects we ended up with A's in a map. This utility function tries to find
3940   /// a value V which is a field in addressing mode C and traversing through phi
3941   /// nodes and selects we will end up in corresponded values B in a map.
3942   /// The utility will create a new Phi/Selects if needed.
3943   // The simple example looks as follows:
3944   // BB1:
3945   //   p1 = b1 + 40
3946   //   br cond BB2, BB3
3947   // BB2:
3948   //   p2 = b2 + 40
3949   //   br BB3
3950   // BB3:
3951   //   p = phi [p1, BB1], [p2, BB2]
3952   //   v = load p
3953   // Map is
3954   //   p1 -> b1
3955   //   p2 -> b2
3956   // Request is
3957   //   p -> ?
3958   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3959   Value *findCommon(FoldAddrToValueMapping &Map) {
3960     // Tracks the simplification of newly created phi nodes. The reason we use
3961     // this mapping is because we will add new created Phi nodes in AddrToBase.
3962     // Simplification of Phi nodes is recursive, so some Phi node may
3963     // be simplified after we added it to AddrToBase. In reality this
3964     // simplification is possible only if original phi/selects were not
3965     // simplified yet.
3966     // Using this mapping we can find the current value in AddrToBase.
3967     SimplificationTracker ST(SQ);
3968 
3969     // First step, DFS to create PHI nodes for all intermediate blocks.
3970     // Also fill traverse order for the second step.
3971     SmallVector<Value *, 32> TraverseOrder;
3972     InsertPlaceholders(Map, TraverseOrder, ST);
3973 
3974     // Second Step, fill new nodes by merged values and simplify if possible.
3975     FillPlaceholders(Map, TraverseOrder, ST);
3976 
3977     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3978       ST.destroyNewNodes(CommonType);
3979       return nullptr;
3980     }
3981 
3982     // Now we'd like to match New Phi nodes to existed ones.
3983     unsigned PhiNotMatchedCount = 0;
3984     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3985       ST.destroyNewNodes(CommonType);
3986       return nullptr;
3987     }
3988 
3989     auto *Result = ST.Get(Map.find(Original)->second);
3990     if (Result) {
3991       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3992       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3993     }
3994     return Result;
3995   }
3996 
3997   /// Try to match PHI node to Candidate.
3998   /// Matcher tracks the matched Phi nodes.
3999   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
4000                     SmallSetVector<PHIPair, 8> &Matcher,
4001                     PhiNodeSet &PhiNodesToMatch) {
4002     SmallVector<PHIPair, 8> WorkList;
4003     Matcher.insert({PHI, Candidate});
4004     SmallSet<PHINode *, 8> MatchedPHIs;
4005     MatchedPHIs.insert(PHI);
4006     WorkList.push_back({PHI, Candidate});
4007     SmallSet<PHIPair, 8> Visited;
4008     while (!WorkList.empty()) {
4009       auto Item = WorkList.pop_back_val();
4010       if (!Visited.insert(Item).second)
4011         continue;
4012       // We iterate over all incoming values to Phi to compare them.
4013       // If values are different and both of them Phi and the first one is a
4014       // Phi we added (subject to match) and both of them is in the same basic
4015       // block then we can match our pair if values match. So we state that
4016       // these values match and add it to work list to verify that.
4017       for (auto *B : Item.first->blocks()) {
4018         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
4019         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
4020         if (FirstValue == SecondValue)
4021           continue;
4022 
4023         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
4024         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
4025 
4026         // One of them is not Phi or
4027         // The first one is not Phi node from the set we'd like to match or
4028         // Phi nodes from different basic blocks then
4029         // we will not be able to match.
4030         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
4031             FirstPhi->getParent() != SecondPhi->getParent())
4032           return false;
4033 
4034         // If we already matched them then continue.
4035         if (Matcher.count({FirstPhi, SecondPhi}))
4036           continue;
4037         // So the values are different and does not match. So we need them to
4038         // match. (But we register no more than one match per PHI node, so that
4039         // we won't later try to replace them twice.)
4040         if (MatchedPHIs.insert(FirstPhi).second)
4041           Matcher.insert({FirstPhi, SecondPhi});
4042         // But me must check it.
4043         WorkList.push_back({FirstPhi, SecondPhi});
4044       }
4045     }
4046     return true;
4047   }
4048 
4049   /// For the given set of PHI nodes (in the SimplificationTracker) try
4050   /// to find their equivalents.
4051   /// Returns false if this matching fails and creation of new Phi is disabled.
4052   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
4053                    unsigned &PhiNotMatchedCount) {
4054     // Matched and PhiNodesToMatch iterate their elements in a deterministic
4055     // order, so the replacements (ReplacePhi) are also done in a deterministic
4056     // order.
4057     SmallSetVector<PHIPair, 8> Matched;
4058     SmallPtrSet<PHINode *, 8> WillNotMatch;
4059     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
4060     while (PhiNodesToMatch.size()) {
4061       PHINode *PHI = *PhiNodesToMatch.begin();
4062 
4063       // Add us, if no Phi nodes in the basic block we do not match.
4064       WillNotMatch.clear();
4065       WillNotMatch.insert(PHI);
4066 
4067       // Traverse all Phis until we found equivalent or fail to do that.
4068       bool IsMatched = false;
4069       for (auto &P : PHI->getParent()->phis()) {
4070         // Skip new Phi nodes.
4071         if (PhiNodesToMatch.count(&P))
4072           continue;
4073         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
4074           break;
4075         // If it does not match, collect all Phi nodes from matcher.
4076         // if we end up with no match, them all these Phi nodes will not match
4077         // later.
4078         for (auto M : Matched)
4079           WillNotMatch.insert(M.first);
4080         Matched.clear();
4081       }
4082       if (IsMatched) {
4083         // Replace all matched values and erase them.
4084         for (auto MV : Matched)
4085           ST.ReplacePhi(MV.first, MV.second);
4086         Matched.clear();
4087         continue;
4088       }
4089       // If we are not allowed to create new nodes then bail out.
4090       if (!AllowNewPhiNodes)
4091         return false;
4092       // Just remove all seen values in matcher. They will not match anything.
4093       PhiNotMatchedCount += WillNotMatch.size();
4094       for (auto *P : WillNotMatch)
4095         PhiNodesToMatch.erase(P);
4096     }
4097     return true;
4098   }
4099   /// Fill the placeholders with values from predecessors and simplify them.
4100   void FillPlaceholders(FoldAddrToValueMapping &Map,
4101                         SmallVectorImpl<Value *> &TraverseOrder,
4102                         SimplificationTracker &ST) {
4103     while (!TraverseOrder.empty()) {
4104       Value *Current = TraverseOrder.pop_back_val();
4105       assert(Map.contains(Current) && "No node to fill!!!");
4106       Value *V = Map[Current];
4107 
4108       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
4109         // CurrentValue also must be Select.
4110         auto *CurrentSelect = cast<SelectInst>(Current);
4111         auto *TrueValue = CurrentSelect->getTrueValue();
4112         assert(Map.contains(TrueValue) && "No True Value!");
4113         Select->setTrueValue(ST.Get(Map[TrueValue]));
4114         auto *FalseValue = CurrentSelect->getFalseValue();
4115         assert(Map.contains(FalseValue) && "No False Value!");
4116         Select->setFalseValue(ST.Get(Map[FalseValue]));
4117       } else {
4118         // Must be a Phi node then.
4119         auto *PHI = cast<PHINode>(V);
4120         // Fill the Phi node with values from predecessors.
4121         for (auto *B : predecessors(PHI->getParent())) {
4122           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
4123           assert(Map.contains(PV) && "No predecessor Value!");
4124           PHI->addIncoming(ST.Get(Map[PV]), B);
4125         }
4126       }
4127       Map[Current] = ST.Simplify(V);
4128     }
4129   }
4130 
4131   /// Starting from original value recursively iterates over def-use chain up to
4132   /// known ending values represented in a map. For each traversed phi/select
4133   /// inserts a placeholder Phi or Select.
4134   /// Reports all new created Phi/Select nodes by adding them to set.
4135   /// Also reports and order in what values have been traversed.
4136   void InsertPlaceholders(FoldAddrToValueMapping &Map,
4137                           SmallVectorImpl<Value *> &TraverseOrder,
4138                           SimplificationTracker &ST) {
4139     SmallVector<Value *, 32> Worklist;
4140     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
4141            "Address must be a Phi or Select node");
4142     auto *Dummy = PoisonValue::get(CommonType);
4143     Worklist.push_back(Original);
4144     while (!Worklist.empty()) {
4145       Value *Current = Worklist.pop_back_val();
4146       // if it is already visited or it is an ending value then skip it.
4147       if (Map.contains(Current))
4148         continue;
4149       TraverseOrder.push_back(Current);
4150 
4151       // CurrentValue must be a Phi node or select. All others must be covered
4152       // by anchors.
4153       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
4154         // Is it OK to get metadata from OrigSelect?!
4155         // Create a Select placeholder with dummy value.
4156         SelectInst *Select =
4157             SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy,
4158                                CurrentSelect->getName(),
4159                                CurrentSelect->getIterator(), CurrentSelect);
4160         Map[Current] = Select;
4161         ST.insertNewSelect(Select);
4162         // We are interested in True and False values.
4163         Worklist.push_back(CurrentSelect->getTrueValue());
4164         Worklist.push_back(CurrentSelect->getFalseValue());
4165       } else {
4166         // It must be a Phi node then.
4167         PHINode *CurrentPhi = cast<PHINode>(Current);
4168         unsigned PredCount = CurrentPhi->getNumIncomingValues();
4169         PHINode *PHI =
4170             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator());
4171         Map[Current] = PHI;
4172         ST.insertNewPhi(PHI);
4173         append_range(Worklist, CurrentPhi->incoming_values());
4174       }
4175     }
4176   }
4177 
4178   bool addrModeCombiningAllowed() {
4179     if (DisableComplexAddrModes)
4180       return false;
4181     switch (DifferentField) {
4182     default:
4183       return false;
4184     case ExtAddrMode::BaseRegField:
4185       return AddrSinkCombineBaseReg;
4186     case ExtAddrMode::BaseGVField:
4187       return AddrSinkCombineBaseGV;
4188     case ExtAddrMode::BaseOffsField:
4189       return AddrSinkCombineBaseOffs;
4190     case ExtAddrMode::ScaledRegField:
4191       return AddrSinkCombineScaledReg;
4192     }
4193   }
4194 };
4195 } // end anonymous namespace
4196 
4197 /// Try adding ScaleReg*Scale to the current addressing mode.
4198 /// Return true and update AddrMode if this addr mode is legal for the target,
4199 /// false if not.
4200 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4201                                              unsigned Depth) {
4202   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4203   // mode.  Just process that directly.
4204   if (Scale == 1)
4205     return matchAddr(ScaleReg, Depth);
4206 
4207   // If the scale is 0, it takes nothing to add this.
4208   if (Scale == 0)
4209     return true;
4210 
4211   // If we already have a scale of this value, we can add to it, otherwise, we
4212   // need an available scale field.
4213   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4214     return false;
4215 
4216   ExtAddrMode TestAddrMode = AddrMode;
4217 
4218   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
4219   // [A+B + A*7] -> [B+A*8].
4220   TestAddrMode.Scale += Scale;
4221   TestAddrMode.ScaledReg = ScaleReg;
4222 
4223   // If the new address isn't legal, bail out.
4224   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4225     return false;
4226 
4227   // It was legal, so commit it.
4228   AddrMode = TestAddrMode;
4229 
4230   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
4231   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
4232   // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4233   // go any further: we can reuse it and cannot eliminate it.
4234   ConstantInt *CI = nullptr;
4235   Value *AddLHS = nullptr;
4236   if (isa<Instruction>(ScaleReg) && // not a constant expr.
4237       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4238       !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4239     TestAddrMode.InBounds = false;
4240     TestAddrMode.ScaledReg = AddLHS;
4241     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4242 
4243     // If this addressing mode is legal, commit it and remember that we folded
4244     // this instruction.
4245     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4246       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4247       AddrMode = TestAddrMode;
4248       return true;
4249     }
4250     // Restore status quo.
4251     TestAddrMode = AddrMode;
4252   }
4253 
4254   // If this is an add recurrence with a constant step, return the increment
4255   // instruction and the canonicalized step.
4256   auto GetConstantStep =
4257       [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4258     auto *PN = dyn_cast<PHINode>(V);
4259     if (!PN)
4260       return std::nullopt;
4261     auto IVInc = getIVIncrement(PN, &LI);
4262     if (!IVInc)
4263       return std::nullopt;
4264     // TODO: The result of the intrinsics above is two-complement. However when
4265     // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4266     // If it has nuw or nsw flags, we need to make sure that these flags are
4267     // inferrable at the point of memory instruction. Otherwise we are replacing
4268     // well-defined two-complement computation with poison. Currently, to avoid
4269     // potentially complex analysis needed to prove this, we reject such cases.
4270     if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4271       if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4272         return std::nullopt;
4273     if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4274       return std::make_pair(IVInc->first, ConstantStep->getValue());
4275     return std::nullopt;
4276   };
4277 
4278   // Try to account for the following special case:
4279   // 1. ScaleReg is an inductive variable;
4280   // 2. We use it with non-zero offset;
4281   // 3. IV's increment is available at the point of memory instruction.
4282   //
4283   // In this case, we may reuse the IV increment instead of the IV Phi to
4284   // achieve the following advantages:
4285   // 1. If IV step matches the offset, we will have no need in the offset;
4286   // 2. Even if they don't match, we will reduce the overlap of living IV
4287   //    and IV increment, that will potentially lead to better register
4288   //    assignment.
4289   if (AddrMode.BaseOffs) {
4290     if (auto IVStep = GetConstantStep(ScaleReg)) {
4291       Instruction *IVInc = IVStep->first;
4292       // The following assert is important to ensure a lack of infinite loops.
4293       // This transforms is (intentionally) the inverse of the one just above.
4294       // If they don't agree on the definition of an increment, we'd alternate
4295       // back and forth indefinitely.
4296       assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4297       APInt Step = IVStep->second;
4298       APInt Offset = Step * AddrMode.Scale;
4299       if (Offset.isSignedIntN(64)) {
4300         TestAddrMode.InBounds = false;
4301         TestAddrMode.ScaledReg = IVInc;
4302         TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4303         // If this addressing mode is legal, commit it..
4304         // (Note that we defer the (expensive) domtree base legality check
4305         // to the very last possible point.)
4306         if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4307             getDTFn().dominates(IVInc, MemoryInst)) {
4308           AddrModeInsts.push_back(cast<Instruction>(IVInc));
4309           AddrMode = TestAddrMode;
4310           return true;
4311         }
4312         // Restore status quo.
4313         TestAddrMode = AddrMode;
4314       }
4315     }
4316   }
4317 
4318   // Otherwise, just return what we have.
4319   return true;
4320 }
4321 
4322 /// This is a little filter, which returns true if an addressing computation
4323 /// involving I might be folded into a load/store accessing it.
4324 /// This doesn't need to be perfect, but needs to accept at least
4325 /// the set of instructions that MatchOperationAddr can.
4326 static bool MightBeFoldableInst(Instruction *I) {
4327   switch (I->getOpcode()) {
4328   case Instruction::BitCast:
4329   case Instruction::AddrSpaceCast:
4330     // Don't touch identity bitcasts.
4331     if (I->getType() == I->getOperand(0)->getType())
4332       return false;
4333     return I->getType()->isIntOrPtrTy();
4334   case Instruction::PtrToInt:
4335     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4336     return true;
4337   case Instruction::IntToPtr:
4338     // We know the input is intptr_t, so this is foldable.
4339     return true;
4340   case Instruction::Add:
4341     return true;
4342   case Instruction::Mul:
4343   case Instruction::Shl:
4344     // Can only handle X*C and X << C.
4345     return isa<ConstantInt>(I->getOperand(1));
4346   case Instruction::GetElementPtr:
4347     return true;
4348   default:
4349     return false;
4350   }
4351 }
4352 
4353 /// Check whether or not \p Val is a legal instruction for \p TLI.
4354 /// \note \p Val is assumed to be the product of some type promotion.
4355 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4356 /// to be legal, as the non-promoted value would have had the same state.
4357 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4358                                        const DataLayout &DL, Value *Val) {
4359   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4360   if (!PromotedInst)
4361     return false;
4362   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4363   // If the ISDOpcode is undefined, it was undefined before the promotion.
4364   if (!ISDOpcode)
4365     return true;
4366   // Otherwise, check if the promoted instruction is legal or not.
4367   return TLI.isOperationLegalOrCustom(
4368       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4369 }
4370 
4371 namespace {
4372 
4373 /// Hepler class to perform type promotion.
4374 class TypePromotionHelper {
4375   /// Utility function to add a promoted instruction \p ExtOpnd to
4376   /// \p PromotedInsts and record the type of extension we have seen.
4377   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4378                               Instruction *ExtOpnd, bool IsSExt) {
4379     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4380     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4381     if (It != PromotedInsts.end()) {
4382       // If the new extension is same as original, the information in
4383       // PromotedInsts[ExtOpnd] is still correct.
4384       if (It->second.getInt() == ExtTy)
4385         return;
4386 
4387       // Now the new extension is different from old extension, we make
4388       // the type information invalid by setting extension type to
4389       // BothExtension.
4390       ExtTy = BothExtension;
4391     }
4392     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4393   }
4394 
4395   /// Utility function to query the original type of instruction \p Opnd
4396   /// with a matched extension type. If the extension doesn't match, we
4397   /// cannot use the information we had on the original type.
4398   /// BothExtension doesn't match any extension type.
4399   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4400                                  Instruction *Opnd, bool IsSExt) {
4401     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4402     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4403     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4404       return It->second.getPointer();
4405     return nullptr;
4406   }
4407 
4408   /// Utility function to check whether or not a sign or zero extension
4409   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4410   /// either using the operands of \p Inst or promoting \p Inst.
4411   /// The type of the extension is defined by \p IsSExt.
4412   /// In other words, check if:
4413   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4414   /// #1 Promotion applies:
4415   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4416   /// #2 Operand reuses:
4417   /// ext opnd1 to ConsideredExtType.
4418   /// \p PromotedInsts maps the instructions to their type before promotion.
4419   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4420                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
4421 
4422   /// Utility function to determine if \p OpIdx should be promoted when
4423   /// promoting \p Inst.
4424   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4425     return !(isa<SelectInst>(Inst) && OpIdx == 0);
4426   }
4427 
4428   /// Utility function to promote the operand of \p Ext when this
4429   /// operand is a promotable trunc or sext or zext.
4430   /// \p PromotedInsts maps the instructions to their type before promotion.
4431   /// \p CreatedInstsCost[out] contains the cost of all instructions
4432   /// created to promote the operand of Ext.
4433   /// Newly added extensions are inserted in \p Exts.
4434   /// Newly added truncates are inserted in \p Truncs.
4435   /// Should never be called directly.
4436   /// \return The promoted value which is used instead of Ext.
4437   static Value *promoteOperandForTruncAndAnyExt(
4438       Instruction *Ext, TypePromotionTransaction &TPT,
4439       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4440       SmallVectorImpl<Instruction *> *Exts,
4441       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4442 
4443   /// Utility function to promote the operand of \p Ext when this
4444   /// operand is promotable and is not a supported trunc or sext.
4445   /// \p PromotedInsts maps the instructions to their type before promotion.
4446   /// \p CreatedInstsCost[out] contains the cost of all the instructions
4447   /// created to promote the operand of Ext.
4448   /// Newly added extensions are inserted in \p Exts.
4449   /// Newly added truncates are inserted in \p Truncs.
4450   /// Should never be called directly.
4451   /// \return The promoted value which is used instead of Ext.
4452   static Value *promoteOperandForOther(Instruction *Ext,
4453                                        TypePromotionTransaction &TPT,
4454                                        InstrToOrigTy &PromotedInsts,
4455                                        unsigned &CreatedInstsCost,
4456                                        SmallVectorImpl<Instruction *> *Exts,
4457                                        SmallVectorImpl<Instruction *> *Truncs,
4458                                        const TargetLowering &TLI, bool IsSExt);
4459 
4460   /// \see promoteOperandForOther.
4461   static Value *signExtendOperandForOther(
4462       Instruction *Ext, TypePromotionTransaction &TPT,
4463       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4464       SmallVectorImpl<Instruction *> *Exts,
4465       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4466     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4467                                   Exts, Truncs, TLI, true);
4468   }
4469 
4470   /// \see promoteOperandForOther.
4471   static Value *zeroExtendOperandForOther(
4472       Instruction *Ext, TypePromotionTransaction &TPT,
4473       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4474       SmallVectorImpl<Instruction *> *Exts,
4475       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4476     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4477                                   Exts, Truncs, TLI, false);
4478   }
4479 
4480 public:
4481   /// Type for the utility function that promotes the operand of Ext.
4482   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4483                             InstrToOrigTy &PromotedInsts,
4484                             unsigned &CreatedInstsCost,
4485                             SmallVectorImpl<Instruction *> *Exts,
4486                             SmallVectorImpl<Instruction *> *Truncs,
4487                             const TargetLowering &TLI);
4488 
4489   /// Given a sign/zero extend instruction \p Ext, return the appropriate
4490   /// action to promote the operand of \p Ext instead of using Ext.
4491   /// \return NULL if no promotable action is possible with the current
4492   /// sign extension.
4493   /// \p InsertedInsts keeps track of all the instructions inserted by the
4494   /// other CodeGenPrepare optimizations. This information is important
4495   /// because we do not want to promote these instructions as CodeGenPrepare
4496   /// will reinsert them later. Thus creating an infinite loop: create/remove.
4497   /// \p PromotedInsts maps the instructions to their type before promotion.
4498   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4499                           const TargetLowering &TLI,
4500                           const InstrToOrigTy &PromotedInsts);
4501 };
4502 
4503 } // end anonymous namespace
4504 
4505 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4506                                         Type *ConsideredExtType,
4507                                         const InstrToOrigTy &PromotedInsts,
4508                                         bool IsSExt) {
4509   // The promotion helper does not know how to deal with vector types yet.
4510   // To be able to fix that, we would need to fix the places where we
4511   // statically extend, e.g., constants and such.
4512   if (Inst->getType()->isVectorTy())
4513     return false;
4514 
4515   // We can always get through zext.
4516   if (isa<ZExtInst>(Inst))
4517     return true;
4518 
4519   // sext(sext) is ok too.
4520   if (IsSExt && isa<SExtInst>(Inst))
4521     return true;
4522 
4523   // We can get through binary operator, if it is legal. In other words, the
4524   // binary operator must have a nuw or nsw flag.
4525   if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4526     if (isa<OverflowingBinaryOperator>(BinOp) &&
4527         ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4528          (IsSExt && BinOp->hasNoSignedWrap())))
4529       return true;
4530 
4531   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4532   if ((Inst->getOpcode() == Instruction::And ||
4533        Inst->getOpcode() == Instruction::Or))
4534     return true;
4535 
4536   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4537   if (Inst->getOpcode() == Instruction::Xor) {
4538     // Make sure it is not a NOT.
4539     if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4540       if (!Cst->getValue().isAllOnes())
4541         return true;
4542   }
4543 
4544   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4545   // It may change a poisoned value into a regular value, like
4546   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4547   //          poisoned value                    regular value
4548   // It should be OK since undef covers valid value.
4549   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4550     return true;
4551 
4552   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4553   // It may change a poisoned value into a regular value, like
4554   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4555   //          poisoned value                    regular value
4556   // It should be OK since undef covers valid value.
4557   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4558     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4559     if (ExtInst->hasOneUse()) {
4560       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4561       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4562         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4563         if (Cst &&
4564             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4565           return true;
4566       }
4567     }
4568   }
4569 
4570   // Check if we can do the following simplification.
4571   // ext(trunc(opnd)) --> ext(opnd)
4572   if (!isa<TruncInst>(Inst))
4573     return false;
4574 
4575   Value *OpndVal = Inst->getOperand(0);
4576   // Check if we can use this operand in the extension.
4577   // If the type is larger than the result type of the extension, we cannot.
4578   if (!OpndVal->getType()->isIntegerTy() ||
4579       OpndVal->getType()->getIntegerBitWidth() >
4580           ConsideredExtType->getIntegerBitWidth())
4581     return false;
4582 
4583   // If the operand of the truncate is not an instruction, we will not have
4584   // any information on the dropped bits.
4585   // (Actually we could for constant but it is not worth the extra logic).
4586   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4587   if (!Opnd)
4588     return false;
4589 
4590   // Check if the source of the type is narrow enough.
4591   // I.e., check that trunc just drops extended bits of the same kind of
4592   // the extension.
4593   // #1 get the type of the operand and check the kind of the extended bits.
4594   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4595   if (OpndType)
4596     ;
4597   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4598     OpndType = Opnd->getOperand(0)->getType();
4599   else
4600     return false;
4601 
4602   // #2 check that the truncate just drops extended bits.
4603   return Inst->getType()->getIntegerBitWidth() >=
4604          OpndType->getIntegerBitWidth();
4605 }
4606 
4607 TypePromotionHelper::Action TypePromotionHelper::getAction(
4608     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4609     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4610   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4611          "Unexpected instruction type");
4612   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4613   Type *ExtTy = Ext->getType();
4614   bool IsSExt = isa<SExtInst>(Ext);
4615   // If the operand of the extension is not an instruction, we cannot
4616   // get through.
4617   // If it, check we can get through.
4618   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4619     return nullptr;
4620 
4621   // Do not promote if the operand has been added by codegenprepare.
4622   // Otherwise, it means we are undoing an optimization that is likely to be
4623   // redone, thus causing potential infinite loop.
4624   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4625     return nullptr;
4626 
4627   // SExt or Trunc instructions.
4628   // Return the related handler.
4629   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4630       isa<ZExtInst>(ExtOpnd))
4631     return promoteOperandForTruncAndAnyExt;
4632 
4633   // Regular instruction.
4634   // Abort early if we will have to insert non-free instructions.
4635   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4636     return nullptr;
4637   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4638 }
4639 
4640 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4641     Instruction *SExt, TypePromotionTransaction &TPT,
4642     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4643     SmallVectorImpl<Instruction *> *Exts,
4644     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4645   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4646   // get through it and this method should not be called.
4647   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4648   Value *ExtVal = SExt;
4649   bool HasMergedNonFreeExt = false;
4650   if (isa<ZExtInst>(SExtOpnd)) {
4651     // Replace s|zext(zext(opnd))
4652     // => zext(opnd).
4653     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4654     Value *ZExt =
4655         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4656     TPT.replaceAllUsesWith(SExt, ZExt);
4657     TPT.eraseInstruction(SExt);
4658     ExtVal = ZExt;
4659   } else {
4660     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4661     // => z|sext(opnd).
4662     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4663   }
4664   CreatedInstsCost = 0;
4665 
4666   // Remove dead code.
4667   if (SExtOpnd->use_empty())
4668     TPT.eraseInstruction(SExtOpnd);
4669 
4670   // Check if the extension is still needed.
4671   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4672   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4673     if (ExtInst) {
4674       if (Exts)
4675         Exts->push_back(ExtInst);
4676       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4677     }
4678     return ExtVal;
4679   }
4680 
4681   // At this point we have: ext ty opnd to ty.
4682   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4683   Value *NextVal = ExtInst->getOperand(0);
4684   TPT.eraseInstruction(ExtInst, NextVal);
4685   return NextVal;
4686 }
4687 
4688 Value *TypePromotionHelper::promoteOperandForOther(
4689     Instruction *Ext, TypePromotionTransaction &TPT,
4690     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4691     SmallVectorImpl<Instruction *> *Exts,
4692     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4693     bool IsSExt) {
4694   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4695   // get through it and this method should not be called.
4696   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4697   CreatedInstsCost = 0;
4698   if (!ExtOpnd->hasOneUse()) {
4699     // ExtOpnd will be promoted.
4700     // All its uses, but Ext, will need to use a truncated value of the
4701     // promoted version.
4702     // Create the truncate now.
4703     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4704     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4705       // Insert it just after the definition.
4706       ITrunc->moveAfter(ExtOpnd);
4707       if (Truncs)
4708         Truncs->push_back(ITrunc);
4709     }
4710 
4711     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4712     // Restore the operand of Ext (which has been replaced by the previous call
4713     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4714     TPT.setOperand(Ext, 0, ExtOpnd);
4715   }
4716 
4717   // Get through the Instruction:
4718   // 1. Update its type.
4719   // 2. Replace the uses of Ext by Inst.
4720   // 3. Extend each operand that needs to be extended.
4721 
4722   // Remember the original type of the instruction before promotion.
4723   // This is useful to know that the high bits are sign extended bits.
4724   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4725   // Step #1.
4726   TPT.mutateType(ExtOpnd, Ext->getType());
4727   // Step #2.
4728   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4729   // Step #3.
4730   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4731   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4732        ++OpIdx) {
4733     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4734     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4735         !shouldExtOperand(ExtOpnd, OpIdx)) {
4736       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4737       continue;
4738     }
4739     // Check if we can statically extend the operand.
4740     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4741     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4742       LLVM_DEBUG(dbgs() << "Statically extend\n");
4743       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4744       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4745                             : Cst->getValue().zext(BitWidth);
4746       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4747       continue;
4748     }
4749     // UndefValue are typed, so we have to statically sign extend them.
4750     if (isa<UndefValue>(Opnd)) {
4751       LLVM_DEBUG(dbgs() << "Statically extend\n");
4752       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4753       continue;
4754     }
4755 
4756     // Otherwise we have to explicitly sign extend the operand.
4757     Value *ValForExtOpnd = IsSExt
4758                                ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType())
4759                                : TPT.createZExt(ExtOpnd, Opnd, Ext->getType());
4760     TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4761     Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd);
4762     if (!InstForExtOpnd)
4763       continue;
4764 
4765     if (Exts)
4766       Exts->push_back(InstForExtOpnd);
4767 
4768     CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd);
4769   }
4770   LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4771   TPT.eraseInstruction(Ext);
4772   return ExtOpnd;
4773 }
4774 
4775 /// Check whether or not promoting an instruction to a wider type is profitable.
4776 /// \p NewCost gives the cost of extension instructions created by the
4777 /// promotion.
4778 /// \p OldCost gives the cost of extension instructions before the promotion
4779 /// plus the number of instructions that have been
4780 /// matched in the addressing mode the promotion.
4781 /// \p PromotedOperand is the value that has been promoted.
4782 /// \return True if the promotion is profitable, false otherwise.
4783 bool AddressingModeMatcher::isPromotionProfitable(
4784     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4785   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4786                     << '\n');
4787   // The cost of the new extensions is greater than the cost of the
4788   // old extension plus what we folded.
4789   // This is not profitable.
4790   if (NewCost > OldCost)
4791     return false;
4792   if (NewCost < OldCost)
4793     return true;
4794   // The promotion is neutral but it may help folding the sign extension in
4795   // loads for instance.
4796   // Check that we did not create an illegal instruction.
4797   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4798 }
4799 
4800 /// Given an instruction or constant expr, see if we can fold the operation
4801 /// into the addressing mode. If so, update the addressing mode and return
4802 /// true, otherwise return false without modifying AddrMode.
4803 /// If \p MovedAway is not NULL, it contains the information of whether or
4804 /// not AddrInst has to be folded into the addressing mode on success.
4805 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4806 /// because it has been moved away.
4807 /// Thus AddrInst must not be added in the matched instructions.
4808 /// This state can happen when AddrInst is a sext, since it may be moved away.
4809 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4810 /// not be referenced anymore.
4811 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4812                                                unsigned Depth,
4813                                                bool *MovedAway) {
4814   // Avoid exponential behavior on extremely deep expression trees.
4815   if (Depth >= 5)
4816     return false;
4817 
4818   // By default, all matched instructions stay in place.
4819   if (MovedAway)
4820     *MovedAway = false;
4821 
4822   switch (Opcode) {
4823   case Instruction::PtrToInt:
4824     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4825     return matchAddr(AddrInst->getOperand(0), Depth);
4826   case Instruction::IntToPtr: {
4827     auto AS = AddrInst->getType()->getPointerAddressSpace();
4828     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4829     // This inttoptr is a no-op if the integer type is pointer sized.
4830     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4831       return matchAddr(AddrInst->getOperand(0), Depth);
4832     return false;
4833   }
4834   case Instruction::BitCast:
4835     // BitCast is always a noop, and we can handle it as long as it is
4836     // int->int or pointer->pointer (we don't want int<->fp or something).
4837     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4838         // Don't touch identity bitcasts.  These were probably put here by LSR,
4839         // and we don't want to mess around with them.  Assume it knows what it
4840         // is doing.
4841         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4842       return matchAddr(AddrInst->getOperand(0), Depth);
4843     return false;
4844   case Instruction::AddrSpaceCast: {
4845     unsigned SrcAS =
4846         AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4847     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4848     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4849       return matchAddr(AddrInst->getOperand(0), Depth);
4850     return false;
4851   }
4852   case Instruction::Add: {
4853     // Check to see if we can merge in one operand, then the other.  If so, we
4854     // win.
4855     ExtAddrMode BackupAddrMode = AddrMode;
4856     unsigned OldSize = AddrModeInsts.size();
4857     // Start a transaction at this point.
4858     // The LHS may match but not the RHS.
4859     // Therefore, we need a higher level restoration point to undo partially
4860     // matched operation.
4861     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4862         TPT.getRestorationPoint();
4863 
4864     // Try to match an integer constant second to increase its chance of ending
4865     // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4866     int First = 0, Second = 1;
4867     if (isa<ConstantInt>(AddrInst->getOperand(First))
4868       && !isa<ConstantInt>(AddrInst->getOperand(Second)))
4869         std::swap(First, Second);
4870     AddrMode.InBounds = false;
4871     if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
4872         matchAddr(AddrInst->getOperand(Second), Depth + 1))
4873       return true;
4874 
4875     // Restore the old addr mode info.
4876     AddrMode = BackupAddrMode;
4877     AddrModeInsts.resize(OldSize);
4878     TPT.rollback(LastKnownGood);
4879 
4880     // Otherwise this was over-aggressive.  Try merging operands in the opposite
4881     // order.
4882     if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
4883         matchAddr(AddrInst->getOperand(First), Depth + 1))
4884       return true;
4885 
4886     // Otherwise we definitely can't merge the ADD in.
4887     AddrMode = BackupAddrMode;
4888     AddrModeInsts.resize(OldSize);
4889     TPT.rollback(LastKnownGood);
4890     break;
4891   }
4892   // case Instruction::Or:
4893   //  TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4894   // break;
4895   case Instruction::Mul:
4896   case Instruction::Shl: {
4897     // Can only handle X*C and X << C.
4898     AddrMode.InBounds = false;
4899     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4900     if (!RHS || RHS->getBitWidth() > 64)
4901       return false;
4902     int64_t Scale = Opcode == Instruction::Shl
4903                         ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
4904                         : RHS->getSExtValue();
4905 
4906     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4907   }
4908   case Instruction::GetElementPtr: {
4909     // Scan the GEP.  We check it if it contains constant offsets and at most
4910     // one variable offset.
4911     int VariableOperand = -1;
4912     unsigned VariableScale = 0;
4913 
4914     int64_t ConstantOffset = 0;
4915     gep_type_iterator GTI = gep_type_begin(AddrInst);
4916     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4917       if (StructType *STy = GTI.getStructTypeOrNull()) {
4918         const StructLayout *SL = DL.getStructLayout(STy);
4919         unsigned Idx =
4920             cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4921         ConstantOffset += SL->getElementOffset(Idx);
4922       } else {
4923         TypeSize TS = GTI.getSequentialElementStride(DL);
4924         if (TS.isNonZero()) {
4925           // The optimisations below currently only work for fixed offsets.
4926           if (TS.isScalable())
4927             return false;
4928           int64_t TypeSize = TS.getFixedValue();
4929           if (ConstantInt *CI =
4930                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4931             const APInt &CVal = CI->getValue();
4932             if (CVal.getSignificantBits() <= 64) {
4933               ConstantOffset += CVal.getSExtValue() * TypeSize;
4934               continue;
4935             }
4936           }
4937           // We only allow one variable index at the moment.
4938           if (VariableOperand != -1)
4939             return false;
4940 
4941           // Remember the variable index.
4942           VariableOperand = i;
4943           VariableScale = TypeSize;
4944         }
4945       }
4946     }
4947 
4948     // A common case is for the GEP to only do a constant offset.  In this case,
4949     // just add it to the disp field and check validity.
4950     if (VariableOperand == -1) {
4951       AddrMode.BaseOffs += ConstantOffset;
4952       if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4953           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4954             AddrMode.InBounds = false;
4955           return true;
4956       }
4957       AddrMode.BaseOffs -= ConstantOffset;
4958 
4959       if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4960           TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4961           ConstantOffset > 0) {
4962           // Record GEPs with non-zero offsets as candidates for splitting in
4963           // the event that the offset cannot fit into the r+i addressing mode.
4964           // Simple and common case that only one GEP is used in calculating the
4965           // address for the memory access.
4966           Value *Base = AddrInst->getOperand(0);
4967           auto *BaseI = dyn_cast<Instruction>(Base);
4968           auto *GEP = cast<GetElementPtrInst>(AddrInst);
4969           if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4970               (BaseI && !isa<CastInst>(BaseI) &&
4971                !isa<GetElementPtrInst>(BaseI))) {
4972             // Make sure the parent block allows inserting non-PHI instructions
4973             // before the terminator.
4974             BasicBlock *Parent = BaseI ? BaseI->getParent()
4975                                        : &GEP->getFunction()->getEntryBlock();
4976             if (!Parent->getTerminator()->isEHPad())
4977             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4978           }
4979       }
4980 
4981       return false;
4982     }
4983 
4984     // Save the valid addressing mode in case we can't match.
4985     ExtAddrMode BackupAddrMode = AddrMode;
4986     unsigned OldSize = AddrModeInsts.size();
4987 
4988     // See if the scale and offset amount is valid for this target.
4989     AddrMode.BaseOffs += ConstantOffset;
4990     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4991       AddrMode.InBounds = false;
4992 
4993     // Match the base operand of the GEP.
4994     if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4995       // If it couldn't be matched, just stuff the value in a register.
4996       if (AddrMode.HasBaseReg) {
4997         AddrMode = BackupAddrMode;
4998         AddrModeInsts.resize(OldSize);
4999         return false;
5000       }
5001       AddrMode.HasBaseReg = true;
5002       AddrMode.BaseReg = AddrInst->getOperand(0);
5003     }
5004 
5005     // Match the remaining variable portion of the GEP.
5006     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
5007                           Depth)) {
5008       // If it couldn't be matched, try stuffing the base into a register
5009       // instead of matching it, and retrying the match of the scale.
5010       AddrMode = BackupAddrMode;
5011       AddrModeInsts.resize(OldSize);
5012       if (AddrMode.HasBaseReg)
5013         return false;
5014       AddrMode.HasBaseReg = true;
5015       AddrMode.BaseReg = AddrInst->getOperand(0);
5016       AddrMode.BaseOffs += ConstantOffset;
5017       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
5018                             VariableScale, Depth)) {
5019         // If even that didn't work, bail.
5020         AddrMode = BackupAddrMode;
5021         AddrModeInsts.resize(OldSize);
5022         return false;
5023       }
5024     }
5025 
5026     return true;
5027   }
5028   case Instruction::SExt:
5029   case Instruction::ZExt: {
5030     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
5031     if (!Ext)
5032       return false;
5033 
5034     // Try to move this ext out of the way of the addressing mode.
5035     // Ask for a method for doing so.
5036     TypePromotionHelper::Action TPH =
5037         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
5038     if (!TPH)
5039       return false;
5040 
5041     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5042         TPT.getRestorationPoint();
5043     unsigned CreatedInstsCost = 0;
5044     unsigned ExtCost = !TLI.isExtFree(Ext);
5045     Value *PromotedOperand =
5046         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
5047     // SExt has been moved away.
5048     // Thus either it will be rematched later in the recursive calls or it is
5049     // gone. Anyway, we must not fold it into the addressing mode at this point.
5050     // E.g.,
5051     // op = add opnd, 1
5052     // idx = ext op
5053     // addr = gep base, idx
5054     // is now:
5055     // promotedOpnd = ext opnd            <- no match here
5056     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
5057     // addr = gep base, op                <- match
5058     if (MovedAway)
5059       *MovedAway = true;
5060 
5061     assert(PromotedOperand &&
5062            "TypePromotionHelper should have filtered out those cases");
5063 
5064     ExtAddrMode BackupAddrMode = AddrMode;
5065     unsigned OldSize = AddrModeInsts.size();
5066 
5067     if (!matchAddr(PromotedOperand, Depth) ||
5068         // The total of the new cost is equal to the cost of the created
5069         // instructions.
5070         // The total of the old cost is equal to the cost of the extension plus
5071         // what we have saved in the addressing mode.
5072         !isPromotionProfitable(CreatedInstsCost,
5073                                ExtCost + (AddrModeInsts.size() - OldSize),
5074                                PromotedOperand)) {
5075       AddrMode = BackupAddrMode;
5076       AddrModeInsts.resize(OldSize);
5077       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
5078       TPT.rollback(LastKnownGood);
5079       return false;
5080     }
5081     return true;
5082   }
5083   case Instruction::Call:
5084     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) {
5085       if (II->getIntrinsicID() == Intrinsic::threadlocal_address) {
5086         GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0));
5087         if (TLI.addressingModeSupportsTLS(GV))
5088           return matchAddr(AddrInst->getOperand(0), Depth);
5089       }
5090     }
5091     break;
5092   }
5093   return false;
5094 }
5095 
5096 /// If we can, try to add the value of 'Addr' into the current addressing mode.
5097 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
5098 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
5099 /// for the target.
5100 ///
5101 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
5102   // Start a transaction at this point that we will rollback if the matching
5103   // fails.
5104   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5105       TPT.getRestorationPoint();
5106   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
5107     if (CI->getValue().isSignedIntN(64)) {
5108       // Fold in immediates if legal for the target.
5109       AddrMode.BaseOffs += CI->getSExtValue();
5110       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5111         return true;
5112       AddrMode.BaseOffs -= CI->getSExtValue();
5113     }
5114   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
5115     // If this is a global variable, try to fold it into the addressing mode.
5116     if (!AddrMode.BaseGV) {
5117       AddrMode.BaseGV = GV;
5118       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5119         return true;
5120       AddrMode.BaseGV = nullptr;
5121     }
5122   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
5123     ExtAddrMode BackupAddrMode = AddrMode;
5124     unsigned OldSize = AddrModeInsts.size();
5125 
5126     // Check to see if it is possible to fold this operation.
5127     bool MovedAway = false;
5128     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
5129       // This instruction may have been moved away. If so, there is nothing
5130       // to check here.
5131       if (MovedAway)
5132         return true;
5133       // Okay, it's possible to fold this.  Check to see if it is actually
5134       // *profitable* to do so.  We use a simple cost model to avoid increasing
5135       // register pressure too much.
5136       if (I->hasOneUse() ||
5137           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
5138         AddrModeInsts.push_back(I);
5139         return true;
5140       }
5141 
5142       // It isn't profitable to do this, roll back.
5143       AddrMode = BackupAddrMode;
5144       AddrModeInsts.resize(OldSize);
5145       TPT.rollback(LastKnownGood);
5146     }
5147   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
5148     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
5149       return true;
5150     TPT.rollback(LastKnownGood);
5151   } else if (isa<ConstantPointerNull>(Addr)) {
5152     // Null pointer gets folded without affecting the addressing mode.
5153     return true;
5154   }
5155 
5156   // Worse case, the target should support [reg] addressing modes. :)
5157   if (!AddrMode.HasBaseReg) {
5158     AddrMode.HasBaseReg = true;
5159     AddrMode.BaseReg = Addr;
5160     // Still check for legality in case the target supports [imm] but not [i+r].
5161     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5162       return true;
5163     AddrMode.HasBaseReg = false;
5164     AddrMode.BaseReg = nullptr;
5165   }
5166 
5167   // If the base register is already taken, see if we can do [r+r].
5168   if (AddrMode.Scale == 0) {
5169     AddrMode.Scale = 1;
5170     AddrMode.ScaledReg = Addr;
5171     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5172       return true;
5173     AddrMode.Scale = 0;
5174     AddrMode.ScaledReg = nullptr;
5175   }
5176   // Couldn't match.
5177   TPT.rollback(LastKnownGood);
5178   return false;
5179 }
5180 
5181 /// Check to see if all uses of OpVal by the specified inline asm call are due
5182 /// to memory operands. If so, return true, otherwise return false.
5183 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
5184                                     const TargetLowering &TLI,
5185                                     const TargetRegisterInfo &TRI) {
5186   const Function *F = CI->getFunction();
5187   TargetLowering::AsmOperandInfoVector TargetConstraints =
5188       TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI);
5189 
5190   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5191     // Compute the constraint code and ConstraintType to use.
5192     TLI.ComputeConstraintToUse(OpInfo, SDValue());
5193 
5194     // If this asm operand is our Value*, and if it isn't an indirect memory
5195     // operand, we can't fold it!  TODO: Also handle C_Address?
5196     if (OpInfo.CallOperandVal == OpVal &&
5197         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
5198          !OpInfo.isIndirect))
5199       return false;
5200   }
5201 
5202   return true;
5203 }
5204 
5205 /// Recursively walk all the uses of I until we find a memory use.
5206 /// If we find an obviously non-foldable instruction, return true.
5207 /// Add accessed addresses and types to MemoryUses.
5208 static bool FindAllMemoryUses(
5209     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5210     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5211     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5212     BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5213   // If we already considered this instruction, we're done.
5214   if (!ConsideredInsts.insert(I).second)
5215     return false;
5216 
5217   // If this is an obviously unfoldable instruction, bail out.
5218   if (!MightBeFoldableInst(I))
5219     return true;
5220 
5221   // Loop over all the uses, recursively processing them.
5222   for (Use &U : I->uses()) {
5223     // Conservatively return true if we're seeing a large number or a deep chain
5224     // of users. This avoids excessive compilation times in pathological cases.
5225     if (SeenInsts++ >= MaxAddressUsersToScan)
5226       return true;
5227 
5228     Instruction *UserI = cast<Instruction>(U.getUser());
5229     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5230       MemoryUses.push_back({&U, LI->getType()});
5231       continue;
5232     }
5233 
5234     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5235       if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5236         return true; // Storing addr, not into addr.
5237       MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5238       continue;
5239     }
5240 
5241     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5242       if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5243         return true; // Storing addr, not into addr.
5244       MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5245       continue;
5246     }
5247 
5248     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
5249       if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5250         return true; // Storing addr, not into addr.
5251       MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5252       continue;
5253     }
5254 
5255     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5256       if (CI->hasFnAttr(Attribute::Cold)) {
5257         // If this is a cold call, we can sink the addressing calculation into
5258         // the cold path.  See optimizeCallInst
5259         bool OptForSize =
5260             OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
5261         if (!OptForSize)
5262           continue;
5263       }
5264 
5265       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5266       if (!IA)
5267         return true;
5268 
5269       // If this is a memory operand, we're cool, otherwise bail out.
5270       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5271         return true;
5272       continue;
5273     }
5274 
5275     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5276                           PSI, BFI, SeenInsts))
5277       return true;
5278   }
5279 
5280   return false;
5281 }
5282 
5283 static bool FindAllMemoryUses(
5284     Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5285     const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5286     ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
5287   unsigned SeenInsts = 0;
5288   SmallPtrSet<Instruction *, 16> ConsideredInsts;
5289   return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5290                            PSI, BFI, SeenInsts);
5291 }
5292 
5293 
5294 /// Return true if Val is already known to be live at the use site that we're
5295 /// folding it into. If so, there is no cost to include it in the addressing
5296 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5297 /// instruction already.
5298 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5299                                                    Value *KnownLive1,
5300                                                    Value *KnownLive2) {
5301   // If Val is either of the known-live values, we know it is live!
5302   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5303     return true;
5304 
5305   // All values other than instructions and arguments (e.g. constants) are live.
5306   if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5307     return true;
5308 
5309   // If Val is a constant sized alloca in the entry block, it is live, this is
5310   // true because it is just a reference to the stack/frame pointer, which is
5311   // live for the whole function.
5312   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5313     if (AI->isStaticAlloca())
5314       return true;
5315 
5316   // Check to see if this value is already used in the memory instruction's
5317   // block.  If so, it's already live into the block at the very least, so we
5318   // can reasonably fold it.
5319   return Val->isUsedInBasicBlock(MemoryInst->getParent());
5320 }
5321 
5322 /// It is possible for the addressing mode of the machine to fold the specified
5323 /// instruction into a load or store that ultimately uses it.
5324 /// However, the specified instruction has multiple uses.
5325 /// Given this, it may actually increase register pressure to fold it
5326 /// into the load. For example, consider this code:
5327 ///
5328 ///     X = ...
5329 ///     Y = X+1
5330 ///     use(Y)   -> nonload/store
5331 ///     Z = Y+1
5332 ///     load Z
5333 ///
5334 /// In this case, Y has multiple uses, and can be folded into the load of Z
5335 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
5336 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
5337 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
5338 /// number of computations either.
5339 ///
5340 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
5341 /// X was live across 'load Z' for other reasons, we actually *would* want to
5342 /// fold the addressing mode in the Z case.  This would make Y die earlier.
5343 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5344     Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5345   if (IgnoreProfitability)
5346     return true;
5347 
5348   // AMBefore is the addressing mode before this instruction was folded into it,
5349   // and AMAfter is the addressing mode after the instruction was folded.  Get
5350   // the set of registers referenced by AMAfter and subtract out those
5351   // referenced by AMBefore: this is the set of values which folding in this
5352   // address extends the lifetime of.
5353   //
5354   // Note that there are only two potential values being referenced here,
5355   // BaseReg and ScaleReg (global addresses are always available, as are any
5356   // folded immediates).
5357   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5358 
5359   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5360   // lifetime wasn't extended by adding this instruction.
5361   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5362     BaseReg = nullptr;
5363   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5364     ScaledReg = nullptr;
5365 
5366   // If folding this instruction (and it's subexprs) didn't extend any live
5367   // ranges, we're ok with it.
5368   if (!BaseReg && !ScaledReg)
5369     return true;
5370 
5371   // If all uses of this instruction can have the address mode sunk into them,
5372   // we can remove the addressing mode and effectively trade one live register
5373   // for another (at worst.)  In this context, folding an addressing mode into
5374   // the use is just a particularly nice way of sinking it.
5375   SmallVector<std::pair<Use *, Type *>, 16> MemoryUses;
5376   if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5377     return false; // Has a non-memory, non-foldable use!
5378 
5379   // Now that we know that all uses of this instruction are part of a chain of
5380   // computation involving only operations that could theoretically be folded
5381   // into a memory use, loop over each of these memory operation uses and see
5382   // if they could  *actually* fold the instruction.  The assumption is that
5383   // addressing modes are cheap and that duplicating the computation involved
5384   // many times is worthwhile, even on a fastpath. For sinking candidates
5385   // (i.e. cold call sites), this serves as a way to prevent excessive code
5386   // growth since most architectures have some reasonable small and fast way to
5387   // compute an effective address.  (i.e LEA on x86)
5388   SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5389   for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5390     Value *Address = Pair.first->get();
5391     Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5392     Type *AddressAccessTy = Pair.second;
5393     unsigned AS = Address->getType()->getPointerAddressSpace();
5394 
5395     // Do a match against the root of this address, ignoring profitability. This
5396     // will tell us if the addressing mode for the memory operation will
5397     // *actually* cover the shared instruction.
5398     ExtAddrMode Result;
5399     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5400                                                                       0);
5401     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5402         TPT.getRestorationPoint();
5403     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5404                                   AddressAccessTy, AS, UserI, Result,
5405                                   InsertedInsts, PromotedInsts, TPT,
5406                                   LargeOffsetGEP, OptSize, PSI, BFI);
5407     Matcher.IgnoreProfitability = true;
5408     bool Success = Matcher.matchAddr(Address, 0);
5409     (void)Success;
5410     assert(Success && "Couldn't select *anything*?");
5411 
5412     // The match was to check the profitability, the changes made are not
5413     // part of the original matcher. Therefore, they should be dropped
5414     // otherwise the original matcher will not present the right state.
5415     TPT.rollback(LastKnownGood);
5416 
5417     // If the match didn't cover I, then it won't be shared by it.
5418     if (!is_contained(MatchedAddrModeInsts, I))
5419       return false;
5420 
5421     MatchedAddrModeInsts.clear();
5422   }
5423 
5424   return true;
5425 }
5426 
5427 /// Return true if the specified values are defined in a
5428 /// different basic block than BB.
5429 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5430   if (Instruction *I = dyn_cast<Instruction>(V))
5431     return I->getParent() != BB;
5432   return false;
5433 }
5434 
5435 /// Sink addressing mode computation immediate before MemoryInst if doing so
5436 /// can be done without increasing register pressure.  The need for the
5437 /// register pressure constraint means this can end up being an all or nothing
5438 /// decision for all uses of the same addressing computation.
5439 ///
5440 /// Load and Store Instructions often have addressing modes that can do
5441 /// significant amounts of computation. As such, instruction selection will try
5442 /// to get the load or store to do as much computation as possible for the
5443 /// program. The problem is that isel can only see within a single block. As
5444 /// such, we sink as much legal addressing mode work into the block as possible.
5445 ///
5446 /// This method is used to optimize both load/store and inline asms with memory
5447 /// operands.  It's also used to sink addressing computations feeding into cold
5448 /// call sites into their (cold) basic block.
5449 ///
5450 /// The motivation for handling sinking into cold blocks is that doing so can
5451 /// both enable other address mode sinking (by satisfying the register pressure
5452 /// constraint above), and reduce register pressure globally (by removing the
5453 /// addressing mode computation from the fast path entirely.).
5454 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5455                                         Type *AccessTy, unsigned AddrSpace) {
5456   Value *Repl = Addr;
5457 
5458   // Try to collapse single-value PHI nodes.  This is necessary to undo
5459   // unprofitable PRE transformations.
5460   SmallVector<Value *, 8> worklist;
5461   SmallPtrSet<Value *, 16> Visited;
5462   worklist.push_back(Addr);
5463 
5464   // Use a worklist to iteratively look through PHI and select nodes, and
5465   // ensure that the addressing mode obtained from the non-PHI/select roots of
5466   // the graph are compatible.
5467   bool PhiOrSelectSeen = false;
5468   SmallVector<Instruction *, 16> AddrModeInsts;
5469   const SimplifyQuery SQ(*DL, TLInfo);
5470   AddressingModeCombiner AddrModes(SQ, Addr);
5471   TypePromotionTransaction TPT(RemovedInsts);
5472   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5473       TPT.getRestorationPoint();
5474   while (!worklist.empty()) {
5475     Value *V = worklist.pop_back_val();
5476 
5477     // We allow traversing cyclic Phi nodes.
5478     // In case of success after this loop we ensure that traversing through
5479     // Phi nodes ends up with all cases to compute address of the form
5480     //    BaseGV + Base + Scale * Index + Offset
5481     // where Scale and Offset are constans and BaseGV, Base and Index
5482     // are exactly the same Values in all cases.
5483     // It means that BaseGV, Scale and Offset dominate our memory instruction
5484     // and have the same value as they had in address computation represented
5485     // as Phi. So we can safely sink address computation to memory instruction.
5486     if (!Visited.insert(V).second)
5487       continue;
5488 
5489     // For a PHI node, push all of its incoming values.
5490     if (PHINode *P = dyn_cast<PHINode>(V)) {
5491       append_range(worklist, P->incoming_values());
5492       PhiOrSelectSeen = true;
5493       continue;
5494     }
5495     // Similar for select.
5496     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5497       worklist.push_back(SI->getFalseValue());
5498       worklist.push_back(SI->getTrueValue());
5499       PhiOrSelectSeen = true;
5500       continue;
5501     }
5502 
5503     // For non-PHIs, determine the addressing mode being computed.  Note that
5504     // the result may differ depending on what other uses our candidate
5505     // addressing instructions might have.
5506     AddrModeInsts.clear();
5507     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5508                                                                       0);
5509     // Defer the query (and possible computation of) the dom tree to point of
5510     // actual use.  It's expected that most address matches don't actually need
5511     // the domtree.
5512     auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5513       Function *F = MemoryInst->getParent()->getParent();
5514       return this->getDT(*F);
5515     };
5516     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5517         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5518         *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5519         BFI.get());
5520 
5521     GetElementPtrInst *GEP = LargeOffsetGEP.first;
5522     if (GEP && !NewGEPBases.count(GEP)) {
5523       // If splitting the underlying data structure can reduce the offset of a
5524       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5525       // previously split data structures.
5526       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5527       LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5528     }
5529 
5530     NewAddrMode.OriginalValue = V;
5531     if (!AddrModes.addNewAddrMode(NewAddrMode))
5532       break;
5533   }
5534 
5535   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5536   // or we have multiple but either couldn't combine them or combining them
5537   // wouldn't do anything useful, bail out now.
5538   if (!AddrModes.combineAddrModes()) {
5539     TPT.rollback(LastKnownGood);
5540     return false;
5541   }
5542   bool Modified = TPT.commit();
5543 
5544   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5545   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5546 
5547   // If all the instructions matched are already in this BB, don't do anything.
5548   // If we saw a Phi node then it is not local definitely, and if we saw a
5549   // select then we want to push the address calculation past it even if it's
5550   // already in this BB.
5551   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5552         return IsNonLocalValue(V, MemoryInst->getParent());
5553       })) {
5554     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5555                       << "\n");
5556     return Modified;
5557   }
5558 
5559   // Insert this computation right after this user.  Since our caller is
5560   // scanning from the top of the BB to the bottom, reuse of the expr are
5561   // guaranteed to happen later.
5562   IRBuilder<> Builder(MemoryInst);
5563 
5564   // Now that we determined the addressing expression we want to use and know
5565   // that we have to sink it into this block.  Check to see if we have already
5566   // done this for some other load/store instr in this block.  If so, reuse
5567   // the computation.  Before attempting reuse, check if the address is valid
5568   // as it may have been erased.
5569 
5570   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5571 
5572   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5573   Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5574   if (SunkAddr) {
5575     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5576                       << " for " << *MemoryInst << "\n");
5577     if (SunkAddr->getType() != Addr->getType()) {
5578       if (SunkAddr->getType()->getPointerAddressSpace() !=
5579               Addr->getType()->getPointerAddressSpace() &&
5580           !DL->isNonIntegralPointerType(Addr->getType())) {
5581         // There are two reasons the address spaces might not match: a no-op
5582         // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5583         // ptrtoint/inttoptr pair to ensure we match the original semantics.
5584         // TODO: allow bitcast between different address space pointers with the
5585         // same size.
5586         SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5587         SunkAddr =
5588             Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5589       } else
5590         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5591     }
5592   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5593                                    SubtargetInfo->addrSinkUsingGEPs())) {
5594     // By default, we use the GEP-based method when AA is used later. This
5595     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5596     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5597                       << " for " << *MemoryInst << "\n");
5598     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5599 
5600     // First, find the pointer.
5601     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5602       ResultPtr = AddrMode.BaseReg;
5603       AddrMode.BaseReg = nullptr;
5604     }
5605 
5606     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5607       // We can't add more than one pointer together, nor can we scale a
5608       // pointer (both of which seem meaningless).
5609       if (ResultPtr || AddrMode.Scale != 1)
5610         return Modified;
5611 
5612       ResultPtr = AddrMode.ScaledReg;
5613       AddrMode.Scale = 0;
5614     }
5615 
5616     // It is only safe to sign extend the BaseReg if we know that the math
5617     // required to create it did not overflow before we extend it. Since
5618     // the original IR value was tossed in favor of a constant back when
5619     // the AddrMode was created we need to bail out gracefully if widths
5620     // do not match instead of extending it.
5621     //
5622     // (See below for code to add the scale.)
5623     if (AddrMode.Scale) {
5624       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5625       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5626           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5627         return Modified;
5628     }
5629 
5630     GlobalValue *BaseGV = AddrMode.BaseGV;
5631     if (BaseGV != nullptr) {
5632       if (ResultPtr)
5633         return Modified;
5634 
5635       if (BaseGV->isThreadLocal()) {
5636         ResultPtr = Builder.CreateThreadLocalAddress(BaseGV);
5637       } else {
5638         ResultPtr = BaseGV;
5639       }
5640     }
5641 
5642     // If the real base value actually came from an inttoptr, then the matcher
5643     // will look through it and provide only the integer value. In that case,
5644     // use it here.
5645     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5646       if (!ResultPtr && AddrMode.BaseReg) {
5647         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5648                                            "sunkaddr");
5649         AddrMode.BaseReg = nullptr;
5650       } else if (!ResultPtr && AddrMode.Scale == 1) {
5651         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5652                                            "sunkaddr");
5653         AddrMode.Scale = 0;
5654       }
5655     }
5656 
5657     if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
5658         !AddrMode.BaseOffs) {
5659       SunkAddr = Constant::getNullValue(Addr->getType());
5660     } else if (!ResultPtr) {
5661       return Modified;
5662     } else {
5663       Type *I8PtrTy =
5664           Builder.getPtrTy(Addr->getType()->getPointerAddressSpace());
5665 
5666       // Start with the base register. Do this first so that subsequent address
5667       // matching finds it last, which will prevent it from trying to match it
5668       // as the scaled value in case it happens to be a mul. That would be
5669       // problematic if we've sunk a different mul for the scale, because then
5670       // we'd end up sinking both muls.
5671       if (AddrMode.BaseReg) {
5672         Value *V = AddrMode.BaseReg;
5673         if (V->getType() != IntPtrTy)
5674           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5675 
5676         ResultIndex = V;
5677       }
5678 
5679       // Add the scale value.
5680       if (AddrMode.Scale) {
5681         Value *V = AddrMode.ScaledReg;
5682         if (V->getType() == IntPtrTy) {
5683           // done.
5684         } else {
5685           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5686                      cast<IntegerType>(V->getType())->getBitWidth() &&
5687                  "We can't transform if ScaledReg is too narrow");
5688           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5689         }
5690 
5691         if (AddrMode.Scale != 1)
5692           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5693                                 "sunkaddr");
5694         if (ResultIndex)
5695           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5696         else
5697           ResultIndex = V;
5698       }
5699 
5700       // Add in the Base Offset if present.
5701       if (AddrMode.BaseOffs) {
5702         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5703         if (ResultIndex) {
5704           // We need to add this separately from the scale above to help with
5705           // SDAG consecutive load/store merging.
5706           if (ResultPtr->getType() != I8PtrTy)
5707             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5708           ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5709                                            AddrMode.InBounds);
5710         }
5711 
5712         ResultIndex = V;
5713       }
5714 
5715       if (!ResultIndex) {
5716         SunkAddr = ResultPtr;
5717       } else {
5718         if (ResultPtr->getType() != I8PtrTy)
5719           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5720         SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5721                                         AddrMode.InBounds);
5722       }
5723 
5724       if (SunkAddr->getType() != Addr->getType()) {
5725         if (SunkAddr->getType()->getPointerAddressSpace() !=
5726                 Addr->getType()->getPointerAddressSpace() &&
5727             !DL->isNonIntegralPointerType(Addr->getType())) {
5728           // There are two reasons the address spaces might not match: a no-op
5729           // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5730           // ptrtoint/inttoptr pair to ensure we match the original semantics.
5731           // TODO: allow bitcast between different address space pointers with
5732           // the same size.
5733           SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5734           SunkAddr =
5735               Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5736         } else
5737           SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5738       }
5739     }
5740   } else {
5741     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5742     // non-integral pointers, so in that case bail out now.
5743     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5744     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5745     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5746     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5747     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5748         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5749         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5750         (AddrMode.BaseGV &&
5751          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5752       return Modified;
5753 
5754     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5755                       << " for " << *MemoryInst << "\n");
5756     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5757     Value *Result = nullptr;
5758 
5759     // Start with the base register. Do this first so that subsequent address
5760     // matching finds it last, which will prevent it from trying to match it
5761     // as the scaled value in case it happens to be a mul. That would be
5762     // problematic if we've sunk a different mul for the scale, because then
5763     // we'd end up sinking both muls.
5764     if (AddrMode.BaseReg) {
5765       Value *V = AddrMode.BaseReg;
5766       if (V->getType()->isPointerTy())
5767         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5768       if (V->getType() != IntPtrTy)
5769         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5770       Result = V;
5771     }
5772 
5773     // Add the scale value.
5774     if (AddrMode.Scale) {
5775       Value *V = AddrMode.ScaledReg;
5776       if (V->getType() == IntPtrTy) {
5777         // done.
5778       } else if (V->getType()->isPointerTy()) {
5779         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5780       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5781                  cast<IntegerType>(V->getType())->getBitWidth()) {
5782         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5783       } else {
5784         // It is only safe to sign extend the BaseReg if we know that the math
5785         // required to create it did not overflow before we extend it. Since
5786         // the original IR value was tossed in favor of a constant back when
5787         // the AddrMode was created we need to bail out gracefully if widths
5788         // do not match instead of extending it.
5789         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5790         if (I && (Result != AddrMode.BaseReg))
5791           I->eraseFromParent();
5792         return Modified;
5793       }
5794       if (AddrMode.Scale != 1)
5795         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5796                               "sunkaddr");
5797       if (Result)
5798         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5799       else
5800         Result = V;
5801     }
5802 
5803     // Add in the BaseGV if present.
5804     GlobalValue *BaseGV = AddrMode.BaseGV;
5805     if (BaseGV != nullptr) {
5806       Value *BaseGVPtr;
5807       if (BaseGV->isThreadLocal()) {
5808         BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV);
5809       } else {
5810         BaseGVPtr = BaseGV;
5811       }
5812       Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr");
5813       if (Result)
5814         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5815       else
5816         Result = V;
5817     }
5818 
5819     // Add in the Base Offset if present.
5820     if (AddrMode.BaseOffs) {
5821       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5822       if (Result)
5823         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5824       else
5825         Result = V;
5826     }
5827 
5828     if (!Result)
5829       SunkAddr = Constant::getNullValue(Addr->getType());
5830     else
5831       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5832   }
5833 
5834   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5835   // Store the newly computed address into the cache. In the case we reused a
5836   // value, this should be idempotent.
5837   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5838 
5839   // If we have no uses, recursively delete the value and all dead instructions
5840   // using it.
5841   if (Repl->use_empty()) {
5842     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5843       RecursivelyDeleteTriviallyDeadInstructions(
5844           Repl, TLInfo, nullptr,
5845           [&](Value *V) { removeAllAssertingVHReferences(V); });
5846     });
5847   }
5848   ++NumMemoryInsts;
5849   return true;
5850 }
5851 
5852 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5853 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5854 /// only handle a 2 operand GEP in the same basic block or a splat constant
5855 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5856 /// index.
5857 ///
5858 /// If the existing GEP has a vector base pointer that is splat, we can look
5859 /// through the splat to find the scalar pointer. If we can't find a scalar
5860 /// pointer there's nothing we can do.
5861 ///
5862 /// If we have a GEP with more than 2 indices where the middle indices are all
5863 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5864 ///
5865 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5866 /// followed by a GEP with an all zeroes vector index. This will enable
5867 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5868 /// zero index.
5869 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5870                                                Value *Ptr) {
5871   Value *NewAddr;
5872 
5873   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5874     // Don't optimize GEPs that don't have indices.
5875     if (!GEP->hasIndices())
5876       return false;
5877 
5878     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5879     // FIXME: We should support this by sinking the GEP.
5880     if (MemoryInst->getParent() != GEP->getParent())
5881       return false;
5882 
5883     SmallVector<Value *, 2> Ops(GEP->operands());
5884 
5885     bool RewriteGEP = false;
5886 
5887     if (Ops[0]->getType()->isVectorTy()) {
5888       Ops[0] = getSplatValue(Ops[0]);
5889       if (!Ops[0])
5890         return false;
5891       RewriteGEP = true;
5892     }
5893 
5894     unsigned FinalIndex = Ops.size() - 1;
5895 
5896     // Ensure all but the last index is 0.
5897     // FIXME: This isn't strictly required. All that's required is that they are
5898     // all scalars or splats.
5899     for (unsigned i = 1; i < FinalIndex; ++i) {
5900       auto *C = dyn_cast<Constant>(Ops[i]);
5901       if (!C)
5902         return false;
5903       if (isa<VectorType>(C->getType()))
5904         C = C->getSplatValue();
5905       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5906       if (!CI || !CI->isZero())
5907         return false;
5908       // Scalarize the index if needed.
5909       Ops[i] = CI;
5910     }
5911 
5912     // Try to scalarize the final index.
5913     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5914       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5915         auto *C = dyn_cast<ConstantInt>(V);
5916         // Don't scalarize all zeros vector.
5917         if (!C || !C->isZero()) {
5918           Ops[FinalIndex] = V;
5919           RewriteGEP = true;
5920         }
5921       }
5922     }
5923 
5924     // If we made any changes or the we have extra operands, we need to generate
5925     // new instructions.
5926     if (!RewriteGEP && Ops.size() == 2)
5927       return false;
5928 
5929     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5930 
5931     IRBuilder<> Builder(MemoryInst);
5932 
5933     Type *SourceTy = GEP->getSourceElementType();
5934     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5935 
5936     // If the final index isn't a vector, emit a scalar GEP containing all ops
5937     // and a vector GEP with all zeroes final index.
5938     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5939       NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
5940       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5941       auto *SecondTy = GetElementPtrInst::getIndexedType(
5942           SourceTy, ArrayRef(Ops).drop_front());
5943       NewAddr =
5944           Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5945     } else {
5946       Value *Base = Ops[0];
5947       Value *Index = Ops[FinalIndex];
5948 
5949       // Create a scalar GEP if there are more than 2 operands.
5950       if (Ops.size() != 2) {
5951         // Replace the last index with 0.
5952         Ops[FinalIndex] =
5953             Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
5954         Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
5955         SourceTy = GetElementPtrInst::getIndexedType(
5956             SourceTy, ArrayRef(Ops).drop_front());
5957       }
5958 
5959       // Now create the GEP with scalar pointer and vector index.
5960       NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5961     }
5962   } else if (!isa<Constant>(Ptr)) {
5963     // Not a GEP, maybe its a splat and we can create a GEP to enable
5964     // SelectionDAGBuilder to use it as a uniform base.
5965     Value *V = getSplatValue(Ptr);
5966     if (!V)
5967       return false;
5968 
5969     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5970 
5971     IRBuilder<> Builder(MemoryInst);
5972 
5973     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5974     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5975     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5976     Type *ScalarTy;
5977     if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5978         Intrinsic::masked_gather) {
5979       ScalarTy = MemoryInst->getType()->getScalarType();
5980     } else {
5981       assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5982              Intrinsic::masked_scatter);
5983       ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5984     }
5985     NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5986   } else {
5987     // Constant, SelectionDAGBuilder knows to check if its a splat.
5988     return false;
5989   }
5990 
5991   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5992 
5993   // If we have no uses, recursively delete the value and all dead instructions
5994   // using it.
5995   if (Ptr->use_empty())
5996     RecursivelyDeleteTriviallyDeadInstructions(
5997         Ptr, TLInfo, nullptr,
5998         [&](Value *V) { removeAllAssertingVHReferences(V); });
5999 
6000   return true;
6001 }
6002 
6003 /// If there are any memory operands, use OptimizeMemoryInst to sink their
6004 /// address computing into the block when possible / profitable.
6005 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
6006   bool MadeChange = false;
6007 
6008   const TargetRegisterInfo *TRI =
6009       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
6010   TargetLowering::AsmOperandInfoVector TargetConstraints =
6011       TLI->ParseConstraints(*DL, TRI, *CS);
6012   unsigned ArgNo = 0;
6013   for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
6014     // Compute the constraint code and ConstraintType to use.
6015     TLI->ComputeConstraintToUse(OpInfo, SDValue());
6016 
6017     // TODO: Also handle C_Address?
6018     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6019         OpInfo.isIndirect) {
6020       Value *OpVal = CS->getArgOperand(ArgNo++);
6021       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
6022     } else if (OpInfo.Type == InlineAsm::isInput)
6023       ArgNo++;
6024   }
6025 
6026   return MadeChange;
6027 }
6028 
6029 /// Check if all the uses of \p Val are equivalent (or free) zero or
6030 /// sign extensions.
6031 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
6032   assert(!Val->use_empty() && "Input must have at least one use");
6033   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
6034   bool IsSExt = isa<SExtInst>(FirstUser);
6035   Type *ExtTy = FirstUser->getType();
6036   for (const User *U : Val->users()) {
6037     const Instruction *UI = cast<Instruction>(U);
6038     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
6039       return false;
6040     Type *CurTy = UI->getType();
6041     // Same input and output types: Same instruction after CSE.
6042     if (CurTy == ExtTy)
6043       continue;
6044 
6045     // If IsSExt is true, we are in this situation:
6046     // a = Val
6047     // b = sext ty1 a to ty2
6048     // c = sext ty1 a to ty3
6049     // Assuming ty2 is shorter than ty3, this could be turned into:
6050     // a = Val
6051     // b = sext ty1 a to ty2
6052     // c = sext ty2 b to ty3
6053     // However, the last sext is not free.
6054     if (IsSExt)
6055       return false;
6056 
6057     // This is a ZExt, maybe this is free to extend from one type to another.
6058     // In that case, we would not account for a different use.
6059     Type *NarrowTy;
6060     Type *LargeTy;
6061     if (ExtTy->getScalarType()->getIntegerBitWidth() >
6062         CurTy->getScalarType()->getIntegerBitWidth()) {
6063       NarrowTy = CurTy;
6064       LargeTy = ExtTy;
6065     } else {
6066       NarrowTy = ExtTy;
6067       LargeTy = CurTy;
6068     }
6069 
6070     if (!TLI.isZExtFree(NarrowTy, LargeTy))
6071       return false;
6072   }
6073   // All uses are the same or can be derived from one another for free.
6074   return true;
6075 }
6076 
6077 /// Try to speculatively promote extensions in \p Exts and continue
6078 /// promoting through newly promoted operands recursively as far as doing so is
6079 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
6080 /// When some promotion happened, \p TPT contains the proper state to revert
6081 /// them.
6082 ///
6083 /// \return true if some promotion happened, false otherwise.
6084 bool CodeGenPrepare::tryToPromoteExts(
6085     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
6086     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
6087     unsigned CreatedInstsCost) {
6088   bool Promoted = false;
6089 
6090   // Iterate over all the extensions to try to promote them.
6091   for (auto *I : Exts) {
6092     // Early check if we directly have ext(load).
6093     if (isa<LoadInst>(I->getOperand(0))) {
6094       ProfitablyMovedExts.push_back(I);
6095       continue;
6096     }
6097 
6098     // Check whether or not we want to do any promotion.  The reason we have
6099     // this check inside the for loop is to catch the case where an extension
6100     // is directly fed by a load because in such case the extension can be moved
6101     // up without any promotion on its operands.
6102     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
6103       return false;
6104 
6105     // Get the action to perform the promotion.
6106     TypePromotionHelper::Action TPH =
6107         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
6108     // Check if we can promote.
6109     if (!TPH) {
6110       // Save the current extension as we cannot move up through its operand.
6111       ProfitablyMovedExts.push_back(I);
6112       continue;
6113     }
6114 
6115     // Save the current state.
6116     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6117         TPT.getRestorationPoint();
6118     SmallVector<Instruction *, 4> NewExts;
6119     unsigned NewCreatedInstsCost = 0;
6120     unsigned ExtCost = !TLI->isExtFree(I);
6121     // Promote.
6122     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
6123                              &NewExts, nullptr, *TLI);
6124     assert(PromotedVal &&
6125            "TypePromotionHelper should have filtered out those cases");
6126 
6127     // We would be able to merge only one extension in a load.
6128     // Therefore, if we have more than 1 new extension we heuristically
6129     // cut this search path, because it means we degrade the code quality.
6130     // With exactly 2, the transformation is neutral, because we will merge
6131     // one extension but leave one. However, we optimistically keep going,
6132     // because the new extension may be removed too. Also avoid replacing a
6133     // single free extension with multiple extensions, as this increases the
6134     // number of IR instructions while not providing any savings.
6135     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
6136     // FIXME: It would be possible to propagate a negative value instead of
6137     // conservatively ceiling it to 0.
6138     TotalCreatedInstsCost =
6139         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
6140     if (!StressExtLdPromotion &&
6141         (TotalCreatedInstsCost > 1 ||
6142          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) ||
6143          (ExtCost == 0 && NewExts.size() > 1))) {
6144       // This promotion is not profitable, rollback to the previous state, and
6145       // save the current extension in ProfitablyMovedExts as the latest
6146       // speculative promotion turned out to be unprofitable.
6147       TPT.rollback(LastKnownGood);
6148       ProfitablyMovedExts.push_back(I);
6149       continue;
6150     }
6151     // Continue promoting NewExts as far as doing so is profitable.
6152     SmallVector<Instruction *, 2> NewlyMovedExts;
6153     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
6154     bool NewPromoted = false;
6155     for (auto *ExtInst : NewlyMovedExts) {
6156       Instruction *MovedExt = cast<Instruction>(ExtInst);
6157       Value *ExtOperand = MovedExt->getOperand(0);
6158       // If we have reached to a load, we need this extra profitability check
6159       // as it could potentially be merged into an ext(load).
6160       if (isa<LoadInst>(ExtOperand) &&
6161           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
6162             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
6163         continue;
6164 
6165       ProfitablyMovedExts.push_back(MovedExt);
6166       NewPromoted = true;
6167     }
6168 
6169     // If none of speculative promotions for NewExts is profitable, rollback
6170     // and save the current extension (I) as the last profitable extension.
6171     if (!NewPromoted) {
6172       TPT.rollback(LastKnownGood);
6173       ProfitablyMovedExts.push_back(I);
6174       continue;
6175     }
6176     // The promotion is profitable.
6177     Promoted = true;
6178   }
6179   return Promoted;
6180 }
6181 
6182 /// Merging redundant sexts when one is dominating the other.
6183 bool CodeGenPrepare::mergeSExts(Function &F) {
6184   bool Changed = false;
6185   for (auto &Entry : ValToSExtendedUses) {
6186     SExts &Insts = Entry.second;
6187     SExts CurPts;
6188     for (Instruction *Inst : Insts) {
6189       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6190           Inst->getOperand(0) != Entry.first)
6191         continue;
6192       bool inserted = false;
6193       for (auto &Pt : CurPts) {
6194         if (getDT(F).dominates(Inst, Pt)) {
6195           replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6196           RemovedInsts.insert(Pt);
6197           Pt->removeFromParent();
6198           Pt = Inst;
6199           inserted = true;
6200           Changed = true;
6201           break;
6202         }
6203         if (!getDT(F).dominates(Pt, Inst))
6204           // Give up if we need to merge in a common dominator as the
6205           // experiments show it is not profitable.
6206           continue;
6207         replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6208         RemovedInsts.insert(Inst);
6209         Inst->removeFromParent();
6210         inserted = true;
6211         Changed = true;
6212         break;
6213       }
6214       if (!inserted)
6215         CurPts.push_back(Inst);
6216     }
6217   }
6218   return Changed;
6219 }
6220 
6221 // Splitting large data structures so that the GEPs accessing them can have
6222 // smaller offsets so that they can be sunk to the same blocks as their users.
6223 // For example, a large struct starting from %base is split into two parts
6224 // where the second part starts from %new_base.
6225 //
6226 // Before:
6227 // BB0:
6228 //   %base     =
6229 //
6230 // BB1:
6231 //   %gep0     = gep %base, off0
6232 //   %gep1     = gep %base, off1
6233 //   %gep2     = gep %base, off2
6234 //
6235 // BB2:
6236 //   %load1    = load %gep0
6237 //   %load2    = load %gep1
6238 //   %load3    = load %gep2
6239 //
6240 // After:
6241 // BB0:
6242 //   %base     =
6243 //   %new_base = gep %base, off0
6244 //
6245 // BB1:
6246 //   %new_gep0 = %new_base
6247 //   %new_gep1 = gep %new_base, off1 - off0
6248 //   %new_gep2 = gep %new_base, off2 - off0
6249 //
6250 // BB2:
6251 //   %load1    = load i32, i32* %new_gep0
6252 //   %load2    = load i32, i32* %new_gep1
6253 //   %load3    = load i32, i32* %new_gep2
6254 //
6255 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6256 // their offsets are smaller enough to fit into the addressing mode.
6257 bool CodeGenPrepare::splitLargeGEPOffsets() {
6258   bool Changed = false;
6259   for (auto &Entry : LargeOffsetGEPMap) {
6260     Value *OldBase = Entry.first;
6261     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6262         &LargeOffsetGEPs = Entry.second;
6263     auto compareGEPOffset =
6264         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6265             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6266           if (LHS.first == RHS.first)
6267             return false;
6268           if (LHS.second != RHS.second)
6269             return LHS.second < RHS.second;
6270           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6271         };
6272     // Sorting all the GEPs of the same data structures based on the offsets.
6273     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6274     LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end());
6275     // Skip if all the GEPs have the same offsets.
6276     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6277       continue;
6278     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6279     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6280     Value *NewBaseGEP = nullptr;
6281 
6282     auto createNewBase = [&](int64_t BaseOffset, Value *OldBase,
6283                              GetElementPtrInst *GEP) {
6284       LLVMContext &Ctx = GEP->getContext();
6285       Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6286       Type *I8PtrTy =
6287           PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace());
6288 
6289       BasicBlock::iterator NewBaseInsertPt;
6290       BasicBlock *NewBaseInsertBB;
6291       if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6292         // If the base of the struct is an instruction, the new base will be
6293         // inserted close to it.
6294         NewBaseInsertBB = BaseI->getParent();
6295         if (isa<PHINode>(BaseI))
6296           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6297         else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6298           NewBaseInsertBB =
6299               SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6300           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6301         } else
6302           NewBaseInsertPt = std::next(BaseI->getIterator());
6303       } else {
6304         // If the current base is an argument or global value, the new base
6305         // will be inserted to the entry block.
6306         NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6307         NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6308       }
6309       IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6310       // Create a new base.
6311       Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6312       NewBaseGEP = OldBase;
6313       if (NewBaseGEP->getType() != I8PtrTy)
6314         NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6315       NewBaseGEP =
6316           NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep");
6317       NewGEPBases.insert(NewBaseGEP);
6318       return;
6319     };
6320 
6321     // Check whether all the offsets can be encoded with prefered common base.
6322     if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset(
6323             LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) {
6324       BaseOffset = PreferBase;
6325       // Create a new base if the offset of the BaseGEP can be decoded with one
6326       // instruction.
6327       createNewBase(BaseOffset, OldBase, BaseGEP);
6328     }
6329 
6330     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6331     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6332       GetElementPtrInst *GEP = LargeOffsetGEP->first;
6333       int64_t Offset = LargeOffsetGEP->second;
6334       if (Offset != BaseOffset) {
6335         TargetLowering::AddrMode AddrMode;
6336         AddrMode.HasBaseReg = true;
6337         AddrMode.BaseOffs = Offset - BaseOffset;
6338         // The result type of the GEP might not be the type of the memory
6339         // access.
6340         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6341                                         GEP->getResultElementType(),
6342                                         GEP->getAddressSpace())) {
6343           // We need to create a new base if the offset to the current base is
6344           // too large to fit into the addressing mode. So, a very large struct
6345           // may be split into several parts.
6346           BaseGEP = GEP;
6347           BaseOffset = Offset;
6348           NewBaseGEP = nullptr;
6349         }
6350       }
6351 
6352       // Generate a new GEP to replace the current one.
6353       Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6354 
6355       if (!NewBaseGEP) {
6356         // Create a new base if we don't have one yet.  Find the insertion
6357         // pointer for the new base first.
6358         createNewBase(BaseOffset, OldBase, GEP);
6359       }
6360 
6361       IRBuilder<> Builder(GEP);
6362       Value *NewGEP = NewBaseGEP;
6363       if (Offset != BaseOffset) {
6364         // Calculate the new offset for the new GEP.
6365         Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6366         NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index);
6367       }
6368       replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6369       LargeOffsetGEPID.erase(GEP);
6370       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6371       GEP->eraseFromParent();
6372       Changed = true;
6373     }
6374   }
6375   return Changed;
6376 }
6377 
6378 bool CodeGenPrepare::optimizePhiType(
6379     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6380     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6381   // We are looking for a collection on interconnected phi nodes that together
6382   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6383   // are of the same type. Convert the whole set of nodes to the type of the
6384   // bitcast.
6385   Type *PhiTy = I->getType();
6386   Type *ConvertTy = nullptr;
6387   if (Visited.count(I) ||
6388       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6389     return false;
6390 
6391   SmallVector<Instruction *, 4> Worklist;
6392   Worklist.push_back(cast<Instruction>(I));
6393   SmallPtrSet<PHINode *, 4> PhiNodes;
6394   SmallPtrSet<ConstantData *, 4> Constants;
6395   PhiNodes.insert(I);
6396   Visited.insert(I);
6397   SmallPtrSet<Instruction *, 4> Defs;
6398   SmallPtrSet<Instruction *, 4> Uses;
6399   // This works by adding extra bitcasts between load/stores and removing
6400   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6401   // we can get in the situation where we remove a bitcast in one iteration
6402   // just to add it again in the next. We need to ensure that at least one
6403   // bitcast we remove are anchored to something that will not change back.
6404   bool AnyAnchored = false;
6405 
6406   while (!Worklist.empty()) {
6407     Instruction *II = Worklist.pop_back_val();
6408 
6409     if (auto *Phi = dyn_cast<PHINode>(II)) {
6410       // Handle Defs, which might also be PHI's
6411       for (Value *V : Phi->incoming_values()) {
6412         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6413           if (!PhiNodes.count(OpPhi)) {
6414             if (!Visited.insert(OpPhi).second)
6415               return false;
6416             PhiNodes.insert(OpPhi);
6417             Worklist.push_back(OpPhi);
6418           }
6419         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6420           if (!OpLoad->isSimple())
6421             return false;
6422           if (Defs.insert(OpLoad).second)
6423             Worklist.push_back(OpLoad);
6424         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6425           if (Defs.insert(OpEx).second)
6426             Worklist.push_back(OpEx);
6427         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6428           if (!ConvertTy)
6429             ConvertTy = OpBC->getOperand(0)->getType();
6430           if (OpBC->getOperand(0)->getType() != ConvertTy)
6431             return false;
6432           if (Defs.insert(OpBC).second) {
6433             Worklist.push_back(OpBC);
6434             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6435                            !isa<ExtractElementInst>(OpBC->getOperand(0));
6436           }
6437         } else if (auto *OpC = dyn_cast<ConstantData>(V))
6438           Constants.insert(OpC);
6439         else
6440           return false;
6441       }
6442     }
6443 
6444     // Handle uses which might also be phi's
6445     for (User *V : II->users()) {
6446       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6447         if (!PhiNodes.count(OpPhi)) {
6448           if (Visited.count(OpPhi))
6449             return false;
6450           PhiNodes.insert(OpPhi);
6451           Visited.insert(OpPhi);
6452           Worklist.push_back(OpPhi);
6453         }
6454       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6455         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6456           return false;
6457         Uses.insert(OpStore);
6458       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6459         if (!ConvertTy)
6460           ConvertTy = OpBC->getType();
6461         if (OpBC->getType() != ConvertTy)
6462           return false;
6463         Uses.insert(OpBC);
6464         AnyAnchored |=
6465             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6466       } else {
6467         return false;
6468       }
6469     }
6470   }
6471 
6472   if (!ConvertTy || !AnyAnchored ||
6473       !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6474     return false;
6475 
6476   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
6477                     << *ConvertTy << "\n");
6478 
6479   // Create all the new phi nodes of the new type, and bitcast any loads to the
6480   // correct type.
6481   ValueToValueMap ValMap;
6482   for (ConstantData *C : Constants)
6483     ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy);
6484   for (Instruction *D : Defs) {
6485     if (isa<BitCastInst>(D)) {
6486       ValMap[D] = D->getOperand(0);
6487       DeletedInstrs.insert(D);
6488     } else {
6489       BasicBlock::iterator insertPt = std::next(D->getIterator());
6490       ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt);
6491     }
6492   }
6493   for (PHINode *Phi : PhiNodes)
6494     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6495                                   Phi->getName() + ".tc", Phi->getIterator());
6496   // Pipe together all the PhiNodes.
6497   for (PHINode *Phi : PhiNodes) {
6498     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6499     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6500       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6501                           Phi->getIncomingBlock(i));
6502     Visited.insert(NewPhi);
6503   }
6504   // And finally pipe up the stores and bitcasts
6505   for (Instruction *U : Uses) {
6506     if (isa<BitCastInst>(U)) {
6507       DeletedInstrs.insert(U);
6508       replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
6509     } else {
6510       U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc",
6511                                        U->getIterator()));
6512     }
6513   }
6514 
6515   // Save the removed phis to be deleted later.
6516   for (PHINode *Phi : PhiNodes)
6517     DeletedInstrs.insert(Phi);
6518   return true;
6519 }
6520 
6521 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6522   if (!OptimizePhiTypes)
6523     return false;
6524 
6525   bool Changed = false;
6526   SmallPtrSet<PHINode *, 4> Visited;
6527   SmallPtrSet<Instruction *, 4> DeletedInstrs;
6528 
6529   // Attempt to optimize all the phis in the functions to the correct type.
6530   for (auto &BB : F)
6531     for (auto &Phi : BB.phis())
6532       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6533 
6534   // Remove any old phi's that have been converted.
6535   for (auto *I : DeletedInstrs) {
6536     replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
6537     I->eraseFromParent();
6538   }
6539 
6540   return Changed;
6541 }
6542 
6543 /// Return true, if an ext(load) can be formed from an extension in
6544 /// \p MovedExts.
6545 bool CodeGenPrepare::canFormExtLd(
6546     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6547     Instruction *&Inst, bool HasPromoted) {
6548   for (auto *MovedExtInst : MovedExts) {
6549     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6550       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6551       Inst = MovedExtInst;
6552       break;
6553     }
6554   }
6555   if (!LI)
6556     return false;
6557 
6558   // If they're already in the same block, there's nothing to do.
6559   // Make the cheap checks first if we did not promote.
6560   // If we promoted, we need to check if it is indeed profitable.
6561   if (!HasPromoted && LI->getParent() == Inst->getParent())
6562     return false;
6563 
6564   return TLI->isExtLoad(LI, Inst, *DL);
6565 }
6566 
6567 /// Move a zext or sext fed by a load into the same basic block as the load,
6568 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6569 /// extend into the load.
6570 ///
6571 /// E.g.,
6572 /// \code
6573 /// %ld = load i32* %addr
6574 /// %add = add nuw i32 %ld, 4
6575 /// %zext = zext i32 %add to i64
6576 // \endcode
6577 /// =>
6578 /// \code
6579 /// %ld = load i32* %addr
6580 /// %zext = zext i32 %ld to i64
6581 /// %add = add nuw i64 %zext, 4
6582 /// \encode
6583 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6584 /// allow us to match zext(load i32*) to i64.
6585 ///
6586 /// Also, try to promote the computations used to obtain a sign extended
6587 /// value used into memory accesses.
6588 /// E.g.,
6589 /// \code
6590 /// a = add nsw i32 b, 3
6591 /// d = sext i32 a to i64
6592 /// e = getelementptr ..., i64 d
6593 /// \endcode
6594 /// =>
6595 /// \code
6596 /// f = sext i32 b to i64
6597 /// a = add nsw i64 f, 3
6598 /// e = getelementptr ..., i64 a
6599 /// \endcode
6600 ///
6601 /// \p Inst[in/out] the extension may be modified during the process if some
6602 /// promotions apply.
6603 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6604   bool AllowPromotionWithoutCommonHeader = false;
6605   /// See if it is an interesting sext operations for the address type
6606   /// promotion before trying to promote it, e.g., the ones with the right
6607   /// type and used in memory accesses.
6608   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6609       *Inst, AllowPromotionWithoutCommonHeader);
6610   TypePromotionTransaction TPT(RemovedInsts);
6611   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6612       TPT.getRestorationPoint();
6613   SmallVector<Instruction *, 1> Exts;
6614   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6615   Exts.push_back(Inst);
6616 
6617   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6618 
6619   // Look for a load being extended.
6620   LoadInst *LI = nullptr;
6621   Instruction *ExtFedByLoad;
6622 
6623   // Try to promote a chain of computation if it allows to form an extended
6624   // load.
6625   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6626     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6627     TPT.commit();
6628     // Move the extend into the same block as the load.
6629     ExtFedByLoad->moveAfter(LI);
6630     ++NumExtsMoved;
6631     Inst = ExtFedByLoad;
6632     return true;
6633   }
6634 
6635   // Continue promoting SExts if known as considerable depending on targets.
6636   if (ATPConsiderable &&
6637       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6638                                   HasPromoted, TPT, SpeculativelyMovedExts))
6639     return true;
6640 
6641   TPT.rollback(LastKnownGood);
6642   return false;
6643 }
6644 
6645 // Perform address type promotion if doing so is profitable.
6646 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6647 // instructions that sign extended the same initial value. However, if
6648 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6649 // extension is just profitable.
6650 bool CodeGenPrepare::performAddressTypePromotion(
6651     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6652     bool HasPromoted, TypePromotionTransaction &TPT,
6653     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6654   bool Promoted = false;
6655   SmallPtrSet<Instruction *, 1> UnhandledExts;
6656   bool AllSeenFirst = true;
6657   for (auto *I : SpeculativelyMovedExts) {
6658     Value *HeadOfChain = I->getOperand(0);
6659     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6660         SeenChainsForSExt.find(HeadOfChain);
6661     // If there is an unhandled SExt which has the same header, try to promote
6662     // it as well.
6663     if (AlreadySeen != SeenChainsForSExt.end()) {
6664       if (AlreadySeen->second != nullptr)
6665         UnhandledExts.insert(AlreadySeen->second);
6666       AllSeenFirst = false;
6667     }
6668   }
6669 
6670   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6671                         SpeculativelyMovedExts.size() == 1)) {
6672     TPT.commit();
6673     if (HasPromoted)
6674       Promoted = true;
6675     for (auto *I : SpeculativelyMovedExts) {
6676       Value *HeadOfChain = I->getOperand(0);
6677       SeenChainsForSExt[HeadOfChain] = nullptr;
6678       ValToSExtendedUses[HeadOfChain].push_back(I);
6679     }
6680     // Update Inst as promotion happen.
6681     Inst = SpeculativelyMovedExts.pop_back_val();
6682   } else {
6683     // This is the first chain visited from the header, keep the current chain
6684     // as unhandled. Defer to promote this until we encounter another SExt
6685     // chain derived from the same header.
6686     for (auto *I : SpeculativelyMovedExts) {
6687       Value *HeadOfChain = I->getOperand(0);
6688       SeenChainsForSExt[HeadOfChain] = Inst;
6689     }
6690     return false;
6691   }
6692 
6693   if (!AllSeenFirst && !UnhandledExts.empty())
6694     for (auto *VisitedSExt : UnhandledExts) {
6695       if (RemovedInsts.count(VisitedSExt))
6696         continue;
6697       TypePromotionTransaction TPT(RemovedInsts);
6698       SmallVector<Instruction *, 1> Exts;
6699       SmallVector<Instruction *, 2> Chains;
6700       Exts.push_back(VisitedSExt);
6701       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6702       TPT.commit();
6703       if (HasPromoted)
6704         Promoted = true;
6705       for (auto *I : Chains) {
6706         Value *HeadOfChain = I->getOperand(0);
6707         // Mark this as handled.
6708         SeenChainsForSExt[HeadOfChain] = nullptr;
6709         ValToSExtendedUses[HeadOfChain].push_back(I);
6710       }
6711     }
6712   return Promoted;
6713 }
6714 
6715 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6716   BasicBlock *DefBB = I->getParent();
6717 
6718   // If the result of a {s|z}ext and its source are both live out, rewrite all
6719   // other uses of the source with result of extension.
6720   Value *Src = I->getOperand(0);
6721   if (Src->hasOneUse())
6722     return false;
6723 
6724   // Only do this xform if truncating is free.
6725   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6726     return false;
6727 
6728   // Only safe to perform the optimization if the source is also defined in
6729   // this block.
6730   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6731     return false;
6732 
6733   bool DefIsLiveOut = false;
6734   for (User *U : I->users()) {
6735     Instruction *UI = cast<Instruction>(U);
6736 
6737     // Figure out which BB this ext is used in.
6738     BasicBlock *UserBB = UI->getParent();
6739     if (UserBB == DefBB)
6740       continue;
6741     DefIsLiveOut = true;
6742     break;
6743   }
6744   if (!DefIsLiveOut)
6745     return false;
6746 
6747   // Make sure none of the uses are PHI nodes.
6748   for (User *U : Src->users()) {
6749     Instruction *UI = cast<Instruction>(U);
6750     BasicBlock *UserBB = UI->getParent();
6751     if (UserBB == DefBB)
6752       continue;
6753     // Be conservative. We don't want this xform to end up introducing
6754     // reloads just before load / store instructions.
6755     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6756       return false;
6757   }
6758 
6759   // InsertedTruncs - Only insert one trunc in each block once.
6760   DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
6761 
6762   bool MadeChange = false;
6763   for (Use &U : Src->uses()) {
6764     Instruction *User = cast<Instruction>(U.getUser());
6765 
6766     // Figure out which BB this ext is used in.
6767     BasicBlock *UserBB = User->getParent();
6768     if (UserBB == DefBB)
6769       continue;
6770 
6771     // Both src and def are live in this block. Rewrite the use.
6772     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6773 
6774     if (!InsertedTrunc) {
6775       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6776       assert(InsertPt != UserBB->end());
6777       InsertedTrunc = new TruncInst(I, Src->getType(), "");
6778       InsertedTrunc->insertBefore(*UserBB, InsertPt);
6779       InsertedInsts.insert(InsertedTrunc);
6780     }
6781 
6782     // Replace a use of the {s|z}ext source with a use of the result.
6783     U = InsertedTrunc;
6784     ++NumExtUses;
6785     MadeChange = true;
6786   }
6787 
6788   return MadeChange;
6789 }
6790 
6791 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6792 // just after the load if the target can fold this into one extload instruction,
6793 // with the hope of eliminating some of the other later "and" instructions using
6794 // the loaded value.  "and"s that are made trivially redundant by the insertion
6795 // of the new "and" are removed by this function, while others (e.g. those whose
6796 // path from the load goes through a phi) are left for isel to potentially
6797 // remove.
6798 //
6799 // For example:
6800 //
6801 // b0:
6802 //   x = load i32
6803 //   ...
6804 // b1:
6805 //   y = and x, 0xff
6806 //   z = use y
6807 //
6808 // becomes:
6809 //
6810 // b0:
6811 //   x = load i32
6812 //   x' = and x, 0xff
6813 //   ...
6814 // b1:
6815 //   z = use x'
6816 //
6817 // whereas:
6818 //
6819 // b0:
6820 //   x1 = load i32
6821 //   ...
6822 // b1:
6823 //   x2 = load i32
6824 //   ...
6825 // b2:
6826 //   x = phi x1, x2
6827 //   y = and x, 0xff
6828 //
6829 // becomes (after a call to optimizeLoadExt for each load):
6830 //
6831 // b0:
6832 //   x1 = load i32
6833 //   x1' = and x1, 0xff
6834 //   ...
6835 // b1:
6836 //   x2 = load i32
6837 //   x2' = and x2, 0xff
6838 //   ...
6839 // b2:
6840 //   x = phi x1', x2'
6841 //   y = and x, 0xff
6842 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6843   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6844     return false;
6845 
6846   // Skip loads we've already transformed.
6847   if (Load->hasOneUse() &&
6848       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6849     return false;
6850 
6851   // Look at all uses of Load, looking through phis, to determine how many bits
6852   // of the loaded value are needed.
6853   SmallVector<Instruction *, 8> WorkList;
6854   SmallPtrSet<Instruction *, 16> Visited;
6855   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6856   for (auto *U : Load->users())
6857     WorkList.push_back(cast<Instruction>(U));
6858 
6859   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6860   unsigned BitWidth = LoadResultVT.getSizeInBits();
6861   // If the BitWidth is 0, do not try to optimize the type
6862   if (BitWidth == 0)
6863     return false;
6864 
6865   APInt DemandBits(BitWidth, 0);
6866   APInt WidestAndBits(BitWidth, 0);
6867 
6868   while (!WorkList.empty()) {
6869     Instruction *I = WorkList.pop_back_val();
6870 
6871     // Break use-def graph loops.
6872     if (!Visited.insert(I).second)
6873       continue;
6874 
6875     // For a PHI node, push all of its users.
6876     if (auto *Phi = dyn_cast<PHINode>(I)) {
6877       for (auto *U : Phi->users())
6878         WorkList.push_back(cast<Instruction>(U));
6879       continue;
6880     }
6881 
6882     switch (I->getOpcode()) {
6883     case Instruction::And: {
6884       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6885       if (!AndC)
6886         return false;
6887       APInt AndBits = AndC->getValue();
6888       DemandBits |= AndBits;
6889       // Keep track of the widest and mask we see.
6890       if (AndBits.ugt(WidestAndBits))
6891         WidestAndBits = AndBits;
6892       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6893         AndsToMaybeRemove.push_back(I);
6894       break;
6895     }
6896 
6897     case Instruction::Shl: {
6898       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6899       if (!ShlC)
6900         return false;
6901       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6902       DemandBits.setLowBits(BitWidth - ShiftAmt);
6903       break;
6904     }
6905 
6906     case Instruction::Trunc: {
6907       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6908       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6909       DemandBits.setLowBits(TruncBitWidth);
6910       break;
6911     }
6912 
6913     default:
6914       return false;
6915     }
6916   }
6917 
6918   uint32_t ActiveBits = DemandBits.getActiveBits();
6919   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6920   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6921   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6922   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6923   // followed by an AND.
6924   // TODO: Look into removing this restriction by fixing backends to either
6925   // return false for isLoadExtLegal for i1 or have them select this pattern to
6926   // a single instruction.
6927   //
6928   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6929   // mask, since these are the only ands that will be removed by isel.
6930   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6931       WidestAndBits != DemandBits)
6932     return false;
6933 
6934   LLVMContext &Ctx = Load->getType()->getContext();
6935   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6936   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6937 
6938   // Reject cases that won't be matched as extloads.
6939   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6940       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6941     return false;
6942 
6943   IRBuilder<> Builder(Load->getNextNonDebugInstruction());
6944   auto *NewAnd = cast<Instruction>(
6945       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6946   // Mark this instruction as "inserted by CGP", so that other
6947   // optimizations don't touch it.
6948   InsertedInsts.insert(NewAnd);
6949 
6950   // Replace all uses of load with new and (except for the use of load in the
6951   // new and itself).
6952   replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
6953   NewAnd->setOperand(0, Load);
6954 
6955   // Remove any and instructions that are now redundant.
6956   for (auto *And : AndsToMaybeRemove)
6957     // Check that the and mask is the same as the one we decided to put on the
6958     // new and.
6959     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6960       replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
6961       if (&*CurInstIterator == And)
6962         CurInstIterator = std::next(And->getIterator());
6963       And->eraseFromParent();
6964       ++NumAndUses;
6965     }
6966 
6967   ++NumAndsAdded;
6968   return true;
6969 }
6970 
6971 /// Check if V (an operand of a select instruction) is an expensive instruction
6972 /// that is only used once.
6973 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6974   auto *I = dyn_cast<Instruction>(V);
6975   // If it's safe to speculatively execute, then it should not have side
6976   // effects; therefore, it's safe to sink and possibly *not* execute.
6977   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6978          TTI->isExpensiveToSpeculativelyExecute(I);
6979 }
6980 
6981 /// Returns true if a SelectInst should be turned into an explicit branch.
6982 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6983                                                 const TargetLowering *TLI,
6984                                                 SelectInst *SI) {
6985   // If even a predictable select is cheap, then a branch can't be cheaper.
6986   if (!TLI->isPredictableSelectExpensive())
6987     return false;
6988 
6989   // FIXME: This should use the same heuristics as IfConversion to determine
6990   // whether a select is better represented as a branch.
6991 
6992   // If metadata tells us that the select condition is obviously predictable,
6993   // then we want to replace the select with a branch.
6994   uint64_t TrueWeight, FalseWeight;
6995   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
6996     uint64_t Max = std::max(TrueWeight, FalseWeight);
6997     uint64_t Sum = TrueWeight + FalseWeight;
6998     if (Sum != 0) {
6999       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
7000       if (Probability > TTI->getPredictableBranchThreshold())
7001         return true;
7002     }
7003   }
7004 
7005   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
7006 
7007   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
7008   // comparison condition. If the compare has more than one use, there's
7009   // probably another cmov or setcc around, so it's not worth emitting a branch.
7010   if (!Cmp || !Cmp->hasOneUse())
7011     return false;
7012 
7013   // If either operand of the select is expensive and only needed on one side
7014   // of the select, we should form a branch.
7015   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
7016       sinkSelectOperand(TTI, SI->getFalseValue()))
7017     return true;
7018 
7019   return false;
7020 }
7021 
7022 /// If \p isTrue is true, return the true value of \p SI, otherwise return
7023 /// false value of \p SI. If the true/false value of \p SI is defined by any
7024 /// select instructions in \p Selects, look through the defining select
7025 /// instruction until the true/false value is not defined in \p Selects.
7026 static Value *
7027 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
7028                     const SmallPtrSet<const Instruction *, 2> &Selects) {
7029   Value *V = nullptr;
7030 
7031   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
7032        DefSI = dyn_cast<SelectInst>(V)) {
7033     assert(DefSI->getCondition() == SI->getCondition() &&
7034            "The condition of DefSI does not match with SI");
7035     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
7036   }
7037 
7038   assert(V && "Failed to get select true/false value");
7039   return V;
7040 }
7041 
7042 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
7043   assert(Shift->isShift() && "Expected a shift");
7044 
7045   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
7046   // general vector shifts, and (3) the shift amount is a select-of-splatted
7047   // values, hoist the shifts before the select:
7048   //   shift Op0, (select Cond, TVal, FVal) -->
7049   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
7050   //
7051   // This is inverting a generic IR transform when we know that the cost of a
7052   // general vector shift is more than the cost of 2 shift-by-scalars.
7053   // We can't do this effectively in SDAG because we may not be able to
7054   // determine if the select operands are splats from within a basic block.
7055   Type *Ty = Shift->getType();
7056   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
7057     return false;
7058   Value *Cond, *TVal, *FVal;
7059   if (!match(Shift->getOperand(1),
7060              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7061     return false;
7062   if (!isSplatValue(TVal) || !isSplatValue(FVal))
7063     return false;
7064 
7065   IRBuilder<> Builder(Shift);
7066   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
7067   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
7068   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
7069   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7070   replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
7071   Shift->eraseFromParent();
7072   return true;
7073 }
7074 
7075 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
7076   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
7077   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
7078          "Expected a funnel shift");
7079 
7080   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
7081   // than general vector shifts, and (3) the shift amount is select-of-splatted
7082   // values, hoist the funnel shifts before the select:
7083   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
7084   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
7085   //
7086   // This is inverting a generic IR transform when we know that the cost of a
7087   // general vector shift is more than the cost of 2 shift-by-scalars.
7088   // We can't do this effectively in SDAG because we may not be able to
7089   // determine if the select operands are splats from within a basic block.
7090   Type *Ty = Fsh->getType();
7091   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
7092     return false;
7093   Value *Cond, *TVal, *FVal;
7094   if (!match(Fsh->getOperand(2),
7095              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7096     return false;
7097   if (!isSplatValue(TVal) || !isSplatValue(FVal))
7098     return false;
7099 
7100   IRBuilder<> Builder(Fsh);
7101   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
7102   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
7103   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
7104   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7105   replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
7106   Fsh->eraseFromParent();
7107   return true;
7108 }
7109 
7110 /// If we have a SelectInst that will likely profit from branch prediction,
7111 /// turn it into a branch.
7112 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
7113   if (DisableSelectToBranch)
7114     return false;
7115 
7116   // If the SelectOptimize pass is enabled, selects have already been optimized.
7117   if (!getCGPassBuilderOption().DisableSelectOptimize)
7118     return false;
7119 
7120   // Find all consecutive select instructions that share the same condition.
7121   SmallVector<SelectInst *, 2> ASI;
7122   ASI.push_back(SI);
7123   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
7124        It != SI->getParent()->end(); ++It) {
7125     SelectInst *I = dyn_cast<SelectInst>(&*It);
7126     if (I && SI->getCondition() == I->getCondition()) {
7127       ASI.push_back(I);
7128     } else {
7129       break;
7130     }
7131   }
7132 
7133   SelectInst *LastSI = ASI.back();
7134   // Increment the current iterator to skip all the rest of select instructions
7135   // because they will be either "not lowered" or "all lowered" to branch.
7136   CurInstIterator = std::next(LastSI->getIterator());
7137   // Examine debug-info attached to the consecutive select instructions. They
7138   // won't be individually optimised by optimizeInst, so we need to perform
7139   // DbgVariableRecord maintenence here instead.
7140   for (SelectInst *SI : ArrayRef(ASI).drop_front())
7141     fixupDbgVariableRecordsOnInst(*SI);
7142 
7143   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
7144 
7145   // Can we convert the 'select' to CF ?
7146   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
7147     return false;
7148 
7149   TargetLowering::SelectSupportKind SelectKind;
7150   if (SI->getType()->isVectorTy())
7151     SelectKind = TargetLowering::ScalarCondVectorVal;
7152   else
7153     SelectKind = TargetLowering::ScalarValSelect;
7154 
7155   if (TLI->isSelectSupported(SelectKind) &&
7156       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
7157        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
7158     return false;
7159 
7160   // The DominatorTree needs to be rebuilt by any consumers after this
7161   // transformation. We simply reset here rather than setting the ModifiedDT
7162   // flag to avoid restarting the function walk in runOnFunction for each
7163   // select optimized.
7164   DT.reset();
7165 
7166   // Transform a sequence like this:
7167   //    start:
7168   //       %cmp = cmp uge i32 %a, %b
7169   //       %sel = select i1 %cmp, i32 %c, i32 %d
7170   //
7171   // Into:
7172   //    start:
7173   //       %cmp = cmp uge i32 %a, %b
7174   //       %cmp.frozen = freeze %cmp
7175   //       br i1 %cmp.frozen, label %select.true, label %select.false
7176   //    select.true:
7177   //       br label %select.end
7178   //    select.false:
7179   //       br label %select.end
7180   //    select.end:
7181   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7182   //
7183   // %cmp should be frozen, otherwise it may introduce undefined behavior.
7184   // In addition, we may sink instructions that produce %c or %d from
7185   // the entry block into the destination(s) of the new branch.
7186   // If the true or false blocks do not contain a sunken instruction, that
7187   // block and its branch may be optimized away. In that case, one side of the
7188   // first branch will point directly to select.end, and the corresponding PHI
7189   // predecessor block will be the start block.
7190 
7191   // Collect values that go on the true side and the values that go on the false
7192   // side.
7193   SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7194   for (SelectInst *SI : ASI) {
7195     if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7196       TrueInstrs.push_back(cast<Instruction>(V));
7197     if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7198       FalseInstrs.push_back(cast<Instruction>(V));
7199   }
7200 
7201   // Split the select block, according to how many (if any) values go on each
7202   // side.
7203   BasicBlock *StartBlock = SI->getParent();
7204   BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI));
7205   // We should split before any debug-info.
7206   SplitPt.setHeadBit(true);
7207 
7208   IRBuilder<> IB(SI);
7209   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7210 
7211   BasicBlock *TrueBlock = nullptr;
7212   BasicBlock *FalseBlock = nullptr;
7213   BasicBlock *EndBlock = nullptr;
7214   BranchInst *TrueBranch = nullptr;
7215   BranchInst *FalseBranch = nullptr;
7216   if (TrueInstrs.size() == 0) {
7217     FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse(
7218         CondFr, SplitPt, false, nullptr, nullptr, LI));
7219     FalseBlock = FalseBranch->getParent();
7220     EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7221   } else if (FalseInstrs.size() == 0) {
7222     TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen(
7223         CondFr, SplitPt, false, nullptr, nullptr, LI));
7224     TrueBlock = TrueBranch->getParent();
7225     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7226   } else {
7227     Instruction *ThenTerm = nullptr;
7228     Instruction *ElseTerm = nullptr;
7229     SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm,
7230                                   nullptr, nullptr, LI);
7231     TrueBranch = cast<BranchInst>(ThenTerm);
7232     FalseBranch = cast<BranchInst>(ElseTerm);
7233     TrueBlock = TrueBranch->getParent();
7234     FalseBlock = FalseBranch->getParent();
7235     EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7236   }
7237 
7238   EndBlock->setName("select.end");
7239   if (TrueBlock)
7240     TrueBlock->setName("select.true.sink");
7241   if (FalseBlock)
7242     FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7243                                                 : "select.false.sink");
7244 
7245   if (IsHugeFunc) {
7246     if (TrueBlock)
7247       FreshBBs.insert(TrueBlock);
7248     if (FalseBlock)
7249       FreshBBs.insert(FalseBlock);
7250     FreshBBs.insert(EndBlock);
7251   }
7252 
7253   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
7254 
7255   static const unsigned MD[] = {
7256       LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7257       LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7258   StartBlock->getTerminator()->copyMetadata(*SI, MD);
7259 
7260   // Sink expensive instructions into the conditional blocks to avoid executing
7261   // them speculatively.
7262   for (Instruction *I : TrueInstrs)
7263     I->moveBefore(TrueBranch);
7264   for (Instruction *I : FalseInstrs)
7265     I->moveBefore(FalseBranch);
7266 
7267   // If we did not create a new block for one of the 'true' or 'false' paths
7268   // of the condition, it means that side of the branch goes to the end block
7269   // directly and the path originates from the start block from the point of
7270   // view of the new PHI.
7271   if (TrueBlock == nullptr)
7272     TrueBlock = StartBlock;
7273   else if (FalseBlock == nullptr)
7274     FalseBlock = StartBlock;
7275 
7276   SmallPtrSet<const Instruction *, 2> INS;
7277   INS.insert(ASI.begin(), ASI.end());
7278   // Use reverse iterator because later select may use the value of the
7279   // earlier select, and we need to propagate value through earlier select
7280   // to get the PHI operand.
7281   for (SelectInst *SI : llvm::reverse(ASI)) {
7282     // The select itself is replaced with a PHI Node.
7283     PHINode *PN = PHINode::Create(SI->getType(), 2, "");
7284     PN->insertBefore(EndBlock->begin());
7285     PN->takeName(SI);
7286     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7287     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7288     PN->setDebugLoc(SI->getDebugLoc());
7289 
7290     replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7291     SI->eraseFromParent();
7292     INS.erase(SI);
7293     ++NumSelectsExpanded;
7294   }
7295 
7296   // Instruct OptimizeBlock to skip to the next block.
7297   CurInstIterator = StartBlock->end();
7298   return true;
7299 }
7300 
7301 /// Some targets only accept certain types for splat inputs. For example a VDUP
7302 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7303 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7304 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7305   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7306   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7307                             m_Undef(), m_ZeroMask())))
7308     return false;
7309   Type *NewType = TLI->shouldConvertSplatType(SVI);
7310   if (!NewType)
7311     return false;
7312 
7313   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7314   assert(!NewType->isVectorTy() && "Expected a scalar type!");
7315   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7316          "Expected a type of the same size!");
7317   auto *NewVecType =
7318       FixedVectorType::get(NewType, SVIVecType->getNumElements());
7319 
7320   // Create a bitcast (shuffle (insert (bitcast(..))))
7321   IRBuilder<> Builder(SVI->getContext());
7322   Builder.SetInsertPoint(SVI);
7323   Value *BC1 = Builder.CreateBitCast(
7324       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7325   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7326   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7327 
7328   replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7329   RecursivelyDeleteTriviallyDeadInstructions(
7330       SVI, TLInfo, nullptr,
7331       [&](Value *V) { removeAllAssertingVHReferences(V); });
7332 
7333   // Also hoist the bitcast up to its operand if it they are not in the same
7334   // block.
7335   if (auto *BCI = dyn_cast<Instruction>(BC1))
7336     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7337       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7338           !Op->isTerminator() && !Op->isEHPad())
7339         BCI->moveAfter(Op);
7340 
7341   return true;
7342 }
7343 
7344 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7345   // If the operands of I can be folded into a target instruction together with
7346   // I, duplicate and sink them.
7347   SmallVector<Use *, 4> OpsToSink;
7348   if (!TLI->shouldSinkOperands(I, OpsToSink))
7349     return false;
7350 
7351   // OpsToSink can contain multiple uses in a use chain (e.g.
7352   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7353   // uses must come first, so we process the ops in reverse order so as to not
7354   // create invalid IR.
7355   BasicBlock *TargetBB = I->getParent();
7356   bool Changed = false;
7357   SmallVector<Use *, 4> ToReplace;
7358   Instruction *InsertPoint = I;
7359   DenseMap<const Instruction *, unsigned long> InstOrdering;
7360   unsigned long InstNumber = 0;
7361   for (const auto &I : *TargetBB)
7362     InstOrdering[&I] = InstNumber++;
7363 
7364   for (Use *U : reverse(OpsToSink)) {
7365     auto *UI = cast<Instruction>(U->get());
7366     if (isa<PHINode>(UI))
7367       continue;
7368     if (UI->getParent() == TargetBB) {
7369       if (InstOrdering[UI] < InstOrdering[InsertPoint])
7370         InsertPoint = UI;
7371       continue;
7372     }
7373     ToReplace.push_back(U);
7374   }
7375 
7376   SetVector<Instruction *> MaybeDead;
7377   DenseMap<Instruction *, Instruction *> NewInstructions;
7378   for (Use *U : ToReplace) {
7379     auto *UI = cast<Instruction>(U->get());
7380     Instruction *NI = UI->clone();
7381 
7382     if (IsHugeFunc) {
7383       // Now we clone an instruction, its operands' defs may sink to this BB
7384       // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7385       for (unsigned I = 0; I < NI->getNumOperands(); ++I) {
7386         auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I));
7387         if (!OpDef)
7388           continue;
7389         FreshBBs.insert(OpDef->getParent());
7390       }
7391     }
7392 
7393     NewInstructions[UI] = NI;
7394     MaybeDead.insert(UI);
7395     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7396     NI->insertBefore(InsertPoint);
7397     InsertPoint = NI;
7398     InsertedInsts.insert(NI);
7399 
7400     // Update the use for the new instruction, making sure that we update the
7401     // sunk instruction uses, if it is part of a chain that has already been
7402     // sunk.
7403     Instruction *OldI = cast<Instruction>(U->getUser());
7404     if (NewInstructions.count(OldI))
7405       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7406     else
7407       U->set(NI);
7408     Changed = true;
7409   }
7410 
7411   // Remove instructions that are dead after sinking.
7412   for (auto *I : MaybeDead) {
7413     if (!I->hasNUsesOrMore(1)) {
7414       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7415       I->eraseFromParent();
7416     }
7417   }
7418 
7419   return Changed;
7420 }
7421 
7422 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7423   Value *Cond = SI->getCondition();
7424   Type *OldType = Cond->getType();
7425   LLVMContext &Context = Cond->getContext();
7426   EVT OldVT = TLI->getValueType(*DL, OldType);
7427   MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7428   unsigned RegWidth = RegType.getSizeInBits();
7429 
7430   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7431     return false;
7432 
7433   // If the register width is greater than the type width, expand the condition
7434   // of the switch instruction and each case constant to the width of the
7435   // register. By widening the type of the switch condition, subsequent
7436   // comparisons (for case comparisons) will not need to be extended to the
7437   // preferred register width, so we will potentially eliminate N-1 extends,
7438   // where N is the number of cases in the switch.
7439   auto *NewType = Type::getIntNTy(Context, RegWidth);
7440 
7441   // Extend the switch condition and case constants using the target preferred
7442   // extend unless the switch condition is a function argument with an extend
7443   // attribute. In that case, we can avoid an unnecessary mask/extension by
7444   // matching the argument extension instead.
7445   Instruction::CastOps ExtType = Instruction::ZExt;
7446   // Some targets prefer SExt over ZExt.
7447   if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7448     ExtType = Instruction::SExt;
7449 
7450   if (auto *Arg = dyn_cast<Argument>(Cond)) {
7451     if (Arg->hasSExtAttr())
7452       ExtType = Instruction::SExt;
7453     if (Arg->hasZExtAttr())
7454       ExtType = Instruction::ZExt;
7455   }
7456 
7457   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7458   ExtInst->insertBefore(SI);
7459   ExtInst->setDebugLoc(SI->getDebugLoc());
7460   SI->setCondition(ExtInst);
7461   for (auto Case : SI->cases()) {
7462     const APInt &NarrowConst = Case.getCaseValue()->getValue();
7463     APInt WideConst = (ExtType == Instruction::ZExt)
7464                           ? NarrowConst.zext(RegWidth)
7465                           : NarrowConst.sext(RegWidth);
7466     Case.setValue(ConstantInt::get(Context, WideConst));
7467   }
7468 
7469   return true;
7470 }
7471 
7472 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7473   // The SCCP optimization tends to produce code like this:
7474   //   switch(x) { case 42: phi(42, ...) }
7475   // Materializing the constant for the phi-argument needs instructions; So we
7476   // change the code to:
7477   //   switch(x) { case 42: phi(x, ...) }
7478 
7479   Value *Condition = SI->getCondition();
7480   // Avoid endless loop in degenerate case.
7481   if (isa<ConstantInt>(*Condition))
7482     return false;
7483 
7484   bool Changed = false;
7485   BasicBlock *SwitchBB = SI->getParent();
7486   Type *ConditionType = Condition->getType();
7487 
7488   for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7489     ConstantInt *CaseValue = Case.getCaseValue();
7490     BasicBlock *CaseBB = Case.getCaseSuccessor();
7491     // Set to true if we previously checked that `CaseBB` is only reached by
7492     // a single case from this switch.
7493     bool CheckedForSinglePred = false;
7494     for (PHINode &PHI : CaseBB->phis()) {
7495       Type *PHIType = PHI.getType();
7496       // If ZExt is free then we can also catch patterns like this:
7497       //   switch((i32)x) { case 42: phi((i64)42, ...); }
7498       // and replace `(i64)42` with `zext i32 %x to i64`.
7499       bool TryZExt =
7500           PHIType->isIntegerTy() &&
7501           PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7502           TLI->isZExtFree(ConditionType, PHIType);
7503       if (PHIType == ConditionType || TryZExt) {
7504         // Set to true to skip this case because of multiple preds.
7505         bool SkipCase = false;
7506         Value *Replacement = nullptr;
7507         for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7508           Value *PHIValue = PHI.getIncomingValue(I);
7509           if (PHIValue != CaseValue) {
7510             if (!TryZExt)
7511               continue;
7512             ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7513             if (!PHIValueInt ||
7514                 PHIValueInt->getValue() !=
7515                     CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7516               continue;
7517           }
7518           if (PHI.getIncomingBlock(I) != SwitchBB)
7519             continue;
7520           // We cannot optimize if there are multiple case labels jumping to
7521           // this block.  This check may get expensive when there are many
7522           // case labels so we test for it last.
7523           if (!CheckedForSinglePred) {
7524             CheckedForSinglePred = true;
7525             if (SI->findCaseDest(CaseBB) == nullptr) {
7526               SkipCase = true;
7527               break;
7528             }
7529           }
7530 
7531           if (Replacement == nullptr) {
7532             if (PHIValue == CaseValue) {
7533               Replacement = Condition;
7534             } else {
7535               IRBuilder<> Builder(SI);
7536               Replacement = Builder.CreateZExt(Condition, PHIType);
7537             }
7538           }
7539           PHI.setIncomingValue(I, Replacement);
7540           Changed = true;
7541         }
7542         if (SkipCase)
7543           break;
7544       }
7545     }
7546   }
7547   return Changed;
7548 }
7549 
7550 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7551   bool Changed = optimizeSwitchType(SI);
7552   Changed |= optimizeSwitchPhiConstants(SI);
7553   return Changed;
7554 }
7555 
7556 namespace {
7557 
7558 /// Helper class to promote a scalar operation to a vector one.
7559 /// This class is used to move downward extractelement transition.
7560 /// E.g.,
7561 /// a = vector_op <2 x i32>
7562 /// b = extractelement <2 x i32> a, i32 0
7563 /// c = scalar_op b
7564 /// store c
7565 ///
7566 /// =>
7567 /// a = vector_op <2 x i32>
7568 /// c = vector_op a (equivalent to scalar_op on the related lane)
7569 /// * d = extractelement <2 x i32> c, i32 0
7570 /// * store d
7571 /// Assuming both extractelement and store can be combine, we get rid of the
7572 /// transition.
7573 class VectorPromoteHelper {
7574   /// DataLayout associated with the current module.
7575   const DataLayout &DL;
7576 
7577   /// Used to perform some checks on the legality of vector operations.
7578   const TargetLowering &TLI;
7579 
7580   /// Used to estimated the cost of the promoted chain.
7581   const TargetTransformInfo &TTI;
7582 
7583   /// The transition being moved downwards.
7584   Instruction *Transition;
7585 
7586   /// The sequence of instructions to be promoted.
7587   SmallVector<Instruction *, 4> InstsToBePromoted;
7588 
7589   /// Cost of combining a store and an extract.
7590   unsigned StoreExtractCombineCost;
7591 
7592   /// Instruction that will be combined with the transition.
7593   Instruction *CombineInst = nullptr;
7594 
7595   /// The instruction that represents the current end of the transition.
7596   /// Since we are faking the promotion until we reach the end of the chain
7597   /// of computation, we need a way to get the current end of the transition.
7598   Instruction *getEndOfTransition() const {
7599     if (InstsToBePromoted.empty())
7600       return Transition;
7601     return InstsToBePromoted.back();
7602   }
7603 
7604   /// Return the index of the original value in the transition.
7605   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7606   /// c, is at index 0.
7607   unsigned getTransitionOriginalValueIdx() const {
7608     assert(isa<ExtractElementInst>(Transition) &&
7609            "Other kind of transitions are not supported yet");
7610     return 0;
7611   }
7612 
7613   /// Return the index of the index in the transition.
7614   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7615   /// is at index 1.
7616   unsigned getTransitionIdx() const {
7617     assert(isa<ExtractElementInst>(Transition) &&
7618            "Other kind of transitions are not supported yet");
7619     return 1;
7620   }
7621 
7622   /// Get the type of the transition.
7623   /// This is the type of the original value.
7624   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7625   /// transition is <2 x i32>.
7626   Type *getTransitionType() const {
7627     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7628   }
7629 
7630   /// Promote \p ToBePromoted by moving \p Def downward through.
7631   /// I.e., we have the following sequence:
7632   /// Def = Transition <ty1> a to <ty2>
7633   /// b = ToBePromoted <ty2> Def, ...
7634   /// =>
7635   /// b = ToBePromoted <ty1> a, ...
7636   /// Def = Transition <ty1> ToBePromoted to <ty2>
7637   void promoteImpl(Instruction *ToBePromoted);
7638 
7639   /// Check whether or not it is profitable to promote all the
7640   /// instructions enqueued to be promoted.
7641   bool isProfitableToPromote() {
7642     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7643     unsigned Index = isa<ConstantInt>(ValIdx)
7644                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
7645                          : -1;
7646     Type *PromotedType = getTransitionType();
7647 
7648     StoreInst *ST = cast<StoreInst>(CombineInst);
7649     unsigned AS = ST->getPointerAddressSpace();
7650     // Check if this store is supported.
7651     if (!TLI.allowsMisalignedMemoryAccesses(
7652             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7653             ST->getAlign())) {
7654       // If this is not supported, there is no way we can combine
7655       // the extract with the store.
7656       return false;
7657     }
7658 
7659     // The scalar chain of computation has to pay for the transition
7660     // scalar to vector.
7661     // The vector chain has to account for the combining cost.
7662     enum TargetTransformInfo::TargetCostKind CostKind =
7663         TargetTransformInfo::TCK_RecipThroughput;
7664     InstructionCost ScalarCost =
7665         TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
7666     InstructionCost VectorCost = StoreExtractCombineCost;
7667     for (const auto &Inst : InstsToBePromoted) {
7668       // Compute the cost.
7669       // By construction, all instructions being promoted are arithmetic ones.
7670       // Moreover, one argument is a constant that can be viewed as a splat
7671       // constant.
7672       Value *Arg0 = Inst->getOperand(0);
7673       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7674                             isa<ConstantFP>(Arg0);
7675       TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
7676       if (IsArg0Constant)
7677         Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7678       else
7679         Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7680 
7681       ScalarCost += TTI.getArithmeticInstrCost(
7682           Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
7683       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7684                                                CostKind, Arg0Info, Arg1Info);
7685     }
7686     LLVM_DEBUG(
7687         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7688                << ScalarCost << "\nVector: " << VectorCost << '\n');
7689     return ScalarCost > VectorCost;
7690   }
7691 
7692   /// Generate a constant vector with \p Val with the same
7693   /// number of elements as the transition.
7694   /// \p UseSplat defines whether or not \p Val should be replicated
7695   /// across the whole vector.
7696   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7697   /// otherwise we generate a vector with as many undef as possible:
7698   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7699   /// used at the index of the extract.
7700   Value *getConstantVector(Constant *Val, bool UseSplat) const {
7701     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7702     if (!UseSplat) {
7703       // If we cannot determine where the constant must be, we have to
7704       // use a splat constant.
7705       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7706       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7707         ExtractIdx = CstVal->getSExtValue();
7708       else
7709         UseSplat = true;
7710     }
7711 
7712     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7713     if (UseSplat)
7714       return ConstantVector::getSplat(EC, Val);
7715 
7716     if (!EC.isScalable()) {
7717       SmallVector<Constant *, 4> ConstVec;
7718       UndefValue *UndefVal = UndefValue::get(Val->getType());
7719       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7720         if (Idx == ExtractIdx)
7721           ConstVec.push_back(Val);
7722         else
7723           ConstVec.push_back(UndefVal);
7724       }
7725       return ConstantVector::get(ConstVec);
7726     } else
7727       llvm_unreachable(
7728           "Generate scalable vector for non-splat is unimplemented");
7729   }
7730 
7731   /// Check if promoting to a vector type an operand at \p OperandIdx
7732   /// in \p Use can trigger undefined behavior.
7733   static bool canCauseUndefinedBehavior(const Instruction *Use,
7734                                         unsigned OperandIdx) {
7735     // This is not safe to introduce undef when the operand is on
7736     // the right hand side of a division-like instruction.
7737     if (OperandIdx != 1)
7738       return false;
7739     switch (Use->getOpcode()) {
7740     default:
7741       return false;
7742     case Instruction::SDiv:
7743     case Instruction::UDiv:
7744     case Instruction::SRem:
7745     case Instruction::URem:
7746       return true;
7747     case Instruction::FDiv:
7748     case Instruction::FRem:
7749       return !Use->hasNoNaNs();
7750     }
7751     llvm_unreachable(nullptr);
7752   }
7753 
7754 public:
7755   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7756                       const TargetTransformInfo &TTI, Instruction *Transition,
7757                       unsigned CombineCost)
7758       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7759         StoreExtractCombineCost(CombineCost) {
7760     assert(Transition && "Do not know how to promote null");
7761   }
7762 
7763   /// Check if we can promote \p ToBePromoted to \p Type.
7764   bool canPromote(const Instruction *ToBePromoted) const {
7765     // We could support CastInst too.
7766     return isa<BinaryOperator>(ToBePromoted);
7767   }
7768 
7769   /// Check if it is profitable to promote \p ToBePromoted
7770   /// by moving downward the transition through.
7771   bool shouldPromote(const Instruction *ToBePromoted) const {
7772     // Promote only if all the operands can be statically expanded.
7773     // Indeed, we do not want to introduce any new kind of transitions.
7774     for (const Use &U : ToBePromoted->operands()) {
7775       const Value *Val = U.get();
7776       if (Val == getEndOfTransition()) {
7777         // If the use is a division and the transition is on the rhs,
7778         // we cannot promote the operation, otherwise we may create a
7779         // division by zero.
7780         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7781           return false;
7782         continue;
7783       }
7784       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7785           !isa<ConstantFP>(Val))
7786         return false;
7787     }
7788     // Check that the resulting operation is legal.
7789     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7790     if (!ISDOpcode)
7791       return false;
7792     return StressStoreExtract ||
7793            TLI.isOperationLegalOrCustom(
7794                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7795   }
7796 
7797   /// Check whether or not \p Use can be combined
7798   /// with the transition.
7799   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7800   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7801 
7802   /// Record \p ToBePromoted as part of the chain to be promoted.
7803   void enqueueForPromotion(Instruction *ToBePromoted) {
7804     InstsToBePromoted.push_back(ToBePromoted);
7805   }
7806 
7807   /// Set the instruction that will be combined with the transition.
7808   void recordCombineInstruction(Instruction *ToBeCombined) {
7809     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7810     CombineInst = ToBeCombined;
7811   }
7812 
7813   /// Promote all the instructions enqueued for promotion if it is
7814   /// is profitable.
7815   /// \return True if the promotion happened, false otherwise.
7816   bool promote() {
7817     // Check if there is something to promote.
7818     // Right now, if we do not have anything to combine with,
7819     // we assume the promotion is not profitable.
7820     if (InstsToBePromoted.empty() || !CombineInst)
7821       return false;
7822 
7823     // Check cost.
7824     if (!StressStoreExtract && !isProfitableToPromote())
7825       return false;
7826 
7827     // Promote.
7828     for (auto &ToBePromoted : InstsToBePromoted)
7829       promoteImpl(ToBePromoted);
7830     InstsToBePromoted.clear();
7831     return true;
7832   }
7833 };
7834 
7835 } // end anonymous namespace
7836 
7837 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7838   // At this point, we know that all the operands of ToBePromoted but Def
7839   // can be statically promoted.
7840   // For Def, we need to use its parameter in ToBePromoted:
7841   // b = ToBePromoted ty1 a
7842   // Def = Transition ty1 b to ty2
7843   // Move the transition down.
7844   // 1. Replace all uses of the promoted operation by the transition.
7845   // = ... b => = ... Def.
7846   assert(ToBePromoted->getType() == Transition->getType() &&
7847          "The type of the result of the transition does not match "
7848          "the final type");
7849   ToBePromoted->replaceAllUsesWith(Transition);
7850   // 2. Update the type of the uses.
7851   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7852   Type *TransitionTy = getTransitionType();
7853   ToBePromoted->mutateType(TransitionTy);
7854   // 3. Update all the operands of the promoted operation with promoted
7855   // operands.
7856   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7857   for (Use &U : ToBePromoted->operands()) {
7858     Value *Val = U.get();
7859     Value *NewVal = nullptr;
7860     if (Val == Transition)
7861       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7862     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7863              isa<ConstantFP>(Val)) {
7864       // Use a splat constant if it is not safe to use undef.
7865       NewVal = getConstantVector(
7866           cast<Constant>(Val),
7867           isa<UndefValue>(Val) ||
7868               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7869     } else
7870       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7871                        "this?");
7872     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7873   }
7874   Transition->moveAfter(ToBePromoted);
7875   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7876 }
7877 
7878 /// Some targets can do store(extractelement) with one instruction.
7879 /// Try to push the extractelement towards the stores when the target
7880 /// has this feature and this is profitable.
7881 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7882   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7883   if (DisableStoreExtract ||
7884       (!StressStoreExtract &&
7885        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7886                                        Inst->getOperand(1), CombineCost)))
7887     return false;
7888 
7889   // At this point we know that Inst is a vector to scalar transition.
7890   // Try to move it down the def-use chain, until:
7891   // - We can combine the transition with its single use
7892   //   => we got rid of the transition.
7893   // - We escape the current basic block
7894   //   => we would need to check that we are moving it at a cheaper place and
7895   //      we do not do that for now.
7896   BasicBlock *Parent = Inst->getParent();
7897   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7898   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7899   // If the transition has more than one use, assume this is not going to be
7900   // beneficial.
7901   while (Inst->hasOneUse()) {
7902     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7903     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7904 
7905     if (ToBePromoted->getParent() != Parent) {
7906       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7907                         << ToBePromoted->getParent()->getName()
7908                         << ") than the transition (" << Parent->getName()
7909                         << ").\n");
7910       return false;
7911     }
7912 
7913     if (VPH.canCombine(ToBePromoted)) {
7914       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7915                         << "will be combined with: " << *ToBePromoted << '\n');
7916       VPH.recordCombineInstruction(ToBePromoted);
7917       bool Changed = VPH.promote();
7918       NumStoreExtractExposed += Changed;
7919       return Changed;
7920     }
7921 
7922     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7923     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7924       return false;
7925 
7926     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7927 
7928     VPH.enqueueForPromotion(ToBePromoted);
7929     Inst = ToBePromoted;
7930   }
7931   return false;
7932 }
7933 
7934 /// For the instruction sequence of store below, F and I values
7935 /// are bundled together as an i64 value before being stored into memory.
7936 /// Sometimes it is more efficient to generate separate stores for F and I,
7937 /// which can remove the bitwise instructions or sink them to colder places.
7938 ///
7939 ///   (store (or (zext (bitcast F to i32) to i64),
7940 ///              (shl (zext I to i64), 32)), addr)  -->
7941 ///   (store F, addr) and (store I, addr+4)
7942 ///
7943 /// Similarly, splitting for other merged store can also be beneficial, like:
7944 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7945 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7946 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7947 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7948 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7949 ///
7950 /// We allow each target to determine specifically which kind of splitting is
7951 /// supported.
7952 ///
7953 /// The store patterns are commonly seen from the simple code snippet below
7954 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7955 ///   void goo(const std::pair<int, float> &);
7956 ///   hoo() {
7957 ///     ...
7958 ///     goo(std::make_pair(tmp, ftmp));
7959 ///     ...
7960 ///   }
7961 ///
7962 /// Although we already have similar splitting in DAG Combine, we duplicate
7963 /// it in CodeGenPrepare to catch the case in which pattern is across
7964 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7965 /// during code expansion.
7966 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7967                                 const TargetLowering &TLI) {
7968   // Handle simple but common cases only.
7969   Type *StoreType = SI.getValueOperand()->getType();
7970 
7971   // The code below assumes shifting a value by <number of bits>,
7972   // whereas scalable vectors would have to be shifted by
7973   // <2log(vscale) + number of bits> in order to store the
7974   // low/high parts. Bailing out for now.
7975   if (StoreType->isScalableTy())
7976     return false;
7977 
7978   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7979       DL.getTypeSizeInBits(StoreType) == 0)
7980     return false;
7981 
7982   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7983   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7984   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7985     return false;
7986 
7987   // Don't split the store if it is volatile.
7988   if (SI.isVolatile())
7989     return false;
7990 
7991   // Match the following patterns:
7992   // (store (or (zext LValue to i64),
7993   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7994   //  or
7995   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7996   //            (zext LValue to i64),
7997   // Expect both operands of OR and the first operand of SHL have only
7998   // one use.
7999   Value *LValue, *HValue;
8000   if (!match(SI.getValueOperand(),
8001              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
8002                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
8003                                    m_SpecificInt(HalfValBitSize))))))
8004     return false;
8005 
8006   // Check LValue and HValue are int with size less or equal than 32.
8007   if (!LValue->getType()->isIntegerTy() ||
8008       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
8009       !HValue->getType()->isIntegerTy() ||
8010       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
8011     return false;
8012 
8013   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
8014   // as the input of target query.
8015   auto *LBC = dyn_cast<BitCastInst>(LValue);
8016   auto *HBC = dyn_cast<BitCastInst>(HValue);
8017   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
8018                   : EVT::getEVT(LValue->getType());
8019   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
8020                    : EVT::getEVT(HValue->getType());
8021   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
8022     return false;
8023 
8024   // Start to split store.
8025   IRBuilder<> Builder(SI.getContext());
8026   Builder.SetInsertPoint(&SI);
8027 
8028   // If LValue/HValue is a bitcast in another BB, create a new one in current
8029   // BB so it may be merged with the splitted stores by dag combiner.
8030   if (LBC && LBC->getParent() != SI.getParent())
8031     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
8032   if (HBC && HBC->getParent() != SI.getParent())
8033     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
8034 
8035   bool IsLE = SI.getDataLayout().isLittleEndian();
8036   auto CreateSplitStore = [&](Value *V, bool Upper) {
8037     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
8038     Value *Addr = SI.getPointerOperand();
8039     Align Alignment = SI.getAlign();
8040     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
8041     if (IsOffsetStore) {
8042       Addr = Builder.CreateGEP(
8043           SplitStoreType, Addr,
8044           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
8045 
8046       // When splitting the store in half, naturally one half will retain the
8047       // alignment of the original wider store, regardless of whether it was
8048       // over-aligned or not, while the other will require adjustment.
8049       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
8050     }
8051     Builder.CreateAlignedStore(V, Addr, Alignment);
8052   };
8053 
8054   CreateSplitStore(LValue, false);
8055   CreateSplitStore(HValue, true);
8056 
8057   // Delete the old store.
8058   SI.eraseFromParent();
8059   return true;
8060 }
8061 
8062 // Return true if the GEP has two operands, the first operand is of a sequential
8063 // type, and the second operand is a constant.
8064 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
8065   gep_type_iterator I = gep_type_begin(*GEP);
8066   return GEP->getNumOperands() == 2 && I.isSequential() &&
8067          isa<ConstantInt>(GEP->getOperand(1));
8068 }
8069 
8070 // Try unmerging GEPs to reduce liveness interference (register pressure) across
8071 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
8072 // reducing liveness interference across those edges benefits global register
8073 // allocation. Currently handles only certain cases.
8074 //
8075 // For example, unmerge %GEPI and %UGEPI as below.
8076 //
8077 // ---------- BEFORE ----------
8078 // SrcBlock:
8079 //   ...
8080 //   %GEPIOp = ...
8081 //   ...
8082 //   %GEPI = gep %GEPIOp, Idx
8083 //   ...
8084 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
8085 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
8086 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
8087 //   %UGEPI)
8088 //
8089 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
8090 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
8091 // ...
8092 //
8093 // DstBi:
8094 //   ...
8095 //   %UGEPI = gep %GEPIOp, UIdx
8096 // ...
8097 // ---------------------------
8098 //
8099 // ---------- AFTER ----------
8100 // SrcBlock:
8101 //   ... (same as above)
8102 //    (* %GEPI is still alive on the indirectbr edges)
8103 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
8104 //    unmerging)
8105 // ...
8106 //
8107 // DstBi:
8108 //   ...
8109 //   %UGEPI = gep %GEPI, (UIdx-Idx)
8110 //   ...
8111 // ---------------------------
8112 //
8113 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8114 // no longer alive on them.
8115 //
8116 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8117 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8118 // not to disable further simplications and optimizations as a result of GEP
8119 // merging.
8120 //
8121 // Note this unmerging may increase the length of the data flow critical path
8122 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8123 // between the register pressure and the length of data-flow critical
8124 // path. Restricting this to the uncommon IndirectBr case would minimize the
8125 // impact of potentially longer critical path, if any, and the impact on compile
8126 // time.
8127 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
8128                                              const TargetTransformInfo *TTI) {
8129   BasicBlock *SrcBlock = GEPI->getParent();
8130   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8131   // (non-IndirectBr) cases exit early here.
8132   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
8133     return false;
8134   // Check that GEPI is a simple gep with a single constant index.
8135   if (!GEPSequentialConstIndexed(GEPI))
8136     return false;
8137   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
8138   // Check that GEPI is a cheap one.
8139   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
8140                          TargetTransformInfo::TCK_SizeAndLatency) >
8141       TargetTransformInfo::TCC_Basic)
8142     return false;
8143   Value *GEPIOp = GEPI->getOperand(0);
8144   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8145   if (!isa<Instruction>(GEPIOp))
8146     return false;
8147   auto *GEPIOpI = cast<Instruction>(GEPIOp);
8148   if (GEPIOpI->getParent() != SrcBlock)
8149     return false;
8150   // Check that GEP is used outside the block, meaning it's alive on the
8151   // IndirectBr edge(s).
8152   if (llvm::none_of(GEPI->users(), [&](User *Usr) {
8153         if (auto *I = dyn_cast<Instruction>(Usr)) {
8154           if (I->getParent() != SrcBlock) {
8155             return true;
8156           }
8157         }
8158         return false;
8159       }))
8160     return false;
8161   // The second elements of the GEP chains to be unmerged.
8162   std::vector<GetElementPtrInst *> UGEPIs;
8163   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8164   // on IndirectBr edges.
8165   for (User *Usr : GEPIOp->users()) {
8166     if (Usr == GEPI)
8167       continue;
8168     // Check if Usr is an Instruction. If not, give up.
8169     if (!isa<Instruction>(Usr))
8170       return false;
8171     auto *UI = cast<Instruction>(Usr);
8172     // Check if Usr in the same block as GEPIOp, which is fine, skip.
8173     if (UI->getParent() == SrcBlock)
8174       continue;
8175     // Check if Usr is a GEP. If not, give up.
8176     if (!isa<GetElementPtrInst>(Usr))
8177       return false;
8178     auto *UGEPI = cast<GetElementPtrInst>(Usr);
8179     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8180     // the pointer operand to it. If so, record it in the vector. If not, give
8181     // up.
8182     if (!GEPSequentialConstIndexed(UGEPI))
8183       return false;
8184     if (UGEPI->getOperand(0) != GEPIOp)
8185       return false;
8186     if (UGEPI->getSourceElementType() != GEPI->getSourceElementType())
8187       return false;
8188     if (GEPIIdx->getType() !=
8189         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
8190       return false;
8191     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8192     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
8193                            TargetTransformInfo::TCK_SizeAndLatency) >
8194         TargetTransformInfo::TCC_Basic)
8195       return false;
8196     UGEPIs.push_back(UGEPI);
8197   }
8198   if (UGEPIs.size() == 0)
8199     return false;
8200   // Check the materializing cost of (Uidx-Idx).
8201   for (GetElementPtrInst *UGEPI : UGEPIs) {
8202     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8203     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8204     InstructionCost ImmCost = TTI->getIntImmCost(
8205         NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8206     if (ImmCost > TargetTransformInfo::TCC_Basic)
8207       return false;
8208   }
8209   // Now unmerge between GEPI and UGEPIs.
8210   for (GetElementPtrInst *UGEPI : UGEPIs) {
8211     UGEPI->setOperand(0, GEPI);
8212     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8213     Constant *NewUGEPIIdx = ConstantInt::get(
8214         GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8215     UGEPI->setOperand(1, NewUGEPIIdx);
8216     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8217     // inbounds to avoid UB.
8218     if (!GEPI->isInBounds()) {
8219       UGEPI->setIsInBounds(false);
8220     }
8221   }
8222   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8223   // alive on IndirectBr edges).
8224   assert(llvm::none_of(GEPIOp->users(),
8225                        [&](User *Usr) {
8226                          return cast<Instruction>(Usr)->getParent() != SrcBlock;
8227                        }) &&
8228          "GEPIOp is used outside SrcBlock");
8229   return true;
8230 }
8231 
8232 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8233                            SmallSet<BasicBlock *, 32> &FreshBBs,
8234                            bool IsHugeFunc) {
8235   // Try and convert
8236   //  %c = icmp ult %x, 8
8237   //  br %c, bla, blb
8238   //  %tc = lshr %x, 3
8239   // to
8240   //  %tc = lshr %x, 3
8241   //  %c = icmp eq %tc, 0
8242   //  br %c, bla, blb
8243   // Creating the cmp to zero can be better for the backend, especially if the
8244   // lshr produces flags that can be used automatically.
8245   if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8246     return false;
8247 
8248   ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8249   if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8250     return false;
8251 
8252   Value *X = Cmp->getOperand(0);
8253   APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8254 
8255   for (auto *U : X->users()) {
8256     Instruction *UI = dyn_cast<Instruction>(U);
8257     // A quick dominance check
8258     if (!UI ||
8259         (UI->getParent() != Branch->getParent() &&
8260          UI->getParent() != Branch->getSuccessor(0) &&
8261          UI->getParent() != Branch->getSuccessor(1)) ||
8262         (UI->getParent() != Branch->getParent() &&
8263          !UI->getParent()->getSinglePredecessor()))
8264       continue;
8265 
8266     if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8267         match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8268       IRBuilder<> Builder(Branch);
8269       if (UI->getParent() != Branch->getParent())
8270         UI->moveBefore(Branch);
8271       UI->dropPoisonGeneratingFlags();
8272       Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8273                                         ConstantInt::get(UI->getType(), 0));
8274       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8275       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8276       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8277       return true;
8278     }
8279     if (Cmp->isEquality() &&
8280         (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8281          match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
8282       IRBuilder<> Builder(Branch);
8283       if (UI->getParent() != Branch->getParent())
8284         UI->moveBefore(Branch);
8285       UI->dropPoisonGeneratingFlags();
8286       Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8287                                         ConstantInt::get(UI->getType(), 0));
8288       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8289       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8290       replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8291       return true;
8292     }
8293   }
8294   return false;
8295 }
8296 
8297 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8298   bool AnyChange = false;
8299   AnyChange = fixupDbgVariableRecordsOnInst(*I);
8300 
8301   // Bail out if we inserted the instruction to prevent optimizations from
8302   // stepping on each other's toes.
8303   if (InsertedInsts.count(I))
8304     return AnyChange;
8305 
8306   // TODO: Move into the switch on opcode below here.
8307   if (PHINode *P = dyn_cast<PHINode>(I)) {
8308     // It is possible for very late stage optimizations (such as SimplifyCFG)
8309     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
8310     // trivial PHI, go ahead and zap it here.
8311     if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8312       LargeOffsetGEPMap.erase(P);
8313       replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8314       P->eraseFromParent();
8315       ++NumPHIsElim;
8316       return true;
8317     }
8318     return AnyChange;
8319   }
8320 
8321   if (CastInst *CI = dyn_cast<CastInst>(I)) {
8322     // If the source of the cast is a constant, then this should have
8323     // already been constant folded.  The only reason NOT to constant fold
8324     // it is if something (e.g. LSR) was careful to place the constant
8325     // evaluation in a block other than then one that uses it (e.g. to hoist
8326     // the address of globals out of a loop).  If this is the case, we don't
8327     // want to forward-subst the cast.
8328     if (isa<Constant>(CI->getOperand(0)))
8329       return AnyChange;
8330 
8331     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8332       return true;
8333 
8334     if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) ||
8335          isa<TruncInst>(I)) &&
8336         TLI->optimizeExtendOrTruncateConversion(
8337             I, LI->getLoopFor(I->getParent()), *TTI))
8338       return true;
8339 
8340     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8341       /// Sink a zext or sext into its user blocks if the target type doesn't
8342       /// fit in one register
8343       if (TLI->getTypeAction(CI->getContext(),
8344                              TLI->getValueType(*DL, CI->getType())) ==
8345           TargetLowering::TypeExpandInteger) {
8346         return SinkCast(CI);
8347       } else {
8348         if (TLI->optimizeExtendOrTruncateConversion(
8349                 I, LI->getLoopFor(I->getParent()), *TTI))
8350           return true;
8351 
8352         bool MadeChange = optimizeExt(I);
8353         return MadeChange | optimizeExtUses(I);
8354       }
8355     }
8356     return AnyChange;
8357   }
8358 
8359   if (auto *Cmp = dyn_cast<CmpInst>(I))
8360     if (optimizeCmp(Cmp, ModifiedDT))
8361       return true;
8362 
8363   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8364     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8365     bool Modified = optimizeLoadExt(LI);
8366     unsigned AS = LI->getPointerAddressSpace();
8367     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8368     return Modified;
8369   }
8370 
8371   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8372     if (splitMergedValStore(*SI, *DL, *TLI))
8373       return true;
8374     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8375     unsigned AS = SI->getPointerAddressSpace();
8376     return optimizeMemoryInst(I, SI->getOperand(1),
8377                               SI->getOperand(0)->getType(), AS);
8378   }
8379 
8380   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8381     unsigned AS = RMW->getPointerAddressSpace();
8382     return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8383   }
8384 
8385   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8386     unsigned AS = CmpX->getPointerAddressSpace();
8387     return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8388                               CmpX->getCompareOperand()->getType(), AS);
8389   }
8390 
8391   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8392 
8393   if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8394       sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8395     return true;
8396 
8397   // TODO: Move this into the switch on opcode - it handles shifts already.
8398   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8399                 BinOp->getOpcode() == Instruction::LShr)) {
8400     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8401     if (CI && TLI->hasExtractBitsInsn())
8402       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8403         return true;
8404   }
8405 
8406   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8407     if (GEPI->hasAllZeroIndices()) {
8408       /// The GEP operand must be a pointer, so must its result -> BitCast
8409       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8410                                         GEPI->getName(), GEPI->getIterator());
8411       NC->setDebugLoc(GEPI->getDebugLoc());
8412       replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8413       RecursivelyDeleteTriviallyDeadInstructions(
8414           GEPI, TLInfo, nullptr,
8415           [&](Value *V) { removeAllAssertingVHReferences(V); });
8416       ++NumGEPsElim;
8417       optimizeInst(NC, ModifiedDT);
8418       return true;
8419     }
8420     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8421       return true;
8422     }
8423   }
8424 
8425   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8426     // freeze(icmp a, const)) -> icmp (freeze a), const
8427     // This helps generate efficient conditional jumps.
8428     Instruction *CmpI = nullptr;
8429     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8430       CmpI = II;
8431     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8432       CmpI = F->getFastMathFlags().none() ? F : nullptr;
8433 
8434     if (CmpI && CmpI->hasOneUse()) {
8435       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8436       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8437                     isa<ConstantPointerNull>(Op0);
8438       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8439                     isa<ConstantPointerNull>(Op1);
8440       if (Const0 || Const1) {
8441         if (!Const0 || !Const1) {
8442           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator());
8443           F->takeName(FI);
8444           CmpI->setOperand(Const0 ? 1 : 0, F);
8445         }
8446         replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
8447         FI->eraseFromParent();
8448         return true;
8449       }
8450     }
8451     return AnyChange;
8452   }
8453 
8454   if (tryToSinkFreeOperands(I))
8455     return true;
8456 
8457   switch (I->getOpcode()) {
8458   case Instruction::Shl:
8459   case Instruction::LShr:
8460   case Instruction::AShr:
8461     return optimizeShiftInst(cast<BinaryOperator>(I));
8462   case Instruction::Call:
8463     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8464   case Instruction::Select:
8465     return optimizeSelectInst(cast<SelectInst>(I));
8466   case Instruction::ShuffleVector:
8467     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8468   case Instruction::Switch:
8469     return optimizeSwitchInst(cast<SwitchInst>(I));
8470   case Instruction::ExtractElement:
8471     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8472   case Instruction::Br:
8473     return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
8474   }
8475 
8476   return AnyChange;
8477 }
8478 
8479 /// Given an OR instruction, check to see if this is a bitreverse
8480 /// idiom. If so, insert the new intrinsic and return true.
8481 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8482   if (!I.getType()->isIntegerTy() ||
8483       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8484                                      TLI->getValueType(*DL, I.getType(), true)))
8485     return false;
8486 
8487   SmallVector<Instruction *, 4> Insts;
8488   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8489     return false;
8490   Instruction *LastInst = Insts.back();
8491   replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
8492   RecursivelyDeleteTriviallyDeadInstructions(
8493       &I, TLInfo, nullptr,
8494       [&](Value *V) { removeAllAssertingVHReferences(V); });
8495   return true;
8496 }
8497 
8498 // In this pass we look for GEP and cast instructions that are used
8499 // across basic blocks and rewrite them to improve basic-block-at-a-time
8500 // selection.
8501 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
8502   SunkAddrs.clear();
8503   bool MadeChange = false;
8504 
8505   do {
8506     CurInstIterator = BB.begin();
8507     ModifiedDT = ModifyDT::NotModifyDT;
8508     while (CurInstIterator != BB.end()) {
8509       MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8510       if (ModifiedDT != ModifyDT::NotModifyDT) {
8511         // For huge function we tend to quickly go though the inner optmization
8512         // opportunities in the BB. So we go back to the BB head to re-optimize
8513         // each instruction instead of go back to the function head.
8514         if (IsHugeFunc) {
8515           DT.reset();
8516           getDT(*BB.getParent());
8517           break;
8518         } else {
8519           return true;
8520         }
8521       }
8522     }
8523   } while (ModifiedDT == ModifyDT::ModifyInstDT);
8524 
8525   bool MadeBitReverse = true;
8526   while (MadeBitReverse) {
8527     MadeBitReverse = false;
8528     for (auto &I : reverse(BB)) {
8529       if (makeBitReverse(I)) {
8530         MadeBitReverse = MadeChange = true;
8531         break;
8532       }
8533     }
8534   }
8535   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8536 
8537   return MadeChange;
8538 }
8539 
8540 // Some CGP optimizations may move or alter what's computed in a block. Check
8541 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8542 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8543   assert(isa<DbgValueInst>(I));
8544   DbgValueInst &DVI = *cast<DbgValueInst>(I);
8545 
8546   // Does this dbg.value refer to a sunk address calculation?
8547   bool AnyChange = false;
8548   SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8549                                      DVI.location_ops().end());
8550   for (Value *Location : LocationOps) {
8551     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8552     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8553     if (SunkAddr) {
8554       // Point dbg.value at locally computed address, which should give the best
8555       // opportunity to be accurately lowered. This update may change the type
8556       // of pointer being referred to; however this makes no difference to
8557       // debugging information, and we can't generate bitcasts that may affect
8558       // codegen.
8559       DVI.replaceVariableLocationOp(Location, SunkAddr);
8560       AnyChange = true;
8561     }
8562   }
8563   return AnyChange;
8564 }
8565 
8566 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) {
8567   bool AnyChange = false;
8568   for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
8569     AnyChange |= fixupDbgVariableRecord(DVR);
8570   return AnyChange;
8571 }
8572 
8573 // FIXME: should updating debug-info really cause the "changed" flag to fire,
8574 // which can cause a function to be reprocessed?
8575 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) {
8576   if (DVR.Type != DbgVariableRecord::LocationType::Value &&
8577       DVR.Type != DbgVariableRecord::LocationType::Assign)
8578     return false;
8579 
8580   // Does this DbgVariableRecord refer to a sunk address calculation?
8581   bool AnyChange = false;
8582   SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(),
8583                                      DVR.location_ops().end());
8584   for (Value *Location : LocationOps) {
8585     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8586     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8587     if (SunkAddr) {
8588       // Point dbg.value at locally computed address, which should give the best
8589       // opportunity to be accurately lowered. This update may change the type
8590       // of pointer being referred to; however this makes no difference to
8591       // debugging information, and we can't generate bitcasts that may affect
8592       // codegen.
8593       DVR.replaceVariableLocationOp(Location, SunkAddr);
8594       AnyChange = true;
8595     }
8596   }
8597   return AnyChange;
8598 }
8599 
8600 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) {
8601   DVI->removeFromParent();
8602   if (isa<PHINode>(VI))
8603     DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8604   else
8605     DVI->insertAfter(VI);
8606 }
8607 
8608 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) {
8609   DVR->removeFromParent();
8610   BasicBlock *VIBB = VI->getParent();
8611   if (isa<PHINode>(VI))
8612     VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt());
8613   else
8614     VIBB->insertDbgRecordAfter(DVR, VI);
8615 }
8616 
8617 // A llvm.dbg.value may be using a value before its definition, due to
8618 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8619 // them by moving the dbg.value to immediately after the value definition.
8620 // FIXME: Ideally this should never be necessary, and this has the potential
8621 // to re-order dbg.value intrinsics.
8622 bool CodeGenPrepare::placeDbgValues(Function &F) {
8623   bool MadeChange = false;
8624   DominatorTree DT(F);
8625 
8626   auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) {
8627     SmallVector<Instruction *, 4> VIs;
8628     for (Value *V : DbgItem->location_ops())
8629       if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8630         VIs.push_back(VI);
8631 
8632     // This item may depend on multiple instructions, complicating any
8633     // potential sink. This block takes the defensive approach, opting to
8634     // "undef" the item if it has more than one instruction and any of them do
8635     // not dominate iem.
8636     for (Instruction *VI : VIs) {
8637       if (VI->isTerminator())
8638         continue;
8639 
8640       // If VI is a phi in a block with an EHPad terminator, we can't insert
8641       // after it.
8642       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8643         continue;
8644 
8645       // If the defining instruction dominates the dbg.value, we do not need
8646       // to move the dbg.value.
8647       if (DT.dominates(VI, Position))
8648         continue;
8649 
8650       // If we depend on multiple instructions and any of them doesn't
8651       // dominate this DVI, we probably can't salvage it: moving it to
8652       // after any of the instructions could cause us to lose the others.
8653       if (VIs.size() > 1) {
8654         LLVM_DEBUG(
8655             dbgs()
8656             << "Unable to find valid location for Debug Value, undefing:\n"
8657             << *DbgItem);
8658         DbgItem->setKillLocation();
8659         break;
8660       }
8661 
8662       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8663                         << *DbgItem << ' ' << *VI);
8664       DbgInserterHelper(DbgItem, VI);
8665       MadeChange = true;
8666       ++NumDbgValueMoved;
8667     }
8668   };
8669 
8670   for (BasicBlock &BB : F) {
8671     for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8672       // Process dbg.value intrinsics.
8673       DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8674       if (DVI) {
8675         DbgProcessor(DVI, DVI);
8676         continue;
8677       }
8678 
8679       // If this isn't a dbg.value, process any attached DbgVariableRecord
8680       // records attached to this instruction.
8681       for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
8682                filterDbgVars(Insn.getDbgRecordRange()))) {
8683         if (DVR.Type != DbgVariableRecord::LocationType::Value)
8684           continue;
8685         DbgProcessor(&DVR, &Insn);
8686       }
8687     }
8688   }
8689 
8690   return MadeChange;
8691 }
8692 
8693 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8694 // probes can be chained dependencies of other regular DAG nodes and block DAG
8695 // combine optimizations.
8696 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8697   bool MadeChange = false;
8698   for (auto &Block : F) {
8699     // Move the rest probes to the beginning of the block.
8700     auto FirstInst = Block.getFirstInsertionPt();
8701     while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8702       ++FirstInst;
8703     BasicBlock::iterator I(FirstInst);
8704     I++;
8705     while (I != Block.end()) {
8706       if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8707         II->moveBefore(&*FirstInst);
8708         MadeChange = true;
8709       }
8710     }
8711   }
8712   return MadeChange;
8713 }
8714 
8715 /// Scale down both weights to fit into uint32_t.
8716 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8717   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8718   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8719   NewTrue = NewTrue / Scale;
8720   NewFalse = NewFalse / Scale;
8721 }
8722 
8723 /// Some targets prefer to split a conditional branch like:
8724 /// \code
8725 ///   %0 = icmp ne i32 %a, 0
8726 ///   %1 = icmp ne i32 %b, 0
8727 ///   %or.cond = or i1 %0, %1
8728 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
8729 /// \endcode
8730 /// into multiple branch instructions like:
8731 /// \code
8732 ///   bb1:
8733 ///     %0 = icmp ne i32 %a, 0
8734 ///     br i1 %0, label %TrueBB, label %bb2
8735 ///   bb2:
8736 ///     %1 = icmp ne i32 %b, 0
8737 ///     br i1 %1, label %TrueBB, label %FalseBB
8738 /// \endcode
8739 /// This usually allows instruction selection to do even further optimizations
8740 /// and combine the compare with the branch instruction. Currently this is
8741 /// applied for targets which have "cheap" jump instructions.
8742 ///
8743 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8744 ///
8745 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
8746   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8747     return false;
8748 
8749   bool MadeChange = false;
8750   for (auto &BB : F) {
8751     // Does this BB end with the following?
8752     //   %cond1 = icmp|fcmp|binary instruction ...
8753     //   %cond2 = icmp|fcmp|binary instruction ...
8754     //   %cond.or = or|and i1 %cond1, cond2
8755     //   br i1 %cond.or label %dest1, label %dest2"
8756     Instruction *LogicOp;
8757     BasicBlock *TBB, *FBB;
8758     if (!match(BB.getTerminator(),
8759                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8760       continue;
8761 
8762     auto *Br1 = cast<BranchInst>(BB.getTerminator());
8763     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8764       continue;
8765 
8766     // The merging of mostly empty BB can cause a degenerate branch.
8767     if (TBB == FBB)
8768       continue;
8769 
8770     unsigned Opc;
8771     Value *Cond1, *Cond2;
8772     if (match(LogicOp,
8773               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8774       Opc = Instruction::And;
8775     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8776                                         m_OneUse(m_Value(Cond2)))))
8777       Opc = Instruction::Or;
8778     else
8779       continue;
8780 
8781     auto IsGoodCond = [](Value *Cond) {
8782       return match(
8783           Cond,
8784           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8785                                            m_LogicalOr(m_Value(), m_Value()))));
8786     };
8787     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8788       continue;
8789 
8790     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8791 
8792     // Create a new BB.
8793     auto *TmpBB =
8794         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8795                            BB.getParent(), BB.getNextNode());
8796     if (IsHugeFunc)
8797       FreshBBs.insert(TmpBB);
8798 
8799     // Update original basic block by using the first condition directly by the
8800     // branch instruction and removing the no longer needed and/or instruction.
8801     Br1->setCondition(Cond1);
8802     LogicOp->eraseFromParent();
8803 
8804     // Depending on the condition we have to either replace the true or the
8805     // false successor of the original branch instruction.
8806     if (Opc == Instruction::And)
8807       Br1->setSuccessor(0, TmpBB);
8808     else
8809       Br1->setSuccessor(1, TmpBB);
8810 
8811     // Fill in the new basic block.
8812     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8813     if (auto *I = dyn_cast<Instruction>(Cond2)) {
8814       I->removeFromParent();
8815       I->insertBefore(Br2);
8816     }
8817 
8818     // Update PHI nodes in both successors. The original BB needs to be
8819     // replaced in one successor's PHI nodes, because the branch comes now from
8820     // the newly generated BB (NewBB). In the other successor we need to add one
8821     // incoming edge to the PHI nodes, because both branch instructions target
8822     // now the same successor. Depending on the original branch condition
8823     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8824     // we perform the correct update for the PHI nodes.
8825     // This doesn't change the successor order of the just created branch
8826     // instruction (or any other instruction).
8827     if (Opc == Instruction::Or)
8828       std::swap(TBB, FBB);
8829 
8830     // Replace the old BB with the new BB.
8831     TBB->replacePhiUsesWith(&BB, TmpBB);
8832 
8833     // Add another incoming edge from the new BB.
8834     for (PHINode &PN : FBB->phis()) {
8835       auto *Val = PN.getIncomingValueForBlock(&BB);
8836       PN.addIncoming(Val, TmpBB);
8837     }
8838 
8839     // Update the branch weights (from SelectionDAGBuilder::
8840     // FindMergedConditions).
8841     if (Opc == Instruction::Or) {
8842       // Codegen X | Y as:
8843       // BB1:
8844       //   jmp_if_X TBB
8845       //   jmp TmpBB
8846       // TmpBB:
8847       //   jmp_if_Y TBB
8848       //   jmp FBB
8849       //
8850 
8851       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8852       // The requirement is that
8853       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8854       //     = TrueProb for original BB.
8855       // Assuming the original weights are A and B, one choice is to set BB1's
8856       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8857       // assumes that
8858       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8859       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8860       // TmpBB, but the math is more complicated.
8861       uint64_t TrueWeight, FalseWeight;
8862       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8863         uint64_t NewTrueWeight = TrueWeight;
8864         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8865         scaleWeights(NewTrueWeight, NewFalseWeight);
8866         Br1->setMetadata(LLVMContext::MD_prof,
8867                          MDBuilder(Br1->getContext())
8868                              .createBranchWeights(TrueWeight, FalseWeight,
8869                                                   hasBranchWeightOrigin(*Br1)));
8870 
8871         NewTrueWeight = TrueWeight;
8872         NewFalseWeight = 2 * FalseWeight;
8873         scaleWeights(NewTrueWeight, NewFalseWeight);
8874         Br2->setMetadata(LLVMContext::MD_prof,
8875                          MDBuilder(Br2->getContext())
8876                              .createBranchWeights(TrueWeight, FalseWeight));
8877       }
8878     } else {
8879       // Codegen X & Y as:
8880       // BB1:
8881       //   jmp_if_X TmpBB
8882       //   jmp FBB
8883       // TmpBB:
8884       //   jmp_if_Y TBB
8885       //   jmp FBB
8886       //
8887       //  This requires creation of TmpBB after CurBB.
8888 
8889       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8890       // The requirement is that
8891       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8892       //     = FalseProb for original BB.
8893       // Assuming the original weights are A and B, one choice is to set BB1's
8894       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8895       // assumes that
8896       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8897       uint64_t TrueWeight, FalseWeight;
8898       if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8899         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8900         uint64_t NewFalseWeight = FalseWeight;
8901         scaleWeights(NewTrueWeight, NewFalseWeight);
8902         Br1->setMetadata(LLVMContext::MD_prof,
8903                          MDBuilder(Br1->getContext())
8904                              .createBranchWeights(TrueWeight, FalseWeight));
8905 
8906         NewTrueWeight = 2 * TrueWeight;
8907         NewFalseWeight = FalseWeight;
8908         scaleWeights(NewTrueWeight, NewFalseWeight);
8909         Br2->setMetadata(LLVMContext::MD_prof,
8910                          MDBuilder(Br2->getContext())
8911                              .createBranchWeights(TrueWeight, FalseWeight));
8912       }
8913     }
8914 
8915     ModifiedDT = ModifyDT::ModifyBBDT;
8916     MadeChange = true;
8917 
8918     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8919                TmpBB->dump());
8920   }
8921   return MadeChange;
8922 }
8923