xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp (revision c1d255d3ffdbe447de3ab875bf4e7d7accc5bfc5)
1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetLowering.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/SaveAndRestore.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 
28 using namespace llvm;
29 
30 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
31                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
32     : CallingConv(CC), IsVarArg(isVarArg), MF(mf),
33       TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) {
34   // No stack is used.
35   StackOffset = 0;
36 
37   clearByValRegsInfo();
38   UsedRegs.resize((TRI.getNumRegs()+31)/32);
39 }
40 
41 /// Allocate space on the stack large enough to pass an argument by value.
42 /// The size and alignment information of the argument is encoded in
43 /// its parameter attribute.
44 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
45                           CCValAssign::LocInfo LocInfo, int MinSize,
46                           Align MinAlign, ISD::ArgFlagsTy ArgFlags) {
47   Align Alignment = ArgFlags.getNonZeroByValAlign();
48   unsigned Size  = ArgFlags.getByValSize();
49   if (MinSize > (int)Size)
50     Size = MinSize;
51   if (MinAlign > Alignment)
52     Alignment = MinAlign;
53   ensureMaxAlignment(Alignment);
54   MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment);
55   Size = unsigned(alignTo(Size, MinAlign));
56   unsigned Offset = AllocateStack(Size, Alignment);
57   addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
58 }
59 
60 /// Mark a register and all of its aliases as allocated.
61 void CCState::MarkAllocated(MCPhysReg Reg) {
62   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
63     UsedRegs[*AI / 32] |= 1 << (*AI & 31);
64 }
65 
66 void CCState::MarkUnallocated(MCPhysReg Reg) {
67   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
68     UsedRegs[*AI / 32] &= ~(1 << (*AI & 31));
69 }
70 
71 bool CCState::IsShadowAllocatedReg(MCRegister Reg) const {
72   if (!isAllocated(Reg))
73     return false;
74 
75   for (auto const &ValAssign : Locs) {
76     if (ValAssign.isRegLoc()) {
77       for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true);
78            AI.isValid(); ++AI) {
79         if (*AI == Reg)
80           return false;
81       }
82     }
83   }
84   return true;
85 }
86 
87 /// Analyze an array of argument values,
88 /// incorporating info about the formals into this state.
89 void
90 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
91                                 CCAssignFn Fn) {
92   unsigned NumArgs = Ins.size();
93 
94   for (unsigned i = 0; i != NumArgs; ++i) {
95     MVT ArgVT = Ins[i].VT;
96     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
97     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
98       report_fatal_error("unable to allocate function argument #" + Twine(i));
99   }
100 }
101 
102 /// Analyze the return values of a function, returning true if the return can
103 /// be performed without sret-demotion and false otherwise.
104 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
105                           CCAssignFn Fn) {
106   // Determine which register each value should be copied into.
107   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
108     MVT VT = Outs[i].VT;
109     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
110     if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
111       return false;
112   }
113   return true;
114 }
115 
116 /// Analyze the returned values of a return,
117 /// incorporating info about the result values into this state.
118 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
119                             CCAssignFn Fn) {
120   // Determine which register each value should be copied into.
121   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
122     MVT VT = Outs[i].VT;
123     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
124     if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
125       report_fatal_error("unable to allocate function return #" + Twine(i));
126   }
127 }
128 
129 /// Analyze the outgoing arguments to a call,
130 /// incorporating info about the passed values into this state.
131 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
132                                   CCAssignFn Fn) {
133   unsigned NumOps = Outs.size();
134   for (unsigned i = 0; i != NumOps; ++i) {
135     MVT ArgVT = Outs[i].VT;
136     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
137     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
138 #ifndef NDEBUG
139       dbgs() << "Call operand #" << i << " has unhandled type "
140              << EVT(ArgVT).getEVTString() << '\n';
141 #endif
142       llvm_unreachable(nullptr);
143     }
144   }
145 }
146 
147 /// Same as above except it takes vectors of types and argument flags.
148 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
149                                   SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
150                                   CCAssignFn Fn) {
151   unsigned NumOps = ArgVTs.size();
152   for (unsigned i = 0; i != NumOps; ++i) {
153     MVT ArgVT = ArgVTs[i];
154     ISD::ArgFlagsTy ArgFlags = Flags[i];
155     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
156 #ifndef NDEBUG
157       dbgs() << "Call operand #" << i << " has unhandled type "
158              << EVT(ArgVT).getEVTString() << '\n';
159 #endif
160       llvm_unreachable(nullptr);
161     }
162   }
163 }
164 
165 /// Analyze the return values of a call, incorporating info about the passed
166 /// values into this state.
167 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
168                                 CCAssignFn Fn) {
169   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
170     MVT VT = Ins[i].VT;
171     ISD::ArgFlagsTy Flags = Ins[i].Flags;
172     if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
173 #ifndef NDEBUG
174       dbgs() << "Call result #" << i << " has unhandled type "
175              << EVT(VT).getEVTString() << '\n';
176 #endif
177       llvm_unreachable(nullptr);
178     }
179   }
180 }
181 
182 /// Same as above except it's specialized for calls that produce a single value.
183 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
184   if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
185 #ifndef NDEBUG
186     dbgs() << "Call result has unhandled type "
187            << EVT(VT).getEVTString() << '\n';
188 #endif
189     llvm_unreachable(nullptr);
190   }
191 }
192 
193 void CCState::ensureMaxAlignment(Align Alignment) {
194   if (!AnalyzingMustTailForwardedRegs)
195     MF.getFrameInfo().ensureMaxAlignment(Alignment);
196 }
197 
198 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
199   if (VT.isVector())
200     return true; // Assume -msse-regparm might be in effect.
201   if (!VT.isInteger())
202     return false;
203   return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall);
204 }
205 
206 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
207                                           MVT VT, CCAssignFn Fn) {
208   unsigned SavedStackOffset = StackOffset;
209   Align SavedMaxStackArgAlign = MaxStackArgAlign;
210   unsigned NumLocs = Locs.size();
211 
212   // Set the 'inreg' flag if it is used for this calling convention.
213   ISD::ArgFlagsTy Flags;
214   if (isValueTypeInRegForCC(CallingConv, VT))
215     Flags.setInReg();
216 
217   // Allocate something of this value type repeatedly until we get assigned a
218   // location in memory.
219   bool HaveRegParm;
220   do {
221     if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
222 #ifndef NDEBUG
223       dbgs() << "Call has unhandled type " << EVT(VT).getEVTString()
224              << " while computing remaining regparms\n";
225 #endif
226       llvm_unreachable(nullptr);
227     }
228     HaveRegParm = Locs.back().isRegLoc();
229   } while (HaveRegParm);
230 
231   // Copy all the registers from the value locations we added.
232   assert(NumLocs < Locs.size() && "CC assignment failed to add location");
233   for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
234     if (Locs[I].isRegLoc())
235       Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
236 
237   // Clear the assigned values and stack memory. We leave the registers marked
238   // as allocated so that future queries don't return the same registers, i.e.
239   // when i64 and f64 are both passed in GPRs.
240   StackOffset = SavedStackOffset;
241   MaxStackArgAlign = SavedMaxStackArgAlign;
242   Locs.resize(NumLocs);
243 }
244 
245 void CCState::analyzeMustTailForwardedRegisters(
246     SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
247     CCAssignFn Fn) {
248   // Oftentimes calling conventions will not user register parameters for
249   // variadic functions, so we need to assume we're not variadic so that we get
250   // all the registers that might be used in a non-variadic call.
251   SaveAndRestore<bool> SavedVarArg(IsVarArg, false);
252   SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true);
253 
254   for (MVT RegVT : RegParmTypes) {
255     SmallVector<MCPhysReg, 8> RemainingRegs;
256     getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
257     const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
258     const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
259     for (MCPhysReg PReg : RemainingRegs) {
260       Register VReg = MF.addLiveIn(PReg, RC);
261       Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
262     }
263   }
264 }
265 
266 bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
267                                 CallingConv::ID CallerCC, MachineFunction &MF,
268                                 LLVMContext &C,
269                                 const SmallVectorImpl<ISD::InputArg> &Ins,
270                                 CCAssignFn CalleeFn, CCAssignFn CallerFn) {
271   if (CalleeCC == CallerCC)
272     return true;
273   SmallVector<CCValAssign, 4> RVLocs1;
274   CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
275   CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
276 
277   SmallVector<CCValAssign, 4> RVLocs2;
278   CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
279   CCInfo2.AnalyzeCallResult(Ins, CallerFn);
280 
281   if (RVLocs1.size() != RVLocs2.size())
282     return false;
283   for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) {
284     const CCValAssign &Loc1 = RVLocs1[I];
285     const CCValAssign &Loc2 = RVLocs2[I];
286 
287     if ( // Must both be in registers, or both in memory
288         Loc1.isRegLoc() != Loc2.isRegLoc() ||
289         // Must fill the same part of their locations
290         Loc1.getLocInfo() != Loc2.getLocInfo() ||
291         // Memory offset/register number must be the same
292         Loc1.getExtraInfo() != Loc2.getExtraInfo())
293       return false;
294   }
295   return true;
296 }
297