1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CCState class, used for lowering and implementing 10 // calling conventions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/CallingConvLower.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetLowering.h" 19 #include "llvm/CodeGen/TargetRegisterInfo.h" 20 #include "llvm/CodeGen/TargetSubtargetInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/SaveAndRestore.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 28 using namespace llvm; 29 30 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, 31 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) 32 : CallingConv(CC), IsVarArg(isVarArg), MF(mf), 33 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) { 34 // No stack is used. 35 StackOffset = 0; 36 37 clearByValRegsInfo(); 38 UsedRegs.resize((TRI.getNumRegs()+31)/32); 39 } 40 41 /// Allocate space on the stack large enough to pass an argument by value. 42 /// The size and alignment information of the argument is encoded in 43 /// its parameter attribute. 44 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, 45 CCValAssign::LocInfo LocInfo, int MinSize, 46 Align MinAlign, ISD::ArgFlagsTy ArgFlags) { 47 Align Alignment = ArgFlags.getNonZeroByValAlign(); 48 unsigned Size = ArgFlags.getByValSize(); 49 if (MinSize > (int)Size) 50 Size = MinSize; 51 if (MinAlign > Alignment) 52 Alignment = MinAlign; 53 ensureMaxAlignment(Alignment); 54 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment); 55 Size = unsigned(alignTo(Size, MinAlign)); 56 unsigned Offset = AllocateStack(Size, Alignment); 57 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 58 } 59 60 /// Mark a register and all of its aliases as allocated. 61 void CCState::MarkAllocated(MCPhysReg Reg) { 62 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) 63 UsedRegs[*AI / 32] |= 1 << (*AI & 31); 64 } 65 66 void CCState::MarkUnallocated(MCPhysReg Reg) { 67 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) 68 UsedRegs[*AI / 32] &= ~(1 << (*AI & 31)); 69 } 70 71 bool CCState::IsShadowAllocatedReg(MCRegister Reg) const { 72 if (!isAllocated(Reg)) 73 return false; 74 75 for (auto const &ValAssign : Locs) { 76 if (ValAssign.isRegLoc()) { 77 for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true); 78 AI.isValid(); ++AI) { 79 if (*AI == Reg) 80 return false; 81 } 82 } 83 } 84 return true; 85 } 86 87 /// Analyze an array of argument values, 88 /// incorporating info about the formals into this state. 89 void 90 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, 91 CCAssignFn Fn) { 92 unsigned NumArgs = Ins.size(); 93 94 for (unsigned i = 0; i != NumArgs; ++i) { 95 MVT ArgVT = Ins[i].VT; 96 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 97 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) 98 report_fatal_error("unable to allocate function argument #" + Twine(i)); 99 } 100 } 101 102 /// Analyze the return values of a function, returning true if the return can 103 /// be performed without sret-demotion and false otherwise. 104 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 105 CCAssignFn Fn) { 106 // Determine which register each value should be copied into. 107 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 108 MVT VT = Outs[i].VT; 109 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 110 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) 111 return false; 112 } 113 return true; 114 } 115 116 /// Analyze the returned values of a return, 117 /// incorporating info about the result values into this state. 118 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 119 CCAssignFn Fn) { 120 // Determine which register each value should be copied into. 121 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 122 MVT VT = Outs[i].VT; 123 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 124 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) 125 report_fatal_error("unable to allocate function return #" + Twine(i)); 126 } 127 } 128 129 /// Analyze the outgoing arguments to a call, 130 /// incorporating info about the passed values into this state. 131 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, 132 CCAssignFn Fn) { 133 unsigned NumOps = Outs.size(); 134 for (unsigned i = 0; i != NumOps; ++i) { 135 MVT ArgVT = Outs[i].VT; 136 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 137 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 138 #ifndef NDEBUG 139 dbgs() << "Call operand #" << i << " has unhandled type " 140 << EVT(ArgVT).getEVTString() << '\n'; 141 #endif 142 llvm_unreachable(nullptr); 143 } 144 } 145 } 146 147 /// Same as above except it takes vectors of types and argument flags. 148 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, 149 SmallVectorImpl<ISD::ArgFlagsTy> &Flags, 150 CCAssignFn Fn) { 151 unsigned NumOps = ArgVTs.size(); 152 for (unsigned i = 0; i != NumOps; ++i) { 153 MVT ArgVT = ArgVTs[i]; 154 ISD::ArgFlagsTy ArgFlags = Flags[i]; 155 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { 156 #ifndef NDEBUG 157 dbgs() << "Call operand #" << i << " has unhandled type " 158 << EVT(ArgVT).getEVTString() << '\n'; 159 #endif 160 llvm_unreachable(nullptr); 161 } 162 } 163 } 164 165 /// Analyze the return values of a call, incorporating info about the passed 166 /// values into this state. 167 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, 168 CCAssignFn Fn) { 169 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 170 MVT VT = Ins[i].VT; 171 ISD::ArgFlagsTy Flags = Ins[i].Flags; 172 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { 173 #ifndef NDEBUG 174 dbgs() << "Call result #" << i << " has unhandled type " 175 << EVT(VT).getEVTString() << '\n'; 176 #endif 177 llvm_unreachable(nullptr); 178 } 179 } 180 } 181 182 /// Same as above except it's specialized for calls that produce a single value. 183 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { 184 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { 185 #ifndef NDEBUG 186 dbgs() << "Call result has unhandled type " 187 << EVT(VT).getEVTString() << '\n'; 188 #endif 189 llvm_unreachable(nullptr); 190 } 191 } 192 193 void CCState::ensureMaxAlignment(Align Alignment) { 194 if (!AnalyzingMustTailForwardedRegs) 195 MF.getFrameInfo().ensureMaxAlignment(Alignment); 196 } 197 198 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { 199 if (VT.isVector()) 200 return true; // Assume -msse-regparm might be in effect. 201 if (!VT.isInteger()) 202 return false; 203 return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall); 204 } 205 206 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, 207 MVT VT, CCAssignFn Fn) { 208 unsigned SavedStackOffset = StackOffset; 209 Align SavedMaxStackArgAlign = MaxStackArgAlign; 210 unsigned NumLocs = Locs.size(); 211 212 // Set the 'inreg' flag if it is used for this calling convention. 213 ISD::ArgFlagsTy Flags; 214 if (isValueTypeInRegForCC(CallingConv, VT)) 215 Flags.setInReg(); 216 217 // Allocate something of this value type repeatedly until we get assigned a 218 // location in memory. 219 bool HaveRegParm; 220 do { 221 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { 222 #ifndef NDEBUG 223 dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() 224 << " while computing remaining regparms\n"; 225 #endif 226 llvm_unreachable(nullptr); 227 } 228 HaveRegParm = Locs.back().isRegLoc(); 229 } while (HaveRegParm); 230 231 // Copy all the registers from the value locations we added. 232 assert(NumLocs < Locs.size() && "CC assignment failed to add location"); 233 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) 234 if (Locs[I].isRegLoc()) 235 Regs.push_back(MCPhysReg(Locs[I].getLocReg())); 236 237 // Clear the assigned values and stack memory. We leave the registers marked 238 // as allocated so that future queries don't return the same registers, i.e. 239 // when i64 and f64 are both passed in GPRs. 240 StackOffset = SavedStackOffset; 241 MaxStackArgAlign = SavedMaxStackArgAlign; 242 Locs.resize(NumLocs); 243 } 244 245 void CCState::analyzeMustTailForwardedRegisters( 246 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, 247 CCAssignFn Fn) { 248 // Oftentimes calling conventions will not user register parameters for 249 // variadic functions, so we need to assume we're not variadic so that we get 250 // all the registers that might be used in a non-variadic call. 251 SaveAndRestore<bool> SavedVarArg(IsVarArg, false); 252 SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true); 253 254 for (MVT RegVT : RegParmTypes) { 255 SmallVector<MCPhysReg, 8> RemainingRegs; 256 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); 257 const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); 258 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); 259 for (MCPhysReg PReg : RemainingRegs) { 260 Register VReg = MF.addLiveIn(PReg, RC); 261 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); 262 } 263 } 264 } 265 266 bool CCState::resultsCompatible(CallingConv::ID CalleeCC, 267 CallingConv::ID CallerCC, MachineFunction &MF, 268 LLVMContext &C, 269 const SmallVectorImpl<ISD::InputArg> &Ins, 270 CCAssignFn CalleeFn, CCAssignFn CallerFn) { 271 if (CalleeCC == CallerCC) 272 return true; 273 SmallVector<CCValAssign, 4> RVLocs1; 274 CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); 275 CCInfo1.AnalyzeCallResult(Ins, CalleeFn); 276 277 SmallVector<CCValAssign, 4> RVLocs2; 278 CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); 279 CCInfo2.AnalyzeCallResult(Ins, CallerFn); 280 281 if (RVLocs1.size() != RVLocs2.size()) 282 return false; 283 for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) { 284 const CCValAssign &Loc1 = RVLocs1[I]; 285 const CCValAssign &Loc2 = RVLocs2[I]; 286 287 if ( // Must both be in registers, or both in memory 288 Loc1.isRegLoc() != Loc2.isRegLoc() || 289 // Must fill the same part of their locations 290 Loc1.getLocInfo() != Loc2.getLocInfo() || 291 // Memory offset/register number must be the same 292 Loc1.getExtraInfo() != Loc2.getExtraInfo()) 293 return false; 294 } 295 return true; 296 } 297