xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CallBrPrepare.cpp (revision b9128a37faafede823eb456aa65a11ac69997284)
1 //===-- CallBrPrepare - Prepare callbr for code generation ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers callbrs in LLVM IR in order to to assist SelectionDAG's
10 // codegen.
11 //
12 // In particular, this pass assists in inserting register copies for the output
13 // values of a callbr along the edges leading to the indirect target blocks.
14 // Though the output SSA value is defined by the callbr instruction itself in
15 // the IR representation, the value cannot be copied to the appropriate virtual
16 // registers prior to jumping to an indirect label, since the jump occurs
17 // within the user-provided assembly blob.
18 //
19 // Instead, those copies must occur separately at the beginning of each
20 // indirect target. That requires that we create a separate SSA definition in
21 // each of them (via llvm.callbr.landingpad), and may require splitting
22 // critical edges so we have a location to place the intrinsic. Finally, we
23 // remap users of the original callbr output SSA value to instead point to the
24 // appropriate llvm.callbr.landingpad value.
25 //
26 // Ideally, this could be done inside SelectionDAG, or in the
27 // MachineInstruction representation, without the use of an IR-level intrinsic.
28 // But, within the current framework, it’s simpler to implement as an IR pass.
29 // (If support for callbr in GlobalISel is implemented, it’s worth considering
30 // whether this is still required.)
31 //
32 //===----------------------------------------------------------------------===//
33 
34 #include "llvm/CodeGen/CallBrPrepare.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/Analysis/CFG.h"
40 #include "llvm/CodeGen/Passes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/SSAUpdater.h"
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "callbrprepare"
56 
57 static bool SplitCriticalEdges(ArrayRef<CallBrInst *> CBRs, DominatorTree &DT);
58 static bool InsertIntrinsicCalls(ArrayRef<CallBrInst *> CBRs,
59                                  DominatorTree &DT);
60 static void UpdateSSA(DominatorTree &DT, CallBrInst *CBR, CallInst *Intrinsic,
61                       SSAUpdater &SSAUpdate);
62 static SmallVector<CallBrInst *, 2> FindCallBrs(Function &Fn);
63 
64 namespace {
65 
66 class CallBrPrepare : public FunctionPass {
67 public:
68   CallBrPrepare() : FunctionPass(ID) {}
69   void getAnalysisUsage(AnalysisUsage &AU) const override;
70   bool runOnFunction(Function &Fn) override;
71   static char ID;
72 };
73 
74 } // end anonymous namespace
75 
76 PreservedAnalyses CallBrPreparePass::run(Function &Fn,
77                                          FunctionAnalysisManager &FAM) {
78   bool Changed = false;
79   SmallVector<CallBrInst *, 2> CBRs = FindCallBrs(Fn);
80 
81   if (CBRs.empty())
82     return PreservedAnalyses::all();
83 
84   auto &DT = FAM.getResult<DominatorTreeAnalysis>(Fn);
85 
86   Changed |= SplitCriticalEdges(CBRs, DT);
87   Changed |= InsertIntrinsicCalls(CBRs, DT);
88 
89   if (!Changed)
90     return PreservedAnalyses::all();
91   PreservedAnalyses PA;
92   PA.preserve<DominatorTreeAnalysis>();
93   return PA;
94 }
95 
96 char CallBrPrepare::ID = 0;
97 INITIALIZE_PASS_BEGIN(CallBrPrepare, DEBUG_TYPE, "Prepare callbr", false, false)
98 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
99 INITIALIZE_PASS_END(CallBrPrepare, DEBUG_TYPE, "Prepare callbr", false, false)
100 
101 FunctionPass *llvm::createCallBrPass() { return new CallBrPrepare(); }
102 
103 void CallBrPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
104   AU.addPreserved<DominatorTreeWrapperPass>();
105 }
106 
107 SmallVector<CallBrInst *, 2> FindCallBrs(Function &Fn) {
108   SmallVector<CallBrInst *, 2> CBRs;
109   for (BasicBlock &BB : Fn)
110     if (auto *CBR = dyn_cast<CallBrInst>(BB.getTerminator()))
111       if (!CBR->getType()->isVoidTy() && !CBR->use_empty())
112         CBRs.push_back(CBR);
113   return CBRs;
114 }
115 
116 bool SplitCriticalEdges(ArrayRef<CallBrInst *> CBRs, DominatorTree &DT) {
117   bool Changed = false;
118   CriticalEdgeSplittingOptions Options(&DT);
119   Options.setMergeIdenticalEdges();
120 
121   // The indirect destination might be duplicated between another parameter...
122   //   %0 = callbr ... [label %x, label %x]
123   // ...hence MergeIdenticalEdges and AllowIndentical edges, but we don't need
124   // to split the default destination if it's duplicated between an indirect
125   // destination...
126   //   %1 = callbr ... to label %x [label %x]
127   // ...hence starting at 1 and checking against successor 0 (aka the default
128   // destination).
129   for (CallBrInst *CBR : CBRs)
130     for (unsigned i = 1, e = CBR->getNumSuccessors(); i != e; ++i)
131       if (CBR->getSuccessor(i) == CBR->getSuccessor(0) ||
132           isCriticalEdge(CBR, i, /*AllowIdenticalEdges*/ true))
133         if (SplitKnownCriticalEdge(CBR, i, Options))
134           Changed = true;
135   return Changed;
136 }
137 
138 bool InsertIntrinsicCalls(ArrayRef<CallBrInst *> CBRs, DominatorTree &DT) {
139   bool Changed = false;
140   SmallPtrSet<const BasicBlock *, 4> Visited;
141   IRBuilder<> Builder(CBRs[0]->getContext());
142   for (CallBrInst *CBR : CBRs) {
143     if (!CBR->getNumIndirectDests())
144       continue;
145 
146     SSAUpdater SSAUpdate;
147     SSAUpdate.Initialize(CBR->getType(), CBR->getName());
148     SSAUpdate.AddAvailableValue(CBR->getParent(), CBR);
149     SSAUpdate.AddAvailableValue(CBR->getDefaultDest(), CBR);
150 
151     for (BasicBlock *IndDest : CBR->getIndirectDests()) {
152       if (!Visited.insert(IndDest).second)
153         continue;
154       Builder.SetInsertPoint(&*IndDest->begin());
155       CallInst *Intrinsic = Builder.CreateIntrinsic(
156           CBR->getType(), Intrinsic::callbr_landingpad, {CBR});
157       SSAUpdate.AddAvailableValue(IndDest, Intrinsic);
158       UpdateSSA(DT, CBR, Intrinsic, SSAUpdate);
159       Changed = true;
160     }
161   }
162   return Changed;
163 }
164 
165 static bool IsInSameBasicBlock(const Use &U, const BasicBlock *BB) {
166   const auto *I = dyn_cast<Instruction>(U.getUser());
167   return I && I->getParent() == BB;
168 }
169 
170 #ifndef NDEBUG
171 static void PrintDebugDomInfo(const DominatorTree &DT, const Use &U,
172                               const BasicBlock *BB, bool IsDefaultDest) {
173   if (!isa<Instruction>(U.getUser()))
174     return;
175   LLVM_DEBUG(dbgs() << "Use: " << *U.getUser() << ", in block "
176                     << cast<Instruction>(U.getUser())->getParent()->getName()
177                     << ", is " << (DT.dominates(BB, U) ? "" : "NOT ")
178                     << "dominated by " << BB->getName() << " ("
179                     << (IsDefaultDest ? "in" : "") << "direct)\n");
180 }
181 #endif
182 
183 void UpdateSSA(DominatorTree &DT, CallBrInst *CBR, CallInst *Intrinsic,
184                SSAUpdater &SSAUpdate) {
185 
186   SmallPtrSet<Use *, 4> Visited;
187   BasicBlock *DefaultDest = CBR->getDefaultDest();
188   BasicBlock *LandingPad = Intrinsic->getParent();
189 
190   SmallVector<Use *, 4> Uses(make_pointer_range(CBR->uses()));
191   for (Use *U : Uses) {
192     if (!Visited.insert(U).second)
193       continue;
194 
195 #ifndef NDEBUG
196     PrintDebugDomInfo(DT, *U, LandingPad, /*IsDefaultDest*/ false);
197     PrintDebugDomInfo(DT, *U, DefaultDest, /*IsDefaultDest*/ true);
198 #endif
199 
200     // Don't rewrite the use in the newly inserted intrinsic.
201     if (const auto *II = dyn_cast<IntrinsicInst>(U->getUser()))
202       if (II->getIntrinsicID() == Intrinsic::callbr_landingpad)
203         continue;
204 
205     // If the Use is in the same BasicBlock as the Intrinsic call, replace
206     // the Use with the value of the Intrinsic call.
207     if (IsInSameBasicBlock(*U, LandingPad)) {
208       U->set(Intrinsic);
209       continue;
210     }
211 
212     // If the Use is dominated by the default dest, do not touch it.
213     if (DT.dominates(DefaultDest, *U))
214       continue;
215 
216     SSAUpdate.RewriteUse(*U);
217   }
218 }
219 
220 bool CallBrPrepare::runOnFunction(Function &Fn) {
221   bool Changed = false;
222   SmallVector<CallBrInst *, 2> CBRs = FindCallBrs(Fn);
223 
224   if (CBRs.empty())
225     return Changed;
226 
227   // It's highly likely that most programs do not contain CallBrInsts. Follow a
228   // similar pattern from SafeStackLegacyPass::runOnFunction to reuse previous
229   // domtree analysis if available, otherwise compute it lazily. This avoids
230   // forcing Dominator Tree Construction at -O0 for programs that likely do not
231   // contain CallBrInsts. It does pessimize programs with callbr at higher
232   // optimization levels, as the DominatorTree created here is not reused by
233   // subsequent passes.
234   DominatorTree *DT;
235   std::optional<DominatorTree> LazilyComputedDomTree;
236   if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
237     DT = &DTWP->getDomTree();
238   else {
239     LazilyComputedDomTree.emplace(Fn);
240     DT = &*LazilyComputedDomTree;
241   }
242 
243   if (SplitCriticalEdges(CBRs, *DT))
244     Changed = true;
245 
246   if (InsertIntrinsicCalls(CBRs, *DT))
247     Changed = true;
248 
249   return Changed;
250 }
251