xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CalcSpillWeights.cpp (revision 59144db3fca192c4637637dfe6b5a5d98632cd47)
1 //===- CalcSpillWeights.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/CalcSpillWeights.h"
10 #include "llvm/ADT/SmallPtrSet.h"
11 #include "llvm/ADT/SmallSet.h"
12 #include "llvm/CodeGen/LiveInterval.h"
13 #include "llvm/CodeGen/LiveIntervals.h"
14 #include "llvm/CodeGen/MachineFunction.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/StackMaps.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cassert>
27 #include <tuple>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "calcspillweights"
32 
33 void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
34   LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
35                     << "********** Function: " << MF.getName() << '\n');
36 
37   MachineRegisterInfo &MRI = MF.getRegInfo();
38   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
39     Register Reg = Register::index2VirtReg(I);
40     if (MRI.reg_nodbg_empty(Reg))
41       continue;
42     calculateSpillWeightAndHint(LIS.getInterval(Reg));
43   }
44 }
45 
46 // Return the preferred allocation register for reg, given a COPY instruction.
47 Register VirtRegAuxInfo::copyHint(const MachineInstr *MI, unsigned Reg,
48                                   const TargetRegisterInfo &TRI,
49                                   const MachineRegisterInfo &MRI) {
50   unsigned Sub, HSub;
51   Register HReg;
52   if (MI->getOperand(0).getReg() == Reg) {
53     Sub = MI->getOperand(0).getSubReg();
54     HReg = MI->getOperand(1).getReg();
55     HSub = MI->getOperand(1).getSubReg();
56   } else {
57     Sub = MI->getOperand(1).getSubReg();
58     HReg = MI->getOperand(0).getReg();
59     HSub = MI->getOperand(0).getSubReg();
60   }
61 
62   if (!HReg)
63     return 0;
64 
65   if (HReg.isVirtual())
66     return Sub == HSub ? HReg : Register();
67 
68   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
69   MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg();
70   if (RC->contains(CopiedPReg))
71     return CopiedPReg;
72 
73   // Check if reg:sub matches so that a super register could be hinted.
74   if (Sub)
75     return TRI.getMatchingSuperReg(CopiedPReg, Sub, RC);
76 
77   return 0;
78 }
79 
80 // Check if all values in LI are rematerializable
81 bool VirtRegAuxInfo::isRematerializable(const LiveInterval &LI,
82                                         const LiveIntervals &LIS,
83                                         const VirtRegMap &VRM,
84                                         const TargetInstrInfo &TII) {
85   Register Reg = LI.reg();
86   Register Original = VRM.getOriginal(Reg);
87   for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
88        I != E; ++I) {
89     const VNInfo *VNI = *I;
90     if (VNI->isUnused())
91       continue;
92     if (VNI->isPHIDef())
93       return false;
94 
95     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
96     assert(MI && "Dead valno in interval");
97 
98     // Trace copies introduced by live range splitting.  The inline
99     // spiller can rematerialize through these copies, so the spill
100     // weight must reflect this.
101     while (TII.isFullCopyInstr(*MI)) {
102       // The copy destination must match the interval register.
103       if (MI->getOperand(0).getReg() != Reg)
104         return false;
105 
106       // Get the source register.
107       Reg = MI->getOperand(1).getReg();
108 
109       // If the original (pre-splitting) registers match this
110       // copy came from a split.
111       if (!Reg.isVirtual() || VRM.getOriginal(Reg) != Original)
112         return false;
113 
114       // Follow the copy live-in value.
115       const LiveInterval &SrcLI = LIS.getInterval(Reg);
116       LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
117       VNI = SrcQ.valueIn();
118       assert(VNI && "Copy from non-existing value");
119       if (VNI->isPHIDef())
120         return false;
121       MI = LIS.getInstructionFromIndex(VNI->def);
122       assert(MI && "Dead valno in interval");
123     }
124 
125     if (!TII.isTriviallyReMaterializable(*MI))
126       return false;
127   }
128   return true;
129 }
130 
131 bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) {
132   return any_of(VRM.getRegInfo().reg_operands(LI.reg()),
133                 [](MachineOperand &MO) {
134     MachineInstr *MI = MO.getParent();
135     if (MI->getOpcode() != TargetOpcode::STATEPOINT)
136       return false;
137     return StatepointOpers(MI).getVarIdx() <= MO.getOperandNo();
138   });
139 }
140 
141 void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) {
142   float Weight = weightCalcHelper(LI);
143   // Check if unspillable.
144   if (Weight < 0)
145     return;
146   LI.setWeight(Weight);
147 }
148 
149 static bool canMemFoldInlineAsm(LiveInterval &LI,
150                                 const MachineRegisterInfo &MRI) {
151   for (const MachineOperand &MO : MRI.reg_operands(LI.reg())) {
152     const MachineInstr *MI = MO.getParent();
153     if (MI->isInlineAsm() && MI->mayFoldInlineAsmRegOp(MI->getOperandNo(&MO)))
154       return true;
155   }
156 
157   return false;
158 }
159 
160 float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start,
161                                        SlotIndex *End) {
162   MachineRegisterInfo &MRI = MF.getRegInfo();
163   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
164   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
165   MachineBasicBlock *MBB = nullptr;
166   float TotalWeight = 0;
167   unsigned NumInstr = 0; // Number of instructions using LI
168   SmallPtrSet<MachineInstr *, 8> Visited;
169 
170   std::pair<unsigned, Register> TargetHint = MRI.getRegAllocationHint(LI.reg());
171 
172   if (LI.isSpillable()) {
173     Register Reg = LI.reg();
174     Register Original = VRM.getOriginal(Reg);
175     const LiveInterval &OrigInt = LIS.getInterval(Original);
176     // li comes from a split of OrigInt. If OrigInt was marked
177     // as not spillable, make sure the new interval is marked
178     // as not spillable as well.
179     if (!OrigInt.isSpillable())
180       LI.markNotSpillable();
181   }
182 
183   // Don't recompute spill weight for an unspillable register.
184   bool IsSpillable = LI.isSpillable();
185 
186   bool IsLocalSplitArtifact = Start && End;
187 
188   // Do not update future local split artifacts.
189   bool ShouldUpdateLI = !IsLocalSplitArtifact;
190 
191   if (IsLocalSplitArtifact) {
192     MachineBasicBlock *LocalMBB = LIS.getMBBFromIndex(*End);
193     assert(LocalMBB == LIS.getMBBFromIndex(*Start) &&
194            "start and end are expected to be in the same basic block");
195 
196     // Local split artifact will have 2 additional copy instructions and they
197     // will be in the same BB.
198     // localLI = COPY other
199     // ...
200     // other   = COPY localLI
201     TotalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, LocalMBB);
202     TotalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, LocalMBB);
203 
204     NumInstr += 2;
205   }
206 
207   // CopyHint is a sortable hint derived from a COPY instruction.
208   struct CopyHint {
209     const Register Reg;
210     const float Weight;
211     CopyHint(Register R, float W) : Reg(R), Weight(W) {}
212     bool operator<(const CopyHint &Rhs) const {
213       // Always prefer any physreg hint.
214       if (Reg.isPhysical() != Rhs.Reg.isPhysical())
215         return Reg.isPhysical();
216       if (Weight != Rhs.Weight)
217         return (Weight > Rhs.Weight);
218       return Reg.id() < Rhs.Reg.id(); // Tie-breaker.
219     }
220   };
221 
222   bool IsExiting = false;
223   std::set<CopyHint> CopyHints;
224   DenseMap<unsigned, float> Hint;
225   for (MachineRegisterInfo::reg_instr_nodbg_iterator
226            I = MRI.reg_instr_nodbg_begin(LI.reg()),
227            E = MRI.reg_instr_nodbg_end();
228        I != E;) {
229     MachineInstr *MI = &*(I++);
230 
231     // For local split artifacts, we are interested only in instructions between
232     // the expected start and end of the range.
233     SlotIndex SI = LIS.getInstructionIndex(*MI);
234     if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End)))
235       continue;
236 
237     NumInstr++;
238     bool identityCopy = false;
239     auto DestSrc = TII.isCopyInstr(*MI);
240     if (DestSrc) {
241       const MachineOperand *DestRegOp = DestSrc->Destination;
242       const MachineOperand *SrcRegOp = DestSrc->Source;
243       identityCopy = DestRegOp->getReg() == SrcRegOp->getReg() &&
244                      DestRegOp->getSubReg() == SrcRegOp->getSubReg();
245     }
246 
247     if (identityCopy || MI->isImplicitDef())
248       continue;
249     if (!Visited.insert(MI).second)
250       continue;
251 
252     // For terminators that produce values, ask the backend if the register is
253     // not spillable.
254     if (TII.isUnspillableTerminator(MI) && MI->definesRegister(LI.reg())) {
255       LI.markNotSpillable();
256       return -1.0f;
257     }
258 
259     float Weight = 1.0f;
260     if (IsSpillable) {
261       // Get loop info for mi.
262       if (MI->getParent() != MBB) {
263         MBB = MI->getParent();
264         const MachineLoop *Loop = Loops.getLoopFor(MBB);
265         IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
266       }
267 
268       // Calculate instr weight.
269       bool Reads, Writes;
270       std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
271       Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI);
272 
273       // Give extra weight to what looks like a loop induction variable update.
274       if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB))
275         Weight *= 3;
276 
277       TotalWeight += Weight;
278     }
279 
280     // Get allocation hints from copies.
281     if (!TII.isCopyInstr(*MI))
282       continue;
283     Register HintReg = copyHint(MI, LI.reg(), TRI, MRI);
284     if (!HintReg)
285       continue;
286     // Force hweight onto the stack so that x86 doesn't add hidden precision,
287     // making the comparison incorrectly pass (i.e., 1 > 1 == true??).
288     //
289     // FIXME: we probably shouldn't use floats at all.
290     volatile float HWeight = Hint[HintReg] += Weight;
291     if (HintReg.isVirtual() || MRI.isAllocatable(HintReg))
292       CopyHints.insert(CopyHint(HintReg, HWeight));
293   }
294 
295   // Pass all the sorted copy hints to mri.
296   if (ShouldUpdateLI && CopyHints.size()) {
297     // Remove a generic hint if previously added by target.
298     if (TargetHint.first == 0 && TargetHint.second)
299       MRI.clearSimpleHint(LI.reg());
300 
301     SmallSet<Register, 4> HintedRegs;
302     for (const auto &Hint : CopyHints) {
303       if (!HintedRegs.insert(Hint.Reg).second ||
304           (TargetHint.first != 0 && Hint.Reg == TargetHint.second))
305         // Don't add the same reg twice or the target-type hint again.
306         continue;
307       MRI.addRegAllocationHint(LI.reg(), Hint.Reg);
308     }
309 
310     // Weakly boost the spill weight of hinted registers.
311     TotalWeight *= 1.01F;
312   }
313 
314   // If the live interval was already unspillable, leave it that way.
315   if (!IsSpillable)
316     return -1.0;
317 
318   // Mark li as unspillable if all live ranges are tiny and the interval
319   // is not live at any reg mask.  If the interval is live at a reg mask
320   // spilling may be required. If li is live as use in statepoint instruction
321   // spilling may be required due to if we mark interval with use in statepoint
322   // as not spillable we are risky to end up with no register to allocate.
323   // At the same time STATEPOINT instruction is perfectly fine to have this
324   // operand on stack, so spilling such interval and folding its load from stack
325   // into instruction itself makes perfect sense.
326   if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) &&
327       !LI.isLiveAtIndexes(LIS.getRegMaskSlots()) &&
328       !isLiveAtStatepointVarArg(LI) && !canMemFoldInlineAsm(LI, MRI)) {
329     LI.markNotSpillable();
330     return -1.0;
331   }
332 
333   // If all of the definitions of the interval are re-materializable,
334   // it is a preferred candidate for spilling.
335   // FIXME: this gets much more complicated once we support non-trivial
336   // re-materialization.
337   if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
338     TotalWeight *= 0.5F;
339 
340   if (IsLocalSplitArtifact)
341     return normalize(TotalWeight, Start->distance(*End), NumInstr);
342   return normalize(TotalWeight, LI.getSize(), NumInstr);
343 }
344