xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/BranchRelaxation.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- BranchRelaxation.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/SmallVector.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/CodeGen/LivePhysRegs.h"
12 #include "llvm/CodeGen/MachineBasicBlock.h"
13 #include "llvm/CodeGen/MachineFunction.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/RegisterScavenging.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/DebugLoc.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <cassert>
29 #include <cstdint>
30 #include <iterator>
31 #include <memory>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "branch-relaxation"
36 
37 STATISTIC(NumSplit, "Number of basic blocks split");
38 STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
39 STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
40 
41 #define BRANCH_RELAX_NAME "Branch relaxation pass"
42 
43 namespace {
44 
45 class BranchRelaxation : public MachineFunctionPass {
46   /// BasicBlockInfo - Information about the offset and size of a single
47   /// basic block.
48   struct BasicBlockInfo {
49     /// Offset - Distance from the beginning of the function to the beginning
50     /// of this basic block.
51     ///
52     /// The offset is always aligned as required by the basic block.
53     unsigned Offset = 0;
54 
55     /// Size - Size of the basic block in bytes.  If the block contains
56     /// inline assembly, this is a worst case estimate.
57     ///
58     /// The size does not include any alignment padding whether from the
59     /// beginning of the block, or from an aligned jump table at the end.
60     unsigned Size = 0;
61 
62     BasicBlockInfo() = default;
63 
64     /// Compute the offset immediately following this block. \p MBB is the next
65     /// block.
66     unsigned postOffset(const MachineBasicBlock &MBB) const {
67       const unsigned PO = Offset + Size;
68       const Align Alignment = MBB.getAlignment();
69       const Align ParentAlign = MBB.getParent()->getAlignment();
70       if (Alignment <= ParentAlign)
71         return alignTo(PO, Alignment);
72 
73       // The alignment of this MBB is larger than the function's alignment, so we
74       // can't tell whether or not it will insert nops. Assume that it will.
75       return alignTo(PO, Alignment) + Alignment.value() - ParentAlign.value();
76     }
77   };
78 
79   SmallVector<BasicBlockInfo, 16> BlockInfo;
80   std::unique_ptr<RegScavenger> RS;
81   LivePhysRegs LiveRegs;
82 
83   MachineFunction *MF;
84   const TargetRegisterInfo *TRI;
85   const TargetInstrInfo *TII;
86 
87   bool relaxBranchInstructions();
88   void scanFunction();
89 
90   MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
91 
92   MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
93                                            MachineBasicBlock *DestBB);
94   void adjustBlockOffsets(MachineBasicBlock &Start);
95   bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
96 
97   bool fixupConditionalBranch(MachineInstr &MI);
98   bool fixupUnconditionalBranch(MachineInstr &MI);
99   uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
100   unsigned getInstrOffset(const MachineInstr &MI) const;
101   void dumpBBs();
102   void verify();
103 
104 public:
105   static char ID;
106 
107   BranchRelaxation() : MachineFunctionPass(ID) {}
108 
109   bool runOnMachineFunction(MachineFunction &MF) override;
110 
111   StringRef getPassName() const override { return BRANCH_RELAX_NAME; }
112 };
113 
114 } // end anonymous namespace
115 
116 char BranchRelaxation::ID = 0;
117 
118 char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
119 
120 INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
121 
122 /// verify - check BBOffsets, BBSizes, alignment of islands
123 void BranchRelaxation::verify() {
124 #ifndef NDEBUG
125   unsigned PrevNum = MF->begin()->getNumber();
126   for (MachineBasicBlock &MBB : *MF) {
127     const unsigned Num = MBB.getNumber();
128     assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
129     assert(BlockInfo[Num].Size == computeBlockSize(MBB));
130     PrevNum = Num;
131   }
132 #endif
133 }
134 
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 /// print block size and offset information - debugging
137 LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
138   for (auto &MBB : *MF) {
139     const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
140     dbgs() << format("%%bb.%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
141            << format("size=%#x\n", BBI.Size);
142   }
143 }
144 #endif
145 
146 /// scanFunction - Do the initial scan of the function, building up
147 /// information about each block.
148 void BranchRelaxation::scanFunction() {
149   BlockInfo.clear();
150   BlockInfo.resize(MF->getNumBlockIDs());
151 
152   // First thing, compute the size of all basic blocks, and see if the function
153   // has any inline assembly in it. If so, we have to be conservative about
154   // alignment assumptions, as we don't know for sure the size of any
155   // instructions in the inline assembly.
156   for (MachineBasicBlock &MBB : *MF)
157     BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
158 
159   // Compute block offsets and known bits.
160   adjustBlockOffsets(*MF->begin());
161 }
162 
163 /// computeBlockSize - Compute the size for MBB.
164 uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
165   uint64_t Size = 0;
166   for (const MachineInstr &MI : MBB)
167     Size += TII->getInstSizeInBytes(MI);
168   return Size;
169 }
170 
171 /// getInstrOffset - Return the current offset of the specified machine
172 /// instruction from the start of the function.  This offset changes as stuff is
173 /// moved around inside the function.
174 unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
175   const MachineBasicBlock *MBB = MI.getParent();
176 
177   // The offset is composed of two things: the sum of the sizes of all MBB's
178   // before this instruction's block, and the offset from the start of the block
179   // it is in.
180   unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
181 
182   // Sum instructions before MI in MBB.
183   for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
184     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
185     Offset += TII->getInstSizeInBytes(*I);
186   }
187 
188   return Offset;
189 }
190 
191 void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
192   unsigned PrevNum = Start.getNumber();
193   for (auto &MBB :
194        make_range(std::next(MachineFunction::iterator(Start)), MF->end())) {
195     unsigned Num = MBB.getNumber();
196     // Get the offset and known bits at the end of the layout predecessor.
197     // Include the alignment of the current block.
198     BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
199 
200     PrevNum = Num;
201   }
202 }
203 
204 /// Insert a new empty basic block and insert it after \BB
205 MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
206   // Create a new MBB for the code after the OrigBB.
207   MachineBasicBlock *NewBB =
208       MF->CreateMachineBasicBlock(BB.getBasicBlock());
209   MF->insert(++BB.getIterator(), NewBB);
210 
211   // Insert an entry into BlockInfo to align it properly with the block numbers.
212   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
213 
214   return NewBB;
215 }
216 
217 /// Split the basic block containing MI into two blocks, which are joined by
218 /// an unconditional branch.  Update data structures and renumber blocks to
219 /// account for this change and returns the newly created block.
220 MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
221                                                            MachineBasicBlock *DestBB) {
222   MachineBasicBlock *OrigBB = MI.getParent();
223 
224   // Create a new MBB for the code after the OrigBB.
225   MachineBasicBlock *NewBB =
226       MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
227   MF->insert(++OrigBB->getIterator(), NewBB);
228 
229   // Splice the instructions starting with MI over to NewBB.
230   NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
231 
232   // Add an unconditional branch from OrigBB to NewBB.
233   // Note the new unconditional branch is not being recorded.
234   // There doesn't seem to be meaningful DebugInfo available; this doesn't
235   // correspond to anything in the source.
236   TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
237 
238   // Insert an entry into BlockInfo to align it properly with the block numbers.
239   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
240 
241   NewBB->transferSuccessors(OrigBB);
242   OrigBB->addSuccessor(NewBB);
243   OrigBB->addSuccessor(DestBB);
244 
245   // Cleanup potential unconditional branch to successor block.
246   // Note that updateTerminator may change the size of the blocks.
247   OrigBB->updateTerminator(NewBB);
248 
249   // Figure out how large the OrigBB is.  As the first half of the original
250   // block, it cannot contain a tablejump.  The size includes
251   // the new jump we added.  (It should be possible to do this without
252   // recounting everything, but it's very confusing, and this is rarely
253   // executed.)
254   BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
255 
256   // Figure out how large the NewMBB is. As the second half of the original
257   // block, it may contain a tablejump.
258   BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
259 
260   // All BBOffsets following these blocks must be modified.
261   adjustBlockOffsets(*OrigBB);
262 
263   // Need to fix live-in lists if we track liveness.
264   if (TRI->trackLivenessAfterRegAlloc(*MF))
265     computeAndAddLiveIns(LiveRegs, *NewBB);
266 
267   ++NumSplit;
268 
269   return NewBB;
270 }
271 
272 /// isBlockInRange - Returns true if the distance between specific MI and
273 /// specific BB can fit in MI's displacement field.
274 bool BranchRelaxation::isBlockInRange(
275   const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
276   int64_t BrOffset = getInstrOffset(MI);
277   int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
278 
279   if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
280     return true;
281 
282   LLVM_DEBUG(dbgs() << "Out of range branch to destination "
283                     << printMBBReference(DestBB) << " from "
284                     << printMBBReference(*MI.getParent()) << " to "
285                     << DestOffset << " offset " << DestOffset - BrOffset << '\t'
286                     << MI);
287 
288   return false;
289 }
290 
291 /// fixupConditionalBranch - Fix up a conditional branch whose destination is
292 /// too far away to fit in its displacement field. It is converted to an inverse
293 /// conditional branch + an unconditional branch to the destination.
294 bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
295   DebugLoc DL = MI.getDebugLoc();
296   MachineBasicBlock *MBB = MI.getParent();
297   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
298   MachineBasicBlock *NewBB = nullptr;
299   SmallVector<MachineOperand, 4> Cond;
300 
301   auto insertUncondBranch = [&](MachineBasicBlock *MBB,
302                                 MachineBasicBlock *DestBB) {
303     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
304     int NewBrSize = 0;
305     TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
306     BBSize += NewBrSize;
307   };
308   auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
309                           MachineBasicBlock *FBB,
310                           SmallVectorImpl<MachineOperand>& Cond) {
311     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
312     int NewBrSize = 0;
313     TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
314     BBSize += NewBrSize;
315   };
316   auto removeBranch = [&](MachineBasicBlock *MBB) {
317     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
318     int RemovedSize = 0;
319     TII->removeBranch(*MBB, &RemovedSize);
320     BBSize -= RemovedSize;
321   };
322 
323   auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
324                                   MachineBasicBlock *NewBB) {
325     // Keep the block offsets up to date.
326     adjustBlockOffsets(*MBB);
327 
328     // Need to fix live-in lists if we track liveness.
329     if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
330       computeAndAddLiveIns(LiveRegs, *NewBB);
331   };
332 
333   bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
334   assert(!Fail && "branches to be relaxed must be analyzable");
335   (void)Fail;
336 
337   // Add an unconditional branch to the destination and invert the branch
338   // condition to jump over it:
339   // tbz L1
340   // =>
341   // tbnz L2
342   // b   L1
343   // L2:
344 
345   bool ReversedCond = !TII->reverseBranchCondition(Cond);
346   if (ReversedCond) {
347     if (FBB && isBlockInRange(MI, *FBB)) {
348       // Last MI in the BB is an unconditional branch. We can simply invert the
349       // condition and swap destinations:
350       // beq L1
351       // b   L2
352       // =>
353       // bne L2
354       // b   L1
355       LLVM_DEBUG(dbgs() << "  Invert condition and swap "
356                            "its destination with "
357                         << MBB->back());
358 
359       removeBranch(MBB);
360       insertBranch(MBB, FBB, TBB, Cond);
361       finalizeBlockChanges(MBB, nullptr);
362       return true;
363     }
364     if (FBB) {
365       // We need to split the basic block here to obtain two long-range
366       // unconditional branches.
367       NewBB = createNewBlockAfter(*MBB);
368 
369       insertUncondBranch(NewBB, FBB);
370       // Update the succesor lists according to the transformation to follow.
371       // Do it here since if there's no split, no update is needed.
372       MBB->replaceSuccessor(FBB, NewBB);
373       NewBB->addSuccessor(FBB);
374     }
375 
376     // We now have an appropriate fall-through block in place (either naturally or
377     // just created), so we can use the inverted the condition.
378     MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
379 
380     LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*TBB)
381                       << ", invert condition and change dest. to "
382                       << printMBBReference(NextBB) << '\n');
383 
384     removeBranch(MBB);
385     // Insert a new conditional branch and a new unconditional branch.
386     insertBranch(MBB, &NextBB, TBB, Cond);
387 
388     finalizeBlockChanges(MBB, NewBB);
389     return true;
390   }
391   // Branch cond can't be inverted.
392   // In this case we always add a block after the MBB.
393   LLVM_DEBUG(dbgs() << "  The branch condition can't be inverted. "
394                     << "  Insert a new BB after " << MBB->back());
395 
396   if (!FBB)
397     FBB = &(*std::next(MachineFunction::iterator(MBB)));
398 
399   // This is the block with cond. branch and the distance to TBB is too long.
400   //    beq L1
401   // L2:
402 
403   // We do the following transformation:
404   //    beq NewBB
405   //    b L2
406   // NewBB:
407   //    b L1
408   // L2:
409 
410   NewBB = createNewBlockAfter(*MBB);
411   insertUncondBranch(NewBB, TBB);
412 
413   LLVM_DEBUG(dbgs() << "  Insert cond B to the new BB "
414                     << printMBBReference(*NewBB)
415                     << "  Keep the exiting condition.\n"
416                     << "  Insert B to " << printMBBReference(*FBB) << ".\n"
417                     << "  In the new BB: Insert B to "
418                     << printMBBReference(*TBB) << ".\n");
419 
420   // Update the successor lists according to the transformation to follow.
421   MBB->replaceSuccessor(TBB, NewBB);
422   NewBB->addSuccessor(TBB);
423 
424   // Replace branch in the current (MBB) block.
425   removeBranch(MBB);
426   insertBranch(MBB, NewBB, FBB, Cond);
427 
428   finalizeBlockChanges(MBB, NewBB);
429   return true;
430 }
431 
432 bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
433   MachineBasicBlock *MBB = MI.getParent();
434 
435   unsigned OldBrSize = TII->getInstSizeInBytes(MI);
436   MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
437 
438   int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
439   int64_t SrcOffset = getInstrOffset(MI);
440 
441   assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
442 
443   BlockInfo[MBB->getNumber()].Size -= OldBrSize;
444 
445   MachineBasicBlock *BranchBB = MBB;
446 
447   // If this was an expanded conditional branch, there is already a single
448   // unconditional branch in a block.
449   if (!MBB->empty()) {
450     BranchBB = createNewBlockAfter(*MBB);
451 
452     // Add live outs.
453     for (const MachineBasicBlock *Succ : MBB->successors()) {
454       for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
455         BranchBB->addLiveIn(LiveIn);
456     }
457 
458     BranchBB->sortUniqueLiveIns();
459     BranchBB->addSuccessor(DestBB);
460     MBB->replaceSuccessor(DestBB, BranchBB);
461   }
462 
463   DebugLoc DL = MI.getDebugLoc();
464   MI.eraseFromParent();
465 
466   // Create the optional restore block and, initially, place it at the end of
467   // function. That block will be placed later if it's used; otherwise, it will
468   // be erased.
469   MachineBasicBlock *RestoreBB = createNewBlockAfter(MF->back());
470 
471   TII->insertIndirectBranch(*BranchBB, *DestBB, *RestoreBB, DL,
472                             DestOffset - SrcOffset, RS.get());
473 
474   BlockInfo[BranchBB->getNumber()].Size = computeBlockSize(*BranchBB);
475   adjustBlockOffsets(*MBB);
476 
477   // If RestoreBB is required, try to place just before DestBB.
478   if (!RestoreBB->empty()) {
479     // TODO: For multiple far branches to the same destination, there are
480     // chances that some restore blocks could be shared if they clobber the
481     // same registers and share the same restore sequence. So far, those
482     // restore blocks are just duplicated for each far branch.
483     assert(!DestBB->isEntryBlock());
484     MachineBasicBlock *PrevBB = &*std::prev(DestBB->getIterator());
485     if (auto *FT = PrevBB->getFallThrough()) {
486       assert(FT == DestBB);
487       TII->insertUnconditionalBranch(*PrevBB, FT, DebugLoc());
488       // Recalculate the block size.
489       BlockInfo[PrevBB->getNumber()].Size = computeBlockSize(*PrevBB);
490     }
491     // Now, RestoreBB could be placed directly before DestBB.
492     MF->splice(DestBB->getIterator(), RestoreBB->getIterator());
493     // Update successors and predecessors.
494     RestoreBB->addSuccessor(DestBB);
495     BranchBB->replaceSuccessor(DestBB, RestoreBB);
496     if (TRI->trackLivenessAfterRegAlloc(*MF))
497       computeAndAddLiveIns(LiveRegs, *RestoreBB);
498     // Compute the restore block size.
499     BlockInfo[RestoreBB->getNumber()].Size = computeBlockSize(*RestoreBB);
500     // Update the offset starting from the previous block.
501     adjustBlockOffsets(*PrevBB);
502   } else {
503     // Remove restore block if it's not required.
504     MF->erase(RestoreBB);
505   }
506 
507   return true;
508 }
509 
510 bool BranchRelaxation::relaxBranchInstructions() {
511   bool Changed = false;
512 
513   // Relaxing branches involves creating new basic blocks, so re-eval
514   // end() for termination.
515   for (MachineBasicBlock &MBB : *MF) {
516     // Empty block?
517     MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
518     if (Last == MBB.end())
519       continue;
520 
521     // Expand the unconditional branch first if necessary. If there is a
522     // conditional branch, this will end up changing the branch destination of
523     // it to be over the newly inserted indirect branch block, which may avoid
524     // the need to try expanding the conditional branch first, saving an extra
525     // jump.
526     if (Last->isUnconditionalBranch()) {
527       // Unconditional branch destination might be unanalyzable, assume these
528       // are OK.
529       if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
530         if (!isBlockInRange(*Last, *DestBB)) {
531           fixupUnconditionalBranch(*Last);
532           ++NumUnconditionalRelaxed;
533           Changed = true;
534         }
535       }
536     }
537 
538     // Loop over the conditional branches.
539     MachineBasicBlock::iterator Next;
540     for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
541          J != MBB.end(); J = Next) {
542       Next = std::next(J);
543       MachineInstr &MI = *J;
544 
545       if (!MI.isConditionalBranch())
546         continue;
547 
548       if (MI.getOpcode() == TargetOpcode::FAULTING_OP)
549         // FAULTING_OP's destination is not encoded in the instruction stream
550         // and thus never needs relaxed.
551         continue;
552 
553       MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
554       if (!isBlockInRange(MI, *DestBB)) {
555         if (Next != MBB.end() && Next->isConditionalBranch()) {
556           // If there are multiple conditional branches, this isn't an
557           // analyzable block. Split later terminators into a new block so
558           // each one will be analyzable.
559 
560           splitBlockBeforeInstr(*Next, DestBB);
561         } else {
562           fixupConditionalBranch(MI);
563           ++NumConditionalRelaxed;
564         }
565 
566         Changed = true;
567 
568         // This may have modified all of the terminators, so start over.
569         Next = MBB.getFirstTerminator();
570       }
571     }
572   }
573 
574   return Changed;
575 }
576 
577 bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
578   MF = &mf;
579 
580   LLVM_DEBUG(dbgs() << "***** BranchRelaxation *****\n");
581 
582   const TargetSubtargetInfo &ST = MF->getSubtarget();
583   TII = ST.getInstrInfo();
584 
585   TRI = ST.getRegisterInfo();
586   if (TRI->trackLivenessAfterRegAlloc(*MF))
587     RS.reset(new RegScavenger());
588 
589   // Renumber all of the machine basic blocks in the function, guaranteeing that
590   // the numbers agree with the position of the block in the function.
591   MF->RenumberBlocks();
592 
593   // Do the initial scan of the function, building up information about the
594   // sizes of each block.
595   scanFunction();
596 
597   LLVM_DEBUG(dbgs() << "  Basic blocks before relaxation\n"; dumpBBs(););
598 
599   bool MadeChange = false;
600   while (relaxBranchInstructions())
601     MadeChange = true;
602 
603   // After a while, this might be made debug-only, but it is not expensive.
604   verify();
605 
606   LLVM_DEBUG(dbgs() << "  Basic blocks after relaxation\n\n"; dumpBBs());
607 
608   BlockInfo.clear();
609 
610   return MadeChange;
611 }
612