xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/BranchRelaxation.cpp (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 //===- BranchRelaxation.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/SmallVector.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/CodeGen/LivePhysRegs.h"
12 #include "llvm/CodeGen/MachineBasicBlock.h"
13 #include "llvm/CodeGen/MachineFunction.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/RegisterScavenging.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/DebugLoc.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstdint>
31 #include <iterator>
32 #include <memory>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "branch-relaxation"
37 
38 STATISTIC(NumSplit, "Number of basic blocks split");
39 STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
40 STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
41 
42 #define BRANCH_RELAX_NAME "Branch relaxation pass"
43 
44 namespace {
45 
46 class BranchRelaxation : public MachineFunctionPass {
47   /// BasicBlockInfo - Information about the offset and size of a single
48   /// basic block.
49   struct BasicBlockInfo {
50     /// Offset - Distance from the beginning of the function to the beginning
51     /// of this basic block.
52     ///
53     /// The offset is always aligned as required by the basic block.
54     unsigned Offset = 0;
55 
56     /// Size - Size of the basic block in bytes.  If the block contains
57     /// inline assembly, this is a worst case estimate.
58     ///
59     /// The size does not include any alignment padding whether from the
60     /// beginning of the block, or from an aligned jump table at the end.
61     unsigned Size = 0;
62 
63     BasicBlockInfo() = default;
64 
65     /// Compute the offset immediately following this block. \p MBB is the next
66     /// block.
67     unsigned postOffset(const MachineBasicBlock &MBB) const {
68       const unsigned PO = Offset + Size;
69       const Align Alignment = MBB.getAlignment();
70       const Align ParentAlign = MBB.getParent()->getAlignment();
71       if (Alignment <= ParentAlign)
72         return alignTo(PO, Alignment);
73 
74       // The alignment of this MBB is larger than the function's alignment, so we
75       // can't tell whether or not it will insert nops. Assume that it will.
76       return alignTo(PO, Alignment) + Alignment.value() - ParentAlign.value();
77     }
78   };
79 
80   SmallVector<BasicBlockInfo, 16> BlockInfo;
81   std::unique_ptr<RegScavenger> RS;
82   LivePhysRegs LiveRegs;
83 
84   MachineFunction *MF;
85   const TargetRegisterInfo *TRI;
86   const TargetInstrInfo *TII;
87 
88   bool relaxBranchInstructions();
89   void scanFunction();
90 
91   MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
92 
93   MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
94                                            MachineBasicBlock *DestBB);
95   void adjustBlockOffsets(MachineBasicBlock &Start);
96   bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
97 
98   bool fixupConditionalBranch(MachineInstr &MI);
99   bool fixupUnconditionalBranch(MachineInstr &MI);
100   uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
101   unsigned getInstrOffset(const MachineInstr &MI) const;
102   void dumpBBs();
103   void verify();
104 
105 public:
106   static char ID;
107 
108   BranchRelaxation() : MachineFunctionPass(ID) {}
109 
110   bool runOnMachineFunction(MachineFunction &MF) override;
111 
112   StringRef getPassName() const override { return BRANCH_RELAX_NAME; }
113 };
114 
115 } // end anonymous namespace
116 
117 char BranchRelaxation::ID = 0;
118 
119 char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
120 
121 INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
122 
123 /// verify - check BBOffsets, BBSizes, alignment of islands
124 void BranchRelaxation::verify() {
125 #ifndef NDEBUG
126   unsigned PrevNum = MF->begin()->getNumber();
127   for (MachineBasicBlock &MBB : *MF) {
128     const unsigned Num = MBB.getNumber();
129     assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
130     assert(BlockInfo[Num].Size == computeBlockSize(MBB));
131     PrevNum = Num;
132   }
133 #endif
134 }
135 
136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
137 /// print block size and offset information - debugging
138 LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
139   for (auto &MBB : *MF) {
140     const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
141     dbgs() << format("%%bb.%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
142            << format("size=%#x\n", BBI.Size);
143   }
144 }
145 #endif
146 
147 /// scanFunction - Do the initial scan of the function, building up
148 /// information about each block.
149 void BranchRelaxation::scanFunction() {
150   BlockInfo.clear();
151   BlockInfo.resize(MF->getNumBlockIDs());
152 
153   // First thing, compute the size of all basic blocks, and see if the function
154   // has any inline assembly in it. If so, we have to be conservative about
155   // alignment assumptions, as we don't know for sure the size of any
156   // instructions in the inline assembly.
157   for (MachineBasicBlock &MBB : *MF)
158     BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
159 
160   // Compute block offsets and known bits.
161   adjustBlockOffsets(*MF->begin());
162 }
163 
164 /// computeBlockSize - Compute the size for MBB.
165 uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
166   uint64_t Size = 0;
167   for (const MachineInstr &MI : MBB)
168     Size += TII->getInstSizeInBytes(MI);
169   return Size;
170 }
171 
172 /// getInstrOffset - Return the current offset of the specified machine
173 /// instruction from the start of the function.  This offset changes as stuff is
174 /// moved around inside the function.
175 unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
176   const MachineBasicBlock *MBB = MI.getParent();
177 
178   // The offset is composed of two things: the sum of the sizes of all MBB's
179   // before this instruction's block, and the offset from the start of the block
180   // it is in.
181   unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
182 
183   // Sum instructions before MI in MBB.
184   for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
185     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
186     Offset += TII->getInstSizeInBytes(*I);
187   }
188 
189   return Offset;
190 }
191 
192 void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
193   unsigned PrevNum = Start.getNumber();
194   for (auto &MBB :
195        make_range(std::next(MachineFunction::iterator(Start)), MF->end())) {
196     unsigned Num = MBB.getNumber();
197     // Get the offset and known bits at the end of the layout predecessor.
198     // Include the alignment of the current block.
199     BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
200 
201     PrevNum = Num;
202   }
203 }
204 
205 /// Insert a new empty basic block and insert it after \BB
206 MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
207   // Create a new MBB for the code after the OrigBB.
208   MachineBasicBlock *NewBB =
209       MF->CreateMachineBasicBlock(BB.getBasicBlock());
210   MF->insert(++BB.getIterator(), NewBB);
211 
212   // Insert an entry into BlockInfo to align it properly with the block numbers.
213   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
214 
215   return NewBB;
216 }
217 
218 /// Split the basic block containing MI into two blocks, which are joined by
219 /// an unconditional branch.  Update data structures and renumber blocks to
220 /// account for this change and returns the newly created block.
221 MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
222                                                            MachineBasicBlock *DestBB) {
223   MachineBasicBlock *OrigBB = MI.getParent();
224 
225   // Create a new MBB for the code after the OrigBB.
226   MachineBasicBlock *NewBB =
227       MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
228   MF->insert(++OrigBB->getIterator(), NewBB);
229 
230   // Splice the instructions starting with MI over to NewBB.
231   NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
232 
233   // Add an unconditional branch from OrigBB to NewBB.
234   // Note the new unconditional branch is not being recorded.
235   // There doesn't seem to be meaningful DebugInfo available; this doesn't
236   // correspond to anything in the source.
237   TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
238 
239   // Insert an entry into BlockInfo to align it properly with the block numbers.
240   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
241 
242   NewBB->transferSuccessors(OrigBB);
243   OrigBB->addSuccessor(NewBB);
244   OrigBB->addSuccessor(DestBB);
245 
246   // Cleanup potential unconditional branch to successor block.
247   // Note that updateTerminator may change the size of the blocks.
248   OrigBB->updateTerminator(NewBB);
249 
250   // Figure out how large the OrigBB is.  As the first half of the original
251   // block, it cannot contain a tablejump.  The size includes
252   // the new jump we added.  (It should be possible to do this without
253   // recounting everything, but it's very confusing, and this is rarely
254   // executed.)
255   BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
256 
257   // Figure out how large the NewMBB is. As the second half of the original
258   // block, it may contain a tablejump.
259   BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
260 
261   // All BBOffsets following these blocks must be modified.
262   adjustBlockOffsets(*OrigBB);
263 
264   // Need to fix live-in lists if we track liveness.
265   if (TRI->trackLivenessAfterRegAlloc(*MF))
266     computeAndAddLiveIns(LiveRegs, *NewBB);
267 
268   ++NumSplit;
269 
270   return NewBB;
271 }
272 
273 /// isBlockInRange - Returns true if the distance between specific MI and
274 /// specific BB can fit in MI's displacement field.
275 bool BranchRelaxation::isBlockInRange(
276   const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
277   int64_t BrOffset = getInstrOffset(MI);
278   int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
279 
280   if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
281     return true;
282 
283   LLVM_DEBUG(dbgs() << "Out of range branch to destination "
284                     << printMBBReference(DestBB) << " from "
285                     << printMBBReference(*MI.getParent()) << " to "
286                     << DestOffset << " offset " << DestOffset - BrOffset << '\t'
287                     << MI);
288 
289   return false;
290 }
291 
292 /// fixupConditionalBranch - Fix up a conditional branch whose destination is
293 /// too far away to fit in its displacement field. It is converted to an inverse
294 /// conditional branch + an unconditional branch to the destination.
295 bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
296   DebugLoc DL = MI.getDebugLoc();
297   MachineBasicBlock *MBB = MI.getParent();
298   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
299   MachineBasicBlock *NewBB = nullptr;
300   SmallVector<MachineOperand, 4> Cond;
301 
302   auto insertUncondBranch = [&](MachineBasicBlock *MBB,
303                                 MachineBasicBlock *DestBB) {
304     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
305     int NewBrSize = 0;
306     TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
307     BBSize += NewBrSize;
308   };
309   auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
310                           MachineBasicBlock *FBB,
311                           SmallVectorImpl<MachineOperand>& Cond) {
312     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
313     int NewBrSize = 0;
314     TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
315     BBSize += NewBrSize;
316   };
317   auto removeBranch = [&](MachineBasicBlock *MBB) {
318     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
319     int RemovedSize = 0;
320     TII->removeBranch(*MBB, &RemovedSize);
321     BBSize -= RemovedSize;
322   };
323 
324   auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
325                                   MachineBasicBlock *NewBB) {
326     // Keep the block offsets up to date.
327     adjustBlockOffsets(*MBB);
328 
329     // Need to fix live-in lists if we track liveness.
330     if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
331       computeAndAddLiveIns(LiveRegs, *NewBB);
332   };
333 
334   bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
335   assert(!Fail && "branches to be relaxed must be analyzable");
336   (void)Fail;
337 
338   // Add an unconditional branch to the destination and invert the branch
339   // condition to jump over it:
340   // tbz L1
341   // =>
342   // tbnz L2
343   // b   L1
344   // L2:
345 
346   bool ReversedCond = !TII->reverseBranchCondition(Cond);
347   if (ReversedCond) {
348     if (FBB && isBlockInRange(MI, *FBB)) {
349       // Last MI in the BB is an unconditional branch. We can simply invert the
350       // condition and swap destinations:
351       // beq L1
352       // b   L2
353       // =>
354       // bne L2
355       // b   L1
356       LLVM_DEBUG(dbgs() << "  Invert condition and swap "
357                            "its destination with "
358                         << MBB->back());
359 
360       removeBranch(MBB);
361       insertBranch(MBB, FBB, TBB, Cond);
362       finalizeBlockChanges(MBB, nullptr);
363       return true;
364     }
365     if (FBB) {
366       // We need to split the basic block here to obtain two long-range
367       // unconditional branches.
368       NewBB = createNewBlockAfter(*MBB);
369 
370       insertUncondBranch(NewBB, FBB);
371       // Update the succesor lists according to the transformation to follow.
372       // Do it here since if there's no split, no update is needed.
373       MBB->replaceSuccessor(FBB, NewBB);
374       NewBB->addSuccessor(FBB);
375     }
376 
377     // We now have an appropriate fall-through block in place (either naturally or
378     // just created), so we can use the inverted the condition.
379     MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
380 
381     LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*TBB)
382                       << ", invert condition and change dest. to "
383                       << printMBBReference(NextBB) << '\n');
384 
385     removeBranch(MBB);
386     // Insert a new conditional branch and a new unconditional branch.
387     insertBranch(MBB, &NextBB, TBB, Cond);
388 
389     finalizeBlockChanges(MBB, NewBB);
390     return true;
391   }
392   // Branch cond can't be inverted.
393   // In this case we always add a block after the MBB.
394   LLVM_DEBUG(dbgs() << "  The branch condition can't be inverted. "
395                     << "  Insert a new BB after " << MBB->back());
396 
397   if (!FBB)
398     FBB = &(*std::next(MachineFunction::iterator(MBB)));
399 
400   // This is the block with cond. branch and the distance to TBB is too long.
401   //    beq L1
402   // L2:
403 
404   // We do the following transformation:
405   //    beq NewBB
406   //    b L2
407   // NewBB:
408   //    b L1
409   // L2:
410 
411   NewBB = createNewBlockAfter(*MBB);
412   insertUncondBranch(NewBB, TBB);
413 
414   LLVM_DEBUG(dbgs() << "  Insert cond B to the new BB "
415                     << printMBBReference(*NewBB)
416                     << "  Keep the exiting condition.\n"
417                     << "  Insert B to " << printMBBReference(*FBB) << ".\n"
418                     << "  In the new BB: Insert B to "
419                     << printMBBReference(*TBB) << ".\n");
420 
421   // Update the successor lists according to the transformation to follow.
422   MBB->replaceSuccessor(TBB, NewBB);
423   NewBB->addSuccessor(TBB);
424 
425   // Replace branch in the current (MBB) block.
426   removeBranch(MBB);
427   insertBranch(MBB, NewBB, FBB, Cond);
428 
429   finalizeBlockChanges(MBB, NewBB);
430   return true;
431 }
432 
433 bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
434   MachineBasicBlock *MBB = MI.getParent();
435 
436   unsigned OldBrSize = TII->getInstSizeInBytes(MI);
437   MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
438 
439   int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
440   int64_t SrcOffset = getInstrOffset(MI);
441 
442   assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
443 
444   BlockInfo[MBB->getNumber()].Size -= OldBrSize;
445 
446   MachineBasicBlock *BranchBB = MBB;
447 
448   // If this was an expanded conditional branch, there is already a single
449   // unconditional branch in a block.
450   if (!MBB->empty()) {
451     BranchBB = createNewBlockAfter(*MBB);
452 
453     // Add live outs.
454     for (const MachineBasicBlock *Succ : MBB->successors()) {
455       for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
456         BranchBB->addLiveIn(LiveIn);
457     }
458 
459     BranchBB->sortUniqueLiveIns();
460     BranchBB->addSuccessor(DestBB);
461     MBB->replaceSuccessor(DestBB, BranchBB);
462   }
463 
464   DebugLoc DL = MI.getDebugLoc();
465   MI.eraseFromParent();
466 
467   // Create the optional restore block and, initially, place it at the end of
468   // function. That block will be placed later if it's used; otherwise, it will
469   // be erased.
470   MachineBasicBlock *RestoreBB = createNewBlockAfter(MF->back());
471 
472   TII->insertIndirectBranch(*BranchBB, *DestBB, *RestoreBB, DL,
473                             DestOffset - SrcOffset, RS.get());
474 
475   BlockInfo[BranchBB->getNumber()].Size = computeBlockSize(*BranchBB);
476   adjustBlockOffsets(*MBB);
477 
478   // If RestoreBB is required, try to place just before DestBB.
479   if (!RestoreBB->empty()) {
480     // TODO: For multiple far branches to the same destination, there are
481     // chances that some restore blocks could be shared if they clobber the
482     // same registers and share the same restore sequence. So far, those
483     // restore blocks are just duplicated for each far branch.
484     assert(!DestBB->isEntryBlock());
485     MachineBasicBlock *PrevBB = &*std::prev(DestBB->getIterator());
486     if (auto *FT = PrevBB->getFallThrough()) {
487       assert(FT == DestBB);
488       TII->insertUnconditionalBranch(*PrevBB, FT, DebugLoc());
489       // Recalculate the block size.
490       BlockInfo[PrevBB->getNumber()].Size = computeBlockSize(*PrevBB);
491     }
492     // Now, RestoreBB could be placed directly before DestBB.
493     MF->splice(DestBB->getIterator(), RestoreBB->getIterator());
494     // Update successors and predecessors.
495     RestoreBB->addSuccessor(DestBB);
496     BranchBB->replaceSuccessor(DestBB, RestoreBB);
497     if (TRI->trackLivenessAfterRegAlloc(*MF))
498       computeAndAddLiveIns(LiveRegs, *RestoreBB);
499     // Compute the restore block size.
500     BlockInfo[RestoreBB->getNumber()].Size = computeBlockSize(*RestoreBB);
501     // Update the offset starting from the previous block.
502     adjustBlockOffsets(*PrevBB);
503   } else {
504     // Remove restore block if it's not required.
505     MF->erase(RestoreBB);
506   }
507 
508   return true;
509 }
510 
511 bool BranchRelaxation::relaxBranchInstructions() {
512   bool Changed = false;
513 
514   // Relaxing branches involves creating new basic blocks, so re-eval
515   // end() for termination.
516   for (MachineBasicBlock &MBB : *MF) {
517     // Empty block?
518     MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
519     if (Last == MBB.end())
520       continue;
521 
522     // Expand the unconditional branch first if necessary. If there is a
523     // conditional branch, this will end up changing the branch destination of
524     // it to be over the newly inserted indirect branch block, which may avoid
525     // the need to try expanding the conditional branch first, saving an extra
526     // jump.
527     if (Last->isUnconditionalBranch()) {
528       // Unconditional branch destination might be unanalyzable, assume these
529       // are OK.
530       if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
531         if (!isBlockInRange(*Last, *DestBB)) {
532           fixupUnconditionalBranch(*Last);
533           ++NumUnconditionalRelaxed;
534           Changed = true;
535         }
536       }
537     }
538 
539     // Loop over the conditional branches.
540     MachineBasicBlock::iterator Next;
541     for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
542          J != MBB.end(); J = Next) {
543       Next = std::next(J);
544       MachineInstr &MI = *J;
545 
546       if (!MI.isConditionalBranch())
547         continue;
548 
549       if (MI.getOpcode() == TargetOpcode::FAULTING_OP)
550         // FAULTING_OP's destination is not encoded in the instruction stream
551         // and thus never needs relaxed.
552         continue;
553 
554       MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
555       if (!isBlockInRange(MI, *DestBB)) {
556         if (Next != MBB.end() && Next->isConditionalBranch()) {
557           // If there are multiple conditional branches, this isn't an
558           // analyzable block. Split later terminators into a new block so
559           // each one will be analyzable.
560 
561           splitBlockBeforeInstr(*Next, DestBB);
562         } else {
563           fixupConditionalBranch(MI);
564           ++NumConditionalRelaxed;
565         }
566 
567         Changed = true;
568 
569         // This may have modified all of the terminators, so start over.
570         Next = MBB.getFirstTerminator();
571       }
572     }
573   }
574 
575   return Changed;
576 }
577 
578 bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
579   MF = &mf;
580 
581   LLVM_DEBUG(dbgs() << "***** BranchRelaxation *****\n");
582 
583   const TargetSubtargetInfo &ST = MF->getSubtarget();
584   TII = ST.getInstrInfo();
585 
586   TRI = ST.getRegisterInfo();
587   if (TRI->trackLivenessAfterRegAlloc(*MF))
588     RS.reset(new RegScavenger());
589 
590   // Renumber all of the machine basic blocks in the function, guaranteeing that
591   // the numbers agree with the position of the block in the function.
592   MF->RenumberBlocks();
593 
594   // Do the initial scan of the function, building up information about the
595   // sizes of each block.
596   scanFunction();
597 
598   LLVM_DEBUG(dbgs() << "  Basic blocks before relaxation\n"; dumpBBs(););
599 
600   bool MadeChange = false;
601   while (relaxBranchInstructions())
602     MadeChange = true;
603 
604   // After a while, this might be made debug-only, but it is not expensive.
605   verify();
606 
607   LLVM_DEBUG(dbgs() << "  Basic blocks after relaxation\n\n"; dumpBBs());
608 
609   BlockInfo.clear();
610 
611   return MadeChange;
612 }
613