xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/MBFIWrapper.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <iterator>
62 #include <numeric>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "branch-folder"
67 
68 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
69 STATISTIC(NumBranchOpts, "Number of branches optimized");
70 STATISTIC(NumTailMerge , "Number of block tails merged");
71 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
72 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
73 
74 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
75                               cl::init(cl::BOU_UNSET), cl::Hidden);
76 
77 // Throttle for huge numbers of predecessors (compile speed problems)
78 static cl::opt<unsigned>
79 TailMergeThreshold("tail-merge-threshold",
80           cl::desc("Max number of predecessors to consider tail merging"),
81           cl::init(150), cl::Hidden);
82 
83 // Heuristic for tail merging (and, inversely, tail duplication).
84 // TODO: This should be replaced with a target query.
85 static cl::opt<unsigned>
86 TailMergeSize("tail-merge-size",
87               cl::desc("Min number of instructions to consider tail merging"),
88               cl::init(3), cl::Hidden);
89 
90 namespace {
91 
92   /// BranchFolderPass - Wrap branch folder in a machine function pass.
93   class BranchFolderPass : public MachineFunctionPass {
94   public:
95     static char ID;
96 
97     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
98 
99     bool runOnMachineFunction(MachineFunction &MF) override;
100 
101     void getAnalysisUsage(AnalysisUsage &AU) const override {
102       AU.addRequired<MachineBlockFrequencyInfo>();
103       AU.addRequired<MachineBranchProbabilityInfo>();
104       AU.addRequired<ProfileSummaryInfoWrapperPass>();
105       AU.addRequired<TargetPassConfig>();
106       MachineFunctionPass::getAnalysisUsage(AU);
107     }
108   };
109 
110 } // end anonymous namespace
111 
112 char BranchFolderPass::ID = 0;
113 
114 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
115 
116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
117                 "Control Flow Optimizer", false, false)
118 
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
120   if (skipFunction(MF.getFunction()))
121     return false;
122 
123   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
124   // TailMerge can create jump into if branches that make CFG irreducible for
125   // HW that requires structurized CFG.
126   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
127                          PassConfig->getEnableTailMerge();
128   MBFIWrapper MBBFreqInfo(
129       getAnalysis<MachineBlockFrequencyInfo>());
130   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
131                       getAnalysis<MachineBranchProbabilityInfo>(),
132                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
133   return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
134                                  MF.getSubtarget().getRegisterInfo());
135 }
136 
137 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
138                            MBFIWrapper &FreqInfo,
139                            const MachineBranchProbabilityInfo &ProbInfo,
140                            ProfileSummaryInfo *PSI, unsigned MinTailLength)
141     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
142       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
143   if (MinCommonTailLength == 0)
144     MinCommonTailLength = TailMergeSize;
145   switch (FlagEnableTailMerge) {
146   case cl::BOU_UNSET:
147     EnableTailMerge = DefaultEnableTailMerge;
148     break;
149   case cl::BOU_TRUE: EnableTailMerge = true; break;
150   case cl::BOU_FALSE: EnableTailMerge = false; break;
151   }
152 }
153 
154 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
155   assert(MBB->pred_empty() && "MBB must be dead!");
156   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
157 
158   MachineFunction *MF = MBB->getParent();
159   // drop all successors.
160   while (!MBB->succ_empty())
161     MBB->removeSuccessor(MBB->succ_end()-1);
162 
163   // Avoid matching if this pointer gets reused.
164   TriedMerging.erase(MBB);
165 
166   // Update call site info.
167   for (const MachineInstr &MI : *MBB)
168     if (MI.shouldUpdateCallSiteInfo())
169       MF->eraseCallSiteInfo(&MI);
170 
171   // Remove the block.
172   MF->erase(MBB);
173   EHScopeMembership.erase(MBB);
174   if (MLI)
175     MLI->removeBlock(MBB);
176 }
177 
178 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
179                                     const TargetInstrInfo *tii,
180                                     const TargetRegisterInfo *tri,
181                                     MachineLoopInfo *mli, bool AfterPlacement) {
182   if (!tii) return false;
183 
184   TriedMerging.clear();
185 
186   MachineRegisterInfo &MRI = MF.getRegInfo();
187   AfterBlockPlacement = AfterPlacement;
188   TII = tii;
189   TRI = tri;
190   MLI = mli;
191   this->MRI = &MRI;
192 
193   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
194   if (!UpdateLiveIns)
195     MRI.invalidateLiveness();
196 
197   bool MadeChange = false;
198 
199   // Recalculate EH scope membership.
200   EHScopeMembership = getEHScopeMembership(MF);
201 
202   bool MadeChangeThisIteration = true;
203   while (MadeChangeThisIteration) {
204     MadeChangeThisIteration    = TailMergeBlocks(MF);
205     // No need to clean up if tail merging does not change anything after the
206     // block placement.
207     if (!AfterBlockPlacement || MadeChangeThisIteration)
208       MadeChangeThisIteration |= OptimizeBranches(MF);
209     if (EnableHoistCommonCode)
210       MadeChangeThisIteration |= HoistCommonCode(MF);
211     MadeChange |= MadeChangeThisIteration;
212   }
213 
214   // See if any jump tables have become dead as the code generator
215   // did its thing.
216   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
217   if (!JTI)
218     return MadeChange;
219 
220   // Walk the function to find jump tables that are live.
221   BitVector JTIsLive(JTI->getJumpTables().size());
222   for (const MachineBasicBlock &BB : MF) {
223     for (const MachineInstr &I : BB)
224       for (const MachineOperand &Op : I.operands()) {
225         if (!Op.isJTI()) continue;
226 
227         // Remember that this JT is live.
228         JTIsLive.set(Op.getIndex());
229       }
230   }
231 
232   // Finally, remove dead jump tables.  This happens when the
233   // indirect jump was unreachable (and thus deleted).
234   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
235     if (!JTIsLive.test(i)) {
236       JTI->RemoveJumpTable(i);
237       MadeChange = true;
238     }
239 
240   return MadeChange;
241 }
242 
243 //===----------------------------------------------------------------------===//
244 //  Tail Merging of Blocks
245 //===----------------------------------------------------------------------===//
246 
247 /// HashMachineInstr - Compute a hash value for MI and its operands.
248 static unsigned HashMachineInstr(const MachineInstr &MI) {
249   unsigned Hash = MI.getOpcode();
250   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
251     const MachineOperand &Op = MI.getOperand(i);
252 
253     // Merge in bits from the operand if easy. We can't use MachineOperand's
254     // hash_code here because it's not deterministic and we sort by hash value
255     // later.
256     unsigned OperandHash = 0;
257     switch (Op.getType()) {
258     case MachineOperand::MO_Register:
259       OperandHash = Op.getReg();
260       break;
261     case MachineOperand::MO_Immediate:
262       OperandHash = Op.getImm();
263       break;
264     case MachineOperand::MO_MachineBasicBlock:
265       OperandHash = Op.getMBB()->getNumber();
266       break;
267     case MachineOperand::MO_FrameIndex:
268     case MachineOperand::MO_ConstantPoolIndex:
269     case MachineOperand::MO_JumpTableIndex:
270       OperandHash = Op.getIndex();
271       break;
272     case MachineOperand::MO_GlobalAddress:
273     case MachineOperand::MO_ExternalSymbol:
274       // Global address / external symbol are too hard, don't bother, but do
275       // pull in the offset.
276       OperandHash = Op.getOffset();
277       break;
278     default:
279       break;
280     }
281 
282     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
283   }
284   return Hash;
285 }
286 
287 /// HashEndOfMBB - Hash the last instruction in the MBB.
288 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
289   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false);
290   if (I == MBB.end())
291     return 0;
292 
293   return HashMachineInstr(*I);
294 }
295 
296 /// Whether MI should be counted as an instruction when calculating common tail.
297 static bool countsAsInstruction(const MachineInstr &MI) {
298   return !(MI.isDebugInstr() || MI.isCFIInstruction());
299 }
300 
301 /// Iterate backwards from the given iterator \p I, towards the beginning of the
302 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
303 /// pointing to that MI. If no such MI is found, return the end iterator.
304 static MachineBasicBlock::iterator
305 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
306                                 MachineBasicBlock *MBB) {
307   while (I != MBB->begin()) {
308     --I;
309     if (countsAsInstruction(*I))
310       return I;
311   }
312   return MBB->end();
313 }
314 
315 /// Given two machine basic blocks, return the number of instructions they
316 /// actually have in common together at their end. If a common tail is found (at
317 /// least by one instruction), then iterators for the first shared instruction
318 /// in each block are returned as well.
319 ///
320 /// Non-instructions according to countsAsInstruction are ignored.
321 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
322                                         MachineBasicBlock *MBB2,
323                                         MachineBasicBlock::iterator &I1,
324                                         MachineBasicBlock::iterator &I2) {
325   MachineBasicBlock::iterator MBBI1 = MBB1->end();
326   MachineBasicBlock::iterator MBBI2 = MBB2->end();
327 
328   unsigned TailLen = 0;
329   while (true) {
330     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
331     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
332     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
333       break;
334     if (!MBBI1->isIdenticalTo(*MBBI2) ||
335         // FIXME: This check is dubious. It's used to get around a problem where
336         // people incorrectly expect inline asm directives to remain in the same
337         // relative order. This is untenable because normal compiler
338         // optimizations (like this one) may reorder and/or merge these
339         // directives.
340         MBBI1->isInlineAsm()) {
341       break;
342     }
343     if (MBBI1->getFlag(MachineInstr::NoMerge) ||
344         MBBI2->getFlag(MachineInstr::NoMerge))
345       break;
346     ++TailLen;
347     I1 = MBBI1;
348     I2 = MBBI2;
349   }
350 
351   return TailLen;
352 }
353 
354 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
355                                            MachineBasicBlock &NewDest) {
356   if (UpdateLiveIns) {
357     // OldInst should always point to an instruction.
358     MachineBasicBlock &OldMBB = *OldInst->getParent();
359     LiveRegs.clear();
360     LiveRegs.addLiveOuts(OldMBB);
361     // Move backward to the place where will insert the jump.
362     MachineBasicBlock::iterator I = OldMBB.end();
363     do {
364       --I;
365       LiveRegs.stepBackward(*I);
366     } while (I != OldInst);
367 
368     // Merging the tails may have switched some undef operand to non-undef ones.
369     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
370     // register.
371     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
372       // We computed the liveins with computeLiveIn earlier and should only see
373       // full registers:
374       assert(P.LaneMask == LaneBitmask::getAll() &&
375              "Can only handle full register.");
376       MCPhysReg Reg = P.PhysReg;
377       if (!LiveRegs.available(*MRI, Reg))
378         continue;
379       DebugLoc DL;
380       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
381     }
382   }
383 
384   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
385   ++NumTailMerge;
386 }
387 
388 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
389                                             MachineBasicBlock::iterator BBI1,
390                                             const BasicBlock *BB) {
391   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
392     return nullptr;
393 
394   MachineFunction &MF = *CurMBB.getParent();
395 
396   // Create the fall-through block.
397   MachineFunction::iterator MBBI = CurMBB.getIterator();
398   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
399   CurMBB.getParent()->insert(++MBBI, NewMBB);
400 
401   // Move all the successors of this block to the specified block.
402   NewMBB->transferSuccessors(&CurMBB);
403 
404   // Add an edge from CurMBB to NewMBB for the fall-through.
405   CurMBB.addSuccessor(NewMBB);
406 
407   // Splice the code over.
408   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
409 
410   // NewMBB belongs to the same loop as CurMBB.
411   if (MLI)
412     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
413       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
414 
415   // NewMBB inherits CurMBB's block frequency.
416   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
417 
418   if (UpdateLiveIns)
419     computeAndAddLiveIns(LiveRegs, *NewMBB);
420 
421   // Add the new block to the EH scope.
422   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
423   if (EHScopeI != EHScopeMembership.end()) {
424     auto n = EHScopeI->second;
425     EHScopeMembership[NewMBB] = n;
426   }
427 
428   return NewMBB;
429 }
430 
431 /// EstimateRuntime - Make a rough estimate for how long it will take to run
432 /// the specified code.
433 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
434                                 MachineBasicBlock::iterator E) {
435   unsigned Time = 0;
436   for (; I != E; ++I) {
437     if (!countsAsInstruction(*I))
438       continue;
439     if (I->isCall())
440       Time += 10;
441     else if (I->mayLoadOrStore())
442       Time += 2;
443     else
444       ++Time;
445   }
446   return Time;
447 }
448 
449 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
450 // branches temporarily for tail merging).  In the case where CurMBB ends
451 // with a conditional branch to the next block, optimize by reversing the
452 // test and conditionally branching to SuccMBB instead.
453 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
454                     const TargetInstrInfo *TII) {
455   MachineFunction *MF = CurMBB->getParent();
456   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
457   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
458   SmallVector<MachineOperand, 4> Cond;
459   DebugLoc dl = CurMBB->findBranchDebugLoc();
460   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
461     MachineBasicBlock *NextBB = &*I;
462     if (TBB == NextBB && !Cond.empty() && !FBB) {
463       if (!TII->reverseBranchCondition(Cond)) {
464         TII->removeBranch(*CurMBB);
465         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
466         return;
467       }
468     }
469   }
470   TII->insertBranch(*CurMBB, SuccBB, nullptr,
471                     SmallVector<MachineOperand, 0>(), dl);
472 }
473 
474 bool
475 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
476   if (getHash() < o.getHash())
477     return true;
478   if (getHash() > o.getHash())
479     return false;
480   if (getBlock()->getNumber() < o.getBlock()->getNumber())
481     return true;
482   if (getBlock()->getNumber() > o.getBlock()->getNumber())
483     return false;
484   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
485   // an object with itself.
486 #ifndef _GLIBCXX_DEBUG
487   llvm_unreachable("Predecessor appears twice");
488 #else
489   return false;
490 #endif
491 }
492 
493 /// CountTerminators - Count the number of terminators in the given
494 /// block and set I to the position of the first non-terminator, if there
495 /// is one, or MBB->end() otherwise.
496 static unsigned CountTerminators(MachineBasicBlock *MBB,
497                                  MachineBasicBlock::iterator &I) {
498   I = MBB->end();
499   unsigned NumTerms = 0;
500   while (true) {
501     if (I == MBB->begin()) {
502       I = MBB->end();
503       break;
504     }
505     --I;
506     if (!I->isTerminator()) break;
507     ++NumTerms;
508   }
509   return NumTerms;
510 }
511 
512 /// A no successor, non-return block probably ends in unreachable and is cold.
513 /// Also consider a block that ends in an indirect branch to be a return block,
514 /// since many targets use plain indirect branches to return.
515 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
516   if (!MBB->succ_empty())
517     return false;
518   if (MBB->empty())
519     return true;
520   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
521 }
522 
523 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
524 /// and decide if it would be profitable to merge those tails.  Return the
525 /// length of the common tail and iterators to the first common instruction
526 /// in each block.
527 /// MBB1, MBB2      The blocks to check
528 /// MinCommonTailLength  Minimum size of tail block to be merged.
529 /// CommonTailLen   Out parameter to record the size of the shared tail between
530 ///                 MBB1 and MBB2
531 /// I1, I2          Iterator references that will be changed to point to the first
532 ///                 instruction in the common tail shared by MBB1,MBB2
533 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
534 ///                 relative to SuccBB
535 /// PredBB          The layout predecessor of SuccBB, if any.
536 /// EHScopeMembership  map from block to EH scope #.
537 /// AfterPlacement  True if we are merging blocks after layout. Stricter
538 ///                 thresholds apply to prevent undoing tail-duplication.
539 static bool
540 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
541                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
542                   MachineBasicBlock::iterator &I1,
543                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
544                   MachineBasicBlock *PredBB,
545                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
546                   bool AfterPlacement,
547                   MBFIWrapper &MBBFreqInfo,
548                   ProfileSummaryInfo *PSI) {
549   // It is never profitable to tail-merge blocks from two different EH scopes.
550   if (!EHScopeMembership.empty()) {
551     auto EHScope1 = EHScopeMembership.find(MBB1);
552     assert(EHScope1 != EHScopeMembership.end());
553     auto EHScope2 = EHScopeMembership.find(MBB2);
554     assert(EHScope2 != EHScopeMembership.end());
555     if (EHScope1->second != EHScope2->second)
556       return false;
557   }
558 
559   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
560   if (CommonTailLen == 0)
561     return false;
562   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
563                     << " and " << printMBBReference(*MBB2) << " is "
564                     << CommonTailLen << '\n');
565 
566   // Move the iterators to the beginning of the MBB if we only got debug
567   // instructions before the tail. This is to avoid splitting a block when we
568   // only got debug instructions before the tail (to be invariant on -g).
569   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1)
570     I1 = MBB1->begin();
571   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2)
572     I2 = MBB2->begin();
573 
574   bool FullBlockTail1 = I1 == MBB1->begin();
575   bool FullBlockTail2 = I2 == MBB2->begin();
576 
577   // It's almost always profitable to merge any number of non-terminator
578   // instructions with the block that falls through into the common successor.
579   // This is true only for a single successor. For multiple successors, we are
580   // trading a conditional branch for an unconditional one.
581   // TODO: Re-visit successor size for non-layout tail merging.
582   if ((MBB1 == PredBB || MBB2 == PredBB) &&
583       (!AfterPlacement || MBB1->succ_size() == 1)) {
584     MachineBasicBlock::iterator I;
585     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
586     if (CommonTailLen > NumTerms)
587       return true;
588   }
589 
590   // If these are identical non-return blocks with no successors, merge them.
591   // Such blocks are typically cold calls to noreturn functions like abort, and
592   // are unlikely to become a fallthrough target after machine block placement.
593   // Tail merging these blocks is unlikely to create additional unconditional
594   // branches, and will reduce the size of this cold code.
595   if (FullBlockTail1 && FullBlockTail2 &&
596       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
597     return true;
598 
599   // If one of the blocks can be completely merged and happens to be in
600   // a position where the other could fall through into it, merge any number
601   // of instructions, because it can be done without a branch.
602   // TODO: If the blocks are not adjacent, move one of them so that they are?
603   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
604     return true;
605   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
606     return true;
607 
608   // If both blocks are identical and end in a branch, merge them unless they
609   // both have a fallthrough predecessor and successor.
610   // We can only do this after block placement because it depends on whether
611   // there are fallthroughs, and we don't know until after layout.
612   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
613     auto BothFallThrough = [](MachineBasicBlock *MBB) {
614       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
615         return false;
616       MachineFunction::iterator I(MBB);
617       MachineFunction *MF = MBB->getParent();
618       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
619     };
620     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
621       return true;
622   }
623 
624   // If both blocks have an unconditional branch temporarily stripped out,
625   // count that as an additional common instruction for the following
626   // heuristics. This heuristic is only accurate for single-succ blocks, so to
627   // make sure that during layout merging and duplicating don't crash, we check
628   // for that when merging during layout.
629   unsigned EffectiveTailLen = CommonTailLen;
630   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
631       (MBB1->succ_size() == 1 || !AfterPlacement) &&
632       !MBB1->back().isBarrier() &&
633       !MBB2->back().isBarrier())
634     ++EffectiveTailLen;
635 
636   // Check if the common tail is long enough to be worthwhile.
637   if (EffectiveTailLen >= MinCommonTailLength)
638     return true;
639 
640   // If we are optimizing for code size, 2 instructions in common is enough if
641   // we don't have to split a block.  At worst we will be introducing 1 new
642   // branch instruction, which is likely to be smaller than the 2
643   // instructions that would be deleted in the merge.
644   MachineFunction *MF = MBB1->getParent();
645   bool OptForSize =
646       MF->getFunction().hasOptSize() ||
647       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
648        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
649   return EffectiveTailLen >= 2 && OptForSize &&
650          (FullBlockTail1 || FullBlockTail2);
651 }
652 
653 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
654                                         unsigned MinCommonTailLength,
655                                         MachineBasicBlock *SuccBB,
656                                         MachineBasicBlock *PredBB) {
657   unsigned maxCommonTailLength = 0U;
658   SameTails.clear();
659   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
660   MPIterator HighestMPIter = std::prev(MergePotentials.end());
661   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
662                   B = MergePotentials.begin();
663        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
664     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
665       unsigned CommonTailLen;
666       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
667                             MinCommonTailLength,
668                             CommonTailLen, TrialBBI1, TrialBBI2,
669                             SuccBB, PredBB,
670                             EHScopeMembership,
671                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
672         if (CommonTailLen > maxCommonTailLength) {
673           SameTails.clear();
674           maxCommonTailLength = CommonTailLen;
675           HighestMPIter = CurMPIter;
676           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
677         }
678         if (HighestMPIter == CurMPIter &&
679             CommonTailLen == maxCommonTailLength)
680           SameTails.push_back(SameTailElt(I, TrialBBI2));
681       }
682       if (I == B)
683         break;
684     }
685   }
686   return maxCommonTailLength;
687 }
688 
689 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
690                                         MachineBasicBlock *SuccBB,
691                                         MachineBasicBlock *PredBB) {
692   MPIterator CurMPIter, B;
693   for (CurMPIter = std::prev(MergePotentials.end()),
694       B = MergePotentials.begin();
695        CurMPIter->getHash() == CurHash; --CurMPIter) {
696     // Put the unconditional branch back, if we need one.
697     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
698     if (SuccBB && CurMBB != PredBB)
699       FixTail(CurMBB, SuccBB, TII);
700     if (CurMPIter == B)
701       break;
702   }
703   if (CurMPIter->getHash() != CurHash)
704     CurMPIter++;
705   MergePotentials.erase(CurMPIter, MergePotentials.end());
706 }
707 
708 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
709                                              MachineBasicBlock *SuccBB,
710                                              unsigned maxCommonTailLength,
711                                              unsigned &commonTailIndex) {
712   commonTailIndex = 0;
713   unsigned TimeEstimate = ~0U;
714   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
715     // Use PredBB if possible; that doesn't require a new branch.
716     if (SameTails[i].getBlock() == PredBB) {
717       commonTailIndex = i;
718       break;
719     }
720     // Otherwise, make a (fairly bogus) choice based on estimate of
721     // how long it will take the various blocks to execute.
722     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
723                                  SameTails[i].getTailStartPos());
724     if (t <= TimeEstimate) {
725       TimeEstimate = t;
726       commonTailIndex = i;
727     }
728   }
729 
730   MachineBasicBlock::iterator BBI =
731     SameTails[commonTailIndex].getTailStartPos();
732   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
733 
734   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
735                     << maxCommonTailLength);
736 
737   // If the split block unconditionally falls-thru to SuccBB, it will be
738   // merged. In control flow terms it should then take SuccBB's name. e.g. If
739   // SuccBB is an inner loop, the common tail is still part of the inner loop.
740   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
741     SuccBB->getBasicBlock() : MBB->getBasicBlock();
742   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
743   if (!newMBB) {
744     LLVM_DEBUG(dbgs() << "... failed!");
745     return false;
746   }
747 
748   SameTails[commonTailIndex].setBlock(newMBB);
749   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
750 
751   // If we split PredBB, newMBB is the new predecessor.
752   if (PredBB == MBB)
753     PredBB = newMBB;
754 
755   return true;
756 }
757 
758 static void
759 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
760                 MachineBasicBlock &MBBCommon) {
761   MachineBasicBlock *MBB = MBBIStartPos->getParent();
762   // Note CommonTailLen does not necessarily matches the size of
763   // the common BB nor all its instructions because of debug
764   // instructions differences.
765   unsigned CommonTailLen = 0;
766   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
767     ++CommonTailLen;
768 
769   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
770   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
771   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
772   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
773 
774   while (CommonTailLen--) {
775     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
776     (void)MBBIE;
777 
778     if (!countsAsInstruction(*MBBI)) {
779       ++MBBI;
780       continue;
781     }
782 
783     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
784       ++MBBICommon;
785 
786     assert(MBBICommon != MBBIECommon &&
787            "Reached BB end within common tail length!");
788     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
789 
790     // Merge MMOs from memory operations in the common block.
791     if (MBBICommon->mayLoadOrStore())
792       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
793     // Drop undef flags if they aren't present in all merged instructions.
794     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
795       MachineOperand &MO = MBBICommon->getOperand(I);
796       if (MO.isReg() && MO.isUndef()) {
797         const MachineOperand &OtherMO = MBBI->getOperand(I);
798         if (!OtherMO.isUndef())
799           MO.setIsUndef(false);
800       }
801     }
802 
803     ++MBBI;
804     ++MBBICommon;
805   }
806 }
807 
808 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
809   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
810 
811   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
812   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
813     if (i != commonTailIndex) {
814       NextCommonInsts[i] = SameTails[i].getTailStartPos();
815       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
816     } else {
817       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
818           "MBB is not a common tail only block");
819     }
820   }
821 
822   for (auto &MI : *MBB) {
823     if (!countsAsInstruction(MI))
824       continue;
825     DebugLoc DL = MI.getDebugLoc();
826     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
827       if (i == commonTailIndex)
828         continue;
829 
830       auto &Pos = NextCommonInsts[i];
831       assert(Pos != SameTails[i].getBlock()->end() &&
832           "Reached BB end within common tail");
833       while (!countsAsInstruction(*Pos)) {
834         ++Pos;
835         assert(Pos != SameTails[i].getBlock()->end() &&
836             "Reached BB end within common tail");
837       }
838       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
839       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
840       NextCommonInsts[i] = ++Pos;
841     }
842     MI.setDebugLoc(DL);
843   }
844 
845   if (UpdateLiveIns) {
846     LivePhysRegs NewLiveIns(*TRI);
847     computeLiveIns(NewLiveIns, *MBB);
848     LiveRegs.init(*TRI);
849 
850     // The flag merging may lead to some register uses no longer using the
851     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
852     for (MachineBasicBlock *Pred : MBB->predecessors()) {
853       LiveRegs.clear();
854       LiveRegs.addLiveOuts(*Pred);
855       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
856       for (Register Reg : NewLiveIns) {
857         if (!LiveRegs.available(*MRI, Reg))
858           continue;
859         DebugLoc DL;
860         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
861                 Reg);
862       }
863     }
864 
865     MBB->clearLiveIns();
866     addLiveIns(*MBB, NewLiveIns);
867   }
868 }
869 
870 // See if any of the blocks in MergePotentials (which all have SuccBB as a
871 // successor, or all have no successor if it is null) can be tail-merged.
872 // If there is a successor, any blocks in MergePotentials that are not
873 // tail-merged and are not immediately before Succ must have an unconditional
874 // branch to Succ added (but the predecessor/successor lists need no
875 // adjustment). The lone predecessor of Succ that falls through into Succ,
876 // if any, is given in PredBB.
877 // MinCommonTailLength - Except for the special cases below, tail-merge if
878 // there are at least this many instructions in common.
879 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
880                                       MachineBasicBlock *PredBB,
881                                       unsigned MinCommonTailLength) {
882   bool MadeChange = false;
883 
884   LLVM_DEBUG(
885       dbgs() << "\nTryTailMergeBlocks: ";
886       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
887       << printMBBReference(*MergePotentials[i].getBlock())
888       << (i == e - 1 ? "" : ", ");
889       dbgs() << "\n"; if (SuccBB) {
890         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
891         if (PredBB)
892           dbgs() << "  which has fall-through from "
893                  << printMBBReference(*PredBB) << "\n";
894       } dbgs() << "Looking for common tails of at least "
895                << MinCommonTailLength << " instruction"
896                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
897 
898   // Sort by hash value so that blocks with identical end sequences sort
899   // together.
900   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
901 
902   // Walk through equivalence sets looking for actual exact matches.
903   while (MergePotentials.size() > 1) {
904     unsigned CurHash = MergePotentials.back().getHash();
905 
906     // Build SameTails, identifying the set of blocks with this hash code
907     // and with the maximum number of instructions in common.
908     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
909                                                     MinCommonTailLength,
910                                                     SuccBB, PredBB);
911 
912     // If we didn't find any pair that has at least MinCommonTailLength
913     // instructions in common, remove all blocks with this hash code and retry.
914     if (SameTails.empty()) {
915       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
916       continue;
917     }
918 
919     // If one of the blocks is the entire common tail (and is not the entry
920     // block/an EH pad, which we can't jump to), we can treat all blocks with
921     // this same tail at once.  Use PredBB if that is one of the possibilities,
922     // as that will not introduce any extra branches.
923     MachineBasicBlock *EntryBB =
924         &MergePotentials.front().getBlock()->getParent()->front();
925     unsigned commonTailIndex = SameTails.size();
926     // If there are two blocks, check to see if one can be made to fall through
927     // into the other.
928     if (SameTails.size() == 2 &&
929         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
930         SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
931       commonTailIndex = 1;
932     else if (SameTails.size() == 2 &&
933              SameTails[1].getBlock()->isLayoutSuccessor(
934                  SameTails[0].getBlock()) &&
935              SameTails[0].tailIsWholeBlock() &&
936              !SameTails[0].getBlock()->isEHPad())
937       commonTailIndex = 0;
938     else {
939       // Otherwise just pick one, favoring the fall-through predecessor if
940       // there is one.
941       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
942         MachineBasicBlock *MBB = SameTails[i].getBlock();
943         if ((MBB == EntryBB || MBB->isEHPad()) &&
944             SameTails[i].tailIsWholeBlock())
945           continue;
946         if (MBB == PredBB) {
947           commonTailIndex = i;
948           break;
949         }
950         if (SameTails[i].tailIsWholeBlock())
951           commonTailIndex = i;
952       }
953     }
954 
955     if (commonTailIndex == SameTails.size() ||
956         (SameTails[commonTailIndex].getBlock() == PredBB &&
957          !SameTails[commonTailIndex].tailIsWholeBlock())) {
958       // None of the blocks consist entirely of the common tail.
959       // Split a block so that one does.
960       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
961                                      maxCommonTailLength, commonTailIndex)) {
962         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
963         continue;
964       }
965     }
966 
967     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
968 
969     // Recompute common tail MBB's edge weights and block frequency.
970     setCommonTailEdgeWeights(*MBB);
971 
972     // Merge debug locations, MMOs and undef flags across identical instructions
973     // for common tail.
974     mergeCommonTails(commonTailIndex);
975 
976     // MBB is common tail.  Adjust all other BB's to jump to this one.
977     // Traversal must be forwards so erases work.
978     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
979                       << " for ");
980     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
981       if (commonTailIndex == i)
982         continue;
983       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
984                         << (i == e - 1 ? "" : ", "));
985       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
986       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
987       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
988       MergePotentials.erase(SameTails[i].getMPIter());
989     }
990     LLVM_DEBUG(dbgs() << "\n");
991     // We leave commonTailIndex in the worklist in case there are other blocks
992     // that match it with a smaller number of instructions.
993     MadeChange = true;
994   }
995   return MadeChange;
996 }
997 
998 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
999   bool MadeChange = false;
1000   if (!EnableTailMerge)
1001     return MadeChange;
1002 
1003   // First find blocks with no successors.
1004   // Block placement may create new tail merging opportunities for these blocks.
1005   MergePotentials.clear();
1006   for (MachineBasicBlock &MBB : MF) {
1007     if (MergePotentials.size() == TailMergeThreshold)
1008       break;
1009     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1010       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1011   }
1012 
1013   // If this is a large problem, avoid visiting the same basic blocks
1014   // multiple times.
1015   if (MergePotentials.size() == TailMergeThreshold)
1016     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1017       TriedMerging.insert(MergePotentials[i].getBlock());
1018 
1019   // See if we can do any tail merging on those.
1020   if (MergePotentials.size() >= 2)
1021     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1022 
1023   // Look at blocks (IBB) with multiple predecessors (PBB).
1024   // We change each predecessor to a canonical form, by
1025   // (1) temporarily removing any unconditional branch from the predecessor
1026   // to IBB, and
1027   // (2) alter conditional branches so they branch to the other block
1028   // not IBB; this may require adding back an unconditional branch to IBB
1029   // later, where there wasn't one coming in.  E.g.
1030   //   Bcc IBB
1031   //   fallthrough to QBB
1032   // here becomes
1033   //   Bncc QBB
1034   // with a conceptual B to IBB after that, which never actually exists.
1035   // With those changes, we see whether the predecessors' tails match,
1036   // and merge them if so.  We change things out of canonical form and
1037   // back to the way they were later in the process.  (OptimizeBranches
1038   // would undo some of this, but we can't use it, because we'd get into
1039   // a compile-time infinite loop repeatedly doing and undoing the same
1040   // transformations.)
1041 
1042   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1043        I != E; ++I) {
1044     if (I->pred_size() < 2) continue;
1045     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1046     MachineBasicBlock *IBB = &*I;
1047     MachineBasicBlock *PredBB = &*std::prev(I);
1048     MergePotentials.clear();
1049     MachineLoop *ML;
1050 
1051     // Bail if merging after placement and IBB is the loop header because
1052     // -- If merging predecessors that belong to the same loop as IBB, the
1053     // common tail of merged predecessors may become the loop top if block
1054     // placement is called again and the predecessors may branch to this common
1055     // tail and require more branches. This can be relaxed if
1056     // MachineBlockPlacement::findBestLoopTop is more flexible.
1057     // --If merging predecessors that do not belong to the same loop as IBB, the
1058     // loop info of IBB's loop and the other loops may be affected. Calling the
1059     // block placement again may make big change to the layout and eliminate the
1060     // reason to do tail merging here.
1061     if (AfterBlockPlacement && MLI) {
1062       ML = MLI->getLoopFor(IBB);
1063       if (ML && IBB == ML->getHeader())
1064         continue;
1065     }
1066 
1067     for (MachineBasicBlock *PBB : I->predecessors()) {
1068       if (MergePotentials.size() == TailMergeThreshold)
1069         break;
1070 
1071       if (TriedMerging.count(PBB))
1072         continue;
1073 
1074       // Skip blocks that loop to themselves, can't tail merge these.
1075       if (PBB == IBB)
1076         continue;
1077 
1078       // Visit each predecessor only once.
1079       if (!UniquePreds.insert(PBB).second)
1080         continue;
1081 
1082       // Skip blocks which may jump to a landing pad or jump from an asm blob.
1083       // Can't tail merge these.
1084       if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
1085         continue;
1086 
1087       // After block placement, only consider predecessors that belong to the
1088       // same loop as IBB.  The reason is the same as above when skipping loop
1089       // header.
1090       if (AfterBlockPlacement && MLI)
1091         if (ML != MLI->getLoopFor(PBB))
1092           continue;
1093 
1094       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1095       SmallVector<MachineOperand, 4> Cond;
1096       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1097         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1098         // branch.
1099         SmallVector<MachineOperand, 4> NewCond(Cond);
1100         if (!Cond.empty() && TBB == IBB) {
1101           if (TII->reverseBranchCondition(NewCond))
1102             continue;
1103           // This is the QBB case described above
1104           if (!FBB) {
1105             auto Next = ++PBB->getIterator();
1106             if (Next != MF.end())
1107               FBB = &*Next;
1108           }
1109         }
1110 
1111         // Remove the unconditional branch at the end, if any.
1112         if (TBB && (Cond.empty() || FBB)) {
1113           DebugLoc dl = PBB->findBranchDebugLoc();
1114           TII->removeBranch(*PBB);
1115           if (!Cond.empty())
1116             // reinsert conditional branch only, for now
1117             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1118                               NewCond, dl);
1119         }
1120 
1121         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1122       }
1123     }
1124 
1125     // If this is a large problem, avoid visiting the same basic blocks multiple
1126     // times.
1127     if (MergePotentials.size() == TailMergeThreshold)
1128       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1129         TriedMerging.insert(MergePotentials[i].getBlock());
1130 
1131     if (MergePotentials.size() >= 2)
1132       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1133 
1134     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1135     // result of removing blocks in TryTailMergeBlocks.
1136     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1137     if (MergePotentials.size() == 1 &&
1138         MergePotentials.begin()->getBlock() != PredBB)
1139       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1140   }
1141 
1142   return MadeChange;
1143 }
1144 
1145 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1146   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1147   BlockFrequency AccumulatedMBBFreq;
1148 
1149   // Aggregate edge frequency of successor edge j:
1150   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1151   //  where bb is a basic block that is in SameTails.
1152   for (const auto &Src : SameTails) {
1153     const MachineBasicBlock *SrcMBB = Src.getBlock();
1154     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1155     AccumulatedMBBFreq += BlockFreq;
1156 
1157     // It is not necessary to recompute edge weights if TailBB has less than two
1158     // successors.
1159     if (TailMBB.succ_size() <= 1)
1160       continue;
1161 
1162     auto EdgeFreq = EdgeFreqLs.begin();
1163 
1164     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1165          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1166       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1167   }
1168 
1169   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1170 
1171   if (TailMBB.succ_size() <= 1)
1172     return;
1173 
1174   auto SumEdgeFreq =
1175       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1176           .getFrequency();
1177   auto EdgeFreq = EdgeFreqLs.begin();
1178 
1179   if (SumEdgeFreq > 0) {
1180     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1181          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1182       auto Prob = BranchProbability::getBranchProbability(
1183           EdgeFreq->getFrequency(), SumEdgeFreq);
1184       TailMBB.setSuccProbability(SuccI, Prob);
1185     }
1186   }
1187 }
1188 
1189 //===----------------------------------------------------------------------===//
1190 //  Branch Optimization
1191 //===----------------------------------------------------------------------===//
1192 
1193 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1194   bool MadeChange = false;
1195 
1196   // Make sure blocks are numbered in order
1197   MF.RenumberBlocks();
1198   // Renumbering blocks alters EH scope membership, recalculate it.
1199   EHScopeMembership = getEHScopeMembership(MF);
1200 
1201   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1202        I != E; ) {
1203     MachineBasicBlock *MBB = &*I++;
1204     MadeChange |= OptimizeBlock(MBB);
1205 
1206     // If it is dead, remove it.
1207     if (MBB->pred_empty()) {
1208       RemoveDeadBlock(MBB);
1209       MadeChange = true;
1210       ++NumDeadBlocks;
1211     }
1212   }
1213 
1214   return MadeChange;
1215 }
1216 
1217 // Blocks should be considered empty if they contain only debug info;
1218 // else the debug info would affect codegen.
1219 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1220   return MBB->getFirstNonDebugInstr(true) == MBB->end();
1221 }
1222 
1223 // Blocks with only debug info and branches should be considered the same
1224 // as blocks with only branches.
1225 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1226   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1227   assert(I != MBB->end() && "empty block!");
1228   return I->isBranch();
1229 }
1230 
1231 /// IsBetterFallthrough - Return true if it would be clearly better to
1232 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1233 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1234 /// result in infinite loops.
1235 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1236                                 MachineBasicBlock *MBB2) {
1237   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1238 
1239   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1240   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1241   // optimize branches that branch to either a return block or an assert block
1242   // into a fallthrough to the return.
1243   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1244   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1245   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1246     return false;
1247 
1248   // If there is a clear successor ordering we make sure that one block
1249   // will fall through to the next
1250   if (MBB1->isSuccessor(MBB2)) return true;
1251   if (MBB2->isSuccessor(MBB1)) return false;
1252 
1253   return MBB2I->isCall() && !MBB1I->isCall();
1254 }
1255 
1256 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1257 /// instructions on the block.
1258 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1259   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1260   if (I != MBB.end() && I->isBranch())
1261     return I->getDebugLoc();
1262   return DebugLoc();
1263 }
1264 
1265 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1266                                        MachineBasicBlock &MBB,
1267                                        MachineBasicBlock &PredMBB) {
1268   auto InsertBefore = PredMBB.getFirstTerminator();
1269   for (MachineInstr &MI : MBB.instrs())
1270     if (MI.isDebugInstr()) {
1271       TII->duplicate(PredMBB, InsertBefore, MI);
1272       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1273                         << MI);
1274     }
1275 }
1276 
1277 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1278                                      MachineBasicBlock &MBB,
1279                                      MachineBasicBlock &SuccMBB) {
1280   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1281   for (MachineInstr &MI : MBB.instrs())
1282     if (MI.isDebugInstr()) {
1283       TII->duplicate(SuccMBB, InsertBefore, MI);
1284       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1285                         << MI);
1286     }
1287 }
1288 
1289 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1290 // a basic block is removed we would lose the debug information unless we have
1291 // copied the information to a predecessor/successor.
1292 //
1293 // TODO: This function only handles some simple cases. An alternative would be
1294 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1295 // branch folding.
1296 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1297                                            MachineBasicBlock &MBB) {
1298   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1299   // If this MBB is the only predecessor of a successor it is legal to copy
1300   // DBG_VALUE instructions to the beginning of the successor.
1301   for (MachineBasicBlock *SuccBB : MBB.successors())
1302     if (SuccBB->pred_size() == 1)
1303       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1304   // If this MBB is the only successor of a predecessor it is legal to copy the
1305   // DBG_VALUE instructions to the end of the predecessor (just before the
1306   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1307   for (MachineBasicBlock *PredBB : MBB.predecessors())
1308     if (PredBB->succ_size() == 1)
1309       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1310 }
1311 
1312 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1313   bool MadeChange = false;
1314   MachineFunction &MF = *MBB->getParent();
1315 ReoptimizeBlock:
1316 
1317   MachineFunction::iterator FallThrough = MBB->getIterator();
1318   ++FallThrough;
1319 
1320   // Make sure MBB and FallThrough belong to the same EH scope.
1321   bool SameEHScope = true;
1322   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1323     auto MBBEHScope = EHScopeMembership.find(MBB);
1324     assert(MBBEHScope != EHScopeMembership.end());
1325     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1326     assert(FallThroughEHScope != EHScopeMembership.end());
1327     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1328   }
1329 
1330   // Analyze the branch in the current block. As a side-effect, this may cause
1331   // the block to become empty.
1332   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1333   SmallVector<MachineOperand, 4> CurCond;
1334   bool CurUnAnalyzable =
1335       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1336 
1337   // If this block is empty, make everyone use its fall-through, not the block
1338   // explicitly.  Landing pads should not do this since the landing-pad table
1339   // points to this block.  Blocks with their addresses taken shouldn't be
1340   // optimized away.
1341   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1342       SameEHScope) {
1343     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1344     // Dead block?  Leave for cleanup later.
1345     if (MBB->pred_empty()) return MadeChange;
1346 
1347     if (FallThrough == MF.end()) {
1348       // TODO: Simplify preds to not branch here if possible!
1349     } else if (FallThrough->isEHPad()) {
1350       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1351       // where a BB jumps to more than one landing pad.
1352       // TODO: Is it ever worth rewriting predecessors which don't already
1353       // jump to a landing pad, and so can safely jump to the fallthrough?
1354     } else if (MBB->isSuccessor(&*FallThrough)) {
1355       // Rewrite all predecessors of the old block to go to the fallthrough
1356       // instead.
1357       while (!MBB->pred_empty()) {
1358         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1359         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1360       }
1361       // If MBB was the target of a jump table, update jump tables to go to the
1362       // fallthrough instead.
1363       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1364         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1365       MadeChange = true;
1366     }
1367     return MadeChange;
1368   }
1369 
1370   // Check to see if we can simplify the terminator of the block before this
1371   // one.
1372   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1373 
1374   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1375   SmallVector<MachineOperand, 4> PriorCond;
1376   bool PriorUnAnalyzable =
1377       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1378   if (!PriorUnAnalyzable) {
1379     // If the previous branch is conditional and both conditions go to the same
1380     // destination, remove the branch, replacing it with an unconditional one or
1381     // a fall-through.
1382     if (PriorTBB && PriorTBB == PriorFBB) {
1383       DebugLoc dl = getBranchDebugLoc(PrevBB);
1384       TII->removeBranch(PrevBB);
1385       PriorCond.clear();
1386       if (PriorTBB != MBB)
1387         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1388       MadeChange = true;
1389       ++NumBranchOpts;
1390       goto ReoptimizeBlock;
1391     }
1392 
1393     // If the previous block unconditionally falls through to this block and
1394     // this block has no other predecessors, move the contents of this block
1395     // into the prior block. This doesn't usually happen when SimplifyCFG
1396     // has been used, but it can happen if tail merging splits a fall-through
1397     // predecessor of a block.
1398     // This has to check PrevBB->succ_size() because EH edges are ignored by
1399     // analyzeBranch.
1400     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1401         PrevBB.succ_size() == 1 &&
1402         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1403       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1404                         << "From MBB: " << *MBB);
1405       // Remove redundant DBG_VALUEs first.
1406       if (!PrevBB.empty()) {
1407         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1408         --PrevBBIter;
1409         MachineBasicBlock::iterator MBBIter = MBB->begin();
1410         // Check if DBG_VALUE at the end of PrevBB is identical to the
1411         // DBG_VALUE at the beginning of MBB.
1412         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1413                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1414           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1415             break;
1416           MachineInstr &DuplicateDbg = *MBBIter;
1417           ++MBBIter; -- PrevBBIter;
1418           DuplicateDbg.eraseFromParent();
1419         }
1420       }
1421       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1422       PrevBB.removeSuccessor(PrevBB.succ_begin());
1423       assert(PrevBB.succ_empty());
1424       PrevBB.transferSuccessors(MBB);
1425       MadeChange = true;
1426       return MadeChange;
1427     }
1428 
1429     // If the previous branch *only* branches to *this* block (conditional or
1430     // not) remove the branch.
1431     if (PriorTBB == MBB && !PriorFBB) {
1432       TII->removeBranch(PrevBB);
1433       MadeChange = true;
1434       ++NumBranchOpts;
1435       goto ReoptimizeBlock;
1436     }
1437 
1438     // If the prior block branches somewhere else on the condition and here if
1439     // the condition is false, remove the uncond second branch.
1440     if (PriorFBB == MBB) {
1441       DebugLoc dl = getBranchDebugLoc(PrevBB);
1442       TII->removeBranch(PrevBB);
1443       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1444       MadeChange = true;
1445       ++NumBranchOpts;
1446       goto ReoptimizeBlock;
1447     }
1448 
1449     // If the prior block branches here on true and somewhere else on false, and
1450     // if the branch condition is reversible, reverse the branch to create a
1451     // fall-through.
1452     if (PriorTBB == MBB) {
1453       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1454       if (!TII->reverseBranchCondition(NewPriorCond)) {
1455         DebugLoc dl = getBranchDebugLoc(PrevBB);
1456         TII->removeBranch(PrevBB);
1457         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1458         MadeChange = true;
1459         ++NumBranchOpts;
1460         goto ReoptimizeBlock;
1461       }
1462     }
1463 
1464     // If this block has no successors (e.g. it is a return block or ends with
1465     // a call to a no-return function like abort or __cxa_throw) and if the pred
1466     // falls through into this block, and if it would otherwise fall through
1467     // into the block after this, move this block to the end of the function.
1468     //
1469     // We consider it more likely that execution will stay in the function (e.g.
1470     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1471     // the assert condition out of the loop body.
1472     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1473         MachineFunction::iterator(PriorTBB) == FallThrough &&
1474         !MBB->canFallThrough()) {
1475       bool DoTransform = true;
1476 
1477       // We have to be careful that the succs of PredBB aren't both no-successor
1478       // blocks.  If neither have successors and if PredBB is the second from
1479       // last block in the function, we'd just keep swapping the two blocks for
1480       // last.  Only do the swap if one is clearly better to fall through than
1481       // the other.
1482       if (FallThrough == --MF.end() &&
1483           !IsBetterFallthrough(PriorTBB, MBB))
1484         DoTransform = false;
1485 
1486       if (DoTransform) {
1487         // Reverse the branch so we will fall through on the previous true cond.
1488         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1489         if (!TII->reverseBranchCondition(NewPriorCond)) {
1490           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1491                             << "To make fallthrough to: " << *PriorTBB << "\n");
1492 
1493           DebugLoc dl = getBranchDebugLoc(PrevBB);
1494           TII->removeBranch(PrevBB);
1495           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1496 
1497           // Move this block to the end of the function.
1498           MBB->moveAfter(&MF.back());
1499           MadeChange = true;
1500           ++NumBranchOpts;
1501           return MadeChange;
1502         }
1503       }
1504     }
1505   }
1506 
1507   bool OptForSize =
1508       MF.getFunction().hasOptSize() ||
1509       llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
1510   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1511     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1512     // direction, thereby defeating careful block placement and regressing
1513     // performance. Therefore, only consider this for optsize functions.
1514     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1515     if (TII->isUnconditionalTailCall(TailCall)) {
1516       MachineBasicBlock *Pred = *MBB->pred_begin();
1517       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1518       SmallVector<MachineOperand, 4> PredCond;
1519       bool PredAnalyzable =
1520           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1521 
1522       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1523           PredTBB != PredFBB) {
1524         // The predecessor has a conditional branch to this block which consists
1525         // of only a tail call. Try to fold the tail call into the conditional
1526         // branch.
1527         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1528           // TODO: It would be nice if analyzeBranch() could provide a pointer
1529           // to the branch instruction so replaceBranchWithTailCall() doesn't
1530           // have to search for it.
1531           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1532           ++NumTailCalls;
1533           Pred->removeSuccessor(MBB);
1534           MadeChange = true;
1535           return MadeChange;
1536         }
1537       }
1538       // If the predecessor is falling through to this block, we could reverse
1539       // the branch condition and fold the tail call into that. However, after
1540       // that we might have to re-arrange the CFG to fall through to the other
1541       // block and there is a high risk of regressing code size rather than
1542       // improving it.
1543     }
1544   }
1545 
1546   if (!CurUnAnalyzable) {
1547     // If this is a two-way branch, and the FBB branches to this block, reverse
1548     // the condition so the single-basic-block loop is faster.  Instead of:
1549     //    Loop: xxx; jcc Out; jmp Loop
1550     // we want:
1551     //    Loop: xxx; jncc Loop; jmp Out
1552     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1553       SmallVector<MachineOperand, 4> NewCond(CurCond);
1554       if (!TII->reverseBranchCondition(NewCond)) {
1555         DebugLoc dl = getBranchDebugLoc(*MBB);
1556         TII->removeBranch(*MBB);
1557         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1558         MadeChange = true;
1559         ++NumBranchOpts;
1560         goto ReoptimizeBlock;
1561       }
1562     }
1563 
1564     // If this branch is the only thing in its block, see if we can forward
1565     // other blocks across it.
1566     if (CurTBB && CurCond.empty() && !CurFBB &&
1567         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1568         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1569       DebugLoc dl = getBranchDebugLoc(*MBB);
1570       // This block may contain just an unconditional branch.  Because there can
1571       // be 'non-branch terminators' in the block, try removing the branch and
1572       // then seeing if the block is empty.
1573       TII->removeBranch(*MBB);
1574       // If the only things remaining in the block are debug info, remove these
1575       // as well, so this will behave the same as an empty block in non-debug
1576       // mode.
1577       if (IsEmptyBlock(MBB)) {
1578         // Make the block empty, losing the debug info (we could probably
1579         // improve this in some cases.)
1580         MBB->erase(MBB->begin(), MBB->end());
1581       }
1582       // If this block is just an unconditional branch to CurTBB, we can
1583       // usually completely eliminate the block.  The only case we cannot
1584       // completely eliminate the block is when the block before this one
1585       // falls through into MBB and we can't understand the prior block's branch
1586       // condition.
1587       if (MBB->empty()) {
1588         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1589         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1590             !PrevBB.isSuccessor(MBB)) {
1591           // If the prior block falls through into us, turn it into an
1592           // explicit branch to us to make updates simpler.
1593           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1594               PriorTBB != MBB && PriorFBB != MBB) {
1595             if (!PriorTBB) {
1596               assert(PriorCond.empty() && !PriorFBB &&
1597                      "Bad branch analysis");
1598               PriorTBB = MBB;
1599             } else {
1600               assert(!PriorFBB && "Machine CFG out of date!");
1601               PriorFBB = MBB;
1602             }
1603             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1604             TII->removeBranch(PrevBB);
1605             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1606           }
1607 
1608           // Iterate through all the predecessors, revectoring each in-turn.
1609           size_t PI = 0;
1610           bool DidChange = false;
1611           bool HasBranchToSelf = false;
1612           while(PI != MBB->pred_size()) {
1613             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1614             if (PMBB == MBB) {
1615               // If this block has an uncond branch to itself, leave it.
1616               ++PI;
1617               HasBranchToSelf = true;
1618             } else {
1619               DidChange = true;
1620               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1621               // If this change resulted in PMBB ending in a conditional
1622               // branch where both conditions go to the same destination,
1623               // change this to an unconditional branch.
1624               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1625               SmallVector<MachineOperand, 4> NewCurCond;
1626               bool NewCurUnAnalyzable = TII->analyzeBranch(
1627                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1628               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1629                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1630                 TII->removeBranch(*PMBB);
1631                 NewCurCond.clear();
1632                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1633                 MadeChange = true;
1634                 ++NumBranchOpts;
1635               }
1636             }
1637           }
1638 
1639           // Change any jumptables to go to the new MBB.
1640           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1641             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1642           if (DidChange) {
1643             ++NumBranchOpts;
1644             MadeChange = true;
1645             if (!HasBranchToSelf) return MadeChange;
1646           }
1647         }
1648       }
1649 
1650       // Add the branch back if the block is more than just an uncond branch.
1651       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1652     }
1653   }
1654 
1655   // If the prior block doesn't fall through into this block, and if this
1656   // block doesn't fall through into some other block, see if we can find a
1657   // place to move this block where a fall-through will happen.
1658   if (!PrevBB.canFallThrough()) {
1659     // Now we know that there was no fall-through into this block, check to
1660     // see if it has a fall-through into its successor.
1661     bool CurFallsThru = MBB->canFallThrough();
1662 
1663     if (!MBB->isEHPad()) {
1664       // Check all the predecessors of this block.  If one of them has no fall
1665       // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1666       // block, move this block right after it.
1667       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1668         // Analyze the branch at the end of the pred.
1669         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1670         SmallVector<MachineOperand, 4> PredCond;
1671         if (PredBB != MBB && !PredBB->canFallThrough() &&
1672             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1673             (PredTBB == MBB || PredFBB == MBB) &&
1674             (!CurFallsThru || !CurTBB || !CurFBB) &&
1675             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1676           // If the current block doesn't fall through, just move it.
1677           // If the current block can fall through and does not end with a
1678           // conditional branch, we need to append an unconditional jump to
1679           // the (current) next block.  To avoid a possible compile-time
1680           // infinite loop, move blocks only backward in this case.
1681           // Also, if there are already 2 branches here, we cannot add a third;
1682           // this means we have the case
1683           // Bcc next
1684           // B elsewhere
1685           // next:
1686           if (CurFallsThru) {
1687             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1688             CurCond.clear();
1689             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1690           }
1691           MBB->moveAfter(PredBB);
1692           MadeChange = true;
1693           goto ReoptimizeBlock;
1694         }
1695       }
1696     }
1697 
1698     if (!CurFallsThru) {
1699       // Check analyzable branch-successors to see if we can move this block
1700       // before one.
1701       if (!CurUnAnalyzable) {
1702         for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
1703           if (!SuccBB)
1704             continue;
1705           // Analyze the branch at the end of the block before the succ.
1706           MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1707 
1708           // If this block doesn't already fall-through to that successor, and
1709           // if the succ doesn't already have a block that can fall through into
1710           // it, we can arrange for the fallthrough to happen.
1711           if (SuccBB != MBB && &*SuccPrev != MBB &&
1712               !SuccPrev->canFallThrough()) {
1713             MBB->moveBefore(SuccBB);
1714             MadeChange = true;
1715             goto ReoptimizeBlock;
1716           }
1717         }
1718       }
1719 
1720       // Okay, there is no really great place to put this block.  If, however,
1721       // the block before this one would be a fall-through if this block were
1722       // removed, move this block to the end of the function. There is no real
1723       // advantage in "falling through" to an EH block, so we don't want to
1724       // perform this transformation for that case.
1725       //
1726       // Also, Windows EH introduced the possibility of an arbitrary number of
1727       // successors to a given block.  The analyzeBranch call does not consider
1728       // exception handling and so we can get in a state where a block
1729       // containing a call is followed by multiple EH blocks that would be
1730       // rotated infinitely at the end of the function if the transformation
1731       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1732       // that appears not to be happening anymore, we should assume that it is
1733       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1734       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1735       SmallVector<MachineOperand, 4> PrevCond;
1736       if (FallThrough != MF.end() &&
1737           !FallThrough->isEHPad() &&
1738           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1739           PrevBB.isSuccessor(&*FallThrough)) {
1740         MBB->moveAfter(&MF.back());
1741         MadeChange = true;
1742         return MadeChange;
1743       }
1744     }
1745   }
1746 
1747   return MadeChange;
1748 }
1749 
1750 //===----------------------------------------------------------------------===//
1751 //  Hoist Common Code
1752 //===----------------------------------------------------------------------===//
1753 
1754 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1755   bool MadeChange = false;
1756   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1757     MachineBasicBlock *MBB = &*I++;
1758     MadeChange |= HoistCommonCodeInSuccs(MBB);
1759   }
1760 
1761   return MadeChange;
1762 }
1763 
1764 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1765 /// its 'true' successor.
1766 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1767                                          MachineBasicBlock *TrueBB) {
1768   for (MachineBasicBlock *SuccBB : BB->successors())
1769     if (SuccBB != TrueBB)
1770       return SuccBB;
1771   return nullptr;
1772 }
1773 
1774 template <class Container>
1775 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1776                                 Container &Set) {
1777   if (Reg.isPhysical()) {
1778     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1779       Set.insert(*AI);
1780   } else {
1781     Set.insert(Reg);
1782   }
1783 }
1784 
1785 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1786 /// in successors to. The location is usually just before the terminator,
1787 /// however if the terminator is a conditional branch and its previous
1788 /// instruction is the flag setting instruction, the previous instruction is
1789 /// the preferred location. This function also gathers uses and defs of the
1790 /// instructions from the insertion point to the end of the block. The data is
1791 /// used by HoistCommonCodeInSuccs to ensure safety.
1792 static
1793 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1794                                                   const TargetInstrInfo *TII,
1795                                                   const TargetRegisterInfo *TRI,
1796                                                   SmallSet<Register, 4> &Uses,
1797                                                   SmallSet<Register, 4> &Defs) {
1798   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1799   if (!TII->isUnpredicatedTerminator(*Loc))
1800     return MBB->end();
1801 
1802   for (const MachineOperand &MO : Loc->operands()) {
1803     if (!MO.isReg())
1804       continue;
1805     Register Reg = MO.getReg();
1806     if (!Reg)
1807       continue;
1808     if (MO.isUse()) {
1809       addRegAndItsAliases(Reg, TRI, Uses);
1810     } else {
1811       if (!MO.isDead())
1812         // Don't try to hoist code in the rare case the terminator defines a
1813         // register that is later used.
1814         return MBB->end();
1815 
1816       // If the terminator defines a register, make sure we don't hoist
1817       // the instruction whose def might be clobbered by the terminator.
1818       addRegAndItsAliases(Reg, TRI, Defs);
1819     }
1820   }
1821 
1822   if (Uses.empty())
1823     return Loc;
1824   // If the terminator is the only instruction in the block and Uses is not
1825   // empty (or we would have returned above), we can still safely hoist
1826   // instructions just before the terminator as long as the Defs/Uses are not
1827   // violated (which is checked in HoistCommonCodeInSuccs).
1828   if (Loc == MBB->begin())
1829     return Loc;
1830 
1831   // The terminator is probably a conditional branch, try not to separate the
1832   // branch from condition setting instruction.
1833   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1834 
1835   bool IsDef = false;
1836   for (const MachineOperand &MO : PI->operands()) {
1837     // If PI has a regmask operand, it is probably a call. Separate away.
1838     if (MO.isRegMask())
1839       return Loc;
1840     if (!MO.isReg() || MO.isUse())
1841       continue;
1842     Register Reg = MO.getReg();
1843     if (!Reg)
1844       continue;
1845     if (Uses.count(Reg)) {
1846       IsDef = true;
1847       break;
1848     }
1849   }
1850   if (!IsDef)
1851     // The condition setting instruction is not just before the conditional
1852     // branch.
1853     return Loc;
1854 
1855   // Be conservative, don't insert instruction above something that may have
1856   // side-effects. And since it's potentially bad to separate flag setting
1857   // instruction from the conditional branch, just abort the optimization
1858   // completely.
1859   // Also avoid moving code above predicated instruction since it's hard to
1860   // reason about register liveness with predicated instruction.
1861   bool DontMoveAcrossStore = true;
1862   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1863     return MBB->end();
1864 
1865   // Find out what registers are live. Note this routine is ignoring other live
1866   // registers which are only used by instructions in successor blocks.
1867   for (const MachineOperand &MO : PI->operands()) {
1868     if (!MO.isReg())
1869       continue;
1870     Register Reg = MO.getReg();
1871     if (!Reg)
1872       continue;
1873     if (MO.isUse()) {
1874       addRegAndItsAliases(Reg, TRI, Uses);
1875     } else {
1876       if (Uses.erase(Reg)) {
1877         if (Register::isPhysicalRegister(Reg)) {
1878           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1879             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1880         }
1881       }
1882       addRegAndItsAliases(Reg, TRI, Defs);
1883     }
1884   }
1885 
1886   return PI;
1887 }
1888 
1889 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1890   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1891   SmallVector<MachineOperand, 4> Cond;
1892   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1893     return false;
1894 
1895   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1896   if (!FBB)
1897     // Malformed bcc? True and false blocks are the same?
1898     return false;
1899 
1900   // Restrict the optimization to cases where MBB is the only predecessor,
1901   // it is an obvious win.
1902   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1903     return false;
1904 
1905   // Find a suitable position to hoist the common instructions to. Also figure
1906   // out which registers are used or defined by instructions from the insertion
1907   // point to the end of the block.
1908   SmallSet<Register, 4> Uses, Defs;
1909   MachineBasicBlock::iterator Loc =
1910     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1911   if (Loc == MBB->end())
1912     return false;
1913 
1914   bool HasDups = false;
1915   SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1916   MachineBasicBlock::iterator TIB = TBB->begin();
1917   MachineBasicBlock::iterator FIB = FBB->begin();
1918   MachineBasicBlock::iterator TIE = TBB->end();
1919   MachineBasicBlock::iterator FIE = FBB->end();
1920   while (TIB != TIE && FIB != FIE) {
1921     // Skip dbg_value instructions. These do not count.
1922     TIB = skipDebugInstructionsForward(TIB, TIE, false);
1923     FIB = skipDebugInstructionsForward(FIB, FIE, false);
1924     if (TIB == TIE || FIB == FIE)
1925       break;
1926 
1927     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1928       break;
1929 
1930     if (TII->isPredicated(*TIB))
1931       // Hard to reason about register liveness with predicated instruction.
1932       break;
1933 
1934     bool IsSafe = true;
1935     for (MachineOperand &MO : TIB->operands()) {
1936       // Don't attempt to hoist instructions with register masks.
1937       if (MO.isRegMask()) {
1938         IsSafe = false;
1939         break;
1940       }
1941       if (!MO.isReg())
1942         continue;
1943       Register Reg = MO.getReg();
1944       if (!Reg)
1945         continue;
1946       if (MO.isDef()) {
1947         if (Uses.count(Reg)) {
1948           // Avoid clobbering a register that's used by the instruction at
1949           // the point of insertion.
1950           IsSafe = false;
1951           break;
1952         }
1953 
1954         if (Defs.count(Reg) && !MO.isDead()) {
1955           // Don't hoist the instruction if the def would be clobber by the
1956           // instruction at the point insertion. FIXME: This is overly
1957           // conservative. It should be possible to hoist the instructions
1958           // in BB2 in the following example:
1959           // BB1:
1960           // r1, eflag = op1 r2, r3
1961           // brcc eflag
1962           //
1963           // BB2:
1964           // r1 = op2, ...
1965           //    = op3, killed r1
1966           IsSafe = false;
1967           break;
1968         }
1969       } else if (!ActiveDefsSet.count(Reg)) {
1970         if (Defs.count(Reg)) {
1971           // Use is defined by the instruction at the point of insertion.
1972           IsSafe = false;
1973           break;
1974         }
1975 
1976         if (MO.isKill() && Uses.count(Reg))
1977           // Kills a register that's read by the instruction at the point of
1978           // insertion. Remove the kill marker.
1979           MO.setIsKill(false);
1980       }
1981     }
1982     if (!IsSafe)
1983       break;
1984 
1985     bool DontMoveAcrossStore = true;
1986     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1987       break;
1988 
1989     // Remove kills from ActiveDefsSet, these registers had short live ranges.
1990     for (const MachineOperand &MO : TIB->operands()) {
1991       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1992         continue;
1993       Register Reg = MO.getReg();
1994       if (!Reg)
1995         continue;
1996       if (!AllDefsSet.count(Reg)) {
1997         continue;
1998       }
1999       if (Reg.isPhysical()) {
2000         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2001           ActiveDefsSet.erase(*AI);
2002       } else {
2003         ActiveDefsSet.erase(Reg);
2004       }
2005     }
2006 
2007     // Track local defs so we can update liveins.
2008     for (const MachineOperand &MO : TIB->operands()) {
2009       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2010         continue;
2011       Register Reg = MO.getReg();
2012       if (!Reg || Reg.isVirtual())
2013         continue;
2014       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2015       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2016     }
2017 
2018     HasDups = true;
2019     ++TIB;
2020     ++FIB;
2021   }
2022 
2023   if (!HasDups)
2024     return false;
2025 
2026   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2027   FBB->erase(FBB->begin(), FIB);
2028 
2029   if (UpdateLiveIns) {
2030     recomputeLiveIns(*TBB);
2031     recomputeLiveIns(*FBB);
2032   }
2033 
2034   ++NumHoist;
2035   return true;
2036 }
2037