xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp (revision e9b261f297cac146f0c9f895c16debe1c4cf8978)
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MBFIWrapper.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetOpcodes.h"
41 #include "llvm/CodeGen/TargetPassConfig.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/BlockFrequency.h"
52 #include "llvm/Support/BranchProbability.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <cassert>
59 #include <cstddef>
60 #include <iterator>
61 #include <numeric>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "branch-folder"
66 
67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
68 STATISTIC(NumBranchOpts, "Number of branches optimized");
69 STATISTIC(NumTailMerge , "Number of block tails merged");
70 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
71 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
72 
73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
74                               cl::init(cl::BOU_UNSET), cl::Hidden);
75 
76 // Throttle for huge numbers of predecessors (compile speed problems)
77 static cl::opt<unsigned>
78 TailMergeThreshold("tail-merge-threshold",
79           cl::desc("Max number of predecessors to consider tail merging"),
80           cl::init(150), cl::Hidden);
81 
82 // Heuristic for tail merging (and, inversely, tail duplication).
83 // TODO: This should be replaced with a target query.
84 static cl::opt<unsigned>
85 TailMergeSize("tail-merge-size",
86               cl::desc("Min number of instructions to consider tail merging"),
87               cl::init(3), cl::Hidden);
88 
89 namespace {
90 
91   /// BranchFolderPass - Wrap branch folder in a machine function pass.
92   class BranchFolderPass : public MachineFunctionPass {
93   public:
94     static char ID;
95 
96     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
97 
98     bool runOnMachineFunction(MachineFunction &MF) override;
99 
100     void getAnalysisUsage(AnalysisUsage &AU) const override {
101       AU.addRequired<MachineBlockFrequencyInfo>();
102       AU.addRequired<MachineBranchProbabilityInfo>();
103       AU.addRequired<ProfileSummaryInfoWrapperPass>();
104       AU.addRequired<TargetPassConfig>();
105       MachineFunctionPass::getAnalysisUsage(AU);
106     }
107 
108     MachineFunctionProperties getRequiredProperties() const override {
109       return MachineFunctionProperties().set(
110           MachineFunctionProperties::Property::NoPHIs);
111     }
112   };
113 
114 } // end anonymous namespace
115 
116 char BranchFolderPass::ID = 0;
117 
118 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
119 
120 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
121                 "Control Flow Optimizer", false, false)
122 
123 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
124   if (skipFunction(MF.getFunction()))
125     return false;
126 
127   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
128   // TailMerge can create jump into if branches that make CFG irreducible for
129   // HW that requires structurized CFG.
130   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
131                          PassConfig->getEnableTailMerge();
132   MBFIWrapper MBBFreqInfo(
133       getAnalysis<MachineBlockFrequencyInfo>());
134   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
135                       getAnalysis<MachineBranchProbabilityInfo>(),
136                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
137   return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
138                                  MF.getSubtarget().getRegisterInfo());
139 }
140 
141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
142                            MBFIWrapper &FreqInfo,
143                            const MachineBranchProbabilityInfo &ProbInfo,
144                            ProfileSummaryInfo *PSI, unsigned MinTailLength)
145     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
146       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
147   if (MinCommonTailLength == 0)
148     MinCommonTailLength = TailMergeSize;
149   switch (FlagEnableTailMerge) {
150   case cl::BOU_UNSET:
151     EnableTailMerge = DefaultEnableTailMerge;
152     break;
153   case cl::BOU_TRUE: EnableTailMerge = true; break;
154   case cl::BOU_FALSE: EnableTailMerge = false; break;
155   }
156 }
157 
158 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
159   assert(MBB->pred_empty() && "MBB must be dead!");
160   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
161 
162   MachineFunction *MF = MBB->getParent();
163   // drop all successors.
164   while (!MBB->succ_empty())
165     MBB->removeSuccessor(MBB->succ_end()-1);
166 
167   // Avoid matching if this pointer gets reused.
168   TriedMerging.erase(MBB);
169 
170   // Update call site info.
171   for (const MachineInstr &MI : *MBB)
172     if (MI.shouldUpdateCallSiteInfo())
173       MF->eraseCallSiteInfo(&MI);
174 
175   // Remove the block.
176   MF->erase(MBB);
177   EHScopeMembership.erase(MBB);
178   if (MLI)
179     MLI->removeBlock(MBB);
180 }
181 
182 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
183                                     const TargetInstrInfo *tii,
184                                     const TargetRegisterInfo *tri,
185                                     MachineLoopInfo *mli, bool AfterPlacement) {
186   if (!tii) return false;
187 
188   TriedMerging.clear();
189 
190   MachineRegisterInfo &MRI = MF.getRegInfo();
191   AfterBlockPlacement = AfterPlacement;
192   TII = tii;
193   TRI = tri;
194   MLI = mli;
195   this->MRI = &MRI;
196 
197   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
198   if (!UpdateLiveIns)
199     MRI.invalidateLiveness();
200 
201   bool MadeChange = false;
202 
203   // Recalculate EH scope membership.
204   EHScopeMembership = getEHScopeMembership(MF);
205 
206   bool MadeChangeThisIteration = true;
207   while (MadeChangeThisIteration) {
208     MadeChangeThisIteration    = TailMergeBlocks(MF);
209     // No need to clean up if tail merging does not change anything after the
210     // block placement.
211     if (!AfterBlockPlacement || MadeChangeThisIteration)
212       MadeChangeThisIteration |= OptimizeBranches(MF);
213     if (EnableHoistCommonCode)
214       MadeChangeThisIteration |= HoistCommonCode(MF);
215     MadeChange |= MadeChangeThisIteration;
216   }
217 
218   // See if any jump tables have become dead as the code generator
219   // did its thing.
220   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
221   if (!JTI)
222     return MadeChange;
223 
224   // Walk the function to find jump tables that are live.
225   BitVector JTIsLive(JTI->getJumpTables().size());
226   for (const MachineBasicBlock &BB : MF) {
227     for (const MachineInstr &I : BB)
228       for (const MachineOperand &Op : I.operands()) {
229         if (!Op.isJTI()) continue;
230 
231         // Remember that this JT is live.
232         JTIsLive.set(Op.getIndex());
233       }
234   }
235 
236   // Finally, remove dead jump tables.  This happens when the
237   // indirect jump was unreachable (and thus deleted).
238   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
239     if (!JTIsLive.test(i)) {
240       JTI->RemoveJumpTable(i);
241       MadeChange = true;
242     }
243 
244   return MadeChange;
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //  Tail Merging of Blocks
249 //===----------------------------------------------------------------------===//
250 
251 /// HashMachineInstr - Compute a hash value for MI and its operands.
252 static unsigned HashMachineInstr(const MachineInstr &MI) {
253   unsigned Hash = MI.getOpcode();
254   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
255     const MachineOperand &Op = MI.getOperand(i);
256 
257     // Merge in bits from the operand if easy. We can't use MachineOperand's
258     // hash_code here because it's not deterministic and we sort by hash value
259     // later.
260     unsigned OperandHash = 0;
261     switch (Op.getType()) {
262     case MachineOperand::MO_Register:
263       OperandHash = Op.getReg();
264       break;
265     case MachineOperand::MO_Immediate:
266       OperandHash = Op.getImm();
267       break;
268     case MachineOperand::MO_MachineBasicBlock:
269       OperandHash = Op.getMBB()->getNumber();
270       break;
271     case MachineOperand::MO_FrameIndex:
272     case MachineOperand::MO_ConstantPoolIndex:
273     case MachineOperand::MO_JumpTableIndex:
274       OperandHash = Op.getIndex();
275       break;
276     case MachineOperand::MO_GlobalAddress:
277     case MachineOperand::MO_ExternalSymbol:
278       // Global address / external symbol are too hard, don't bother, but do
279       // pull in the offset.
280       OperandHash = Op.getOffset();
281       break;
282     default:
283       break;
284     }
285 
286     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
287   }
288   return Hash;
289 }
290 
291 /// HashEndOfMBB - Hash the last instruction in the MBB.
292 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
293   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false);
294   if (I == MBB.end())
295     return 0;
296 
297   return HashMachineInstr(*I);
298 }
299 
300 /// Whether MI should be counted as an instruction when calculating common tail.
301 static bool countsAsInstruction(const MachineInstr &MI) {
302   return !(MI.isDebugInstr() || MI.isCFIInstruction());
303 }
304 
305 /// Iterate backwards from the given iterator \p I, towards the beginning of the
306 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
307 /// pointing to that MI. If no such MI is found, return the end iterator.
308 static MachineBasicBlock::iterator
309 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
310                                 MachineBasicBlock *MBB) {
311   while (I != MBB->begin()) {
312     --I;
313     if (countsAsInstruction(*I))
314       return I;
315   }
316   return MBB->end();
317 }
318 
319 /// Given two machine basic blocks, return the number of instructions they
320 /// actually have in common together at their end. If a common tail is found (at
321 /// least by one instruction), then iterators for the first shared instruction
322 /// in each block are returned as well.
323 ///
324 /// Non-instructions according to countsAsInstruction are ignored.
325 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
326                                         MachineBasicBlock *MBB2,
327                                         MachineBasicBlock::iterator &I1,
328                                         MachineBasicBlock::iterator &I2) {
329   MachineBasicBlock::iterator MBBI1 = MBB1->end();
330   MachineBasicBlock::iterator MBBI2 = MBB2->end();
331 
332   unsigned TailLen = 0;
333   while (true) {
334     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
335     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
336     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
337       break;
338     if (!MBBI1->isIdenticalTo(*MBBI2) ||
339         // FIXME: This check is dubious. It's used to get around a problem where
340         // people incorrectly expect inline asm directives to remain in the same
341         // relative order. This is untenable because normal compiler
342         // optimizations (like this one) may reorder and/or merge these
343         // directives.
344         MBBI1->isInlineAsm()) {
345       break;
346     }
347     if (MBBI1->getFlag(MachineInstr::NoMerge) ||
348         MBBI2->getFlag(MachineInstr::NoMerge))
349       break;
350     ++TailLen;
351     I1 = MBBI1;
352     I2 = MBBI2;
353   }
354 
355   return TailLen;
356 }
357 
358 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
359                                            MachineBasicBlock &NewDest) {
360   if (UpdateLiveIns) {
361     // OldInst should always point to an instruction.
362     MachineBasicBlock &OldMBB = *OldInst->getParent();
363     LiveRegs.clear();
364     LiveRegs.addLiveOuts(OldMBB);
365     // Move backward to the place where will insert the jump.
366     MachineBasicBlock::iterator I = OldMBB.end();
367     do {
368       --I;
369       LiveRegs.stepBackward(*I);
370     } while (I != OldInst);
371 
372     // Merging the tails may have switched some undef operand to non-undef ones.
373     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
374     // register.
375     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
376       // We computed the liveins with computeLiveIn earlier and should only see
377       // full registers:
378       assert(P.LaneMask == LaneBitmask::getAll() &&
379              "Can only handle full register.");
380       MCPhysReg Reg = P.PhysReg;
381       if (!LiveRegs.available(*MRI, Reg))
382         continue;
383       DebugLoc DL;
384       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
385     }
386   }
387 
388   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
389   ++NumTailMerge;
390 }
391 
392 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
393                                             MachineBasicBlock::iterator BBI1,
394                                             const BasicBlock *BB) {
395   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
396     return nullptr;
397 
398   MachineFunction &MF = *CurMBB.getParent();
399 
400   // Create the fall-through block.
401   MachineFunction::iterator MBBI = CurMBB.getIterator();
402   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
403   CurMBB.getParent()->insert(++MBBI, NewMBB);
404 
405   // Move all the successors of this block to the specified block.
406   NewMBB->transferSuccessors(&CurMBB);
407 
408   // Add an edge from CurMBB to NewMBB for the fall-through.
409   CurMBB.addSuccessor(NewMBB);
410 
411   // Splice the code over.
412   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
413 
414   // NewMBB belongs to the same loop as CurMBB.
415   if (MLI)
416     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
417       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
418 
419   // NewMBB inherits CurMBB's block frequency.
420   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
421 
422   if (UpdateLiveIns)
423     computeAndAddLiveIns(LiveRegs, *NewMBB);
424 
425   // Add the new block to the EH scope.
426   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
427   if (EHScopeI != EHScopeMembership.end()) {
428     auto n = EHScopeI->second;
429     EHScopeMembership[NewMBB] = n;
430   }
431 
432   return NewMBB;
433 }
434 
435 /// EstimateRuntime - Make a rough estimate for how long it will take to run
436 /// the specified code.
437 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
438                                 MachineBasicBlock::iterator E) {
439   unsigned Time = 0;
440   for (; I != E; ++I) {
441     if (!countsAsInstruction(*I))
442       continue;
443     if (I->isCall())
444       Time += 10;
445     else if (I->mayLoadOrStore())
446       Time += 2;
447     else
448       ++Time;
449   }
450   return Time;
451 }
452 
453 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
454 // branches temporarily for tail merging).  In the case where CurMBB ends
455 // with a conditional branch to the next block, optimize by reversing the
456 // test and conditionally branching to SuccMBB instead.
457 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
458                     const TargetInstrInfo *TII) {
459   MachineFunction *MF = CurMBB->getParent();
460   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
461   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
462   SmallVector<MachineOperand, 4> Cond;
463   DebugLoc dl = CurMBB->findBranchDebugLoc();
464   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
465     MachineBasicBlock *NextBB = &*I;
466     if (TBB == NextBB && !Cond.empty() && !FBB) {
467       if (!TII->reverseBranchCondition(Cond)) {
468         TII->removeBranch(*CurMBB);
469         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
470         return;
471       }
472     }
473   }
474   TII->insertBranch(*CurMBB, SuccBB, nullptr,
475                     SmallVector<MachineOperand, 0>(), dl);
476 }
477 
478 bool
479 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
480   if (getHash() < o.getHash())
481     return true;
482   if (getHash() > o.getHash())
483     return false;
484   if (getBlock()->getNumber() < o.getBlock()->getNumber())
485     return true;
486   if (getBlock()->getNumber() > o.getBlock()->getNumber())
487     return false;
488   return false;
489 }
490 
491 /// CountTerminators - Count the number of terminators in the given
492 /// block and set I to the position of the first non-terminator, if there
493 /// is one, or MBB->end() otherwise.
494 static unsigned CountTerminators(MachineBasicBlock *MBB,
495                                  MachineBasicBlock::iterator &I) {
496   I = MBB->end();
497   unsigned NumTerms = 0;
498   while (true) {
499     if (I == MBB->begin()) {
500       I = MBB->end();
501       break;
502     }
503     --I;
504     if (!I->isTerminator()) break;
505     ++NumTerms;
506   }
507   return NumTerms;
508 }
509 
510 /// A no successor, non-return block probably ends in unreachable and is cold.
511 /// Also consider a block that ends in an indirect branch to be a return block,
512 /// since many targets use plain indirect branches to return.
513 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
514   if (!MBB->succ_empty())
515     return false;
516   if (MBB->empty())
517     return true;
518   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
519 }
520 
521 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
522 /// and decide if it would be profitable to merge those tails.  Return the
523 /// length of the common tail and iterators to the first common instruction
524 /// in each block.
525 /// MBB1, MBB2      The blocks to check
526 /// MinCommonTailLength  Minimum size of tail block to be merged.
527 /// CommonTailLen   Out parameter to record the size of the shared tail between
528 ///                 MBB1 and MBB2
529 /// I1, I2          Iterator references that will be changed to point to the first
530 ///                 instruction in the common tail shared by MBB1,MBB2
531 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
532 ///                 relative to SuccBB
533 /// PredBB          The layout predecessor of SuccBB, if any.
534 /// EHScopeMembership  map from block to EH scope #.
535 /// AfterPlacement  True if we are merging blocks after layout. Stricter
536 ///                 thresholds apply to prevent undoing tail-duplication.
537 static bool
538 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
539                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
540                   MachineBasicBlock::iterator &I1,
541                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
542                   MachineBasicBlock *PredBB,
543                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
544                   bool AfterPlacement,
545                   MBFIWrapper &MBBFreqInfo,
546                   ProfileSummaryInfo *PSI) {
547   // It is never profitable to tail-merge blocks from two different EH scopes.
548   if (!EHScopeMembership.empty()) {
549     auto EHScope1 = EHScopeMembership.find(MBB1);
550     assert(EHScope1 != EHScopeMembership.end());
551     auto EHScope2 = EHScopeMembership.find(MBB2);
552     assert(EHScope2 != EHScopeMembership.end());
553     if (EHScope1->second != EHScope2->second)
554       return false;
555   }
556 
557   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
558   if (CommonTailLen == 0)
559     return false;
560   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
561                     << " and " << printMBBReference(*MBB2) << " is "
562                     << CommonTailLen << '\n');
563 
564   // Move the iterators to the beginning of the MBB if we only got debug
565   // instructions before the tail. This is to avoid splitting a block when we
566   // only got debug instructions before the tail (to be invariant on -g).
567   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1)
568     I1 = MBB1->begin();
569   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2)
570     I2 = MBB2->begin();
571 
572   bool FullBlockTail1 = I1 == MBB1->begin();
573   bool FullBlockTail2 = I2 == MBB2->begin();
574 
575   // It's almost always profitable to merge any number of non-terminator
576   // instructions with the block that falls through into the common successor.
577   // This is true only for a single successor. For multiple successors, we are
578   // trading a conditional branch for an unconditional one.
579   // TODO: Re-visit successor size for non-layout tail merging.
580   if ((MBB1 == PredBB || MBB2 == PredBB) &&
581       (!AfterPlacement || MBB1->succ_size() == 1)) {
582     MachineBasicBlock::iterator I;
583     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
584     if (CommonTailLen > NumTerms)
585       return true;
586   }
587 
588   // If these are identical non-return blocks with no successors, merge them.
589   // Such blocks are typically cold calls to noreturn functions like abort, and
590   // are unlikely to become a fallthrough target after machine block placement.
591   // Tail merging these blocks is unlikely to create additional unconditional
592   // branches, and will reduce the size of this cold code.
593   if (FullBlockTail1 && FullBlockTail2 &&
594       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
595     return true;
596 
597   // If one of the blocks can be completely merged and happens to be in
598   // a position where the other could fall through into it, merge any number
599   // of instructions, because it can be done without a branch.
600   // TODO: If the blocks are not adjacent, move one of them so that they are?
601   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
602     return true;
603   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
604     return true;
605 
606   // If both blocks are identical and end in a branch, merge them unless they
607   // both have a fallthrough predecessor and successor.
608   // We can only do this after block placement because it depends on whether
609   // there are fallthroughs, and we don't know until after layout.
610   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
611     auto BothFallThrough = [](MachineBasicBlock *MBB) {
612       if (!MBB->succ_empty() && !MBB->canFallThrough())
613         return false;
614       MachineFunction::iterator I(MBB);
615       MachineFunction *MF = MBB->getParent();
616       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
617     };
618     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
619       return true;
620   }
621 
622   // If both blocks have an unconditional branch temporarily stripped out,
623   // count that as an additional common instruction for the following
624   // heuristics. This heuristic is only accurate for single-succ blocks, so to
625   // make sure that during layout merging and duplicating don't crash, we check
626   // for that when merging during layout.
627   unsigned EffectiveTailLen = CommonTailLen;
628   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
629       (MBB1->succ_size() == 1 || !AfterPlacement) &&
630       !MBB1->back().isBarrier() &&
631       !MBB2->back().isBarrier())
632     ++EffectiveTailLen;
633 
634   // Check if the common tail is long enough to be worthwhile.
635   if (EffectiveTailLen >= MinCommonTailLength)
636     return true;
637 
638   // If we are optimizing for code size, 2 instructions in common is enough if
639   // we don't have to split a block.  At worst we will be introducing 1 new
640   // branch instruction, which is likely to be smaller than the 2
641   // instructions that would be deleted in the merge.
642   MachineFunction *MF = MBB1->getParent();
643   bool OptForSize =
644       MF->getFunction().hasOptSize() ||
645       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
646        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
647   return EffectiveTailLen >= 2 && OptForSize &&
648          (FullBlockTail1 || FullBlockTail2);
649 }
650 
651 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
652                                         unsigned MinCommonTailLength,
653                                         MachineBasicBlock *SuccBB,
654                                         MachineBasicBlock *PredBB) {
655   unsigned maxCommonTailLength = 0U;
656   SameTails.clear();
657   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
658   MPIterator HighestMPIter = std::prev(MergePotentials.end());
659   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
660                   B = MergePotentials.begin();
661        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
662     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
663       unsigned CommonTailLen;
664       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
665                             MinCommonTailLength,
666                             CommonTailLen, TrialBBI1, TrialBBI2,
667                             SuccBB, PredBB,
668                             EHScopeMembership,
669                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
670         if (CommonTailLen > maxCommonTailLength) {
671           SameTails.clear();
672           maxCommonTailLength = CommonTailLen;
673           HighestMPIter = CurMPIter;
674           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
675         }
676         if (HighestMPIter == CurMPIter &&
677             CommonTailLen == maxCommonTailLength)
678           SameTails.push_back(SameTailElt(I, TrialBBI2));
679       }
680       if (I == B)
681         break;
682     }
683   }
684   return maxCommonTailLength;
685 }
686 
687 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
688                                         MachineBasicBlock *SuccBB,
689                                         MachineBasicBlock *PredBB) {
690   MPIterator CurMPIter, B;
691   for (CurMPIter = std::prev(MergePotentials.end()),
692       B = MergePotentials.begin();
693        CurMPIter->getHash() == CurHash; --CurMPIter) {
694     // Put the unconditional branch back, if we need one.
695     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
696     if (SuccBB && CurMBB != PredBB)
697       FixTail(CurMBB, SuccBB, TII);
698     if (CurMPIter == B)
699       break;
700   }
701   if (CurMPIter->getHash() != CurHash)
702     CurMPIter++;
703   MergePotentials.erase(CurMPIter, MergePotentials.end());
704 }
705 
706 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
707                                              MachineBasicBlock *SuccBB,
708                                              unsigned maxCommonTailLength,
709                                              unsigned &commonTailIndex) {
710   commonTailIndex = 0;
711   unsigned TimeEstimate = ~0U;
712   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
713     // Use PredBB if possible; that doesn't require a new branch.
714     if (SameTails[i].getBlock() == PredBB) {
715       commonTailIndex = i;
716       break;
717     }
718     // Otherwise, make a (fairly bogus) choice based on estimate of
719     // how long it will take the various blocks to execute.
720     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
721                                  SameTails[i].getTailStartPos());
722     if (t <= TimeEstimate) {
723       TimeEstimate = t;
724       commonTailIndex = i;
725     }
726   }
727 
728   MachineBasicBlock::iterator BBI =
729     SameTails[commonTailIndex].getTailStartPos();
730   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
731 
732   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
733                     << maxCommonTailLength);
734 
735   // If the split block unconditionally falls-thru to SuccBB, it will be
736   // merged. In control flow terms it should then take SuccBB's name. e.g. If
737   // SuccBB is an inner loop, the common tail is still part of the inner loop.
738   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
739     SuccBB->getBasicBlock() : MBB->getBasicBlock();
740   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
741   if (!newMBB) {
742     LLVM_DEBUG(dbgs() << "... failed!");
743     return false;
744   }
745 
746   SameTails[commonTailIndex].setBlock(newMBB);
747   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
748 
749   // If we split PredBB, newMBB is the new predecessor.
750   if (PredBB == MBB)
751     PredBB = newMBB;
752 
753   return true;
754 }
755 
756 static void
757 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
758                 MachineBasicBlock &MBBCommon) {
759   MachineBasicBlock *MBB = MBBIStartPos->getParent();
760   // Note CommonTailLen does not necessarily matches the size of
761   // the common BB nor all its instructions because of debug
762   // instructions differences.
763   unsigned CommonTailLen = 0;
764   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
765     ++CommonTailLen;
766 
767   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
768   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
769   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
770   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
771 
772   while (CommonTailLen--) {
773     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
774     (void)MBBIE;
775 
776     if (!countsAsInstruction(*MBBI)) {
777       ++MBBI;
778       continue;
779     }
780 
781     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
782       ++MBBICommon;
783 
784     assert(MBBICommon != MBBIECommon &&
785            "Reached BB end within common tail length!");
786     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
787 
788     // Merge MMOs from memory operations in the common block.
789     if (MBBICommon->mayLoadOrStore())
790       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
791     // Drop undef flags if they aren't present in all merged instructions.
792     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
793       MachineOperand &MO = MBBICommon->getOperand(I);
794       if (MO.isReg() && MO.isUndef()) {
795         const MachineOperand &OtherMO = MBBI->getOperand(I);
796         if (!OtherMO.isUndef())
797           MO.setIsUndef(false);
798       }
799     }
800 
801     ++MBBI;
802     ++MBBICommon;
803   }
804 }
805 
806 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
807   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
808 
809   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
810   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
811     if (i != commonTailIndex) {
812       NextCommonInsts[i] = SameTails[i].getTailStartPos();
813       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
814     } else {
815       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
816           "MBB is not a common tail only block");
817     }
818   }
819 
820   for (auto &MI : *MBB) {
821     if (!countsAsInstruction(MI))
822       continue;
823     DebugLoc DL = MI.getDebugLoc();
824     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
825       if (i == commonTailIndex)
826         continue;
827 
828       auto &Pos = NextCommonInsts[i];
829       assert(Pos != SameTails[i].getBlock()->end() &&
830           "Reached BB end within common tail");
831       while (!countsAsInstruction(*Pos)) {
832         ++Pos;
833         assert(Pos != SameTails[i].getBlock()->end() &&
834             "Reached BB end within common tail");
835       }
836       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
837       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
838       NextCommonInsts[i] = ++Pos;
839     }
840     MI.setDebugLoc(DL);
841   }
842 
843   if (UpdateLiveIns) {
844     LivePhysRegs NewLiveIns(*TRI);
845     computeLiveIns(NewLiveIns, *MBB);
846     LiveRegs.init(*TRI);
847 
848     // The flag merging may lead to some register uses no longer using the
849     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
850     for (MachineBasicBlock *Pred : MBB->predecessors()) {
851       LiveRegs.clear();
852       LiveRegs.addLiveOuts(*Pred);
853       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
854       for (Register Reg : NewLiveIns) {
855         if (!LiveRegs.available(*MRI, Reg))
856           continue;
857 
858         // Skip the register if we are about to add one of its super registers.
859         // TODO: Common this up with the same logic in addLineIns().
860         if (any_of(TRI->superregs(Reg), [&](MCPhysReg SReg) {
861               return NewLiveIns.contains(SReg) && !MRI->isReserved(SReg);
862             }))
863           continue;
864 
865         DebugLoc DL;
866         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
867                 Reg);
868       }
869     }
870 
871     MBB->clearLiveIns();
872     addLiveIns(*MBB, NewLiveIns);
873   }
874 }
875 
876 // See if any of the blocks in MergePotentials (which all have SuccBB as a
877 // successor, or all have no successor if it is null) can be tail-merged.
878 // If there is a successor, any blocks in MergePotentials that are not
879 // tail-merged and are not immediately before Succ must have an unconditional
880 // branch to Succ added (but the predecessor/successor lists need no
881 // adjustment). The lone predecessor of Succ that falls through into Succ,
882 // if any, is given in PredBB.
883 // MinCommonTailLength - Except for the special cases below, tail-merge if
884 // there are at least this many instructions in common.
885 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
886                                       MachineBasicBlock *PredBB,
887                                       unsigned MinCommonTailLength) {
888   bool MadeChange = false;
889 
890   LLVM_DEBUG(
891       dbgs() << "\nTryTailMergeBlocks: ";
892       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
893       << printMBBReference(*MergePotentials[i].getBlock())
894       << (i == e - 1 ? "" : ", ");
895       dbgs() << "\n"; if (SuccBB) {
896         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
897         if (PredBB)
898           dbgs() << "  which has fall-through from "
899                  << printMBBReference(*PredBB) << "\n";
900       } dbgs() << "Looking for common tails of at least "
901                << MinCommonTailLength << " instruction"
902                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
903 
904   // Sort by hash value so that blocks with identical end sequences sort
905   // together.
906   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
907 
908   // Walk through equivalence sets looking for actual exact matches.
909   while (MergePotentials.size() > 1) {
910     unsigned CurHash = MergePotentials.back().getHash();
911 
912     // Build SameTails, identifying the set of blocks with this hash code
913     // and with the maximum number of instructions in common.
914     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
915                                                     MinCommonTailLength,
916                                                     SuccBB, PredBB);
917 
918     // If we didn't find any pair that has at least MinCommonTailLength
919     // instructions in common, remove all blocks with this hash code and retry.
920     if (SameTails.empty()) {
921       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
922       continue;
923     }
924 
925     // If one of the blocks is the entire common tail (and is not the entry
926     // block/an EH pad, which we can't jump to), we can treat all blocks with
927     // this same tail at once.  Use PredBB if that is one of the possibilities,
928     // as that will not introduce any extra branches.
929     MachineBasicBlock *EntryBB =
930         &MergePotentials.front().getBlock()->getParent()->front();
931     unsigned commonTailIndex = SameTails.size();
932     // If there are two blocks, check to see if one can be made to fall through
933     // into the other.
934     if (SameTails.size() == 2 &&
935         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
936         SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
937       commonTailIndex = 1;
938     else if (SameTails.size() == 2 &&
939              SameTails[1].getBlock()->isLayoutSuccessor(
940                  SameTails[0].getBlock()) &&
941              SameTails[0].tailIsWholeBlock() &&
942              !SameTails[0].getBlock()->isEHPad())
943       commonTailIndex = 0;
944     else {
945       // Otherwise just pick one, favoring the fall-through predecessor if
946       // there is one.
947       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
948         MachineBasicBlock *MBB = SameTails[i].getBlock();
949         if ((MBB == EntryBB || MBB->isEHPad()) &&
950             SameTails[i].tailIsWholeBlock())
951           continue;
952         if (MBB == PredBB) {
953           commonTailIndex = i;
954           break;
955         }
956         if (SameTails[i].tailIsWholeBlock())
957           commonTailIndex = i;
958       }
959     }
960 
961     if (commonTailIndex == SameTails.size() ||
962         (SameTails[commonTailIndex].getBlock() == PredBB &&
963          !SameTails[commonTailIndex].tailIsWholeBlock())) {
964       // None of the blocks consist entirely of the common tail.
965       // Split a block so that one does.
966       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
967                                      maxCommonTailLength, commonTailIndex)) {
968         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
969         continue;
970       }
971     }
972 
973     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
974 
975     // Recompute common tail MBB's edge weights and block frequency.
976     setCommonTailEdgeWeights(*MBB);
977 
978     // Merge debug locations, MMOs and undef flags across identical instructions
979     // for common tail.
980     mergeCommonTails(commonTailIndex);
981 
982     // MBB is common tail.  Adjust all other BB's to jump to this one.
983     // Traversal must be forwards so erases work.
984     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
985                       << " for ");
986     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
987       if (commonTailIndex == i)
988         continue;
989       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
990                         << (i == e - 1 ? "" : ", "));
991       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
992       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
993       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
994       MergePotentials.erase(SameTails[i].getMPIter());
995     }
996     LLVM_DEBUG(dbgs() << "\n");
997     // We leave commonTailIndex in the worklist in case there are other blocks
998     // that match it with a smaller number of instructions.
999     MadeChange = true;
1000   }
1001   return MadeChange;
1002 }
1003 
1004 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1005   bool MadeChange = false;
1006   if (!EnableTailMerge)
1007     return MadeChange;
1008 
1009   // First find blocks with no successors.
1010   // Block placement may create new tail merging opportunities for these blocks.
1011   MergePotentials.clear();
1012   for (MachineBasicBlock &MBB : MF) {
1013     if (MergePotentials.size() == TailMergeThreshold)
1014       break;
1015     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1016       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1017   }
1018 
1019   // If this is a large problem, avoid visiting the same basic blocks
1020   // multiple times.
1021   if (MergePotentials.size() == TailMergeThreshold)
1022     for (const MergePotentialsElt &Elt : MergePotentials)
1023       TriedMerging.insert(Elt.getBlock());
1024 
1025   // See if we can do any tail merging on those.
1026   if (MergePotentials.size() >= 2)
1027     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1028 
1029   // Look at blocks (IBB) with multiple predecessors (PBB).
1030   // We change each predecessor to a canonical form, by
1031   // (1) temporarily removing any unconditional branch from the predecessor
1032   // to IBB, and
1033   // (2) alter conditional branches so they branch to the other block
1034   // not IBB; this may require adding back an unconditional branch to IBB
1035   // later, where there wasn't one coming in.  E.g.
1036   //   Bcc IBB
1037   //   fallthrough to QBB
1038   // here becomes
1039   //   Bncc QBB
1040   // with a conceptual B to IBB after that, which never actually exists.
1041   // With those changes, we see whether the predecessors' tails match,
1042   // and merge them if so.  We change things out of canonical form and
1043   // back to the way they were later in the process.  (OptimizeBranches
1044   // would undo some of this, but we can't use it, because we'd get into
1045   // a compile-time infinite loop repeatedly doing and undoing the same
1046   // transformations.)
1047 
1048   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1049        I != E; ++I) {
1050     if (I->pred_size() < 2) continue;
1051     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1052     MachineBasicBlock *IBB = &*I;
1053     MachineBasicBlock *PredBB = &*std::prev(I);
1054     MergePotentials.clear();
1055     MachineLoop *ML;
1056 
1057     // Bail if merging after placement and IBB is the loop header because
1058     // -- If merging predecessors that belong to the same loop as IBB, the
1059     // common tail of merged predecessors may become the loop top if block
1060     // placement is called again and the predecessors may branch to this common
1061     // tail and require more branches. This can be relaxed if
1062     // MachineBlockPlacement::findBestLoopTop is more flexible.
1063     // --If merging predecessors that do not belong to the same loop as IBB, the
1064     // loop info of IBB's loop and the other loops may be affected. Calling the
1065     // block placement again may make big change to the layout and eliminate the
1066     // reason to do tail merging here.
1067     if (AfterBlockPlacement && MLI) {
1068       ML = MLI->getLoopFor(IBB);
1069       if (ML && IBB == ML->getHeader())
1070         continue;
1071     }
1072 
1073     for (MachineBasicBlock *PBB : I->predecessors()) {
1074       if (MergePotentials.size() == TailMergeThreshold)
1075         break;
1076 
1077       if (TriedMerging.count(PBB))
1078         continue;
1079 
1080       // Skip blocks that loop to themselves, can't tail merge these.
1081       if (PBB == IBB)
1082         continue;
1083 
1084       // Visit each predecessor only once.
1085       if (!UniquePreds.insert(PBB).second)
1086         continue;
1087 
1088       // Skip blocks which may jump to a landing pad or jump from an asm blob.
1089       // Can't tail merge these.
1090       if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
1091         continue;
1092 
1093       // After block placement, only consider predecessors that belong to the
1094       // same loop as IBB.  The reason is the same as above when skipping loop
1095       // header.
1096       if (AfterBlockPlacement && MLI)
1097         if (ML != MLI->getLoopFor(PBB))
1098           continue;
1099 
1100       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1101       SmallVector<MachineOperand, 4> Cond;
1102       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1103         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1104         // branch.
1105         SmallVector<MachineOperand, 4> NewCond(Cond);
1106         if (!Cond.empty() && TBB == IBB) {
1107           if (TII->reverseBranchCondition(NewCond))
1108             continue;
1109           // This is the QBB case described above
1110           if (!FBB) {
1111             auto Next = ++PBB->getIterator();
1112             if (Next != MF.end())
1113               FBB = &*Next;
1114           }
1115         }
1116 
1117         // Remove the unconditional branch at the end, if any.
1118         if (TBB && (Cond.empty() || FBB)) {
1119           DebugLoc dl = PBB->findBranchDebugLoc();
1120           TII->removeBranch(*PBB);
1121           if (!Cond.empty())
1122             // reinsert conditional branch only, for now
1123             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1124                               NewCond, dl);
1125         }
1126 
1127         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1128       }
1129     }
1130 
1131     // If this is a large problem, avoid visiting the same basic blocks multiple
1132     // times.
1133     if (MergePotentials.size() == TailMergeThreshold)
1134       for (MergePotentialsElt &Elt : MergePotentials)
1135         TriedMerging.insert(Elt.getBlock());
1136 
1137     if (MergePotentials.size() >= 2)
1138       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1139 
1140     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1141     // result of removing blocks in TryTailMergeBlocks.
1142     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1143     if (MergePotentials.size() == 1 &&
1144         MergePotentials.begin()->getBlock() != PredBB)
1145       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1146   }
1147 
1148   return MadeChange;
1149 }
1150 
1151 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1152   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1153   BlockFrequency AccumulatedMBBFreq;
1154 
1155   // Aggregate edge frequency of successor edge j:
1156   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1157   //  where bb is a basic block that is in SameTails.
1158   for (const auto &Src : SameTails) {
1159     const MachineBasicBlock *SrcMBB = Src.getBlock();
1160     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1161     AccumulatedMBBFreq += BlockFreq;
1162 
1163     // It is not necessary to recompute edge weights if TailBB has less than two
1164     // successors.
1165     if (TailMBB.succ_size() <= 1)
1166       continue;
1167 
1168     auto EdgeFreq = EdgeFreqLs.begin();
1169 
1170     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1171          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1172       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1173   }
1174 
1175   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1176 
1177   if (TailMBB.succ_size() <= 1)
1178     return;
1179 
1180   auto SumEdgeFreq =
1181       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1182           .getFrequency();
1183   auto EdgeFreq = EdgeFreqLs.begin();
1184 
1185   if (SumEdgeFreq > 0) {
1186     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1187          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1188       auto Prob = BranchProbability::getBranchProbability(
1189           EdgeFreq->getFrequency(), SumEdgeFreq);
1190       TailMBB.setSuccProbability(SuccI, Prob);
1191     }
1192   }
1193 }
1194 
1195 //===----------------------------------------------------------------------===//
1196 //  Branch Optimization
1197 //===----------------------------------------------------------------------===//
1198 
1199 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1200   bool MadeChange = false;
1201 
1202   // Make sure blocks are numbered in order
1203   MF.RenumberBlocks();
1204   // Renumbering blocks alters EH scope membership, recalculate it.
1205   EHScopeMembership = getEHScopeMembership(MF);
1206 
1207   for (MachineBasicBlock &MBB :
1208        llvm::make_early_inc_range(llvm::drop_begin(MF))) {
1209     MadeChange |= OptimizeBlock(&MBB);
1210 
1211     // If it is dead, remove it.
1212     if (MBB.pred_empty() && !MBB.isMachineBlockAddressTaken()) {
1213       RemoveDeadBlock(&MBB);
1214       MadeChange = true;
1215       ++NumDeadBlocks;
1216     }
1217   }
1218 
1219   return MadeChange;
1220 }
1221 
1222 // Blocks should be considered empty if they contain only debug info;
1223 // else the debug info would affect codegen.
1224 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1225   return MBB->getFirstNonDebugInstr(true) == MBB->end();
1226 }
1227 
1228 // Blocks with only debug info and branches should be considered the same
1229 // as blocks with only branches.
1230 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1231   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1232   assert(I != MBB->end() && "empty block!");
1233   return I->isBranch();
1234 }
1235 
1236 /// IsBetterFallthrough - Return true if it would be clearly better to
1237 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1238 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1239 /// result in infinite loops.
1240 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1241                                 MachineBasicBlock *MBB2) {
1242   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1243 
1244   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1245   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1246   // optimize branches that branch to either a return block or an assert block
1247   // into a fallthrough to the return.
1248   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1249   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1250   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1251     return false;
1252 
1253   // If there is a clear successor ordering we make sure that one block
1254   // will fall through to the next
1255   if (MBB1->isSuccessor(MBB2)) return true;
1256   if (MBB2->isSuccessor(MBB1)) return false;
1257 
1258   return MBB2I->isCall() && !MBB1I->isCall();
1259 }
1260 
1261 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1262 /// instructions on the block.
1263 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1264   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1265   if (I != MBB.end() && I->isBranch())
1266     return I->getDebugLoc();
1267   return DebugLoc();
1268 }
1269 
1270 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1271                                        MachineBasicBlock &MBB,
1272                                        MachineBasicBlock &PredMBB) {
1273   auto InsertBefore = PredMBB.getFirstTerminator();
1274   for (MachineInstr &MI : MBB.instrs())
1275     if (MI.isDebugInstr()) {
1276       TII->duplicate(PredMBB, InsertBefore, MI);
1277       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1278                         << MI);
1279     }
1280 }
1281 
1282 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1283                                      MachineBasicBlock &MBB,
1284                                      MachineBasicBlock &SuccMBB) {
1285   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1286   for (MachineInstr &MI : MBB.instrs())
1287     if (MI.isDebugInstr()) {
1288       TII->duplicate(SuccMBB, InsertBefore, MI);
1289       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1290                         << MI);
1291     }
1292 }
1293 
1294 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1295 // a basic block is removed we would lose the debug information unless we have
1296 // copied the information to a predecessor/successor.
1297 //
1298 // TODO: This function only handles some simple cases. An alternative would be
1299 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1300 // branch folding.
1301 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1302                                            MachineBasicBlock &MBB) {
1303   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1304   // If this MBB is the only predecessor of a successor it is legal to copy
1305   // DBG_VALUE instructions to the beginning of the successor.
1306   for (MachineBasicBlock *SuccBB : MBB.successors())
1307     if (SuccBB->pred_size() == 1)
1308       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1309   // If this MBB is the only successor of a predecessor it is legal to copy the
1310   // DBG_VALUE instructions to the end of the predecessor (just before the
1311   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1312   for (MachineBasicBlock *PredBB : MBB.predecessors())
1313     if (PredBB->succ_size() == 1)
1314       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1315 }
1316 
1317 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1318   bool MadeChange = false;
1319   MachineFunction &MF = *MBB->getParent();
1320 ReoptimizeBlock:
1321 
1322   MachineFunction::iterator FallThrough = MBB->getIterator();
1323   ++FallThrough;
1324 
1325   // Make sure MBB and FallThrough belong to the same EH scope.
1326   bool SameEHScope = true;
1327   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1328     auto MBBEHScope = EHScopeMembership.find(MBB);
1329     assert(MBBEHScope != EHScopeMembership.end());
1330     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1331     assert(FallThroughEHScope != EHScopeMembership.end());
1332     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1333   }
1334 
1335   // Analyze the branch in the current block. As a side-effect, this may cause
1336   // the block to become empty.
1337   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1338   SmallVector<MachineOperand, 4> CurCond;
1339   bool CurUnAnalyzable =
1340       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1341 
1342   // If this block is empty, make everyone use its fall-through, not the block
1343   // explicitly.  Landing pads should not do this since the landing-pad table
1344   // points to this block.  Blocks with their addresses taken shouldn't be
1345   // optimized away.
1346   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1347       SameEHScope) {
1348     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1349     // Dead block?  Leave for cleanup later.
1350     if (MBB->pred_empty()) return MadeChange;
1351 
1352     if (FallThrough == MF.end()) {
1353       // TODO: Simplify preds to not branch here if possible!
1354     } else if (FallThrough->isEHPad()) {
1355       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1356       // where a BB jumps to more than one landing pad.
1357       // TODO: Is it ever worth rewriting predecessors which don't already
1358       // jump to a landing pad, and so can safely jump to the fallthrough?
1359     } else if (MBB->isSuccessor(&*FallThrough)) {
1360       // Rewrite all predecessors of the old block to go to the fallthrough
1361       // instead.
1362       while (!MBB->pred_empty()) {
1363         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1364         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1365       }
1366       // If MBB was the target of a jump table, update jump tables to go to the
1367       // fallthrough instead.
1368       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1369         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1370       MadeChange = true;
1371     }
1372     return MadeChange;
1373   }
1374 
1375   // Check to see if we can simplify the terminator of the block before this
1376   // one.
1377   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1378 
1379   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1380   SmallVector<MachineOperand, 4> PriorCond;
1381   bool PriorUnAnalyzable =
1382       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1383   if (!PriorUnAnalyzable) {
1384     // If the previous branch is conditional and both conditions go to the same
1385     // destination, remove the branch, replacing it with an unconditional one or
1386     // a fall-through.
1387     if (PriorTBB && PriorTBB == PriorFBB) {
1388       DebugLoc dl = getBranchDebugLoc(PrevBB);
1389       TII->removeBranch(PrevBB);
1390       PriorCond.clear();
1391       if (PriorTBB != MBB)
1392         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1393       MadeChange = true;
1394       ++NumBranchOpts;
1395       goto ReoptimizeBlock;
1396     }
1397 
1398     // If the previous block unconditionally falls through to this block and
1399     // this block has no other predecessors, move the contents of this block
1400     // into the prior block. This doesn't usually happen when SimplifyCFG
1401     // has been used, but it can happen if tail merging splits a fall-through
1402     // predecessor of a block.
1403     // This has to check PrevBB->succ_size() because EH edges are ignored by
1404     // analyzeBranch.
1405     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1406         PrevBB.succ_size() == 1 &&
1407         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1408       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1409                         << "From MBB: " << *MBB);
1410       // Remove redundant DBG_VALUEs first.
1411       if (!PrevBB.empty()) {
1412         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1413         --PrevBBIter;
1414         MachineBasicBlock::iterator MBBIter = MBB->begin();
1415         // Check if DBG_VALUE at the end of PrevBB is identical to the
1416         // DBG_VALUE at the beginning of MBB.
1417         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1418                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1419           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1420             break;
1421           MachineInstr &DuplicateDbg = *MBBIter;
1422           ++MBBIter; -- PrevBBIter;
1423           DuplicateDbg.eraseFromParent();
1424         }
1425       }
1426       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1427       PrevBB.removeSuccessor(PrevBB.succ_begin());
1428       assert(PrevBB.succ_empty());
1429       PrevBB.transferSuccessors(MBB);
1430       MadeChange = true;
1431       return MadeChange;
1432     }
1433 
1434     // If the previous branch *only* branches to *this* block (conditional or
1435     // not) remove the branch.
1436     if (PriorTBB == MBB && !PriorFBB) {
1437       TII->removeBranch(PrevBB);
1438       MadeChange = true;
1439       ++NumBranchOpts;
1440       goto ReoptimizeBlock;
1441     }
1442 
1443     // If the prior block branches somewhere else on the condition and here if
1444     // the condition is false, remove the uncond second branch.
1445     if (PriorFBB == MBB) {
1446       DebugLoc dl = getBranchDebugLoc(PrevBB);
1447       TII->removeBranch(PrevBB);
1448       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1449       MadeChange = true;
1450       ++NumBranchOpts;
1451       goto ReoptimizeBlock;
1452     }
1453 
1454     // If the prior block branches here on true and somewhere else on false, and
1455     // if the branch condition is reversible, reverse the branch to create a
1456     // fall-through.
1457     if (PriorTBB == MBB) {
1458       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1459       if (!TII->reverseBranchCondition(NewPriorCond)) {
1460         DebugLoc dl = getBranchDebugLoc(PrevBB);
1461         TII->removeBranch(PrevBB);
1462         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1463         MadeChange = true;
1464         ++NumBranchOpts;
1465         goto ReoptimizeBlock;
1466       }
1467     }
1468 
1469     // If this block has no successors (e.g. it is a return block or ends with
1470     // a call to a no-return function like abort or __cxa_throw) and if the pred
1471     // falls through into this block, and if it would otherwise fall through
1472     // into the block after this, move this block to the end of the function.
1473     //
1474     // We consider it more likely that execution will stay in the function (e.g.
1475     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1476     // the assert condition out of the loop body.
1477     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1478         MachineFunction::iterator(PriorTBB) == FallThrough &&
1479         !MBB->canFallThrough()) {
1480       bool DoTransform = true;
1481 
1482       // We have to be careful that the succs of PredBB aren't both no-successor
1483       // blocks.  If neither have successors and if PredBB is the second from
1484       // last block in the function, we'd just keep swapping the two blocks for
1485       // last.  Only do the swap if one is clearly better to fall through than
1486       // the other.
1487       if (FallThrough == --MF.end() &&
1488           !IsBetterFallthrough(PriorTBB, MBB))
1489         DoTransform = false;
1490 
1491       if (DoTransform) {
1492         // Reverse the branch so we will fall through on the previous true cond.
1493         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1494         if (!TII->reverseBranchCondition(NewPriorCond)) {
1495           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1496                             << "To make fallthrough to: " << *PriorTBB << "\n");
1497 
1498           DebugLoc dl = getBranchDebugLoc(PrevBB);
1499           TII->removeBranch(PrevBB);
1500           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1501 
1502           // Move this block to the end of the function.
1503           MBB->moveAfter(&MF.back());
1504           MadeChange = true;
1505           ++NumBranchOpts;
1506           return MadeChange;
1507         }
1508       }
1509     }
1510   }
1511 
1512   if (!IsEmptyBlock(MBB)) {
1513     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1514     if (TII->isUnconditionalTailCall(TailCall)) {
1515       SmallVector<MachineBasicBlock *> PredsChanged;
1516       for (auto &Pred : MBB->predecessors()) {
1517         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1518         SmallVector<MachineOperand, 4> PredCond;
1519         bool PredAnalyzable =
1520             !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1521 
1522         // Only eliminate if MBB == TBB (Taken Basic Block)
1523         if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1524             PredTBB != PredFBB) {
1525           // The predecessor has a conditional branch to this block which
1526           // consists of only a tail call. Try to fold the tail call into the
1527           // conditional branch.
1528           if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1529             // TODO: It would be nice if analyzeBranch() could provide a pointer
1530             // to the branch instruction so replaceBranchWithTailCall() doesn't
1531             // have to search for it.
1532             TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1533             PredsChanged.push_back(Pred);
1534           }
1535         }
1536         // If the predecessor is falling through to this block, we could reverse
1537         // the branch condition and fold the tail call into that. However, after
1538         // that we might have to re-arrange the CFG to fall through to the other
1539         // block and there is a high risk of regressing code size rather than
1540         // improving it.
1541       }
1542       if (!PredsChanged.empty()) {
1543         NumTailCalls += PredsChanged.size();
1544         for (auto &Pred : PredsChanged)
1545           Pred->removeSuccessor(MBB);
1546 
1547         return true;
1548       }
1549     }
1550   }
1551 
1552   if (!CurUnAnalyzable) {
1553     // If this is a two-way branch, and the FBB branches to this block, reverse
1554     // the condition so the single-basic-block loop is faster.  Instead of:
1555     //    Loop: xxx; jcc Out; jmp Loop
1556     // we want:
1557     //    Loop: xxx; jncc Loop; jmp Out
1558     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1559       SmallVector<MachineOperand, 4> NewCond(CurCond);
1560       if (!TII->reverseBranchCondition(NewCond)) {
1561         DebugLoc dl = getBranchDebugLoc(*MBB);
1562         TII->removeBranch(*MBB);
1563         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1564         MadeChange = true;
1565         ++NumBranchOpts;
1566         goto ReoptimizeBlock;
1567       }
1568     }
1569 
1570     // If this branch is the only thing in its block, see if we can forward
1571     // other blocks across it.
1572     if (CurTBB && CurCond.empty() && !CurFBB &&
1573         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1574         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1575       DebugLoc dl = getBranchDebugLoc(*MBB);
1576       // This block may contain just an unconditional branch.  Because there can
1577       // be 'non-branch terminators' in the block, try removing the branch and
1578       // then seeing if the block is empty.
1579       TII->removeBranch(*MBB);
1580       // If the only things remaining in the block are debug info, remove these
1581       // as well, so this will behave the same as an empty block in non-debug
1582       // mode.
1583       if (IsEmptyBlock(MBB)) {
1584         // Make the block empty, losing the debug info (we could probably
1585         // improve this in some cases.)
1586         MBB->erase(MBB->begin(), MBB->end());
1587       }
1588       // If this block is just an unconditional branch to CurTBB, we can
1589       // usually completely eliminate the block.  The only case we cannot
1590       // completely eliminate the block is when the block before this one
1591       // falls through into MBB and we can't understand the prior block's branch
1592       // condition.
1593       if (MBB->empty()) {
1594         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1595         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1596             !PrevBB.isSuccessor(MBB)) {
1597           // If the prior block falls through into us, turn it into an
1598           // explicit branch to us to make updates simpler.
1599           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1600               PriorTBB != MBB && PriorFBB != MBB) {
1601             if (!PriorTBB) {
1602               assert(PriorCond.empty() && !PriorFBB &&
1603                      "Bad branch analysis");
1604               PriorTBB = MBB;
1605             } else {
1606               assert(!PriorFBB && "Machine CFG out of date!");
1607               PriorFBB = MBB;
1608             }
1609             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1610             TII->removeBranch(PrevBB);
1611             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1612           }
1613 
1614           // Iterate through all the predecessors, revectoring each in-turn.
1615           size_t PI = 0;
1616           bool DidChange = false;
1617           bool HasBranchToSelf = false;
1618           while(PI != MBB->pred_size()) {
1619             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1620             if (PMBB == MBB) {
1621               // If this block has an uncond branch to itself, leave it.
1622               ++PI;
1623               HasBranchToSelf = true;
1624             } else {
1625               DidChange = true;
1626               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1627               // If this change resulted in PMBB ending in a conditional
1628               // branch where both conditions go to the same destination,
1629               // change this to an unconditional branch.
1630               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1631               SmallVector<MachineOperand, 4> NewCurCond;
1632               bool NewCurUnAnalyzable = TII->analyzeBranch(
1633                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1634               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1635                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1636                 TII->removeBranch(*PMBB);
1637                 NewCurCond.clear();
1638                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1639                 MadeChange = true;
1640                 ++NumBranchOpts;
1641               }
1642             }
1643           }
1644 
1645           // Change any jumptables to go to the new MBB.
1646           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1647             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1648           if (DidChange) {
1649             ++NumBranchOpts;
1650             MadeChange = true;
1651             if (!HasBranchToSelf) return MadeChange;
1652           }
1653         }
1654       }
1655 
1656       // Add the branch back if the block is more than just an uncond branch.
1657       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1658     }
1659   }
1660 
1661   // If the prior block doesn't fall through into this block, and if this
1662   // block doesn't fall through into some other block, see if we can find a
1663   // place to move this block where a fall-through will happen.
1664   if (!PrevBB.canFallThrough()) {
1665     // Now we know that there was no fall-through into this block, check to
1666     // see if it has a fall-through into its successor.
1667     bool CurFallsThru = MBB->canFallThrough();
1668 
1669     if (!MBB->isEHPad()) {
1670       // Check all the predecessors of this block.  If one of them has no fall
1671       // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1672       // block, move this block right after it.
1673       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1674         // Analyze the branch at the end of the pred.
1675         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1676         SmallVector<MachineOperand, 4> PredCond;
1677         if (PredBB != MBB && !PredBB->canFallThrough() &&
1678             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1679             (PredTBB == MBB || PredFBB == MBB) &&
1680             (!CurFallsThru || !CurTBB || !CurFBB) &&
1681             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1682           // If the current block doesn't fall through, just move it.
1683           // If the current block can fall through and does not end with a
1684           // conditional branch, we need to append an unconditional jump to
1685           // the (current) next block.  To avoid a possible compile-time
1686           // infinite loop, move blocks only backward in this case.
1687           // Also, if there are already 2 branches here, we cannot add a third;
1688           // this means we have the case
1689           // Bcc next
1690           // B elsewhere
1691           // next:
1692           if (CurFallsThru) {
1693             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1694             CurCond.clear();
1695             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1696           }
1697           MBB->moveAfter(PredBB);
1698           MadeChange = true;
1699           goto ReoptimizeBlock;
1700         }
1701       }
1702     }
1703 
1704     if (!CurFallsThru) {
1705       // Check analyzable branch-successors to see if we can move this block
1706       // before one.
1707       if (!CurUnAnalyzable) {
1708         for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
1709           if (!SuccBB)
1710             continue;
1711           // Analyze the branch at the end of the block before the succ.
1712           MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1713 
1714           // If this block doesn't already fall-through to that successor, and
1715           // if the succ doesn't already have a block that can fall through into
1716           // it, we can arrange for the fallthrough to happen.
1717           if (SuccBB != MBB && &*SuccPrev != MBB &&
1718               !SuccPrev->canFallThrough()) {
1719             MBB->moveBefore(SuccBB);
1720             MadeChange = true;
1721             goto ReoptimizeBlock;
1722           }
1723         }
1724       }
1725 
1726       // Okay, there is no really great place to put this block.  If, however,
1727       // the block before this one would be a fall-through if this block were
1728       // removed, move this block to the end of the function. There is no real
1729       // advantage in "falling through" to an EH block, so we don't want to
1730       // perform this transformation for that case.
1731       //
1732       // Also, Windows EH introduced the possibility of an arbitrary number of
1733       // successors to a given block.  The analyzeBranch call does not consider
1734       // exception handling and so we can get in a state where a block
1735       // containing a call is followed by multiple EH blocks that would be
1736       // rotated infinitely at the end of the function if the transformation
1737       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1738       // that appears not to be happening anymore, we should assume that it is
1739       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1740       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1741       SmallVector<MachineOperand, 4> PrevCond;
1742       if (FallThrough != MF.end() &&
1743           !FallThrough->isEHPad() &&
1744           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1745           PrevBB.isSuccessor(&*FallThrough)) {
1746         MBB->moveAfter(&MF.back());
1747         MadeChange = true;
1748         return MadeChange;
1749       }
1750     }
1751   }
1752 
1753   return MadeChange;
1754 }
1755 
1756 //===----------------------------------------------------------------------===//
1757 //  Hoist Common Code
1758 //===----------------------------------------------------------------------===//
1759 
1760 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1761   bool MadeChange = false;
1762   for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF))
1763     MadeChange |= HoistCommonCodeInSuccs(&MBB);
1764 
1765   return MadeChange;
1766 }
1767 
1768 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1769 /// its 'true' successor.
1770 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1771                                          MachineBasicBlock *TrueBB) {
1772   for (MachineBasicBlock *SuccBB : BB->successors())
1773     if (SuccBB != TrueBB)
1774       return SuccBB;
1775   return nullptr;
1776 }
1777 
1778 template <class Container>
1779 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1780                                 Container &Set) {
1781   if (Reg.isPhysical()) {
1782     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1783       Set.insert(*AI);
1784   } else {
1785     Set.insert(Reg);
1786   }
1787 }
1788 
1789 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1790 /// in successors to. The location is usually just before the terminator,
1791 /// however if the terminator is a conditional branch and its previous
1792 /// instruction is the flag setting instruction, the previous instruction is
1793 /// the preferred location. This function also gathers uses and defs of the
1794 /// instructions from the insertion point to the end of the block. The data is
1795 /// used by HoistCommonCodeInSuccs to ensure safety.
1796 static
1797 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1798                                                   const TargetInstrInfo *TII,
1799                                                   const TargetRegisterInfo *TRI,
1800                                                   SmallSet<Register, 4> &Uses,
1801                                                   SmallSet<Register, 4> &Defs) {
1802   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1803   if (!TII->isUnpredicatedTerminator(*Loc))
1804     return MBB->end();
1805 
1806   for (const MachineOperand &MO : Loc->operands()) {
1807     if (!MO.isReg())
1808       continue;
1809     Register Reg = MO.getReg();
1810     if (!Reg)
1811       continue;
1812     if (MO.isUse()) {
1813       addRegAndItsAliases(Reg, TRI, Uses);
1814     } else {
1815       if (!MO.isDead())
1816         // Don't try to hoist code in the rare case the terminator defines a
1817         // register that is later used.
1818         return MBB->end();
1819 
1820       // If the terminator defines a register, make sure we don't hoist
1821       // the instruction whose def might be clobbered by the terminator.
1822       addRegAndItsAliases(Reg, TRI, Defs);
1823     }
1824   }
1825 
1826   if (Uses.empty())
1827     return Loc;
1828   // If the terminator is the only instruction in the block and Uses is not
1829   // empty (or we would have returned above), we can still safely hoist
1830   // instructions just before the terminator as long as the Defs/Uses are not
1831   // violated (which is checked in HoistCommonCodeInSuccs).
1832   if (Loc == MBB->begin())
1833     return Loc;
1834 
1835   // The terminator is probably a conditional branch, try not to separate the
1836   // branch from condition setting instruction.
1837   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1838 
1839   bool IsDef = false;
1840   for (const MachineOperand &MO : PI->operands()) {
1841     // If PI has a regmask operand, it is probably a call. Separate away.
1842     if (MO.isRegMask())
1843       return Loc;
1844     if (!MO.isReg() || MO.isUse())
1845       continue;
1846     Register Reg = MO.getReg();
1847     if (!Reg)
1848       continue;
1849     if (Uses.count(Reg)) {
1850       IsDef = true;
1851       break;
1852     }
1853   }
1854   if (!IsDef)
1855     // The condition setting instruction is not just before the conditional
1856     // branch.
1857     return Loc;
1858 
1859   // Be conservative, don't insert instruction above something that may have
1860   // side-effects. And since it's potentially bad to separate flag setting
1861   // instruction from the conditional branch, just abort the optimization
1862   // completely.
1863   // Also avoid moving code above predicated instruction since it's hard to
1864   // reason about register liveness with predicated instruction.
1865   bool DontMoveAcrossStore = true;
1866   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1867     return MBB->end();
1868 
1869   // Find out what registers are live. Note this routine is ignoring other live
1870   // registers which are only used by instructions in successor blocks.
1871   for (const MachineOperand &MO : PI->operands()) {
1872     if (!MO.isReg())
1873       continue;
1874     Register Reg = MO.getReg();
1875     if (!Reg)
1876       continue;
1877     if (MO.isUse()) {
1878       addRegAndItsAliases(Reg, TRI, Uses);
1879     } else {
1880       if (Uses.erase(Reg)) {
1881         if (Reg.isPhysical()) {
1882           for (MCPhysReg SubReg : TRI->subregs(Reg))
1883             Uses.erase(SubReg); // Use sub-registers to be conservative
1884         }
1885       }
1886       addRegAndItsAliases(Reg, TRI, Defs);
1887     }
1888   }
1889 
1890   return PI;
1891 }
1892 
1893 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1894   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1895   SmallVector<MachineOperand, 4> Cond;
1896   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1897     return false;
1898 
1899   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1900   if (!FBB)
1901     // Malformed bcc? True and false blocks are the same?
1902     return false;
1903 
1904   // Restrict the optimization to cases where MBB is the only predecessor,
1905   // it is an obvious win.
1906   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1907     return false;
1908 
1909   // Find a suitable position to hoist the common instructions to. Also figure
1910   // out which registers are used or defined by instructions from the insertion
1911   // point to the end of the block.
1912   SmallSet<Register, 4> Uses, Defs;
1913   MachineBasicBlock::iterator Loc =
1914     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1915   if (Loc == MBB->end())
1916     return false;
1917 
1918   bool HasDups = false;
1919   SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1920   MachineBasicBlock::iterator TIB = TBB->begin();
1921   MachineBasicBlock::iterator FIB = FBB->begin();
1922   MachineBasicBlock::iterator TIE = TBB->end();
1923   MachineBasicBlock::iterator FIE = FBB->end();
1924   while (TIB != TIE && FIB != FIE) {
1925     // Skip dbg_value instructions. These do not count.
1926     TIB = skipDebugInstructionsForward(TIB, TIE, false);
1927     FIB = skipDebugInstructionsForward(FIB, FIE, false);
1928     if (TIB == TIE || FIB == FIE)
1929       break;
1930 
1931     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1932       break;
1933 
1934     if (TII->isPredicated(*TIB))
1935       // Hard to reason about register liveness with predicated instruction.
1936       break;
1937 
1938     bool IsSafe = true;
1939     for (MachineOperand &MO : TIB->operands()) {
1940       // Don't attempt to hoist instructions with register masks.
1941       if (MO.isRegMask()) {
1942         IsSafe = false;
1943         break;
1944       }
1945       if (!MO.isReg())
1946         continue;
1947       Register Reg = MO.getReg();
1948       if (!Reg)
1949         continue;
1950       if (MO.isDef()) {
1951         if (Uses.count(Reg)) {
1952           // Avoid clobbering a register that's used by the instruction at
1953           // the point of insertion.
1954           IsSafe = false;
1955           break;
1956         }
1957 
1958         if (Defs.count(Reg) && !MO.isDead()) {
1959           // Don't hoist the instruction if the def would be clobber by the
1960           // instruction at the point insertion. FIXME: This is overly
1961           // conservative. It should be possible to hoist the instructions
1962           // in BB2 in the following example:
1963           // BB1:
1964           // r1, eflag = op1 r2, r3
1965           // brcc eflag
1966           //
1967           // BB2:
1968           // r1 = op2, ...
1969           //    = op3, killed r1
1970           IsSafe = false;
1971           break;
1972         }
1973       } else if (!ActiveDefsSet.count(Reg)) {
1974         if (Defs.count(Reg)) {
1975           // Use is defined by the instruction at the point of insertion.
1976           IsSafe = false;
1977           break;
1978         }
1979 
1980         if (MO.isKill() && Uses.count(Reg))
1981           // Kills a register that's read by the instruction at the point of
1982           // insertion. Remove the kill marker.
1983           MO.setIsKill(false);
1984       }
1985     }
1986     if (!IsSafe)
1987       break;
1988 
1989     bool DontMoveAcrossStore = true;
1990     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1991       break;
1992 
1993     // Remove kills from ActiveDefsSet, these registers had short live ranges.
1994     for (const MachineOperand &MO : TIB->all_uses()) {
1995       if (!MO.isKill())
1996         continue;
1997       Register Reg = MO.getReg();
1998       if (!Reg)
1999         continue;
2000       if (!AllDefsSet.count(Reg)) {
2001         continue;
2002       }
2003       if (Reg.isPhysical()) {
2004         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2005           ActiveDefsSet.erase(*AI);
2006       } else {
2007         ActiveDefsSet.erase(Reg);
2008       }
2009     }
2010 
2011     // Track local defs so we can update liveins.
2012     for (const MachineOperand &MO : TIB->all_defs()) {
2013       if (MO.isDead())
2014         continue;
2015       Register Reg = MO.getReg();
2016       if (!Reg || Reg.isVirtual())
2017         continue;
2018       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2019       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2020     }
2021 
2022     HasDups = true;
2023     ++TIB;
2024     ++FIB;
2025   }
2026 
2027   if (!HasDups)
2028     return false;
2029 
2030   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2031   FBB->erase(FBB->begin(), FIB);
2032 
2033   if (UpdateLiveIns) {
2034     recomputeLiveIns(*TBB);
2035     recomputeLiveIns(*FBB);
2036   }
2037 
2038   ++NumHoist;
2039   return true;
2040 }
2041