1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/CodeGen/Analysis.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/MachineSizeOpts.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/MC/LaneBitmask.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/BlockFrequency.h" 56 #include "llvm/Support/BranchProbability.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <cassert> 63 #include <cstddef> 64 #include <iterator> 65 #include <numeric> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "branch-folder" 71 72 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 73 STATISTIC(NumBranchOpts, "Number of branches optimized"); 74 STATISTIC(NumTailMerge , "Number of block tails merged"); 75 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 76 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 77 78 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 79 cl::init(cl::BOU_UNSET), cl::Hidden); 80 81 // Throttle for huge numbers of predecessors (compile speed problems) 82 static cl::opt<unsigned> 83 TailMergeThreshold("tail-merge-threshold", 84 cl::desc("Max number of predecessors to consider tail merging"), 85 cl::init(150), cl::Hidden); 86 87 // Heuristic for tail merging (and, inversely, tail duplication). 88 // TODO: This should be replaced with a target query. 89 static cl::opt<unsigned> 90 TailMergeSize("tail-merge-size", 91 cl::desc("Min number of instructions to consider tail merging"), 92 cl::init(3), cl::Hidden); 93 94 namespace { 95 96 /// BranchFolderPass - Wrap branch folder in a machine function pass. 97 class BranchFolderPass : public MachineFunctionPass { 98 public: 99 static char ID; 100 101 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 102 103 bool runOnMachineFunction(MachineFunction &MF) override; 104 105 void getAnalysisUsage(AnalysisUsage &AU) const override { 106 AU.addRequired<MachineBlockFrequencyInfo>(); 107 AU.addRequired<MachineBranchProbabilityInfo>(); 108 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 109 AU.addRequired<TargetPassConfig>(); 110 MachineFunctionPass::getAnalysisUsage(AU); 111 } 112 }; 113 114 } // end anonymous namespace 115 116 char BranchFolderPass::ID = 0; 117 118 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 119 120 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 121 "Control Flow Optimizer", false, false) 122 123 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 124 if (skipFunction(MF.getFunction())) 125 return false; 126 127 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 128 // TailMerge can create jump into if branches that make CFG irreducible for 129 // HW that requires structurized CFG. 130 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 131 PassConfig->getEnableTailMerge(); 132 BranchFolder::MBFIWrapper MBBFreqInfo( 133 getAnalysis<MachineBlockFrequencyInfo>()); 134 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 135 getAnalysis<MachineBranchProbabilityInfo>(), 136 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 137 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 138 return Folder.OptimizeFunction( 139 MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(), 140 MMIWP ? &MMIWP->getMMI() : nullptr); 141 } 142 143 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 144 MBFIWrapper &FreqInfo, 145 const MachineBranchProbabilityInfo &ProbInfo, 146 ProfileSummaryInfo *PSI, 147 unsigned MinTailLength) 148 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 149 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { 150 if (MinCommonTailLength == 0) 151 MinCommonTailLength = TailMergeSize; 152 switch (FlagEnableTailMerge) { 153 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 154 case cl::BOU_TRUE: EnableTailMerge = true; break; 155 case cl::BOU_FALSE: EnableTailMerge = false; break; 156 } 157 } 158 159 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 160 assert(MBB->pred_empty() && "MBB must be dead!"); 161 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 162 163 MachineFunction *MF = MBB->getParent(); 164 // drop all successors. 165 while (!MBB->succ_empty()) 166 MBB->removeSuccessor(MBB->succ_end()-1); 167 168 // Avoid matching if this pointer gets reused. 169 TriedMerging.erase(MBB); 170 171 // Update call site info. 172 std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) { 173 if (MI.isCall(MachineInstr::IgnoreBundle)) 174 MF->eraseCallSiteInfo(&MI); 175 }); 176 // Remove the block. 177 MF->erase(MBB); 178 EHScopeMembership.erase(MBB); 179 if (MLI) 180 MLI->removeBlock(MBB); 181 } 182 183 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 184 const TargetInstrInfo *tii, 185 const TargetRegisterInfo *tri, 186 MachineModuleInfo *mmi, 187 MachineLoopInfo *mli, bool AfterPlacement) { 188 if (!tii) return false; 189 190 TriedMerging.clear(); 191 192 MachineRegisterInfo &MRI = MF.getRegInfo(); 193 AfterBlockPlacement = AfterPlacement; 194 TII = tii; 195 TRI = tri; 196 MMI = mmi; 197 MLI = mli; 198 this->MRI = &MRI; 199 200 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 201 if (!UpdateLiveIns) 202 MRI.invalidateLiveness(); 203 204 // Fix CFG. The later algorithms expect it to be right. 205 bool MadeChange = false; 206 for (MachineBasicBlock &MBB : MF) { 207 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 208 SmallVector<MachineOperand, 4> Cond; 209 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 210 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 211 } 212 213 // Recalculate EH scope membership. 214 EHScopeMembership = getEHScopeMembership(MF); 215 216 bool MadeChangeThisIteration = true; 217 while (MadeChangeThisIteration) { 218 MadeChangeThisIteration = TailMergeBlocks(MF); 219 // No need to clean up if tail merging does not change anything after the 220 // block placement. 221 if (!AfterBlockPlacement || MadeChangeThisIteration) 222 MadeChangeThisIteration |= OptimizeBranches(MF); 223 if (EnableHoistCommonCode) 224 MadeChangeThisIteration |= HoistCommonCode(MF); 225 MadeChange |= MadeChangeThisIteration; 226 } 227 228 // See if any jump tables have become dead as the code generator 229 // did its thing. 230 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 231 if (!JTI) 232 return MadeChange; 233 234 // Walk the function to find jump tables that are live. 235 BitVector JTIsLive(JTI->getJumpTables().size()); 236 for (const MachineBasicBlock &BB : MF) { 237 for (const MachineInstr &I : BB) 238 for (const MachineOperand &Op : I.operands()) { 239 if (!Op.isJTI()) continue; 240 241 // Remember that this JT is live. 242 JTIsLive.set(Op.getIndex()); 243 } 244 } 245 246 // Finally, remove dead jump tables. This happens when the 247 // indirect jump was unreachable (and thus deleted). 248 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 249 if (!JTIsLive.test(i)) { 250 JTI->RemoveJumpTable(i); 251 MadeChange = true; 252 } 253 254 return MadeChange; 255 } 256 257 //===----------------------------------------------------------------------===// 258 // Tail Merging of Blocks 259 //===----------------------------------------------------------------------===// 260 261 /// HashMachineInstr - Compute a hash value for MI and its operands. 262 static unsigned HashMachineInstr(const MachineInstr &MI) { 263 unsigned Hash = MI.getOpcode(); 264 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 265 const MachineOperand &Op = MI.getOperand(i); 266 267 // Merge in bits from the operand if easy. We can't use MachineOperand's 268 // hash_code here because it's not deterministic and we sort by hash value 269 // later. 270 unsigned OperandHash = 0; 271 switch (Op.getType()) { 272 case MachineOperand::MO_Register: 273 OperandHash = Op.getReg(); 274 break; 275 case MachineOperand::MO_Immediate: 276 OperandHash = Op.getImm(); 277 break; 278 case MachineOperand::MO_MachineBasicBlock: 279 OperandHash = Op.getMBB()->getNumber(); 280 break; 281 case MachineOperand::MO_FrameIndex: 282 case MachineOperand::MO_ConstantPoolIndex: 283 case MachineOperand::MO_JumpTableIndex: 284 OperandHash = Op.getIndex(); 285 break; 286 case MachineOperand::MO_GlobalAddress: 287 case MachineOperand::MO_ExternalSymbol: 288 // Global address / external symbol are too hard, don't bother, but do 289 // pull in the offset. 290 OperandHash = Op.getOffset(); 291 break; 292 default: 293 break; 294 } 295 296 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 297 } 298 return Hash; 299 } 300 301 /// HashEndOfMBB - Hash the last instruction in the MBB. 302 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 303 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 304 if (I == MBB.end()) 305 return 0; 306 307 return HashMachineInstr(*I); 308 } 309 310 /// Whether MI should be counted as an instruction when calculating common tail. 311 static bool countsAsInstruction(const MachineInstr &MI) { 312 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 313 } 314 315 /// Iterate backwards from the given iterator \p I, towards the beginning of the 316 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator 317 /// pointing to that MI. If no such MI is found, return the end iterator. 318 static MachineBasicBlock::iterator 319 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, 320 MachineBasicBlock *MBB) { 321 while (I != MBB->begin()) { 322 --I; 323 if (countsAsInstruction(*I)) 324 return I; 325 } 326 return MBB->end(); 327 } 328 329 /// Given two machine basic blocks, return the number of instructions they 330 /// actually have in common together at their end. If a common tail is found (at 331 /// least by one instruction), then iterators for the first shared instruction 332 /// in each block are returned as well. 333 /// 334 /// Non-instructions according to countsAsInstruction are ignored. 335 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 336 MachineBasicBlock *MBB2, 337 MachineBasicBlock::iterator &I1, 338 MachineBasicBlock::iterator &I2) { 339 MachineBasicBlock::iterator MBBI1 = MBB1->end(); 340 MachineBasicBlock::iterator MBBI2 = MBB2->end(); 341 342 unsigned TailLen = 0; 343 while (true) { 344 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); 345 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); 346 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) 347 break; 348 if (!MBBI1->isIdenticalTo(*MBBI2) || 349 // FIXME: This check is dubious. It's used to get around a problem where 350 // people incorrectly expect inline asm directives to remain in the same 351 // relative order. This is untenable because normal compiler 352 // optimizations (like this one) may reorder and/or merge these 353 // directives. 354 MBBI1->isInlineAsm()) { 355 break; 356 } 357 ++TailLen; 358 I1 = MBBI1; 359 I2 = MBBI2; 360 } 361 362 return TailLen; 363 } 364 365 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 366 MachineBasicBlock &NewDest) { 367 if (UpdateLiveIns) { 368 // OldInst should always point to an instruction. 369 MachineBasicBlock &OldMBB = *OldInst->getParent(); 370 LiveRegs.clear(); 371 LiveRegs.addLiveOuts(OldMBB); 372 // Move backward to the place where will insert the jump. 373 MachineBasicBlock::iterator I = OldMBB.end(); 374 do { 375 --I; 376 LiveRegs.stepBackward(*I); 377 } while (I != OldInst); 378 379 // Merging the tails may have switched some undef operand to non-undef ones. 380 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 381 // register. 382 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 383 // We computed the liveins with computeLiveIn earlier and should only see 384 // full registers: 385 assert(P.LaneMask == LaneBitmask::getAll() && 386 "Can only handle full register."); 387 MCPhysReg Reg = P.PhysReg; 388 if (!LiveRegs.available(*MRI, Reg)) 389 continue; 390 DebugLoc DL; 391 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 392 } 393 } 394 395 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 396 ++NumTailMerge; 397 } 398 399 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 400 MachineBasicBlock::iterator BBI1, 401 const BasicBlock *BB) { 402 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 403 return nullptr; 404 405 MachineFunction &MF = *CurMBB.getParent(); 406 407 // Create the fall-through block. 408 MachineFunction::iterator MBBI = CurMBB.getIterator(); 409 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 410 CurMBB.getParent()->insert(++MBBI, NewMBB); 411 412 // Move all the successors of this block to the specified block. 413 NewMBB->transferSuccessors(&CurMBB); 414 415 // Add an edge from CurMBB to NewMBB for the fall-through. 416 CurMBB.addSuccessor(NewMBB); 417 418 // Splice the code over. 419 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 420 421 // NewMBB belongs to the same loop as CurMBB. 422 if (MLI) 423 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 424 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 425 426 // NewMBB inherits CurMBB's block frequency. 427 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 428 429 if (UpdateLiveIns) 430 computeAndAddLiveIns(LiveRegs, *NewMBB); 431 432 // Add the new block to the EH scope. 433 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 434 if (EHScopeI != EHScopeMembership.end()) { 435 auto n = EHScopeI->second; 436 EHScopeMembership[NewMBB] = n; 437 } 438 439 return NewMBB; 440 } 441 442 /// EstimateRuntime - Make a rough estimate for how long it will take to run 443 /// the specified code. 444 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 445 MachineBasicBlock::iterator E) { 446 unsigned Time = 0; 447 for (; I != E; ++I) { 448 if (!countsAsInstruction(*I)) 449 continue; 450 if (I->isCall()) 451 Time += 10; 452 else if (I->mayLoadOrStore()) 453 Time += 2; 454 else 455 ++Time; 456 } 457 return Time; 458 } 459 460 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 461 // branches temporarily for tail merging). In the case where CurMBB ends 462 // with a conditional branch to the next block, optimize by reversing the 463 // test and conditionally branching to SuccMBB instead. 464 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 465 const TargetInstrInfo *TII) { 466 MachineFunction *MF = CurMBB->getParent(); 467 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 468 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 469 SmallVector<MachineOperand, 4> Cond; 470 DebugLoc dl = CurMBB->findBranchDebugLoc(); 471 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 472 MachineBasicBlock *NextBB = &*I; 473 if (TBB == NextBB && !Cond.empty() && !FBB) { 474 if (!TII->reverseBranchCondition(Cond)) { 475 TII->removeBranch(*CurMBB); 476 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 477 return; 478 } 479 } 480 } 481 TII->insertBranch(*CurMBB, SuccBB, nullptr, 482 SmallVector<MachineOperand, 0>(), dl); 483 } 484 485 bool 486 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 487 if (getHash() < o.getHash()) 488 return true; 489 if (getHash() > o.getHash()) 490 return false; 491 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 492 return true; 493 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 494 return false; 495 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 496 // an object with itself. 497 #ifndef _GLIBCXX_DEBUG 498 llvm_unreachable("Predecessor appears twice"); 499 #else 500 return false; 501 #endif 502 } 503 504 BlockFrequency 505 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 506 auto I = MergedBBFreq.find(MBB); 507 508 if (I != MergedBBFreq.end()) 509 return I->second; 510 511 return MBFI.getBlockFreq(MBB); 512 } 513 514 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 515 BlockFrequency F) { 516 MergedBBFreq[MBB] = F; 517 } 518 519 raw_ostream & 520 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 521 const MachineBasicBlock *MBB) const { 522 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 523 } 524 525 raw_ostream & 526 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 527 const BlockFrequency Freq) const { 528 return MBFI.printBlockFreq(OS, Freq); 529 } 530 531 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 532 MBFI.view(Name, isSimple); 533 } 534 535 uint64_t 536 BranchFolder::MBFIWrapper::getEntryFreq() const { 537 return MBFI.getEntryFreq(); 538 } 539 540 /// CountTerminators - Count the number of terminators in the given 541 /// block and set I to the position of the first non-terminator, if there 542 /// is one, or MBB->end() otherwise. 543 static unsigned CountTerminators(MachineBasicBlock *MBB, 544 MachineBasicBlock::iterator &I) { 545 I = MBB->end(); 546 unsigned NumTerms = 0; 547 while (true) { 548 if (I == MBB->begin()) { 549 I = MBB->end(); 550 break; 551 } 552 --I; 553 if (!I->isTerminator()) break; 554 ++NumTerms; 555 } 556 return NumTerms; 557 } 558 559 /// A no successor, non-return block probably ends in unreachable and is cold. 560 /// Also consider a block that ends in an indirect branch to be a return block, 561 /// since many targets use plain indirect branches to return. 562 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 563 if (!MBB->succ_empty()) 564 return false; 565 if (MBB->empty()) 566 return true; 567 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 568 } 569 570 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 571 /// and decide if it would be profitable to merge those tails. Return the 572 /// length of the common tail and iterators to the first common instruction 573 /// in each block. 574 /// MBB1, MBB2 The blocks to check 575 /// MinCommonTailLength Minimum size of tail block to be merged. 576 /// CommonTailLen Out parameter to record the size of the shared tail between 577 /// MBB1 and MBB2 578 /// I1, I2 Iterator references that will be changed to point to the first 579 /// instruction in the common tail shared by MBB1,MBB2 580 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 581 /// relative to SuccBB 582 /// PredBB The layout predecessor of SuccBB, if any. 583 /// EHScopeMembership map from block to EH scope #. 584 /// AfterPlacement True if we are merging blocks after layout. Stricter 585 /// thresholds apply to prevent undoing tail-duplication. 586 static bool 587 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 588 unsigned MinCommonTailLength, unsigned &CommonTailLen, 589 MachineBasicBlock::iterator &I1, 590 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 591 MachineBasicBlock *PredBB, 592 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 593 bool AfterPlacement, 594 BranchFolder::MBFIWrapper &MBBFreqInfo, 595 ProfileSummaryInfo *PSI) { 596 // It is never profitable to tail-merge blocks from two different EH scopes. 597 if (!EHScopeMembership.empty()) { 598 auto EHScope1 = EHScopeMembership.find(MBB1); 599 assert(EHScope1 != EHScopeMembership.end()); 600 auto EHScope2 = EHScopeMembership.find(MBB2); 601 assert(EHScope2 != EHScopeMembership.end()); 602 if (EHScope1->second != EHScope2->second) 603 return false; 604 } 605 606 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 607 if (CommonTailLen == 0) 608 return false; 609 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 610 << " and " << printMBBReference(*MBB2) << " is " 611 << CommonTailLen << '\n'); 612 613 // Move the iterators to the beginning of the MBB if we only got debug 614 // instructions before the tail. This is to avoid splitting a block when we 615 // only got debug instructions before the tail (to be invariant on -g). 616 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1) 617 I1 = MBB1->begin(); 618 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2) 619 I2 = MBB2->begin(); 620 621 bool FullBlockTail1 = I1 == MBB1->begin(); 622 bool FullBlockTail2 = I2 == MBB2->begin(); 623 624 // It's almost always profitable to merge any number of non-terminator 625 // instructions with the block that falls through into the common successor. 626 // This is true only for a single successor. For multiple successors, we are 627 // trading a conditional branch for an unconditional one. 628 // TODO: Re-visit successor size for non-layout tail merging. 629 if ((MBB1 == PredBB || MBB2 == PredBB) && 630 (!AfterPlacement || MBB1->succ_size() == 1)) { 631 MachineBasicBlock::iterator I; 632 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 633 if (CommonTailLen > NumTerms) 634 return true; 635 } 636 637 // If these are identical non-return blocks with no successors, merge them. 638 // Such blocks are typically cold calls to noreturn functions like abort, and 639 // are unlikely to become a fallthrough target after machine block placement. 640 // Tail merging these blocks is unlikely to create additional unconditional 641 // branches, and will reduce the size of this cold code. 642 if (FullBlockTail1 && FullBlockTail2 && 643 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 644 return true; 645 646 // If one of the blocks can be completely merged and happens to be in 647 // a position where the other could fall through into it, merge any number 648 // of instructions, because it can be done without a branch. 649 // TODO: If the blocks are not adjacent, move one of them so that they are? 650 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) 651 return true; 652 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) 653 return true; 654 655 // If both blocks are identical and end in a branch, merge them unless they 656 // both have a fallthrough predecessor and successor. 657 // We can only do this after block placement because it depends on whether 658 // there are fallthroughs, and we don't know until after layout. 659 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { 660 auto BothFallThrough = [](MachineBasicBlock *MBB) { 661 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 662 return false; 663 MachineFunction::iterator I(MBB); 664 MachineFunction *MF = MBB->getParent(); 665 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 666 }; 667 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 668 return true; 669 } 670 671 // If both blocks have an unconditional branch temporarily stripped out, 672 // count that as an additional common instruction for the following 673 // heuristics. This heuristic is only accurate for single-succ blocks, so to 674 // make sure that during layout merging and duplicating don't crash, we check 675 // for that when merging during layout. 676 unsigned EffectiveTailLen = CommonTailLen; 677 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 678 (MBB1->succ_size() == 1 || !AfterPlacement) && 679 !MBB1->back().isBarrier() && 680 !MBB2->back().isBarrier()) 681 ++EffectiveTailLen; 682 683 // Check if the common tail is long enough to be worthwhile. 684 if (EffectiveTailLen >= MinCommonTailLength) 685 return true; 686 687 // If we are optimizing for code size, 2 instructions in common is enough if 688 // we don't have to split a block. At worst we will be introducing 1 new 689 // branch instruction, which is likely to be smaller than the 2 690 // instructions that would be deleted in the merge. 691 MachineFunction *MF = MBB1->getParent(); 692 bool OptForSize = 693 MF->getFunction().hasOptSize() || 694 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo.getMBFI()) && 695 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo.getMBFI())); 696 return EffectiveTailLen >= 2 && OptForSize && 697 (FullBlockTail1 || FullBlockTail2); 698 } 699 700 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 701 unsigned MinCommonTailLength, 702 MachineBasicBlock *SuccBB, 703 MachineBasicBlock *PredBB) { 704 unsigned maxCommonTailLength = 0U; 705 SameTails.clear(); 706 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 707 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 708 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 709 B = MergePotentials.begin(); 710 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 711 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 712 unsigned CommonTailLen; 713 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 714 MinCommonTailLength, 715 CommonTailLen, TrialBBI1, TrialBBI2, 716 SuccBB, PredBB, 717 EHScopeMembership, 718 AfterBlockPlacement, MBBFreqInfo, PSI)) { 719 if (CommonTailLen > maxCommonTailLength) { 720 SameTails.clear(); 721 maxCommonTailLength = CommonTailLen; 722 HighestMPIter = CurMPIter; 723 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 724 } 725 if (HighestMPIter == CurMPIter && 726 CommonTailLen == maxCommonTailLength) 727 SameTails.push_back(SameTailElt(I, TrialBBI2)); 728 } 729 if (I == B) 730 break; 731 } 732 } 733 return maxCommonTailLength; 734 } 735 736 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 737 MachineBasicBlock *SuccBB, 738 MachineBasicBlock *PredBB) { 739 MPIterator CurMPIter, B; 740 for (CurMPIter = std::prev(MergePotentials.end()), 741 B = MergePotentials.begin(); 742 CurMPIter->getHash() == CurHash; --CurMPIter) { 743 // Put the unconditional branch back, if we need one. 744 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 745 if (SuccBB && CurMBB != PredBB) 746 FixTail(CurMBB, SuccBB, TII); 747 if (CurMPIter == B) 748 break; 749 } 750 if (CurMPIter->getHash() != CurHash) 751 CurMPIter++; 752 MergePotentials.erase(CurMPIter, MergePotentials.end()); 753 } 754 755 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 756 MachineBasicBlock *SuccBB, 757 unsigned maxCommonTailLength, 758 unsigned &commonTailIndex) { 759 commonTailIndex = 0; 760 unsigned TimeEstimate = ~0U; 761 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 762 // Use PredBB if possible; that doesn't require a new branch. 763 if (SameTails[i].getBlock() == PredBB) { 764 commonTailIndex = i; 765 break; 766 } 767 // Otherwise, make a (fairly bogus) choice based on estimate of 768 // how long it will take the various blocks to execute. 769 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 770 SameTails[i].getTailStartPos()); 771 if (t <= TimeEstimate) { 772 TimeEstimate = t; 773 commonTailIndex = i; 774 } 775 } 776 777 MachineBasicBlock::iterator BBI = 778 SameTails[commonTailIndex].getTailStartPos(); 779 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 780 781 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 782 << maxCommonTailLength); 783 784 // If the split block unconditionally falls-thru to SuccBB, it will be 785 // merged. In control flow terms it should then take SuccBB's name. e.g. If 786 // SuccBB is an inner loop, the common tail is still part of the inner loop. 787 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 788 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 789 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 790 if (!newMBB) { 791 LLVM_DEBUG(dbgs() << "... failed!"); 792 return false; 793 } 794 795 SameTails[commonTailIndex].setBlock(newMBB); 796 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 797 798 // If we split PredBB, newMBB is the new predecessor. 799 if (PredBB == MBB) 800 PredBB = newMBB; 801 802 return true; 803 } 804 805 static void 806 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 807 MachineBasicBlock &MBBCommon) { 808 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 809 // Note CommonTailLen does not necessarily matches the size of 810 // the common BB nor all its instructions because of debug 811 // instructions differences. 812 unsigned CommonTailLen = 0; 813 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 814 ++CommonTailLen; 815 816 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 817 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 818 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 819 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 820 821 while (CommonTailLen--) { 822 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 823 (void)MBBIE; 824 825 if (!countsAsInstruction(*MBBI)) { 826 ++MBBI; 827 continue; 828 } 829 830 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 831 ++MBBICommon; 832 833 assert(MBBICommon != MBBIECommon && 834 "Reached BB end within common tail length!"); 835 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 836 837 // Merge MMOs from memory operations in the common block. 838 if (MBBICommon->mayLoadOrStore()) 839 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 840 // Drop undef flags if they aren't present in all merged instructions. 841 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 842 MachineOperand &MO = MBBICommon->getOperand(I); 843 if (MO.isReg() && MO.isUndef()) { 844 const MachineOperand &OtherMO = MBBI->getOperand(I); 845 if (!OtherMO.isUndef()) 846 MO.setIsUndef(false); 847 } 848 } 849 850 ++MBBI; 851 ++MBBICommon; 852 } 853 } 854 855 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 856 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 857 858 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 859 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 860 if (i != commonTailIndex) { 861 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 862 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 863 } else { 864 assert(SameTails[i].getTailStartPos() == MBB->begin() && 865 "MBB is not a common tail only block"); 866 } 867 } 868 869 for (auto &MI : *MBB) { 870 if (!countsAsInstruction(MI)) 871 continue; 872 DebugLoc DL = MI.getDebugLoc(); 873 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 874 if (i == commonTailIndex) 875 continue; 876 877 auto &Pos = NextCommonInsts[i]; 878 assert(Pos != SameTails[i].getBlock()->end() && 879 "Reached BB end within common tail"); 880 while (!countsAsInstruction(*Pos)) { 881 ++Pos; 882 assert(Pos != SameTails[i].getBlock()->end() && 883 "Reached BB end within common tail"); 884 } 885 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 886 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 887 NextCommonInsts[i] = ++Pos; 888 } 889 MI.setDebugLoc(DL); 890 } 891 892 if (UpdateLiveIns) { 893 LivePhysRegs NewLiveIns(*TRI); 894 computeLiveIns(NewLiveIns, *MBB); 895 LiveRegs.init(*TRI); 896 897 // The flag merging may lead to some register uses no longer using the 898 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 899 for (MachineBasicBlock *Pred : MBB->predecessors()) { 900 LiveRegs.clear(); 901 LiveRegs.addLiveOuts(*Pred); 902 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 903 for (unsigned Reg : NewLiveIns) { 904 if (!LiveRegs.available(*MRI, Reg)) 905 continue; 906 DebugLoc DL; 907 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 908 Reg); 909 } 910 } 911 912 MBB->clearLiveIns(); 913 addLiveIns(*MBB, NewLiveIns); 914 } 915 } 916 917 // See if any of the blocks in MergePotentials (which all have SuccBB as a 918 // successor, or all have no successor if it is null) can be tail-merged. 919 // If there is a successor, any blocks in MergePotentials that are not 920 // tail-merged and are not immediately before Succ must have an unconditional 921 // branch to Succ added (but the predecessor/successor lists need no 922 // adjustment). The lone predecessor of Succ that falls through into Succ, 923 // if any, is given in PredBB. 924 // MinCommonTailLength - Except for the special cases below, tail-merge if 925 // there are at least this many instructions in common. 926 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 927 MachineBasicBlock *PredBB, 928 unsigned MinCommonTailLength) { 929 bool MadeChange = false; 930 931 LLVM_DEBUG( 932 dbgs() << "\nTryTailMergeBlocks: "; 933 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 934 << printMBBReference(*MergePotentials[i].getBlock()) 935 << (i == e - 1 ? "" : ", "); 936 dbgs() << "\n"; if (SuccBB) { 937 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 938 if (PredBB) 939 dbgs() << " which has fall-through from " 940 << printMBBReference(*PredBB) << "\n"; 941 } dbgs() << "Looking for common tails of at least " 942 << MinCommonTailLength << " instruction" 943 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 944 945 // Sort by hash value so that blocks with identical end sequences sort 946 // together. 947 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 948 949 // Walk through equivalence sets looking for actual exact matches. 950 while (MergePotentials.size() > 1) { 951 unsigned CurHash = MergePotentials.back().getHash(); 952 953 // Build SameTails, identifying the set of blocks with this hash code 954 // and with the maximum number of instructions in common. 955 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 956 MinCommonTailLength, 957 SuccBB, PredBB); 958 959 // If we didn't find any pair that has at least MinCommonTailLength 960 // instructions in common, remove all blocks with this hash code and retry. 961 if (SameTails.empty()) { 962 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 963 continue; 964 } 965 966 // If one of the blocks is the entire common tail (and is not the entry 967 // block/an EH pad, which we can't jump to), we can treat all blocks with 968 // this same tail at once. Use PredBB if that is one of the possibilities, 969 // as that will not introduce any extra branches. 970 MachineBasicBlock *EntryBB = 971 &MergePotentials.front().getBlock()->getParent()->front(); 972 unsigned commonTailIndex = SameTails.size(); 973 // If there are two blocks, check to see if one can be made to fall through 974 // into the other. 975 if (SameTails.size() == 2 && 976 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 977 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) 978 commonTailIndex = 1; 979 else if (SameTails.size() == 2 && 980 SameTails[1].getBlock()->isLayoutSuccessor( 981 SameTails[0].getBlock()) && 982 SameTails[0].tailIsWholeBlock() && 983 !SameTails[0].getBlock()->isEHPad()) 984 commonTailIndex = 0; 985 else { 986 // Otherwise just pick one, favoring the fall-through predecessor if 987 // there is one. 988 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 989 MachineBasicBlock *MBB = SameTails[i].getBlock(); 990 if ((MBB == EntryBB || MBB->isEHPad()) && 991 SameTails[i].tailIsWholeBlock()) 992 continue; 993 if (MBB == PredBB) { 994 commonTailIndex = i; 995 break; 996 } 997 if (SameTails[i].tailIsWholeBlock()) 998 commonTailIndex = i; 999 } 1000 } 1001 1002 if (commonTailIndex == SameTails.size() || 1003 (SameTails[commonTailIndex].getBlock() == PredBB && 1004 !SameTails[commonTailIndex].tailIsWholeBlock())) { 1005 // None of the blocks consist entirely of the common tail. 1006 // Split a block so that one does. 1007 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 1008 maxCommonTailLength, commonTailIndex)) { 1009 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 1010 continue; 1011 } 1012 } 1013 1014 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 1015 1016 // Recompute common tail MBB's edge weights and block frequency. 1017 setCommonTailEdgeWeights(*MBB); 1018 1019 // Merge debug locations, MMOs and undef flags across identical instructions 1020 // for common tail. 1021 mergeCommonTails(commonTailIndex); 1022 1023 // MBB is common tail. Adjust all other BB's to jump to this one. 1024 // Traversal must be forwards so erases work. 1025 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 1026 << " for "); 1027 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 1028 if (commonTailIndex == i) 1029 continue; 1030 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 1031 << (i == e - 1 ? "" : ", ")); 1032 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 1033 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 1034 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1035 MergePotentials.erase(SameTails[i].getMPIter()); 1036 } 1037 LLVM_DEBUG(dbgs() << "\n"); 1038 // We leave commonTailIndex in the worklist in case there are other blocks 1039 // that match it with a smaller number of instructions. 1040 MadeChange = true; 1041 } 1042 return MadeChange; 1043 } 1044 1045 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1046 bool MadeChange = false; 1047 if (!EnableTailMerge) 1048 return MadeChange; 1049 1050 // First find blocks with no successors. 1051 // Block placement may create new tail merging opportunities for these blocks. 1052 MergePotentials.clear(); 1053 for (MachineBasicBlock &MBB : MF) { 1054 if (MergePotentials.size() == TailMergeThreshold) 1055 break; 1056 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1057 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1058 } 1059 1060 // If this is a large problem, avoid visiting the same basic blocks 1061 // multiple times. 1062 if (MergePotentials.size() == TailMergeThreshold) 1063 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1064 TriedMerging.insert(MergePotentials[i].getBlock()); 1065 1066 // See if we can do any tail merging on those. 1067 if (MergePotentials.size() >= 2) 1068 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1069 1070 // Look at blocks (IBB) with multiple predecessors (PBB). 1071 // We change each predecessor to a canonical form, by 1072 // (1) temporarily removing any unconditional branch from the predecessor 1073 // to IBB, and 1074 // (2) alter conditional branches so they branch to the other block 1075 // not IBB; this may require adding back an unconditional branch to IBB 1076 // later, where there wasn't one coming in. E.g. 1077 // Bcc IBB 1078 // fallthrough to QBB 1079 // here becomes 1080 // Bncc QBB 1081 // with a conceptual B to IBB after that, which never actually exists. 1082 // With those changes, we see whether the predecessors' tails match, 1083 // and merge them if so. We change things out of canonical form and 1084 // back to the way they were later in the process. (OptimizeBranches 1085 // would undo some of this, but we can't use it, because we'd get into 1086 // a compile-time infinite loop repeatedly doing and undoing the same 1087 // transformations.) 1088 1089 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1090 I != E; ++I) { 1091 if (I->pred_size() < 2) continue; 1092 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1093 MachineBasicBlock *IBB = &*I; 1094 MachineBasicBlock *PredBB = &*std::prev(I); 1095 MergePotentials.clear(); 1096 MachineLoop *ML; 1097 1098 // Bail if merging after placement and IBB is the loop header because 1099 // -- If merging predecessors that belong to the same loop as IBB, the 1100 // common tail of merged predecessors may become the loop top if block 1101 // placement is called again and the predecessors may branch to this common 1102 // tail and require more branches. This can be relaxed if 1103 // MachineBlockPlacement::findBestLoopTop is more flexible. 1104 // --If merging predecessors that do not belong to the same loop as IBB, the 1105 // loop info of IBB's loop and the other loops may be affected. Calling the 1106 // block placement again may make big change to the layout and eliminate the 1107 // reason to do tail merging here. 1108 if (AfterBlockPlacement && MLI) { 1109 ML = MLI->getLoopFor(IBB); 1110 if (ML && IBB == ML->getHeader()) 1111 continue; 1112 } 1113 1114 for (MachineBasicBlock *PBB : I->predecessors()) { 1115 if (MergePotentials.size() == TailMergeThreshold) 1116 break; 1117 1118 if (TriedMerging.count(PBB)) 1119 continue; 1120 1121 // Skip blocks that loop to themselves, can't tail merge these. 1122 if (PBB == IBB) 1123 continue; 1124 1125 // Visit each predecessor only once. 1126 if (!UniquePreds.insert(PBB).second) 1127 continue; 1128 1129 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1130 if (PBB->hasEHPadSuccessor()) 1131 continue; 1132 1133 // After block placement, only consider predecessors that belong to the 1134 // same loop as IBB. The reason is the same as above when skipping loop 1135 // header. 1136 if (AfterBlockPlacement && MLI) 1137 if (ML != MLI->getLoopFor(PBB)) 1138 continue; 1139 1140 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1141 SmallVector<MachineOperand, 4> Cond; 1142 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1143 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1144 // branch. 1145 SmallVector<MachineOperand, 4> NewCond(Cond); 1146 if (!Cond.empty() && TBB == IBB) { 1147 if (TII->reverseBranchCondition(NewCond)) 1148 continue; 1149 // This is the QBB case described above 1150 if (!FBB) { 1151 auto Next = ++PBB->getIterator(); 1152 if (Next != MF.end()) 1153 FBB = &*Next; 1154 } 1155 } 1156 1157 // Remove the unconditional branch at the end, if any. 1158 if (TBB && (Cond.empty() || FBB)) { 1159 DebugLoc dl = PBB->findBranchDebugLoc(); 1160 TII->removeBranch(*PBB); 1161 if (!Cond.empty()) 1162 // reinsert conditional branch only, for now 1163 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1164 NewCond, dl); 1165 } 1166 1167 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1168 } 1169 } 1170 1171 // If this is a large problem, avoid visiting the same basic blocks multiple 1172 // times. 1173 if (MergePotentials.size() == TailMergeThreshold) 1174 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1175 TriedMerging.insert(MergePotentials[i].getBlock()); 1176 1177 if (MergePotentials.size() >= 2) 1178 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1179 1180 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1181 // result of removing blocks in TryTailMergeBlocks. 1182 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1183 if (MergePotentials.size() == 1 && 1184 MergePotentials.begin()->getBlock() != PredBB) 1185 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1186 } 1187 1188 return MadeChange; 1189 } 1190 1191 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1192 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1193 BlockFrequency AccumulatedMBBFreq; 1194 1195 // Aggregate edge frequency of successor edge j: 1196 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1197 // where bb is a basic block that is in SameTails. 1198 for (const auto &Src : SameTails) { 1199 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1200 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1201 AccumulatedMBBFreq += BlockFreq; 1202 1203 // It is not necessary to recompute edge weights if TailBB has less than two 1204 // successors. 1205 if (TailMBB.succ_size() <= 1) 1206 continue; 1207 1208 auto EdgeFreq = EdgeFreqLs.begin(); 1209 1210 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1211 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1212 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1213 } 1214 1215 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1216 1217 if (TailMBB.succ_size() <= 1) 1218 return; 1219 1220 auto SumEdgeFreq = 1221 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1222 .getFrequency(); 1223 auto EdgeFreq = EdgeFreqLs.begin(); 1224 1225 if (SumEdgeFreq > 0) { 1226 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1227 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1228 auto Prob = BranchProbability::getBranchProbability( 1229 EdgeFreq->getFrequency(), SumEdgeFreq); 1230 TailMBB.setSuccProbability(SuccI, Prob); 1231 } 1232 } 1233 } 1234 1235 //===----------------------------------------------------------------------===// 1236 // Branch Optimization 1237 //===----------------------------------------------------------------------===// 1238 1239 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1240 bool MadeChange = false; 1241 1242 // Make sure blocks are numbered in order 1243 MF.RenumberBlocks(); 1244 // Renumbering blocks alters EH scope membership, recalculate it. 1245 EHScopeMembership = getEHScopeMembership(MF); 1246 1247 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1248 I != E; ) { 1249 MachineBasicBlock *MBB = &*I++; 1250 MadeChange |= OptimizeBlock(MBB); 1251 1252 // If it is dead, remove it. 1253 if (MBB->pred_empty()) { 1254 RemoveDeadBlock(MBB); 1255 MadeChange = true; 1256 ++NumDeadBlocks; 1257 } 1258 } 1259 1260 return MadeChange; 1261 } 1262 1263 // Blocks should be considered empty if they contain only debug info; 1264 // else the debug info would affect codegen. 1265 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1266 return MBB->getFirstNonDebugInstr() == MBB->end(); 1267 } 1268 1269 // Blocks with only debug info and branches should be considered the same 1270 // as blocks with only branches. 1271 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1272 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1273 assert(I != MBB->end() && "empty block!"); 1274 return I->isBranch(); 1275 } 1276 1277 /// IsBetterFallthrough - Return true if it would be clearly better to 1278 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1279 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1280 /// result in infinite loops. 1281 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1282 MachineBasicBlock *MBB2) { 1283 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1284 1285 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1286 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1287 // optimize branches that branch to either a return block or an assert block 1288 // into a fallthrough to the return. 1289 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1290 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1291 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1292 return false; 1293 1294 // If there is a clear successor ordering we make sure that one block 1295 // will fall through to the next 1296 if (MBB1->isSuccessor(MBB2)) return true; 1297 if (MBB2->isSuccessor(MBB1)) return false; 1298 1299 return MBB2I->isCall() && !MBB1I->isCall(); 1300 } 1301 1302 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1303 /// instructions on the block. 1304 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1305 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1306 if (I != MBB.end() && I->isBranch()) 1307 return I->getDebugLoc(); 1308 return DebugLoc(); 1309 } 1310 1311 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1312 MachineBasicBlock &MBB, 1313 MachineBasicBlock &PredMBB) { 1314 auto InsertBefore = PredMBB.getFirstTerminator(); 1315 for (MachineInstr &MI : MBB.instrs()) 1316 if (MI.isDebugInstr()) { 1317 TII->duplicate(PredMBB, InsertBefore, MI); 1318 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1319 << MI); 1320 } 1321 } 1322 1323 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1324 MachineBasicBlock &MBB, 1325 MachineBasicBlock &SuccMBB) { 1326 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1327 for (MachineInstr &MI : MBB.instrs()) 1328 if (MI.isDebugInstr()) { 1329 TII->duplicate(SuccMBB, InsertBefore, MI); 1330 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1331 << MI); 1332 } 1333 } 1334 1335 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1336 // a basic block is removed we would lose the debug information unless we have 1337 // copied the information to a predecessor/successor. 1338 // 1339 // TODO: This function only handles some simple cases. An alternative would be 1340 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1341 // branch folding. 1342 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1343 MachineBasicBlock &MBB) { 1344 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1345 // If this MBB is the only predecessor of a successor it is legal to copy 1346 // DBG_VALUE instructions to the beginning of the successor. 1347 for (MachineBasicBlock *SuccBB : MBB.successors()) 1348 if (SuccBB->pred_size() == 1) 1349 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1350 // If this MBB is the only successor of a predecessor it is legal to copy the 1351 // DBG_VALUE instructions to the end of the predecessor (just before the 1352 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1353 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1354 if (PredBB->succ_size() == 1) 1355 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1356 } 1357 1358 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1359 bool MadeChange = false; 1360 MachineFunction &MF = *MBB->getParent(); 1361 ReoptimizeBlock: 1362 1363 MachineFunction::iterator FallThrough = MBB->getIterator(); 1364 ++FallThrough; 1365 1366 // Make sure MBB and FallThrough belong to the same EH scope. 1367 bool SameEHScope = true; 1368 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1369 auto MBBEHScope = EHScopeMembership.find(MBB); 1370 assert(MBBEHScope != EHScopeMembership.end()); 1371 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1372 assert(FallThroughEHScope != EHScopeMembership.end()); 1373 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1374 } 1375 1376 // If this block is empty, make everyone use its fall-through, not the block 1377 // explicitly. Landing pads should not do this since the landing-pad table 1378 // points to this block. Blocks with their addresses taken shouldn't be 1379 // optimized away. 1380 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1381 SameEHScope) { 1382 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1383 // Dead block? Leave for cleanup later. 1384 if (MBB->pred_empty()) return MadeChange; 1385 1386 if (FallThrough == MF.end()) { 1387 // TODO: Simplify preds to not branch here if possible! 1388 } else if (FallThrough->isEHPad()) { 1389 // Don't rewrite to a landing pad fallthough. That could lead to the case 1390 // where a BB jumps to more than one landing pad. 1391 // TODO: Is it ever worth rewriting predecessors which don't already 1392 // jump to a landing pad, and so can safely jump to the fallthrough? 1393 } else if (MBB->isSuccessor(&*FallThrough)) { 1394 // Rewrite all predecessors of the old block to go to the fallthrough 1395 // instead. 1396 while (!MBB->pred_empty()) { 1397 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1398 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1399 } 1400 // If MBB was the target of a jump table, update jump tables to go to the 1401 // fallthrough instead. 1402 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1403 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1404 MadeChange = true; 1405 } 1406 return MadeChange; 1407 } 1408 1409 // Check to see if we can simplify the terminator of the block before this 1410 // one. 1411 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1412 1413 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1414 SmallVector<MachineOperand, 4> PriorCond; 1415 bool PriorUnAnalyzable = 1416 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1417 if (!PriorUnAnalyzable) { 1418 // If the CFG for the prior block has extra edges, remove them. 1419 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1420 !PriorCond.empty()); 1421 1422 // If the previous branch is conditional and both conditions go to the same 1423 // destination, remove the branch, replacing it with an unconditional one or 1424 // a fall-through. 1425 if (PriorTBB && PriorTBB == PriorFBB) { 1426 DebugLoc dl = getBranchDebugLoc(PrevBB); 1427 TII->removeBranch(PrevBB); 1428 PriorCond.clear(); 1429 if (PriorTBB != MBB) 1430 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1431 MadeChange = true; 1432 ++NumBranchOpts; 1433 goto ReoptimizeBlock; 1434 } 1435 1436 // If the previous block unconditionally falls through to this block and 1437 // this block has no other predecessors, move the contents of this block 1438 // into the prior block. This doesn't usually happen when SimplifyCFG 1439 // has been used, but it can happen if tail merging splits a fall-through 1440 // predecessor of a block. 1441 // This has to check PrevBB->succ_size() because EH edges are ignored by 1442 // AnalyzeBranch. 1443 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1444 PrevBB.succ_size() == 1 && 1445 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1446 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1447 << "From MBB: " << *MBB); 1448 // Remove redundant DBG_VALUEs first. 1449 if (PrevBB.begin() != PrevBB.end()) { 1450 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1451 --PrevBBIter; 1452 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1453 // Check if DBG_VALUE at the end of PrevBB is identical to the 1454 // DBG_VALUE at the beginning of MBB. 1455 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1456 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1457 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1458 break; 1459 MachineInstr &DuplicateDbg = *MBBIter; 1460 ++MBBIter; -- PrevBBIter; 1461 DuplicateDbg.eraseFromParent(); 1462 } 1463 } 1464 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1465 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1466 assert(PrevBB.succ_empty()); 1467 PrevBB.transferSuccessors(MBB); 1468 MadeChange = true; 1469 return MadeChange; 1470 } 1471 1472 // If the previous branch *only* branches to *this* block (conditional or 1473 // not) remove the branch. 1474 if (PriorTBB == MBB && !PriorFBB) { 1475 TII->removeBranch(PrevBB); 1476 MadeChange = true; 1477 ++NumBranchOpts; 1478 goto ReoptimizeBlock; 1479 } 1480 1481 // If the prior block branches somewhere else on the condition and here if 1482 // the condition is false, remove the uncond second branch. 1483 if (PriorFBB == MBB) { 1484 DebugLoc dl = getBranchDebugLoc(PrevBB); 1485 TII->removeBranch(PrevBB); 1486 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1487 MadeChange = true; 1488 ++NumBranchOpts; 1489 goto ReoptimizeBlock; 1490 } 1491 1492 // If the prior block branches here on true and somewhere else on false, and 1493 // if the branch condition is reversible, reverse the branch to create a 1494 // fall-through. 1495 if (PriorTBB == MBB) { 1496 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1497 if (!TII->reverseBranchCondition(NewPriorCond)) { 1498 DebugLoc dl = getBranchDebugLoc(PrevBB); 1499 TII->removeBranch(PrevBB); 1500 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1501 MadeChange = true; 1502 ++NumBranchOpts; 1503 goto ReoptimizeBlock; 1504 } 1505 } 1506 1507 // If this block has no successors (e.g. it is a return block or ends with 1508 // a call to a no-return function like abort or __cxa_throw) and if the pred 1509 // falls through into this block, and if it would otherwise fall through 1510 // into the block after this, move this block to the end of the function. 1511 // 1512 // We consider it more likely that execution will stay in the function (e.g. 1513 // due to loops) than it is to exit it. This asserts in loops etc, moving 1514 // the assert condition out of the loop body. 1515 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1516 MachineFunction::iterator(PriorTBB) == FallThrough && 1517 !MBB->canFallThrough()) { 1518 bool DoTransform = true; 1519 1520 // We have to be careful that the succs of PredBB aren't both no-successor 1521 // blocks. If neither have successors and if PredBB is the second from 1522 // last block in the function, we'd just keep swapping the two blocks for 1523 // last. Only do the swap if one is clearly better to fall through than 1524 // the other. 1525 if (FallThrough == --MF.end() && 1526 !IsBetterFallthrough(PriorTBB, MBB)) 1527 DoTransform = false; 1528 1529 if (DoTransform) { 1530 // Reverse the branch so we will fall through on the previous true cond. 1531 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1532 if (!TII->reverseBranchCondition(NewPriorCond)) { 1533 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1534 << "To make fallthrough to: " << *PriorTBB << "\n"); 1535 1536 DebugLoc dl = getBranchDebugLoc(PrevBB); 1537 TII->removeBranch(PrevBB); 1538 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1539 1540 // Move this block to the end of the function. 1541 MBB->moveAfter(&MF.back()); 1542 MadeChange = true; 1543 ++NumBranchOpts; 1544 return MadeChange; 1545 } 1546 } 1547 } 1548 } 1549 1550 bool OptForSize = 1551 MF.getFunction().hasOptSize() || 1552 llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo.getMBFI()); 1553 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) { 1554 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1555 // direction, thereby defeating careful block placement and regressing 1556 // performance. Therefore, only consider this for optsize functions. 1557 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1558 if (TII->isUnconditionalTailCall(TailCall)) { 1559 MachineBasicBlock *Pred = *MBB->pred_begin(); 1560 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1561 SmallVector<MachineOperand, 4> PredCond; 1562 bool PredAnalyzable = 1563 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1564 1565 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1566 PredTBB != PredFBB) { 1567 // The predecessor has a conditional branch to this block which consists 1568 // of only a tail call. Try to fold the tail call into the conditional 1569 // branch. 1570 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1571 // TODO: It would be nice if analyzeBranch() could provide a pointer 1572 // to the branch instruction so replaceBranchWithTailCall() doesn't 1573 // have to search for it. 1574 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1575 ++NumTailCalls; 1576 Pred->removeSuccessor(MBB); 1577 MadeChange = true; 1578 return MadeChange; 1579 } 1580 } 1581 // If the predecessor is falling through to this block, we could reverse 1582 // the branch condition and fold the tail call into that. However, after 1583 // that we might have to re-arrange the CFG to fall through to the other 1584 // block and there is a high risk of regressing code size rather than 1585 // improving it. 1586 } 1587 } 1588 1589 // Analyze the branch in the current block. 1590 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1591 SmallVector<MachineOperand, 4> CurCond; 1592 bool CurUnAnalyzable = 1593 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1594 if (!CurUnAnalyzable) { 1595 // If the CFG for the prior block has extra edges, remove them. 1596 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1597 1598 // If this is a two-way branch, and the FBB branches to this block, reverse 1599 // the condition so the single-basic-block loop is faster. Instead of: 1600 // Loop: xxx; jcc Out; jmp Loop 1601 // we want: 1602 // Loop: xxx; jncc Loop; jmp Out 1603 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1604 SmallVector<MachineOperand, 4> NewCond(CurCond); 1605 if (!TII->reverseBranchCondition(NewCond)) { 1606 DebugLoc dl = getBranchDebugLoc(*MBB); 1607 TII->removeBranch(*MBB); 1608 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1609 MadeChange = true; 1610 ++NumBranchOpts; 1611 goto ReoptimizeBlock; 1612 } 1613 } 1614 1615 // If this branch is the only thing in its block, see if we can forward 1616 // other blocks across it. 1617 if (CurTBB && CurCond.empty() && !CurFBB && 1618 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1619 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1620 DebugLoc dl = getBranchDebugLoc(*MBB); 1621 // This block may contain just an unconditional branch. Because there can 1622 // be 'non-branch terminators' in the block, try removing the branch and 1623 // then seeing if the block is empty. 1624 TII->removeBranch(*MBB); 1625 // If the only things remaining in the block are debug info, remove these 1626 // as well, so this will behave the same as an empty block in non-debug 1627 // mode. 1628 if (IsEmptyBlock(MBB)) { 1629 // Make the block empty, losing the debug info (we could probably 1630 // improve this in some cases.) 1631 MBB->erase(MBB->begin(), MBB->end()); 1632 } 1633 // If this block is just an unconditional branch to CurTBB, we can 1634 // usually completely eliminate the block. The only case we cannot 1635 // completely eliminate the block is when the block before this one 1636 // falls through into MBB and we can't understand the prior block's branch 1637 // condition. 1638 if (MBB->empty()) { 1639 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1640 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1641 !PrevBB.isSuccessor(MBB)) { 1642 // If the prior block falls through into us, turn it into an 1643 // explicit branch to us to make updates simpler. 1644 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1645 PriorTBB != MBB && PriorFBB != MBB) { 1646 if (!PriorTBB) { 1647 assert(PriorCond.empty() && !PriorFBB && 1648 "Bad branch analysis"); 1649 PriorTBB = MBB; 1650 } else { 1651 assert(!PriorFBB && "Machine CFG out of date!"); 1652 PriorFBB = MBB; 1653 } 1654 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1655 TII->removeBranch(PrevBB); 1656 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1657 } 1658 1659 // Iterate through all the predecessors, revectoring each in-turn. 1660 size_t PI = 0; 1661 bool DidChange = false; 1662 bool HasBranchToSelf = false; 1663 while(PI != MBB->pred_size()) { 1664 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1665 if (PMBB == MBB) { 1666 // If this block has an uncond branch to itself, leave it. 1667 ++PI; 1668 HasBranchToSelf = true; 1669 } else { 1670 DidChange = true; 1671 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1672 // If this change resulted in PMBB ending in a conditional 1673 // branch where both conditions go to the same destination, 1674 // change this to an unconditional branch (and fix the CFG). 1675 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1676 SmallVector<MachineOperand, 4> NewCurCond; 1677 bool NewCurUnAnalyzable = TII->analyzeBranch( 1678 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1679 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1680 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1681 TII->removeBranch(*PMBB); 1682 NewCurCond.clear(); 1683 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1684 MadeChange = true; 1685 ++NumBranchOpts; 1686 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1687 } 1688 } 1689 } 1690 1691 // Change any jumptables to go to the new MBB. 1692 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1693 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1694 if (DidChange) { 1695 ++NumBranchOpts; 1696 MadeChange = true; 1697 if (!HasBranchToSelf) return MadeChange; 1698 } 1699 } 1700 } 1701 1702 // Add the branch back if the block is more than just an uncond branch. 1703 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1704 } 1705 } 1706 1707 // If the prior block doesn't fall through into this block, and if this 1708 // block doesn't fall through into some other block, see if we can find a 1709 // place to move this block where a fall-through will happen. 1710 if (!PrevBB.canFallThrough()) { 1711 // Now we know that there was no fall-through into this block, check to 1712 // see if it has a fall-through into its successor. 1713 bool CurFallsThru = MBB->canFallThrough(); 1714 1715 if (!MBB->isEHPad()) { 1716 // Check all the predecessors of this block. If one of them has no fall 1717 // throughs, move this block right after it. 1718 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1719 // Analyze the branch at the end of the pred. 1720 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1721 SmallVector<MachineOperand, 4> PredCond; 1722 if (PredBB != MBB && !PredBB->canFallThrough() && 1723 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1724 (!CurFallsThru || !CurTBB || !CurFBB) && 1725 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1726 // If the current block doesn't fall through, just move it. 1727 // If the current block can fall through and does not end with a 1728 // conditional branch, we need to append an unconditional jump to 1729 // the (current) next block. To avoid a possible compile-time 1730 // infinite loop, move blocks only backward in this case. 1731 // Also, if there are already 2 branches here, we cannot add a third; 1732 // this means we have the case 1733 // Bcc next 1734 // B elsewhere 1735 // next: 1736 if (CurFallsThru) { 1737 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1738 CurCond.clear(); 1739 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1740 } 1741 MBB->moveAfter(PredBB); 1742 MadeChange = true; 1743 goto ReoptimizeBlock; 1744 } 1745 } 1746 } 1747 1748 if (!CurFallsThru) { 1749 // Check all successors to see if we can move this block before it. 1750 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1751 // Analyze the branch at the end of the block before the succ. 1752 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1753 1754 // If this block doesn't already fall-through to that successor, and if 1755 // the succ doesn't already have a block that can fall through into it, 1756 // and if the successor isn't an EH destination, we can arrange for the 1757 // fallthrough to happen. 1758 if (SuccBB != MBB && &*SuccPrev != MBB && 1759 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1760 !SuccBB->isEHPad()) { 1761 MBB->moveBefore(SuccBB); 1762 MadeChange = true; 1763 goto ReoptimizeBlock; 1764 } 1765 } 1766 1767 // Okay, there is no really great place to put this block. If, however, 1768 // the block before this one would be a fall-through if this block were 1769 // removed, move this block to the end of the function. There is no real 1770 // advantage in "falling through" to an EH block, so we don't want to 1771 // perform this transformation for that case. 1772 // 1773 // Also, Windows EH introduced the possibility of an arbitrary number of 1774 // successors to a given block. The analyzeBranch call does not consider 1775 // exception handling and so we can get in a state where a block 1776 // containing a call is followed by multiple EH blocks that would be 1777 // rotated infinitely at the end of the function if the transformation 1778 // below were performed for EH "FallThrough" blocks. Therefore, even if 1779 // that appears not to be happening anymore, we should assume that it is 1780 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1781 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1782 SmallVector<MachineOperand, 4> PrevCond; 1783 if (FallThrough != MF.end() && 1784 !FallThrough->isEHPad() && 1785 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1786 PrevBB.isSuccessor(&*FallThrough)) { 1787 MBB->moveAfter(&MF.back()); 1788 MadeChange = true; 1789 return MadeChange; 1790 } 1791 } 1792 } 1793 1794 return MadeChange; 1795 } 1796 1797 //===----------------------------------------------------------------------===// 1798 // Hoist Common Code 1799 //===----------------------------------------------------------------------===// 1800 1801 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1802 bool MadeChange = false; 1803 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1804 MachineBasicBlock *MBB = &*I++; 1805 MadeChange |= HoistCommonCodeInSuccs(MBB); 1806 } 1807 1808 return MadeChange; 1809 } 1810 1811 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1812 /// its 'true' successor. 1813 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1814 MachineBasicBlock *TrueBB) { 1815 for (MachineBasicBlock *SuccBB : BB->successors()) 1816 if (SuccBB != TrueBB) 1817 return SuccBB; 1818 return nullptr; 1819 } 1820 1821 template <class Container> 1822 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1823 Container &Set) { 1824 if (Register::isPhysicalRegister(Reg)) { 1825 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1826 Set.insert(*AI); 1827 } else { 1828 Set.insert(Reg); 1829 } 1830 } 1831 1832 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1833 /// in successors to. The location is usually just before the terminator, 1834 /// however if the terminator is a conditional branch and its previous 1835 /// instruction is the flag setting instruction, the previous instruction is 1836 /// the preferred location. This function also gathers uses and defs of the 1837 /// instructions from the insertion point to the end of the block. The data is 1838 /// used by HoistCommonCodeInSuccs to ensure safety. 1839 static 1840 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1841 const TargetInstrInfo *TII, 1842 const TargetRegisterInfo *TRI, 1843 SmallSet<unsigned,4> &Uses, 1844 SmallSet<unsigned,4> &Defs) { 1845 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1846 if (!TII->isUnpredicatedTerminator(*Loc)) 1847 return MBB->end(); 1848 1849 for (const MachineOperand &MO : Loc->operands()) { 1850 if (!MO.isReg()) 1851 continue; 1852 Register Reg = MO.getReg(); 1853 if (!Reg) 1854 continue; 1855 if (MO.isUse()) { 1856 addRegAndItsAliases(Reg, TRI, Uses); 1857 } else { 1858 if (!MO.isDead()) 1859 // Don't try to hoist code in the rare case the terminator defines a 1860 // register that is later used. 1861 return MBB->end(); 1862 1863 // If the terminator defines a register, make sure we don't hoist 1864 // the instruction whose def might be clobbered by the terminator. 1865 addRegAndItsAliases(Reg, TRI, Defs); 1866 } 1867 } 1868 1869 if (Uses.empty()) 1870 return Loc; 1871 // If the terminator is the only instruction in the block and Uses is not 1872 // empty (or we would have returned above), we can still safely hoist 1873 // instructions just before the terminator as long as the Defs/Uses are not 1874 // violated (which is checked in HoistCommonCodeInSuccs). 1875 if (Loc == MBB->begin()) 1876 return Loc; 1877 1878 // The terminator is probably a conditional branch, try not to separate the 1879 // branch from condition setting instruction. 1880 MachineBasicBlock::iterator PI = 1881 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1882 1883 bool IsDef = false; 1884 for (const MachineOperand &MO : PI->operands()) { 1885 // If PI has a regmask operand, it is probably a call. Separate away. 1886 if (MO.isRegMask()) 1887 return Loc; 1888 if (!MO.isReg() || MO.isUse()) 1889 continue; 1890 Register Reg = MO.getReg(); 1891 if (!Reg) 1892 continue; 1893 if (Uses.count(Reg)) { 1894 IsDef = true; 1895 break; 1896 } 1897 } 1898 if (!IsDef) 1899 // The condition setting instruction is not just before the conditional 1900 // branch. 1901 return Loc; 1902 1903 // Be conservative, don't insert instruction above something that may have 1904 // side-effects. And since it's potentially bad to separate flag setting 1905 // instruction from the conditional branch, just abort the optimization 1906 // completely. 1907 // Also avoid moving code above predicated instruction since it's hard to 1908 // reason about register liveness with predicated instruction. 1909 bool DontMoveAcrossStore = true; 1910 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1911 return MBB->end(); 1912 1913 // Find out what registers are live. Note this routine is ignoring other live 1914 // registers which are only used by instructions in successor blocks. 1915 for (const MachineOperand &MO : PI->operands()) { 1916 if (!MO.isReg()) 1917 continue; 1918 Register Reg = MO.getReg(); 1919 if (!Reg) 1920 continue; 1921 if (MO.isUse()) { 1922 addRegAndItsAliases(Reg, TRI, Uses); 1923 } else { 1924 if (Uses.erase(Reg)) { 1925 if (Register::isPhysicalRegister(Reg)) { 1926 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1927 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1928 } 1929 } 1930 addRegAndItsAliases(Reg, TRI, Defs); 1931 } 1932 } 1933 1934 return PI; 1935 } 1936 1937 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1938 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1939 SmallVector<MachineOperand, 4> Cond; 1940 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1941 return false; 1942 1943 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1944 if (!FBB) 1945 // Malformed bcc? True and false blocks are the same? 1946 return false; 1947 1948 // Restrict the optimization to cases where MBB is the only predecessor, 1949 // it is an obvious win. 1950 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1951 return false; 1952 1953 // Find a suitable position to hoist the common instructions to. Also figure 1954 // out which registers are used or defined by instructions from the insertion 1955 // point to the end of the block. 1956 SmallSet<unsigned, 4> Uses, Defs; 1957 MachineBasicBlock::iterator Loc = 1958 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1959 if (Loc == MBB->end()) 1960 return false; 1961 1962 bool HasDups = false; 1963 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 1964 MachineBasicBlock::iterator TIB = TBB->begin(); 1965 MachineBasicBlock::iterator FIB = FBB->begin(); 1966 MachineBasicBlock::iterator TIE = TBB->end(); 1967 MachineBasicBlock::iterator FIE = FBB->end(); 1968 while (TIB != TIE && FIB != FIE) { 1969 // Skip dbg_value instructions. These do not count. 1970 TIB = skipDebugInstructionsForward(TIB, TIE); 1971 FIB = skipDebugInstructionsForward(FIB, FIE); 1972 if (TIB == TIE || FIB == FIE) 1973 break; 1974 1975 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1976 break; 1977 1978 if (TII->isPredicated(*TIB)) 1979 // Hard to reason about register liveness with predicated instruction. 1980 break; 1981 1982 bool IsSafe = true; 1983 for (MachineOperand &MO : TIB->operands()) { 1984 // Don't attempt to hoist instructions with register masks. 1985 if (MO.isRegMask()) { 1986 IsSafe = false; 1987 break; 1988 } 1989 if (!MO.isReg()) 1990 continue; 1991 Register Reg = MO.getReg(); 1992 if (!Reg) 1993 continue; 1994 if (MO.isDef()) { 1995 if (Uses.count(Reg)) { 1996 // Avoid clobbering a register that's used by the instruction at 1997 // the point of insertion. 1998 IsSafe = false; 1999 break; 2000 } 2001 2002 if (Defs.count(Reg) && !MO.isDead()) { 2003 // Don't hoist the instruction if the def would be clobber by the 2004 // instruction at the point insertion. FIXME: This is overly 2005 // conservative. It should be possible to hoist the instructions 2006 // in BB2 in the following example: 2007 // BB1: 2008 // r1, eflag = op1 r2, r3 2009 // brcc eflag 2010 // 2011 // BB2: 2012 // r1 = op2, ... 2013 // = op3, killed r1 2014 IsSafe = false; 2015 break; 2016 } 2017 } else if (!ActiveDefsSet.count(Reg)) { 2018 if (Defs.count(Reg)) { 2019 // Use is defined by the instruction at the point of insertion. 2020 IsSafe = false; 2021 break; 2022 } 2023 2024 if (MO.isKill() && Uses.count(Reg)) 2025 // Kills a register that's read by the instruction at the point of 2026 // insertion. Remove the kill marker. 2027 MO.setIsKill(false); 2028 } 2029 } 2030 if (!IsSafe) 2031 break; 2032 2033 bool DontMoveAcrossStore = true; 2034 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 2035 break; 2036 2037 // Remove kills from ActiveDefsSet, these registers had short live ranges. 2038 for (const MachineOperand &MO : TIB->operands()) { 2039 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2040 continue; 2041 Register Reg = MO.getReg(); 2042 if (!Reg) 2043 continue; 2044 if (!AllDefsSet.count(Reg)) { 2045 continue; 2046 } 2047 if (Register::isPhysicalRegister(Reg)) { 2048 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2049 ActiveDefsSet.erase(*AI); 2050 } else { 2051 ActiveDefsSet.erase(Reg); 2052 } 2053 } 2054 2055 // Track local defs so we can update liveins. 2056 for (const MachineOperand &MO : TIB->operands()) { 2057 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2058 continue; 2059 Register Reg = MO.getReg(); 2060 if (!Reg || Register::isVirtualRegister(Reg)) 2061 continue; 2062 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2063 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2064 } 2065 2066 HasDups = true; 2067 ++TIB; 2068 ++FIB; 2069 } 2070 2071 if (!HasDups) 2072 return false; 2073 2074 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2075 FBB->erase(FBB->begin(), FIB); 2076 2077 if (UpdateLiveIns) { 2078 recomputeLiveIns(*TBB); 2079 recomputeLiveIns(*FBB); 2080 } 2081 2082 ++NumHoist; 2083 return true; 2084 } 2085