xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/LivePhysRegs.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <iterator>
62 #include <numeric>
63 #include <vector>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "branch-folder"
68 
69 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
70 STATISTIC(NumBranchOpts, "Number of branches optimized");
71 STATISTIC(NumTailMerge , "Number of block tails merged");
72 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
73 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
74 
75 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
76                               cl::init(cl::BOU_UNSET), cl::Hidden);
77 
78 // Throttle for huge numbers of predecessors (compile speed problems)
79 static cl::opt<unsigned>
80 TailMergeThreshold("tail-merge-threshold",
81           cl::desc("Max number of predecessors to consider tail merging"),
82           cl::init(150), cl::Hidden);
83 
84 // Heuristic for tail merging (and, inversely, tail duplication).
85 // TODO: This should be replaced with a target query.
86 static cl::opt<unsigned>
87 TailMergeSize("tail-merge-size",
88               cl::desc("Min number of instructions to consider tail merging"),
89               cl::init(3), cl::Hidden);
90 
91 namespace {
92 
93   /// BranchFolderPass - Wrap branch folder in a machine function pass.
94   class BranchFolderPass : public MachineFunctionPass {
95   public:
96     static char ID;
97 
98     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
99 
100     bool runOnMachineFunction(MachineFunction &MF) override;
101 
102     void getAnalysisUsage(AnalysisUsage &AU) const override {
103       AU.addRequired<MachineBlockFrequencyInfo>();
104       AU.addRequired<MachineBranchProbabilityInfo>();
105       AU.addRequired<TargetPassConfig>();
106       MachineFunctionPass::getAnalysisUsage(AU);
107     }
108   };
109 
110 } // end anonymous namespace
111 
112 char BranchFolderPass::ID = 0;
113 
114 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
115 
116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
117                 "Control Flow Optimizer", false, false)
118 
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
120   if (skipFunction(MF.getFunction()))
121     return false;
122 
123   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
124   // TailMerge can create jump into if branches that make CFG irreducible for
125   // HW that requires structurized CFG.
126   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
127                          PassConfig->getEnableTailMerge();
128   BranchFolder::MBFIWrapper MBBFreqInfo(
129       getAnalysis<MachineBlockFrequencyInfo>());
130   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
131                       getAnalysis<MachineBranchProbabilityInfo>());
132   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
133   return Folder.OptimizeFunction(
134       MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
135       MMIWP ? &MMIWP->getMMI() : nullptr);
136 }
137 
138 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
139                            MBFIWrapper &FreqInfo,
140                            const MachineBranchProbabilityInfo &ProbInfo,
141                            unsigned MinTailLength)
142     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
143       MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
144   if (MinCommonTailLength == 0)
145     MinCommonTailLength = TailMergeSize;
146   switch (FlagEnableTailMerge) {
147   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
148   case cl::BOU_TRUE: EnableTailMerge = true; break;
149   case cl::BOU_FALSE: EnableTailMerge = false; break;
150   }
151 }
152 
153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
154   assert(MBB->pred_empty() && "MBB must be dead!");
155   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
156 
157   MachineFunction *MF = MBB->getParent();
158   // drop all successors.
159   while (!MBB->succ_empty())
160     MBB->removeSuccessor(MBB->succ_end()-1);
161 
162   // Avoid matching if this pointer gets reused.
163   TriedMerging.erase(MBB);
164 
165   // Update call site info.
166   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
167     if (MI.isCall(MachineInstr::IgnoreBundle))
168       MF->eraseCallSiteInfo(&MI);
169   });
170   // Remove the block.
171   MF->erase(MBB);
172   EHScopeMembership.erase(MBB);
173   if (MLI)
174     MLI->removeBlock(MBB);
175 }
176 
177 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
178                                     const TargetInstrInfo *tii,
179                                     const TargetRegisterInfo *tri,
180                                     MachineModuleInfo *mmi,
181                                     MachineLoopInfo *mli, bool AfterPlacement) {
182   if (!tii) return false;
183 
184   TriedMerging.clear();
185 
186   MachineRegisterInfo &MRI = MF.getRegInfo();
187   AfterBlockPlacement = AfterPlacement;
188   TII = tii;
189   TRI = tri;
190   MMI = mmi;
191   MLI = mli;
192   this->MRI = &MRI;
193 
194   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
195   if (!UpdateLiveIns)
196     MRI.invalidateLiveness();
197 
198   // Fix CFG.  The later algorithms expect it to be right.
199   bool MadeChange = false;
200   for (MachineBasicBlock &MBB : MF) {
201     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
202     SmallVector<MachineOperand, 4> Cond;
203     if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
204       MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
205   }
206 
207   // Recalculate EH scope membership.
208   EHScopeMembership = getEHScopeMembership(MF);
209 
210   bool MadeChangeThisIteration = true;
211   while (MadeChangeThisIteration) {
212     MadeChangeThisIteration    = TailMergeBlocks(MF);
213     // No need to clean up if tail merging does not change anything after the
214     // block placement.
215     if (!AfterBlockPlacement || MadeChangeThisIteration)
216       MadeChangeThisIteration |= OptimizeBranches(MF);
217     if (EnableHoistCommonCode)
218       MadeChangeThisIteration |= HoistCommonCode(MF);
219     MadeChange |= MadeChangeThisIteration;
220   }
221 
222   // See if any jump tables have become dead as the code generator
223   // did its thing.
224   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225   if (!JTI)
226     return MadeChange;
227 
228   // Walk the function to find jump tables that are live.
229   BitVector JTIsLive(JTI->getJumpTables().size());
230   for (const MachineBasicBlock &BB : MF) {
231     for (const MachineInstr &I : BB)
232       for (const MachineOperand &Op : I.operands()) {
233         if (!Op.isJTI()) continue;
234 
235         // Remember that this JT is live.
236         JTIsLive.set(Op.getIndex());
237       }
238   }
239 
240   // Finally, remove dead jump tables.  This happens when the
241   // indirect jump was unreachable (and thus deleted).
242   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243     if (!JTIsLive.test(i)) {
244       JTI->RemoveJumpTable(i);
245       MadeChange = true;
246     }
247 
248   return MadeChange;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //  Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
254 
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257   unsigned Hash = MI.getOpcode();
258   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259     const MachineOperand &Op = MI.getOperand(i);
260 
261     // Merge in bits from the operand if easy. We can't use MachineOperand's
262     // hash_code here because it's not deterministic and we sort by hash value
263     // later.
264     unsigned OperandHash = 0;
265     switch (Op.getType()) {
266     case MachineOperand::MO_Register:
267       OperandHash = Op.getReg();
268       break;
269     case MachineOperand::MO_Immediate:
270       OperandHash = Op.getImm();
271       break;
272     case MachineOperand::MO_MachineBasicBlock:
273       OperandHash = Op.getMBB()->getNumber();
274       break;
275     case MachineOperand::MO_FrameIndex:
276     case MachineOperand::MO_ConstantPoolIndex:
277     case MachineOperand::MO_JumpTableIndex:
278       OperandHash = Op.getIndex();
279       break;
280     case MachineOperand::MO_GlobalAddress:
281     case MachineOperand::MO_ExternalSymbol:
282       // Global address / external symbol are too hard, don't bother, but do
283       // pull in the offset.
284       OperandHash = Op.getOffset();
285       break;
286     default:
287       break;
288     }
289 
290     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
291   }
292   return Hash;
293 }
294 
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
298   if (I == MBB.end())
299     return 0;
300 
301   return HashMachineInstr(*I);
302 }
303 
304 ///  Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306   return !(MI.isDebugInstr() || MI.isCFIInstruction());
307 }
308 
309 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
310 /// of instructions they actually have in common together at their end.  Return
311 /// iterators for the first shared instruction in each block.
312 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
313                                         MachineBasicBlock *MBB2,
314                                         MachineBasicBlock::iterator &I1,
315                                         MachineBasicBlock::iterator &I2) {
316   I1 = MBB1->end();
317   I2 = MBB2->end();
318 
319   unsigned TailLen = 0;
320   while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
321     --I1; --I2;
322     // Skip debugging pseudos; necessary to avoid changing the code.
323     while (!countsAsInstruction(*I1)) {
324       if (I1==MBB1->begin()) {
325         while (!countsAsInstruction(*I2)) {
326           if (I2==MBB2->begin()) {
327             // I1==DBG at begin; I2==DBG at begin
328             goto SkipTopCFIAndReturn;
329           }
330           --I2;
331         }
332         ++I2;
333         // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
334         goto SkipTopCFIAndReturn;
335       }
336       --I1;
337     }
338     // I1==first (untested) non-DBG preceding known match
339     while (!countsAsInstruction(*I2)) {
340       if (I2==MBB2->begin()) {
341         ++I1;
342         // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
343         goto SkipTopCFIAndReturn;
344       }
345       --I2;
346     }
347     // I1, I2==first (untested) non-DBGs preceding known match
348     if (!I1->isIdenticalTo(*I2) ||
349         // FIXME: This check is dubious. It's used to get around a problem where
350         // people incorrectly expect inline asm directives to remain in the same
351         // relative order. This is untenable because normal compiler
352         // optimizations (like this one) may reorder and/or merge these
353         // directives.
354         I1->isInlineAsm()) {
355       ++I1; ++I2;
356       break;
357     }
358     ++TailLen;
359   }
360   // Back past possible debugging pseudos at beginning of block.  This matters
361   // when one block differs from the other only by whether debugging pseudos
362   // are present at the beginning. (This way, the various checks later for
363   // I1==MBB1->begin() work as expected.)
364   if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
365     --I2;
366     while (I2->isDebugInstr()) {
367       if (I2 == MBB2->begin())
368         return TailLen;
369       --I2;
370     }
371     ++I2;
372   }
373   if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
374     --I1;
375     while (I1->isDebugInstr()) {
376       if (I1 == MBB1->begin())
377         return TailLen;
378       --I1;
379     }
380     ++I1;
381   }
382 
383 SkipTopCFIAndReturn:
384   // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
385   // I1 and I2 are non-identical when compared and then one or both of them ends
386   // up pointing to a CFI instruction after being incremented. For example:
387   /*
388     BB1:
389     ...
390     INSTRUCTION_A
391     ADD32ri8  <- last common instruction
392     ...
393     BB2:
394     ...
395     INSTRUCTION_B
396     CFI_INSTRUCTION
397     ADD32ri8  <- last common instruction
398     ...
399   */
400   // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
401   // incrementing the iterators, I1 will point to ADD, however I2 will point to
402   // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
403   // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
404   // instruction.
405   while (I1 != MBB1->end() && I1->isCFIInstruction()) {
406     ++I1;
407   }
408 
409   while (I2 != MBB2->end() && I2->isCFIInstruction()) {
410     ++I2;
411   }
412 
413   return TailLen;
414 }
415 
416 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
417                                            MachineBasicBlock &NewDest) {
418   if (UpdateLiveIns) {
419     // OldInst should always point to an instruction.
420     MachineBasicBlock &OldMBB = *OldInst->getParent();
421     LiveRegs.clear();
422     LiveRegs.addLiveOuts(OldMBB);
423     // Move backward to the place where will insert the jump.
424     MachineBasicBlock::iterator I = OldMBB.end();
425     do {
426       --I;
427       LiveRegs.stepBackward(*I);
428     } while (I != OldInst);
429 
430     // Merging the tails may have switched some undef operand to non-undef ones.
431     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
432     // register.
433     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
434       // We computed the liveins with computeLiveIn earlier and should only see
435       // full registers:
436       assert(P.LaneMask == LaneBitmask::getAll() &&
437              "Can only handle full register.");
438       MCPhysReg Reg = P.PhysReg;
439       if (!LiveRegs.available(*MRI, Reg))
440         continue;
441       DebugLoc DL;
442       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
443     }
444   }
445 
446   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
447   ++NumTailMerge;
448 }
449 
450 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
451                                             MachineBasicBlock::iterator BBI1,
452                                             const BasicBlock *BB) {
453   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
454     return nullptr;
455 
456   MachineFunction &MF = *CurMBB.getParent();
457 
458   // Create the fall-through block.
459   MachineFunction::iterator MBBI = CurMBB.getIterator();
460   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
461   CurMBB.getParent()->insert(++MBBI, NewMBB);
462 
463   // Move all the successors of this block to the specified block.
464   NewMBB->transferSuccessors(&CurMBB);
465 
466   // Add an edge from CurMBB to NewMBB for the fall-through.
467   CurMBB.addSuccessor(NewMBB);
468 
469   // Splice the code over.
470   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
471 
472   // NewMBB belongs to the same loop as CurMBB.
473   if (MLI)
474     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
475       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
476 
477   // NewMBB inherits CurMBB's block frequency.
478   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
479 
480   if (UpdateLiveIns)
481     computeAndAddLiveIns(LiveRegs, *NewMBB);
482 
483   // Add the new block to the EH scope.
484   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
485   if (EHScopeI != EHScopeMembership.end()) {
486     auto n = EHScopeI->second;
487     EHScopeMembership[NewMBB] = n;
488   }
489 
490   return NewMBB;
491 }
492 
493 /// EstimateRuntime - Make a rough estimate for how long it will take to run
494 /// the specified code.
495 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
496                                 MachineBasicBlock::iterator E) {
497   unsigned Time = 0;
498   for (; I != E; ++I) {
499     if (!countsAsInstruction(*I))
500       continue;
501     if (I->isCall())
502       Time += 10;
503     else if (I->mayLoad() || I->mayStore())
504       Time += 2;
505     else
506       ++Time;
507   }
508   return Time;
509 }
510 
511 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
512 // branches temporarily for tail merging).  In the case where CurMBB ends
513 // with a conditional branch to the next block, optimize by reversing the
514 // test and conditionally branching to SuccMBB instead.
515 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
516                     const TargetInstrInfo *TII) {
517   MachineFunction *MF = CurMBB->getParent();
518   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
519   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
520   SmallVector<MachineOperand, 4> Cond;
521   DebugLoc dl = CurMBB->findBranchDebugLoc();
522   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
523     MachineBasicBlock *NextBB = &*I;
524     if (TBB == NextBB && !Cond.empty() && !FBB) {
525       if (!TII->reverseBranchCondition(Cond)) {
526         TII->removeBranch(*CurMBB);
527         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
528         return;
529       }
530     }
531   }
532   TII->insertBranch(*CurMBB, SuccBB, nullptr,
533                     SmallVector<MachineOperand, 0>(), dl);
534 }
535 
536 bool
537 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
538   if (getHash() < o.getHash())
539     return true;
540   if (getHash() > o.getHash())
541     return false;
542   if (getBlock()->getNumber() < o.getBlock()->getNumber())
543     return true;
544   if (getBlock()->getNumber() > o.getBlock()->getNumber())
545     return false;
546   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
547   // an object with itself.
548 #ifndef _GLIBCXX_DEBUG
549   llvm_unreachable("Predecessor appears twice");
550 #else
551   return false;
552 #endif
553 }
554 
555 BlockFrequency
556 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
557   auto I = MergedBBFreq.find(MBB);
558 
559   if (I != MergedBBFreq.end())
560     return I->second;
561 
562   return MBFI.getBlockFreq(MBB);
563 }
564 
565 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
566                                              BlockFrequency F) {
567   MergedBBFreq[MBB] = F;
568 }
569 
570 raw_ostream &
571 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
572                                           const MachineBasicBlock *MBB) const {
573   return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
574 }
575 
576 raw_ostream &
577 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
578                                           const BlockFrequency Freq) const {
579   return MBFI.printBlockFreq(OS, Freq);
580 }
581 
582 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
583   MBFI.view(Name, isSimple);
584 }
585 
586 uint64_t
587 BranchFolder::MBFIWrapper::getEntryFreq() const {
588   return MBFI.getEntryFreq();
589 }
590 
591 /// CountTerminators - Count the number of terminators in the given
592 /// block and set I to the position of the first non-terminator, if there
593 /// is one, or MBB->end() otherwise.
594 static unsigned CountTerminators(MachineBasicBlock *MBB,
595                                  MachineBasicBlock::iterator &I) {
596   I = MBB->end();
597   unsigned NumTerms = 0;
598   while (true) {
599     if (I == MBB->begin()) {
600       I = MBB->end();
601       break;
602     }
603     --I;
604     if (!I->isTerminator()) break;
605     ++NumTerms;
606   }
607   return NumTerms;
608 }
609 
610 /// A no successor, non-return block probably ends in unreachable and is cold.
611 /// Also consider a block that ends in an indirect branch to be a return block,
612 /// since many targets use plain indirect branches to return.
613 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
614   if (!MBB->succ_empty())
615     return false;
616   if (MBB->empty())
617     return true;
618   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
619 }
620 
621 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
622 /// and decide if it would be profitable to merge those tails.  Return the
623 /// length of the common tail and iterators to the first common instruction
624 /// in each block.
625 /// MBB1, MBB2      The blocks to check
626 /// MinCommonTailLength  Minimum size of tail block to be merged.
627 /// CommonTailLen   Out parameter to record the size of the shared tail between
628 ///                 MBB1 and MBB2
629 /// I1, I2          Iterator references that will be changed to point to the first
630 ///                 instruction in the common tail shared by MBB1,MBB2
631 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
632 ///                 relative to SuccBB
633 /// PredBB          The layout predecessor of SuccBB, if any.
634 /// EHScopeMembership  map from block to EH scope #.
635 /// AfterPlacement  True if we are merging blocks after layout. Stricter
636 ///                 thresholds apply to prevent undoing tail-duplication.
637 static bool
638 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
639                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
640                   MachineBasicBlock::iterator &I1,
641                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
642                   MachineBasicBlock *PredBB,
643                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
644                   bool AfterPlacement) {
645   // It is never profitable to tail-merge blocks from two different EH scopes.
646   if (!EHScopeMembership.empty()) {
647     auto EHScope1 = EHScopeMembership.find(MBB1);
648     assert(EHScope1 != EHScopeMembership.end());
649     auto EHScope2 = EHScopeMembership.find(MBB2);
650     assert(EHScope2 != EHScopeMembership.end());
651     if (EHScope1->second != EHScope2->second)
652       return false;
653   }
654 
655   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
656   if (CommonTailLen == 0)
657     return false;
658   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
659                     << " and " << printMBBReference(*MBB2) << " is "
660                     << CommonTailLen << '\n');
661 
662   // It's almost always profitable to merge any number of non-terminator
663   // instructions with the block that falls through into the common successor.
664   // This is true only for a single successor. For multiple successors, we are
665   // trading a conditional branch for an unconditional one.
666   // TODO: Re-visit successor size for non-layout tail merging.
667   if ((MBB1 == PredBB || MBB2 == PredBB) &&
668       (!AfterPlacement || MBB1->succ_size() == 1)) {
669     MachineBasicBlock::iterator I;
670     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
671     if (CommonTailLen > NumTerms)
672       return true;
673   }
674 
675   // If these are identical non-return blocks with no successors, merge them.
676   // Such blocks are typically cold calls to noreturn functions like abort, and
677   // are unlikely to become a fallthrough target after machine block placement.
678   // Tail merging these blocks is unlikely to create additional unconditional
679   // branches, and will reduce the size of this cold code.
680   if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
681       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
682     return true;
683 
684   // If one of the blocks can be completely merged and happens to be in
685   // a position where the other could fall through into it, merge any number
686   // of instructions, because it can be done without a branch.
687   // TODO: If the blocks are not adjacent, move one of them so that they are?
688   if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
689     return true;
690   if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
691     return true;
692 
693   // If both blocks are identical and end in a branch, merge them unless they
694   // both have a fallthrough predecessor and successor.
695   // We can only do this after block placement because it depends on whether
696   // there are fallthroughs, and we don't know until after layout.
697   if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
698     auto BothFallThrough = [](MachineBasicBlock *MBB) {
699       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
700         return false;
701       MachineFunction::iterator I(MBB);
702       MachineFunction *MF = MBB->getParent();
703       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
704     };
705     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
706       return true;
707   }
708 
709   // If both blocks have an unconditional branch temporarily stripped out,
710   // count that as an additional common instruction for the following
711   // heuristics. This heuristic is only accurate for single-succ blocks, so to
712   // make sure that during layout merging and duplicating don't crash, we check
713   // for that when merging during layout.
714   unsigned EffectiveTailLen = CommonTailLen;
715   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
716       (MBB1->succ_size() == 1 || !AfterPlacement) &&
717       !MBB1->back().isBarrier() &&
718       !MBB2->back().isBarrier())
719     ++EffectiveTailLen;
720 
721   // Check if the common tail is long enough to be worthwhile.
722   if (EffectiveTailLen >= MinCommonTailLength)
723     return true;
724 
725   // If we are optimizing for code size, 2 instructions in common is enough if
726   // we don't have to split a block.  At worst we will be introducing 1 new
727   // branch instruction, which is likely to be smaller than the 2
728   // instructions that would be deleted in the merge.
729   MachineFunction *MF = MBB1->getParent();
730   return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() &&
731          (I1 == MBB1->begin() || I2 == MBB2->begin());
732 }
733 
734 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
735                                         unsigned MinCommonTailLength,
736                                         MachineBasicBlock *SuccBB,
737                                         MachineBasicBlock *PredBB) {
738   unsigned maxCommonTailLength = 0U;
739   SameTails.clear();
740   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
741   MPIterator HighestMPIter = std::prev(MergePotentials.end());
742   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
743                   B = MergePotentials.begin();
744        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
745     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
746       unsigned CommonTailLen;
747       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
748                             MinCommonTailLength,
749                             CommonTailLen, TrialBBI1, TrialBBI2,
750                             SuccBB, PredBB,
751                             EHScopeMembership,
752                             AfterBlockPlacement)) {
753         if (CommonTailLen > maxCommonTailLength) {
754           SameTails.clear();
755           maxCommonTailLength = CommonTailLen;
756           HighestMPIter = CurMPIter;
757           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
758         }
759         if (HighestMPIter == CurMPIter &&
760             CommonTailLen == maxCommonTailLength)
761           SameTails.push_back(SameTailElt(I, TrialBBI2));
762       }
763       if (I == B)
764         break;
765     }
766   }
767   return maxCommonTailLength;
768 }
769 
770 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
771                                         MachineBasicBlock *SuccBB,
772                                         MachineBasicBlock *PredBB) {
773   MPIterator CurMPIter, B;
774   for (CurMPIter = std::prev(MergePotentials.end()),
775       B = MergePotentials.begin();
776        CurMPIter->getHash() == CurHash; --CurMPIter) {
777     // Put the unconditional branch back, if we need one.
778     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
779     if (SuccBB && CurMBB != PredBB)
780       FixTail(CurMBB, SuccBB, TII);
781     if (CurMPIter == B)
782       break;
783   }
784   if (CurMPIter->getHash() != CurHash)
785     CurMPIter++;
786   MergePotentials.erase(CurMPIter, MergePotentials.end());
787 }
788 
789 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
790                                              MachineBasicBlock *SuccBB,
791                                              unsigned maxCommonTailLength,
792                                              unsigned &commonTailIndex) {
793   commonTailIndex = 0;
794   unsigned TimeEstimate = ~0U;
795   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
796     // Use PredBB if possible; that doesn't require a new branch.
797     if (SameTails[i].getBlock() == PredBB) {
798       commonTailIndex = i;
799       break;
800     }
801     // Otherwise, make a (fairly bogus) choice based on estimate of
802     // how long it will take the various blocks to execute.
803     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
804                                  SameTails[i].getTailStartPos());
805     if (t <= TimeEstimate) {
806       TimeEstimate = t;
807       commonTailIndex = i;
808     }
809   }
810 
811   MachineBasicBlock::iterator BBI =
812     SameTails[commonTailIndex].getTailStartPos();
813   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
814 
815   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
816                     << maxCommonTailLength);
817 
818   // If the split block unconditionally falls-thru to SuccBB, it will be
819   // merged. In control flow terms it should then take SuccBB's name. e.g. If
820   // SuccBB is an inner loop, the common tail is still part of the inner loop.
821   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
822     SuccBB->getBasicBlock() : MBB->getBasicBlock();
823   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
824   if (!newMBB) {
825     LLVM_DEBUG(dbgs() << "... failed!");
826     return false;
827   }
828 
829   SameTails[commonTailIndex].setBlock(newMBB);
830   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
831 
832   // If we split PredBB, newMBB is the new predecessor.
833   if (PredBB == MBB)
834     PredBB = newMBB;
835 
836   return true;
837 }
838 
839 static void
840 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
841                 MachineBasicBlock &MBBCommon) {
842   MachineBasicBlock *MBB = MBBIStartPos->getParent();
843   // Note CommonTailLen does not necessarily matches the size of
844   // the common BB nor all its instructions because of debug
845   // instructions differences.
846   unsigned CommonTailLen = 0;
847   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
848     ++CommonTailLen;
849 
850   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
851   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
852   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
853   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
854 
855   while (CommonTailLen--) {
856     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
857     (void)MBBIE;
858 
859     if (!countsAsInstruction(*MBBI)) {
860       ++MBBI;
861       continue;
862     }
863 
864     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
865       ++MBBICommon;
866 
867     assert(MBBICommon != MBBIECommon &&
868            "Reached BB end within common tail length!");
869     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
870 
871     // Merge MMOs from memory operations in the common block.
872     if (MBBICommon->mayLoad() || MBBICommon->mayStore())
873       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
874     // Drop undef flags if they aren't present in all merged instructions.
875     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
876       MachineOperand &MO = MBBICommon->getOperand(I);
877       if (MO.isReg() && MO.isUndef()) {
878         const MachineOperand &OtherMO = MBBI->getOperand(I);
879         if (!OtherMO.isUndef())
880           MO.setIsUndef(false);
881       }
882     }
883 
884     ++MBBI;
885     ++MBBICommon;
886   }
887 }
888 
889 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
890   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
891 
892   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
893   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
894     if (i != commonTailIndex) {
895       NextCommonInsts[i] = SameTails[i].getTailStartPos();
896       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
897     } else {
898       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
899           "MBB is not a common tail only block");
900     }
901   }
902 
903   for (auto &MI : *MBB) {
904     if (!countsAsInstruction(MI))
905       continue;
906     DebugLoc DL = MI.getDebugLoc();
907     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
908       if (i == commonTailIndex)
909         continue;
910 
911       auto &Pos = NextCommonInsts[i];
912       assert(Pos != SameTails[i].getBlock()->end() &&
913           "Reached BB end within common tail");
914       while (!countsAsInstruction(*Pos)) {
915         ++Pos;
916         assert(Pos != SameTails[i].getBlock()->end() &&
917             "Reached BB end within common tail");
918       }
919       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
920       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
921       NextCommonInsts[i] = ++Pos;
922     }
923     MI.setDebugLoc(DL);
924   }
925 
926   if (UpdateLiveIns) {
927     LivePhysRegs NewLiveIns(*TRI);
928     computeLiveIns(NewLiveIns, *MBB);
929     LiveRegs.init(*TRI);
930 
931     // The flag merging may lead to some register uses no longer using the
932     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
933     for (MachineBasicBlock *Pred : MBB->predecessors()) {
934       LiveRegs.clear();
935       LiveRegs.addLiveOuts(*Pred);
936       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
937       for (unsigned Reg : NewLiveIns) {
938         if (!LiveRegs.available(*MRI, Reg))
939           continue;
940         DebugLoc DL;
941         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
942                 Reg);
943       }
944     }
945 
946     MBB->clearLiveIns();
947     addLiveIns(*MBB, NewLiveIns);
948   }
949 }
950 
951 // See if any of the blocks in MergePotentials (which all have SuccBB as a
952 // successor, or all have no successor if it is null) can be tail-merged.
953 // If there is a successor, any blocks in MergePotentials that are not
954 // tail-merged and are not immediately before Succ must have an unconditional
955 // branch to Succ added (but the predecessor/successor lists need no
956 // adjustment). The lone predecessor of Succ that falls through into Succ,
957 // if any, is given in PredBB.
958 // MinCommonTailLength - Except for the special cases below, tail-merge if
959 // there are at least this many instructions in common.
960 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
961                                       MachineBasicBlock *PredBB,
962                                       unsigned MinCommonTailLength) {
963   bool MadeChange = false;
964 
965   LLVM_DEBUG(
966       dbgs() << "\nTryTailMergeBlocks: ";
967       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
968       << printMBBReference(*MergePotentials[i].getBlock())
969       << (i == e - 1 ? "" : ", ");
970       dbgs() << "\n"; if (SuccBB) {
971         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
972         if (PredBB)
973           dbgs() << "  which has fall-through from "
974                  << printMBBReference(*PredBB) << "\n";
975       } dbgs() << "Looking for common tails of at least "
976                << MinCommonTailLength << " instruction"
977                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
978 
979   // Sort by hash value so that blocks with identical end sequences sort
980   // together.
981   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
982 
983   // Walk through equivalence sets looking for actual exact matches.
984   while (MergePotentials.size() > 1) {
985     unsigned CurHash = MergePotentials.back().getHash();
986 
987     // Build SameTails, identifying the set of blocks with this hash code
988     // and with the maximum number of instructions in common.
989     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
990                                                     MinCommonTailLength,
991                                                     SuccBB, PredBB);
992 
993     // If we didn't find any pair that has at least MinCommonTailLength
994     // instructions in common, remove all blocks with this hash code and retry.
995     if (SameTails.empty()) {
996       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
997       continue;
998     }
999 
1000     // If one of the blocks is the entire common tail (and not the entry
1001     // block, which we can't jump to), we can treat all blocks with this same
1002     // tail at once.  Use PredBB if that is one of the possibilities, as that
1003     // will not introduce any extra branches.
1004     MachineBasicBlock *EntryBB =
1005         &MergePotentials.front().getBlock()->getParent()->front();
1006     unsigned commonTailIndex = SameTails.size();
1007     // If there are two blocks, check to see if one can be made to fall through
1008     // into the other.
1009     if (SameTails.size() == 2 &&
1010         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
1011         SameTails[1].tailIsWholeBlock())
1012       commonTailIndex = 1;
1013     else if (SameTails.size() == 2 &&
1014              SameTails[1].getBlock()->isLayoutSuccessor(
1015                                                      SameTails[0].getBlock()) &&
1016              SameTails[0].tailIsWholeBlock())
1017       commonTailIndex = 0;
1018     else {
1019       // Otherwise just pick one, favoring the fall-through predecessor if
1020       // there is one.
1021       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
1022         MachineBasicBlock *MBB = SameTails[i].getBlock();
1023         if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
1024           continue;
1025         if (MBB == PredBB) {
1026           commonTailIndex = i;
1027           break;
1028         }
1029         if (SameTails[i].tailIsWholeBlock())
1030           commonTailIndex = i;
1031       }
1032     }
1033 
1034     if (commonTailIndex == SameTails.size() ||
1035         (SameTails[commonTailIndex].getBlock() == PredBB &&
1036          !SameTails[commonTailIndex].tailIsWholeBlock())) {
1037       // None of the blocks consist entirely of the common tail.
1038       // Split a block so that one does.
1039       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
1040                                      maxCommonTailLength, commonTailIndex)) {
1041         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
1042         continue;
1043       }
1044     }
1045 
1046     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
1047 
1048     // Recompute common tail MBB's edge weights and block frequency.
1049     setCommonTailEdgeWeights(*MBB);
1050 
1051     // Merge debug locations, MMOs and undef flags across identical instructions
1052     // for common tail.
1053     mergeCommonTails(commonTailIndex);
1054 
1055     // MBB is common tail.  Adjust all other BB's to jump to this one.
1056     // Traversal must be forwards so erases work.
1057     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
1058                       << " for ");
1059     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
1060       if (commonTailIndex == i)
1061         continue;
1062       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
1063                         << (i == e - 1 ? "" : ", "));
1064       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1065       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1066       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1067       MergePotentials.erase(SameTails[i].getMPIter());
1068     }
1069     LLVM_DEBUG(dbgs() << "\n");
1070     // We leave commonTailIndex in the worklist in case there are other blocks
1071     // that match it with a smaller number of instructions.
1072     MadeChange = true;
1073   }
1074   return MadeChange;
1075 }
1076 
1077 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1078   bool MadeChange = false;
1079   if (!EnableTailMerge)
1080     return MadeChange;
1081 
1082   // First find blocks with no successors.
1083   // Block placement may create new tail merging opportunities for these blocks.
1084   MergePotentials.clear();
1085   for (MachineBasicBlock &MBB : MF) {
1086     if (MergePotentials.size() == TailMergeThreshold)
1087       break;
1088     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1089       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1090   }
1091 
1092   // If this is a large problem, avoid visiting the same basic blocks
1093   // multiple times.
1094   if (MergePotentials.size() == TailMergeThreshold)
1095     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1096       TriedMerging.insert(MergePotentials[i].getBlock());
1097 
1098   // See if we can do any tail merging on those.
1099   if (MergePotentials.size() >= 2)
1100     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1101 
1102   // Look at blocks (IBB) with multiple predecessors (PBB).
1103   // We change each predecessor to a canonical form, by
1104   // (1) temporarily removing any unconditional branch from the predecessor
1105   // to IBB, and
1106   // (2) alter conditional branches so they branch to the other block
1107   // not IBB; this may require adding back an unconditional branch to IBB
1108   // later, where there wasn't one coming in.  E.g.
1109   //   Bcc IBB
1110   //   fallthrough to QBB
1111   // here becomes
1112   //   Bncc QBB
1113   // with a conceptual B to IBB after that, which never actually exists.
1114   // With those changes, we see whether the predecessors' tails match,
1115   // and merge them if so.  We change things out of canonical form and
1116   // back to the way they were later in the process.  (OptimizeBranches
1117   // would undo some of this, but we can't use it, because we'd get into
1118   // a compile-time infinite loop repeatedly doing and undoing the same
1119   // transformations.)
1120 
1121   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1122        I != E; ++I) {
1123     if (I->pred_size() < 2) continue;
1124     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1125     MachineBasicBlock *IBB = &*I;
1126     MachineBasicBlock *PredBB = &*std::prev(I);
1127     MergePotentials.clear();
1128     MachineLoop *ML;
1129 
1130     // Bail if merging after placement and IBB is the loop header because
1131     // -- If merging predecessors that belong to the same loop as IBB, the
1132     // common tail of merged predecessors may become the loop top if block
1133     // placement is called again and the predecessors may branch to this common
1134     // tail and require more branches. This can be relaxed if
1135     // MachineBlockPlacement::findBestLoopTop is more flexible.
1136     // --If merging predecessors that do not belong to the same loop as IBB, the
1137     // loop info of IBB's loop and the other loops may be affected. Calling the
1138     // block placement again may make big change to the layout and eliminate the
1139     // reason to do tail merging here.
1140     if (AfterBlockPlacement && MLI) {
1141       ML = MLI->getLoopFor(IBB);
1142       if (ML && IBB == ML->getHeader())
1143         continue;
1144     }
1145 
1146     for (MachineBasicBlock *PBB : I->predecessors()) {
1147       if (MergePotentials.size() == TailMergeThreshold)
1148         break;
1149 
1150       if (TriedMerging.count(PBB))
1151         continue;
1152 
1153       // Skip blocks that loop to themselves, can't tail merge these.
1154       if (PBB == IBB)
1155         continue;
1156 
1157       // Visit each predecessor only once.
1158       if (!UniquePreds.insert(PBB).second)
1159         continue;
1160 
1161       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1162       if (PBB->hasEHPadSuccessor())
1163         continue;
1164 
1165       // After block placement, only consider predecessors that belong to the
1166       // same loop as IBB.  The reason is the same as above when skipping loop
1167       // header.
1168       if (AfterBlockPlacement && MLI)
1169         if (ML != MLI->getLoopFor(PBB))
1170           continue;
1171 
1172       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1173       SmallVector<MachineOperand, 4> Cond;
1174       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1175         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1176         // branch.
1177         SmallVector<MachineOperand, 4> NewCond(Cond);
1178         if (!Cond.empty() && TBB == IBB) {
1179           if (TII->reverseBranchCondition(NewCond))
1180             continue;
1181           // This is the QBB case described above
1182           if (!FBB) {
1183             auto Next = ++PBB->getIterator();
1184             if (Next != MF.end())
1185               FBB = &*Next;
1186           }
1187         }
1188 
1189         // Remove the unconditional branch at the end, if any.
1190         if (TBB && (Cond.empty() || FBB)) {
1191           DebugLoc dl = PBB->findBranchDebugLoc();
1192           TII->removeBranch(*PBB);
1193           if (!Cond.empty())
1194             // reinsert conditional branch only, for now
1195             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1196                               NewCond, dl);
1197         }
1198 
1199         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1200       }
1201     }
1202 
1203     // If this is a large problem, avoid visiting the same basic blocks multiple
1204     // times.
1205     if (MergePotentials.size() == TailMergeThreshold)
1206       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1207         TriedMerging.insert(MergePotentials[i].getBlock());
1208 
1209     if (MergePotentials.size() >= 2)
1210       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1211 
1212     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1213     // result of removing blocks in TryTailMergeBlocks.
1214     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1215     if (MergePotentials.size() == 1 &&
1216         MergePotentials.begin()->getBlock() != PredBB)
1217       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1218   }
1219 
1220   return MadeChange;
1221 }
1222 
1223 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1224   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1225   BlockFrequency AccumulatedMBBFreq;
1226 
1227   // Aggregate edge frequency of successor edge j:
1228   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1229   //  where bb is a basic block that is in SameTails.
1230   for (const auto &Src : SameTails) {
1231     const MachineBasicBlock *SrcMBB = Src.getBlock();
1232     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1233     AccumulatedMBBFreq += BlockFreq;
1234 
1235     // It is not necessary to recompute edge weights if TailBB has less than two
1236     // successors.
1237     if (TailMBB.succ_size() <= 1)
1238       continue;
1239 
1240     auto EdgeFreq = EdgeFreqLs.begin();
1241 
1242     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1243          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1244       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1245   }
1246 
1247   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1248 
1249   if (TailMBB.succ_size() <= 1)
1250     return;
1251 
1252   auto SumEdgeFreq =
1253       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1254           .getFrequency();
1255   auto EdgeFreq = EdgeFreqLs.begin();
1256 
1257   if (SumEdgeFreq > 0) {
1258     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1259          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1260       auto Prob = BranchProbability::getBranchProbability(
1261           EdgeFreq->getFrequency(), SumEdgeFreq);
1262       TailMBB.setSuccProbability(SuccI, Prob);
1263     }
1264   }
1265 }
1266 
1267 //===----------------------------------------------------------------------===//
1268 //  Branch Optimization
1269 //===----------------------------------------------------------------------===//
1270 
1271 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1272   bool MadeChange = false;
1273 
1274   // Make sure blocks are numbered in order
1275   MF.RenumberBlocks();
1276   // Renumbering blocks alters EH scope membership, recalculate it.
1277   EHScopeMembership = getEHScopeMembership(MF);
1278 
1279   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1280        I != E; ) {
1281     MachineBasicBlock *MBB = &*I++;
1282     MadeChange |= OptimizeBlock(MBB);
1283 
1284     // If it is dead, remove it.
1285     if (MBB->pred_empty()) {
1286       RemoveDeadBlock(MBB);
1287       MadeChange = true;
1288       ++NumDeadBlocks;
1289     }
1290   }
1291 
1292   return MadeChange;
1293 }
1294 
1295 // Blocks should be considered empty if they contain only debug info;
1296 // else the debug info would affect codegen.
1297 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1298   return MBB->getFirstNonDebugInstr() == MBB->end();
1299 }
1300 
1301 // Blocks with only debug info and branches should be considered the same
1302 // as blocks with only branches.
1303 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1304   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1305   assert(I != MBB->end() && "empty block!");
1306   return I->isBranch();
1307 }
1308 
1309 /// IsBetterFallthrough - Return true if it would be clearly better to
1310 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1311 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1312 /// result in infinite loops.
1313 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1314                                 MachineBasicBlock *MBB2) {
1315   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1316 
1317   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1318   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1319   // optimize branches that branch to either a return block or an assert block
1320   // into a fallthrough to the return.
1321   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1322   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1323   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1324     return false;
1325 
1326   // If there is a clear successor ordering we make sure that one block
1327   // will fall through to the next
1328   if (MBB1->isSuccessor(MBB2)) return true;
1329   if (MBB2->isSuccessor(MBB1)) return false;
1330 
1331   return MBB2I->isCall() && !MBB1I->isCall();
1332 }
1333 
1334 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1335 /// instructions on the block.
1336 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1337   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1338   if (I != MBB.end() && I->isBranch())
1339     return I->getDebugLoc();
1340   return DebugLoc();
1341 }
1342 
1343 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1344                                        MachineBasicBlock &MBB,
1345                                        MachineBasicBlock &PredMBB) {
1346   auto InsertBefore = PredMBB.getFirstTerminator();
1347   for (MachineInstr &MI : MBB.instrs())
1348     if (MI.isDebugInstr()) {
1349       TII->duplicate(PredMBB, InsertBefore, MI);
1350       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1351                         << MI);
1352     }
1353 }
1354 
1355 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1356                                      MachineBasicBlock &MBB,
1357                                      MachineBasicBlock &SuccMBB) {
1358   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1359   for (MachineInstr &MI : MBB.instrs())
1360     if (MI.isDebugInstr()) {
1361       TII->duplicate(SuccMBB, InsertBefore, MI);
1362       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1363                         << MI);
1364     }
1365 }
1366 
1367 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1368 // a basic block is removed we would lose the debug information unless we have
1369 // copied the information to a predecessor/successor.
1370 //
1371 // TODO: This function only handles some simple cases. An alternative would be
1372 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1373 // branch folding.
1374 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1375                                            MachineBasicBlock &MBB) {
1376   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1377   // If this MBB is the only predecessor of a successor it is legal to copy
1378   // DBG_VALUE instructions to the beginning of the successor.
1379   for (MachineBasicBlock *SuccBB : MBB.successors())
1380     if (SuccBB->pred_size() == 1)
1381       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1382   // If this MBB is the only successor of a predecessor it is legal to copy the
1383   // DBG_VALUE instructions to the end of the predecessor (just before the
1384   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1385   for (MachineBasicBlock *PredBB : MBB.predecessors())
1386     if (PredBB->succ_size() == 1)
1387       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1388 }
1389 
1390 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1391   bool MadeChange = false;
1392   MachineFunction &MF = *MBB->getParent();
1393 ReoptimizeBlock:
1394 
1395   MachineFunction::iterator FallThrough = MBB->getIterator();
1396   ++FallThrough;
1397 
1398   // Make sure MBB and FallThrough belong to the same EH scope.
1399   bool SameEHScope = true;
1400   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1401     auto MBBEHScope = EHScopeMembership.find(MBB);
1402     assert(MBBEHScope != EHScopeMembership.end());
1403     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1404     assert(FallThroughEHScope != EHScopeMembership.end());
1405     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1406   }
1407 
1408   // If this block is empty, make everyone use its fall-through, not the block
1409   // explicitly.  Landing pads should not do this since the landing-pad table
1410   // points to this block.  Blocks with their addresses taken shouldn't be
1411   // optimized away.
1412   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1413       SameEHScope) {
1414     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1415     // Dead block?  Leave for cleanup later.
1416     if (MBB->pred_empty()) return MadeChange;
1417 
1418     if (FallThrough == MF.end()) {
1419       // TODO: Simplify preds to not branch here if possible!
1420     } else if (FallThrough->isEHPad()) {
1421       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1422       // where a BB jumps to more than one landing pad.
1423       // TODO: Is it ever worth rewriting predecessors which don't already
1424       // jump to a landing pad, and so can safely jump to the fallthrough?
1425     } else if (MBB->isSuccessor(&*FallThrough)) {
1426       // Rewrite all predecessors of the old block to go to the fallthrough
1427       // instead.
1428       while (!MBB->pred_empty()) {
1429         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1430         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1431       }
1432       // If MBB was the target of a jump table, update jump tables to go to the
1433       // fallthrough instead.
1434       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1435         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1436       MadeChange = true;
1437     }
1438     return MadeChange;
1439   }
1440 
1441   // Check to see if we can simplify the terminator of the block before this
1442   // one.
1443   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1444 
1445   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1446   SmallVector<MachineOperand, 4> PriorCond;
1447   bool PriorUnAnalyzable =
1448       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1449   if (!PriorUnAnalyzable) {
1450     // If the CFG for the prior block has extra edges, remove them.
1451     MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1452                                               !PriorCond.empty());
1453 
1454     // If the previous branch is conditional and both conditions go to the same
1455     // destination, remove the branch, replacing it with an unconditional one or
1456     // a fall-through.
1457     if (PriorTBB && PriorTBB == PriorFBB) {
1458       DebugLoc dl = getBranchDebugLoc(PrevBB);
1459       TII->removeBranch(PrevBB);
1460       PriorCond.clear();
1461       if (PriorTBB != MBB)
1462         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1463       MadeChange = true;
1464       ++NumBranchOpts;
1465       goto ReoptimizeBlock;
1466     }
1467 
1468     // If the previous block unconditionally falls through to this block and
1469     // this block has no other predecessors, move the contents of this block
1470     // into the prior block. This doesn't usually happen when SimplifyCFG
1471     // has been used, but it can happen if tail merging splits a fall-through
1472     // predecessor of a block.
1473     // This has to check PrevBB->succ_size() because EH edges are ignored by
1474     // AnalyzeBranch.
1475     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1476         PrevBB.succ_size() == 1 &&
1477         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1478       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1479                         << "From MBB: " << *MBB);
1480       // Remove redundant DBG_VALUEs first.
1481       if (PrevBB.begin() != PrevBB.end()) {
1482         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1483         --PrevBBIter;
1484         MachineBasicBlock::iterator MBBIter = MBB->begin();
1485         // Check if DBG_VALUE at the end of PrevBB is identical to the
1486         // DBG_VALUE at the beginning of MBB.
1487         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1488                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1489           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1490             break;
1491           MachineInstr &DuplicateDbg = *MBBIter;
1492           ++MBBIter; -- PrevBBIter;
1493           DuplicateDbg.eraseFromParent();
1494         }
1495       }
1496       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1497       PrevBB.removeSuccessor(PrevBB.succ_begin());
1498       assert(PrevBB.succ_empty());
1499       PrevBB.transferSuccessors(MBB);
1500       MadeChange = true;
1501       return MadeChange;
1502     }
1503 
1504     // If the previous branch *only* branches to *this* block (conditional or
1505     // not) remove the branch.
1506     if (PriorTBB == MBB && !PriorFBB) {
1507       TII->removeBranch(PrevBB);
1508       MadeChange = true;
1509       ++NumBranchOpts;
1510       goto ReoptimizeBlock;
1511     }
1512 
1513     // If the prior block branches somewhere else on the condition and here if
1514     // the condition is false, remove the uncond second branch.
1515     if (PriorFBB == MBB) {
1516       DebugLoc dl = getBranchDebugLoc(PrevBB);
1517       TII->removeBranch(PrevBB);
1518       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1519       MadeChange = true;
1520       ++NumBranchOpts;
1521       goto ReoptimizeBlock;
1522     }
1523 
1524     // If the prior block branches here on true and somewhere else on false, and
1525     // if the branch condition is reversible, reverse the branch to create a
1526     // fall-through.
1527     if (PriorTBB == MBB) {
1528       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1529       if (!TII->reverseBranchCondition(NewPriorCond)) {
1530         DebugLoc dl = getBranchDebugLoc(PrevBB);
1531         TII->removeBranch(PrevBB);
1532         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1533         MadeChange = true;
1534         ++NumBranchOpts;
1535         goto ReoptimizeBlock;
1536       }
1537     }
1538 
1539     // If this block has no successors (e.g. it is a return block or ends with
1540     // a call to a no-return function like abort or __cxa_throw) and if the pred
1541     // falls through into this block, and if it would otherwise fall through
1542     // into the block after this, move this block to the end of the function.
1543     //
1544     // We consider it more likely that execution will stay in the function (e.g.
1545     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1546     // the assert condition out of the loop body.
1547     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1548         MachineFunction::iterator(PriorTBB) == FallThrough &&
1549         !MBB->canFallThrough()) {
1550       bool DoTransform = true;
1551 
1552       // We have to be careful that the succs of PredBB aren't both no-successor
1553       // blocks.  If neither have successors and if PredBB is the second from
1554       // last block in the function, we'd just keep swapping the two blocks for
1555       // last.  Only do the swap if one is clearly better to fall through than
1556       // the other.
1557       if (FallThrough == --MF.end() &&
1558           !IsBetterFallthrough(PriorTBB, MBB))
1559         DoTransform = false;
1560 
1561       if (DoTransform) {
1562         // Reverse the branch so we will fall through on the previous true cond.
1563         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1564         if (!TII->reverseBranchCondition(NewPriorCond)) {
1565           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1566                             << "To make fallthrough to: " << *PriorTBB << "\n");
1567 
1568           DebugLoc dl = getBranchDebugLoc(PrevBB);
1569           TII->removeBranch(PrevBB);
1570           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1571 
1572           // Move this block to the end of the function.
1573           MBB->moveAfter(&MF.back());
1574           MadeChange = true;
1575           ++NumBranchOpts;
1576           return MadeChange;
1577         }
1578       }
1579     }
1580   }
1581 
1582   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
1583       MF.getFunction().hasOptSize()) {
1584     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1585     // direction, thereby defeating careful block placement and regressing
1586     // performance. Therefore, only consider this for optsize functions.
1587     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1588     if (TII->isUnconditionalTailCall(TailCall)) {
1589       MachineBasicBlock *Pred = *MBB->pred_begin();
1590       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1591       SmallVector<MachineOperand, 4> PredCond;
1592       bool PredAnalyzable =
1593           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1594 
1595       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1596           PredTBB != PredFBB) {
1597         // The predecessor has a conditional branch to this block which consists
1598         // of only a tail call. Try to fold the tail call into the conditional
1599         // branch.
1600         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1601           // TODO: It would be nice if analyzeBranch() could provide a pointer
1602           // to the branch instruction so replaceBranchWithTailCall() doesn't
1603           // have to search for it.
1604           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1605           ++NumTailCalls;
1606           Pred->removeSuccessor(MBB);
1607           MadeChange = true;
1608           return MadeChange;
1609         }
1610       }
1611       // If the predecessor is falling through to this block, we could reverse
1612       // the branch condition and fold the tail call into that. However, after
1613       // that we might have to re-arrange the CFG to fall through to the other
1614       // block and there is a high risk of regressing code size rather than
1615       // improving it.
1616     }
1617   }
1618 
1619   // Analyze the branch in the current block.
1620   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1621   SmallVector<MachineOperand, 4> CurCond;
1622   bool CurUnAnalyzable =
1623       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1624   if (!CurUnAnalyzable) {
1625     // If the CFG for the prior block has extra edges, remove them.
1626     MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1627 
1628     // If this is a two-way branch, and the FBB branches to this block, reverse
1629     // the condition so the single-basic-block loop is faster.  Instead of:
1630     //    Loop: xxx; jcc Out; jmp Loop
1631     // we want:
1632     //    Loop: xxx; jncc Loop; jmp Out
1633     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1634       SmallVector<MachineOperand, 4> NewCond(CurCond);
1635       if (!TII->reverseBranchCondition(NewCond)) {
1636         DebugLoc dl = getBranchDebugLoc(*MBB);
1637         TII->removeBranch(*MBB);
1638         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1639         MadeChange = true;
1640         ++NumBranchOpts;
1641         goto ReoptimizeBlock;
1642       }
1643     }
1644 
1645     // If this branch is the only thing in its block, see if we can forward
1646     // other blocks across it.
1647     if (CurTBB && CurCond.empty() && !CurFBB &&
1648         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1649         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1650       DebugLoc dl = getBranchDebugLoc(*MBB);
1651       // This block may contain just an unconditional branch.  Because there can
1652       // be 'non-branch terminators' in the block, try removing the branch and
1653       // then seeing if the block is empty.
1654       TII->removeBranch(*MBB);
1655       // If the only things remaining in the block are debug info, remove these
1656       // as well, so this will behave the same as an empty block in non-debug
1657       // mode.
1658       if (IsEmptyBlock(MBB)) {
1659         // Make the block empty, losing the debug info (we could probably
1660         // improve this in some cases.)
1661         MBB->erase(MBB->begin(), MBB->end());
1662       }
1663       // If this block is just an unconditional branch to CurTBB, we can
1664       // usually completely eliminate the block.  The only case we cannot
1665       // completely eliminate the block is when the block before this one
1666       // falls through into MBB and we can't understand the prior block's branch
1667       // condition.
1668       if (MBB->empty()) {
1669         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1670         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1671             !PrevBB.isSuccessor(MBB)) {
1672           // If the prior block falls through into us, turn it into an
1673           // explicit branch to us to make updates simpler.
1674           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1675               PriorTBB != MBB && PriorFBB != MBB) {
1676             if (!PriorTBB) {
1677               assert(PriorCond.empty() && !PriorFBB &&
1678                      "Bad branch analysis");
1679               PriorTBB = MBB;
1680             } else {
1681               assert(!PriorFBB && "Machine CFG out of date!");
1682               PriorFBB = MBB;
1683             }
1684             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1685             TII->removeBranch(PrevBB);
1686             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1687           }
1688 
1689           // Iterate through all the predecessors, revectoring each in-turn.
1690           size_t PI = 0;
1691           bool DidChange = false;
1692           bool HasBranchToSelf = false;
1693           while(PI != MBB->pred_size()) {
1694             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1695             if (PMBB == MBB) {
1696               // If this block has an uncond branch to itself, leave it.
1697               ++PI;
1698               HasBranchToSelf = true;
1699             } else {
1700               DidChange = true;
1701               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1702               // If this change resulted in PMBB ending in a conditional
1703               // branch where both conditions go to the same destination,
1704               // change this to an unconditional branch (and fix the CFG).
1705               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1706               SmallVector<MachineOperand, 4> NewCurCond;
1707               bool NewCurUnAnalyzable = TII->analyzeBranch(
1708                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1709               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1710                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1711                 TII->removeBranch(*PMBB);
1712                 NewCurCond.clear();
1713                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1714                 MadeChange = true;
1715                 ++NumBranchOpts;
1716                 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1717               }
1718             }
1719           }
1720 
1721           // Change any jumptables to go to the new MBB.
1722           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1723             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1724           if (DidChange) {
1725             ++NumBranchOpts;
1726             MadeChange = true;
1727             if (!HasBranchToSelf) return MadeChange;
1728           }
1729         }
1730       }
1731 
1732       // Add the branch back if the block is more than just an uncond branch.
1733       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1734     }
1735   }
1736 
1737   // If the prior block doesn't fall through into this block, and if this
1738   // block doesn't fall through into some other block, see if we can find a
1739   // place to move this block where a fall-through will happen.
1740   if (!PrevBB.canFallThrough()) {
1741     // Now we know that there was no fall-through into this block, check to
1742     // see if it has a fall-through into its successor.
1743     bool CurFallsThru = MBB->canFallThrough();
1744 
1745     if (!MBB->isEHPad()) {
1746       // Check all the predecessors of this block.  If one of them has no fall
1747       // throughs, move this block right after it.
1748       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1749         // Analyze the branch at the end of the pred.
1750         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1751         SmallVector<MachineOperand, 4> PredCond;
1752         if (PredBB != MBB && !PredBB->canFallThrough() &&
1753             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1754             (!CurFallsThru || !CurTBB || !CurFBB) &&
1755             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1756           // If the current block doesn't fall through, just move it.
1757           // If the current block can fall through and does not end with a
1758           // conditional branch, we need to append an unconditional jump to
1759           // the (current) next block.  To avoid a possible compile-time
1760           // infinite loop, move blocks only backward in this case.
1761           // Also, if there are already 2 branches here, we cannot add a third;
1762           // this means we have the case
1763           // Bcc next
1764           // B elsewhere
1765           // next:
1766           if (CurFallsThru) {
1767             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1768             CurCond.clear();
1769             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1770           }
1771           MBB->moveAfter(PredBB);
1772           MadeChange = true;
1773           goto ReoptimizeBlock;
1774         }
1775       }
1776     }
1777 
1778     if (!CurFallsThru) {
1779       // Check all successors to see if we can move this block before it.
1780       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1781         // Analyze the branch at the end of the block before the succ.
1782         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1783 
1784         // If this block doesn't already fall-through to that successor, and if
1785         // the succ doesn't already have a block that can fall through into it,
1786         // and if the successor isn't an EH destination, we can arrange for the
1787         // fallthrough to happen.
1788         if (SuccBB != MBB && &*SuccPrev != MBB &&
1789             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1790             !SuccBB->isEHPad()) {
1791           MBB->moveBefore(SuccBB);
1792           MadeChange = true;
1793           goto ReoptimizeBlock;
1794         }
1795       }
1796 
1797       // Okay, there is no really great place to put this block.  If, however,
1798       // the block before this one would be a fall-through if this block were
1799       // removed, move this block to the end of the function. There is no real
1800       // advantage in "falling through" to an EH block, so we don't want to
1801       // perform this transformation for that case.
1802       //
1803       // Also, Windows EH introduced the possibility of an arbitrary number of
1804       // successors to a given block.  The analyzeBranch call does not consider
1805       // exception handling and so we can get in a state where a block
1806       // containing a call is followed by multiple EH blocks that would be
1807       // rotated infinitely at the end of the function if the transformation
1808       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1809       // that appears not to be happening anymore, we should assume that it is
1810       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1811       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1812       SmallVector<MachineOperand, 4> PrevCond;
1813       if (FallThrough != MF.end() &&
1814           !FallThrough->isEHPad() &&
1815           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1816           PrevBB.isSuccessor(&*FallThrough)) {
1817         MBB->moveAfter(&MF.back());
1818         MadeChange = true;
1819         return MadeChange;
1820       }
1821     }
1822   }
1823 
1824   return MadeChange;
1825 }
1826 
1827 //===----------------------------------------------------------------------===//
1828 //  Hoist Common Code
1829 //===----------------------------------------------------------------------===//
1830 
1831 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1832   bool MadeChange = false;
1833   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1834     MachineBasicBlock *MBB = &*I++;
1835     MadeChange |= HoistCommonCodeInSuccs(MBB);
1836   }
1837 
1838   return MadeChange;
1839 }
1840 
1841 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1842 /// its 'true' successor.
1843 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1844                                          MachineBasicBlock *TrueBB) {
1845   for (MachineBasicBlock *SuccBB : BB->successors())
1846     if (SuccBB != TrueBB)
1847       return SuccBB;
1848   return nullptr;
1849 }
1850 
1851 template <class Container>
1852 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1853                                 Container &Set) {
1854   if (Register::isPhysicalRegister(Reg)) {
1855     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1856       Set.insert(*AI);
1857   } else {
1858     Set.insert(Reg);
1859   }
1860 }
1861 
1862 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1863 /// in successors to. The location is usually just before the terminator,
1864 /// however if the terminator is a conditional branch and its previous
1865 /// instruction is the flag setting instruction, the previous instruction is
1866 /// the preferred location. This function also gathers uses and defs of the
1867 /// instructions from the insertion point to the end of the block. The data is
1868 /// used by HoistCommonCodeInSuccs to ensure safety.
1869 static
1870 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1871                                                   const TargetInstrInfo *TII,
1872                                                   const TargetRegisterInfo *TRI,
1873                                                   SmallSet<unsigned,4> &Uses,
1874                                                   SmallSet<unsigned,4> &Defs) {
1875   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1876   if (!TII->isUnpredicatedTerminator(*Loc))
1877     return MBB->end();
1878 
1879   for (const MachineOperand &MO : Loc->operands()) {
1880     if (!MO.isReg())
1881       continue;
1882     Register Reg = MO.getReg();
1883     if (!Reg)
1884       continue;
1885     if (MO.isUse()) {
1886       addRegAndItsAliases(Reg, TRI, Uses);
1887     } else {
1888       if (!MO.isDead())
1889         // Don't try to hoist code in the rare case the terminator defines a
1890         // register that is later used.
1891         return MBB->end();
1892 
1893       // If the terminator defines a register, make sure we don't hoist
1894       // the instruction whose def might be clobbered by the terminator.
1895       addRegAndItsAliases(Reg, TRI, Defs);
1896     }
1897   }
1898 
1899   if (Uses.empty())
1900     return Loc;
1901   // If the terminator is the only instruction in the block and Uses is not
1902   // empty (or we would have returned above), we can still safely hoist
1903   // instructions just before the terminator as long as the Defs/Uses are not
1904   // violated (which is checked in HoistCommonCodeInSuccs).
1905   if (Loc == MBB->begin())
1906     return Loc;
1907 
1908   // The terminator is probably a conditional branch, try not to separate the
1909   // branch from condition setting instruction.
1910   MachineBasicBlock::iterator PI =
1911     skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
1912 
1913   bool IsDef = false;
1914   for (const MachineOperand &MO : PI->operands()) {
1915     // If PI has a regmask operand, it is probably a call. Separate away.
1916     if (MO.isRegMask())
1917       return Loc;
1918     if (!MO.isReg() || MO.isUse())
1919       continue;
1920     Register Reg = MO.getReg();
1921     if (!Reg)
1922       continue;
1923     if (Uses.count(Reg)) {
1924       IsDef = true;
1925       break;
1926     }
1927   }
1928   if (!IsDef)
1929     // The condition setting instruction is not just before the conditional
1930     // branch.
1931     return Loc;
1932 
1933   // Be conservative, don't insert instruction above something that may have
1934   // side-effects. And since it's potentially bad to separate flag setting
1935   // instruction from the conditional branch, just abort the optimization
1936   // completely.
1937   // Also avoid moving code above predicated instruction since it's hard to
1938   // reason about register liveness with predicated instruction.
1939   bool DontMoveAcrossStore = true;
1940   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1941     return MBB->end();
1942 
1943   // Find out what registers are live. Note this routine is ignoring other live
1944   // registers which are only used by instructions in successor blocks.
1945   for (const MachineOperand &MO : PI->operands()) {
1946     if (!MO.isReg())
1947       continue;
1948     Register Reg = MO.getReg();
1949     if (!Reg)
1950       continue;
1951     if (MO.isUse()) {
1952       addRegAndItsAliases(Reg, TRI, Uses);
1953     } else {
1954       if (Uses.erase(Reg)) {
1955         if (Register::isPhysicalRegister(Reg)) {
1956           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1957             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1958         }
1959       }
1960       addRegAndItsAliases(Reg, TRI, Defs);
1961     }
1962   }
1963 
1964   return PI;
1965 }
1966 
1967 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1968   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1969   SmallVector<MachineOperand, 4> Cond;
1970   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1971     return false;
1972 
1973   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1974   if (!FBB)
1975     // Malformed bcc? True and false blocks are the same?
1976     return false;
1977 
1978   // Restrict the optimization to cases where MBB is the only predecessor,
1979   // it is an obvious win.
1980   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1981     return false;
1982 
1983   // Find a suitable position to hoist the common instructions to. Also figure
1984   // out which registers are used or defined by instructions from the insertion
1985   // point to the end of the block.
1986   SmallSet<unsigned, 4> Uses, Defs;
1987   MachineBasicBlock::iterator Loc =
1988     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1989   if (Loc == MBB->end())
1990     return false;
1991 
1992   bool HasDups = false;
1993   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1994   MachineBasicBlock::iterator TIB = TBB->begin();
1995   MachineBasicBlock::iterator FIB = FBB->begin();
1996   MachineBasicBlock::iterator TIE = TBB->end();
1997   MachineBasicBlock::iterator FIE = FBB->end();
1998   while (TIB != TIE && FIB != FIE) {
1999     // Skip dbg_value instructions. These do not count.
2000     TIB = skipDebugInstructionsForward(TIB, TIE);
2001     FIB = skipDebugInstructionsForward(FIB, FIE);
2002     if (TIB == TIE || FIB == FIE)
2003       break;
2004 
2005     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
2006       break;
2007 
2008     if (TII->isPredicated(*TIB))
2009       // Hard to reason about register liveness with predicated instruction.
2010       break;
2011 
2012     bool IsSafe = true;
2013     for (MachineOperand &MO : TIB->operands()) {
2014       // Don't attempt to hoist instructions with register masks.
2015       if (MO.isRegMask()) {
2016         IsSafe = false;
2017         break;
2018       }
2019       if (!MO.isReg())
2020         continue;
2021       Register Reg = MO.getReg();
2022       if (!Reg)
2023         continue;
2024       if (MO.isDef()) {
2025         if (Uses.count(Reg)) {
2026           // Avoid clobbering a register that's used by the instruction at
2027           // the point of insertion.
2028           IsSafe = false;
2029           break;
2030         }
2031 
2032         if (Defs.count(Reg) && !MO.isDead()) {
2033           // Don't hoist the instruction if the def would be clobber by the
2034           // instruction at the point insertion. FIXME: This is overly
2035           // conservative. It should be possible to hoist the instructions
2036           // in BB2 in the following example:
2037           // BB1:
2038           // r1, eflag = op1 r2, r3
2039           // brcc eflag
2040           //
2041           // BB2:
2042           // r1 = op2, ...
2043           //    = op3, killed r1
2044           IsSafe = false;
2045           break;
2046         }
2047       } else if (!ActiveDefsSet.count(Reg)) {
2048         if (Defs.count(Reg)) {
2049           // Use is defined by the instruction at the point of insertion.
2050           IsSafe = false;
2051           break;
2052         }
2053 
2054         if (MO.isKill() && Uses.count(Reg))
2055           // Kills a register that's read by the instruction at the point of
2056           // insertion. Remove the kill marker.
2057           MO.setIsKill(false);
2058       }
2059     }
2060     if (!IsSafe)
2061       break;
2062 
2063     bool DontMoveAcrossStore = true;
2064     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
2065       break;
2066 
2067     // Remove kills from ActiveDefsSet, these registers had short live ranges.
2068     for (const MachineOperand &MO : TIB->operands()) {
2069       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2070         continue;
2071       Register Reg = MO.getReg();
2072       if (!Reg)
2073         continue;
2074       if (!AllDefsSet.count(Reg)) {
2075         continue;
2076       }
2077       if (Register::isPhysicalRegister(Reg)) {
2078         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2079           ActiveDefsSet.erase(*AI);
2080       } else {
2081         ActiveDefsSet.erase(Reg);
2082       }
2083     }
2084 
2085     // Track local defs so we can update liveins.
2086     for (const MachineOperand &MO : TIB->operands()) {
2087       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2088         continue;
2089       Register Reg = MO.getReg();
2090       if (!Reg || Register::isVirtualRegister(Reg))
2091         continue;
2092       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2093       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2094     }
2095 
2096     HasDups = true;
2097     ++TIB;
2098     ++FIB;
2099   }
2100 
2101   if (!HasDups)
2102     return false;
2103 
2104   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2105   FBB->erase(FBB->begin(), FIB);
2106 
2107   if (UpdateLiveIns) {
2108     recomputeLiveIns(*TBB);
2109     recomputeLiveIns(*FBB);
2110   }
2111 
2112   ++NumHoist;
2113   return true;
2114 }
2115