1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/LivePhysRegs.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/TargetPassConfig.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/MC/LaneBitmask.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <cstddef> 61 #include <iterator> 62 #include <numeric> 63 #include <vector> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "branch-folder" 68 69 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 70 STATISTIC(NumBranchOpts, "Number of branches optimized"); 71 STATISTIC(NumTailMerge , "Number of block tails merged"); 72 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 73 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 74 75 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 76 cl::init(cl::BOU_UNSET), cl::Hidden); 77 78 // Throttle for huge numbers of predecessors (compile speed problems) 79 static cl::opt<unsigned> 80 TailMergeThreshold("tail-merge-threshold", 81 cl::desc("Max number of predecessors to consider tail merging"), 82 cl::init(150), cl::Hidden); 83 84 // Heuristic for tail merging (and, inversely, tail duplication). 85 // TODO: This should be replaced with a target query. 86 static cl::opt<unsigned> 87 TailMergeSize("tail-merge-size", 88 cl::desc("Min number of instructions to consider tail merging"), 89 cl::init(3), cl::Hidden); 90 91 namespace { 92 93 /// BranchFolderPass - Wrap branch folder in a machine function pass. 94 class BranchFolderPass : public MachineFunctionPass { 95 public: 96 static char ID; 97 98 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 99 100 bool runOnMachineFunction(MachineFunction &MF) override; 101 102 void getAnalysisUsage(AnalysisUsage &AU) const override { 103 AU.addRequired<MachineBlockFrequencyInfo>(); 104 AU.addRequired<MachineBranchProbabilityInfo>(); 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 }; 109 110 } // end anonymous namespace 111 112 char BranchFolderPass::ID = 0; 113 114 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 115 116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 117 "Control Flow Optimizer", false, false) 118 119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 120 if (skipFunction(MF.getFunction())) 121 return false; 122 123 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 124 // TailMerge can create jump into if branches that make CFG irreducible for 125 // HW that requires structurized CFG. 126 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 127 PassConfig->getEnableTailMerge(); 128 BranchFolder::MBFIWrapper MBBFreqInfo( 129 getAnalysis<MachineBlockFrequencyInfo>()); 130 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 131 getAnalysis<MachineBranchProbabilityInfo>()); 132 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 133 return Folder.OptimizeFunction( 134 MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(), 135 MMIWP ? &MMIWP->getMMI() : nullptr); 136 } 137 138 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 139 MBFIWrapper &FreqInfo, 140 const MachineBranchProbabilityInfo &ProbInfo, 141 unsigned MinTailLength) 142 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 143 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 144 if (MinCommonTailLength == 0) 145 MinCommonTailLength = TailMergeSize; 146 switch (FlagEnableTailMerge) { 147 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 148 case cl::BOU_TRUE: EnableTailMerge = true; break; 149 case cl::BOU_FALSE: EnableTailMerge = false; break; 150 } 151 } 152 153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 154 assert(MBB->pred_empty() && "MBB must be dead!"); 155 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 156 157 MachineFunction *MF = MBB->getParent(); 158 // drop all successors. 159 while (!MBB->succ_empty()) 160 MBB->removeSuccessor(MBB->succ_end()-1); 161 162 // Avoid matching if this pointer gets reused. 163 TriedMerging.erase(MBB); 164 165 // Update call site info. 166 std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) { 167 if (MI.isCall(MachineInstr::IgnoreBundle)) 168 MF->eraseCallSiteInfo(&MI); 169 }); 170 // Remove the block. 171 MF->erase(MBB); 172 EHScopeMembership.erase(MBB); 173 if (MLI) 174 MLI->removeBlock(MBB); 175 } 176 177 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 178 const TargetInstrInfo *tii, 179 const TargetRegisterInfo *tri, 180 MachineModuleInfo *mmi, 181 MachineLoopInfo *mli, bool AfterPlacement) { 182 if (!tii) return false; 183 184 TriedMerging.clear(); 185 186 MachineRegisterInfo &MRI = MF.getRegInfo(); 187 AfterBlockPlacement = AfterPlacement; 188 TII = tii; 189 TRI = tri; 190 MMI = mmi; 191 MLI = mli; 192 this->MRI = &MRI; 193 194 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 195 if (!UpdateLiveIns) 196 MRI.invalidateLiveness(); 197 198 // Fix CFG. The later algorithms expect it to be right. 199 bool MadeChange = false; 200 for (MachineBasicBlock &MBB : MF) { 201 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 202 SmallVector<MachineOperand, 4> Cond; 203 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 204 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 205 } 206 207 // Recalculate EH scope membership. 208 EHScopeMembership = getEHScopeMembership(MF); 209 210 bool MadeChangeThisIteration = true; 211 while (MadeChangeThisIteration) { 212 MadeChangeThisIteration = TailMergeBlocks(MF); 213 // No need to clean up if tail merging does not change anything after the 214 // block placement. 215 if (!AfterBlockPlacement || MadeChangeThisIteration) 216 MadeChangeThisIteration |= OptimizeBranches(MF); 217 if (EnableHoistCommonCode) 218 MadeChangeThisIteration |= HoistCommonCode(MF); 219 MadeChange |= MadeChangeThisIteration; 220 } 221 222 // See if any jump tables have become dead as the code generator 223 // did its thing. 224 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 225 if (!JTI) 226 return MadeChange; 227 228 // Walk the function to find jump tables that are live. 229 BitVector JTIsLive(JTI->getJumpTables().size()); 230 for (const MachineBasicBlock &BB : MF) { 231 for (const MachineInstr &I : BB) 232 for (const MachineOperand &Op : I.operands()) { 233 if (!Op.isJTI()) continue; 234 235 // Remember that this JT is live. 236 JTIsLive.set(Op.getIndex()); 237 } 238 } 239 240 // Finally, remove dead jump tables. This happens when the 241 // indirect jump was unreachable (and thus deleted). 242 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 243 if (!JTIsLive.test(i)) { 244 JTI->RemoveJumpTable(i); 245 MadeChange = true; 246 } 247 248 return MadeChange; 249 } 250 251 //===----------------------------------------------------------------------===// 252 // Tail Merging of Blocks 253 //===----------------------------------------------------------------------===// 254 255 /// HashMachineInstr - Compute a hash value for MI and its operands. 256 static unsigned HashMachineInstr(const MachineInstr &MI) { 257 unsigned Hash = MI.getOpcode(); 258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 259 const MachineOperand &Op = MI.getOperand(i); 260 261 // Merge in bits from the operand if easy. We can't use MachineOperand's 262 // hash_code here because it's not deterministic and we sort by hash value 263 // later. 264 unsigned OperandHash = 0; 265 switch (Op.getType()) { 266 case MachineOperand::MO_Register: 267 OperandHash = Op.getReg(); 268 break; 269 case MachineOperand::MO_Immediate: 270 OperandHash = Op.getImm(); 271 break; 272 case MachineOperand::MO_MachineBasicBlock: 273 OperandHash = Op.getMBB()->getNumber(); 274 break; 275 case MachineOperand::MO_FrameIndex: 276 case MachineOperand::MO_ConstantPoolIndex: 277 case MachineOperand::MO_JumpTableIndex: 278 OperandHash = Op.getIndex(); 279 break; 280 case MachineOperand::MO_GlobalAddress: 281 case MachineOperand::MO_ExternalSymbol: 282 // Global address / external symbol are too hard, don't bother, but do 283 // pull in the offset. 284 OperandHash = Op.getOffset(); 285 break; 286 default: 287 break; 288 } 289 290 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 291 } 292 return Hash; 293 } 294 295 /// HashEndOfMBB - Hash the last instruction in the MBB. 296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 297 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 298 if (I == MBB.end()) 299 return 0; 300 301 return HashMachineInstr(*I); 302 } 303 304 /// Whether MI should be counted as an instruction when calculating common tail. 305 static bool countsAsInstruction(const MachineInstr &MI) { 306 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 307 } 308 309 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 310 /// of instructions they actually have in common together at their end. Return 311 /// iterators for the first shared instruction in each block. 312 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 313 MachineBasicBlock *MBB2, 314 MachineBasicBlock::iterator &I1, 315 MachineBasicBlock::iterator &I2) { 316 I1 = MBB1->end(); 317 I2 = MBB2->end(); 318 319 unsigned TailLen = 0; 320 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 321 --I1; --I2; 322 // Skip debugging pseudos; necessary to avoid changing the code. 323 while (!countsAsInstruction(*I1)) { 324 if (I1==MBB1->begin()) { 325 while (!countsAsInstruction(*I2)) { 326 if (I2==MBB2->begin()) { 327 // I1==DBG at begin; I2==DBG at begin 328 goto SkipTopCFIAndReturn; 329 } 330 --I2; 331 } 332 ++I2; 333 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 334 goto SkipTopCFIAndReturn; 335 } 336 --I1; 337 } 338 // I1==first (untested) non-DBG preceding known match 339 while (!countsAsInstruction(*I2)) { 340 if (I2==MBB2->begin()) { 341 ++I1; 342 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 343 goto SkipTopCFIAndReturn; 344 } 345 --I2; 346 } 347 // I1, I2==first (untested) non-DBGs preceding known match 348 if (!I1->isIdenticalTo(*I2) || 349 // FIXME: This check is dubious. It's used to get around a problem where 350 // people incorrectly expect inline asm directives to remain in the same 351 // relative order. This is untenable because normal compiler 352 // optimizations (like this one) may reorder and/or merge these 353 // directives. 354 I1->isInlineAsm()) { 355 ++I1; ++I2; 356 break; 357 } 358 ++TailLen; 359 } 360 // Back past possible debugging pseudos at beginning of block. This matters 361 // when one block differs from the other only by whether debugging pseudos 362 // are present at the beginning. (This way, the various checks later for 363 // I1==MBB1->begin() work as expected.) 364 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 365 --I2; 366 while (I2->isDebugInstr()) { 367 if (I2 == MBB2->begin()) 368 return TailLen; 369 --I2; 370 } 371 ++I2; 372 } 373 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 374 --I1; 375 while (I1->isDebugInstr()) { 376 if (I1 == MBB1->begin()) 377 return TailLen; 378 --I1; 379 } 380 ++I1; 381 } 382 383 SkipTopCFIAndReturn: 384 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if 385 // I1 and I2 are non-identical when compared and then one or both of them ends 386 // up pointing to a CFI instruction after being incremented. For example: 387 /* 388 BB1: 389 ... 390 INSTRUCTION_A 391 ADD32ri8 <- last common instruction 392 ... 393 BB2: 394 ... 395 INSTRUCTION_B 396 CFI_INSTRUCTION 397 ADD32ri8 <- last common instruction 398 ... 399 */ 400 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after 401 // incrementing the iterators, I1 will point to ADD, however I2 will point to 402 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the 403 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI 404 // instruction. 405 while (I1 != MBB1->end() && I1->isCFIInstruction()) { 406 ++I1; 407 } 408 409 while (I2 != MBB2->end() && I2->isCFIInstruction()) { 410 ++I2; 411 } 412 413 return TailLen; 414 } 415 416 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 417 MachineBasicBlock &NewDest) { 418 if (UpdateLiveIns) { 419 // OldInst should always point to an instruction. 420 MachineBasicBlock &OldMBB = *OldInst->getParent(); 421 LiveRegs.clear(); 422 LiveRegs.addLiveOuts(OldMBB); 423 // Move backward to the place where will insert the jump. 424 MachineBasicBlock::iterator I = OldMBB.end(); 425 do { 426 --I; 427 LiveRegs.stepBackward(*I); 428 } while (I != OldInst); 429 430 // Merging the tails may have switched some undef operand to non-undef ones. 431 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 432 // register. 433 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 434 // We computed the liveins with computeLiveIn earlier and should only see 435 // full registers: 436 assert(P.LaneMask == LaneBitmask::getAll() && 437 "Can only handle full register."); 438 MCPhysReg Reg = P.PhysReg; 439 if (!LiveRegs.available(*MRI, Reg)) 440 continue; 441 DebugLoc DL; 442 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 443 } 444 } 445 446 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 447 ++NumTailMerge; 448 } 449 450 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 451 MachineBasicBlock::iterator BBI1, 452 const BasicBlock *BB) { 453 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 454 return nullptr; 455 456 MachineFunction &MF = *CurMBB.getParent(); 457 458 // Create the fall-through block. 459 MachineFunction::iterator MBBI = CurMBB.getIterator(); 460 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 461 CurMBB.getParent()->insert(++MBBI, NewMBB); 462 463 // Move all the successors of this block to the specified block. 464 NewMBB->transferSuccessors(&CurMBB); 465 466 // Add an edge from CurMBB to NewMBB for the fall-through. 467 CurMBB.addSuccessor(NewMBB); 468 469 // Splice the code over. 470 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 471 472 // NewMBB belongs to the same loop as CurMBB. 473 if (MLI) 474 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 475 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 476 477 // NewMBB inherits CurMBB's block frequency. 478 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 479 480 if (UpdateLiveIns) 481 computeAndAddLiveIns(LiveRegs, *NewMBB); 482 483 // Add the new block to the EH scope. 484 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 485 if (EHScopeI != EHScopeMembership.end()) { 486 auto n = EHScopeI->second; 487 EHScopeMembership[NewMBB] = n; 488 } 489 490 return NewMBB; 491 } 492 493 /// EstimateRuntime - Make a rough estimate for how long it will take to run 494 /// the specified code. 495 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 496 MachineBasicBlock::iterator E) { 497 unsigned Time = 0; 498 for (; I != E; ++I) { 499 if (!countsAsInstruction(*I)) 500 continue; 501 if (I->isCall()) 502 Time += 10; 503 else if (I->mayLoad() || I->mayStore()) 504 Time += 2; 505 else 506 ++Time; 507 } 508 return Time; 509 } 510 511 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 512 // branches temporarily for tail merging). In the case where CurMBB ends 513 // with a conditional branch to the next block, optimize by reversing the 514 // test and conditionally branching to SuccMBB instead. 515 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 516 const TargetInstrInfo *TII) { 517 MachineFunction *MF = CurMBB->getParent(); 518 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 519 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 520 SmallVector<MachineOperand, 4> Cond; 521 DebugLoc dl = CurMBB->findBranchDebugLoc(); 522 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 523 MachineBasicBlock *NextBB = &*I; 524 if (TBB == NextBB && !Cond.empty() && !FBB) { 525 if (!TII->reverseBranchCondition(Cond)) { 526 TII->removeBranch(*CurMBB); 527 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 528 return; 529 } 530 } 531 } 532 TII->insertBranch(*CurMBB, SuccBB, nullptr, 533 SmallVector<MachineOperand, 0>(), dl); 534 } 535 536 bool 537 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 538 if (getHash() < o.getHash()) 539 return true; 540 if (getHash() > o.getHash()) 541 return false; 542 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 543 return true; 544 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 545 return false; 546 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 547 // an object with itself. 548 #ifndef _GLIBCXX_DEBUG 549 llvm_unreachable("Predecessor appears twice"); 550 #else 551 return false; 552 #endif 553 } 554 555 BlockFrequency 556 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 557 auto I = MergedBBFreq.find(MBB); 558 559 if (I != MergedBBFreq.end()) 560 return I->second; 561 562 return MBFI.getBlockFreq(MBB); 563 } 564 565 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 566 BlockFrequency F) { 567 MergedBBFreq[MBB] = F; 568 } 569 570 raw_ostream & 571 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 572 const MachineBasicBlock *MBB) const { 573 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 574 } 575 576 raw_ostream & 577 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 578 const BlockFrequency Freq) const { 579 return MBFI.printBlockFreq(OS, Freq); 580 } 581 582 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 583 MBFI.view(Name, isSimple); 584 } 585 586 uint64_t 587 BranchFolder::MBFIWrapper::getEntryFreq() const { 588 return MBFI.getEntryFreq(); 589 } 590 591 /// CountTerminators - Count the number of terminators in the given 592 /// block and set I to the position of the first non-terminator, if there 593 /// is one, or MBB->end() otherwise. 594 static unsigned CountTerminators(MachineBasicBlock *MBB, 595 MachineBasicBlock::iterator &I) { 596 I = MBB->end(); 597 unsigned NumTerms = 0; 598 while (true) { 599 if (I == MBB->begin()) { 600 I = MBB->end(); 601 break; 602 } 603 --I; 604 if (!I->isTerminator()) break; 605 ++NumTerms; 606 } 607 return NumTerms; 608 } 609 610 /// A no successor, non-return block probably ends in unreachable and is cold. 611 /// Also consider a block that ends in an indirect branch to be a return block, 612 /// since many targets use plain indirect branches to return. 613 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 614 if (!MBB->succ_empty()) 615 return false; 616 if (MBB->empty()) 617 return true; 618 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 619 } 620 621 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 622 /// and decide if it would be profitable to merge those tails. Return the 623 /// length of the common tail and iterators to the first common instruction 624 /// in each block. 625 /// MBB1, MBB2 The blocks to check 626 /// MinCommonTailLength Minimum size of tail block to be merged. 627 /// CommonTailLen Out parameter to record the size of the shared tail between 628 /// MBB1 and MBB2 629 /// I1, I2 Iterator references that will be changed to point to the first 630 /// instruction in the common tail shared by MBB1,MBB2 631 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 632 /// relative to SuccBB 633 /// PredBB The layout predecessor of SuccBB, if any. 634 /// EHScopeMembership map from block to EH scope #. 635 /// AfterPlacement True if we are merging blocks after layout. Stricter 636 /// thresholds apply to prevent undoing tail-duplication. 637 static bool 638 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 639 unsigned MinCommonTailLength, unsigned &CommonTailLen, 640 MachineBasicBlock::iterator &I1, 641 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 642 MachineBasicBlock *PredBB, 643 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 644 bool AfterPlacement) { 645 // It is never profitable to tail-merge blocks from two different EH scopes. 646 if (!EHScopeMembership.empty()) { 647 auto EHScope1 = EHScopeMembership.find(MBB1); 648 assert(EHScope1 != EHScopeMembership.end()); 649 auto EHScope2 = EHScopeMembership.find(MBB2); 650 assert(EHScope2 != EHScopeMembership.end()); 651 if (EHScope1->second != EHScope2->second) 652 return false; 653 } 654 655 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 656 if (CommonTailLen == 0) 657 return false; 658 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 659 << " and " << printMBBReference(*MBB2) << " is " 660 << CommonTailLen << '\n'); 661 662 // It's almost always profitable to merge any number of non-terminator 663 // instructions with the block that falls through into the common successor. 664 // This is true only for a single successor. For multiple successors, we are 665 // trading a conditional branch for an unconditional one. 666 // TODO: Re-visit successor size for non-layout tail merging. 667 if ((MBB1 == PredBB || MBB2 == PredBB) && 668 (!AfterPlacement || MBB1->succ_size() == 1)) { 669 MachineBasicBlock::iterator I; 670 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 671 if (CommonTailLen > NumTerms) 672 return true; 673 } 674 675 // If these are identical non-return blocks with no successors, merge them. 676 // Such blocks are typically cold calls to noreturn functions like abort, and 677 // are unlikely to become a fallthrough target after machine block placement. 678 // Tail merging these blocks is unlikely to create additional unconditional 679 // branches, and will reduce the size of this cold code. 680 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 681 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 682 return true; 683 684 // If one of the blocks can be completely merged and happens to be in 685 // a position where the other could fall through into it, merge any number 686 // of instructions, because it can be done without a branch. 687 // TODO: If the blocks are not adjacent, move one of them so that they are? 688 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 689 return true; 690 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 691 return true; 692 693 // If both blocks are identical and end in a branch, merge them unless they 694 // both have a fallthrough predecessor and successor. 695 // We can only do this after block placement because it depends on whether 696 // there are fallthroughs, and we don't know until after layout. 697 if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) { 698 auto BothFallThrough = [](MachineBasicBlock *MBB) { 699 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 700 return false; 701 MachineFunction::iterator I(MBB); 702 MachineFunction *MF = MBB->getParent(); 703 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 704 }; 705 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 706 return true; 707 } 708 709 // If both blocks have an unconditional branch temporarily stripped out, 710 // count that as an additional common instruction for the following 711 // heuristics. This heuristic is only accurate for single-succ blocks, so to 712 // make sure that during layout merging and duplicating don't crash, we check 713 // for that when merging during layout. 714 unsigned EffectiveTailLen = CommonTailLen; 715 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 716 (MBB1->succ_size() == 1 || !AfterPlacement) && 717 !MBB1->back().isBarrier() && 718 !MBB2->back().isBarrier()) 719 ++EffectiveTailLen; 720 721 // Check if the common tail is long enough to be worthwhile. 722 if (EffectiveTailLen >= MinCommonTailLength) 723 return true; 724 725 // If we are optimizing for code size, 2 instructions in common is enough if 726 // we don't have to split a block. At worst we will be introducing 1 new 727 // branch instruction, which is likely to be smaller than the 2 728 // instructions that would be deleted in the merge. 729 MachineFunction *MF = MBB1->getParent(); 730 return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() && 731 (I1 == MBB1->begin() || I2 == MBB2->begin()); 732 } 733 734 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 735 unsigned MinCommonTailLength, 736 MachineBasicBlock *SuccBB, 737 MachineBasicBlock *PredBB) { 738 unsigned maxCommonTailLength = 0U; 739 SameTails.clear(); 740 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 741 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 742 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 743 B = MergePotentials.begin(); 744 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 745 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 746 unsigned CommonTailLen; 747 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 748 MinCommonTailLength, 749 CommonTailLen, TrialBBI1, TrialBBI2, 750 SuccBB, PredBB, 751 EHScopeMembership, 752 AfterBlockPlacement)) { 753 if (CommonTailLen > maxCommonTailLength) { 754 SameTails.clear(); 755 maxCommonTailLength = CommonTailLen; 756 HighestMPIter = CurMPIter; 757 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 758 } 759 if (HighestMPIter == CurMPIter && 760 CommonTailLen == maxCommonTailLength) 761 SameTails.push_back(SameTailElt(I, TrialBBI2)); 762 } 763 if (I == B) 764 break; 765 } 766 } 767 return maxCommonTailLength; 768 } 769 770 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 771 MachineBasicBlock *SuccBB, 772 MachineBasicBlock *PredBB) { 773 MPIterator CurMPIter, B; 774 for (CurMPIter = std::prev(MergePotentials.end()), 775 B = MergePotentials.begin(); 776 CurMPIter->getHash() == CurHash; --CurMPIter) { 777 // Put the unconditional branch back, if we need one. 778 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 779 if (SuccBB && CurMBB != PredBB) 780 FixTail(CurMBB, SuccBB, TII); 781 if (CurMPIter == B) 782 break; 783 } 784 if (CurMPIter->getHash() != CurHash) 785 CurMPIter++; 786 MergePotentials.erase(CurMPIter, MergePotentials.end()); 787 } 788 789 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 790 MachineBasicBlock *SuccBB, 791 unsigned maxCommonTailLength, 792 unsigned &commonTailIndex) { 793 commonTailIndex = 0; 794 unsigned TimeEstimate = ~0U; 795 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 796 // Use PredBB if possible; that doesn't require a new branch. 797 if (SameTails[i].getBlock() == PredBB) { 798 commonTailIndex = i; 799 break; 800 } 801 // Otherwise, make a (fairly bogus) choice based on estimate of 802 // how long it will take the various blocks to execute. 803 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 804 SameTails[i].getTailStartPos()); 805 if (t <= TimeEstimate) { 806 TimeEstimate = t; 807 commonTailIndex = i; 808 } 809 } 810 811 MachineBasicBlock::iterator BBI = 812 SameTails[commonTailIndex].getTailStartPos(); 813 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 814 815 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 816 << maxCommonTailLength); 817 818 // If the split block unconditionally falls-thru to SuccBB, it will be 819 // merged. In control flow terms it should then take SuccBB's name. e.g. If 820 // SuccBB is an inner loop, the common tail is still part of the inner loop. 821 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 822 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 823 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 824 if (!newMBB) { 825 LLVM_DEBUG(dbgs() << "... failed!"); 826 return false; 827 } 828 829 SameTails[commonTailIndex].setBlock(newMBB); 830 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 831 832 // If we split PredBB, newMBB is the new predecessor. 833 if (PredBB == MBB) 834 PredBB = newMBB; 835 836 return true; 837 } 838 839 static void 840 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 841 MachineBasicBlock &MBBCommon) { 842 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 843 // Note CommonTailLen does not necessarily matches the size of 844 // the common BB nor all its instructions because of debug 845 // instructions differences. 846 unsigned CommonTailLen = 0; 847 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 848 ++CommonTailLen; 849 850 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 851 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 852 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 853 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 854 855 while (CommonTailLen--) { 856 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 857 (void)MBBIE; 858 859 if (!countsAsInstruction(*MBBI)) { 860 ++MBBI; 861 continue; 862 } 863 864 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 865 ++MBBICommon; 866 867 assert(MBBICommon != MBBIECommon && 868 "Reached BB end within common tail length!"); 869 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 870 871 // Merge MMOs from memory operations in the common block. 872 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 873 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 874 // Drop undef flags if they aren't present in all merged instructions. 875 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 876 MachineOperand &MO = MBBICommon->getOperand(I); 877 if (MO.isReg() && MO.isUndef()) { 878 const MachineOperand &OtherMO = MBBI->getOperand(I); 879 if (!OtherMO.isUndef()) 880 MO.setIsUndef(false); 881 } 882 } 883 884 ++MBBI; 885 ++MBBICommon; 886 } 887 } 888 889 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 890 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 891 892 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 893 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 894 if (i != commonTailIndex) { 895 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 896 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 897 } else { 898 assert(SameTails[i].getTailStartPos() == MBB->begin() && 899 "MBB is not a common tail only block"); 900 } 901 } 902 903 for (auto &MI : *MBB) { 904 if (!countsAsInstruction(MI)) 905 continue; 906 DebugLoc DL = MI.getDebugLoc(); 907 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 908 if (i == commonTailIndex) 909 continue; 910 911 auto &Pos = NextCommonInsts[i]; 912 assert(Pos != SameTails[i].getBlock()->end() && 913 "Reached BB end within common tail"); 914 while (!countsAsInstruction(*Pos)) { 915 ++Pos; 916 assert(Pos != SameTails[i].getBlock()->end() && 917 "Reached BB end within common tail"); 918 } 919 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 920 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 921 NextCommonInsts[i] = ++Pos; 922 } 923 MI.setDebugLoc(DL); 924 } 925 926 if (UpdateLiveIns) { 927 LivePhysRegs NewLiveIns(*TRI); 928 computeLiveIns(NewLiveIns, *MBB); 929 LiveRegs.init(*TRI); 930 931 // The flag merging may lead to some register uses no longer using the 932 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 933 for (MachineBasicBlock *Pred : MBB->predecessors()) { 934 LiveRegs.clear(); 935 LiveRegs.addLiveOuts(*Pred); 936 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 937 for (unsigned Reg : NewLiveIns) { 938 if (!LiveRegs.available(*MRI, Reg)) 939 continue; 940 DebugLoc DL; 941 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 942 Reg); 943 } 944 } 945 946 MBB->clearLiveIns(); 947 addLiveIns(*MBB, NewLiveIns); 948 } 949 } 950 951 // See if any of the blocks in MergePotentials (which all have SuccBB as a 952 // successor, or all have no successor if it is null) can be tail-merged. 953 // If there is a successor, any blocks in MergePotentials that are not 954 // tail-merged and are not immediately before Succ must have an unconditional 955 // branch to Succ added (but the predecessor/successor lists need no 956 // adjustment). The lone predecessor of Succ that falls through into Succ, 957 // if any, is given in PredBB. 958 // MinCommonTailLength - Except for the special cases below, tail-merge if 959 // there are at least this many instructions in common. 960 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 961 MachineBasicBlock *PredBB, 962 unsigned MinCommonTailLength) { 963 bool MadeChange = false; 964 965 LLVM_DEBUG( 966 dbgs() << "\nTryTailMergeBlocks: "; 967 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 968 << printMBBReference(*MergePotentials[i].getBlock()) 969 << (i == e - 1 ? "" : ", "); 970 dbgs() << "\n"; if (SuccBB) { 971 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 972 if (PredBB) 973 dbgs() << " which has fall-through from " 974 << printMBBReference(*PredBB) << "\n"; 975 } dbgs() << "Looking for common tails of at least " 976 << MinCommonTailLength << " instruction" 977 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 978 979 // Sort by hash value so that blocks with identical end sequences sort 980 // together. 981 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 982 983 // Walk through equivalence sets looking for actual exact matches. 984 while (MergePotentials.size() > 1) { 985 unsigned CurHash = MergePotentials.back().getHash(); 986 987 // Build SameTails, identifying the set of blocks with this hash code 988 // and with the maximum number of instructions in common. 989 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 990 MinCommonTailLength, 991 SuccBB, PredBB); 992 993 // If we didn't find any pair that has at least MinCommonTailLength 994 // instructions in common, remove all blocks with this hash code and retry. 995 if (SameTails.empty()) { 996 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 997 continue; 998 } 999 1000 // If one of the blocks is the entire common tail (and not the entry 1001 // block, which we can't jump to), we can treat all blocks with this same 1002 // tail at once. Use PredBB if that is one of the possibilities, as that 1003 // will not introduce any extra branches. 1004 MachineBasicBlock *EntryBB = 1005 &MergePotentials.front().getBlock()->getParent()->front(); 1006 unsigned commonTailIndex = SameTails.size(); 1007 // If there are two blocks, check to see if one can be made to fall through 1008 // into the other. 1009 if (SameTails.size() == 2 && 1010 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 1011 SameTails[1].tailIsWholeBlock()) 1012 commonTailIndex = 1; 1013 else if (SameTails.size() == 2 && 1014 SameTails[1].getBlock()->isLayoutSuccessor( 1015 SameTails[0].getBlock()) && 1016 SameTails[0].tailIsWholeBlock()) 1017 commonTailIndex = 0; 1018 else { 1019 // Otherwise just pick one, favoring the fall-through predecessor if 1020 // there is one. 1021 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 1022 MachineBasicBlock *MBB = SameTails[i].getBlock(); 1023 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 1024 continue; 1025 if (MBB == PredBB) { 1026 commonTailIndex = i; 1027 break; 1028 } 1029 if (SameTails[i].tailIsWholeBlock()) 1030 commonTailIndex = i; 1031 } 1032 } 1033 1034 if (commonTailIndex == SameTails.size() || 1035 (SameTails[commonTailIndex].getBlock() == PredBB && 1036 !SameTails[commonTailIndex].tailIsWholeBlock())) { 1037 // None of the blocks consist entirely of the common tail. 1038 // Split a block so that one does. 1039 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 1040 maxCommonTailLength, commonTailIndex)) { 1041 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 1042 continue; 1043 } 1044 } 1045 1046 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 1047 1048 // Recompute common tail MBB's edge weights and block frequency. 1049 setCommonTailEdgeWeights(*MBB); 1050 1051 // Merge debug locations, MMOs and undef flags across identical instructions 1052 // for common tail. 1053 mergeCommonTails(commonTailIndex); 1054 1055 // MBB is common tail. Adjust all other BB's to jump to this one. 1056 // Traversal must be forwards so erases work. 1057 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 1058 << " for "); 1059 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 1060 if (commonTailIndex == i) 1061 continue; 1062 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 1063 << (i == e - 1 ? "" : ", ")); 1064 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 1065 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 1066 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1067 MergePotentials.erase(SameTails[i].getMPIter()); 1068 } 1069 LLVM_DEBUG(dbgs() << "\n"); 1070 // We leave commonTailIndex in the worklist in case there are other blocks 1071 // that match it with a smaller number of instructions. 1072 MadeChange = true; 1073 } 1074 return MadeChange; 1075 } 1076 1077 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1078 bool MadeChange = false; 1079 if (!EnableTailMerge) 1080 return MadeChange; 1081 1082 // First find blocks with no successors. 1083 // Block placement may create new tail merging opportunities for these blocks. 1084 MergePotentials.clear(); 1085 for (MachineBasicBlock &MBB : MF) { 1086 if (MergePotentials.size() == TailMergeThreshold) 1087 break; 1088 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1089 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1090 } 1091 1092 // If this is a large problem, avoid visiting the same basic blocks 1093 // multiple times. 1094 if (MergePotentials.size() == TailMergeThreshold) 1095 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1096 TriedMerging.insert(MergePotentials[i].getBlock()); 1097 1098 // See if we can do any tail merging on those. 1099 if (MergePotentials.size() >= 2) 1100 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1101 1102 // Look at blocks (IBB) with multiple predecessors (PBB). 1103 // We change each predecessor to a canonical form, by 1104 // (1) temporarily removing any unconditional branch from the predecessor 1105 // to IBB, and 1106 // (2) alter conditional branches so they branch to the other block 1107 // not IBB; this may require adding back an unconditional branch to IBB 1108 // later, where there wasn't one coming in. E.g. 1109 // Bcc IBB 1110 // fallthrough to QBB 1111 // here becomes 1112 // Bncc QBB 1113 // with a conceptual B to IBB after that, which never actually exists. 1114 // With those changes, we see whether the predecessors' tails match, 1115 // and merge them if so. We change things out of canonical form and 1116 // back to the way they were later in the process. (OptimizeBranches 1117 // would undo some of this, but we can't use it, because we'd get into 1118 // a compile-time infinite loop repeatedly doing and undoing the same 1119 // transformations.) 1120 1121 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1122 I != E; ++I) { 1123 if (I->pred_size() < 2) continue; 1124 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1125 MachineBasicBlock *IBB = &*I; 1126 MachineBasicBlock *PredBB = &*std::prev(I); 1127 MergePotentials.clear(); 1128 MachineLoop *ML; 1129 1130 // Bail if merging after placement and IBB is the loop header because 1131 // -- If merging predecessors that belong to the same loop as IBB, the 1132 // common tail of merged predecessors may become the loop top if block 1133 // placement is called again and the predecessors may branch to this common 1134 // tail and require more branches. This can be relaxed if 1135 // MachineBlockPlacement::findBestLoopTop is more flexible. 1136 // --If merging predecessors that do not belong to the same loop as IBB, the 1137 // loop info of IBB's loop and the other loops may be affected. Calling the 1138 // block placement again may make big change to the layout and eliminate the 1139 // reason to do tail merging here. 1140 if (AfterBlockPlacement && MLI) { 1141 ML = MLI->getLoopFor(IBB); 1142 if (ML && IBB == ML->getHeader()) 1143 continue; 1144 } 1145 1146 for (MachineBasicBlock *PBB : I->predecessors()) { 1147 if (MergePotentials.size() == TailMergeThreshold) 1148 break; 1149 1150 if (TriedMerging.count(PBB)) 1151 continue; 1152 1153 // Skip blocks that loop to themselves, can't tail merge these. 1154 if (PBB == IBB) 1155 continue; 1156 1157 // Visit each predecessor only once. 1158 if (!UniquePreds.insert(PBB).second) 1159 continue; 1160 1161 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1162 if (PBB->hasEHPadSuccessor()) 1163 continue; 1164 1165 // After block placement, only consider predecessors that belong to the 1166 // same loop as IBB. The reason is the same as above when skipping loop 1167 // header. 1168 if (AfterBlockPlacement && MLI) 1169 if (ML != MLI->getLoopFor(PBB)) 1170 continue; 1171 1172 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1173 SmallVector<MachineOperand, 4> Cond; 1174 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1175 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1176 // branch. 1177 SmallVector<MachineOperand, 4> NewCond(Cond); 1178 if (!Cond.empty() && TBB == IBB) { 1179 if (TII->reverseBranchCondition(NewCond)) 1180 continue; 1181 // This is the QBB case described above 1182 if (!FBB) { 1183 auto Next = ++PBB->getIterator(); 1184 if (Next != MF.end()) 1185 FBB = &*Next; 1186 } 1187 } 1188 1189 // Remove the unconditional branch at the end, if any. 1190 if (TBB && (Cond.empty() || FBB)) { 1191 DebugLoc dl = PBB->findBranchDebugLoc(); 1192 TII->removeBranch(*PBB); 1193 if (!Cond.empty()) 1194 // reinsert conditional branch only, for now 1195 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1196 NewCond, dl); 1197 } 1198 1199 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1200 } 1201 } 1202 1203 // If this is a large problem, avoid visiting the same basic blocks multiple 1204 // times. 1205 if (MergePotentials.size() == TailMergeThreshold) 1206 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1207 TriedMerging.insert(MergePotentials[i].getBlock()); 1208 1209 if (MergePotentials.size() >= 2) 1210 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1211 1212 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1213 // result of removing blocks in TryTailMergeBlocks. 1214 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1215 if (MergePotentials.size() == 1 && 1216 MergePotentials.begin()->getBlock() != PredBB) 1217 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1218 } 1219 1220 return MadeChange; 1221 } 1222 1223 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1224 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1225 BlockFrequency AccumulatedMBBFreq; 1226 1227 // Aggregate edge frequency of successor edge j: 1228 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1229 // where bb is a basic block that is in SameTails. 1230 for (const auto &Src : SameTails) { 1231 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1232 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1233 AccumulatedMBBFreq += BlockFreq; 1234 1235 // It is not necessary to recompute edge weights if TailBB has less than two 1236 // successors. 1237 if (TailMBB.succ_size() <= 1) 1238 continue; 1239 1240 auto EdgeFreq = EdgeFreqLs.begin(); 1241 1242 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1243 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1244 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1245 } 1246 1247 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1248 1249 if (TailMBB.succ_size() <= 1) 1250 return; 1251 1252 auto SumEdgeFreq = 1253 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1254 .getFrequency(); 1255 auto EdgeFreq = EdgeFreqLs.begin(); 1256 1257 if (SumEdgeFreq > 0) { 1258 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1259 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1260 auto Prob = BranchProbability::getBranchProbability( 1261 EdgeFreq->getFrequency(), SumEdgeFreq); 1262 TailMBB.setSuccProbability(SuccI, Prob); 1263 } 1264 } 1265 } 1266 1267 //===----------------------------------------------------------------------===// 1268 // Branch Optimization 1269 //===----------------------------------------------------------------------===// 1270 1271 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1272 bool MadeChange = false; 1273 1274 // Make sure blocks are numbered in order 1275 MF.RenumberBlocks(); 1276 // Renumbering blocks alters EH scope membership, recalculate it. 1277 EHScopeMembership = getEHScopeMembership(MF); 1278 1279 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1280 I != E; ) { 1281 MachineBasicBlock *MBB = &*I++; 1282 MadeChange |= OptimizeBlock(MBB); 1283 1284 // If it is dead, remove it. 1285 if (MBB->pred_empty()) { 1286 RemoveDeadBlock(MBB); 1287 MadeChange = true; 1288 ++NumDeadBlocks; 1289 } 1290 } 1291 1292 return MadeChange; 1293 } 1294 1295 // Blocks should be considered empty if they contain only debug info; 1296 // else the debug info would affect codegen. 1297 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1298 return MBB->getFirstNonDebugInstr() == MBB->end(); 1299 } 1300 1301 // Blocks with only debug info and branches should be considered the same 1302 // as blocks with only branches. 1303 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1304 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1305 assert(I != MBB->end() && "empty block!"); 1306 return I->isBranch(); 1307 } 1308 1309 /// IsBetterFallthrough - Return true if it would be clearly better to 1310 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1311 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1312 /// result in infinite loops. 1313 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1314 MachineBasicBlock *MBB2) { 1315 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1316 1317 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1318 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1319 // optimize branches that branch to either a return block or an assert block 1320 // into a fallthrough to the return. 1321 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1322 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1323 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1324 return false; 1325 1326 // If there is a clear successor ordering we make sure that one block 1327 // will fall through to the next 1328 if (MBB1->isSuccessor(MBB2)) return true; 1329 if (MBB2->isSuccessor(MBB1)) return false; 1330 1331 return MBB2I->isCall() && !MBB1I->isCall(); 1332 } 1333 1334 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1335 /// instructions on the block. 1336 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1337 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1338 if (I != MBB.end() && I->isBranch()) 1339 return I->getDebugLoc(); 1340 return DebugLoc(); 1341 } 1342 1343 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1344 MachineBasicBlock &MBB, 1345 MachineBasicBlock &PredMBB) { 1346 auto InsertBefore = PredMBB.getFirstTerminator(); 1347 for (MachineInstr &MI : MBB.instrs()) 1348 if (MI.isDebugInstr()) { 1349 TII->duplicate(PredMBB, InsertBefore, MI); 1350 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1351 << MI); 1352 } 1353 } 1354 1355 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1356 MachineBasicBlock &MBB, 1357 MachineBasicBlock &SuccMBB) { 1358 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1359 for (MachineInstr &MI : MBB.instrs()) 1360 if (MI.isDebugInstr()) { 1361 TII->duplicate(SuccMBB, InsertBefore, MI); 1362 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1363 << MI); 1364 } 1365 } 1366 1367 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1368 // a basic block is removed we would lose the debug information unless we have 1369 // copied the information to a predecessor/successor. 1370 // 1371 // TODO: This function only handles some simple cases. An alternative would be 1372 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1373 // branch folding. 1374 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1375 MachineBasicBlock &MBB) { 1376 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1377 // If this MBB is the only predecessor of a successor it is legal to copy 1378 // DBG_VALUE instructions to the beginning of the successor. 1379 for (MachineBasicBlock *SuccBB : MBB.successors()) 1380 if (SuccBB->pred_size() == 1) 1381 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1382 // If this MBB is the only successor of a predecessor it is legal to copy the 1383 // DBG_VALUE instructions to the end of the predecessor (just before the 1384 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1385 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1386 if (PredBB->succ_size() == 1) 1387 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1388 } 1389 1390 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1391 bool MadeChange = false; 1392 MachineFunction &MF = *MBB->getParent(); 1393 ReoptimizeBlock: 1394 1395 MachineFunction::iterator FallThrough = MBB->getIterator(); 1396 ++FallThrough; 1397 1398 // Make sure MBB and FallThrough belong to the same EH scope. 1399 bool SameEHScope = true; 1400 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1401 auto MBBEHScope = EHScopeMembership.find(MBB); 1402 assert(MBBEHScope != EHScopeMembership.end()); 1403 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1404 assert(FallThroughEHScope != EHScopeMembership.end()); 1405 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1406 } 1407 1408 // If this block is empty, make everyone use its fall-through, not the block 1409 // explicitly. Landing pads should not do this since the landing-pad table 1410 // points to this block. Blocks with their addresses taken shouldn't be 1411 // optimized away. 1412 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1413 SameEHScope) { 1414 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1415 // Dead block? Leave for cleanup later. 1416 if (MBB->pred_empty()) return MadeChange; 1417 1418 if (FallThrough == MF.end()) { 1419 // TODO: Simplify preds to not branch here if possible! 1420 } else if (FallThrough->isEHPad()) { 1421 // Don't rewrite to a landing pad fallthough. That could lead to the case 1422 // where a BB jumps to more than one landing pad. 1423 // TODO: Is it ever worth rewriting predecessors which don't already 1424 // jump to a landing pad, and so can safely jump to the fallthrough? 1425 } else if (MBB->isSuccessor(&*FallThrough)) { 1426 // Rewrite all predecessors of the old block to go to the fallthrough 1427 // instead. 1428 while (!MBB->pred_empty()) { 1429 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1430 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1431 } 1432 // If MBB was the target of a jump table, update jump tables to go to the 1433 // fallthrough instead. 1434 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1435 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1436 MadeChange = true; 1437 } 1438 return MadeChange; 1439 } 1440 1441 // Check to see if we can simplify the terminator of the block before this 1442 // one. 1443 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1444 1445 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1446 SmallVector<MachineOperand, 4> PriorCond; 1447 bool PriorUnAnalyzable = 1448 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1449 if (!PriorUnAnalyzable) { 1450 // If the CFG for the prior block has extra edges, remove them. 1451 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1452 !PriorCond.empty()); 1453 1454 // If the previous branch is conditional and both conditions go to the same 1455 // destination, remove the branch, replacing it with an unconditional one or 1456 // a fall-through. 1457 if (PriorTBB && PriorTBB == PriorFBB) { 1458 DebugLoc dl = getBranchDebugLoc(PrevBB); 1459 TII->removeBranch(PrevBB); 1460 PriorCond.clear(); 1461 if (PriorTBB != MBB) 1462 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1463 MadeChange = true; 1464 ++NumBranchOpts; 1465 goto ReoptimizeBlock; 1466 } 1467 1468 // If the previous block unconditionally falls through to this block and 1469 // this block has no other predecessors, move the contents of this block 1470 // into the prior block. This doesn't usually happen when SimplifyCFG 1471 // has been used, but it can happen if tail merging splits a fall-through 1472 // predecessor of a block. 1473 // This has to check PrevBB->succ_size() because EH edges are ignored by 1474 // AnalyzeBranch. 1475 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1476 PrevBB.succ_size() == 1 && 1477 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1478 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1479 << "From MBB: " << *MBB); 1480 // Remove redundant DBG_VALUEs first. 1481 if (PrevBB.begin() != PrevBB.end()) { 1482 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1483 --PrevBBIter; 1484 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1485 // Check if DBG_VALUE at the end of PrevBB is identical to the 1486 // DBG_VALUE at the beginning of MBB. 1487 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1488 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1489 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1490 break; 1491 MachineInstr &DuplicateDbg = *MBBIter; 1492 ++MBBIter; -- PrevBBIter; 1493 DuplicateDbg.eraseFromParent(); 1494 } 1495 } 1496 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1497 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1498 assert(PrevBB.succ_empty()); 1499 PrevBB.transferSuccessors(MBB); 1500 MadeChange = true; 1501 return MadeChange; 1502 } 1503 1504 // If the previous branch *only* branches to *this* block (conditional or 1505 // not) remove the branch. 1506 if (PriorTBB == MBB && !PriorFBB) { 1507 TII->removeBranch(PrevBB); 1508 MadeChange = true; 1509 ++NumBranchOpts; 1510 goto ReoptimizeBlock; 1511 } 1512 1513 // If the prior block branches somewhere else on the condition and here if 1514 // the condition is false, remove the uncond second branch. 1515 if (PriorFBB == MBB) { 1516 DebugLoc dl = getBranchDebugLoc(PrevBB); 1517 TII->removeBranch(PrevBB); 1518 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1519 MadeChange = true; 1520 ++NumBranchOpts; 1521 goto ReoptimizeBlock; 1522 } 1523 1524 // If the prior block branches here on true and somewhere else on false, and 1525 // if the branch condition is reversible, reverse the branch to create a 1526 // fall-through. 1527 if (PriorTBB == MBB) { 1528 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1529 if (!TII->reverseBranchCondition(NewPriorCond)) { 1530 DebugLoc dl = getBranchDebugLoc(PrevBB); 1531 TII->removeBranch(PrevBB); 1532 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1533 MadeChange = true; 1534 ++NumBranchOpts; 1535 goto ReoptimizeBlock; 1536 } 1537 } 1538 1539 // If this block has no successors (e.g. it is a return block or ends with 1540 // a call to a no-return function like abort or __cxa_throw) and if the pred 1541 // falls through into this block, and if it would otherwise fall through 1542 // into the block after this, move this block to the end of the function. 1543 // 1544 // We consider it more likely that execution will stay in the function (e.g. 1545 // due to loops) than it is to exit it. This asserts in loops etc, moving 1546 // the assert condition out of the loop body. 1547 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1548 MachineFunction::iterator(PriorTBB) == FallThrough && 1549 !MBB->canFallThrough()) { 1550 bool DoTransform = true; 1551 1552 // We have to be careful that the succs of PredBB aren't both no-successor 1553 // blocks. If neither have successors and if PredBB is the second from 1554 // last block in the function, we'd just keep swapping the two blocks for 1555 // last. Only do the swap if one is clearly better to fall through than 1556 // the other. 1557 if (FallThrough == --MF.end() && 1558 !IsBetterFallthrough(PriorTBB, MBB)) 1559 DoTransform = false; 1560 1561 if (DoTransform) { 1562 // Reverse the branch so we will fall through on the previous true cond. 1563 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1564 if (!TII->reverseBranchCondition(NewPriorCond)) { 1565 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1566 << "To make fallthrough to: " << *PriorTBB << "\n"); 1567 1568 DebugLoc dl = getBranchDebugLoc(PrevBB); 1569 TII->removeBranch(PrevBB); 1570 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1571 1572 // Move this block to the end of the function. 1573 MBB->moveAfter(&MF.back()); 1574 MadeChange = true; 1575 ++NumBranchOpts; 1576 return MadeChange; 1577 } 1578 } 1579 } 1580 } 1581 1582 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1583 MF.getFunction().hasOptSize()) { 1584 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1585 // direction, thereby defeating careful block placement and regressing 1586 // performance. Therefore, only consider this for optsize functions. 1587 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1588 if (TII->isUnconditionalTailCall(TailCall)) { 1589 MachineBasicBlock *Pred = *MBB->pred_begin(); 1590 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1591 SmallVector<MachineOperand, 4> PredCond; 1592 bool PredAnalyzable = 1593 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1594 1595 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1596 PredTBB != PredFBB) { 1597 // The predecessor has a conditional branch to this block which consists 1598 // of only a tail call. Try to fold the tail call into the conditional 1599 // branch. 1600 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1601 // TODO: It would be nice if analyzeBranch() could provide a pointer 1602 // to the branch instruction so replaceBranchWithTailCall() doesn't 1603 // have to search for it. 1604 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1605 ++NumTailCalls; 1606 Pred->removeSuccessor(MBB); 1607 MadeChange = true; 1608 return MadeChange; 1609 } 1610 } 1611 // If the predecessor is falling through to this block, we could reverse 1612 // the branch condition and fold the tail call into that. However, after 1613 // that we might have to re-arrange the CFG to fall through to the other 1614 // block and there is a high risk of regressing code size rather than 1615 // improving it. 1616 } 1617 } 1618 1619 // Analyze the branch in the current block. 1620 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1621 SmallVector<MachineOperand, 4> CurCond; 1622 bool CurUnAnalyzable = 1623 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1624 if (!CurUnAnalyzable) { 1625 // If the CFG for the prior block has extra edges, remove them. 1626 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1627 1628 // If this is a two-way branch, and the FBB branches to this block, reverse 1629 // the condition so the single-basic-block loop is faster. Instead of: 1630 // Loop: xxx; jcc Out; jmp Loop 1631 // we want: 1632 // Loop: xxx; jncc Loop; jmp Out 1633 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1634 SmallVector<MachineOperand, 4> NewCond(CurCond); 1635 if (!TII->reverseBranchCondition(NewCond)) { 1636 DebugLoc dl = getBranchDebugLoc(*MBB); 1637 TII->removeBranch(*MBB); 1638 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1639 MadeChange = true; 1640 ++NumBranchOpts; 1641 goto ReoptimizeBlock; 1642 } 1643 } 1644 1645 // If this branch is the only thing in its block, see if we can forward 1646 // other blocks across it. 1647 if (CurTBB && CurCond.empty() && !CurFBB && 1648 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1649 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1650 DebugLoc dl = getBranchDebugLoc(*MBB); 1651 // This block may contain just an unconditional branch. Because there can 1652 // be 'non-branch terminators' in the block, try removing the branch and 1653 // then seeing if the block is empty. 1654 TII->removeBranch(*MBB); 1655 // If the only things remaining in the block are debug info, remove these 1656 // as well, so this will behave the same as an empty block in non-debug 1657 // mode. 1658 if (IsEmptyBlock(MBB)) { 1659 // Make the block empty, losing the debug info (we could probably 1660 // improve this in some cases.) 1661 MBB->erase(MBB->begin(), MBB->end()); 1662 } 1663 // If this block is just an unconditional branch to CurTBB, we can 1664 // usually completely eliminate the block. The only case we cannot 1665 // completely eliminate the block is when the block before this one 1666 // falls through into MBB and we can't understand the prior block's branch 1667 // condition. 1668 if (MBB->empty()) { 1669 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1670 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1671 !PrevBB.isSuccessor(MBB)) { 1672 // If the prior block falls through into us, turn it into an 1673 // explicit branch to us to make updates simpler. 1674 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1675 PriorTBB != MBB && PriorFBB != MBB) { 1676 if (!PriorTBB) { 1677 assert(PriorCond.empty() && !PriorFBB && 1678 "Bad branch analysis"); 1679 PriorTBB = MBB; 1680 } else { 1681 assert(!PriorFBB && "Machine CFG out of date!"); 1682 PriorFBB = MBB; 1683 } 1684 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1685 TII->removeBranch(PrevBB); 1686 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1687 } 1688 1689 // Iterate through all the predecessors, revectoring each in-turn. 1690 size_t PI = 0; 1691 bool DidChange = false; 1692 bool HasBranchToSelf = false; 1693 while(PI != MBB->pred_size()) { 1694 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1695 if (PMBB == MBB) { 1696 // If this block has an uncond branch to itself, leave it. 1697 ++PI; 1698 HasBranchToSelf = true; 1699 } else { 1700 DidChange = true; 1701 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1702 // If this change resulted in PMBB ending in a conditional 1703 // branch where both conditions go to the same destination, 1704 // change this to an unconditional branch (and fix the CFG). 1705 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1706 SmallVector<MachineOperand, 4> NewCurCond; 1707 bool NewCurUnAnalyzable = TII->analyzeBranch( 1708 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1709 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1710 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1711 TII->removeBranch(*PMBB); 1712 NewCurCond.clear(); 1713 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1714 MadeChange = true; 1715 ++NumBranchOpts; 1716 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1717 } 1718 } 1719 } 1720 1721 // Change any jumptables to go to the new MBB. 1722 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1723 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1724 if (DidChange) { 1725 ++NumBranchOpts; 1726 MadeChange = true; 1727 if (!HasBranchToSelf) return MadeChange; 1728 } 1729 } 1730 } 1731 1732 // Add the branch back if the block is more than just an uncond branch. 1733 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1734 } 1735 } 1736 1737 // If the prior block doesn't fall through into this block, and if this 1738 // block doesn't fall through into some other block, see if we can find a 1739 // place to move this block where a fall-through will happen. 1740 if (!PrevBB.canFallThrough()) { 1741 // Now we know that there was no fall-through into this block, check to 1742 // see if it has a fall-through into its successor. 1743 bool CurFallsThru = MBB->canFallThrough(); 1744 1745 if (!MBB->isEHPad()) { 1746 // Check all the predecessors of this block. If one of them has no fall 1747 // throughs, move this block right after it. 1748 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1749 // Analyze the branch at the end of the pred. 1750 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1751 SmallVector<MachineOperand, 4> PredCond; 1752 if (PredBB != MBB && !PredBB->canFallThrough() && 1753 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1754 (!CurFallsThru || !CurTBB || !CurFBB) && 1755 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1756 // If the current block doesn't fall through, just move it. 1757 // If the current block can fall through and does not end with a 1758 // conditional branch, we need to append an unconditional jump to 1759 // the (current) next block. To avoid a possible compile-time 1760 // infinite loop, move blocks only backward in this case. 1761 // Also, if there are already 2 branches here, we cannot add a third; 1762 // this means we have the case 1763 // Bcc next 1764 // B elsewhere 1765 // next: 1766 if (CurFallsThru) { 1767 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1768 CurCond.clear(); 1769 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1770 } 1771 MBB->moveAfter(PredBB); 1772 MadeChange = true; 1773 goto ReoptimizeBlock; 1774 } 1775 } 1776 } 1777 1778 if (!CurFallsThru) { 1779 // Check all successors to see if we can move this block before it. 1780 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1781 // Analyze the branch at the end of the block before the succ. 1782 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1783 1784 // If this block doesn't already fall-through to that successor, and if 1785 // the succ doesn't already have a block that can fall through into it, 1786 // and if the successor isn't an EH destination, we can arrange for the 1787 // fallthrough to happen. 1788 if (SuccBB != MBB && &*SuccPrev != MBB && 1789 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1790 !SuccBB->isEHPad()) { 1791 MBB->moveBefore(SuccBB); 1792 MadeChange = true; 1793 goto ReoptimizeBlock; 1794 } 1795 } 1796 1797 // Okay, there is no really great place to put this block. If, however, 1798 // the block before this one would be a fall-through if this block were 1799 // removed, move this block to the end of the function. There is no real 1800 // advantage in "falling through" to an EH block, so we don't want to 1801 // perform this transformation for that case. 1802 // 1803 // Also, Windows EH introduced the possibility of an arbitrary number of 1804 // successors to a given block. The analyzeBranch call does not consider 1805 // exception handling and so we can get in a state where a block 1806 // containing a call is followed by multiple EH blocks that would be 1807 // rotated infinitely at the end of the function if the transformation 1808 // below were performed for EH "FallThrough" blocks. Therefore, even if 1809 // that appears not to be happening anymore, we should assume that it is 1810 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1811 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1812 SmallVector<MachineOperand, 4> PrevCond; 1813 if (FallThrough != MF.end() && 1814 !FallThrough->isEHPad() && 1815 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1816 PrevBB.isSuccessor(&*FallThrough)) { 1817 MBB->moveAfter(&MF.back()); 1818 MadeChange = true; 1819 return MadeChange; 1820 } 1821 } 1822 } 1823 1824 return MadeChange; 1825 } 1826 1827 //===----------------------------------------------------------------------===// 1828 // Hoist Common Code 1829 //===----------------------------------------------------------------------===// 1830 1831 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1832 bool MadeChange = false; 1833 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1834 MachineBasicBlock *MBB = &*I++; 1835 MadeChange |= HoistCommonCodeInSuccs(MBB); 1836 } 1837 1838 return MadeChange; 1839 } 1840 1841 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1842 /// its 'true' successor. 1843 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1844 MachineBasicBlock *TrueBB) { 1845 for (MachineBasicBlock *SuccBB : BB->successors()) 1846 if (SuccBB != TrueBB) 1847 return SuccBB; 1848 return nullptr; 1849 } 1850 1851 template <class Container> 1852 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1853 Container &Set) { 1854 if (Register::isPhysicalRegister(Reg)) { 1855 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1856 Set.insert(*AI); 1857 } else { 1858 Set.insert(Reg); 1859 } 1860 } 1861 1862 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1863 /// in successors to. The location is usually just before the terminator, 1864 /// however if the terminator is a conditional branch and its previous 1865 /// instruction is the flag setting instruction, the previous instruction is 1866 /// the preferred location. This function also gathers uses and defs of the 1867 /// instructions from the insertion point to the end of the block. The data is 1868 /// used by HoistCommonCodeInSuccs to ensure safety. 1869 static 1870 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1871 const TargetInstrInfo *TII, 1872 const TargetRegisterInfo *TRI, 1873 SmallSet<unsigned,4> &Uses, 1874 SmallSet<unsigned,4> &Defs) { 1875 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1876 if (!TII->isUnpredicatedTerminator(*Loc)) 1877 return MBB->end(); 1878 1879 for (const MachineOperand &MO : Loc->operands()) { 1880 if (!MO.isReg()) 1881 continue; 1882 Register Reg = MO.getReg(); 1883 if (!Reg) 1884 continue; 1885 if (MO.isUse()) { 1886 addRegAndItsAliases(Reg, TRI, Uses); 1887 } else { 1888 if (!MO.isDead()) 1889 // Don't try to hoist code in the rare case the terminator defines a 1890 // register that is later used. 1891 return MBB->end(); 1892 1893 // If the terminator defines a register, make sure we don't hoist 1894 // the instruction whose def might be clobbered by the terminator. 1895 addRegAndItsAliases(Reg, TRI, Defs); 1896 } 1897 } 1898 1899 if (Uses.empty()) 1900 return Loc; 1901 // If the terminator is the only instruction in the block and Uses is not 1902 // empty (or we would have returned above), we can still safely hoist 1903 // instructions just before the terminator as long as the Defs/Uses are not 1904 // violated (which is checked in HoistCommonCodeInSuccs). 1905 if (Loc == MBB->begin()) 1906 return Loc; 1907 1908 // The terminator is probably a conditional branch, try not to separate the 1909 // branch from condition setting instruction. 1910 MachineBasicBlock::iterator PI = 1911 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1912 1913 bool IsDef = false; 1914 for (const MachineOperand &MO : PI->operands()) { 1915 // If PI has a regmask operand, it is probably a call. Separate away. 1916 if (MO.isRegMask()) 1917 return Loc; 1918 if (!MO.isReg() || MO.isUse()) 1919 continue; 1920 Register Reg = MO.getReg(); 1921 if (!Reg) 1922 continue; 1923 if (Uses.count(Reg)) { 1924 IsDef = true; 1925 break; 1926 } 1927 } 1928 if (!IsDef) 1929 // The condition setting instruction is not just before the conditional 1930 // branch. 1931 return Loc; 1932 1933 // Be conservative, don't insert instruction above something that may have 1934 // side-effects. And since it's potentially bad to separate flag setting 1935 // instruction from the conditional branch, just abort the optimization 1936 // completely. 1937 // Also avoid moving code above predicated instruction since it's hard to 1938 // reason about register liveness with predicated instruction. 1939 bool DontMoveAcrossStore = true; 1940 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1941 return MBB->end(); 1942 1943 // Find out what registers are live. Note this routine is ignoring other live 1944 // registers which are only used by instructions in successor blocks. 1945 for (const MachineOperand &MO : PI->operands()) { 1946 if (!MO.isReg()) 1947 continue; 1948 Register Reg = MO.getReg(); 1949 if (!Reg) 1950 continue; 1951 if (MO.isUse()) { 1952 addRegAndItsAliases(Reg, TRI, Uses); 1953 } else { 1954 if (Uses.erase(Reg)) { 1955 if (Register::isPhysicalRegister(Reg)) { 1956 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1957 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1958 } 1959 } 1960 addRegAndItsAliases(Reg, TRI, Defs); 1961 } 1962 } 1963 1964 return PI; 1965 } 1966 1967 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1968 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1969 SmallVector<MachineOperand, 4> Cond; 1970 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1971 return false; 1972 1973 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1974 if (!FBB) 1975 // Malformed bcc? True and false blocks are the same? 1976 return false; 1977 1978 // Restrict the optimization to cases where MBB is the only predecessor, 1979 // it is an obvious win. 1980 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1981 return false; 1982 1983 // Find a suitable position to hoist the common instructions to. Also figure 1984 // out which registers are used or defined by instructions from the insertion 1985 // point to the end of the block. 1986 SmallSet<unsigned, 4> Uses, Defs; 1987 MachineBasicBlock::iterator Loc = 1988 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1989 if (Loc == MBB->end()) 1990 return false; 1991 1992 bool HasDups = false; 1993 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 1994 MachineBasicBlock::iterator TIB = TBB->begin(); 1995 MachineBasicBlock::iterator FIB = FBB->begin(); 1996 MachineBasicBlock::iterator TIE = TBB->end(); 1997 MachineBasicBlock::iterator FIE = FBB->end(); 1998 while (TIB != TIE && FIB != FIE) { 1999 // Skip dbg_value instructions. These do not count. 2000 TIB = skipDebugInstructionsForward(TIB, TIE); 2001 FIB = skipDebugInstructionsForward(FIB, FIE); 2002 if (TIB == TIE || FIB == FIE) 2003 break; 2004 2005 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 2006 break; 2007 2008 if (TII->isPredicated(*TIB)) 2009 // Hard to reason about register liveness with predicated instruction. 2010 break; 2011 2012 bool IsSafe = true; 2013 for (MachineOperand &MO : TIB->operands()) { 2014 // Don't attempt to hoist instructions with register masks. 2015 if (MO.isRegMask()) { 2016 IsSafe = false; 2017 break; 2018 } 2019 if (!MO.isReg()) 2020 continue; 2021 Register Reg = MO.getReg(); 2022 if (!Reg) 2023 continue; 2024 if (MO.isDef()) { 2025 if (Uses.count(Reg)) { 2026 // Avoid clobbering a register that's used by the instruction at 2027 // the point of insertion. 2028 IsSafe = false; 2029 break; 2030 } 2031 2032 if (Defs.count(Reg) && !MO.isDead()) { 2033 // Don't hoist the instruction if the def would be clobber by the 2034 // instruction at the point insertion. FIXME: This is overly 2035 // conservative. It should be possible to hoist the instructions 2036 // in BB2 in the following example: 2037 // BB1: 2038 // r1, eflag = op1 r2, r3 2039 // brcc eflag 2040 // 2041 // BB2: 2042 // r1 = op2, ... 2043 // = op3, killed r1 2044 IsSafe = false; 2045 break; 2046 } 2047 } else if (!ActiveDefsSet.count(Reg)) { 2048 if (Defs.count(Reg)) { 2049 // Use is defined by the instruction at the point of insertion. 2050 IsSafe = false; 2051 break; 2052 } 2053 2054 if (MO.isKill() && Uses.count(Reg)) 2055 // Kills a register that's read by the instruction at the point of 2056 // insertion. Remove the kill marker. 2057 MO.setIsKill(false); 2058 } 2059 } 2060 if (!IsSafe) 2061 break; 2062 2063 bool DontMoveAcrossStore = true; 2064 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 2065 break; 2066 2067 // Remove kills from ActiveDefsSet, these registers had short live ranges. 2068 for (const MachineOperand &MO : TIB->operands()) { 2069 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2070 continue; 2071 Register Reg = MO.getReg(); 2072 if (!Reg) 2073 continue; 2074 if (!AllDefsSet.count(Reg)) { 2075 continue; 2076 } 2077 if (Register::isPhysicalRegister(Reg)) { 2078 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2079 ActiveDefsSet.erase(*AI); 2080 } else { 2081 ActiveDefsSet.erase(Reg); 2082 } 2083 } 2084 2085 // Track local defs so we can update liveins. 2086 for (const MachineOperand &MO : TIB->operands()) { 2087 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2088 continue; 2089 Register Reg = MO.getReg(); 2090 if (!Reg || Register::isVirtualRegister(Reg)) 2091 continue; 2092 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2093 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2094 } 2095 2096 HasDups = true; 2097 ++TIB; 2098 ++FIB; 2099 } 2100 2101 if (!HasDups) 2102 return false; 2103 2104 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2105 FBB->erase(FBB->begin(), FIB); 2106 2107 if (UpdateLiveIns) { 2108 recomputeLiveIns(*TBB); 2109 recomputeLiveIns(*FBB); 2110 } 2111 2112 ++NumHoist; 2113 return true; 2114 } 2115