1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/MachineSizeOpts.h" 39 #include "llvm/CodeGen/MBFIWrapper.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetOpcodes.h" 42 #include "llvm/CodeGen/TargetPassConfig.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/MC/LaneBitmask.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <cstddef> 61 #include <iterator> 62 #include <numeric> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "branch-folder" 67 68 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 69 STATISTIC(NumBranchOpts, "Number of branches optimized"); 70 STATISTIC(NumTailMerge , "Number of block tails merged"); 71 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 72 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 73 74 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 75 cl::init(cl::BOU_UNSET), cl::Hidden); 76 77 // Throttle for huge numbers of predecessors (compile speed problems) 78 static cl::opt<unsigned> 79 TailMergeThreshold("tail-merge-threshold", 80 cl::desc("Max number of predecessors to consider tail merging"), 81 cl::init(150), cl::Hidden); 82 83 // Heuristic for tail merging (and, inversely, tail duplication). 84 // TODO: This should be replaced with a target query. 85 static cl::opt<unsigned> 86 TailMergeSize("tail-merge-size", 87 cl::desc("Min number of instructions to consider tail merging"), 88 cl::init(3), cl::Hidden); 89 90 namespace { 91 92 /// BranchFolderPass - Wrap branch folder in a machine function pass. 93 class BranchFolderPass : public MachineFunctionPass { 94 public: 95 static char ID; 96 97 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 98 99 bool runOnMachineFunction(MachineFunction &MF) override; 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 AU.addRequired<MachineBlockFrequencyInfo>(); 103 AU.addRequired<MachineBranchProbabilityInfo>(); 104 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 }; 109 110 } // end anonymous namespace 111 112 char BranchFolderPass::ID = 0; 113 114 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 115 116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 117 "Control Flow Optimizer", false, false) 118 119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 120 if (skipFunction(MF.getFunction())) 121 return false; 122 123 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 124 // TailMerge can create jump into if branches that make CFG irreducible for 125 // HW that requires structurized CFG. 126 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 127 PassConfig->getEnableTailMerge(); 128 MBFIWrapper MBBFreqInfo( 129 getAnalysis<MachineBlockFrequencyInfo>()); 130 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 131 getAnalysis<MachineBranchProbabilityInfo>(), 132 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 133 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 134 MF.getSubtarget().getRegisterInfo()); 135 } 136 137 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist, 138 MBFIWrapper &FreqInfo, 139 const MachineBranchProbabilityInfo &ProbInfo, 140 ProfileSummaryInfo *PSI, unsigned MinTailLength) 141 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 142 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { 143 if (MinCommonTailLength == 0) 144 MinCommonTailLength = TailMergeSize; 145 switch (FlagEnableTailMerge) { 146 case cl::BOU_UNSET: 147 EnableTailMerge = DefaultEnableTailMerge; 148 break; 149 case cl::BOU_TRUE: EnableTailMerge = true; break; 150 case cl::BOU_FALSE: EnableTailMerge = false; break; 151 } 152 } 153 154 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 155 assert(MBB->pred_empty() && "MBB must be dead!"); 156 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 157 158 MachineFunction *MF = MBB->getParent(); 159 // drop all successors. 160 while (!MBB->succ_empty()) 161 MBB->removeSuccessor(MBB->succ_end()-1); 162 163 // Avoid matching if this pointer gets reused. 164 TriedMerging.erase(MBB); 165 166 // Update call site info. 167 std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) { 168 if (MI.shouldUpdateCallSiteInfo()) 169 MF->eraseCallSiteInfo(&MI); 170 }); 171 // Remove the block. 172 MF->erase(MBB); 173 EHScopeMembership.erase(MBB); 174 if (MLI) 175 MLI->removeBlock(MBB); 176 } 177 178 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 179 const TargetInstrInfo *tii, 180 const TargetRegisterInfo *tri, 181 MachineLoopInfo *mli, bool AfterPlacement) { 182 if (!tii) return false; 183 184 TriedMerging.clear(); 185 186 MachineRegisterInfo &MRI = MF.getRegInfo(); 187 AfterBlockPlacement = AfterPlacement; 188 TII = tii; 189 TRI = tri; 190 MLI = mli; 191 this->MRI = &MRI; 192 193 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 194 if (!UpdateLiveIns) 195 MRI.invalidateLiveness(); 196 197 bool MadeChange = false; 198 199 // Recalculate EH scope membership. 200 EHScopeMembership = getEHScopeMembership(MF); 201 202 bool MadeChangeThisIteration = true; 203 while (MadeChangeThisIteration) { 204 MadeChangeThisIteration = TailMergeBlocks(MF); 205 // No need to clean up if tail merging does not change anything after the 206 // block placement. 207 if (!AfterBlockPlacement || MadeChangeThisIteration) 208 MadeChangeThisIteration |= OptimizeBranches(MF); 209 if (EnableHoistCommonCode) 210 MadeChangeThisIteration |= HoistCommonCode(MF); 211 MadeChange |= MadeChangeThisIteration; 212 } 213 214 // See if any jump tables have become dead as the code generator 215 // did its thing. 216 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 217 if (!JTI) 218 return MadeChange; 219 220 // Walk the function to find jump tables that are live. 221 BitVector JTIsLive(JTI->getJumpTables().size()); 222 for (const MachineBasicBlock &BB : MF) { 223 for (const MachineInstr &I : BB) 224 for (const MachineOperand &Op : I.operands()) { 225 if (!Op.isJTI()) continue; 226 227 // Remember that this JT is live. 228 JTIsLive.set(Op.getIndex()); 229 } 230 } 231 232 // Finally, remove dead jump tables. This happens when the 233 // indirect jump was unreachable (and thus deleted). 234 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 235 if (!JTIsLive.test(i)) { 236 JTI->RemoveJumpTable(i); 237 MadeChange = true; 238 } 239 240 return MadeChange; 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Tail Merging of Blocks 245 //===----------------------------------------------------------------------===// 246 247 /// HashMachineInstr - Compute a hash value for MI and its operands. 248 static unsigned HashMachineInstr(const MachineInstr &MI) { 249 unsigned Hash = MI.getOpcode(); 250 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 251 const MachineOperand &Op = MI.getOperand(i); 252 253 // Merge in bits from the operand if easy. We can't use MachineOperand's 254 // hash_code here because it's not deterministic and we sort by hash value 255 // later. 256 unsigned OperandHash = 0; 257 switch (Op.getType()) { 258 case MachineOperand::MO_Register: 259 OperandHash = Op.getReg(); 260 break; 261 case MachineOperand::MO_Immediate: 262 OperandHash = Op.getImm(); 263 break; 264 case MachineOperand::MO_MachineBasicBlock: 265 OperandHash = Op.getMBB()->getNumber(); 266 break; 267 case MachineOperand::MO_FrameIndex: 268 case MachineOperand::MO_ConstantPoolIndex: 269 case MachineOperand::MO_JumpTableIndex: 270 OperandHash = Op.getIndex(); 271 break; 272 case MachineOperand::MO_GlobalAddress: 273 case MachineOperand::MO_ExternalSymbol: 274 // Global address / external symbol are too hard, don't bother, but do 275 // pull in the offset. 276 OperandHash = Op.getOffset(); 277 break; 278 default: 279 break; 280 } 281 282 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 283 } 284 return Hash; 285 } 286 287 /// HashEndOfMBB - Hash the last instruction in the MBB. 288 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 289 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 290 if (I == MBB.end()) 291 return 0; 292 293 return HashMachineInstr(*I); 294 } 295 296 /// Whether MI should be counted as an instruction when calculating common tail. 297 static bool countsAsInstruction(const MachineInstr &MI) { 298 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 299 } 300 301 /// Iterate backwards from the given iterator \p I, towards the beginning of the 302 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator 303 /// pointing to that MI. If no such MI is found, return the end iterator. 304 static MachineBasicBlock::iterator 305 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, 306 MachineBasicBlock *MBB) { 307 while (I != MBB->begin()) { 308 --I; 309 if (countsAsInstruction(*I)) 310 return I; 311 } 312 return MBB->end(); 313 } 314 315 /// Given two machine basic blocks, return the number of instructions they 316 /// actually have in common together at their end. If a common tail is found (at 317 /// least by one instruction), then iterators for the first shared instruction 318 /// in each block are returned as well. 319 /// 320 /// Non-instructions according to countsAsInstruction are ignored. 321 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 322 MachineBasicBlock *MBB2, 323 MachineBasicBlock::iterator &I1, 324 MachineBasicBlock::iterator &I2) { 325 MachineBasicBlock::iterator MBBI1 = MBB1->end(); 326 MachineBasicBlock::iterator MBBI2 = MBB2->end(); 327 328 unsigned TailLen = 0; 329 while (true) { 330 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); 331 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); 332 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) 333 break; 334 if (!MBBI1->isIdenticalTo(*MBBI2) || 335 // FIXME: This check is dubious. It's used to get around a problem where 336 // people incorrectly expect inline asm directives to remain in the same 337 // relative order. This is untenable because normal compiler 338 // optimizations (like this one) may reorder and/or merge these 339 // directives. 340 MBBI1->isInlineAsm()) { 341 break; 342 } 343 if (MBBI1->getFlag(MachineInstr::NoMerge) || 344 MBBI2->getFlag(MachineInstr::NoMerge)) 345 break; 346 ++TailLen; 347 I1 = MBBI1; 348 I2 = MBBI2; 349 } 350 351 return TailLen; 352 } 353 354 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 355 MachineBasicBlock &NewDest) { 356 if (UpdateLiveIns) { 357 // OldInst should always point to an instruction. 358 MachineBasicBlock &OldMBB = *OldInst->getParent(); 359 LiveRegs.clear(); 360 LiveRegs.addLiveOuts(OldMBB); 361 // Move backward to the place where will insert the jump. 362 MachineBasicBlock::iterator I = OldMBB.end(); 363 do { 364 --I; 365 LiveRegs.stepBackward(*I); 366 } while (I != OldInst); 367 368 // Merging the tails may have switched some undef operand to non-undef ones. 369 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 370 // register. 371 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 372 // We computed the liveins with computeLiveIn earlier and should only see 373 // full registers: 374 assert(P.LaneMask == LaneBitmask::getAll() && 375 "Can only handle full register."); 376 MCPhysReg Reg = P.PhysReg; 377 if (!LiveRegs.available(*MRI, Reg)) 378 continue; 379 DebugLoc DL; 380 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 381 } 382 } 383 384 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 385 ++NumTailMerge; 386 } 387 388 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 389 MachineBasicBlock::iterator BBI1, 390 const BasicBlock *BB) { 391 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 392 return nullptr; 393 394 MachineFunction &MF = *CurMBB.getParent(); 395 396 // Create the fall-through block. 397 MachineFunction::iterator MBBI = CurMBB.getIterator(); 398 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 399 CurMBB.getParent()->insert(++MBBI, NewMBB); 400 401 // Move all the successors of this block to the specified block. 402 NewMBB->transferSuccessors(&CurMBB); 403 404 // Add an edge from CurMBB to NewMBB for the fall-through. 405 CurMBB.addSuccessor(NewMBB); 406 407 // Splice the code over. 408 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 409 410 // NewMBB belongs to the same loop as CurMBB. 411 if (MLI) 412 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 413 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 414 415 // NewMBB inherits CurMBB's block frequency. 416 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 417 418 if (UpdateLiveIns) 419 computeAndAddLiveIns(LiveRegs, *NewMBB); 420 421 // Add the new block to the EH scope. 422 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 423 if (EHScopeI != EHScopeMembership.end()) { 424 auto n = EHScopeI->second; 425 EHScopeMembership[NewMBB] = n; 426 } 427 428 return NewMBB; 429 } 430 431 /// EstimateRuntime - Make a rough estimate for how long it will take to run 432 /// the specified code. 433 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 434 MachineBasicBlock::iterator E) { 435 unsigned Time = 0; 436 for (; I != E; ++I) { 437 if (!countsAsInstruction(*I)) 438 continue; 439 if (I->isCall()) 440 Time += 10; 441 else if (I->mayLoadOrStore()) 442 Time += 2; 443 else 444 ++Time; 445 } 446 return Time; 447 } 448 449 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 450 // branches temporarily for tail merging). In the case where CurMBB ends 451 // with a conditional branch to the next block, optimize by reversing the 452 // test and conditionally branching to SuccMBB instead. 453 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 454 const TargetInstrInfo *TII) { 455 MachineFunction *MF = CurMBB->getParent(); 456 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 457 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 458 SmallVector<MachineOperand, 4> Cond; 459 DebugLoc dl = CurMBB->findBranchDebugLoc(); 460 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 461 MachineBasicBlock *NextBB = &*I; 462 if (TBB == NextBB && !Cond.empty() && !FBB) { 463 if (!TII->reverseBranchCondition(Cond)) { 464 TII->removeBranch(*CurMBB); 465 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 466 return; 467 } 468 } 469 } 470 TII->insertBranch(*CurMBB, SuccBB, nullptr, 471 SmallVector<MachineOperand, 0>(), dl); 472 } 473 474 bool 475 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 476 if (getHash() < o.getHash()) 477 return true; 478 if (getHash() > o.getHash()) 479 return false; 480 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 481 return true; 482 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 483 return false; 484 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 485 // an object with itself. 486 #ifndef _GLIBCXX_DEBUG 487 llvm_unreachable("Predecessor appears twice"); 488 #else 489 return false; 490 #endif 491 } 492 493 /// CountTerminators - Count the number of terminators in the given 494 /// block and set I to the position of the first non-terminator, if there 495 /// is one, or MBB->end() otherwise. 496 static unsigned CountTerminators(MachineBasicBlock *MBB, 497 MachineBasicBlock::iterator &I) { 498 I = MBB->end(); 499 unsigned NumTerms = 0; 500 while (true) { 501 if (I == MBB->begin()) { 502 I = MBB->end(); 503 break; 504 } 505 --I; 506 if (!I->isTerminator()) break; 507 ++NumTerms; 508 } 509 return NumTerms; 510 } 511 512 /// A no successor, non-return block probably ends in unreachable and is cold. 513 /// Also consider a block that ends in an indirect branch to be a return block, 514 /// since many targets use plain indirect branches to return. 515 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 516 if (!MBB->succ_empty()) 517 return false; 518 if (MBB->empty()) 519 return true; 520 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 521 } 522 523 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 524 /// and decide if it would be profitable to merge those tails. Return the 525 /// length of the common tail and iterators to the first common instruction 526 /// in each block. 527 /// MBB1, MBB2 The blocks to check 528 /// MinCommonTailLength Minimum size of tail block to be merged. 529 /// CommonTailLen Out parameter to record the size of the shared tail between 530 /// MBB1 and MBB2 531 /// I1, I2 Iterator references that will be changed to point to the first 532 /// instruction in the common tail shared by MBB1,MBB2 533 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 534 /// relative to SuccBB 535 /// PredBB The layout predecessor of SuccBB, if any. 536 /// EHScopeMembership map from block to EH scope #. 537 /// AfterPlacement True if we are merging blocks after layout. Stricter 538 /// thresholds apply to prevent undoing tail-duplication. 539 static bool 540 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 541 unsigned MinCommonTailLength, unsigned &CommonTailLen, 542 MachineBasicBlock::iterator &I1, 543 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 544 MachineBasicBlock *PredBB, 545 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 546 bool AfterPlacement, 547 MBFIWrapper &MBBFreqInfo, 548 ProfileSummaryInfo *PSI) { 549 // It is never profitable to tail-merge blocks from two different EH scopes. 550 if (!EHScopeMembership.empty()) { 551 auto EHScope1 = EHScopeMembership.find(MBB1); 552 assert(EHScope1 != EHScopeMembership.end()); 553 auto EHScope2 = EHScopeMembership.find(MBB2); 554 assert(EHScope2 != EHScopeMembership.end()); 555 if (EHScope1->second != EHScope2->second) 556 return false; 557 } 558 559 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 560 if (CommonTailLen == 0) 561 return false; 562 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 563 << " and " << printMBBReference(*MBB2) << " is " 564 << CommonTailLen << '\n'); 565 566 // Move the iterators to the beginning of the MBB if we only got debug 567 // instructions before the tail. This is to avoid splitting a block when we 568 // only got debug instructions before the tail (to be invariant on -g). 569 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1) 570 I1 = MBB1->begin(); 571 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2) 572 I2 = MBB2->begin(); 573 574 bool FullBlockTail1 = I1 == MBB1->begin(); 575 bool FullBlockTail2 = I2 == MBB2->begin(); 576 577 // It's almost always profitable to merge any number of non-terminator 578 // instructions with the block that falls through into the common successor. 579 // This is true only for a single successor. For multiple successors, we are 580 // trading a conditional branch for an unconditional one. 581 // TODO: Re-visit successor size for non-layout tail merging. 582 if ((MBB1 == PredBB || MBB2 == PredBB) && 583 (!AfterPlacement || MBB1->succ_size() == 1)) { 584 MachineBasicBlock::iterator I; 585 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 586 if (CommonTailLen > NumTerms) 587 return true; 588 } 589 590 // If these are identical non-return blocks with no successors, merge them. 591 // Such blocks are typically cold calls to noreturn functions like abort, and 592 // are unlikely to become a fallthrough target after machine block placement. 593 // Tail merging these blocks is unlikely to create additional unconditional 594 // branches, and will reduce the size of this cold code. 595 if (FullBlockTail1 && FullBlockTail2 && 596 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 597 return true; 598 599 // If one of the blocks can be completely merged and happens to be in 600 // a position where the other could fall through into it, merge any number 601 // of instructions, because it can be done without a branch. 602 // TODO: If the blocks are not adjacent, move one of them so that they are? 603 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) 604 return true; 605 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) 606 return true; 607 608 // If both blocks are identical and end in a branch, merge them unless they 609 // both have a fallthrough predecessor and successor. 610 // We can only do this after block placement because it depends on whether 611 // there are fallthroughs, and we don't know until after layout. 612 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { 613 auto BothFallThrough = [](MachineBasicBlock *MBB) { 614 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 615 return false; 616 MachineFunction::iterator I(MBB); 617 MachineFunction *MF = MBB->getParent(); 618 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 619 }; 620 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 621 return true; 622 } 623 624 // If both blocks have an unconditional branch temporarily stripped out, 625 // count that as an additional common instruction for the following 626 // heuristics. This heuristic is only accurate for single-succ blocks, so to 627 // make sure that during layout merging and duplicating don't crash, we check 628 // for that when merging during layout. 629 unsigned EffectiveTailLen = CommonTailLen; 630 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 631 (MBB1->succ_size() == 1 || !AfterPlacement) && 632 !MBB1->back().isBarrier() && 633 !MBB2->back().isBarrier()) 634 ++EffectiveTailLen; 635 636 // Check if the common tail is long enough to be worthwhile. 637 if (EffectiveTailLen >= MinCommonTailLength) 638 return true; 639 640 // If we are optimizing for code size, 2 instructions in common is enough if 641 // we don't have to split a block. At worst we will be introducing 1 new 642 // branch instruction, which is likely to be smaller than the 2 643 // instructions that would be deleted in the merge. 644 MachineFunction *MF = MBB1->getParent(); 645 bool OptForSize = 646 MF->getFunction().hasOptSize() || 647 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) && 648 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo)); 649 return EffectiveTailLen >= 2 && OptForSize && 650 (FullBlockTail1 || FullBlockTail2); 651 } 652 653 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 654 unsigned MinCommonTailLength, 655 MachineBasicBlock *SuccBB, 656 MachineBasicBlock *PredBB) { 657 unsigned maxCommonTailLength = 0U; 658 SameTails.clear(); 659 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 660 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 661 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 662 B = MergePotentials.begin(); 663 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 664 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 665 unsigned CommonTailLen; 666 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 667 MinCommonTailLength, 668 CommonTailLen, TrialBBI1, TrialBBI2, 669 SuccBB, PredBB, 670 EHScopeMembership, 671 AfterBlockPlacement, MBBFreqInfo, PSI)) { 672 if (CommonTailLen > maxCommonTailLength) { 673 SameTails.clear(); 674 maxCommonTailLength = CommonTailLen; 675 HighestMPIter = CurMPIter; 676 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 677 } 678 if (HighestMPIter == CurMPIter && 679 CommonTailLen == maxCommonTailLength) 680 SameTails.push_back(SameTailElt(I, TrialBBI2)); 681 } 682 if (I == B) 683 break; 684 } 685 } 686 return maxCommonTailLength; 687 } 688 689 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 690 MachineBasicBlock *SuccBB, 691 MachineBasicBlock *PredBB) { 692 MPIterator CurMPIter, B; 693 for (CurMPIter = std::prev(MergePotentials.end()), 694 B = MergePotentials.begin(); 695 CurMPIter->getHash() == CurHash; --CurMPIter) { 696 // Put the unconditional branch back, if we need one. 697 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 698 if (SuccBB && CurMBB != PredBB) 699 FixTail(CurMBB, SuccBB, TII); 700 if (CurMPIter == B) 701 break; 702 } 703 if (CurMPIter->getHash() != CurHash) 704 CurMPIter++; 705 MergePotentials.erase(CurMPIter, MergePotentials.end()); 706 } 707 708 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 709 MachineBasicBlock *SuccBB, 710 unsigned maxCommonTailLength, 711 unsigned &commonTailIndex) { 712 commonTailIndex = 0; 713 unsigned TimeEstimate = ~0U; 714 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 715 // Use PredBB if possible; that doesn't require a new branch. 716 if (SameTails[i].getBlock() == PredBB) { 717 commonTailIndex = i; 718 break; 719 } 720 // Otherwise, make a (fairly bogus) choice based on estimate of 721 // how long it will take the various blocks to execute. 722 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 723 SameTails[i].getTailStartPos()); 724 if (t <= TimeEstimate) { 725 TimeEstimate = t; 726 commonTailIndex = i; 727 } 728 } 729 730 MachineBasicBlock::iterator BBI = 731 SameTails[commonTailIndex].getTailStartPos(); 732 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 733 734 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 735 << maxCommonTailLength); 736 737 // If the split block unconditionally falls-thru to SuccBB, it will be 738 // merged. In control flow terms it should then take SuccBB's name. e.g. If 739 // SuccBB is an inner loop, the common tail is still part of the inner loop. 740 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 741 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 742 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 743 if (!newMBB) { 744 LLVM_DEBUG(dbgs() << "... failed!"); 745 return false; 746 } 747 748 SameTails[commonTailIndex].setBlock(newMBB); 749 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 750 751 // If we split PredBB, newMBB is the new predecessor. 752 if (PredBB == MBB) 753 PredBB = newMBB; 754 755 return true; 756 } 757 758 static void 759 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 760 MachineBasicBlock &MBBCommon) { 761 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 762 // Note CommonTailLen does not necessarily matches the size of 763 // the common BB nor all its instructions because of debug 764 // instructions differences. 765 unsigned CommonTailLen = 0; 766 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 767 ++CommonTailLen; 768 769 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 770 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 771 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 772 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 773 774 while (CommonTailLen--) { 775 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 776 (void)MBBIE; 777 778 if (!countsAsInstruction(*MBBI)) { 779 ++MBBI; 780 continue; 781 } 782 783 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 784 ++MBBICommon; 785 786 assert(MBBICommon != MBBIECommon && 787 "Reached BB end within common tail length!"); 788 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 789 790 // Merge MMOs from memory operations in the common block. 791 if (MBBICommon->mayLoadOrStore()) 792 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 793 // Drop undef flags if they aren't present in all merged instructions. 794 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 795 MachineOperand &MO = MBBICommon->getOperand(I); 796 if (MO.isReg() && MO.isUndef()) { 797 const MachineOperand &OtherMO = MBBI->getOperand(I); 798 if (!OtherMO.isUndef()) 799 MO.setIsUndef(false); 800 } 801 } 802 803 ++MBBI; 804 ++MBBICommon; 805 } 806 } 807 808 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 809 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 810 811 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 812 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 813 if (i != commonTailIndex) { 814 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 815 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 816 } else { 817 assert(SameTails[i].getTailStartPos() == MBB->begin() && 818 "MBB is not a common tail only block"); 819 } 820 } 821 822 for (auto &MI : *MBB) { 823 if (!countsAsInstruction(MI)) 824 continue; 825 DebugLoc DL = MI.getDebugLoc(); 826 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 827 if (i == commonTailIndex) 828 continue; 829 830 auto &Pos = NextCommonInsts[i]; 831 assert(Pos != SameTails[i].getBlock()->end() && 832 "Reached BB end within common tail"); 833 while (!countsAsInstruction(*Pos)) { 834 ++Pos; 835 assert(Pos != SameTails[i].getBlock()->end() && 836 "Reached BB end within common tail"); 837 } 838 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 839 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 840 NextCommonInsts[i] = ++Pos; 841 } 842 MI.setDebugLoc(DL); 843 } 844 845 if (UpdateLiveIns) { 846 LivePhysRegs NewLiveIns(*TRI); 847 computeLiveIns(NewLiveIns, *MBB); 848 LiveRegs.init(*TRI); 849 850 // The flag merging may lead to some register uses no longer using the 851 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 852 for (MachineBasicBlock *Pred : MBB->predecessors()) { 853 LiveRegs.clear(); 854 LiveRegs.addLiveOuts(*Pred); 855 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 856 for (Register Reg : NewLiveIns) { 857 if (!LiveRegs.available(*MRI, Reg)) 858 continue; 859 DebugLoc DL; 860 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 861 Reg); 862 } 863 } 864 865 MBB->clearLiveIns(); 866 addLiveIns(*MBB, NewLiveIns); 867 } 868 } 869 870 // See if any of the blocks in MergePotentials (which all have SuccBB as a 871 // successor, or all have no successor if it is null) can be tail-merged. 872 // If there is a successor, any blocks in MergePotentials that are not 873 // tail-merged and are not immediately before Succ must have an unconditional 874 // branch to Succ added (but the predecessor/successor lists need no 875 // adjustment). The lone predecessor of Succ that falls through into Succ, 876 // if any, is given in PredBB. 877 // MinCommonTailLength - Except for the special cases below, tail-merge if 878 // there are at least this many instructions in common. 879 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 880 MachineBasicBlock *PredBB, 881 unsigned MinCommonTailLength) { 882 bool MadeChange = false; 883 884 LLVM_DEBUG( 885 dbgs() << "\nTryTailMergeBlocks: "; 886 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 887 << printMBBReference(*MergePotentials[i].getBlock()) 888 << (i == e - 1 ? "" : ", "); 889 dbgs() << "\n"; if (SuccBB) { 890 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 891 if (PredBB) 892 dbgs() << " which has fall-through from " 893 << printMBBReference(*PredBB) << "\n"; 894 } dbgs() << "Looking for common tails of at least " 895 << MinCommonTailLength << " instruction" 896 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 897 898 // Sort by hash value so that blocks with identical end sequences sort 899 // together. 900 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 901 902 // Walk through equivalence sets looking for actual exact matches. 903 while (MergePotentials.size() > 1) { 904 unsigned CurHash = MergePotentials.back().getHash(); 905 906 // Build SameTails, identifying the set of blocks with this hash code 907 // and with the maximum number of instructions in common. 908 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 909 MinCommonTailLength, 910 SuccBB, PredBB); 911 912 // If we didn't find any pair that has at least MinCommonTailLength 913 // instructions in common, remove all blocks with this hash code and retry. 914 if (SameTails.empty()) { 915 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 916 continue; 917 } 918 919 // If one of the blocks is the entire common tail (and is not the entry 920 // block/an EH pad, which we can't jump to), we can treat all blocks with 921 // this same tail at once. Use PredBB if that is one of the possibilities, 922 // as that will not introduce any extra branches. 923 MachineBasicBlock *EntryBB = 924 &MergePotentials.front().getBlock()->getParent()->front(); 925 unsigned commonTailIndex = SameTails.size(); 926 // If there are two blocks, check to see if one can be made to fall through 927 // into the other. 928 if (SameTails.size() == 2 && 929 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 930 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) 931 commonTailIndex = 1; 932 else if (SameTails.size() == 2 && 933 SameTails[1].getBlock()->isLayoutSuccessor( 934 SameTails[0].getBlock()) && 935 SameTails[0].tailIsWholeBlock() && 936 !SameTails[0].getBlock()->isEHPad()) 937 commonTailIndex = 0; 938 else { 939 // Otherwise just pick one, favoring the fall-through predecessor if 940 // there is one. 941 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 942 MachineBasicBlock *MBB = SameTails[i].getBlock(); 943 if ((MBB == EntryBB || MBB->isEHPad()) && 944 SameTails[i].tailIsWholeBlock()) 945 continue; 946 if (MBB == PredBB) { 947 commonTailIndex = i; 948 break; 949 } 950 if (SameTails[i].tailIsWholeBlock()) 951 commonTailIndex = i; 952 } 953 } 954 955 if (commonTailIndex == SameTails.size() || 956 (SameTails[commonTailIndex].getBlock() == PredBB && 957 !SameTails[commonTailIndex].tailIsWholeBlock())) { 958 // None of the blocks consist entirely of the common tail. 959 // Split a block so that one does. 960 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 961 maxCommonTailLength, commonTailIndex)) { 962 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 963 continue; 964 } 965 } 966 967 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 968 969 // Recompute common tail MBB's edge weights and block frequency. 970 setCommonTailEdgeWeights(*MBB); 971 972 // Merge debug locations, MMOs and undef flags across identical instructions 973 // for common tail. 974 mergeCommonTails(commonTailIndex); 975 976 // MBB is common tail. Adjust all other BB's to jump to this one. 977 // Traversal must be forwards so erases work. 978 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 979 << " for "); 980 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 981 if (commonTailIndex == i) 982 continue; 983 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 984 << (i == e - 1 ? "" : ", ")); 985 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 986 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 987 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 988 MergePotentials.erase(SameTails[i].getMPIter()); 989 } 990 LLVM_DEBUG(dbgs() << "\n"); 991 // We leave commonTailIndex in the worklist in case there are other blocks 992 // that match it with a smaller number of instructions. 993 MadeChange = true; 994 } 995 return MadeChange; 996 } 997 998 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 999 bool MadeChange = false; 1000 if (!EnableTailMerge) 1001 return MadeChange; 1002 1003 // First find blocks with no successors. 1004 // Block placement may create new tail merging opportunities for these blocks. 1005 MergePotentials.clear(); 1006 for (MachineBasicBlock &MBB : MF) { 1007 if (MergePotentials.size() == TailMergeThreshold) 1008 break; 1009 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1010 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1011 } 1012 1013 // If this is a large problem, avoid visiting the same basic blocks 1014 // multiple times. 1015 if (MergePotentials.size() == TailMergeThreshold) 1016 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1017 TriedMerging.insert(MergePotentials[i].getBlock()); 1018 1019 // See if we can do any tail merging on those. 1020 if (MergePotentials.size() >= 2) 1021 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1022 1023 // Look at blocks (IBB) with multiple predecessors (PBB). 1024 // We change each predecessor to a canonical form, by 1025 // (1) temporarily removing any unconditional branch from the predecessor 1026 // to IBB, and 1027 // (2) alter conditional branches so they branch to the other block 1028 // not IBB; this may require adding back an unconditional branch to IBB 1029 // later, where there wasn't one coming in. E.g. 1030 // Bcc IBB 1031 // fallthrough to QBB 1032 // here becomes 1033 // Bncc QBB 1034 // with a conceptual B to IBB after that, which never actually exists. 1035 // With those changes, we see whether the predecessors' tails match, 1036 // and merge them if so. We change things out of canonical form and 1037 // back to the way they were later in the process. (OptimizeBranches 1038 // would undo some of this, but we can't use it, because we'd get into 1039 // a compile-time infinite loop repeatedly doing and undoing the same 1040 // transformations.) 1041 1042 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1043 I != E; ++I) { 1044 if (I->pred_size() < 2) continue; 1045 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1046 MachineBasicBlock *IBB = &*I; 1047 MachineBasicBlock *PredBB = &*std::prev(I); 1048 MergePotentials.clear(); 1049 MachineLoop *ML; 1050 1051 // Bail if merging after placement and IBB is the loop header because 1052 // -- If merging predecessors that belong to the same loop as IBB, the 1053 // common tail of merged predecessors may become the loop top if block 1054 // placement is called again and the predecessors may branch to this common 1055 // tail and require more branches. This can be relaxed if 1056 // MachineBlockPlacement::findBestLoopTop is more flexible. 1057 // --If merging predecessors that do not belong to the same loop as IBB, the 1058 // loop info of IBB's loop and the other loops may be affected. Calling the 1059 // block placement again may make big change to the layout and eliminate the 1060 // reason to do tail merging here. 1061 if (AfterBlockPlacement && MLI) { 1062 ML = MLI->getLoopFor(IBB); 1063 if (ML && IBB == ML->getHeader()) 1064 continue; 1065 } 1066 1067 for (MachineBasicBlock *PBB : I->predecessors()) { 1068 if (MergePotentials.size() == TailMergeThreshold) 1069 break; 1070 1071 if (TriedMerging.count(PBB)) 1072 continue; 1073 1074 // Skip blocks that loop to themselves, can't tail merge these. 1075 if (PBB == IBB) 1076 continue; 1077 1078 // Visit each predecessor only once. 1079 if (!UniquePreds.insert(PBB).second) 1080 continue; 1081 1082 // Skip blocks which may jump to a landing pad or jump from an asm blob. 1083 // Can't tail merge these. 1084 if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr()) 1085 continue; 1086 1087 // After block placement, only consider predecessors that belong to the 1088 // same loop as IBB. The reason is the same as above when skipping loop 1089 // header. 1090 if (AfterBlockPlacement && MLI) 1091 if (ML != MLI->getLoopFor(PBB)) 1092 continue; 1093 1094 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1095 SmallVector<MachineOperand, 4> Cond; 1096 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1097 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1098 // branch. 1099 SmallVector<MachineOperand, 4> NewCond(Cond); 1100 if (!Cond.empty() && TBB == IBB) { 1101 if (TII->reverseBranchCondition(NewCond)) 1102 continue; 1103 // This is the QBB case described above 1104 if (!FBB) { 1105 auto Next = ++PBB->getIterator(); 1106 if (Next != MF.end()) 1107 FBB = &*Next; 1108 } 1109 } 1110 1111 // Remove the unconditional branch at the end, if any. 1112 if (TBB && (Cond.empty() || FBB)) { 1113 DebugLoc dl = PBB->findBranchDebugLoc(); 1114 TII->removeBranch(*PBB); 1115 if (!Cond.empty()) 1116 // reinsert conditional branch only, for now 1117 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1118 NewCond, dl); 1119 } 1120 1121 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1122 } 1123 } 1124 1125 // If this is a large problem, avoid visiting the same basic blocks multiple 1126 // times. 1127 if (MergePotentials.size() == TailMergeThreshold) 1128 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1129 TriedMerging.insert(MergePotentials[i].getBlock()); 1130 1131 if (MergePotentials.size() >= 2) 1132 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1133 1134 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1135 // result of removing blocks in TryTailMergeBlocks. 1136 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1137 if (MergePotentials.size() == 1 && 1138 MergePotentials.begin()->getBlock() != PredBB) 1139 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1140 } 1141 1142 return MadeChange; 1143 } 1144 1145 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1146 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1147 BlockFrequency AccumulatedMBBFreq; 1148 1149 // Aggregate edge frequency of successor edge j: 1150 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1151 // where bb is a basic block that is in SameTails. 1152 for (const auto &Src : SameTails) { 1153 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1154 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1155 AccumulatedMBBFreq += BlockFreq; 1156 1157 // It is not necessary to recompute edge weights if TailBB has less than two 1158 // successors. 1159 if (TailMBB.succ_size() <= 1) 1160 continue; 1161 1162 auto EdgeFreq = EdgeFreqLs.begin(); 1163 1164 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1165 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1166 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1167 } 1168 1169 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1170 1171 if (TailMBB.succ_size() <= 1) 1172 return; 1173 1174 auto SumEdgeFreq = 1175 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1176 .getFrequency(); 1177 auto EdgeFreq = EdgeFreqLs.begin(); 1178 1179 if (SumEdgeFreq > 0) { 1180 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1181 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1182 auto Prob = BranchProbability::getBranchProbability( 1183 EdgeFreq->getFrequency(), SumEdgeFreq); 1184 TailMBB.setSuccProbability(SuccI, Prob); 1185 } 1186 } 1187 } 1188 1189 //===----------------------------------------------------------------------===// 1190 // Branch Optimization 1191 //===----------------------------------------------------------------------===// 1192 1193 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1194 bool MadeChange = false; 1195 1196 // Make sure blocks are numbered in order 1197 MF.RenumberBlocks(); 1198 // Renumbering blocks alters EH scope membership, recalculate it. 1199 EHScopeMembership = getEHScopeMembership(MF); 1200 1201 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1202 I != E; ) { 1203 MachineBasicBlock *MBB = &*I++; 1204 MadeChange |= OptimizeBlock(MBB); 1205 1206 // If it is dead, remove it. 1207 if (MBB->pred_empty()) { 1208 RemoveDeadBlock(MBB); 1209 MadeChange = true; 1210 ++NumDeadBlocks; 1211 } 1212 } 1213 1214 return MadeChange; 1215 } 1216 1217 // Blocks should be considered empty if they contain only debug info; 1218 // else the debug info would affect codegen. 1219 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1220 return MBB->getFirstNonDebugInstr() == MBB->end(); 1221 } 1222 1223 // Blocks with only debug info and branches should be considered the same 1224 // as blocks with only branches. 1225 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1226 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1227 assert(I != MBB->end() && "empty block!"); 1228 return I->isBranch(); 1229 } 1230 1231 /// IsBetterFallthrough - Return true if it would be clearly better to 1232 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1233 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1234 /// result in infinite loops. 1235 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1236 MachineBasicBlock *MBB2) { 1237 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1238 1239 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1240 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1241 // optimize branches that branch to either a return block or an assert block 1242 // into a fallthrough to the return. 1243 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1244 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1245 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1246 return false; 1247 1248 // If there is a clear successor ordering we make sure that one block 1249 // will fall through to the next 1250 if (MBB1->isSuccessor(MBB2)) return true; 1251 if (MBB2->isSuccessor(MBB1)) return false; 1252 1253 return MBB2I->isCall() && !MBB1I->isCall(); 1254 } 1255 1256 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1257 /// instructions on the block. 1258 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1259 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1260 if (I != MBB.end() && I->isBranch()) 1261 return I->getDebugLoc(); 1262 return DebugLoc(); 1263 } 1264 1265 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1266 MachineBasicBlock &MBB, 1267 MachineBasicBlock &PredMBB) { 1268 auto InsertBefore = PredMBB.getFirstTerminator(); 1269 for (MachineInstr &MI : MBB.instrs()) 1270 if (MI.isDebugInstr()) { 1271 TII->duplicate(PredMBB, InsertBefore, MI); 1272 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1273 << MI); 1274 } 1275 } 1276 1277 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1278 MachineBasicBlock &MBB, 1279 MachineBasicBlock &SuccMBB) { 1280 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1281 for (MachineInstr &MI : MBB.instrs()) 1282 if (MI.isDebugInstr()) { 1283 TII->duplicate(SuccMBB, InsertBefore, MI); 1284 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1285 << MI); 1286 } 1287 } 1288 1289 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1290 // a basic block is removed we would lose the debug information unless we have 1291 // copied the information to a predecessor/successor. 1292 // 1293 // TODO: This function only handles some simple cases. An alternative would be 1294 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1295 // branch folding. 1296 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1297 MachineBasicBlock &MBB) { 1298 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1299 // If this MBB is the only predecessor of a successor it is legal to copy 1300 // DBG_VALUE instructions to the beginning of the successor. 1301 for (MachineBasicBlock *SuccBB : MBB.successors()) 1302 if (SuccBB->pred_size() == 1) 1303 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1304 // If this MBB is the only successor of a predecessor it is legal to copy the 1305 // DBG_VALUE instructions to the end of the predecessor (just before the 1306 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1307 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1308 if (PredBB->succ_size() == 1) 1309 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1310 } 1311 1312 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1313 bool MadeChange = false; 1314 MachineFunction &MF = *MBB->getParent(); 1315 ReoptimizeBlock: 1316 1317 MachineFunction::iterator FallThrough = MBB->getIterator(); 1318 ++FallThrough; 1319 1320 // Make sure MBB and FallThrough belong to the same EH scope. 1321 bool SameEHScope = true; 1322 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1323 auto MBBEHScope = EHScopeMembership.find(MBB); 1324 assert(MBBEHScope != EHScopeMembership.end()); 1325 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1326 assert(FallThroughEHScope != EHScopeMembership.end()); 1327 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1328 } 1329 1330 // Analyze the branch in the current block. As a side-effect, this may cause 1331 // the block to become empty. 1332 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1333 SmallVector<MachineOperand, 4> CurCond; 1334 bool CurUnAnalyzable = 1335 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1336 1337 // If this block is empty, make everyone use its fall-through, not the block 1338 // explicitly. Landing pads should not do this since the landing-pad table 1339 // points to this block. Blocks with their addresses taken shouldn't be 1340 // optimized away. 1341 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1342 SameEHScope) { 1343 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1344 // Dead block? Leave for cleanup later. 1345 if (MBB->pred_empty()) return MadeChange; 1346 1347 if (FallThrough == MF.end()) { 1348 // TODO: Simplify preds to not branch here if possible! 1349 } else if (FallThrough->isEHPad()) { 1350 // Don't rewrite to a landing pad fallthough. That could lead to the case 1351 // where a BB jumps to more than one landing pad. 1352 // TODO: Is it ever worth rewriting predecessors which don't already 1353 // jump to a landing pad, and so can safely jump to the fallthrough? 1354 } else if (MBB->isSuccessor(&*FallThrough)) { 1355 // Rewrite all predecessors of the old block to go to the fallthrough 1356 // instead. 1357 while (!MBB->pred_empty()) { 1358 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1359 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1360 } 1361 // If MBB was the target of a jump table, update jump tables to go to the 1362 // fallthrough instead. 1363 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1364 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1365 MadeChange = true; 1366 } 1367 return MadeChange; 1368 } 1369 1370 // Check to see if we can simplify the terminator of the block before this 1371 // one. 1372 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1373 1374 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1375 SmallVector<MachineOperand, 4> PriorCond; 1376 bool PriorUnAnalyzable = 1377 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1378 if (!PriorUnAnalyzable) { 1379 // If the previous branch is conditional and both conditions go to the same 1380 // destination, remove the branch, replacing it with an unconditional one or 1381 // a fall-through. 1382 if (PriorTBB && PriorTBB == PriorFBB) { 1383 DebugLoc dl = getBranchDebugLoc(PrevBB); 1384 TII->removeBranch(PrevBB); 1385 PriorCond.clear(); 1386 if (PriorTBB != MBB) 1387 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1388 MadeChange = true; 1389 ++NumBranchOpts; 1390 goto ReoptimizeBlock; 1391 } 1392 1393 // If the previous block unconditionally falls through to this block and 1394 // this block has no other predecessors, move the contents of this block 1395 // into the prior block. This doesn't usually happen when SimplifyCFG 1396 // has been used, but it can happen if tail merging splits a fall-through 1397 // predecessor of a block. 1398 // This has to check PrevBB->succ_size() because EH edges are ignored by 1399 // analyzeBranch. 1400 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1401 PrevBB.succ_size() == 1 && 1402 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1403 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1404 << "From MBB: " << *MBB); 1405 // Remove redundant DBG_VALUEs first. 1406 if (!PrevBB.empty()) { 1407 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1408 --PrevBBIter; 1409 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1410 // Check if DBG_VALUE at the end of PrevBB is identical to the 1411 // DBG_VALUE at the beginning of MBB. 1412 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1413 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1414 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1415 break; 1416 MachineInstr &DuplicateDbg = *MBBIter; 1417 ++MBBIter; -- PrevBBIter; 1418 DuplicateDbg.eraseFromParent(); 1419 } 1420 } 1421 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1422 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1423 assert(PrevBB.succ_empty()); 1424 PrevBB.transferSuccessors(MBB); 1425 MadeChange = true; 1426 return MadeChange; 1427 } 1428 1429 // If the previous branch *only* branches to *this* block (conditional or 1430 // not) remove the branch. 1431 if (PriorTBB == MBB && !PriorFBB) { 1432 TII->removeBranch(PrevBB); 1433 MadeChange = true; 1434 ++NumBranchOpts; 1435 goto ReoptimizeBlock; 1436 } 1437 1438 // If the prior block branches somewhere else on the condition and here if 1439 // the condition is false, remove the uncond second branch. 1440 if (PriorFBB == MBB) { 1441 DebugLoc dl = getBranchDebugLoc(PrevBB); 1442 TII->removeBranch(PrevBB); 1443 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1444 MadeChange = true; 1445 ++NumBranchOpts; 1446 goto ReoptimizeBlock; 1447 } 1448 1449 // If the prior block branches here on true and somewhere else on false, and 1450 // if the branch condition is reversible, reverse the branch to create a 1451 // fall-through. 1452 if (PriorTBB == MBB) { 1453 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1454 if (!TII->reverseBranchCondition(NewPriorCond)) { 1455 DebugLoc dl = getBranchDebugLoc(PrevBB); 1456 TII->removeBranch(PrevBB); 1457 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1458 MadeChange = true; 1459 ++NumBranchOpts; 1460 goto ReoptimizeBlock; 1461 } 1462 } 1463 1464 // If this block has no successors (e.g. it is a return block or ends with 1465 // a call to a no-return function like abort or __cxa_throw) and if the pred 1466 // falls through into this block, and if it would otherwise fall through 1467 // into the block after this, move this block to the end of the function. 1468 // 1469 // We consider it more likely that execution will stay in the function (e.g. 1470 // due to loops) than it is to exit it. This asserts in loops etc, moving 1471 // the assert condition out of the loop body. 1472 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1473 MachineFunction::iterator(PriorTBB) == FallThrough && 1474 !MBB->canFallThrough()) { 1475 bool DoTransform = true; 1476 1477 // We have to be careful that the succs of PredBB aren't both no-successor 1478 // blocks. If neither have successors and if PredBB is the second from 1479 // last block in the function, we'd just keep swapping the two blocks for 1480 // last. Only do the swap if one is clearly better to fall through than 1481 // the other. 1482 if (FallThrough == --MF.end() && 1483 !IsBetterFallthrough(PriorTBB, MBB)) 1484 DoTransform = false; 1485 1486 if (DoTransform) { 1487 // Reverse the branch so we will fall through on the previous true cond. 1488 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1489 if (!TII->reverseBranchCondition(NewPriorCond)) { 1490 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1491 << "To make fallthrough to: " << *PriorTBB << "\n"); 1492 1493 DebugLoc dl = getBranchDebugLoc(PrevBB); 1494 TII->removeBranch(PrevBB); 1495 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1496 1497 // Move this block to the end of the function. 1498 MBB->moveAfter(&MF.back()); 1499 MadeChange = true; 1500 ++NumBranchOpts; 1501 return MadeChange; 1502 } 1503 } 1504 } 1505 } 1506 1507 bool OptForSize = 1508 MF.getFunction().hasOptSize() || 1509 llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo); 1510 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) { 1511 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1512 // direction, thereby defeating careful block placement and regressing 1513 // performance. Therefore, only consider this for optsize functions. 1514 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1515 if (TII->isUnconditionalTailCall(TailCall)) { 1516 MachineBasicBlock *Pred = *MBB->pred_begin(); 1517 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1518 SmallVector<MachineOperand, 4> PredCond; 1519 bool PredAnalyzable = 1520 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1521 1522 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1523 PredTBB != PredFBB) { 1524 // The predecessor has a conditional branch to this block which consists 1525 // of only a tail call. Try to fold the tail call into the conditional 1526 // branch. 1527 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1528 // TODO: It would be nice if analyzeBranch() could provide a pointer 1529 // to the branch instruction so replaceBranchWithTailCall() doesn't 1530 // have to search for it. 1531 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1532 ++NumTailCalls; 1533 Pred->removeSuccessor(MBB); 1534 MadeChange = true; 1535 return MadeChange; 1536 } 1537 } 1538 // If the predecessor is falling through to this block, we could reverse 1539 // the branch condition and fold the tail call into that. However, after 1540 // that we might have to re-arrange the CFG to fall through to the other 1541 // block and there is a high risk of regressing code size rather than 1542 // improving it. 1543 } 1544 } 1545 1546 if (!CurUnAnalyzable) { 1547 // If this is a two-way branch, and the FBB branches to this block, reverse 1548 // the condition so the single-basic-block loop is faster. Instead of: 1549 // Loop: xxx; jcc Out; jmp Loop 1550 // we want: 1551 // Loop: xxx; jncc Loop; jmp Out 1552 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1553 SmallVector<MachineOperand, 4> NewCond(CurCond); 1554 if (!TII->reverseBranchCondition(NewCond)) { 1555 DebugLoc dl = getBranchDebugLoc(*MBB); 1556 TII->removeBranch(*MBB); 1557 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1558 MadeChange = true; 1559 ++NumBranchOpts; 1560 goto ReoptimizeBlock; 1561 } 1562 } 1563 1564 // If this branch is the only thing in its block, see if we can forward 1565 // other blocks across it. 1566 if (CurTBB && CurCond.empty() && !CurFBB && 1567 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1568 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1569 DebugLoc dl = getBranchDebugLoc(*MBB); 1570 // This block may contain just an unconditional branch. Because there can 1571 // be 'non-branch terminators' in the block, try removing the branch and 1572 // then seeing if the block is empty. 1573 TII->removeBranch(*MBB); 1574 // If the only things remaining in the block are debug info, remove these 1575 // as well, so this will behave the same as an empty block in non-debug 1576 // mode. 1577 if (IsEmptyBlock(MBB)) { 1578 // Make the block empty, losing the debug info (we could probably 1579 // improve this in some cases.) 1580 MBB->erase(MBB->begin(), MBB->end()); 1581 } 1582 // If this block is just an unconditional branch to CurTBB, we can 1583 // usually completely eliminate the block. The only case we cannot 1584 // completely eliminate the block is when the block before this one 1585 // falls through into MBB and we can't understand the prior block's branch 1586 // condition. 1587 if (MBB->empty()) { 1588 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1589 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1590 !PrevBB.isSuccessor(MBB)) { 1591 // If the prior block falls through into us, turn it into an 1592 // explicit branch to us to make updates simpler. 1593 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1594 PriorTBB != MBB && PriorFBB != MBB) { 1595 if (!PriorTBB) { 1596 assert(PriorCond.empty() && !PriorFBB && 1597 "Bad branch analysis"); 1598 PriorTBB = MBB; 1599 } else { 1600 assert(!PriorFBB && "Machine CFG out of date!"); 1601 PriorFBB = MBB; 1602 } 1603 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1604 TII->removeBranch(PrevBB); 1605 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1606 } 1607 1608 // Iterate through all the predecessors, revectoring each in-turn. 1609 size_t PI = 0; 1610 bool DidChange = false; 1611 bool HasBranchToSelf = false; 1612 while(PI != MBB->pred_size()) { 1613 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1614 if (PMBB == MBB) { 1615 // If this block has an uncond branch to itself, leave it. 1616 ++PI; 1617 HasBranchToSelf = true; 1618 } else { 1619 DidChange = true; 1620 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1621 // If this change resulted in PMBB ending in a conditional 1622 // branch where both conditions go to the same destination, 1623 // change this to an unconditional branch. 1624 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1625 SmallVector<MachineOperand, 4> NewCurCond; 1626 bool NewCurUnAnalyzable = TII->analyzeBranch( 1627 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1628 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1629 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1630 TII->removeBranch(*PMBB); 1631 NewCurCond.clear(); 1632 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1633 MadeChange = true; 1634 ++NumBranchOpts; 1635 } 1636 } 1637 } 1638 1639 // Change any jumptables to go to the new MBB. 1640 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1641 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1642 if (DidChange) { 1643 ++NumBranchOpts; 1644 MadeChange = true; 1645 if (!HasBranchToSelf) return MadeChange; 1646 } 1647 } 1648 } 1649 1650 // Add the branch back if the block is more than just an uncond branch. 1651 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1652 } 1653 } 1654 1655 // If the prior block doesn't fall through into this block, and if this 1656 // block doesn't fall through into some other block, see if we can find a 1657 // place to move this block where a fall-through will happen. 1658 if (!PrevBB.canFallThrough()) { 1659 // Now we know that there was no fall-through into this block, check to 1660 // see if it has a fall-through into its successor. 1661 bool CurFallsThru = MBB->canFallThrough(); 1662 1663 if (!MBB->isEHPad()) { 1664 // Check all the predecessors of this block. If one of them has no fall 1665 // throughs, and analyzeBranch thinks it _could_ fallthrough to this 1666 // block, move this block right after it. 1667 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1668 // Analyze the branch at the end of the pred. 1669 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1670 SmallVector<MachineOperand, 4> PredCond; 1671 if (PredBB != MBB && !PredBB->canFallThrough() && 1672 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1673 (PredTBB == MBB || PredFBB == MBB) && 1674 (!CurFallsThru || !CurTBB || !CurFBB) && 1675 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1676 // If the current block doesn't fall through, just move it. 1677 // If the current block can fall through and does not end with a 1678 // conditional branch, we need to append an unconditional jump to 1679 // the (current) next block. To avoid a possible compile-time 1680 // infinite loop, move blocks only backward in this case. 1681 // Also, if there are already 2 branches here, we cannot add a third; 1682 // this means we have the case 1683 // Bcc next 1684 // B elsewhere 1685 // next: 1686 if (CurFallsThru) { 1687 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1688 CurCond.clear(); 1689 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1690 } 1691 MBB->moveAfter(PredBB); 1692 MadeChange = true; 1693 goto ReoptimizeBlock; 1694 } 1695 } 1696 } 1697 1698 if (!CurFallsThru) { 1699 // Check analyzable branch-successors to see if we can move this block 1700 // before one. 1701 if (!CurUnAnalyzable) { 1702 for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) { 1703 if (!SuccBB) 1704 continue; 1705 // Analyze the branch at the end of the block before the succ. 1706 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1707 1708 // If this block doesn't already fall-through to that successor, and 1709 // if the succ doesn't already have a block that can fall through into 1710 // it, we can arrange for the fallthrough to happen. 1711 if (SuccBB != MBB && &*SuccPrev != MBB && 1712 !SuccPrev->canFallThrough()) { 1713 MBB->moveBefore(SuccBB); 1714 MadeChange = true; 1715 goto ReoptimizeBlock; 1716 } 1717 } 1718 } 1719 1720 // Okay, there is no really great place to put this block. If, however, 1721 // the block before this one would be a fall-through if this block were 1722 // removed, move this block to the end of the function. There is no real 1723 // advantage in "falling through" to an EH block, so we don't want to 1724 // perform this transformation for that case. 1725 // 1726 // Also, Windows EH introduced the possibility of an arbitrary number of 1727 // successors to a given block. The analyzeBranch call does not consider 1728 // exception handling and so we can get in a state where a block 1729 // containing a call is followed by multiple EH blocks that would be 1730 // rotated infinitely at the end of the function if the transformation 1731 // below were performed for EH "FallThrough" blocks. Therefore, even if 1732 // that appears not to be happening anymore, we should assume that it is 1733 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1734 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1735 SmallVector<MachineOperand, 4> PrevCond; 1736 if (FallThrough != MF.end() && 1737 !FallThrough->isEHPad() && 1738 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1739 PrevBB.isSuccessor(&*FallThrough)) { 1740 MBB->moveAfter(&MF.back()); 1741 MadeChange = true; 1742 return MadeChange; 1743 } 1744 } 1745 } 1746 1747 return MadeChange; 1748 } 1749 1750 //===----------------------------------------------------------------------===// 1751 // Hoist Common Code 1752 //===----------------------------------------------------------------------===// 1753 1754 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1755 bool MadeChange = false; 1756 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1757 MachineBasicBlock *MBB = &*I++; 1758 MadeChange |= HoistCommonCodeInSuccs(MBB); 1759 } 1760 1761 return MadeChange; 1762 } 1763 1764 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1765 /// its 'true' successor. 1766 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1767 MachineBasicBlock *TrueBB) { 1768 for (MachineBasicBlock *SuccBB : BB->successors()) 1769 if (SuccBB != TrueBB) 1770 return SuccBB; 1771 return nullptr; 1772 } 1773 1774 template <class Container> 1775 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI, 1776 Container &Set) { 1777 if (Reg.isPhysical()) { 1778 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1779 Set.insert(*AI); 1780 } else { 1781 Set.insert(Reg); 1782 } 1783 } 1784 1785 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1786 /// in successors to. The location is usually just before the terminator, 1787 /// however if the terminator is a conditional branch and its previous 1788 /// instruction is the flag setting instruction, the previous instruction is 1789 /// the preferred location. This function also gathers uses and defs of the 1790 /// instructions from the insertion point to the end of the block. The data is 1791 /// used by HoistCommonCodeInSuccs to ensure safety. 1792 static 1793 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1794 const TargetInstrInfo *TII, 1795 const TargetRegisterInfo *TRI, 1796 SmallSet<Register, 4> &Uses, 1797 SmallSet<Register, 4> &Defs) { 1798 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1799 if (!TII->isUnpredicatedTerminator(*Loc)) 1800 return MBB->end(); 1801 1802 for (const MachineOperand &MO : Loc->operands()) { 1803 if (!MO.isReg()) 1804 continue; 1805 Register Reg = MO.getReg(); 1806 if (!Reg) 1807 continue; 1808 if (MO.isUse()) { 1809 addRegAndItsAliases(Reg, TRI, Uses); 1810 } else { 1811 if (!MO.isDead()) 1812 // Don't try to hoist code in the rare case the terminator defines a 1813 // register that is later used. 1814 return MBB->end(); 1815 1816 // If the terminator defines a register, make sure we don't hoist 1817 // the instruction whose def might be clobbered by the terminator. 1818 addRegAndItsAliases(Reg, TRI, Defs); 1819 } 1820 } 1821 1822 if (Uses.empty()) 1823 return Loc; 1824 // If the terminator is the only instruction in the block and Uses is not 1825 // empty (or we would have returned above), we can still safely hoist 1826 // instructions just before the terminator as long as the Defs/Uses are not 1827 // violated (which is checked in HoistCommonCodeInSuccs). 1828 if (Loc == MBB->begin()) 1829 return Loc; 1830 1831 // The terminator is probably a conditional branch, try not to separate the 1832 // branch from condition setting instruction. 1833 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin()); 1834 1835 bool IsDef = false; 1836 for (const MachineOperand &MO : PI->operands()) { 1837 // If PI has a regmask operand, it is probably a call. Separate away. 1838 if (MO.isRegMask()) 1839 return Loc; 1840 if (!MO.isReg() || MO.isUse()) 1841 continue; 1842 Register Reg = MO.getReg(); 1843 if (!Reg) 1844 continue; 1845 if (Uses.count(Reg)) { 1846 IsDef = true; 1847 break; 1848 } 1849 } 1850 if (!IsDef) 1851 // The condition setting instruction is not just before the conditional 1852 // branch. 1853 return Loc; 1854 1855 // Be conservative, don't insert instruction above something that may have 1856 // side-effects. And since it's potentially bad to separate flag setting 1857 // instruction from the conditional branch, just abort the optimization 1858 // completely. 1859 // Also avoid moving code above predicated instruction since it's hard to 1860 // reason about register liveness with predicated instruction. 1861 bool DontMoveAcrossStore = true; 1862 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1863 return MBB->end(); 1864 1865 // Find out what registers are live. Note this routine is ignoring other live 1866 // registers which are only used by instructions in successor blocks. 1867 for (const MachineOperand &MO : PI->operands()) { 1868 if (!MO.isReg()) 1869 continue; 1870 Register Reg = MO.getReg(); 1871 if (!Reg) 1872 continue; 1873 if (MO.isUse()) { 1874 addRegAndItsAliases(Reg, TRI, Uses); 1875 } else { 1876 if (Uses.erase(Reg)) { 1877 if (Register::isPhysicalRegister(Reg)) { 1878 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1879 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1880 } 1881 } 1882 addRegAndItsAliases(Reg, TRI, Defs); 1883 } 1884 } 1885 1886 return PI; 1887 } 1888 1889 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1890 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1891 SmallVector<MachineOperand, 4> Cond; 1892 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1893 return false; 1894 1895 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1896 if (!FBB) 1897 // Malformed bcc? True and false blocks are the same? 1898 return false; 1899 1900 // Restrict the optimization to cases where MBB is the only predecessor, 1901 // it is an obvious win. 1902 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1903 return false; 1904 1905 // Find a suitable position to hoist the common instructions to. Also figure 1906 // out which registers are used or defined by instructions from the insertion 1907 // point to the end of the block. 1908 SmallSet<Register, 4> Uses, Defs; 1909 MachineBasicBlock::iterator Loc = 1910 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1911 if (Loc == MBB->end()) 1912 return false; 1913 1914 bool HasDups = false; 1915 SmallSet<Register, 4> ActiveDefsSet, AllDefsSet; 1916 MachineBasicBlock::iterator TIB = TBB->begin(); 1917 MachineBasicBlock::iterator FIB = FBB->begin(); 1918 MachineBasicBlock::iterator TIE = TBB->end(); 1919 MachineBasicBlock::iterator FIE = FBB->end(); 1920 while (TIB != TIE && FIB != FIE) { 1921 // Skip dbg_value instructions. These do not count. 1922 TIB = skipDebugInstructionsForward(TIB, TIE); 1923 FIB = skipDebugInstructionsForward(FIB, FIE); 1924 if (TIB == TIE || FIB == FIE) 1925 break; 1926 1927 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1928 break; 1929 1930 if (TII->isPredicated(*TIB)) 1931 // Hard to reason about register liveness with predicated instruction. 1932 break; 1933 1934 bool IsSafe = true; 1935 for (MachineOperand &MO : TIB->operands()) { 1936 // Don't attempt to hoist instructions with register masks. 1937 if (MO.isRegMask()) { 1938 IsSafe = false; 1939 break; 1940 } 1941 if (!MO.isReg()) 1942 continue; 1943 Register Reg = MO.getReg(); 1944 if (!Reg) 1945 continue; 1946 if (MO.isDef()) { 1947 if (Uses.count(Reg)) { 1948 // Avoid clobbering a register that's used by the instruction at 1949 // the point of insertion. 1950 IsSafe = false; 1951 break; 1952 } 1953 1954 if (Defs.count(Reg) && !MO.isDead()) { 1955 // Don't hoist the instruction if the def would be clobber by the 1956 // instruction at the point insertion. FIXME: This is overly 1957 // conservative. It should be possible to hoist the instructions 1958 // in BB2 in the following example: 1959 // BB1: 1960 // r1, eflag = op1 r2, r3 1961 // brcc eflag 1962 // 1963 // BB2: 1964 // r1 = op2, ... 1965 // = op3, killed r1 1966 IsSafe = false; 1967 break; 1968 } 1969 } else if (!ActiveDefsSet.count(Reg)) { 1970 if (Defs.count(Reg)) { 1971 // Use is defined by the instruction at the point of insertion. 1972 IsSafe = false; 1973 break; 1974 } 1975 1976 if (MO.isKill() && Uses.count(Reg)) 1977 // Kills a register that's read by the instruction at the point of 1978 // insertion. Remove the kill marker. 1979 MO.setIsKill(false); 1980 } 1981 } 1982 if (!IsSafe) 1983 break; 1984 1985 bool DontMoveAcrossStore = true; 1986 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1987 break; 1988 1989 // Remove kills from ActiveDefsSet, these registers had short live ranges. 1990 for (const MachineOperand &MO : TIB->operands()) { 1991 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1992 continue; 1993 Register Reg = MO.getReg(); 1994 if (!Reg) 1995 continue; 1996 if (!AllDefsSet.count(Reg)) { 1997 continue; 1998 } 1999 if (Reg.isPhysical()) { 2000 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2001 ActiveDefsSet.erase(*AI); 2002 } else { 2003 ActiveDefsSet.erase(Reg); 2004 } 2005 } 2006 2007 // Track local defs so we can update liveins. 2008 for (const MachineOperand &MO : TIB->operands()) { 2009 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2010 continue; 2011 Register Reg = MO.getReg(); 2012 if (!Reg || Reg.isVirtual()) 2013 continue; 2014 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2015 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2016 } 2017 2018 HasDups = true; 2019 ++TIB; 2020 ++FIB; 2021 } 2022 2023 if (!HasDups) 2024 return false; 2025 2026 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2027 FBB->erase(FBB->begin(), FIB); 2028 2029 if (UpdateLiveIns) { 2030 recomputeLiveIns(*TBB); 2031 recomputeLiveIns(*FBB); 2032 } 2033 2034 ++NumHoist; 2035 return true; 2036 } 2037