1 //===-- BasicBlockSections.cpp ---=========--------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BasicBlockSections implementation. 10 // 11 // The purpose of this pass is to assign sections to basic blocks when 12 // -fbasic-block-sections= option is used. Further, with profile information 13 // only the subset of basic blocks with profiles are placed in separate sections 14 // and the rest are grouped in a cold section. The exception handling blocks are 15 // treated specially to ensure they are all in one seciton. 16 // 17 // Basic Block Sections 18 // ==================== 19 // 20 // With option, -fbasic-block-sections=list, every function may be split into 21 // clusters of basic blocks. Every cluster will be emitted into a separate 22 // section with its basic blocks sequenced in the given order. To get the 23 // optimized performance, the clusters must form an optimal BB layout for the 24 // function. We insert a symbol at the beginning of every cluster's section to 25 // allow the linker to reorder the sections in any arbitrary sequence. A global 26 // order of these sections would encapsulate the function layout. 27 // For example, consider the following clusters for a function foo (consisting 28 // of 6 basic blocks 0, 1, ..., 5). 29 // 30 // 0 2 31 // 1 3 5 32 // 33 // * Basic blocks 0 and 2 are placed in one section with symbol `foo` 34 // referencing the beginning of this section. 35 // * Basic blocks 1, 3, 5 are placed in a separate section. A new symbol 36 // `foo.__part.1` will reference the beginning of this section. 37 // * Basic block 4 (note that it is not referenced in the list) is placed in 38 // one section, and a new symbol `foo.cold` will point to it. 39 // 40 // There are a couple of challenges to be addressed: 41 // 42 // 1. The last basic block of every cluster should not have any implicit 43 // fallthrough to its next basic block, as it can be reordered by the linker. 44 // The compiler should make these fallthroughs explicit by adding 45 // unconditional jumps.. 46 // 47 // 2. All inter-cluster branch targets would now need to be resolved by the 48 // linker as they cannot be calculated during compile time. This is done 49 // using static relocations. Further, the compiler tries to use short branch 50 // instructions on some ISAs for small branch offsets. This is not possible 51 // for inter-cluster branches as the offset is not determined at compile 52 // time, and therefore, long branch instructions have to be used for those. 53 // 54 // 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission 55 // needs special handling with basic block sections. DebugInfo needs to be 56 // emitted with more relocations as basic block sections can break a 57 // function into potentially several disjoint pieces, and CFI needs to be 58 // emitted per cluster. This also bloats the object file and binary sizes. 59 // 60 // Basic Block Labels 61 // ================== 62 // 63 // With -fbasic-block-sections=labels, we emit the offsets of BB addresses of 64 // every function into the .llvm_bb_addr_map section. Along with the function 65 // symbols, this allows for mapping of virtual addresses in PMU profiles back to 66 // the corresponding basic blocks. This logic is implemented in AsmPrinter. This 67 // pass only assigns the BBSectionType of every function to ``labels``. 68 // 69 //===----------------------------------------------------------------------===// 70 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/StringMap.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/CodeGen/BasicBlockSectionUtils.h" 77 #include "llvm/CodeGen/MachineFunction.h" 78 #include "llvm/CodeGen/MachineFunctionPass.h" 79 #include "llvm/CodeGen/MachineModuleInfo.h" 80 #include "llvm/CodeGen/Passes.h" 81 #include "llvm/CodeGen/TargetInstrInfo.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/Support/Error.h" 84 #include "llvm/Support/LineIterator.h" 85 #include "llvm/Support/MemoryBuffer.h" 86 #include "llvm/Target/TargetMachine.h" 87 88 using llvm::SmallSet; 89 using llvm::SmallVector; 90 using llvm::StringMap; 91 using llvm::StringRef; 92 using namespace llvm; 93 94 // Placing the cold clusters in a separate section mitigates against poor 95 // profiles and allows optimizations such as hugepage mapping to be applied at a 96 // section granularity. Defaults to ".text.split." which is recognized by lld 97 // via the `-z keep-text-section-prefix` flag. 98 cl::opt<std::string> llvm::BBSectionsColdTextPrefix( 99 "bbsections-cold-text-prefix", 100 cl::desc("The text prefix to use for cold basic block clusters"), 101 cl::init(".text.split."), cl::Hidden); 102 103 cl::opt<bool> BBSectionsDetectSourceDrift( 104 "bbsections-detect-source-drift", 105 cl::desc("This checks if there is a fdo instr. profile hash " 106 "mismatch for this function"), 107 cl::init(true), cl::Hidden); 108 109 namespace { 110 111 // This struct represents the cluster information for a machine basic block. 112 struct BBClusterInfo { 113 // MachineBasicBlock ID. 114 unsigned MBBNumber; 115 // Cluster ID this basic block belongs to. 116 unsigned ClusterID; 117 // Position of basic block within the cluster. 118 unsigned PositionInCluster; 119 }; 120 121 using ProgramBBClusterInfoMapTy = StringMap<SmallVector<BBClusterInfo, 4>>; 122 123 class BasicBlockSections : public MachineFunctionPass { 124 public: 125 static char ID; 126 127 // This contains the basic-block-sections profile. 128 const MemoryBuffer *MBuf = nullptr; 129 130 // This encapsulates the BB cluster information for the whole program. 131 // 132 // For every function name, it contains the cluster information for (all or 133 // some of) its basic blocks. The cluster information for every basic block 134 // includes its cluster ID along with the position of the basic block in that 135 // cluster. 136 ProgramBBClusterInfoMapTy ProgramBBClusterInfo; 137 138 // Some functions have alias names. We use this map to find the main alias 139 // name for which we have mapping in ProgramBBClusterInfo. 140 StringMap<StringRef> FuncAliasMap; 141 142 BasicBlockSections(const MemoryBuffer *Buf) 143 : MachineFunctionPass(ID), MBuf(Buf) { 144 initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry()); 145 }; 146 147 BasicBlockSections() : MachineFunctionPass(ID) { 148 initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry()); 149 } 150 151 StringRef getPassName() const override { 152 return "Basic Block Sections Analysis"; 153 } 154 155 void getAnalysisUsage(AnalysisUsage &AU) const override; 156 157 /// Read profiles of basic blocks if available here. 158 bool doInitialization(Module &M) override; 159 160 /// Identify basic blocks that need separate sections and prepare to emit them 161 /// accordingly. 162 bool runOnMachineFunction(MachineFunction &MF) override; 163 }; 164 165 } // end anonymous namespace 166 167 char BasicBlockSections::ID = 0; 168 INITIALIZE_PASS(BasicBlockSections, "bbsections-prepare", 169 "Prepares for basic block sections, by splitting functions " 170 "into clusters of basic blocks.", 171 false, false) 172 173 // This function updates and optimizes the branching instructions of every basic 174 // block in a given function to account for changes in the layout. 175 static void updateBranches( 176 MachineFunction &MF, 177 const SmallVector<MachineBasicBlock *, 4> &PreLayoutFallThroughs) { 178 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 179 SmallVector<MachineOperand, 4> Cond; 180 for (auto &MBB : MF) { 181 auto NextMBBI = std::next(MBB.getIterator()); 182 auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()]; 183 // If this block had a fallthrough before we need an explicit unconditional 184 // branch to that block if either 185 // 1- the block ends a section, which means its next block may be 186 // reorderd by the linker, or 187 // 2- the fallthrough block is not adjacent to the block in the new 188 // order. 189 if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB)) 190 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); 191 192 // We do not optimize branches for machine basic blocks ending sections, as 193 // their adjacent block might be reordered by the linker. 194 if (MBB.isEndSection()) 195 continue; 196 197 // It might be possible to optimize branches by flipping the branch 198 // condition. 199 Cond.clear(); 200 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 201 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 202 continue; 203 MBB.updateTerminator(FTMBB); 204 } 205 } 206 207 // This function provides the BBCluster information associated with a function. 208 // Returns true if a valid association exists and false otherwise. 209 static bool getBBClusterInfoForFunction( 210 const MachineFunction &MF, const StringMap<StringRef> FuncAliasMap, 211 const ProgramBBClusterInfoMapTy &ProgramBBClusterInfo, 212 std::vector<Optional<BBClusterInfo>> &V) { 213 // Get the main alias name for the function. 214 auto FuncName = MF.getName(); 215 auto R = FuncAliasMap.find(FuncName); 216 StringRef AliasName = R == FuncAliasMap.end() ? FuncName : R->second; 217 218 // Find the assoicated cluster information. 219 auto P = ProgramBBClusterInfo.find(AliasName); 220 if (P == ProgramBBClusterInfo.end()) 221 return false; 222 223 if (P->second.empty()) { 224 // This indicates that sections are desired for all basic blocks of this 225 // function. We clear the BBClusterInfo vector to denote this. 226 V.clear(); 227 return true; 228 } 229 230 V.resize(MF.getNumBlockIDs()); 231 for (auto bbClusterInfo : P->second) { 232 // Bail out if the cluster information contains invalid MBB numbers. 233 if (bbClusterInfo.MBBNumber >= MF.getNumBlockIDs()) 234 return false; 235 V[bbClusterInfo.MBBNumber] = bbClusterInfo; 236 } 237 return true; 238 } 239 240 // This function sorts basic blocks according to the cluster's information. 241 // All explicitly specified clusters of basic blocks will be ordered 242 // accordingly. All non-specified BBs go into a separate "Cold" section. 243 // Additionally, if exception handling landing pads end up in more than one 244 // clusters, they are moved into a single "Exception" section. Eventually, 245 // clusters are ordered in increasing order of their IDs, with the "Exception" 246 // and "Cold" succeeding all other clusters. 247 // FuncBBClusterInfo represent the cluster information for basic blocks. If this 248 // is empty, it means unique sections for all basic blocks in the function. 249 static void 250 assignSections(MachineFunction &MF, 251 const std::vector<Optional<BBClusterInfo>> &FuncBBClusterInfo) { 252 assert(MF.hasBBSections() && "BB Sections is not set for function."); 253 // This variable stores the section ID of the cluster containing eh_pads (if 254 // all eh_pads are one cluster). If more than one cluster contain eh_pads, we 255 // set it equal to ExceptionSectionID. 256 Optional<MBBSectionID> EHPadsSectionID; 257 258 for (auto &MBB : MF) { 259 // With the 'all' option, every basic block is placed in a unique section. 260 // With the 'list' option, every basic block is placed in a section 261 // associated with its cluster, unless we want individual unique sections 262 // for every basic block in this function (if FuncBBClusterInfo is empty). 263 if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All || 264 FuncBBClusterInfo.empty()) { 265 // If unique sections are desired for all basic blocks of the function, we 266 // set every basic block's section ID equal to its number (basic block 267 // id). This further ensures that basic blocks are ordered canonically. 268 MBB.setSectionID({static_cast<unsigned int>(MBB.getNumber())}); 269 } else if (FuncBBClusterInfo[MBB.getNumber()].hasValue()) 270 MBB.setSectionID(FuncBBClusterInfo[MBB.getNumber()]->ClusterID); 271 else { 272 // BB goes into the special cold section if it is not specified in the 273 // cluster info map. 274 MBB.setSectionID(MBBSectionID::ColdSectionID); 275 } 276 277 if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() && 278 EHPadsSectionID != MBBSectionID::ExceptionSectionID) { 279 // If we already have one cluster containing eh_pads, this must be updated 280 // to ExceptionSectionID. Otherwise, we set it equal to the current 281 // section ID. 282 EHPadsSectionID = EHPadsSectionID.hasValue() 283 ? MBBSectionID::ExceptionSectionID 284 : MBB.getSectionID(); 285 } 286 } 287 288 // If EHPads are in more than one section, this places all of them in the 289 // special exception section. 290 if (EHPadsSectionID == MBBSectionID::ExceptionSectionID) 291 for (auto &MBB : MF) 292 if (MBB.isEHPad()) 293 MBB.setSectionID(EHPadsSectionID.getValue()); 294 } 295 296 void llvm::sortBasicBlocksAndUpdateBranches( 297 MachineFunction &MF, MachineBasicBlockComparator MBBCmp) { 298 SmallVector<MachineBasicBlock *, 4> PreLayoutFallThroughs( 299 MF.getNumBlockIDs()); 300 for (auto &MBB : MF) 301 PreLayoutFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); 302 303 MF.sort(MBBCmp); 304 305 // Set IsBeginSection and IsEndSection according to the assigned section IDs. 306 MF.assignBeginEndSections(); 307 308 // After reordering basic blocks, we must update basic block branches to 309 // insert explicit fallthrough branches when required and optimize branches 310 // when possible. 311 updateBranches(MF, PreLayoutFallThroughs); 312 } 313 314 // If the exception section begins with a landing pad, that landing pad will 315 // assume a zero offset (relative to @LPStart) in the LSDA. However, a value of 316 // zero implies "no landing pad." This function inserts a NOP just before the EH 317 // pad label to ensure a nonzero offset. Returns true if padding is not needed. 318 static bool avoidZeroOffsetLandingPad(MachineFunction &MF) { 319 for (auto &MBB : MF) { 320 if (MBB.isBeginSection() && MBB.isEHPad()) { 321 MachineBasicBlock::iterator MI = MBB.begin(); 322 while (!MI->isEHLabel()) 323 ++MI; 324 MCInst Nop = MF.getSubtarget().getInstrInfo()->getNop(); 325 BuildMI(MBB, MI, DebugLoc(), 326 MF.getSubtarget().getInstrInfo()->get(Nop.getOpcode())); 327 return false; 328 } 329 } 330 return true; 331 } 332 333 // This checks if the source of this function has drifted since this binary was 334 // profiled previously. For now, we are piggy backing on what PGO does to 335 // detect this with instrumented profiles. PGO emits an hash of the IR and 336 // checks if the hash has changed. Advanced basic block layout is usually done 337 // on top of PGO optimized binaries and hence this check works well in practice. 338 static bool hasInstrProfHashMismatch(MachineFunction &MF) { 339 if (!BBSectionsDetectSourceDrift) 340 return false; 341 342 const char MetadataName[] = "instr_prof_hash_mismatch"; 343 auto *Existing = MF.getFunction().getMetadata(LLVMContext::MD_annotation); 344 if (Existing) { 345 MDTuple *Tuple = cast<MDTuple>(Existing); 346 for (auto &N : Tuple->operands()) 347 if (cast<MDString>(N.get())->getString() == MetadataName) 348 return true; 349 } 350 351 return false; 352 } 353 354 bool BasicBlockSections::runOnMachineFunction(MachineFunction &MF) { 355 auto BBSectionsType = MF.getTarget().getBBSectionsType(); 356 assert(BBSectionsType != BasicBlockSection::None && 357 "BB Sections not enabled!"); 358 359 // Check for source drift. If the source has changed since the profiles 360 // were obtained, optimizing basic blocks might be sub-optimal. 361 // This only applies to BasicBlockSection::List as it creates 362 // clusters of basic blocks using basic block ids. Source drift can 363 // invalidate these groupings leading to sub-optimal code generation with 364 // regards to performance. 365 if (BBSectionsType == BasicBlockSection::List && 366 hasInstrProfHashMismatch(MF)) 367 return true; 368 369 // Renumber blocks before sorting them for basic block sections. This is 370 // useful during sorting, basic blocks in the same section will retain the 371 // default order. This renumbering should also be done for basic block 372 // labels to match the profiles with the correct blocks. 373 MF.RenumberBlocks(); 374 375 if (BBSectionsType == BasicBlockSection::Labels) { 376 MF.setBBSectionsType(BBSectionsType); 377 return true; 378 } 379 380 std::vector<Optional<BBClusterInfo>> FuncBBClusterInfo; 381 if (BBSectionsType == BasicBlockSection::List && 382 !getBBClusterInfoForFunction(MF, FuncAliasMap, ProgramBBClusterInfo, 383 FuncBBClusterInfo)) 384 return true; 385 MF.setBBSectionsType(BBSectionsType); 386 assignSections(MF, FuncBBClusterInfo); 387 388 // We make sure that the cluster including the entry basic block precedes all 389 // other clusters. 390 auto EntryBBSectionID = MF.front().getSectionID(); 391 392 // Helper function for ordering BB sections as follows: 393 // * Entry section (section including the entry block). 394 // * Regular sections (in increasing order of their Number). 395 // ... 396 // * Exception section 397 // * Cold section 398 auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS, 399 const MBBSectionID &RHS) { 400 // We make sure that the section containing the entry block precedes all the 401 // other sections. 402 if (LHS == EntryBBSectionID || RHS == EntryBBSectionID) 403 return LHS == EntryBBSectionID; 404 return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type; 405 }; 406 407 // We sort all basic blocks to make sure the basic blocks of every cluster are 408 // contiguous and ordered accordingly. Furthermore, clusters are ordered in 409 // increasing order of their section IDs, with the exception and the 410 // cold section placed at the end of the function. 411 auto Comparator = [&](const MachineBasicBlock &X, 412 const MachineBasicBlock &Y) { 413 auto XSectionID = X.getSectionID(); 414 auto YSectionID = Y.getSectionID(); 415 if (XSectionID != YSectionID) 416 return MBBSectionOrder(XSectionID, YSectionID); 417 // If the two basic block are in the same section, the order is decided by 418 // their position within the section. 419 if (XSectionID.Type == MBBSectionID::SectionType::Default) 420 return FuncBBClusterInfo[X.getNumber()]->PositionInCluster < 421 FuncBBClusterInfo[Y.getNumber()]->PositionInCluster; 422 return X.getNumber() < Y.getNumber(); 423 }; 424 425 sortBasicBlocksAndUpdateBranches(MF, Comparator); 426 avoidZeroOffsetLandingPad(MF); 427 return true; 428 } 429 430 // Basic Block Sections can be enabled for a subset of machine basic blocks. 431 // This is done by passing a file containing names of functions for which basic 432 // block sections are desired. Additionally, machine basic block ids of the 433 // functions can also be specified for a finer granularity. Moreover, a cluster 434 // of basic blocks could be assigned to the same section. 435 // A file with basic block sections for all of function main and three blocks 436 // for function foo (of which 1 and 2 are placed in a cluster) looks like this: 437 // ---------------------------- 438 // list.txt: 439 // !main 440 // !foo 441 // !!1 2 442 // !!4 443 static Error getBBClusterInfo(const MemoryBuffer *MBuf, 444 ProgramBBClusterInfoMapTy &ProgramBBClusterInfo, 445 StringMap<StringRef> &FuncAliasMap) { 446 assert(MBuf); 447 line_iterator LineIt(*MBuf, /*SkipBlanks=*/true, /*CommentMarker=*/'#'); 448 449 auto invalidProfileError = [&](auto Message) { 450 return make_error<StringError>( 451 Twine("Invalid profile " + MBuf->getBufferIdentifier() + " at line " + 452 Twine(LineIt.line_number()) + ": " + Message), 453 inconvertibleErrorCode()); 454 }; 455 456 auto FI = ProgramBBClusterInfo.end(); 457 458 // Current cluster ID corresponding to this function. 459 unsigned CurrentCluster = 0; 460 // Current position in the current cluster. 461 unsigned CurrentPosition = 0; 462 463 // Temporary set to ensure every basic block ID appears once in the clusters 464 // of a function. 465 SmallSet<unsigned, 4> FuncBBIDs; 466 467 for (; !LineIt.is_at_eof(); ++LineIt) { 468 StringRef S(*LineIt); 469 if (S[0] == '@') 470 continue; 471 // Check for the leading "!" 472 if (!S.consume_front("!") || S.empty()) 473 break; 474 // Check for second "!" which indicates a cluster of basic blocks. 475 if (S.consume_front("!")) { 476 if (FI == ProgramBBClusterInfo.end()) 477 return invalidProfileError( 478 "Cluster list does not follow a function name specifier."); 479 SmallVector<StringRef, 4> BBIndexes; 480 S.split(BBIndexes, ' '); 481 // Reset current cluster position. 482 CurrentPosition = 0; 483 for (auto BBIndexStr : BBIndexes) { 484 unsigned long long BBIndex; 485 if (getAsUnsignedInteger(BBIndexStr, 10, BBIndex)) 486 return invalidProfileError(Twine("Unsigned integer expected: '") + 487 BBIndexStr + "'."); 488 if (!FuncBBIDs.insert(BBIndex).second) 489 return invalidProfileError(Twine("Duplicate basic block id found '") + 490 BBIndexStr + "'."); 491 if (!BBIndex && CurrentPosition) 492 return invalidProfileError("Entry BB (0) does not begin a cluster."); 493 494 FI->second.emplace_back(BBClusterInfo{ 495 ((unsigned)BBIndex), CurrentCluster, CurrentPosition++}); 496 } 497 CurrentCluster++; 498 } else { // This is a function name specifier. 499 // Function aliases are separated using '/'. We use the first function 500 // name for the cluster info mapping and delegate all other aliases to 501 // this one. 502 SmallVector<StringRef, 4> Aliases; 503 S.split(Aliases, '/'); 504 for (size_t i = 1; i < Aliases.size(); ++i) 505 FuncAliasMap.try_emplace(Aliases[i], Aliases.front()); 506 507 // Prepare for parsing clusters of this function name. 508 // Start a new cluster map for this function name. 509 FI = ProgramBBClusterInfo.try_emplace(Aliases.front()).first; 510 CurrentCluster = 0; 511 FuncBBIDs.clear(); 512 } 513 } 514 return Error::success(); 515 } 516 517 bool BasicBlockSections::doInitialization(Module &M) { 518 if (!MBuf) 519 return false; 520 if (auto Err = getBBClusterInfo(MBuf, ProgramBBClusterInfo, FuncAliasMap)) 521 report_fatal_error(std::move(Err)); 522 return false; 523 } 524 525 void BasicBlockSections::getAnalysisUsage(AnalysisUsage &AU) const { 526 AU.setPreservesAll(); 527 MachineFunctionPass::getAnalysisUsage(AU); 528 } 529 530 MachineFunctionPass * 531 llvm::createBasicBlockSectionsPass(const MemoryBuffer *Buf) { 532 return new BasicBlockSections(Buf); 533 } 534