1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/AtomicExpandUtils.h" 21 #include "llvm/CodeGen/RuntimeLibcalls.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <iterator> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "atomic-expand" 55 56 namespace { 57 58 class AtomicExpand: public FunctionPass { 59 const TargetLowering *TLI = nullptr; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 64 AtomicExpand() : FunctionPass(ID) { 65 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 66 } 67 68 bool runOnFunction(Function &F) override; 69 70 private: 71 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 72 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 73 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 74 bool tryExpandAtomicLoad(LoadInst *LI); 75 bool expandAtomicLoadToLL(LoadInst *LI); 76 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 77 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 78 bool expandAtomicStore(StoreInst *SI); 79 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 80 Value * 81 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 82 AtomicOrdering MemOpOrder, 83 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 84 void expandAtomicOpToLLSC( 85 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 86 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 87 void expandPartwordAtomicRMW( 88 AtomicRMWInst *I, 89 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 90 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 91 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 92 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 93 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 94 95 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 96 static Value *insertRMWCmpXchgLoop( 97 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 98 AtomicOrdering MemOpOrder, 99 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 100 CreateCmpXchgInstFun CreateCmpXchg); 101 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 102 103 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 104 bool isIdempotentRMW(AtomicRMWInst *RMWI); 105 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 106 107 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 108 Value *PointerOperand, Value *ValueOperand, 109 Value *CASExpected, AtomicOrdering Ordering, 110 AtomicOrdering Ordering2, 111 ArrayRef<RTLIB::Libcall> Libcalls); 112 void expandAtomicLoadToLibcall(LoadInst *LI); 113 void expandAtomicStoreToLibcall(StoreInst *LI); 114 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 115 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 116 117 friend bool 118 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 119 CreateCmpXchgInstFun CreateCmpXchg); 120 }; 121 122 } // end anonymous namespace 123 124 char AtomicExpand::ID = 0; 125 126 char &llvm::AtomicExpandID = AtomicExpand::ID; 127 128 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 129 false, false) 130 131 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 132 133 // Helper functions to retrieve the size of atomic instructions. 134 static unsigned getAtomicOpSize(LoadInst *LI) { 135 const DataLayout &DL = LI->getModule()->getDataLayout(); 136 return DL.getTypeStoreSize(LI->getType()); 137 } 138 139 static unsigned getAtomicOpSize(StoreInst *SI) { 140 const DataLayout &DL = SI->getModule()->getDataLayout(); 141 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 142 } 143 144 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 145 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 146 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 147 } 148 149 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 150 const DataLayout &DL = CASI->getModule()->getDataLayout(); 151 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 152 } 153 154 // Helper functions to retrieve the alignment of atomic instructions. 155 static unsigned getAtomicOpAlign(LoadInst *LI) { 156 unsigned Align = LI->getAlignment(); 157 // In the future, if this IR restriction is relaxed, we should 158 // return DataLayout::getABITypeAlignment when there's no align 159 // value. 160 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 161 return Align; 162 } 163 164 static unsigned getAtomicOpAlign(StoreInst *SI) { 165 unsigned Align = SI->getAlignment(); 166 // In the future, if this IR restriction is relaxed, we should 167 // return DataLayout::getABITypeAlignment when there's no align 168 // value. 169 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 170 return Align; 171 } 172 173 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 174 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 175 // default alignment for load/store, the default here is to assume 176 // it has NATURAL alignment, not DataLayout-specified alignment. 177 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 178 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 179 } 180 181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 182 // TODO(PR27168): same comment as above. 183 const DataLayout &DL = CASI->getModule()->getDataLayout(); 184 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 185 } 186 187 // Determine if a particular atomic operation has a supported size, 188 // and is of appropriate alignment, to be passed through for target 189 // lowering. (Versus turning into a __atomic libcall) 190 template <typename Inst> 191 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 192 unsigned Size = getAtomicOpSize(I); 193 unsigned Align = getAtomicOpAlign(I); 194 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 195 } 196 197 bool AtomicExpand::runOnFunction(Function &F) { 198 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 199 if (!TPC) 200 return false; 201 202 auto &TM = TPC->getTM<TargetMachine>(); 203 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 204 return false; 205 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 206 207 SmallVector<Instruction *, 1> AtomicInsts; 208 209 // Changing control-flow while iterating through it is a bad idea, so gather a 210 // list of all atomic instructions before we start. 211 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 212 Instruction *I = &*II; 213 if (I->isAtomic() && !isa<FenceInst>(I)) 214 AtomicInsts.push_back(I); 215 } 216 217 bool MadeChange = false; 218 for (auto I : AtomicInsts) { 219 auto LI = dyn_cast<LoadInst>(I); 220 auto SI = dyn_cast<StoreInst>(I); 221 auto RMWI = dyn_cast<AtomicRMWInst>(I); 222 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 223 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 224 225 // If the Size/Alignment is not supported, replace with a libcall. 226 if (LI) { 227 if (!atomicSizeSupported(TLI, LI)) { 228 expandAtomicLoadToLibcall(LI); 229 MadeChange = true; 230 continue; 231 } 232 } else if (SI) { 233 if (!atomicSizeSupported(TLI, SI)) { 234 expandAtomicStoreToLibcall(SI); 235 MadeChange = true; 236 continue; 237 } 238 } else if (RMWI) { 239 if (!atomicSizeSupported(TLI, RMWI)) { 240 expandAtomicRMWToLibcall(RMWI); 241 MadeChange = true; 242 continue; 243 } 244 } else if (CASI) { 245 if (!atomicSizeSupported(TLI, CASI)) { 246 expandAtomicCASToLibcall(CASI); 247 MadeChange = true; 248 continue; 249 } 250 } 251 252 if (TLI->shouldInsertFencesForAtomic(I)) { 253 auto FenceOrdering = AtomicOrdering::Monotonic; 254 if (LI && isAcquireOrStronger(LI->getOrdering())) { 255 FenceOrdering = LI->getOrdering(); 256 LI->setOrdering(AtomicOrdering::Monotonic); 257 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 258 FenceOrdering = SI->getOrdering(); 259 SI->setOrdering(AtomicOrdering::Monotonic); 260 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 261 isAcquireOrStronger(RMWI->getOrdering()))) { 262 FenceOrdering = RMWI->getOrdering(); 263 RMWI->setOrdering(AtomicOrdering::Monotonic); 264 } else if (CASI && 265 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 266 TargetLoweringBase::AtomicExpansionKind::None && 267 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 268 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 269 // If a compare and swap is lowered to LL/SC, we can do smarter fence 270 // insertion, with a stronger one on the success path than on the 271 // failure path. As a result, fence insertion is directly done by 272 // expandAtomicCmpXchg in that case. 273 FenceOrdering = CASI->getSuccessOrdering(); 274 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 275 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 276 } 277 278 if (FenceOrdering != AtomicOrdering::Monotonic) { 279 MadeChange |= bracketInstWithFences(I, FenceOrdering); 280 } 281 } 282 283 if (LI) { 284 if (LI->getType()->isFloatingPointTy()) { 285 // TODO: add a TLI hook to control this so that each target can 286 // convert to lowering the original type one at a time. 287 LI = convertAtomicLoadToIntegerType(LI); 288 assert(LI->getType()->isIntegerTy() && "invariant broken"); 289 MadeChange = true; 290 } 291 292 MadeChange |= tryExpandAtomicLoad(LI); 293 } else if (SI) { 294 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 295 // TODO: add a TLI hook to control this so that each target can 296 // convert to lowering the original type one at a time. 297 SI = convertAtomicStoreToIntegerType(SI); 298 assert(SI->getValueOperand()->getType()->isIntegerTy() && 299 "invariant broken"); 300 MadeChange = true; 301 } 302 303 if (TLI->shouldExpandAtomicStoreInIR(SI)) 304 MadeChange |= expandAtomicStore(SI); 305 } else if (RMWI) { 306 // There are two different ways of expanding RMW instructions: 307 // - into a load if it is idempotent 308 // - into a Cmpxchg/LL-SC loop otherwise 309 // we try them in that order. 310 311 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 312 MadeChange = true; 313 } else { 314 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 315 unsigned ValueSize = getAtomicOpSize(RMWI); 316 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 317 if (ValueSize < MinCASSize && 318 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 319 Op == AtomicRMWInst::And)) { 320 RMWI = widenPartwordAtomicRMW(RMWI); 321 MadeChange = true; 322 } 323 324 MadeChange |= tryExpandAtomicRMW(RMWI); 325 } 326 } else if (CASI) { 327 // TODO: when we're ready to make the change at the IR level, we can 328 // extend convertCmpXchgToInteger for floating point too. 329 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 330 "unimplemented - floating point not legal at IR level"); 331 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 332 // TODO: add a TLI hook to control this so that each target can 333 // convert to lowering the original type one at a time. 334 CASI = convertCmpXchgToIntegerType(CASI); 335 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 336 "invariant broken"); 337 MadeChange = true; 338 } 339 340 MadeChange |= tryExpandAtomicCmpXchg(CASI); 341 } 342 } 343 return MadeChange; 344 } 345 346 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 347 IRBuilder<> Builder(I); 348 349 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 350 351 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 352 // We have a guard here because not every atomic operation generates a 353 // trailing fence. 354 if (TrailingFence) 355 TrailingFence->moveAfter(I); 356 357 return (LeadingFence || TrailingFence); 358 } 359 360 /// Get the iX type with the same bitwidth as T. 361 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 362 const DataLayout &DL) { 363 EVT VT = TLI->getMemValueType(DL, T); 364 unsigned BitWidth = VT.getStoreSizeInBits(); 365 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 366 return IntegerType::get(T->getContext(), BitWidth); 367 } 368 369 /// Convert an atomic load of a non-integral type to an integer load of the 370 /// equivalent bitwidth. See the function comment on 371 /// convertAtomicStoreToIntegerType for background. 372 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 373 auto *M = LI->getModule(); 374 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 375 M->getDataLayout()); 376 377 IRBuilder<> Builder(LI); 378 379 Value *Addr = LI->getPointerOperand(); 380 Type *PT = PointerType::get(NewTy, 381 Addr->getType()->getPointerAddressSpace()); 382 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 383 384 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 385 NewLI->setAlignment(LI->getAlignment()); 386 NewLI->setVolatile(LI->isVolatile()); 387 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 388 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 389 390 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 391 LI->replaceAllUsesWith(NewVal); 392 LI->eraseFromParent(); 393 return NewLI; 394 } 395 396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 397 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 398 case TargetLoweringBase::AtomicExpansionKind::None: 399 return false; 400 case TargetLoweringBase::AtomicExpansionKind::LLSC: 401 expandAtomicOpToLLSC( 402 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 403 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 404 return true; 405 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 406 return expandAtomicLoadToLL(LI); 407 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 408 return expandAtomicLoadToCmpXchg(LI); 409 default: 410 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 411 } 412 } 413 414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 415 IRBuilder<> Builder(LI); 416 417 // On some architectures, load-linked instructions are atomic for larger 418 // sizes than normal loads. For example, the only 64-bit load guaranteed 419 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 420 Value *Val = 421 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 422 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 423 424 LI->replaceAllUsesWith(Val); 425 LI->eraseFromParent(); 426 427 return true; 428 } 429 430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 431 IRBuilder<> Builder(LI); 432 AtomicOrdering Order = LI->getOrdering(); 433 if (Order == AtomicOrdering::Unordered) 434 Order = AtomicOrdering::Monotonic; 435 436 Value *Addr = LI->getPointerOperand(); 437 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 438 Constant *DummyVal = Constant::getNullValue(Ty); 439 440 Value *Pair = Builder.CreateAtomicCmpXchg( 441 Addr, DummyVal, DummyVal, Order, 442 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 443 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 444 445 LI->replaceAllUsesWith(Loaded); 446 LI->eraseFromParent(); 447 448 return true; 449 } 450 451 /// Convert an atomic store of a non-integral type to an integer store of the 452 /// equivalent bitwidth. We used to not support floating point or vector 453 /// atomics in the IR at all. The backends learned to deal with the bitcast 454 /// idiom because that was the only way of expressing the notion of a atomic 455 /// float or vector store. The long term plan is to teach each backend to 456 /// instruction select from the original atomic store, but as a migration 457 /// mechanism, we convert back to the old format which the backends understand. 458 /// Each backend will need individual work to recognize the new format. 459 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 460 IRBuilder<> Builder(SI); 461 auto *M = SI->getModule(); 462 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 463 M->getDataLayout()); 464 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 465 466 Value *Addr = SI->getPointerOperand(); 467 Type *PT = PointerType::get(NewTy, 468 Addr->getType()->getPointerAddressSpace()); 469 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 470 471 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 472 NewSI->setAlignment(SI->getAlignment()); 473 NewSI->setVolatile(SI->isVolatile()); 474 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 475 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 476 SI->eraseFromParent(); 477 return NewSI; 478 } 479 480 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 481 // This function is only called on atomic stores that are too large to be 482 // atomic if implemented as a native store. So we replace them by an 483 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 484 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 485 // It is the responsibility of the target to only signal expansion via 486 // shouldExpandAtomicRMW in cases where this is required and possible. 487 IRBuilder<> Builder(SI); 488 AtomicRMWInst *AI = 489 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 490 SI->getValueOperand(), SI->getOrdering()); 491 SI->eraseFromParent(); 492 493 // Now we have an appropriate swap instruction, lower it as usual. 494 return tryExpandAtomicRMW(AI); 495 } 496 497 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 498 Value *Loaded, Value *NewVal, 499 AtomicOrdering MemOpOrder, 500 Value *&Success, Value *&NewLoaded) { 501 Type *OrigTy = NewVal->getType(); 502 503 // This code can go away when cmpxchg supports FP types. 504 bool NeedBitcast = OrigTy->isFloatingPointTy(); 505 if (NeedBitcast) { 506 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 507 unsigned AS = Addr->getType()->getPointerAddressSpace(); 508 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 509 NewVal = Builder.CreateBitCast(NewVal, IntTy); 510 Loaded = Builder.CreateBitCast(Loaded, IntTy); 511 } 512 513 Value* Pair = Builder.CreateAtomicCmpXchg( 514 Addr, Loaded, NewVal, MemOpOrder, 515 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 516 Success = Builder.CreateExtractValue(Pair, 1, "success"); 517 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 518 519 if (NeedBitcast) 520 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 521 } 522 523 /// Emit IR to implement the given atomicrmw operation on values in registers, 524 /// returning the new value. 525 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 526 Value *Loaded, Value *Inc) { 527 Value *NewVal; 528 switch (Op) { 529 case AtomicRMWInst::Xchg: 530 return Inc; 531 case AtomicRMWInst::Add: 532 return Builder.CreateAdd(Loaded, Inc, "new"); 533 case AtomicRMWInst::Sub: 534 return Builder.CreateSub(Loaded, Inc, "new"); 535 case AtomicRMWInst::And: 536 return Builder.CreateAnd(Loaded, Inc, "new"); 537 case AtomicRMWInst::Nand: 538 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 539 case AtomicRMWInst::Or: 540 return Builder.CreateOr(Loaded, Inc, "new"); 541 case AtomicRMWInst::Xor: 542 return Builder.CreateXor(Loaded, Inc, "new"); 543 case AtomicRMWInst::Max: 544 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 545 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 546 case AtomicRMWInst::Min: 547 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 548 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 549 case AtomicRMWInst::UMax: 550 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 551 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 552 case AtomicRMWInst::UMin: 553 NewVal = Builder.CreateICmpULE(Loaded, Inc); 554 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 555 case AtomicRMWInst::FAdd: 556 return Builder.CreateFAdd(Loaded, Inc, "new"); 557 case AtomicRMWInst::FSub: 558 return Builder.CreateFSub(Loaded, Inc, "new"); 559 default: 560 llvm_unreachable("Unknown atomic op"); 561 } 562 } 563 564 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 565 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 566 case TargetLoweringBase::AtomicExpansionKind::None: 567 return false; 568 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 569 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 570 unsigned ValueSize = getAtomicOpSize(AI); 571 if (ValueSize < MinCASSize) { 572 llvm_unreachable( 573 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); 574 } else { 575 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 576 return performAtomicOp(AI->getOperation(), Builder, Loaded, 577 AI->getValOperand()); 578 }; 579 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 580 AI->getOrdering(), PerformOp); 581 } 582 return true; 583 } 584 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 585 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 586 unsigned ValueSize = getAtomicOpSize(AI); 587 if (ValueSize < MinCASSize) { 588 // TODO: Handle atomicrmw fadd/fsub 589 if (AI->getType()->isFloatingPointTy()) 590 return false; 591 592 expandPartwordAtomicRMW(AI, 593 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 594 } else { 595 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 596 } 597 return true; 598 } 599 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 600 expandAtomicRMWToMaskedIntrinsic(AI); 601 return true; 602 } 603 default: 604 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 605 } 606 } 607 608 namespace { 609 610 /// Result values from createMaskInstrs helper. 611 struct PartwordMaskValues { 612 Type *WordType; 613 Type *ValueType; 614 Value *AlignedAddr; 615 Value *ShiftAmt; 616 Value *Mask; 617 Value *Inv_Mask; 618 }; 619 620 } // end anonymous namespace 621 622 /// This is a helper function which builds instructions to provide 623 /// values necessary for partword atomic operations. It takes an 624 /// incoming address, Addr, and ValueType, and constructs the address, 625 /// shift-amounts and masks needed to work with a larger value of size 626 /// WordSize. 627 /// 628 /// AlignedAddr: Addr rounded down to a multiple of WordSize 629 /// 630 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 631 /// from AlignAddr for it to have the same value as if 632 /// ValueType was loaded from Addr. 633 /// 634 /// Mask: Value to mask with the value loaded from AlignAddr to 635 /// include only the part that would've been loaded from Addr. 636 /// 637 /// Inv_Mask: The inverse of Mask. 638 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 639 Type *ValueType, Value *Addr, 640 unsigned WordSize) { 641 PartwordMaskValues Ret; 642 643 BasicBlock *BB = I->getParent(); 644 Function *F = BB->getParent(); 645 Module *M = I->getModule(); 646 647 LLVMContext &Ctx = F->getContext(); 648 const DataLayout &DL = M->getDataLayout(); 649 650 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 651 652 assert(ValueSize < WordSize); 653 654 Ret.ValueType = ValueType; 655 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); 656 657 Type *WordPtrType = 658 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 659 660 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 661 Ret.AlignedAddr = Builder.CreateIntToPtr( 662 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, 663 "AlignedAddr"); 664 665 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); 666 if (DL.isLittleEndian()) { 667 // turn bytes into bits 668 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 669 } else { 670 // turn bytes into bits, and count from the other side. 671 Ret.ShiftAmt = 672 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); 673 } 674 675 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); 676 Ret.Mask = Builder.CreateShl( 677 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, 678 "Mask"); 679 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); 680 681 return Ret; 682 } 683 684 /// Emit IR to implement a masked version of a given atomicrmw 685 /// operation. (That is, only the bits under the Mask should be 686 /// affected by the operation) 687 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 688 IRBuilder<> &Builder, Value *Loaded, 689 Value *Shifted_Inc, Value *Inc, 690 const PartwordMaskValues &PMV) { 691 // TODO: update to use 692 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 693 // to merge bits from two values without requiring PMV.Inv_Mask. 694 switch (Op) { 695 case AtomicRMWInst::Xchg: { 696 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 697 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 698 return FinalVal; 699 } 700 case AtomicRMWInst::Or: 701 case AtomicRMWInst::Xor: 702 case AtomicRMWInst::And: 703 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 704 case AtomicRMWInst::Add: 705 case AtomicRMWInst::Sub: 706 case AtomicRMWInst::Nand: { 707 // The other arithmetic ops need to be masked into place. 708 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 709 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 710 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 711 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 712 return FinalVal; 713 } 714 case AtomicRMWInst::Max: 715 case AtomicRMWInst::Min: 716 case AtomicRMWInst::UMax: 717 case AtomicRMWInst::UMin: { 718 // Finally, comparison ops will operate on the full value, so 719 // truncate down to the original size, and expand out again after 720 // doing the operation. 721 Value *Loaded_Shiftdown = Builder.CreateTrunc( 722 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); 723 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); 724 Value *NewVal_Shiftup = Builder.CreateShl( 725 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 726 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 727 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); 728 return FinalVal; 729 } 730 default: 731 llvm_unreachable("Unknown atomic op"); 732 } 733 } 734 735 /// Expand a sub-word atomicrmw operation into an appropriate 736 /// word-sized operation. 737 /// 738 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 739 /// way as a typical atomicrmw expansion. The only difference here is 740 /// that the operation inside of the loop must operate only upon a 741 /// part of the value. 742 void AtomicExpand::expandPartwordAtomicRMW( 743 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 744 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); 745 746 AtomicOrdering MemOpOrder = AI->getOrdering(); 747 748 IRBuilder<> Builder(AI); 749 750 PartwordMaskValues PMV = 751 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 752 TLI->getMinCmpXchgSizeInBits() / 8); 753 754 Value *ValOperand_Shifted = 755 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 756 PMV.ShiftAmt, "ValOperand_Shifted"); 757 758 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 759 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 760 ValOperand_Shifted, AI->getValOperand(), PMV); 761 }; 762 763 // TODO: When we're ready to support LLSC conversions too, use 764 // insertRMWLLSCLoop here for ExpansionKind==LLSC. 765 Value *OldResult = 766 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 767 PerformPartwordOp, createCmpXchgInstFun); 768 Value *FinalOldResult = Builder.CreateTrunc( 769 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 770 AI->replaceAllUsesWith(FinalOldResult); 771 AI->eraseFromParent(); 772 } 773 774 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 775 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 776 IRBuilder<> Builder(AI); 777 AtomicRMWInst::BinOp Op = AI->getOperation(); 778 779 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 780 Op == AtomicRMWInst::And) && 781 "Unable to widen operation"); 782 783 PartwordMaskValues PMV = 784 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 785 TLI->getMinCmpXchgSizeInBits() / 8); 786 787 Value *ValOperand_Shifted = 788 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 789 PMV.ShiftAmt, "ValOperand_Shifted"); 790 791 Value *NewOperand; 792 793 if (Op == AtomicRMWInst::And) 794 NewOperand = 795 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 796 else 797 NewOperand = ValOperand_Shifted; 798 799 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, 800 NewOperand, AI->getOrdering()); 801 802 Value *FinalOldResult = Builder.CreateTrunc( 803 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType); 804 AI->replaceAllUsesWith(FinalOldResult); 805 AI->eraseFromParent(); 806 return NewAI; 807 } 808 809 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 810 // The basic idea here is that we're expanding a cmpxchg of a 811 // smaller memory size up to a word-sized cmpxchg. To do this, we 812 // need to add a retry-loop for strong cmpxchg, so that 813 // modifications to other parts of the word don't cause a spurious 814 // failure. 815 816 // This generates code like the following: 817 // [[Setup mask values PMV.*]] 818 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 819 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 820 // %InitLoaded = load i32* %addr 821 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 822 // br partword.cmpxchg.loop 823 // partword.cmpxchg.loop: 824 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 825 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 826 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 827 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 828 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 829 // i32 %FullWord_NewVal success_ordering failure_ordering 830 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 831 // %Success = extractvalue { i32, i1 } %NewCI, 1 832 // br i1 %Success, label %partword.cmpxchg.end, 833 // label %partword.cmpxchg.failure 834 // partword.cmpxchg.failure: 835 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 836 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 837 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 838 // label %partword.cmpxchg.end 839 // partword.cmpxchg.end: 840 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 841 // %FinalOldVal = trunc i32 %tmp1 to i8 842 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 843 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 844 845 Value *Addr = CI->getPointerOperand(); 846 Value *Cmp = CI->getCompareOperand(); 847 Value *NewVal = CI->getNewValOperand(); 848 849 BasicBlock *BB = CI->getParent(); 850 Function *F = BB->getParent(); 851 IRBuilder<> Builder(CI); 852 LLVMContext &Ctx = Builder.getContext(); 853 854 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 855 856 BasicBlock *EndBB = 857 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 858 auto FailureBB = 859 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 860 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 861 862 // The split call above "helpfully" added a branch at the end of BB 863 // (to the wrong place). 864 std::prev(BB->end())->eraseFromParent(); 865 Builder.SetInsertPoint(BB); 866 867 PartwordMaskValues PMV = createMaskInstrs( 868 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 869 870 // Shift the incoming values over, into the right location in the word. 871 Value *NewVal_Shifted = 872 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 873 Value *Cmp_Shifted = 874 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 875 876 // Load the entire current word, and mask into place the expected and new 877 // values 878 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 879 InitLoaded->setVolatile(CI->isVolatile()); 880 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 881 Builder.CreateBr(LoopBB); 882 883 // partword.cmpxchg.loop: 884 Builder.SetInsertPoint(LoopBB); 885 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 886 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 887 888 // Mask/Or the expected and new values into place in the loaded word. 889 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 890 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 891 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 892 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 893 CI->getFailureOrdering(), CI->getSyncScopeID()); 894 NewCI->setVolatile(CI->isVolatile()); 895 // When we're building a strong cmpxchg, we need a loop, so you 896 // might think we could use a weak cmpxchg inside. But, using strong 897 // allows the below comparison for ShouldContinue, and we're 898 // expecting the underlying cmpxchg to be a machine instruction, 899 // which is strong anyways. 900 NewCI->setWeak(CI->isWeak()); 901 902 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 903 Value *Success = Builder.CreateExtractValue(NewCI, 1); 904 905 if (CI->isWeak()) 906 Builder.CreateBr(EndBB); 907 else 908 Builder.CreateCondBr(Success, EndBB, FailureBB); 909 910 // partword.cmpxchg.failure: 911 Builder.SetInsertPoint(FailureBB); 912 // Upon failure, verify that the masked-out part of the loaded value 913 // has been modified. If it didn't, abort the cmpxchg, since the 914 // masked-in part must've. 915 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 916 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 917 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 918 919 // Add the second value to the phi from above 920 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 921 922 // partword.cmpxchg.end: 923 Builder.SetInsertPoint(CI); 924 925 Value *FinalOldVal = Builder.CreateTrunc( 926 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 927 Value *Res = UndefValue::get(CI->getType()); 928 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 929 Res = Builder.CreateInsertValue(Res, Success, 1); 930 931 CI->replaceAllUsesWith(Res); 932 CI->eraseFromParent(); 933 } 934 935 void AtomicExpand::expandAtomicOpToLLSC( 936 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 937 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 938 IRBuilder<> Builder(I); 939 Value *Loaded = 940 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 941 942 I->replaceAllUsesWith(Loaded); 943 I->eraseFromParent(); 944 } 945 946 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 947 IRBuilder<> Builder(AI); 948 949 PartwordMaskValues PMV = 950 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 951 TLI->getMinCmpXchgSizeInBits() / 8); 952 953 // The value operand must be sign-extended for signed min/max so that the 954 // target's signed comparison instructions can be used. Otherwise, just 955 // zero-ext. 956 Instruction::CastOps CastOp = Instruction::ZExt; 957 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 958 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 959 CastOp = Instruction::SExt; 960 961 Value *ValOperand_Shifted = Builder.CreateShl( 962 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 963 PMV.ShiftAmt, "ValOperand_Shifted"); 964 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 965 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 966 AI->getOrdering()); 967 Value *FinalOldResult = Builder.CreateTrunc( 968 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 969 AI->replaceAllUsesWith(FinalOldResult); 970 AI->eraseFromParent(); 971 } 972 973 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 974 IRBuilder<> Builder(CI); 975 976 PartwordMaskValues PMV = createMaskInstrs( 977 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 978 TLI->getMinCmpXchgSizeInBits() / 8); 979 980 Value *CmpVal_Shifted = Builder.CreateShl( 981 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 982 "CmpVal_Shifted"); 983 Value *NewVal_Shifted = Builder.CreateShl( 984 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 985 "NewVal_Shifted"); 986 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 987 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 988 CI->getSuccessOrdering()); 989 Value *FinalOldVal = Builder.CreateTrunc( 990 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 991 992 Value *Res = UndefValue::get(CI->getType()); 993 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 994 Value *Success = Builder.CreateICmpEQ( 995 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 996 Res = Builder.CreateInsertValue(Res, Success, 1); 997 998 CI->replaceAllUsesWith(Res); 999 CI->eraseFromParent(); 1000 } 1001 1002 Value *AtomicExpand::insertRMWLLSCLoop( 1003 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1004 AtomicOrdering MemOpOrder, 1005 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1006 LLVMContext &Ctx = Builder.getContext(); 1007 BasicBlock *BB = Builder.GetInsertBlock(); 1008 Function *F = BB->getParent(); 1009 1010 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1011 // 1012 // The standard expansion we produce is: 1013 // [...] 1014 // atomicrmw.start: 1015 // %loaded = @load.linked(%addr) 1016 // %new = some_op iN %loaded, %incr 1017 // %stored = @store_conditional(%new, %addr) 1018 // %try_again = icmp i32 ne %stored, 0 1019 // br i1 %try_again, label %loop, label %atomicrmw.end 1020 // atomicrmw.end: 1021 // [...] 1022 BasicBlock *ExitBB = 1023 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1024 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1025 1026 // The split call above "helpfully" added a branch at the end of BB (to the 1027 // wrong place). 1028 std::prev(BB->end())->eraseFromParent(); 1029 Builder.SetInsertPoint(BB); 1030 Builder.CreateBr(LoopBB); 1031 1032 // Start the main loop block now that we've taken care of the preliminaries. 1033 Builder.SetInsertPoint(LoopBB); 1034 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1035 1036 Value *NewVal = PerformOp(Builder, Loaded); 1037 1038 Value *StoreSuccess = 1039 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1040 Value *TryAgain = Builder.CreateICmpNE( 1041 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1042 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1043 1044 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1045 return Loaded; 1046 } 1047 1048 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1049 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1050 /// IR. As a migration step, we convert back to what use to be the standard 1051 /// way to represent a pointer cmpxchg so that we can update backends one by 1052 /// one. 1053 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1054 auto *M = CI->getModule(); 1055 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1056 M->getDataLayout()); 1057 1058 IRBuilder<> Builder(CI); 1059 1060 Value *Addr = CI->getPointerOperand(); 1061 Type *PT = PointerType::get(NewTy, 1062 Addr->getType()->getPointerAddressSpace()); 1063 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1064 1065 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1066 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1067 1068 1069 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 1070 CI->getSuccessOrdering(), 1071 CI->getFailureOrdering(), 1072 CI->getSyncScopeID()); 1073 NewCI->setVolatile(CI->isVolatile()); 1074 NewCI->setWeak(CI->isWeak()); 1075 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1076 1077 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1078 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1079 1080 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1081 1082 Value *Res = UndefValue::get(CI->getType()); 1083 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1084 Res = Builder.CreateInsertValue(Res, Succ, 1); 1085 1086 CI->replaceAllUsesWith(Res); 1087 CI->eraseFromParent(); 1088 return NewCI; 1089 } 1090 1091 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1092 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1093 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1094 Value *Addr = CI->getPointerOperand(); 1095 BasicBlock *BB = CI->getParent(); 1096 Function *F = BB->getParent(); 1097 LLVMContext &Ctx = F->getContext(); 1098 // If shouldInsertFencesForAtomic() returns true, then the target does not 1099 // want to deal with memory orders, and emitLeading/TrailingFence should take 1100 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1101 // should preserve the ordering. 1102 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1103 AtomicOrdering MemOpOrder = 1104 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 1105 1106 // In implementations which use a barrier to achieve release semantics, we can 1107 // delay emitting this barrier until we know a store is actually going to be 1108 // attempted. The cost of this delay is that we need 2 copies of the block 1109 // emitting the load-linked, affecting code size. 1110 // 1111 // Ideally, this logic would be unconditional except for the minsize check 1112 // since in other cases the extra blocks naturally collapse down to the 1113 // minimal loop. Unfortunately, this puts too much stress on later 1114 // optimisations so we avoid emitting the extra logic in those cases too. 1115 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1116 SuccessOrder != AtomicOrdering::Monotonic && 1117 SuccessOrder != AtomicOrdering::Acquire && 1118 !F->hasMinSize(); 1119 1120 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1121 // do it even on minsize. 1122 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1123 1124 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1125 // 1126 // The full expansion we produce is: 1127 // [...] 1128 // cmpxchg.start: 1129 // %unreleasedload = @load.linked(%addr) 1130 // %should_store = icmp eq %unreleasedload, %desired 1131 // br i1 %should_store, label %cmpxchg.fencedstore, 1132 // label %cmpxchg.nostore 1133 // cmpxchg.releasingstore: 1134 // fence? 1135 // br label cmpxchg.trystore 1136 // cmpxchg.trystore: 1137 // %loaded.trystore = phi [%unreleasedload, %releasingstore], 1138 // [%releasedload, %cmpxchg.releasedload] 1139 // %stored = @store_conditional(%new, %addr) 1140 // %success = icmp eq i32 %stored, 0 1141 // br i1 %success, label %cmpxchg.success, 1142 // label %cmpxchg.releasedload/%cmpxchg.failure 1143 // cmpxchg.releasedload: 1144 // %releasedload = @load.linked(%addr) 1145 // %should_store = icmp eq %releasedload, %desired 1146 // br i1 %should_store, label %cmpxchg.trystore, 1147 // label %cmpxchg.failure 1148 // cmpxchg.success: 1149 // fence? 1150 // br label %cmpxchg.end 1151 // cmpxchg.nostore: 1152 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1153 // [%releasedload, 1154 // %cmpxchg.releasedload/%cmpxchg.trystore] 1155 // @load_linked_fail_balance()? 1156 // br label %cmpxchg.failure 1157 // cmpxchg.failure: 1158 // fence? 1159 // br label %cmpxchg.end 1160 // cmpxchg.end: 1161 // %loaded = phi [%loaded.nostore, %cmpxchg.failure], 1162 // [%loaded.trystore, %cmpxchg.trystore] 1163 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1164 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1165 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1166 // [...] 1167 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1168 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1169 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1170 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1171 auto ReleasedLoadBB = 1172 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1173 auto TryStoreBB = 1174 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1175 auto ReleasingStoreBB = 1176 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1177 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1178 1179 // This grabs the DebugLoc from CI 1180 IRBuilder<> Builder(CI); 1181 1182 // The split call above "helpfully" added a branch at the end of BB (to the 1183 // wrong place), but we might want a fence too. It's easiest to just remove 1184 // the branch entirely. 1185 std::prev(BB->end())->eraseFromParent(); 1186 Builder.SetInsertPoint(BB); 1187 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1188 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1189 Builder.CreateBr(StartBB); 1190 1191 // Start the main loop block now that we've taken care of the preliminaries. 1192 Builder.SetInsertPoint(StartBB); 1193 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1194 Value *ShouldStore = Builder.CreateICmpEQ( 1195 UnreleasedLoad, CI->getCompareOperand(), "should_store"); 1196 1197 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1198 // jump straight past that fence instruction (if it exists). 1199 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1200 1201 Builder.SetInsertPoint(ReleasingStoreBB); 1202 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1203 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1204 Builder.CreateBr(TryStoreBB); 1205 1206 Builder.SetInsertPoint(TryStoreBB); 1207 Value *StoreSuccess = TLI->emitStoreConditional( 1208 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 1209 StoreSuccess = Builder.CreateICmpEQ( 1210 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1211 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1212 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1213 CI->isWeak() ? FailureBB : RetryBB); 1214 1215 Builder.SetInsertPoint(ReleasedLoadBB); 1216 Value *SecondLoad; 1217 if (HasReleasedLoadBB) { 1218 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1219 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), 1220 "should_store"); 1221 1222 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1223 // jump straight past that fence instruction (if it exists). 1224 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1225 } else 1226 Builder.CreateUnreachable(); 1227 1228 // Make sure later instructions don't get reordered with a fence if 1229 // necessary. 1230 Builder.SetInsertPoint(SuccessBB); 1231 if (ShouldInsertFencesForAtomic) 1232 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1233 Builder.CreateBr(ExitBB); 1234 1235 Builder.SetInsertPoint(NoStoreBB); 1236 // In the failing case, where we don't execute the store-conditional, the 1237 // target might want to balance out the load-linked with a dedicated 1238 // instruction (e.g., on ARM, clearing the exclusive monitor). 1239 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1240 Builder.CreateBr(FailureBB); 1241 1242 Builder.SetInsertPoint(FailureBB); 1243 if (ShouldInsertFencesForAtomic) 1244 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1245 Builder.CreateBr(ExitBB); 1246 1247 // Finally, we have control-flow based knowledge of whether the cmpxchg 1248 // succeeded or not. We expose this to later passes by converting any 1249 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1250 // PHI. 1251 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1252 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 1253 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1254 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1255 1256 // Setup the builder so we can create any PHIs we need. 1257 Value *Loaded; 1258 if (!HasReleasedLoadBB) 1259 Loaded = UnreleasedLoad; 1260 else { 1261 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); 1262 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1263 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1264 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1265 1266 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); 1267 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1268 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); 1269 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1270 1271 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); 1272 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1273 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); 1274 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); 1275 1276 Loaded = ExitLoaded; 1277 } 1278 1279 // Look for any users of the cmpxchg that are just comparing the loaded value 1280 // against the desired one, and replace them with the CFG-derived version. 1281 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1282 for (auto User : CI->users()) { 1283 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1284 if (!EV) 1285 continue; 1286 1287 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1288 "weird extraction from { iN, i1 }"); 1289 1290 if (EV->getIndices()[0] == 0) 1291 EV->replaceAllUsesWith(Loaded); 1292 else 1293 EV->replaceAllUsesWith(Success); 1294 1295 PrunedInsts.push_back(EV); 1296 } 1297 1298 // We can remove the instructions now we're no longer iterating through them. 1299 for (auto EV : PrunedInsts) 1300 EV->eraseFromParent(); 1301 1302 if (!CI->use_empty()) { 1303 // Some use of the full struct return that we don't understand has happened, 1304 // so we've got to reconstruct it properly. 1305 Value *Res; 1306 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1307 Res = Builder.CreateInsertValue(Res, Success, 1); 1308 1309 CI->replaceAllUsesWith(Res); 1310 } 1311 1312 CI->eraseFromParent(); 1313 return true; 1314 } 1315 1316 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1317 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1318 if(!C) 1319 return false; 1320 1321 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1322 switch(Op) { 1323 case AtomicRMWInst::Add: 1324 case AtomicRMWInst::Sub: 1325 case AtomicRMWInst::Or: 1326 case AtomicRMWInst::Xor: 1327 return C->isZero(); 1328 case AtomicRMWInst::And: 1329 return C->isMinusOne(); 1330 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1331 default: 1332 return false; 1333 } 1334 } 1335 1336 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1337 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1338 tryExpandAtomicLoad(ResultingLoad); 1339 return true; 1340 } 1341 return false; 1342 } 1343 1344 Value *AtomicExpand::insertRMWCmpXchgLoop( 1345 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1346 AtomicOrdering MemOpOrder, 1347 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1348 CreateCmpXchgInstFun CreateCmpXchg) { 1349 LLVMContext &Ctx = Builder.getContext(); 1350 BasicBlock *BB = Builder.GetInsertBlock(); 1351 Function *F = BB->getParent(); 1352 1353 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1354 // 1355 // The standard expansion we produce is: 1356 // [...] 1357 // %init_loaded = load atomic iN* %addr 1358 // br label %loop 1359 // loop: 1360 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1361 // %new = some_op iN %loaded, %incr 1362 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1363 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1364 // %success = extractvalue { iN, i1 } %pair, 1 1365 // br i1 %success, label %atomicrmw.end, label %loop 1366 // atomicrmw.end: 1367 // [...] 1368 BasicBlock *ExitBB = 1369 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1370 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1371 1372 // The split call above "helpfully" added a branch at the end of BB (to the 1373 // wrong place), but we want a load. It's easiest to just remove 1374 // the branch entirely. 1375 std::prev(BB->end())->eraseFromParent(); 1376 Builder.SetInsertPoint(BB); 1377 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1378 // Atomics require at least natural alignment. 1379 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); 1380 Builder.CreateBr(LoopBB); 1381 1382 // Start the main loop block now that we've taken care of the preliminaries. 1383 Builder.SetInsertPoint(LoopBB); 1384 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1385 Loaded->addIncoming(InitLoaded, BB); 1386 1387 Value *NewVal = PerformOp(Builder, Loaded); 1388 1389 Value *NewLoaded = nullptr; 1390 Value *Success = nullptr; 1391 1392 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1393 MemOpOrder == AtomicOrdering::Unordered 1394 ? AtomicOrdering::Monotonic 1395 : MemOpOrder, 1396 Success, NewLoaded); 1397 assert(Success && NewLoaded); 1398 1399 Loaded->addIncoming(NewLoaded, LoopBB); 1400 1401 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1402 1403 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1404 return NewLoaded; 1405 } 1406 1407 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1408 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1409 unsigned ValueSize = getAtomicOpSize(CI); 1410 1411 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1412 default: 1413 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1414 case TargetLoweringBase::AtomicExpansionKind::None: 1415 if (ValueSize < MinCASSize) 1416 expandPartwordCmpXchg(CI); 1417 return false; 1418 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1419 assert(ValueSize >= MinCASSize && 1420 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); 1421 return expandAtomicCmpXchg(CI); 1422 } 1423 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1424 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1425 return true; 1426 } 1427 } 1428 1429 // Note: This function is exposed externally by AtomicExpandUtils.h 1430 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1431 CreateCmpXchgInstFun CreateCmpXchg) { 1432 IRBuilder<> Builder(AI); 1433 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1434 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1435 [&](IRBuilder<> &Builder, Value *Loaded) { 1436 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1437 AI->getValOperand()); 1438 }, 1439 CreateCmpXchg); 1440 1441 AI->replaceAllUsesWith(Loaded); 1442 AI->eraseFromParent(); 1443 return true; 1444 } 1445 1446 // In order to use one of the sized library calls such as 1447 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1448 // must be one of the potentially-specialized sizes, and the value 1449 // type must actually exist in C on the target (otherwise, the 1450 // function wouldn't actually be defined.) 1451 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1452 const DataLayout &DL) { 1453 // TODO: "LargestSize" is an approximation for "largest type that 1454 // you can express in C". It seems to be the case that int128 is 1455 // supported on all 64-bit platforms, otherwise only up to 64-bit 1456 // integers are supported. If we get this wrong, then we'll try to 1457 // call a sized libcall that doesn't actually exist. There should 1458 // really be some more reliable way in LLVM of determining integer 1459 // sizes which are valid in the target's C ABI... 1460 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1461 return Align >= Size && 1462 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1463 Size <= LargestSize; 1464 } 1465 1466 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1467 static const RTLIB::Libcall Libcalls[6] = { 1468 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1469 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1470 unsigned Size = getAtomicOpSize(I); 1471 unsigned Align = getAtomicOpAlign(I); 1472 1473 bool expanded = expandAtomicOpToLibcall( 1474 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1475 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1476 (void)expanded; 1477 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1478 } 1479 1480 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1481 static const RTLIB::Libcall Libcalls[6] = { 1482 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1483 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1484 unsigned Size = getAtomicOpSize(I); 1485 unsigned Align = getAtomicOpAlign(I); 1486 1487 bool expanded = expandAtomicOpToLibcall( 1488 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1489 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1490 (void)expanded; 1491 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1492 } 1493 1494 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1495 static const RTLIB::Libcall Libcalls[6] = { 1496 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1497 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1498 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1499 unsigned Size = getAtomicOpSize(I); 1500 unsigned Align = getAtomicOpAlign(I); 1501 1502 bool expanded = expandAtomicOpToLibcall( 1503 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1504 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1505 Libcalls); 1506 (void)expanded; 1507 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1508 } 1509 1510 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1511 static const RTLIB::Libcall LibcallsXchg[6] = { 1512 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1513 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1514 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1515 static const RTLIB::Libcall LibcallsAdd[6] = { 1516 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1517 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1518 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1519 static const RTLIB::Libcall LibcallsSub[6] = { 1520 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1521 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1522 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1523 static const RTLIB::Libcall LibcallsAnd[6] = { 1524 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1525 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1526 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1527 static const RTLIB::Libcall LibcallsOr[6] = { 1528 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1529 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1530 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1531 static const RTLIB::Libcall LibcallsXor[6] = { 1532 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1533 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1534 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1535 static const RTLIB::Libcall LibcallsNand[6] = { 1536 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1537 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1538 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1539 1540 switch (Op) { 1541 case AtomicRMWInst::BAD_BINOP: 1542 llvm_unreachable("Should not have BAD_BINOP."); 1543 case AtomicRMWInst::Xchg: 1544 return makeArrayRef(LibcallsXchg); 1545 case AtomicRMWInst::Add: 1546 return makeArrayRef(LibcallsAdd); 1547 case AtomicRMWInst::Sub: 1548 return makeArrayRef(LibcallsSub); 1549 case AtomicRMWInst::And: 1550 return makeArrayRef(LibcallsAnd); 1551 case AtomicRMWInst::Or: 1552 return makeArrayRef(LibcallsOr); 1553 case AtomicRMWInst::Xor: 1554 return makeArrayRef(LibcallsXor); 1555 case AtomicRMWInst::Nand: 1556 return makeArrayRef(LibcallsNand); 1557 case AtomicRMWInst::Max: 1558 case AtomicRMWInst::Min: 1559 case AtomicRMWInst::UMax: 1560 case AtomicRMWInst::UMin: 1561 case AtomicRMWInst::FAdd: 1562 case AtomicRMWInst::FSub: 1563 // No atomic libcalls are available for max/min/umax/umin. 1564 return {}; 1565 } 1566 llvm_unreachable("Unexpected AtomicRMW operation."); 1567 } 1568 1569 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1570 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1571 1572 unsigned Size = getAtomicOpSize(I); 1573 unsigned Align = getAtomicOpAlign(I); 1574 1575 bool Success = false; 1576 if (!Libcalls.empty()) 1577 Success = expandAtomicOpToLibcall( 1578 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1579 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1580 1581 // The expansion failed: either there were no libcalls at all for 1582 // the operation (min/max), or there were only size-specialized 1583 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1584 // CAS libcall, via a CAS loop, instead. 1585 if (!Success) { 1586 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1587 Value *Loaded, Value *NewVal, 1588 AtomicOrdering MemOpOrder, 1589 Value *&Success, Value *&NewLoaded) { 1590 // Create the CAS instruction normally... 1591 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1592 Addr, Loaded, NewVal, MemOpOrder, 1593 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1594 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1595 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1596 1597 // ...and then expand the CAS into a libcall. 1598 expandAtomicCASToLibcall(Pair); 1599 }); 1600 } 1601 } 1602 1603 // A helper routine for the above expandAtomic*ToLibcall functions. 1604 // 1605 // 'Libcalls' contains an array of enum values for the particular 1606 // ATOMIC libcalls to be emitted. All of the other arguments besides 1607 // 'I' are extracted from the Instruction subclass by the 1608 // caller. Depending on the particular call, some will be null. 1609 bool AtomicExpand::expandAtomicOpToLibcall( 1610 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1611 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1612 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1613 assert(Libcalls.size() == 6); 1614 1615 LLVMContext &Ctx = I->getContext(); 1616 Module *M = I->getModule(); 1617 const DataLayout &DL = M->getDataLayout(); 1618 IRBuilder<> Builder(I); 1619 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1620 1621 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1622 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1623 1624 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); 1625 1626 // TODO: the "order" argument type is "int", not int32. So 1627 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1628 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1629 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1630 Constant *OrderingVal = 1631 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1632 Constant *Ordering2Val = nullptr; 1633 if (CASExpected) { 1634 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1635 Ordering2Val = 1636 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1637 } 1638 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1639 1640 RTLIB::Libcall RTLibType; 1641 if (UseSizedLibcall) { 1642 switch (Size) { 1643 case 1: RTLibType = Libcalls[1]; break; 1644 case 2: RTLibType = Libcalls[2]; break; 1645 case 4: RTLibType = Libcalls[3]; break; 1646 case 8: RTLibType = Libcalls[4]; break; 1647 case 16: RTLibType = Libcalls[5]; break; 1648 } 1649 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1650 RTLibType = Libcalls[0]; 1651 } else { 1652 // Can't use sized function, and there's no generic for this 1653 // operation, so give up. 1654 return false; 1655 } 1656 1657 // Build up the function call. There's two kinds. First, the sized 1658 // variants. These calls are going to be one of the following (with 1659 // N=1,2,4,8,16): 1660 // iN __atomic_load_N(iN *ptr, int ordering) 1661 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1662 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1663 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1664 // int success_order, int failure_order) 1665 // 1666 // Note that these functions can be used for non-integer atomic 1667 // operations, the values just need to be bitcast to integers on the 1668 // way in and out. 1669 // 1670 // And, then, the generic variants. They look like the following: 1671 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1672 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1673 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1674 // int ordering) 1675 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1676 // void *desired, int success_order, 1677 // int failure_order) 1678 // 1679 // The different signatures are built up depending on the 1680 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1681 // variables. 1682 1683 AllocaInst *AllocaCASExpected = nullptr; 1684 Value *AllocaCASExpected_i8 = nullptr; 1685 AllocaInst *AllocaValue = nullptr; 1686 Value *AllocaValue_i8 = nullptr; 1687 AllocaInst *AllocaResult = nullptr; 1688 Value *AllocaResult_i8 = nullptr; 1689 1690 Type *ResultTy; 1691 SmallVector<Value *, 6> Args; 1692 AttributeList Attr; 1693 1694 // 'size' argument. 1695 if (!UseSizedLibcall) { 1696 // Note, getIntPtrType is assumed equivalent to size_t. 1697 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1698 } 1699 1700 // 'ptr' argument. 1701 // note: This assumes all address spaces share a common libfunc 1702 // implementation and that addresses are convertable. For systems without 1703 // that property, we'd need to extend this mechanism to support AS-specific 1704 // families of atomic intrinsics. 1705 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1706 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1707 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1708 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1709 Args.push_back(PtrVal); 1710 1711 // 'expected' argument, if present. 1712 if (CASExpected) { 1713 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1714 AllocaCASExpected->setAlignment(AllocaAlignment); 1715 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1716 1717 AllocaCASExpected_i8 = 1718 Builder.CreateBitCast(AllocaCASExpected, 1719 Type::getInt8PtrTy(Ctx, AllocaAS)); 1720 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1721 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1722 Args.push_back(AllocaCASExpected_i8); 1723 } 1724 1725 // 'val' argument ('desired' for cas), if present. 1726 if (ValueOperand) { 1727 if (UseSizedLibcall) { 1728 Value *IntValue = 1729 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1730 Args.push_back(IntValue); 1731 } else { 1732 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1733 AllocaValue->setAlignment(AllocaAlignment); 1734 AllocaValue_i8 = 1735 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1736 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1737 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1738 Args.push_back(AllocaValue_i8); 1739 } 1740 } 1741 1742 // 'ret' argument. 1743 if (!CASExpected && HasResult && !UseSizedLibcall) { 1744 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1745 AllocaResult->setAlignment(AllocaAlignment); 1746 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1747 AllocaResult_i8 = 1748 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1749 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1750 Args.push_back(AllocaResult_i8); 1751 } 1752 1753 // 'ordering' ('success_order' for cas) argument. 1754 Args.push_back(OrderingVal); 1755 1756 // 'failure_order' argument, if present. 1757 if (Ordering2Val) 1758 Args.push_back(Ordering2Val); 1759 1760 // Now, the return type. 1761 if (CASExpected) { 1762 ResultTy = Type::getInt1Ty(Ctx); 1763 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1764 } else if (HasResult && UseSizedLibcall) 1765 ResultTy = SizedIntTy; 1766 else 1767 ResultTy = Type::getVoidTy(Ctx); 1768 1769 // Done with setting up arguments and return types, create the call: 1770 SmallVector<Type *, 6> ArgTys; 1771 for (Value *Arg : Args) 1772 ArgTys.push_back(Arg->getType()); 1773 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1774 FunctionCallee LibcallFn = 1775 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1776 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1777 Call->setAttributes(Attr); 1778 Value *Result = Call; 1779 1780 // And then, extract the results... 1781 if (ValueOperand && !UseSizedLibcall) 1782 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1783 1784 if (CASExpected) { 1785 // The final result from the CAS is {load of 'expected' alloca, bool result 1786 // from call} 1787 Type *FinalResultTy = I->getType(); 1788 Value *V = UndefValue::get(FinalResultTy); 1789 Value *ExpectedOut = Builder.CreateAlignedLoad( 1790 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1791 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1792 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1793 V = Builder.CreateInsertValue(V, Result, 1); 1794 I->replaceAllUsesWith(V); 1795 } else if (HasResult) { 1796 Value *V; 1797 if (UseSizedLibcall) 1798 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1799 else { 1800 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1801 AllocaAlignment); 1802 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1803 } 1804 I->replaceAllUsesWith(V); 1805 } 1806 I->eraseFromParent(); 1807 return true; 1808 } 1809