xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Transforms/Utils/LowerAtomic.h"
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "atomic-expand"
58 
59 namespace {
60 
61 class AtomicExpand : public FunctionPass {
62   const TargetLowering *TLI = nullptr;
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
66 
67   AtomicExpand() : FunctionPass(ID) {
68     initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
69   }
70 
71   bool runOnFunction(Function &F) override;
72 
73 private:
74   bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
75   IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
76   LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
77   bool tryExpandAtomicLoad(LoadInst *LI);
78   bool expandAtomicLoadToLL(LoadInst *LI);
79   bool expandAtomicLoadToCmpXchg(LoadInst *LI);
80   StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
81   bool tryExpandAtomicStore(StoreInst *SI);
82   void expandAtomicStore(StoreInst *SI);
83   bool tryExpandAtomicRMW(AtomicRMWInst *AI);
84   AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
85   Value *
86   insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
87                     Align AddrAlign, AtomicOrdering MemOpOrder,
88                     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
89   void
90   expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr,
91                        Align AddrAlign, AtomicOrdering MemOpOrder,
92                        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
93   void expandPartwordAtomicRMW(
94       AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
95   AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
96   bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
97   void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
98   void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
99 
100   AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
101   static Value *
102   insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr,
103                        Align AddrAlign, AtomicOrdering MemOpOrder,
104                        SyncScope::ID SSID,
105                        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
106                        CreateCmpXchgInstFun CreateCmpXchg);
107   bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
108 
109   bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
110   bool isIdempotentRMW(AtomicRMWInst *RMWI);
111   bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
112 
113   bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
114                                Value *PointerOperand, Value *ValueOperand,
115                                Value *CASExpected, AtomicOrdering Ordering,
116                                AtomicOrdering Ordering2,
117                                ArrayRef<RTLIB::Libcall> Libcalls);
118   void expandAtomicLoadToLibcall(LoadInst *LI);
119   void expandAtomicStoreToLibcall(StoreInst *LI);
120   void expandAtomicRMWToLibcall(AtomicRMWInst *I);
121   void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
122 
123   friend bool
124   llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
125                                  CreateCmpXchgInstFun CreateCmpXchg);
126 };
127 
128 } // end anonymous namespace
129 
130 char AtomicExpand::ID = 0;
131 
132 char &llvm::AtomicExpandID = AtomicExpand::ID;
133 
134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false,
135                 false)
136 
137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
138 
139 // Helper functions to retrieve the size of atomic instructions.
140 static unsigned getAtomicOpSize(LoadInst *LI) {
141   const DataLayout &DL = LI->getModule()->getDataLayout();
142   return DL.getTypeStoreSize(LI->getType());
143 }
144 
145 static unsigned getAtomicOpSize(StoreInst *SI) {
146   const DataLayout &DL = SI->getModule()->getDataLayout();
147   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
148 }
149 
150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
151   const DataLayout &DL = RMWI->getModule()->getDataLayout();
152   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
153 }
154 
155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
156   const DataLayout &DL = CASI->getModule()->getDataLayout();
157   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
158 }
159 
160 // Determine if a particular atomic operation has a supported size,
161 // and is of appropriate alignment, to be passed through for target
162 // lowering. (Versus turning into a __atomic libcall)
163 template <typename Inst>
164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
165   unsigned Size = getAtomicOpSize(I);
166   Align Alignment = I->getAlign();
167   return Alignment >= Size &&
168          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
169 }
170 
171 bool AtomicExpand::runOnFunction(Function &F) {
172   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
173   if (!TPC)
174     return false;
175 
176   auto &TM = TPC->getTM<TargetMachine>();
177   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
178     return false;
179   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
180 
181   SmallVector<Instruction *, 1> AtomicInsts;
182 
183   // Changing control-flow while iterating through it is a bad idea, so gather a
184   // list of all atomic instructions before we start.
185   for (Instruction &I : instructions(F))
186     if (I.isAtomic() && !isa<FenceInst>(&I))
187       AtomicInsts.push_back(&I);
188 
189   bool MadeChange = false;
190   for (auto *I : AtomicInsts) {
191     auto LI = dyn_cast<LoadInst>(I);
192     auto SI = dyn_cast<StoreInst>(I);
193     auto RMWI = dyn_cast<AtomicRMWInst>(I);
194     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
195     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
196 
197     // If the Size/Alignment is not supported, replace with a libcall.
198     if (LI) {
199       if (!atomicSizeSupported(TLI, LI)) {
200         expandAtomicLoadToLibcall(LI);
201         MadeChange = true;
202         continue;
203       }
204     } else if (SI) {
205       if (!atomicSizeSupported(TLI, SI)) {
206         expandAtomicStoreToLibcall(SI);
207         MadeChange = true;
208         continue;
209       }
210     } else if (RMWI) {
211       if (!atomicSizeSupported(TLI, RMWI)) {
212         expandAtomicRMWToLibcall(RMWI);
213         MadeChange = true;
214         continue;
215       }
216     } else if (CASI) {
217       if (!atomicSizeSupported(TLI, CASI)) {
218         expandAtomicCASToLibcall(CASI);
219         MadeChange = true;
220         continue;
221       }
222     }
223 
224     if (TLI->shouldInsertFencesForAtomic(I)) {
225       auto FenceOrdering = AtomicOrdering::Monotonic;
226       if (LI && isAcquireOrStronger(LI->getOrdering())) {
227         FenceOrdering = LI->getOrdering();
228         LI->setOrdering(AtomicOrdering::Monotonic);
229       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
230         FenceOrdering = SI->getOrdering();
231         SI->setOrdering(AtomicOrdering::Monotonic);
232       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
233                           isAcquireOrStronger(RMWI->getOrdering()))) {
234         FenceOrdering = RMWI->getOrdering();
235         RMWI->setOrdering(AtomicOrdering::Monotonic);
236       } else if (CASI &&
237                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
238                      TargetLoweringBase::AtomicExpansionKind::None &&
239                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
240                   isAcquireOrStronger(CASI->getSuccessOrdering()) ||
241                   isAcquireOrStronger(CASI->getFailureOrdering()))) {
242         // If a compare and swap is lowered to LL/SC, we can do smarter fence
243         // insertion, with a stronger one on the success path than on the
244         // failure path. As a result, fence insertion is directly done by
245         // expandAtomicCmpXchg in that case.
246         FenceOrdering = CASI->getMergedOrdering();
247         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
248         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
249       }
250 
251       if (FenceOrdering != AtomicOrdering::Monotonic) {
252         MadeChange |= bracketInstWithFences(I, FenceOrdering);
253       }
254     }
255 
256     if (LI) {
257       if (TLI->shouldCastAtomicLoadInIR(LI) ==
258           TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
259         // TODO: add a TLI hook to control this so that each target can
260         // convert to lowering the original type one at a time.
261         LI = convertAtomicLoadToIntegerType(LI);
262         assert(LI->getType()->isIntegerTy() && "invariant broken");
263         MadeChange = true;
264       }
265 
266       MadeChange |= tryExpandAtomicLoad(LI);
267     } else if (SI) {
268       if (TLI->shouldCastAtomicStoreInIR(SI) ==
269           TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
270         // TODO: add a TLI hook to control this so that each target can
271         // convert to lowering the original type one at a time.
272         SI = convertAtomicStoreToIntegerType(SI);
273         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
274                "invariant broken");
275         MadeChange = true;
276       }
277 
278       if (tryExpandAtomicStore(SI))
279         MadeChange = true;
280     } else if (RMWI) {
281       // There are two different ways of expanding RMW instructions:
282       // - into a load if it is idempotent
283       // - into a Cmpxchg/LL-SC loop otherwise
284       // we try them in that order.
285 
286       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
287         MadeChange = true;
288       } else {
289         AtomicRMWInst::BinOp Op = RMWI->getOperation();
290         if (TLI->shouldCastAtomicRMWIInIR(RMWI) ==
291             TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
292           // TODO: add a TLI hook to control this so that each target can
293           // convert to lowering the original type one at a time.
294           RMWI = convertAtomicXchgToIntegerType(RMWI);
295           assert(RMWI->getValOperand()->getType()->isIntegerTy() &&
296                  "invariant broken");
297           MadeChange = true;
298         }
299         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
300         unsigned ValueSize = getAtomicOpSize(RMWI);
301         if (ValueSize < MinCASSize &&
302             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
303              Op == AtomicRMWInst::And)) {
304           RMWI = widenPartwordAtomicRMW(RMWI);
305           MadeChange = true;
306         }
307 
308         MadeChange |= tryExpandAtomicRMW(RMWI);
309       }
310     } else if (CASI) {
311       // TODO: when we're ready to make the change at the IR level, we can
312       // extend convertCmpXchgToInteger for floating point too.
313       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
314              "unimplemented - floating point not legal at IR level");
315       if (CASI->getCompareOperand()->getType()->isPointerTy()) {
316         // TODO: add a TLI hook to control this so that each target can
317         // convert to lowering the original type one at a time.
318         CASI = convertCmpXchgToIntegerType(CASI);
319         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
320                "invariant broken");
321         MadeChange = true;
322       }
323 
324       MadeChange |= tryExpandAtomicCmpXchg(CASI);
325     }
326   }
327   return MadeChange;
328 }
329 
330 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
331   IRBuilder<> Builder(I);
332 
333   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
334 
335   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
336   // We have a guard here because not every atomic operation generates a
337   // trailing fence.
338   if (TrailingFence)
339     TrailingFence->moveAfter(I);
340 
341   return (LeadingFence || TrailingFence);
342 }
343 
344 /// Get the iX type with the same bitwidth as T.
345 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
346                                                        const DataLayout &DL) {
347   EVT VT = TLI->getMemValueType(DL, T);
348   unsigned BitWidth = VT.getStoreSizeInBits();
349   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
350   return IntegerType::get(T->getContext(), BitWidth);
351 }
352 
353 /// Convert an atomic load of a non-integral type to an integer load of the
354 /// equivalent bitwidth.  See the function comment on
355 /// convertAtomicStoreToIntegerType for background.
356 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
357   auto *M = LI->getModule();
358   Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
359 
360   IRBuilder<> Builder(LI);
361 
362   Value *Addr = LI->getPointerOperand();
363   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
364   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
365 
366   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
367   NewLI->setAlignment(LI->getAlign());
368   NewLI->setVolatile(LI->isVolatile());
369   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
370   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
371 
372   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
373   LI->replaceAllUsesWith(NewVal);
374   LI->eraseFromParent();
375   return NewLI;
376 }
377 
378 AtomicRMWInst *
379 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
380   auto *M = RMWI->getModule();
381   Type *NewTy =
382       getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
383 
384   IRBuilder<> Builder(RMWI);
385 
386   Value *Addr = RMWI->getPointerOperand();
387   Value *Val = RMWI->getValOperand();
388   Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
389   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
390   Value *NewVal = Val->getType()->isPointerTy()
391                       ? Builder.CreatePtrToInt(Val, NewTy)
392                       : Builder.CreateBitCast(Val, NewTy);
393 
394   auto *NewRMWI =
395       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
396                               RMWI->getAlign(), RMWI->getOrdering());
397   NewRMWI->setVolatile(RMWI->isVolatile());
398   LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
399 
400   Value *NewRVal = RMWI->getType()->isPointerTy()
401                        ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
402                        : Builder.CreateBitCast(NewRMWI, RMWI->getType());
403   RMWI->replaceAllUsesWith(NewRVal);
404   RMWI->eraseFromParent();
405   return NewRMWI;
406 }
407 
408 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
409   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
410   case TargetLoweringBase::AtomicExpansionKind::None:
411     return false;
412   case TargetLoweringBase::AtomicExpansionKind::LLSC:
413     expandAtomicOpToLLSC(
414         LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
415         LI->getOrdering(),
416         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
417     return true;
418   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
419     return expandAtomicLoadToLL(LI);
420   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
421     return expandAtomicLoadToCmpXchg(LI);
422   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
423     LI->setAtomic(AtomicOrdering::NotAtomic);
424     return true;
425   default:
426     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
427   }
428 }
429 
430 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) {
431   switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
432   case TargetLoweringBase::AtomicExpansionKind::None:
433     return false;
434   case TargetLoweringBase::AtomicExpansionKind::Expand:
435     expandAtomicStore(SI);
436     return true;
437   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
438     SI->setAtomic(AtomicOrdering::NotAtomic);
439     return true;
440   default:
441     llvm_unreachable("Unhandled case in tryExpandAtomicStore");
442   }
443 }
444 
445 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
446   IRBuilder<> Builder(LI);
447 
448   // On some architectures, load-linked instructions are atomic for larger
449   // sizes than normal loads. For example, the only 64-bit load guaranteed
450   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
451   Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
452                                    LI->getPointerOperand(), LI->getOrdering());
453   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
454 
455   LI->replaceAllUsesWith(Val);
456   LI->eraseFromParent();
457 
458   return true;
459 }
460 
461 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
462   IRBuilder<> Builder(LI);
463   AtomicOrdering Order = LI->getOrdering();
464   if (Order == AtomicOrdering::Unordered)
465     Order = AtomicOrdering::Monotonic;
466 
467   Value *Addr = LI->getPointerOperand();
468   Type *Ty = LI->getType();
469   Constant *DummyVal = Constant::getNullValue(Ty);
470 
471   Value *Pair = Builder.CreateAtomicCmpXchg(
472       Addr, DummyVal, DummyVal, LI->getAlign(), Order,
473       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
474   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
475 
476   LI->replaceAllUsesWith(Loaded);
477   LI->eraseFromParent();
478 
479   return true;
480 }
481 
482 /// Convert an atomic store of a non-integral type to an integer store of the
483 /// equivalent bitwidth.  We used to not support floating point or vector
484 /// atomics in the IR at all.  The backends learned to deal with the bitcast
485 /// idiom because that was the only way of expressing the notion of a atomic
486 /// float or vector store.  The long term plan is to teach each backend to
487 /// instruction select from the original atomic store, but as a migration
488 /// mechanism, we convert back to the old format which the backends understand.
489 /// Each backend will need individual work to recognize the new format.
490 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
491   IRBuilder<> Builder(SI);
492   auto *M = SI->getModule();
493   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
494                                             M->getDataLayout());
495   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
496 
497   Value *Addr = SI->getPointerOperand();
498   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
499   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
500 
501   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
502   NewSI->setAlignment(SI->getAlign());
503   NewSI->setVolatile(SI->isVolatile());
504   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
505   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
506   SI->eraseFromParent();
507   return NewSI;
508 }
509 
510 void AtomicExpand::expandAtomicStore(StoreInst *SI) {
511   // This function is only called on atomic stores that are too large to be
512   // atomic if implemented as a native store. So we replace them by an
513   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
514   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
515   // It is the responsibility of the target to only signal expansion via
516   // shouldExpandAtomicRMW in cases where this is required and possible.
517   IRBuilder<> Builder(SI);
518   AtomicOrdering Ordering = SI->getOrdering();
519   assert(Ordering != AtomicOrdering::NotAtomic);
520   AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
521                                    ? AtomicOrdering::Monotonic
522                                    : Ordering;
523   AtomicRMWInst *AI = Builder.CreateAtomicRMW(
524       AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
525       SI->getAlign(), RMWOrdering);
526   SI->eraseFromParent();
527 
528   // Now we have an appropriate swap instruction, lower it as usual.
529   tryExpandAtomicRMW(AI);
530 }
531 
532 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
533                                  Value *Loaded, Value *NewVal, Align AddrAlign,
534                                  AtomicOrdering MemOpOrder, SyncScope::ID SSID,
535                                  Value *&Success, Value *&NewLoaded) {
536   Type *OrigTy = NewVal->getType();
537 
538   // This code can go away when cmpxchg supports FP types.
539   assert(!OrigTy->isPointerTy());
540   bool NeedBitcast = OrigTy->isFloatingPointTy();
541   if (NeedBitcast) {
542     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
543     unsigned AS = Addr->getType()->getPointerAddressSpace();
544     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
545     NewVal = Builder.CreateBitCast(NewVal, IntTy);
546     Loaded = Builder.CreateBitCast(Loaded, IntTy);
547   }
548 
549   Value *Pair = Builder.CreateAtomicCmpXchg(
550       Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
551       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
552   Success = Builder.CreateExtractValue(Pair, 1, "success");
553   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
554 
555   if (NeedBitcast)
556     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
557 }
558 
559 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
560   LLVMContext &Ctx = AI->getModule()->getContext();
561   TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
562   switch (Kind) {
563   case TargetLoweringBase::AtomicExpansionKind::None:
564     return false;
565   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
566     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
567     unsigned ValueSize = getAtomicOpSize(AI);
568     if (ValueSize < MinCASSize) {
569       expandPartwordAtomicRMW(AI,
570                               TargetLoweringBase::AtomicExpansionKind::LLSC);
571     } else {
572       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
573         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
574                                    AI->getValOperand());
575       };
576       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
577                            AI->getAlign(), AI->getOrdering(), PerformOp);
578     }
579     return true;
580   }
581   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
582     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
583     unsigned ValueSize = getAtomicOpSize(AI);
584     if (ValueSize < MinCASSize) {
585       // TODO: Handle atomicrmw fadd/fsub
586       if (AI->getType()->isFloatingPointTy())
587         return false;
588 
589       expandPartwordAtomicRMW(AI,
590                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
591     } else {
592       SmallVector<StringRef> SSNs;
593       Ctx.getSyncScopeNames(SSNs);
594       auto MemScope = SSNs[AI->getSyncScopeID()].empty()
595                           ? "system"
596                           : SSNs[AI->getSyncScopeID()];
597       OptimizationRemarkEmitter ORE(AI->getFunction());
598       ORE.emit([&]() {
599         return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
600                << "A compare and swap loop was generated for an atomic "
601                << AI->getOperationName(AI->getOperation()) << " operation at "
602                << MemScope << " memory scope";
603       });
604       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
605     }
606     return true;
607   }
608   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
609     expandAtomicRMWToMaskedIntrinsic(AI);
610     return true;
611   }
612   case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
613     TLI->emitBitTestAtomicRMWIntrinsic(AI);
614     return true;
615   }
616   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
617     return lowerAtomicRMWInst(AI);
618   default:
619     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
620   }
621 }
622 
623 namespace {
624 
625 struct PartwordMaskValues {
626   // These three fields are guaranteed to be set by createMaskInstrs.
627   Type *WordType = nullptr;
628   Type *ValueType = nullptr;
629   Value *AlignedAddr = nullptr;
630   Align AlignedAddrAlignment;
631   // The remaining fields can be null.
632   Value *ShiftAmt = nullptr;
633   Value *Mask = nullptr;
634   Value *Inv_Mask = nullptr;
635 };
636 
637 LLVM_ATTRIBUTE_UNUSED
638 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
639   auto PrintObj = [&O](auto *V) {
640     if (V)
641       O << *V;
642     else
643       O << "nullptr";
644     O << '\n';
645   };
646   O << "PartwordMaskValues {\n";
647   O << "  WordType: ";
648   PrintObj(PMV.WordType);
649   O << "  ValueType: ";
650   PrintObj(PMV.ValueType);
651   O << "  AlignedAddr: ";
652   PrintObj(PMV.AlignedAddr);
653   O << "  AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
654   O << "  ShiftAmt: ";
655   PrintObj(PMV.ShiftAmt);
656   O << "  Mask: ";
657   PrintObj(PMV.Mask);
658   O << "  Inv_Mask: ";
659   PrintObj(PMV.Inv_Mask);
660   O << "}\n";
661   return O;
662 }
663 
664 } // end anonymous namespace
665 
666 /// This is a helper function which builds instructions to provide
667 /// values necessary for partword atomic operations. It takes an
668 /// incoming address, Addr, and ValueType, and constructs the address,
669 /// shift-amounts and masks needed to work with a larger value of size
670 /// WordSize.
671 ///
672 /// AlignedAddr: Addr rounded down to a multiple of WordSize
673 ///
674 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
675 ///           from AlignAddr for it to have the same value as if
676 ///           ValueType was loaded from Addr.
677 ///
678 /// Mask: Value to mask with the value loaded from AlignAddr to
679 ///       include only the part that would've been loaded from Addr.
680 ///
681 /// Inv_Mask: The inverse of Mask.
682 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
683                                            Type *ValueType, Value *Addr,
684                                            Align AddrAlign,
685                                            unsigned MinWordSize) {
686   PartwordMaskValues PMV;
687 
688   Module *M = I->getModule();
689   LLVMContext &Ctx = M->getContext();
690   const DataLayout &DL = M->getDataLayout();
691   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
692 
693   PMV.ValueType = ValueType;
694   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
695                                          : ValueType;
696   if (PMV.ValueType == PMV.WordType) {
697     PMV.AlignedAddr = Addr;
698     PMV.AlignedAddrAlignment = AddrAlign;
699     PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
700     PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
701     return PMV;
702   }
703 
704   assert(ValueSize < MinWordSize);
705 
706   Type *WordPtrType =
707       PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
708 
709   // TODO: we could skip some of this if AddrAlign >= MinWordSize.
710   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
711   PMV.AlignedAddr = Builder.CreateIntToPtr(
712       Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
713       "AlignedAddr");
714   PMV.AlignedAddrAlignment = Align(MinWordSize);
715 
716   Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
717   if (DL.isLittleEndian()) {
718     // turn bytes into bits
719     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
720   } else {
721     // turn bytes into bits, and count from the other side.
722     PMV.ShiftAmt = Builder.CreateShl(
723         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
724   }
725 
726   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
727   PMV.Mask = Builder.CreateShl(
728       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
729       "Mask");
730   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
731   return PMV;
732 }
733 
734 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
735                                  const PartwordMaskValues &PMV) {
736   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
737   if (PMV.WordType == PMV.ValueType)
738     return WideWord;
739 
740   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
741   Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
742   return Trunc;
743 }
744 
745 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
746                                 Value *Updated, const PartwordMaskValues &PMV) {
747   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
748   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
749   if (PMV.WordType == PMV.ValueType)
750     return Updated;
751 
752   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
753   Value *Shift =
754       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
755   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
756   Value *Or = Builder.CreateOr(And, Shift, "inserted");
757   return Or;
758 }
759 
760 /// Emit IR to implement a masked version of a given atomicrmw
761 /// operation. (That is, only the bits under the Mask should be
762 /// affected by the operation)
763 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
764                                     IRBuilder<> &Builder, Value *Loaded,
765                                     Value *Shifted_Inc, Value *Inc,
766                                     const PartwordMaskValues &PMV) {
767   // TODO: update to use
768   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
769   // to merge bits from two values without requiring PMV.Inv_Mask.
770   switch (Op) {
771   case AtomicRMWInst::Xchg: {
772     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
773     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
774     return FinalVal;
775   }
776   case AtomicRMWInst::Or:
777   case AtomicRMWInst::Xor:
778   case AtomicRMWInst::And:
779     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
780   case AtomicRMWInst::Add:
781   case AtomicRMWInst::Sub:
782   case AtomicRMWInst::Nand: {
783     // The other arithmetic ops need to be masked into place.
784     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
785     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
786     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
787     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
788     return FinalVal;
789   }
790   case AtomicRMWInst::Max:
791   case AtomicRMWInst::Min:
792   case AtomicRMWInst::UMax:
793   case AtomicRMWInst::UMin: {
794     // Finally, comparison ops will operate on the full value, so
795     // truncate down to the original size, and expand out again after
796     // doing the operation.
797     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
798     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
799     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
800     return FinalVal;
801   }
802   default:
803     llvm_unreachable("Unknown atomic op");
804   }
805 }
806 
807 /// Expand a sub-word atomicrmw operation into an appropriate
808 /// word-sized operation.
809 ///
810 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
811 /// way as a typical atomicrmw expansion. The only difference here is
812 /// that the operation inside of the loop may operate upon only a
813 /// part of the value.
814 void AtomicExpand::expandPartwordAtomicRMW(
815     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
816   AtomicOrdering MemOpOrder = AI->getOrdering();
817   SyncScope::ID SSID = AI->getSyncScopeID();
818 
819   IRBuilder<> Builder(AI);
820 
821   PartwordMaskValues PMV =
822       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
823                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
824 
825   Value *ValOperand_Shifted =
826       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
827                         PMV.ShiftAmt, "ValOperand_Shifted");
828 
829   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
830     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
831                                  ValOperand_Shifted, AI->getValOperand(), PMV);
832   };
833 
834   Value *OldResult;
835   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
836     OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
837                                      PMV.AlignedAddrAlignment, MemOpOrder, SSID,
838                                      PerformPartwordOp, createCmpXchgInstFun);
839   } else {
840     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
841     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
842                                   PMV.AlignedAddrAlignment, MemOpOrder,
843                                   PerformPartwordOp);
844   }
845 
846   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
847   AI->replaceAllUsesWith(FinalOldResult);
848   AI->eraseFromParent();
849 }
850 
851 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
852 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
853   IRBuilder<> Builder(AI);
854   AtomicRMWInst::BinOp Op = AI->getOperation();
855 
856   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
857           Op == AtomicRMWInst::And) &&
858          "Unable to widen operation");
859 
860   PartwordMaskValues PMV =
861       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
862                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
863 
864   Value *ValOperand_Shifted =
865       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
866                         PMV.ShiftAmt, "ValOperand_Shifted");
867 
868   Value *NewOperand;
869 
870   if (Op == AtomicRMWInst::And)
871     NewOperand =
872         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
873   else
874     NewOperand = ValOperand_Shifted;
875 
876   AtomicRMWInst *NewAI =
877       Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
878                               PMV.AlignedAddrAlignment, AI->getOrdering());
879 
880   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
881   AI->replaceAllUsesWith(FinalOldResult);
882   AI->eraseFromParent();
883   return NewAI;
884 }
885 
886 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
887   // The basic idea here is that we're expanding a cmpxchg of a
888   // smaller memory size up to a word-sized cmpxchg. To do this, we
889   // need to add a retry-loop for strong cmpxchg, so that
890   // modifications to other parts of the word don't cause a spurious
891   // failure.
892 
893   // This generates code like the following:
894   //     [[Setup mask values PMV.*]]
895   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
896   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
897   //     %InitLoaded = load i32* %addr
898   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
899   //     br partword.cmpxchg.loop
900   // partword.cmpxchg.loop:
901   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
902   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
903   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
904   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
905   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
906   //        i32 %FullWord_NewVal success_ordering failure_ordering
907   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
908   //     %Success = extractvalue { i32, i1 } %NewCI, 1
909   //     br i1 %Success, label %partword.cmpxchg.end,
910   //        label %partword.cmpxchg.failure
911   // partword.cmpxchg.failure:
912   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
913   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
914   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
915   //         label %partword.cmpxchg.end
916   // partword.cmpxchg.end:
917   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
918   //    %FinalOldVal = trunc i32 %tmp1 to i8
919   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
920   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
921 
922   Value *Addr = CI->getPointerOperand();
923   Value *Cmp = CI->getCompareOperand();
924   Value *NewVal = CI->getNewValOperand();
925 
926   BasicBlock *BB = CI->getParent();
927   Function *F = BB->getParent();
928   IRBuilder<> Builder(CI);
929   LLVMContext &Ctx = Builder.getContext();
930 
931   BasicBlock *EndBB =
932       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
933   auto FailureBB =
934       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
935   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
936 
937   // The split call above "helpfully" added a branch at the end of BB
938   // (to the wrong place).
939   std::prev(BB->end())->eraseFromParent();
940   Builder.SetInsertPoint(BB);
941 
942   PartwordMaskValues PMV =
943       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
944                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
945 
946   // Shift the incoming values over, into the right location in the word.
947   Value *NewVal_Shifted =
948       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
949   Value *Cmp_Shifted =
950       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
951 
952   // Load the entire current word, and mask into place the expected and new
953   // values
954   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
955   InitLoaded->setVolatile(CI->isVolatile());
956   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
957   Builder.CreateBr(LoopBB);
958 
959   // partword.cmpxchg.loop:
960   Builder.SetInsertPoint(LoopBB);
961   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
962   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
963 
964   // Mask/Or the expected and new values into place in the loaded word.
965   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
966   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
967   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
968       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
969       CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
970   NewCI->setVolatile(CI->isVolatile());
971   // When we're building a strong cmpxchg, we need a loop, so you
972   // might think we could use a weak cmpxchg inside. But, using strong
973   // allows the below comparison for ShouldContinue, and we're
974   // expecting the underlying cmpxchg to be a machine instruction,
975   // which is strong anyways.
976   NewCI->setWeak(CI->isWeak());
977 
978   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
979   Value *Success = Builder.CreateExtractValue(NewCI, 1);
980 
981   if (CI->isWeak())
982     Builder.CreateBr(EndBB);
983   else
984     Builder.CreateCondBr(Success, EndBB, FailureBB);
985 
986   // partword.cmpxchg.failure:
987   Builder.SetInsertPoint(FailureBB);
988   // Upon failure, verify that the masked-out part of the loaded value
989   // has been modified.  If it didn't, abort the cmpxchg, since the
990   // masked-in part must've.
991   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
992   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
993   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
994 
995   // Add the second value to the phi from above
996   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
997 
998   // partword.cmpxchg.end:
999   Builder.SetInsertPoint(CI);
1000 
1001   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1002   Value *Res = UndefValue::get(CI->getType());
1003   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1004   Res = Builder.CreateInsertValue(Res, Success, 1);
1005 
1006   CI->replaceAllUsesWith(Res);
1007   CI->eraseFromParent();
1008   return true;
1009 }
1010 
1011 void AtomicExpand::expandAtomicOpToLLSC(
1012     Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1013     AtomicOrdering MemOpOrder,
1014     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1015   IRBuilder<> Builder(I);
1016   Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1017                                     MemOpOrder, PerformOp);
1018 
1019   I->replaceAllUsesWith(Loaded);
1020   I->eraseFromParent();
1021 }
1022 
1023 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1024   IRBuilder<> Builder(AI);
1025 
1026   PartwordMaskValues PMV =
1027       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1028                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1029 
1030   // The value operand must be sign-extended for signed min/max so that the
1031   // target's signed comparison instructions can be used. Otherwise, just
1032   // zero-ext.
1033   Instruction::CastOps CastOp = Instruction::ZExt;
1034   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1035   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1036     CastOp = Instruction::SExt;
1037 
1038   Value *ValOperand_Shifted = Builder.CreateShl(
1039       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1040       PMV.ShiftAmt, "ValOperand_Shifted");
1041   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1042       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1043       AI->getOrdering());
1044   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1045   AI->replaceAllUsesWith(FinalOldResult);
1046   AI->eraseFromParent();
1047 }
1048 
1049 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1050   IRBuilder<> Builder(CI);
1051 
1052   PartwordMaskValues PMV = createMaskInstrs(
1053       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1054       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1055 
1056   Value *CmpVal_Shifted = Builder.CreateShl(
1057       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1058       "CmpVal_Shifted");
1059   Value *NewVal_Shifted = Builder.CreateShl(
1060       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1061       "NewVal_Shifted");
1062   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1063       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1064       CI->getMergedOrdering());
1065   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1066   Value *Res = UndefValue::get(CI->getType());
1067   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1068   Value *Success = Builder.CreateICmpEQ(
1069       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1070   Res = Builder.CreateInsertValue(Res, Success, 1);
1071 
1072   CI->replaceAllUsesWith(Res);
1073   CI->eraseFromParent();
1074 }
1075 
1076 Value *AtomicExpand::insertRMWLLSCLoop(
1077     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1078     AtomicOrdering MemOpOrder,
1079     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1080   LLVMContext &Ctx = Builder.getContext();
1081   BasicBlock *BB = Builder.GetInsertBlock();
1082   Function *F = BB->getParent();
1083 
1084   assert(AddrAlign >=
1085              F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1086          "Expected at least natural alignment at this point.");
1087 
1088   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1089   //
1090   // The standard expansion we produce is:
1091   //     [...]
1092   // atomicrmw.start:
1093   //     %loaded = @load.linked(%addr)
1094   //     %new = some_op iN %loaded, %incr
1095   //     %stored = @store_conditional(%new, %addr)
1096   //     %try_again = icmp i32 ne %stored, 0
1097   //     br i1 %try_again, label %loop, label %atomicrmw.end
1098   // atomicrmw.end:
1099   //     [...]
1100   BasicBlock *ExitBB =
1101       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1102   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1103 
1104   // The split call above "helpfully" added a branch at the end of BB (to the
1105   // wrong place).
1106   std::prev(BB->end())->eraseFromParent();
1107   Builder.SetInsertPoint(BB);
1108   Builder.CreateBr(LoopBB);
1109 
1110   // Start the main loop block now that we've taken care of the preliminaries.
1111   Builder.SetInsertPoint(LoopBB);
1112   Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1113 
1114   Value *NewVal = PerformOp(Builder, Loaded);
1115 
1116   Value *StoreSuccess =
1117       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1118   Value *TryAgain = Builder.CreateICmpNE(
1119       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1120   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1121 
1122   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1123   return Loaded;
1124 }
1125 
1126 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1127 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1128 /// IR.  As a migration step, we convert back to what use to be the standard
1129 /// way to represent a pointer cmpxchg so that we can update backends one by
1130 /// one.
1131 AtomicCmpXchgInst *
1132 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1133   auto *M = CI->getModule();
1134   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1135                                             M->getDataLayout());
1136 
1137   IRBuilder<> Builder(CI);
1138 
1139   Value *Addr = CI->getPointerOperand();
1140   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
1141   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1142 
1143   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1144   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1145 
1146   auto *NewCI = Builder.CreateAtomicCmpXchg(
1147       NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1148       CI->getFailureOrdering(), CI->getSyncScopeID());
1149   NewCI->setVolatile(CI->isVolatile());
1150   NewCI->setWeak(CI->isWeak());
1151   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1152 
1153   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1154   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1155 
1156   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1157 
1158   Value *Res = UndefValue::get(CI->getType());
1159   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1160   Res = Builder.CreateInsertValue(Res, Succ, 1);
1161 
1162   CI->replaceAllUsesWith(Res);
1163   CI->eraseFromParent();
1164   return NewCI;
1165 }
1166 
1167 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1168   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1169   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1170   Value *Addr = CI->getPointerOperand();
1171   BasicBlock *BB = CI->getParent();
1172   Function *F = BB->getParent();
1173   LLVMContext &Ctx = F->getContext();
1174   // If shouldInsertFencesForAtomic() returns true, then the target does not
1175   // want to deal with memory orders, and emitLeading/TrailingFence should take
1176   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1177   // should preserve the ordering.
1178   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1179   AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1180                                   ? AtomicOrdering::Monotonic
1181                                   : CI->getMergedOrdering();
1182 
1183   // In implementations which use a barrier to achieve release semantics, we can
1184   // delay emitting this barrier until we know a store is actually going to be
1185   // attempted. The cost of this delay is that we need 2 copies of the block
1186   // emitting the load-linked, affecting code size.
1187   //
1188   // Ideally, this logic would be unconditional except for the minsize check
1189   // since in other cases the extra blocks naturally collapse down to the
1190   // minimal loop. Unfortunately, this puts too much stress on later
1191   // optimisations so we avoid emitting the extra logic in those cases too.
1192   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1193                            SuccessOrder != AtomicOrdering::Monotonic &&
1194                            SuccessOrder != AtomicOrdering::Acquire &&
1195                            !F->hasMinSize();
1196 
1197   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1198   // do it even on minsize.
1199   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1200 
1201   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1202   //
1203   // The full expansion we produce is:
1204   //     [...]
1205   // %aligned.addr = ...
1206   // cmpxchg.start:
1207   //     %unreleasedload = @load.linked(%aligned.addr)
1208   //     %unreleasedload.extract = extract value from %unreleasedload
1209   //     %should_store = icmp eq %unreleasedload.extract, %desired
1210   //     br i1 %should_store, label %cmpxchg.releasingstore,
1211   //                          label %cmpxchg.nostore
1212   // cmpxchg.releasingstore:
1213   //     fence?
1214   //     br label cmpxchg.trystore
1215   // cmpxchg.trystore:
1216   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1217   //                            [%releasedload, %cmpxchg.releasedload]
1218   //     %updated.new = insert %new into %loaded.trystore
1219   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1220   //     %success = icmp eq i32 %stored, 0
1221   //     br i1 %success, label %cmpxchg.success,
1222   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1223   // cmpxchg.releasedload:
1224   //     %releasedload = @load.linked(%aligned.addr)
1225   //     %releasedload.extract = extract value from %releasedload
1226   //     %should_store = icmp eq %releasedload.extract, %desired
1227   //     br i1 %should_store, label %cmpxchg.trystore,
1228   //                          label %cmpxchg.failure
1229   // cmpxchg.success:
1230   //     fence?
1231   //     br label %cmpxchg.end
1232   // cmpxchg.nostore:
1233   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1234   //                           [%releasedload,
1235   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1236   //     @load_linked_fail_balance()?
1237   //     br label %cmpxchg.failure
1238   // cmpxchg.failure:
1239   //     fence?
1240   //     br label %cmpxchg.end
1241   // cmpxchg.end:
1242   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1243   //                        [%loaded.trystore, %cmpxchg.trystore]
1244   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1245   //     %loaded = extract value from %loaded.exit
1246   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1247   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1248   //     [...]
1249   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1250   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1251   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1252   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1253   auto ReleasedLoadBB =
1254       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1255   auto TryStoreBB =
1256       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1257   auto ReleasingStoreBB =
1258       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1259   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1260 
1261   // This grabs the DebugLoc from CI
1262   IRBuilder<> Builder(CI);
1263 
1264   // The split call above "helpfully" added a branch at the end of BB (to the
1265   // wrong place), but we might want a fence too. It's easiest to just remove
1266   // the branch entirely.
1267   std::prev(BB->end())->eraseFromParent();
1268   Builder.SetInsertPoint(BB);
1269   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1270     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1271 
1272   PartwordMaskValues PMV =
1273       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1274                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1275   Builder.CreateBr(StartBB);
1276 
1277   // Start the main loop block now that we've taken care of the preliminaries.
1278   Builder.SetInsertPoint(StartBB);
1279   Value *UnreleasedLoad =
1280       TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1281   Value *UnreleasedLoadExtract =
1282       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1283   Value *ShouldStore = Builder.CreateICmpEQ(
1284       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1285 
1286   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1287   // jump straight past that fence instruction (if it exists).
1288   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1289 
1290   Builder.SetInsertPoint(ReleasingStoreBB);
1291   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1292     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1293   Builder.CreateBr(TryStoreBB);
1294 
1295   Builder.SetInsertPoint(TryStoreBB);
1296   PHINode *LoadedTryStore =
1297       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1298   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1299   Value *NewValueInsert =
1300       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1301   Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1302                                                   PMV.AlignedAddr, MemOpOrder);
1303   StoreSuccess = Builder.CreateICmpEQ(
1304       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1305   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1306   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1307                        CI->isWeak() ? FailureBB : RetryBB);
1308 
1309   Builder.SetInsertPoint(ReleasedLoadBB);
1310   Value *SecondLoad;
1311   if (HasReleasedLoadBB) {
1312     SecondLoad =
1313         TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1314     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1315     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1316                                        CI->getCompareOperand(), "should_store");
1317 
1318     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1319     // jump straight past that fence instruction (if it exists).
1320     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1321     // Update PHI node in TryStoreBB.
1322     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1323   } else
1324     Builder.CreateUnreachable();
1325 
1326   // Make sure later instructions don't get reordered with a fence if
1327   // necessary.
1328   Builder.SetInsertPoint(SuccessBB);
1329   if (ShouldInsertFencesForAtomic)
1330     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1331   Builder.CreateBr(ExitBB);
1332 
1333   Builder.SetInsertPoint(NoStoreBB);
1334   PHINode *LoadedNoStore =
1335       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1336   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1337   if (HasReleasedLoadBB)
1338     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1339 
1340   // In the failing case, where we don't execute the store-conditional, the
1341   // target might want to balance out the load-linked with a dedicated
1342   // instruction (e.g., on ARM, clearing the exclusive monitor).
1343   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1344   Builder.CreateBr(FailureBB);
1345 
1346   Builder.SetInsertPoint(FailureBB);
1347   PHINode *LoadedFailure =
1348       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1349   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1350   if (CI->isWeak())
1351     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1352   if (ShouldInsertFencesForAtomic)
1353     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1354   Builder.CreateBr(ExitBB);
1355 
1356   // Finally, we have control-flow based knowledge of whether the cmpxchg
1357   // succeeded or not. We expose this to later passes by converting any
1358   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1359   // PHI.
1360   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1361   PHINode *LoadedExit =
1362       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1363   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1364   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1365   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1366   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1367   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1368 
1369   // This is the "exit value" from the cmpxchg expansion. It may be of
1370   // a type wider than the one in the cmpxchg instruction.
1371   Value *LoadedFull = LoadedExit;
1372 
1373   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1374   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1375 
1376   // Look for any users of the cmpxchg that are just comparing the loaded value
1377   // against the desired one, and replace them with the CFG-derived version.
1378   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1379   for (auto *User : CI->users()) {
1380     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1381     if (!EV)
1382       continue;
1383 
1384     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1385            "weird extraction from { iN, i1 }");
1386 
1387     if (EV->getIndices()[0] == 0)
1388       EV->replaceAllUsesWith(Loaded);
1389     else
1390       EV->replaceAllUsesWith(Success);
1391 
1392     PrunedInsts.push_back(EV);
1393   }
1394 
1395   // We can remove the instructions now we're no longer iterating through them.
1396   for (auto *EV : PrunedInsts)
1397     EV->eraseFromParent();
1398 
1399   if (!CI->use_empty()) {
1400     // Some use of the full struct return that we don't understand has happened,
1401     // so we've got to reconstruct it properly.
1402     Value *Res;
1403     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1404     Res = Builder.CreateInsertValue(Res, Success, 1);
1405 
1406     CI->replaceAllUsesWith(Res);
1407   }
1408 
1409   CI->eraseFromParent();
1410   return true;
1411 }
1412 
1413 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) {
1414   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1415   if (!C)
1416     return false;
1417 
1418   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1419   switch (Op) {
1420   case AtomicRMWInst::Add:
1421   case AtomicRMWInst::Sub:
1422   case AtomicRMWInst::Or:
1423   case AtomicRMWInst::Xor:
1424     return C->isZero();
1425   case AtomicRMWInst::And:
1426     return C->isMinusOne();
1427   // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1428   default:
1429     return false;
1430   }
1431 }
1432 
1433 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1434   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1435     tryExpandAtomicLoad(ResultingLoad);
1436     return true;
1437   }
1438   return false;
1439 }
1440 
1441 Value *AtomicExpand::insertRMWCmpXchgLoop(
1442     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1443     AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1444     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1445     CreateCmpXchgInstFun CreateCmpXchg) {
1446   LLVMContext &Ctx = Builder.getContext();
1447   BasicBlock *BB = Builder.GetInsertBlock();
1448   Function *F = BB->getParent();
1449 
1450   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1451   //
1452   // The standard expansion we produce is:
1453   //     [...]
1454   //     %init_loaded = load atomic iN* %addr
1455   //     br label %loop
1456   // loop:
1457   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1458   //     %new = some_op iN %loaded, %incr
1459   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1460   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1461   //     %success = extractvalue { iN, i1 } %pair, 1
1462   //     br i1 %success, label %atomicrmw.end, label %loop
1463   // atomicrmw.end:
1464   //     [...]
1465   BasicBlock *ExitBB =
1466       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1467   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1468 
1469   // The split call above "helpfully" added a branch at the end of BB (to the
1470   // wrong place), but we want a load. It's easiest to just remove
1471   // the branch entirely.
1472   std::prev(BB->end())->eraseFromParent();
1473   Builder.SetInsertPoint(BB);
1474   LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1475   Builder.CreateBr(LoopBB);
1476 
1477   // Start the main loop block now that we've taken care of the preliminaries.
1478   Builder.SetInsertPoint(LoopBB);
1479   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1480   Loaded->addIncoming(InitLoaded, BB);
1481 
1482   Value *NewVal = PerformOp(Builder, Loaded);
1483 
1484   Value *NewLoaded = nullptr;
1485   Value *Success = nullptr;
1486 
1487   CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1488                 MemOpOrder == AtomicOrdering::Unordered
1489                     ? AtomicOrdering::Monotonic
1490                     : MemOpOrder,
1491                 SSID, Success, NewLoaded);
1492   assert(Success && NewLoaded);
1493 
1494   Loaded->addIncoming(NewLoaded, LoopBB);
1495 
1496   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1497 
1498   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1499   return NewLoaded;
1500 }
1501 
1502 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1503   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1504   unsigned ValueSize = getAtomicOpSize(CI);
1505 
1506   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1507   default:
1508     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1509   case TargetLoweringBase::AtomicExpansionKind::None:
1510     if (ValueSize < MinCASSize)
1511       return expandPartwordCmpXchg(CI);
1512     return false;
1513   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1514     return expandAtomicCmpXchg(CI);
1515   }
1516   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1517     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1518     return true;
1519   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1520     return lowerAtomicCmpXchgInst(CI);
1521   }
1522 }
1523 
1524 // Note: This function is exposed externally by AtomicExpandUtils.h
1525 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1526                                     CreateCmpXchgInstFun CreateCmpXchg) {
1527   IRBuilder<> Builder(AI);
1528   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1529       Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1530       AI->getOrdering(), AI->getSyncScopeID(),
1531       [&](IRBuilder<> &Builder, Value *Loaded) {
1532         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1533                                    AI->getValOperand());
1534       },
1535       CreateCmpXchg);
1536 
1537   AI->replaceAllUsesWith(Loaded);
1538   AI->eraseFromParent();
1539   return true;
1540 }
1541 
1542 // In order to use one of the sized library calls such as
1543 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1544 // must be one of the potentially-specialized sizes, and the value
1545 // type must actually exist in C on the target (otherwise, the
1546 // function wouldn't actually be defined.)
1547 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1548                                   const DataLayout &DL) {
1549   // TODO: "LargestSize" is an approximation for "largest type that
1550   // you can express in C". It seems to be the case that int128 is
1551   // supported on all 64-bit platforms, otherwise only up to 64-bit
1552   // integers are supported. If we get this wrong, then we'll try to
1553   // call a sized libcall that doesn't actually exist. There should
1554   // really be some more reliable way in LLVM of determining integer
1555   // sizes which are valid in the target's C ABI...
1556   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1557   return Alignment >= Size &&
1558          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1559          Size <= LargestSize;
1560 }
1561 
1562 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1563   static const RTLIB::Libcall Libcalls[6] = {
1564       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1565       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1566   unsigned Size = getAtomicOpSize(I);
1567 
1568   bool expanded = expandAtomicOpToLibcall(
1569       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1570       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1571   if (!expanded)
1572     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1573 }
1574 
1575 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1576   static const RTLIB::Libcall Libcalls[6] = {
1577       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1578       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1579   unsigned Size = getAtomicOpSize(I);
1580 
1581   bool expanded = expandAtomicOpToLibcall(
1582       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1583       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1584   if (!expanded)
1585     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1586 }
1587 
1588 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1589   static const RTLIB::Libcall Libcalls[6] = {
1590       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1591       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1592       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1593   unsigned Size = getAtomicOpSize(I);
1594 
1595   bool expanded = expandAtomicOpToLibcall(
1596       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1597       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1598       Libcalls);
1599   if (!expanded)
1600     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1601 }
1602 
1603 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1604   static const RTLIB::Libcall LibcallsXchg[6] = {
1605       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1606       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1607       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1608   static const RTLIB::Libcall LibcallsAdd[6] = {
1609       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1610       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1611       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1612   static const RTLIB::Libcall LibcallsSub[6] = {
1613       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1614       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1615       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1616   static const RTLIB::Libcall LibcallsAnd[6] = {
1617       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1618       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1619       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1620   static const RTLIB::Libcall LibcallsOr[6] = {
1621       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1622       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1623       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1624   static const RTLIB::Libcall LibcallsXor[6] = {
1625       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1626       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1627       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1628   static const RTLIB::Libcall LibcallsNand[6] = {
1629       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1630       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1631       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1632 
1633   switch (Op) {
1634   case AtomicRMWInst::BAD_BINOP:
1635     llvm_unreachable("Should not have BAD_BINOP.");
1636   case AtomicRMWInst::Xchg:
1637     return makeArrayRef(LibcallsXchg);
1638   case AtomicRMWInst::Add:
1639     return makeArrayRef(LibcallsAdd);
1640   case AtomicRMWInst::Sub:
1641     return makeArrayRef(LibcallsSub);
1642   case AtomicRMWInst::And:
1643     return makeArrayRef(LibcallsAnd);
1644   case AtomicRMWInst::Or:
1645     return makeArrayRef(LibcallsOr);
1646   case AtomicRMWInst::Xor:
1647     return makeArrayRef(LibcallsXor);
1648   case AtomicRMWInst::Nand:
1649     return makeArrayRef(LibcallsNand);
1650   case AtomicRMWInst::Max:
1651   case AtomicRMWInst::Min:
1652   case AtomicRMWInst::UMax:
1653   case AtomicRMWInst::UMin:
1654   case AtomicRMWInst::FMax:
1655   case AtomicRMWInst::FMin:
1656   case AtomicRMWInst::FAdd:
1657   case AtomicRMWInst::FSub:
1658     // No atomic libcalls are available for max/min/umax/umin.
1659     return {};
1660   }
1661   llvm_unreachable("Unexpected AtomicRMW operation.");
1662 }
1663 
1664 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1665   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1666 
1667   unsigned Size = getAtomicOpSize(I);
1668 
1669   bool Success = false;
1670   if (!Libcalls.empty())
1671     Success = expandAtomicOpToLibcall(
1672         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1673         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1674 
1675   // The expansion failed: either there were no libcalls at all for
1676   // the operation (min/max), or there were only size-specialized
1677   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1678   // CAS libcall, via a CAS loop, instead.
1679   if (!Success) {
1680     expandAtomicRMWToCmpXchg(
1681         I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
1682                   Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1683                   SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1684           // Create the CAS instruction normally...
1685           AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1686               Addr, Loaded, NewVal, Alignment, MemOpOrder,
1687               AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1688           Success = Builder.CreateExtractValue(Pair, 1, "success");
1689           NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1690 
1691           // ...and then expand the CAS into a libcall.
1692           expandAtomicCASToLibcall(Pair);
1693         });
1694   }
1695 }
1696 
1697 // A helper routine for the above expandAtomic*ToLibcall functions.
1698 //
1699 // 'Libcalls' contains an array of enum values for the particular
1700 // ATOMIC libcalls to be emitted. All of the other arguments besides
1701 // 'I' are extracted from the Instruction subclass by the
1702 // caller. Depending on the particular call, some will be null.
1703 bool AtomicExpand::expandAtomicOpToLibcall(
1704     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1705     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1706     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1707   assert(Libcalls.size() == 6);
1708 
1709   LLVMContext &Ctx = I->getContext();
1710   Module *M = I->getModule();
1711   const DataLayout &DL = M->getDataLayout();
1712   IRBuilder<> Builder(I);
1713   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1714 
1715   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1716   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1717 
1718   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1719 
1720   // TODO: the "order" argument type is "int", not int32. So
1721   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1722   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1723   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1724   Constant *OrderingVal =
1725       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1726   Constant *Ordering2Val = nullptr;
1727   if (CASExpected) {
1728     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1729     Ordering2Val =
1730         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1731   }
1732   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1733 
1734   RTLIB::Libcall RTLibType;
1735   if (UseSizedLibcall) {
1736     switch (Size) {
1737     case 1:
1738       RTLibType = Libcalls[1];
1739       break;
1740     case 2:
1741       RTLibType = Libcalls[2];
1742       break;
1743     case 4:
1744       RTLibType = Libcalls[3];
1745       break;
1746     case 8:
1747       RTLibType = Libcalls[4];
1748       break;
1749     case 16:
1750       RTLibType = Libcalls[5];
1751       break;
1752     }
1753   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1754     RTLibType = Libcalls[0];
1755   } else {
1756     // Can't use sized function, and there's no generic for this
1757     // operation, so give up.
1758     return false;
1759   }
1760 
1761   if (!TLI->getLibcallName(RTLibType)) {
1762     // This target does not implement the requested atomic libcall so give up.
1763     return false;
1764   }
1765 
1766   // Build up the function call. There's two kinds. First, the sized
1767   // variants.  These calls are going to be one of the following (with
1768   // N=1,2,4,8,16):
1769   //  iN    __atomic_load_N(iN *ptr, int ordering)
1770   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1771   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1772   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1773   //                                    int success_order, int failure_order)
1774   //
1775   // Note that these functions can be used for non-integer atomic
1776   // operations, the values just need to be bitcast to integers on the
1777   // way in and out.
1778   //
1779   // And, then, the generic variants. They look like the following:
1780   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1781   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1782   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1783   //                          int ordering)
1784   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1785   //                                  void *desired, int success_order,
1786   //                                  int failure_order)
1787   //
1788   // The different signatures are built up depending on the
1789   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1790   // variables.
1791 
1792   AllocaInst *AllocaCASExpected = nullptr;
1793   Value *AllocaCASExpected_i8 = nullptr;
1794   AllocaInst *AllocaValue = nullptr;
1795   Value *AllocaValue_i8 = nullptr;
1796   AllocaInst *AllocaResult = nullptr;
1797   Value *AllocaResult_i8 = nullptr;
1798 
1799   Type *ResultTy;
1800   SmallVector<Value *, 6> Args;
1801   AttributeList Attr;
1802 
1803   // 'size' argument.
1804   if (!UseSizedLibcall) {
1805     // Note, getIntPtrType is assumed equivalent to size_t.
1806     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1807   }
1808 
1809   // 'ptr' argument.
1810   // note: This assumes all address spaces share a common libfunc
1811   // implementation and that addresses are convertable.  For systems without
1812   // that property, we'd need to extend this mechanism to support AS-specific
1813   // families of atomic intrinsics.
1814   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1815   Value *PtrVal =
1816       Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS));
1817   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1818   Args.push_back(PtrVal);
1819 
1820   // 'expected' argument, if present.
1821   if (CASExpected) {
1822     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1823     AllocaCASExpected->setAlignment(AllocaAlignment);
1824     unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1825 
1826     AllocaCASExpected_i8 = Builder.CreateBitCast(
1827         AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS));
1828     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1829     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1830     Args.push_back(AllocaCASExpected_i8);
1831   }
1832 
1833   // 'val' argument ('desired' for cas), if present.
1834   if (ValueOperand) {
1835     if (UseSizedLibcall) {
1836       Value *IntValue =
1837           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1838       Args.push_back(IntValue);
1839     } else {
1840       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1841       AllocaValue->setAlignment(AllocaAlignment);
1842       AllocaValue_i8 =
1843           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1844       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1845       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1846       Args.push_back(AllocaValue_i8);
1847     }
1848   }
1849 
1850   // 'ret' argument.
1851   if (!CASExpected && HasResult && !UseSizedLibcall) {
1852     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1853     AllocaResult->setAlignment(AllocaAlignment);
1854     unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1855     AllocaResult_i8 =
1856         Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1857     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1858     Args.push_back(AllocaResult_i8);
1859   }
1860 
1861   // 'ordering' ('success_order' for cas) argument.
1862   Args.push_back(OrderingVal);
1863 
1864   // 'failure_order' argument, if present.
1865   if (Ordering2Val)
1866     Args.push_back(Ordering2Val);
1867 
1868   // Now, the return type.
1869   if (CASExpected) {
1870     ResultTy = Type::getInt1Ty(Ctx);
1871     Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1872   } else if (HasResult && UseSizedLibcall)
1873     ResultTy = SizedIntTy;
1874   else
1875     ResultTy = Type::getVoidTy(Ctx);
1876 
1877   // Done with setting up arguments and return types, create the call:
1878   SmallVector<Type *, 6> ArgTys;
1879   for (Value *Arg : Args)
1880     ArgTys.push_back(Arg->getType());
1881   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1882   FunctionCallee LibcallFn =
1883       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1884   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1885   Call->setAttributes(Attr);
1886   Value *Result = Call;
1887 
1888   // And then, extract the results...
1889   if (ValueOperand && !UseSizedLibcall)
1890     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1891 
1892   if (CASExpected) {
1893     // The final result from the CAS is {load of 'expected' alloca, bool result
1894     // from call}
1895     Type *FinalResultTy = I->getType();
1896     Value *V = UndefValue::get(FinalResultTy);
1897     Value *ExpectedOut = Builder.CreateAlignedLoad(
1898         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1899     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1900     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1901     V = Builder.CreateInsertValue(V, Result, 1);
1902     I->replaceAllUsesWith(V);
1903   } else if (HasResult) {
1904     Value *V;
1905     if (UseSizedLibcall)
1906       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1907     else {
1908       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1909                                     AllocaAlignment);
1910       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1911     }
1912     I->replaceAllUsesWith(V);
1913   }
1914   I->eraseFromParent();
1915   return true;
1916 }
1917