1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/AtomicExpandUtils.h" 21 #include "llvm/CodeGen/RuntimeLibcalls.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 Value * 82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 83 AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 88 void expandPartwordAtomicRMW( 89 AtomicRMWInst *I, 90 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 99 AtomicOrdering MemOpOrder, 100 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 }; 122 123 } // end anonymous namespace 124 125 char AtomicExpand::ID = 0; 126 127 char &llvm::AtomicExpandID = AtomicExpand::ID; 128 129 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 130 false, false) 131 132 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 133 134 // Helper functions to retrieve the size of atomic instructions. 135 static unsigned getAtomicOpSize(LoadInst *LI) { 136 const DataLayout &DL = LI->getModule()->getDataLayout(); 137 return DL.getTypeStoreSize(LI->getType()); 138 } 139 140 static unsigned getAtomicOpSize(StoreInst *SI) { 141 const DataLayout &DL = SI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 143 } 144 145 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 146 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 151 const DataLayout &DL = CASI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 153 } 154 155 // Helper functions to retrieve the alignment of atomic instructions. 156 static unsigned getAtomicOpAlign(LoadInst *LI) { 157 unsigned Align = LI->getAlignment(); 158 // In the future, if this IR restriction is relaxed, we should 159 // return DataLayout::getABITypeAlignment when there's no align 160 // value. 161 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 162 return Align; 163 } 164 165 static unsigned getAtomicOpAlign(StoreInst *SI) { 166 unsigned Align = SI->getAlignment(); 167 // In the future, if this IR restriction is relaxed, we should 168 // return DataLayout::getABITypeAlignment when there's no align 169 // value. 170 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 171 return Align; 172 } 173 174 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 175 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 176 // default alignment for load/store, the default here is to assume 177 // it has NATURAL alignment, not DataLayout-specified alignment. 178 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 179 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 180 } 181 182 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 183 // TODO(PR27168): same comment as above. 184 const DataLayout &DL = CASI->getModule()->getDataLayout(); 185 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 186 } 187 188 // Determine if a particular atomic operation has a supported size, 189 // and is of appropriate alignment, to be passed through for target 190 // lowering. (Versus turning into a __atomic libcall) 191 template <typename Inst> 192 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 193 unsigned Size = getAtomicOpSize(I); 194 unsigned Align = getAtomicOpAlign(I); 195 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 196 } 197 198 bool AtomicExpand::runOnFunction(Function &F) { 199 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 200 if (!TPC) 201 return false; 202 203 auto &TM = TPC->getTM<TargetMachine>(); 204 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 205 return false; 206 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 207 208 SmallVector<Instruction *, 1> AtomicInsts; 209 210 // Changing control-flow while iterating through it is a bad idea, so gather a 211 // list of all atomic instructions before we start. 212 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 213 Instruction *I = &*II; 214 if (I->isAtomic() && !isa<FenceInst>(I)) 215 AtomicInsts.push_back(I); 216 } 217 218 bool MadeChange = false; 219 for (auto I : AtomicInsts) { 220 auto LI = dyn_cast<LoadInst>(I); 221 auto SI = dyn_cast<StoreInst>(I); 222 auto RMWI = dyn_cast<AtomicRMWInst>(I); 223 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 224 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 225 226 // If the Size/Alignment is not supported, replace with a libcall. 227 if (LI) { 228 if (!atomicSizeSupported(TLI, LI)) { 229 expandAtomicLoadToLibcall(LI); 230 MadeChange = true; 231 continue; 232 } 233 } else if (SI) { 234 if (!atomicSizeSupported(TLI, SI)) { 235 expandAtomicStoreToLibcall(SI); 236 MadeChange = true; 237 continue; 238 } 239 } else if (RMWI) { 240 if (!atomicSizeSupported(TLI, RMWI)) { 241 expandAtomicRMWToLibcall(RMWI); 242 MadeChange = true; 243 continue; 244 } 245 } else if (CASI) { 246 if (!atomicSizeSupported(TLI, CASI)) { 247 expandAtomicCASToLibcall(CASI); 248 MadeChange = true; 249 continue; 250 } 251 } 252 253 if (TLI->shouldInsertFencesForAtomic(I)) { 254 auto FenceOrdering = AtomicOrdering::Monotonic; 255 if (LI && isAcquireOrStronger(LI->getOrdering())) { 256 FenceOrdering = LI->getOrdering(); 257 LI->setOrdering(AtomicOrdering::Monotonic); 258 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 259 FenceOrdering = SI->getOrdering(); 260 SI->setOrdering(AtomicOrdering::Monotonic); 261 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 262 isAcquireOrStronger(RMWI->getOrdering()))) { 263 FenceOrdering = RMWI->getOrdering(); 264 RMWI->setOrdering(AtomicOrdering::Monotonic); 265 } else if (CASI && 266 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 267 TargetLoweringBase::AtomicExpansionKind::None && 268 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 269 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 270 // If a compare and swap is lowered to LL/SC, we can do smarter fence 271 // insertion, with a stronger one on the success path than on the 272 // failure path. As a result, fence insertion is directly done by 273 // expandAtomicCmpXchg in that case. 274 FenceOrdering = CASI->getSuccessOrdering(); 275 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 276 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 277 } 278 279 if (FenceOrdering != AtomicOrdering::Monotonic) { 280 MadeChange |= bracketInstWithFences(I, FenceOrdering); 281 } 282 } 283 284 if (LI) { 285 if (LI->getType()->isFloatingPointTy()) { 286 // TODO: add a TLI hook to control this so that each target can 287 // convert to lowering the original type one at a time. 288 LI = convertAtomicLoadToIntegerType(LI); 289 assert(LI->getType()->isIntegerTy() && "invariant broken"); 290 MadeChange = true; 291 } 292 293 MadeChange |= tryExpandAtomicLoad(LI); 294 } else if (SI) { 295 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 296 // TODO: add a TLI hook to control this so that each target can 297 // convert to lowering the original type one at a time. 298 SI = convertAtomicStoreToIntegerType(SI); 299 assert(SI->getValueOperand()->getType()->isIntegerTy() && 300 "invariant broken"); 301 MadeChange = true; 302 } 303 304 if (TLI->shouldExpandAtomicStoreInIR(SI)) 305 MadeChange |= expandAtomicStore(SI); 306 } else if (RMWI) { 307 // There are two different ways of expanding RMW instructions: 308 // - into a load if it is idempotent 309 // - into a Cmpxchg/LL-SC loop otherwise 310 // we try them in that order. 311 312 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 313 MadeChange = true; 314 } else { 315 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 316 unsigned ValueSize = getAtomicOpSize(RMWI); 317 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 318 if (ValueSize < MinCASSize && 319 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 320 Op == AtomicRMWInst::And)) { 321 RMWI = widenPartwordAtomicRMW(RMWI); 322 MadeChange = true; 323 } 324 325 MadeChange |= tryExpandAtomicRMW(RMWI); 326 } 327 } else if (CASI) { 328 // TODO: when we're ready to make the change at the IR level, we can 329 // extend convertCmpXchgToInteger for floating point too. 330 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 331 "unimplemented - floating point not legal at IR level"); 332 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 333 // TODO: add a TLI hook to control this so that each target can 334 // convert to lowering the original type one at a time. 335 CASI = convertCmpXchgToIntegerType(CASI); 336 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 337 "invariant broken"); 338 MadeChange = true; 339 } 340 341 MadeChange |= tryExpandAtomicCmpXchg(CASI); 342 } 343 } 344 return MadeChange; 345 } 346 347 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 348 IRBuilder<> Builder(I); 349 350 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 351 352 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 353 // We have a guard here because not every atomic operation generates a 354 // trailing fence. 355 if (TrailingFence) 356 TrailingFence->moveAfter(I); 357 358 return (LeadingFence || TrailingFence); 359 } 360 361 /// Get the iX type with the same bitwidth as T. 362 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 363 const DataLayout &DL) { 364 EVT VT = TLI->getMemValueType(DL, T); 365 unsigned BitWidth = VT.getStoreSizeInBits(); 366 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 367 return IntegerType::get(T->getContext(), BitWidth); 368 } 369 370 /// Convert an atomic load of a non-integral type to an integer load of the 371 /// equivalent bitwidth. See the function comment on 372 /// convertAtomicStoreToIntegerType for background. 373 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 374 auto *M = LI->getModule(); 375 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 376 M->getDataLayout()); 377 378 IRBuilder<> Builder(LI); 379 380 Value *Addr = LI->getPointerOperand(); 381 Type *PT = PointerType::get(NewTy, 382 Addr->getType()->getPointerAddressSpace()); 383 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 384 385 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 386 NewLI->setAlignment(MaybeAlign(LI->getAlignment())); 387 NewLI->setVolatile(LI->isVolatile()); 388 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 389 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 390 391 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 392 LI->replaceAllUsesWith(NewVal); 393 LI->eraseFromParent(); 394 return NewLI; 395 } 396 397 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 398 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 399 case TargetLoweringBase::AtomicExpansionKind::None: 400 return false; 401 case TargetLoweringBase::AtomicExpansionKind::LLSC: 402 expandAtomicOpToLLSC( 403 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 404 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 405 return true; 406 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 407 return expandAtomicLoadToLL(LI); 408 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 409 return expandAtomicLoadToCmpXchg(LI); 410 default: 411 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 412 } 413 } 414 415 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 416 IRBuilder<> Builder(LI); 417 418 // On some architectures, load-linked instructions are atomic for larger 419 // sizes than normal loads. For example, the only 64-bit load guaranteed 420 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 421 Value *Val = 422 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 423 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 424 425 LI->replaceAllUsesWith(Val); 426 LI->eraseFromParent(); 427 428 return true; 429 } 430 431 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 432 IRBuilder<> Builder(LI); 433 AtomicOrdering Order = LI->getOrdering(); 434 if (Order == AtomicOrdering::Unordered) 435 Order = AtomicOrdering::Monotonic; 436 437 Value *Addr = LI->getPointerOperand(); 438 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 439 Constant *DummyVal = Constant::getNullValue(Ty); 440 441 Value *Pair = Builder.CreateAtomicCmpXchg( 442 Addr, DummyVal, DummyVal, Order, 443 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 444 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 445 446 LI->replaceAllUsesWith(Loaded); 447 LI->eraseFromParent(); 448 449 return true; 450 } 451 452 /// Convert an atomic store of a non-integral type to an integer store of the 453 /// equivalent bitwidth. We used to not support floating point or vector 454 /// atomics in the IR at all. The backends learned to deal with the bitcast 455 /// idiom because that was the only way of expressing the notion of a atomic 456 /// float or vector store. The long term plan is to teach each backend to 457 /// instruction select from the original atomic store, but as a migration 458 /// mechanism, we convert back to the old format which the backends understand. 459 /// Each backend will need individual work to recognize the new format. 460 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 461 IRBuilder<> Builder(SI); 462 auto *M = SI->getModule(); 463 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 464 M->getDataLayout()); 465 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 466 467 Value *Addr = SI->getPointerOperand(); 468 Type *PT = PointerType::get(NewTy, 469 Addr->getType()->getPointerAddressSpace()); 470 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 471 472 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 473 NewSI->setAlignment(MaybeAlign(SI->getAlignment())); 474 NewSI->setVolatile(SI->isVolatile()); 475 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 476 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 477 SI->eraseFromParent(); 478 return NewSI; 479 } 480 481 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 482 // This function is only called on atomic stores that are too large to be 483 // atomic if implemented as a native store. So we replace them by an 484 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 485 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 486 // It is the responsibility of the target to only signal expansion via 487 // shouldExpandAtomicRMW in cases where this is required and possible. 488 IRBuilder<> Builder(SI); 489 AtomicRMWInst *AI = 490 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 491 SI->getValueOperand(), SI->getOrdering()); 492 SI->eraseFromParent(); 493 494 // Now we have an appropriate swap instruction, lower it as usual. 495 return tryExpandAtomicRMW(AI); 496 } 497 498 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 499 Value *Loaded, Value *NewVal, 500 AtomicOrdering MemOpOrder, 501 Value *&Success, Value *&NewLoaded) { 502 Type *OrigTy = NewVal->getType(); 503 504 // This code can go away when cmpxchg supports FP types. 505 bool NeedBitcast = OrigTy->isFloatingPointTy(); 506 if (NeedBitcast) { 507 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 508 unsigned AS = Addr->getType()->getPointerAddressSpace(); 509 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 510 NewVal = Builder.CreateBitCast(NewVal, IntTy); 511 Loaded = Builder.CreateBitCast(Loaded, IntTy); 512 } 513 514 Value* Pair = Builder.CreateAtomicCmpXchg( 515 Addr, Loaded, NewVal, MemOpOrder, 516 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 517 Success = Builder.CreateExtractValue(Pair, 1, "success"); 518 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 519 520 if (NeedBitcast) 521 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 522 } 523 524 /// Emit IR to implement the given atomicrmw operation on values in registers, 525 /// returning the new value. 526 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 527 Value *Loaded, Value *Inc) { 528 Value *NewVal; 529 switch (Op) { 530 case AtomicRMWInst::Xchg: 531 return Inc; 532 case AtomicRMWInst::Add: 533 return Builder.CreateAdd(Loaded, Inc, "new"); 534 case AtomicRMWInst::Sub: 535 return Builder.CreateSub(Loaded, Inc, "new"); 536 case AtomicRMWInst::And: 537 return Builder.CreateAnd(Loaded, Inc, "new"); 538 case AtomicRMWInst::Nand: 539 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 540 case AtomicRMWInst::Or: 541 return Builder.CreateOr(Loaded, Inc, "new"); 542 case AtomicRMWInst::Xor: 543 return Builder.CreateXor(Loaded, Inc, "new"); 544 case AtomicRMWInst::Max: 545 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 546 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 547 case AtomicRMWInst::Min: 548 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 549 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 550 case AtomicRMWInst::UMax: 551 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 552 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 553 case AtomicRMWInst::UMin: 554 NewVal = Builder.CreateICmpULE(Loaded, Inc); 555 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 556 case AtomicRMWInst::FAdd: 557 return Builder.CreateFAdd(Loaded, Inc, "new"); 558 case AtomicRMWInst::FSub: 559 return Builder.CreateFSub(Loaded, Inc, "new"); 560 default: 561 llvm_unreachable("Unknown atomic op"); 562 } 563 } 564 565 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 566 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 567 case TargetLoweringBase::AtomicExpansionKind::None: 568 return false; 569 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 570 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 571 unsigned ValueSize = getAtomicOpSize(AI); 572 if (ValueSize < MinCASSize) { 573 llvm_unreachable( 574 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); 575 } else { 576 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 577 return performAtomicOp(AI->getOperation(), Builder, Loaded, 578 AI->getValOperand()); 579 }; 580 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 581 AI->getOrdering(), PerformOp); 582 } 583 return true; 584 } 585 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 586 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 587 unsigned ValueSize = getAtomicOpSize(AI); 588 if (ValueSize < MinCASSize) { 589 // TODO: Handle atomicrmw fadd/fsub 590 if (AI->getType()->isFloatingPointTy()) 591 return false; 592 593 expandPartwordAtomicRMW(AI, 594 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 595 } else { 596 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 597 } 598 return true; 599 } 600 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 601 expandAtomicRMWToMaskedIntrinsic(AI); 602 return true; 603 } 604 default: 605 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 606 } 607 } 608 609 namespace { 610 611 /// Result values from createMaskInstrs helper. 612 struct PartwordMaskValues { 613 Type *WordType; 614 Type *ValueType; 615 Value *AlignedAddr; 616 Value *ShiftAmt; 617 Value *Mask; 618 Value *Inv_Mask; 619 }; 620 621 } // end anonymous namespace 622 623 /// This is a helper function which builds instructions to provide 624 /// values necessary for partword atomic operations. It takes an 625 /// incoming address, Addr, and ValueType, and constructs the address, 626 /// shift-amounts and masks needed to work with a larger value of size 627 /// WordSize. 628 /// 629 /// AlignedAddr: Addr rounded down to a multiple of WordSize 630 /// 631 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 632 /// from AlignAddr for it to have the same value as if 633 /// ValueType was loaded from Addr. 634 /// 635 /// Mask: Value to mask with the value loaded from AlignAddr to 636 /// include only the part that would've been loaded from Addr. 637 /// 638 /// Inv_Mask: The inverse of Mask. 639 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 640 Type *ValueType, Value *Addr, 641 unsigned WordSize) { 642 PartwordMaskValues Ret; 643 644 BasicBlock *BB = I->getParent(); 645 Function *F = BB->getParent(); 646 Module *M = I->getModule(); 647 648 LLVMContext &Ctx = F->getContext(); 649 const DataLayout &DL = M->getDataLayout(); 650 651 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 652 653 assert(ValueSize < WordSize); 654 655 Ret.ValueType = ValueType; 656 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); 657 658 Type *WordPtrType = 659 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 660 661 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 662 Ret.AlignedAddr = Builder.CreateIntToPtr( 663 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, 664 "AlignedAddr"); 665 666 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); 667 if (DL.isLittleEndian()) { 668 // turn bytes into bits 669 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 670 } else { 671 // turn bytes into bits, and count from the other side. 672 Ret.ShiftAmt = 673 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); 674 } 675 676 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); 677 Ret.Mask = Builder.CreateShl( 678 ConstantInt::get(Ret.WordType, (1 << (ValueSize * 8)) - 1), Ret.ShiftAmt, 679 "Mask"); 680 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); 681 682 return Ret; 683 } 684 685 /// Emit IR to implement a masked version of a given atomicrmw 686 /// operation. (That is, only the bits under the Mask should be 687 /// affected by the operation) 688 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 689 IRBuilder<> &Builder, Value *Loaded, 690 Value *Shifted_Inc, Value *Inc, 691 const PartwordMaskValues &PMV) { 692 // TODO: update to use 693 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 694 // to merge bits from two values without requiring PMV.Inv_Mask. 695 switch (Op) { 696 case AtomicRMWInst::Xchg: { 697 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 698 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 699 return FinalVal; 700 } 701 case AtomicRMWInst::Or: 702 case AtomicRMWInst::Xor: 703 case AtomicRMWInst::And: 704 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 705 case AtomicRMWInst::Add: 706 case AtomicRMWInst::Sub: 707 case AtomicRMWInst::Nand: { 708 // The other arithmetic ops need to be masked into place. 709 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 710 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 711 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 712 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 713 return FinalVal; 714 } 715 case AtomicRMWInst::Max: 716 case AtomicRMWInst::Min: 717 case AtomicRMWInst::UMax: 718 case AtomicRMWInst::UMin: { 719 // Finally, comparison ops will operate on the full value, so 720 // truncate down to the original size, and expand out again after 721 // doing the operation. 722 Value *Loaded_Shiftdown = Builder.CreateTrunc( 723 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); 724 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); 725 Value *NewVal_Shiftup = Builder.CreateShl( 726 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 727 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 728 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); 729 return FinalVal; 730 } 731 default: 732 llvm_unreachable("Unknown atomic op"); 733 } 734 } 735 736 /// Expand a sub-word atomicrmw operation into an appropriate 737 /// word-sized operation. 738 /// 739 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 740 /// way as a typical atomicrmw expansion. The only difference here is 741 /// that the operation inside of the loop must operate only upon a 742 /// part of the value. 743 void AtomicExpand::expandPartwordAtomicRMW( 744 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 745 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); 746 747 AtomicOrdering MemOpOrder = AI->getOrdering(); 748 749 IRBuilder<> Builder(AI); 750 751 PartwordMaskValues PMV = 752 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 753 TLI->getMinCmpXchgSizeInBits() / 8); 754 755 Value *ValOperand_Shifted = 756 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 757 PMV.ShiftAmt, "ValOperand_Shifted"); 758 759 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 760 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 761 ValOperand_Shifted, AI->getValOperand(), PMV); 762 }; 763 764 // TODO: When we're ready to support LLSC conversions too, use 765 // insertRMWLLSCLoop here for ExpansionKind==LLSC. 766 Value *OldResult = 767 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 768 PerformPartwordOp, createCmpXchgInstFun); 769 Value *FinalOldResult = Builder.CreateTrunc( 770 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 771 AI->replaceAllUsesWith(FinalOldResult); 772 AI->eraseFromParent(); 773 } 774 775 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 776 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 777 IRBuilder<> Builder(AI); 778 AtomicRMWInst::BinOp Op = AI->getOperation(); 779 780 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 781 Op == AtomicRMWInst::And) && 782 "Unable to widen operation"); 783 784 PartwordMaskValues PMV = 785 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 786 TLI->getMinCmpXchgSizeInBits() / 8); 787 788 Value *ValOperand_Shifted = 789 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 790 PMV.ShiftAmt, "ValOperand_Shifted"); 791 792 Value *NewOperand; 793 794 if (Op == AtomicRMWInst::And) 795 NewOperand = 796 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 797 else 798 NewOperand = ValOperand_Shifted; 799 800 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, 801 NewOperand, AI->getOrdering()); 802 803 Value *FinalOldResult = Builder.CreateTrunc( 804 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType); 805 AI->replaceAllUsesWith(FinalOldResult); 806 AI->eraseFromParent(); 807 return NewAI; 808 } 809 810 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 811 // The basic idea here is that we're expanding a cmpxchg of a 812 // smaller memory size up to a word-sized cmpxchg. To do this, we 813 // need to add a retry-loop for strong cmpxchg, so that 814 // modifications to other parts of the word don't cause a spurious 815 // failure. 816 817 // This generates code like the following: 818 // [[Setup mask values PMV.*]] 819 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 820 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 821 // %InitLoaded = load i32* %addr 822 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 823 // br partword.cmpxchg.loop 824 // partword.cmpxchg.loop: 825 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 826 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 827 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 828 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 829 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 830 // i32 %FullWord_NewVal success_ordering failure_ordering 831 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 832 // %Success = extractvalue { i32, i1 } %NewCI, 1 833 // br i1 %Success, label %partword.cmpxchg.end, 834 // label %partword.cmpxchg.failure 835 // partword.cmpxchg.failure: 836 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 837 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 838 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 839 // label %partword.cmpxchg.end 840 // partword.cmpxchg.end: 841 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 842 // %FinalOldVal = trunc i32 %tmp1 to i8 843 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 844 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 845 846 Value *Addr = CI->getPointerOperand(); 847 Value *Cmp = CI->getCompareOperand(); 848 Value *NewVal = CI->getNewValOperand(); 849 850 BasicBlock *BB = CI->getParent(); 851 Function *F = BB->getParent(); 852 IRBuilder<> Builder(CI); 853 LLVMContext &Ctx = Builder.getContext(); 854 855 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 856 857 BasicBlock *EndBB = 858 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 859 auto FailureBB = 860 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 861 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 862 863 // The split call above "helpfully" added a branch at the end of BB 864 // (to the wrong place). 865 std::prev(BB->end())->eraseFromParent(); 866 Builder.SetInsertPoint(BB); 867 868 PartwordMaskValues PMV = createMaskInstrs( 869 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 870 871 // Shift the incoming values over, into the right location in the word. 872 Value *NewVal_Shifted = 873 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 874 Value *Cmp_Shifted = 875 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 876 877 // Load the entire current word, and mask into place the expected and new 878 // values 879 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 880 InitLoaded->setVolatile(CI->isVolatile()); 881 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 882 Builder.CreateBr(LoopBB); 883 884 // partword.cmpxchg.loop: 885 Builder.SetInsertPoint(LoopBB); 886 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 887 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 888 889 // Mask/Or the expected and new values into place in the loaded word. 890 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 891 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 892 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 893 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 894 CI->getFailureOrdering(), CI->getSyncScopeID()); 895 NewCI->setVolatile(CI->isVolatile()); 896 // When we're building a strong cmpxchg, we need a loop, so you 897 // might think we could use a weak cmpxchg inside. But, using strong 898 // allows the below comparison for ShouldContinue, and we're 899 // expecting the underlying cmpxchg to be a machine instruction, 900 // which is strong anyways. 901 NewCI->setWeak(CI->isWeak()); 902 903 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 904 Value *Success = Builder.CreateExtractValue(NewCI, 1); 905 906 if (CI->isWeak()) 907 Builder.CreateBr(EndBB); 908 else 909 Builder.CreateCondBr(Success, EndBB, FailureBB); 910 911 // partword.cmpxchg.failure: 912 Builder.SetInsertPoint(FailureBB); 913 // Upon failure, verify that the masked-out part of the loaded value 914 // has been modified. If it didn't, abort the cmpxchg, since the 915 // masked-in part must've. 916 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 917 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 918 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 919 920 // Add the second value to the phi from above 921 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 922 923 // partword.cmpxchg.end: 924 Builder.SetInsertPoint(CI); 925 926 Value *FinalOldVal = Builder.CreateTrunc( 927 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 928 Value *Res = UndefValue::get(CI->getType()); 929 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 930 Res = Builder.CreateInsertValue(Res, Success, 1); 931 932 CI->replaceAllUsesWith(Res); 933 CI->eraseFromParent(); 934 } 935 936 void AtomicExpand::expandAtomicOpToLLSC( 937 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 938 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 939 IRBuilder<> Builder(I); 940 Value *Loaded = 941 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 942 943 I->replaceAllUsesWith(Loaded); 944 I->eraseFromParent(); 945 } 946 947 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 948 IRBuilder<> Builder(AI); 949 950 PartwordMaskValues PMV = 951 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 952 TLI->getMinCmpXchgSizeInBits() / 8); 953 954 // The value operand must be sign-extended for signed min/max so that the 955 // target's signed comparison instructions can be used. Otherwise, just 956 // zero-ext. 957 Instruction::CastOps CastOp = Instruction::ZExt; 958 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 959 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 960 CastOp = Instruction::SExt; 961 962 Value *ValOperand_Shifted = Builder.CreateShl( 963 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 964 PMV.ShiftAmt, "ValOperand_Shifted"); 965 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 966 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 967 AI->getOrdering()); 968 Value *FinalOldResult = Builder.CreateTrunc( 969 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 970 AI->replaceAllUsesWith(FinalOldResult); 971 AI->eraseFromParent(); 972 } 973 974 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 975 IRBuilder<> Builder(CI); 976 977 PartwordMaskValues PMV = createMaskInstrs( 978 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 979 TLI->getMinCmpXchgSizeInBits() / 8); 980 981 Value *CmpVal_Shifted = Builder.CreateShl( 982 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 983 "CmpVal_Shifted"); 984 Value *NewVal_Shifted = Builder.CreateShl( 985 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 986 "NewVal_Shifted"); 987 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 988 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 989 CI->getSuccessOrdering()); 990 Value *FinalOldVal = Builder.CreateTrunc( 991 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 992 993 Value *Res = UndefValue::get(CI->getType()); 994 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 995 Value *Success = Builder.CreateICmpEQ( 996 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 997 Res = Builder.CreateInsertValue(Res, Success, 1); 998 999 CI->replaceAllUsesWith(Res); 1000 CI->eraseFromParent(); 1001 } 1002 1003 Value *AtomicExpand::insertRMWLLSCLoop( 1004 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1005 AtomicOrdering MemOpOrder, 1006 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1007 LLVMContext &Ctx = Builder.getContext(); 1008 BasicBlock *BB = Builder.GetInsertBlock(); 1009 Function *F = BB->getParent(); 1010 1011 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1012 // 1013 // The standard expansion we produce is: 1014 // [...] 1015 // atomicrmw.start: 1016 // %loaded = @load.linked(%addr) 1017 // %new = some_op iN %loaded, %incr 1018 // %stored = @store_conditional(%new, %addr) 1019 // %try_again = icmp i32 ne %stored, 0 1020 // br i1 %try_again, label %loop, label %atomicrmw.end 1021 // atomicrmw.end: 1022 // [...] 1023 BasicBlock *ExitBB = 1024 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1025 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1026 1027 // The split call above "helpfully" added a branch at the end of BB (to the 1028 // wrong place). 1029 std::prev(BB->end())->eraseFromParent(); 1030 Builder.SetInsertPoint(BB); 1031 Builder.CreateBr(LoopBB); 1032 1033 // Start the main loop block now that we've taken care of the preliminaries. 1034 Builder.SetInsertPoint(LoopBB); 1035 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1036 1037 Value *NewVal = PerformOp(Builder, Loaded); 1038 1039 Value *StoreSuccess = 1040 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1041 Value *TryAgain = Builder.CreateICmpNE( 1042 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1043 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1044 1045 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1046 return Loaded; 1047 } 1048 1049 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1050 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1051 /// IR. As a migration step, we convert back to what use to be the standard 1052 /// way to represent a pointer cmpxchg so that we can update backends one by 1053 /// one. 1054 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1055 auto *M = CI->getModule(); 1056 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1057 M->getDataLayout()); 1058 1059 IRBuilder<> Builder(CI); 1060 1061 Value *Addr = CI->getPointerOperand(); 1062 Type *PT = PointerType::get(NewTy, 1063 Addr->getType()->getPointerAddressSpace()); 1064 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1065 1066 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1067 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1068 1069 1070 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 1071 CI->getSuccessOrdering(), 1072 CI->getFailureOrdering(), 1073 CI->getSyncScopeID()); 1074 NewCI->setVolatile(CI->isVolatile()); 1075 NewCI->setWeak(CI->isWeak()); 1076 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1077 1078 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1079 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1080 1081 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1082 1083 Value *Res = UndefValue::get(CI->getType()); 1084 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1085 Res = Builder.CreateInsertValue(Res, Succ, 1); 1086 1087 CI->replaceAllUsesWith(Res); 1088 CI->eraseFromParent(); 1089 return NewCI; 1090 } 1091 1092 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1093 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1094 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1095 Value *Addr = CI->getPointerOperand(); 1096 BasicBlock *BB = CI->getParent(); 1097 Function *F = BB->getParent(); 1098 LLVMContext &Ctx = F->getContext(); 1099 // If shouldInsertFencesForAtomic() returns true, then the target does not 1100 // want to deal with memory orders, and emitLeading/TrailingFence should take 1101 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1102 // should preserve the ordering. 1103 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1104 AtomicOrdering MemOpOrder = 1105 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 1106 1107 // In implementations which use a barrier to achieve release semantics, we can 1108 // delay emitting this barrier until we know a store is actually going to be 1109 // attempted. The cost of this delay is that we need 2 copies of the block 1110 // emitting the load-linked, affecting code size. 1111 // 1112 // Ideally, this logic would be unconditional except for the minsize check 1113 // since in other cases the extra blocks naturally collapse down to the 1114 // minimal loop. Unfortunately, this puts too much stress on later 1115 // optimisations so we avoid emitting the extra logic in those cases too. 1116 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1117 SuccessOrder != AtomicOrdering::Monotonic && 1118 SuccessOrder != AtomicOrdering::Acquire && 1119 !F->hasMinSize(); 1120 1121 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1122 // do it even on minsize. 1123 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1124 1125 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1126 // 1127 // The full expansion we produce is: 1128 // [...] 1129 // cmpxchg.start: 1130 // %unreleasedload = @load.linked(%addr) 1131 // %should_store = icmp eq %unreleasedload, %desired 1132 // br i1 %should_store, label %cmpxchg.fencedstore, 1133 // label %cmpxchg.nostore 1134 // cmpxchg.releasingstore: 1135 // fence? 1136 // br label cmpxchg.trystore 1137 // cmpxchg.trystore: 1138 // %loaded.trystore = phi [%unreleasedload, %releasingstore], 1139 // [%releasedload, %cmpxchg.releasedload] 1140 // %stored = @store_conditional(%new, %addr) 1141 // %success = icmp eq i32 %stored, 0 1142 // br i1 %success, label %cmpxchg.success, 1143 // label %cmpxchg.releasedload/%cmpxchg.failure 1144 // cmpxchg.releasedload: 1145 // %releasedload = @load.linked(%addr) 1146 // %should_store = icmp eq %releasedload, %desired 1147 // br i1 %should_store, label %cmpxchg.trystore, 1148 // label %cmpxchg.failure 1149 // cmpxchg.success: 1150 // fence? 1151 // br label %cmpxchg.end 1152 // cmpxchg.nostore: 1153 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1154 // [%releasedload, 1155 // %cmpxchg.releasedload/%cmpxchg.trystore] 1156 // @load_linked_fail_balance()? 1157 // br label %cmpxchg.failure 1158 // cmpxchg.failure: 1159 // fence? 1160 // br label %cmpxchg.end 1161 // cmpxchg.end: 1162 // %loaded = phi [%loaded.nostore, %cmpxchg.failure], 1163 // [%loaded.trystore, %cmpxchg.trystore] 1164 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1165 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1166 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1167 // [...] 1168 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1169 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1170 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1171 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1172 auto ReleasedLoadBB = 1173 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1174 auto TryStoreBB = 1175 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1176 auto ReleasingStoreBB = 1177 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1178 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1179 1180 // This grabs the DebugLoc from CI 1181 IRBuilder<> Builder(CI); 1182 1183 // The split call above "helpfully" added a branch at the end of BB (to the 1184 // wrong place), but we might want a fence too. It's easiest to just remove 1185 // the branch entirely. 1186 std::prev(BB->end())->eraseFromParent(); 1187 Builder.SetInsertPoint(BB); 1188 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1189 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1190 Builder.CreateBr(StartBB); 1191 1192 // Start the main loop block now that we've taken care of the preliminaries. 1193 Builder.SetInsertPoint(StartBB); 1194 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1195 Value *ShouldStore = Builder.CreateICmpEQ( 1196 UnreleasedLoad, CI->getCompareOperand(), "should_store"); 1197 1198 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1199 // jump straight past that fence instruction (if it exists). 1200 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1201 1202 Builder.SetInsertPoint(ReleasingStoreBB); 1203 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1204 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1205 Builder.CreateBr(TryStoreBB); 1206 1207 Builder.SetInsertPoint(TryStoreBB); 1208 Value *StoreSuccess = TLI->emitStoreConditional( 1209 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 1210 StoreSuccess = Builder.CreateICmpEQ( 1211 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1212 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1213 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1214 CI->isWeak() ? FailureBB : RetryBB); 1215 1216 Builder.SetInsertPoint(ReleasedLoadBB); 1217 Value *SecondLoad; 1218 if (HasReleasedLoadBB) { 1219 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1220 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), 1221 "should_store"); 1222 1223 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1224 // jump straight past that fence instruction (if it exists). 1225 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1226 } else 1227 Builder.CreateUnreachable(); 1228 1229 // Make sure later instructions don't get reordered with a fence if 1230 // necessary. 1231 Builder.SetInsertPoint(SuccessBB); 1232 if (ShouldInsertFencesForAtomic) 1233 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1234 Builder.CreateBr(ExitBB); 1235 1236 Builder.SetInsertPoint(NoStoreBB); 1237 // In the failing case, where we don't execute the store-conditional, the 1238 // target might want to balance out the load-linked with a dedicated 1239 // instruction (e.g., on ARM, clearing the exclusive monitor). 1240 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1241 Builder.CreateBr(FailureBB); 1242 1243 Builder.SetInsertPoint(FailureBB); 1244 if (ShouldInsertFencesForAtomic) 1245 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1246 Builder.CreateBr(ExitBB); 1247 1248 // Finally, we have control-flow based knowledge of whether the cmpxchg 1249 // succeeded or not. We expose this to later passes by converting any 1250 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1251 // PHI. 1252 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1253 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 1254 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1255 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1256 1257 // Setup the builder so we can create any PHIs we need. 1258 Value *Loaded; 1259 if (!HasReleasedLoadBB) 1260 Loaded = UnreleasedLoad; 1261 else { 1262 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); 1263 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1264 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1265 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1266 1267 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); 1268 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1269 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); 1270 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1271 1272 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); 1273 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1274 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); 1275 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); 1276 1277 Loaded = ExitLoaded; 1278 } 1279 1280 // Look for any users of the cmpxchg that are just comparing the loaded value 1281 // against the desired one, and replace them with the CFG-derived version. 1282 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1283 for (auto User : CI->users()) { 1284 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1285 if (!EV) 1286 continue; 1287 1288 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1289 "weird extraction from { iN, i1 }"); 1290 1291 if (EV->getIndices()[0] == 0) 1292 EV->replaceAllUsesWith(Loaded); 1293 else 1294 EV->replaceAllUsesWith(Success); 1295 1296 PrunedInsts.push_back(EV); 1297 } 1298 1299 // We can remove the instructions now we're no longer iterating through them. 1300 for (auto EV : PrunedInsts) 1301 EV->eraseFromParent(); 1302 1303 if (!CI->use_empty()) { 1304 // Some use of the full struct return that we don't understand has happened, 1305 // so we've got to reconstruct it properly. 1306 Value *Res; 1307 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1308 Res = Builder.CreateInsertValue(Res, Success, 1); 1309 1310 CI->replaceAllUsesWith(Res); 1311 } 1312 1313 CI->eraseFromParent(); 1314 return true; 1315 } 1316 1317 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1318 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1319 if(!C) 1320 return false; 1321 1322 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1323 switch(Op) { 1324 case AtomicRMWInst::Add: 1325 case AtomicRMWInst::Sub: 1326 case AtomicRMWInst::Or: 1327 case AtomicRMWInst::Xor: 1328 return C->isZero(); 1329 case AtomicRMWInst::And: 1330 return C->isMinusOne(); 1331 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1332 default: 1333 return false; 1334 } 1335 } 1336 1337 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1338 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1339 tryExpandAtomicLoad(ResultingLoad); 1340 return true; 1341 } 1342 return false; 1343 } 1344 1345 Value *AtomicExpand::insertRMWCmpXchgLoop( 1346 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1347 AtomicOrdering MemOpOrder, 1348 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1349 CreateCmpXchgInstFun CreateCmpXchg) { 1350 LLVMContext &Ctx = Builder.getContext(); 1351 BasicBlock *BB = Builder.GetInsertBlock(); 1352 Function *F = BB->getParent(); 1353 1354 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1355 // 1356 // The standard expansion we produce is: 1357 // [...] 1358 // %init_loaded = load atomic iN* %addr 1359 // br label %loop 1360 // loop: 1361 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1362 // %new = some_op iN %loaded, %incr 1363 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1364 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1365 // %success = extractvalue { iN, i1 } %pair, 1 1366 // br i1 %success, label %atomicrmw.end, label %loop 1367 // atomicrmw.end: 1368 // [...] 1369 BasicBlock *ExitBB = 1370 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1371 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1372 1373 // The split call above "helpfully" added a branch at the end of BB (to the 1374 // wrong place), but we want a load. It's easiest to just remove 1375 // the branch entirely. 1376 std::prev(BB->end())->eraseFromParent(); 1377 Builder.SetInsertPoint(BB); 1378 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1379 // Atomics require at least natural alignment. 1380 InitLoaded->setAlignment(MaybeAlign(ResultTy->getPrimitiveSizeInBits() / 8)); 1381 Builder.CreateBr(LoopBB); 1382 1383 // Start the main loop block now that we've taken care of the preliminaries. 1384 Builder.SetInsertPoint(LoopBB); 1385 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1386 Loaded->addIncoming(InitLoaded, BB); 1387 1388 Value *NewVal = PerformOp(Builder, Loaded); 1389 1390 Value *NewLoaded = nullptr; 1391 Value *Success = nullptr; 1392 1393 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1394 MemOpOrder == AtomicOrdering::Unordered 1395 ? AtomicOrdering::Monotonic 1396 : MemOpOrder, 1397 Success, NewLoaded); 1398 assert(Success && NewLoaded); 1399 1400 Loaded->addIncoming(NewLoaded, LoopBB); 1401 1402 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1403 1404 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1405 return NewLoaded; 1406 } 1407 1408 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1409 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1410 unsigned ValueSize = getAtomicOpSize(CI); 1411 1412 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1413 default: 1414 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1415 case TargetLoweringBase::AtomicExpansionKind::None: 1416 if (ValueSize < MinCASSize) 1417 expandPartwordCmpXchg(CI); 1418 return false; 1419 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1420 assert(ValueSize >= MinCASSize && 1421 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); 1422 return expandAtomicCmpXchg(CI); 1423 } 1424 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1425 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1426 return true; 1427 } 1428 } 1429 1430 // Note: This function is exposed externally by AtomicExpandUtils.h 1431 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1432 CreateCmpXchgInstFun CreateCmpXchg) { 1433 IRBuilder<> Builder(AI); 1434 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1435 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1436 [&](IRBuilder<> &Builder, Value *Loaded) { 1437 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1438 AI->getValOperand()); 1439 }, 1440 CreateCmpXchg); 1441 1442 AI->replaceAllUsesWith(Loaded); 1443 AI->eraseFromParent(); 1444 return true; 1445 } 1446 1447 // In order to use one of the sized library calls such as 1448 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1449 // must be one of the potentially-specialized sizes, and the value 1450 // type must actually exist in C on the target (otherwise, the 1451 // function wouldn't actually be defined.) 1452 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1453 const DataLayout &DL) { 1454 // TODO: "LargestSize" is an approximation for "largest type that 1455 // you can express in C". It seems to be the case that int128 is 1456 // supported on all 64-bit platforms, otherwise only up to 64-bit 1457 // integers are supported. If we get this wrong, then we'll try to 1458 // call a sized libcall that doesn't actually exist. There should 1459 // really be some more reliable way in LLVM of determining integer 1460 // sizes which are valid in the target's C ABI... 1461 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1462 return Align >= Size && 1463 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1464 Size <= LargestSize; 1465 } 1466 1467 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1468 static const RTLIB::Libcall Libcalls[6] = { 1469 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1470 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1471 unsigned Size = getAtomicOpSize(I); 1472 unsigned Align = getAtomicOpAlign(I); 1473 1474 bool expanded = expandAtomicOpToLibcall( 1475 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1476 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1477 (void)expanded; 1478 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1479 } 1480 1481 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1482 static const RTLIB::Libcall Libcalls[6] = { 1483 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1484 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1485 unsigned Size = getAtomicOpSize(I); 1486 unsigned Align = getAtomicOpAlign(I); 1487 1488 bool expanded = expandAtomicOpToLibcall( 1489 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1490 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1491 (void)expanded; 1492 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1493 } 1494 1495 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1496 static const RTLIB::Libcall Libcalls[6] = { 1497 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1498 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1499 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1500 unsigned Size = getAtomicOpSize(I); 1501 unsigned Align = getAtomicOpAlign(I); 1502 1503 bool expanded = expandAtomicOpToLibcall( 1504 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1505 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1506 Libcalls); 1507 (void)expanded; 1508 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1509 } 1510 1511 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1512 static const RTLIB::Libcall LibcallsXchg[6] = { 1513 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1514 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1515 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1516 static const RTLIB::Libcall LibcallsAdd[6] = { 1517 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1518 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1519 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1520 static const RTLIB::Libcall LibcallsSub[6] = { 1521 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1522 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1523 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1524 static const RTLIB::Libcall LibcallsAnd[6] = { 1525 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1526 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1527 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1528 static const RTLIB::Libcall LibcallsOr[6] = { 1529 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1530 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1531 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1532 static const RTLIB::Libcall LibcallsXor[6] = { 1533 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1534 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1535 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1536 static const RTLIB::Libcall LibcallsNand[6] = { 1537 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1538 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1539 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1540 1541 switch (Op) { 1542 case AtomicRMWInst::BAD_BINOP: 1543 llvm_unreachable("Should not have BAD_BINOP."); 1544 case AtomicRMWInst::Xchg: 1545 return makeArrayRef(LibcallsXchg); 1546 case AtomicRMWInst::Add: 1547 return makeArrayRef(LibcallsAdd); 1548 case AtomicRMWInst::Sub: 1549 return makeArrayRef(LibcallsSub); 1550 case AtomicRMWInst::And: 1551 return makeArrayRef(LibcallsAnd); 1552 case AtomicRMWInst::Or: 1553 return makeArrayRef(LibcallsOr); 1554 case AtomicRMWInst::Xor: 1555 return makeArrayRef(LibcallsXor); 1556 case AtomicRMWInst::Nand: 1557 return makeArrayRef(LibcallsNand); 1558 case AtomicRMWInst::Max: 1559 case AtomicRMWInst::Min: 1560 case AtomicRMWInst::UMax: 1561 case AtomicRMWInst::UMin: 1562 case AtomicRMWInst::FAdd: 1563 case AtomicRMWInst::FSub: 1564 // No atomic libcalls are available for max/min/umax/umin. 1565 return {}; 1566 } 1567 llvm_unreachable("Unexpected AtomicRMW operation."); 1568 } 1569 1570 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1571 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1572 1573 unsigned Size = getAtomicOpSize(I); 1574 unsigned Align = getAtomicOpAlign(I); 1575 1576 bool Success = false; 1577 if (!Libcalls.empty()) 1578 Success = expandAtomicOpToLibcall( 1579 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1580 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1581 1582 // The expansion failed: either there were no libcalls at all for 1583 // the operation (min/max), or there were only size-specialized 1584 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1585 // CAS libcall, via a CAS loop, instead. 1586 if (!Success) { 1587 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1588 Value *Loaded, Value *NewVal, 1589 AtomicOrdering MemOpOrder, 1590 Value *&Success, Value *&NewLoaded) { 1591 // Create the CAS instruction normally... 1592 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1593 Addr, Loaded, NewVal, MemOpOrder, 1594 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1595 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1596 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1597 1598 // ...and then expand the CAS into a libcall. 1599 expandAtomicCASToLibcall(Pair); 1600 }); 1601 } 1602 } 1603 1604 // A helper routine for the above expandAtomic*ToLibcall functions. 1605 // 1606 // 'Libcalls' contains an array of enum values for the particular 1607 // ATOMIC libcalls to be emitted. All of the other arguments besides 1608 // 'I' are extracted from the Instruction subclass by the 1609 // caller. Depending on the particular call, some will be null. 1610 bool AtomicExpand::expandAtomicOpToLibcall( 1611 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1612 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1613 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1614 assert(Libcalls.size() == 6); 1615 1616 LLVMContext &Ctx = I->getContext(); 1617 Module *M = I->getModule(); 1618 const DataLayout &DL = M->getDataLayout(); 1619 IRBuilder<> Builder(I); 1620 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1621 1622 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1623 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1624 1625 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); 1626 1627 // TODO: the "order" argument type is "int", not int32. So 1628 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1629 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1630 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1631 Constant *OrderingVal = 1632 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1633 Constant *Ordering2Val = nullptr; 1634 if (CASExpected) { 1635 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1636 Ordering2Val = 1637 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1638 } 1639 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1640 1641 RTLIB::Libcall RTLibType; 1642 if (UseSizedLibcall) { 1643 switch (Size) { 1644 case 1: RTLibType = Libcalls[1]; break; 1645 case 2: RTLibType = Libcalls[2]; break; 1646 case 4: RTLibType = Libcalls[3]; break; 1647 case 8: RTLibType = Libcalls[4]; break; 1648 case 16: RTLibType = Libcalls[5]; break; 1649 } 1650 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1651 RTLibType = Libcalls[0]; 1652 } else { 1653 // Can't use sized function, and there's no generic for this 1654 // operation, so give up. 1655 return false; 1656 } 1657 1658 // Build up the function call. There's two kinds. First, the sized 1659 // variants. These calls are going to be one of the following (with 1660 // N=1,2,4,8,16): 1661 // iN __atomic_load_N(iN *ptr, int ordering) 1662 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1663 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1664 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1665 // int success_order, int failure_order) 1666 // 1667 // Note that these functions can be used for non-integer atomic 1668 // operations, the values just need to be bitcast to integers on the 1669 // way in and out. 1670 // 1671 // And, then, the generic variants. They look like the following: 1672 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1673 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1674 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1675 // int ordering) 1676 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1677 // void *desired, int success_order, 1678 // int failure_order) 1679 // 1680 // The different signatures are built up depending on the 1681 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1682 // variables. 1683 1684 AllocaInst *AllocaCASExpected = nullptr; 1685 Value *AllocaCASExpected_i8 = nullptr; 1686 AllocaInst *AllocaValue = nullptr; 1687 Value *AllocaValue_i8 = nullptr; 1688 AllocaInst *AllocaResult = nullptr; 1689 Value *AllocaResult_i8 = nullptr; 1690 1691 Type *ResultTy; 1692 SmallVector<Value *, 6> Args; 1693 AttributeList Attr; 1694 1695 // 'size' argument. 1696 if (!UseSizedLibcall) { 1697 // Note, getIntPtrType is assumed equivalent to size_t. 1698 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1699 } 1700 1701 // 'ptr' argument. 1702 // note: This assumes all address spaces share a common libfunc 1703 // implementation and that addresses are convertable. For systems without 1704 // that property, we'd need to extend this mechanism to support AS-specific 1705 // families of atomic intrinsics. 1706 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1707 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1708 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1709 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1710 Args.push_back(PtrVal); 1711 1712 // 'expected' argument, if present. 1713 if (CASExpected) { 1714 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1715 AllocaCASExpected->setAlignment(MaybeAlign(AllocaAlignment)); 1716 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1717 1718 AllocaCASExpected_i8 = 1719 Builder.CreateBitCast(AllocaCASExpected, 1720 Type::getInt8PtrTy(Ctx, AllocaAS)); 1721 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1722 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1723 Args.push_back(AllocaCASExpected_i8); 1724 } 1725 1726 // 'val' argument ('desired' for cas), if present. 1727 if (ValueOperand) { 1728 if (UseSizedLibcall) { 1729 Value *IntValue = 1730 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1731 Args.push_back(IntValue); 1732 } else { 1733 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1734 AllocaValue->setAlignment(MaybeAlign(AllocaAlignment)); 1735 AllocaValue_i8 = 1736 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1737 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1738 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1739 Args.push_back(AllocaValue_i8); 1740 } 1741 } 1742 1743 // 'ret' argument. 1744 if (!CASExpected && HasResult && !UseSizedLibcall) { 1745 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1746 AllocaResult->setAlignment(MaybeAlign(AllocaAlignment)); 1747 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1748 AllocaResult_i8 = 1749 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1750 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1751 Args.push_back(AllocaResult_i8); 1752 } 1753 1754 // 'ordering' ('success_order' for cas) argument. 1755 Args.push_back(OrderingVal); 1756 1757 // 'failure_order' argument, if present. 1758 if (Ordering2Val) 1759 Args.push_back(Ordering2Val); 1760 1761 // Now, the return type. 1762 if (CASExpected) { 1763 ResultTy = Type::getInt1Ty(Ctx); 1764 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1765 } else if (HasResult && UseSizedLibcall) 1766 ResultTy = SizedIntTy; 1767 else 1768 ResultTy = Type::getVoidTy(Ctx); 1769 1770 // Done with setting up arguments and return types, create the call: 1771 SmallVector<Type *, 6> ArgTys; 1772 for (Value *Arg : Args) 1773 ArgTys.push_back(Arg->getType()); 1774 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1775 FunctionCallee LibcallFn = 1776 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1777 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1778 Call->setAttributes(Attr); 1779 Value *Result = Call; 1780 1781 // And then, extract the results... 1782 if (ValueOperand && !UseSizedLibcall) 1783 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1784 1785 if (CASExpected) { 1786 // The final result from the CAS is {load of 'expected' alloca, bool result 1787 // from call} 1788 Type *FinalResultTy = I->getType(); 1789 Value *V = UndefValue::get(FinalResultTy); 1790 Value *ExpectedOut = Builder.CreateAlignedLoad( 1791 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1792 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1793 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1794 V = Builder.CreateInsertValue(V, Result, 1); 1795 I->replaceAllUsesWith(V); 1796 } else if (HasResult) { 1797 Value *V; 1798 if (UseSizedLibcall) 1799 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1800 else { 1801 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1802 AllocaAlignment); 1803 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1804 } 1805 I->replaceAllUsesWith(V); 1806 } 1807 I->eraseFromParent(); 1808 return true; 1809 } 1810