1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpandUtils.h" 23 #include "llvm/CodeGen/RuntimeLibcalls.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/User.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Transforms/Utils/LowerAtomic.h" 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "atomic-expand" 59 60 namespace { 61 62 class AtomicExpand : public FunctionPass { 63 const TargetLowering *TLI = nullptr; 64 const DataLayout *DL = nullptr; 65 66 public: 67 static char ID; // Pass identification, replacement for typeid 68 69 AtomicExpand() : FunctionPass(ID) { 70 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 71 } 72 73 bool runOnFunction(Function &F) override; 74 75 private: 76 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 77 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 78 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 79 bool tryExpandAtomicLoad(LoadInst *LI); 80 bool expandAtomicLoadToLL(LoadInst *LI); 81 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 82 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 83 bool tryExpandAtomicStore(StoreInst *SI); 84 void expandAtomicStore(StoreInst *SI); 85 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 86 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 87 Value * 88 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 89 Align AddrAlign, AtomicOrdering MemOpOrder, 90 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 91 void expandAtomicOpToLLSC( 92 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 93 AtomicOrdering MemOpOrder, 94 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 95 void expandPartwordAtomicRMW( 96 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 97 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 98 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 99 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 100 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 101 102 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 103 static Value *insertRMWCmpXchgLoop( 104 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 105 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 106 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 107 CreateCmpXchgInstFun CreateCmpXchg); 108 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 109 110 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 111 bool isIdempotentRMW(AtomicRMWInst *RMWI); 112 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 113 114 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 115 Value *PointerOperand, Value *ValueOperand, 116 Value *CASExpected, AtomicOrdering Ordering, 117 AtomicOrdering Ordering2, 118 ArrayRef<RTLIB::Libcall> Libcalls); 119 void expandAtomicLoadToLibcall(LoadInst *LI); 120 void expandAtomicStoreToLibcall(StoreInst *LI); 121 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 122 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 123 124 friend bool 125 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 126 CreateCmpXchgInstFun CreateCmpXchg); 127 }; 128 129 // IRBuilder to be used for replacement atomic instructions. 130 struct ReplacementIRBuilder : IRBuilder<InstSimplifyFolder> { 131 // Preserves the DebugLoc from I, and preserves still valid metadata. 132 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 133 : IRBuilder(I->getContext(), DL) { 134 SetInsertPoint(I); 135 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 136 } 137 }; 138 139 } // end anonymous namespace 140 141 char AtomicExpand::ID = 0; 142 143 char &llvm::AtomicExpandID = AtomicExpand::ID; 144 145 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, 146 false) 147 148 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 149 150 // Helper functions to retrieve the size of atomic instructions. 151 static unsigned getAtomicOpSize(LoadInst *LI) { 152 const DataLayout &DL = LI->getModule()->getDataLayout(); 153 return DL.getTypeStoreSize(LI->getType()); 154 } 155 156 static unsigned getAtomicOpSize(StoreInst *SI) { 157 const DataLayout &DL = SI->getModule()->getDataLayout(); 158 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 159 } 160 161 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 162 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 163 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 164 } 165 166 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 167 const DataLayout &DL = CASI->getModule()->getDataLayout(); 168 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 169 } 170 171 // Determine if a particular atomic operation has a supported size, 172 // and is of appropriate alignment, to be passed through for target 173 // lowering. (Versus turning into a __atomic libcall) 174 template <typename Inst> 175 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 176 unsigned Size = getAtomicOpSize(I); 177 Align Alignment = I->getAlign(); 178 return Alignment >= Size && 179 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 180 } 181 182 bool AtomicExpand::runOnFunction(Function &F) { 183 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 184 if (!TPC) 185 return false; 186 187 auto &TM = TPC->getTM<TargetMachine>(); 188 const auto *Subtarget = TM.getSubtargetImpl(F); 189 if (!Subtarget->enableAtomicExpand()) 190 return false; 191 TLI = Subtarget->getTargetLowering(); 192 DL = &F.getParent()->getDataLayout(); 193 194 SmallVector<Instruction *, 1> AtomicInsts; 195 196 // Changing control-flow while iterating through it is a bad idea, so gather a 197 // list of all atomic instructions before we start. 198 for (Instruction &I : instructions(F)) 199 if (I.isAtomic() && !isa<FenceInst>(&I)) 200 AtomicInsts.push_back(&I); 201 202 bool MadeChange = false; 203 for (auto *I : AtomicInsts) { 204 auto LI = dyn_cast<LoadInst>(I); 205 auto SI = dyn_cast<StoreInst>(I); 206 auto RMWI = dyn_cast<AtomicRMWInst>(I); 207 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 208 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 209 210 // If the Size/Alignment is not supported, replace with a libcall. 211 if (LI) { 212 if (!atomicSizeSupported(TLI, LI)) { 213 expandAtomicLoadToLibcall(LI); 214 MadeChange = true; 215 continue; 216 } 217 } else if (SI) { 218 if (!atomicSizeSupported(TLI, SI)) { 219 expandAtomicStoreToLibcall(SI); 220 MadeChange = true; 221 continue; 222 } 223 } else if (RMWI) { 224 if (!atomicSizeSupported(TLI, RMWI)) { 225 expandAtomicRMWToLibcall(RMWI); 226 MadeChange = true; 227 continue; 228 } 229 } else if (CASI) { 230 if (!atomicSizeSupported(TLI, CASI)) { 231 expandAtomicCASToLibcall(CASI); 232 MadeChange = true; 233 continue; 234 } 235 } 236 237 if (LI && TLI->shouldCastAtomicLoadInIR(LI) == 238 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 239 I = LI = convertAtomicLoadToIntegerType(LI); 240 MadeChange = true; 241 } else if (SI && 242 TLI->shouldCastAtomicStoreInIR(SI) == 243 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 244 I = SI = convertAtomicStoreToIntegerType(SI); 245 MadeChange = true; 246 } else if (RMWI && 247 TLI->shouldCastAtomicRMWIInIR(RMWI) == 248 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 249 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 250 MadeChange = true; 251 } else if (CASI) { 252 // TODO: when we're ready to make the change at the IR level, we can 253 // extend convertCmpXchgToInteger for floating point too. 254 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 255 // TODO: add a TLI hook to control this so that each target can 256 // convert to lowering the original type one at a time. 257 I = CASI = convertCmpXchgToIntegerType(CASI); 258 MadeChange = true; 259 } 260 } 261 262 if (TLI->shouldInsertFencesForAtomic(I)) { 263 auto FenceOrdering = AtomicOrdering::Monotonic; 264 if (LI && isAcquireOrStronger(LI->getOrdering())) { 265 FenceOrdering = LI->getOrdering(); 266 LI->setOrdering(AtomicOrdering::Monotonic); 267 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 268 FenceOrdering = SI->getOrdering(); 269 SI->setOrdering(AtomicOrdering::Monotonic); 270 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 271 isAcquireOrStronger(RMWI->getOrdering()))) { 272 FenceOrdering = RMWI->getOrdering(); 273 RMWI->setOrdering(AtomicOrdering::Monotonic); 274 } else if (CASI && 275 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 276 TargetLoweringBase::AtomicExpansionKind::None && 277 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 278 isAcquireOrStronger(CASI->getSuccessOrdering()) || 279 isAcquireOrStronger(CASI->getFailureOrdering()))) { 280 // If a compare and swap is lowered to LL/SC, we can do smarter fence 281 // insertion, with a stronger one on the success path than on the 282 // failure path. As a result, fence insertion is directly done by 283 // expandAtomicCmpXchg in that case. 284 FenceOrdering = CASI->getMergedOrdering(); 285 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 286 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 287 } 288 289 if (FenceOrdering != AtomicOrdering::Monotonic) { 290 MadeChange |= bracketInstWithFences(I, FenceOrdering); 291 } 292 } else if (I->hasAtomicStore() && 293 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 294 auto FenceOrdering = AtomicOrdering::Monotonic; 295 if (SI) 296 FenceOrdering = SI->getOrdering(); 297 else if (RMWI) 298 FenceOrdering = RMWI->getOrdering(); 299 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 300 TargetLoweringBase::AtomicExpansionKind::LLSC) 301 // LLSC is handled in expandAtomicCmpXchg(). 302 FenceOrdering = CASI->getSuccessOrdering(); 303 304 IRBuilder Builder(I); 305 if (auto TrailingFence = 306 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 307 TrailingFence->moveAfter(I); 308 MadeChange = true; 309 } 310 } 311 312 if (LI) 313 MadeChange |= tryExpandAtomicLoad(LI); 314 else if (SI) 315 MadeChange |= tryExpandAtomicStore(SI); 316 else if (RMWI) { 317 // There are two different ways of expanding RMW instructions: 318 // - into a load if it is idempotent 319 // - into a Cmpxchg/LL-SC loop otherwise 320 // we try them in that order. 321 322 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 323 MadeChange = true; 324 } else { 325 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 326 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 327 unsigned ValueSize = getAtomicOpSize(RMWI); 328 if (ValueSize < MinCASSize && 329 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 330 Op == AtomicRMWInst::And)) { 331 RMWI = widenPartwordAtomicRMW(RMWI); 332 MadeChange = true; 333 } 334 335 MadeChange |= tryExpandAtomicRMW(RMWI); 336 } 337 } else if (CASI) 338 MadeChange |= tryExpandAtomicCmpXchg(CASI); 339 } 340 return MadeChange; 341 } 342 343 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 344 ReplacementIRBuilder Builder(I, *DL); 345 346 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 347 348 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 349 // We have a guard here because not every atomic operation generates a 350 // trailing fence. 351 if (TrailingFence) 352 TrailingFence->moveAfter(I); 353 354 return (LeadingFence || TrailingFence); 355 } 356 357 /// Get the iX type with the same bitwidth as T. 358 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 359 const DataLayout &DL) { 360 EVT VT = TLI->getMemValueType(DL, T); 361 unsigned BitWidth = VT.getStoreSizeInBits(); 362 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 363 return IntegerType::get(T->getContext(), BitWidth); 364 } 365 366 /// Convert an atomic load of a non-integral type to an integer load of the 367 /// equivalent bitwidth. See the function comment on 368 /// convertAtomicStoreToIntegerType for background. 369 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 370 auto *M = LI->getModule(); 371 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 372 373 ReplacementIRBuilder Builder(LI, *DL); 374 375 Value *Addr = LI->getPointerOperand(); 376 377 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 378 NewLI->setAlignment(LI->getAlign()); 379 NewLI->setVolatile(LI->isVolatile()); 380 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 381 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 382 383 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 384 LI->replaceAllUsesWith(NewVal); 385 LI->eraseFromParent(); 386 return NewLI; 387 } 388 389 AtomicRMWInst * 390 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 391 auto *M = RMWI->getModule(); 392 Type *NewTy = 393 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 394 395 ReplacementIRBuilder Builder(RMWI, *DL); 396 397 Value *Addr = RMWI->getPointerOperand(); 398 Value *Val = RMWI->getValOperand(); 399 Value *NewVal = Val->getType()->isPointerTy() 400 ? Builder.CreatePtrToInt(Val, NewTy) 401 : Builder.CreateBitCast(Val, NewTy); 402 403 auto *NewRMWI = 404 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 405 RMWI->getAlign(), RMWI->getOrdering()); 406 NewRMWI->setVolatile(RMWI->isVolatile()); 407 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 408 409 Value *NewRVal = RMWI->getType()->isPointerTy() 410 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 411 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 412 RMWI->replaceAllUsesWith(NewRVal); 413 RMWI->eraseFromParent(); 414 return NewRMWI; 415 } 416 417 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 418 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 419 case TargetLoweringBase::AtomicExpansionKind::None: 420 return false; 421 case TargetLoweringBase::AtomicExpansionKind::LLSC: 422 expandAtomicOpToLLSC( 423 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 424 LI->getOrdering(), 425 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 426 return true; 427 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 428 return expandAtomicLoadToLL(LI); 429 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 430 return expandAtomicLoadToCmpXchg(LI); 431 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 432 LI->setAtomic(AtomicOrdering::NotAtomic); 433 return true; 434 default: 435 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 436 } 437 } 438 439 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) { 440 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 441 case TargetLoweringBase::AtomicExpansionKind::None: 442 return false; 443 case TargetLoweringBase::AtomicExpansionKind::Expand: 444 expandAtomicStore(SI); 445 return true; 446 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 447 SI->setAtomic(AtomicOrdering::NotAtomic); 448 return true; 449 default: 450 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 451 } 452 } 453 454 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 455 ReplacementIRBuilder Builder(LI, *DL); 456 457 // On some architectures, load-linked instructions are atomic for larger 458 // sizes than normal loads. For example, the only 64-bit load guaranteed 459 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 460 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 461 LI->getPointerOperand(), LI->getOrdering()); 462 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 463 464 LI->replaceAllUsesWith(Val); 465 LI->eraseFromParent(); 466 467 return true; 468 } 469 470 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 471 ReplacementIRBuilder Builder(LI, *DL); 472 AtomicOrdering Order = LI->getOrdering(); 473 if (Order == AtomicOrdering::Unordered) 474 Order = AtomicOrdering::Monotonic; 475 476 Value *Addr = LI->getPointerOperand(); 477 Type *Ty = LI->getType(); 478 Constant *DummyVal = Constant::getNullValue(Ty); 479 480 Value *Pair = Builder.CreateAtomicCmpXchg( 481 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 482 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 483 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 484 485 LI->replaceAllUsesWith(Loaded); 486 LI->eraseFromParent(); 487 488 return true; 489 } 490 491 /// Convert an atomic store of a non-integral type to an integer store of the 492 /// equivalent bitwidth. We used to not support floating point or vector 493 /// atomics in the IR at all. The backends learned to deal with the bitcast 494 /// idiom because that was the only way of expressing the notion of a atomic 495 /// float or vector store. The long term plan is to teach each backend to 496 /// instruction select from the original atomic store, but as a migration 497 /// mechanism, we convert back to the old format which the backends understand. 498 /// Each backend will need individual work to recognize the new format. 499 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 500 ReplacementIRBuilder Builder(SI, *DL); 501 auto *M = SI->getModule(); 502 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 503 M->getDataLayout()); 504 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 505 506 Value *Addr = SI->getPointerOperand(); 507 508 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 509 NewSI->setAlignment(SI->getAlign()); 510 NewSI->setVolatile(SI->isVolatile()); 511 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 512 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 513 SI->eraseFromParent(); 514 return NewSI; 515 } 516 517 void AtomicExpand::expandAtomicStore(StoreInst *SI) { 518 // This function is only called on atomic stores that are too large to be 519 // atomic if implemented as a native store. So we replace them by an 520 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 521 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 522 // It is the responsibility of the target to only signal expansion via 523 // shouldExpandAtomicRMW in cases where this is required and possible. 524 ReplacementIRBuilder Builder(SI, *DL); 525 AtomicOrdering Ordering = SI->getOrdering(); 526 assert(Ordering != AtomicOrdering::NotAtomic); 527 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 528 ? AtomicOrdering::Monotonic 529 : Ordering; 530 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 531 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 532 SI->getAlign(), RMWOrdering); 533 SI->eraseFromParent(); 534 535 // Now we have an appropriate swap instruction, lower it as usual. 536 tryExpandAtomicRMW(AI); 537 } 538 539 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 540 Value *Loaded, Value *NewVal, Align AddrAlign, 541 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 542 Value *&Success, Value *&NewLoaded) { 543 Type *OrigTy = NewVal->getType(); 544 545 // This code can go away when cmpxchg supports FP types. 546 assert(!OrigTy->isPointerTy()); 547 bool NeedBitcast = OrigTy->isFloatingPointTy(); 548 if (NeedBitcast) { 549 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 550 NewVal = Builder.CreateBitCast(NewVal, IntTy); 551 Loaded = Builder.CreateBitCast(Loaded, IntTy); 552 } 553 554 Value *Pair = Builder.CreateAtomicCmpXchg( 555 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 556 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 557 Success = Builder.CreateExtractValue(Pair, 1, "success"); 558 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 559 560 if (NeedBitcast) 561 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 562 } 563 564 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 565 LLVMContext &Ctx = AI->getModule()->getContext(); 566 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 567 switch (Kind) { 568 case TargetLoweringBase::AtomicExpansionKind::None: 569 return false; 570 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 571 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 572 unsigned ValueSize = getAtomicOpSize(AI); 573 if (ValueSize < MinCASSize) { 574 expandPartwordAtomicRMW(AI, 575 TargetLoweringBase::AtomicExpansionKind::LLSC); 576 } else { 577 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 578 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 579 AI->getValOperand()); 580 }; 581 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 582 AI->getAlign(), AI->getOrdering(), PerformOp); 583 } 584 return true; 585 } 586 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 587 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 588 unsigned ValueSize = getAtomicOpSize(AI); 589 if (ValueSize < MinCASSize) { 590 expandPartwordAtomicRMW(AI, 591 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 592 } else { 593 SmallVector<StringRef> SSNs; 594 Ctx.getSyncScopeNames(SSNs); 595 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 596 ? "system" 597 : SSNs[AI->getSyncScopeID()]; 598 OptimizationRemarkEmitter ORE(AI->getFunction()); 599 ORE.emit([&]() { 600 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 601 << "A compare and swap loop was generated for an atomic " 602 << AI->getOperationName(AI->getOperation()) << " operation at " 603 << MemScope << " memory scope"; 604 }); 605 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 606 } 607 return true; 608 } 609 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 610 expandAtomicRMWToMaskedIntrinsic(AI); 611 return true; 612 } 613 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 614 TLI->emitBitTestAtomicRMWIntrinsic(AI); 615 return true; 616 } 617 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 618 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 619 return true; 620 } 621 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 622 return lowerAtomicRMWInst(AI); 623 case TargetLoweringBase::AtomicExpansionKind::Expand: 624 TLI->emitExpandAtomicRMW(AI); 625 return true; 626 default: 627 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 628 } 629 } 630 631 namespace { 632 633 struct PartwordMaskValues { 634 // These three fields are guaranteed to be set by createMaskInstrs. 635 Type *WordType = nullptr; 636 Type *ValueType = nullptr; 637 Type *IntValueType = nullptr; 638 Value *AlignedAddr = nullptr; 639 Align AlignedAddrAlignment; 640 // The remaining fields can be null. 641 Value *ShiftAmt = nullptr; 642 Value *Mask = nullptr; 643 Value *Inv_Mask = nullptr; 644 }; 645 646 LLVM_ATTRIBUTE_UNUSED 647 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 648 auto PrintObj = [&O](auto *V) { 649 if (V) 650 O << *V; 651 else 652 O << "nullptr"; 653 O << '\n'; 654 }; 655 O << "PartwordMaskValues {\n"; 656 O << " WordType: "; 657 PrintObj(PMV.WordType); 658 O << " ValueType: "; 659 PrintObj(PMV.ValueType); 660 O << " AlignedAddr: "; 661 PrintObj(PMV.AlignedAddr); 662 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 663 O << " ShiftAmt: "; 664 PrintObj(PMV.ShiftAmt); 665 O << " Mask: "; 666 PrintObj(PMV.Mask); 667 O << " Inv_Mask: "; 668 PrintObj(PMV.Inv_Mask); 669 O << "}\n"; 670 return O; 671 } 672 673 } // end anonymous namespace 674 675 /// This is a helper function which builds instructions to provide 676 /// values necessary for partword atomic operations. It takes an 677 /// incoming address, Addr, and ValueType, and constructs the address, 678 /// shift-amounts and masks needed to work with a larger value of size 679 /// WordSize. 680 /// 681 /// AlignedAddr: Addr rounded down to a multiple of WordSize 682 /// 683 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 684 /// from AlignAddr for it to have the same value as if 685 /// ValueType was loaded from Addr. 686 /// 687 /// Mask: Value to mask with the value loaded from AlignAddr to 688 /// include only the part that would've been loaded from Addr. 689 /// 690 /// Inv_Mask: The inverse of Mask. 691 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 692 Instruction *I, Type *ValueType, 693 Value *Addr, Align AddrAlign, 694 unsigned MinWordSize) { 695 PartwordMaskValues PMV; 696 697 Module *M = I->getModule(); 698 LLVMContext &Ctx = M->getContext(); 699 const DataLayout &DL = M->getDataLayout(); 700 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 701 702 PMV.ValueType = PMV.IntValueType = ValueType; 703 if (PMV.ValueType->isFloatingPointTy()) 704 PMV.IntValueType = 705 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 706 707 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 708 : ValueType; 709 if (PMV.ValueType == PMV.WordType) { 710 PMV.AlignedAddr = Addr; 711 PMV.AlignedAddrAlignment = AddrAlign; 712 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 713 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 714 return PMV; 715 } 716 717 PMV.AlignedAddrAlignment = Align(MinWordSize); 718 719 assert(ValueSize < MinWordSize); 720 721 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 722 IntegerType *IntTy = DL.getIntPtrType(Ctx, PtrTy->getAddressSpace()); 723 Value *PtrLSB; 724 725 if (AddrAlign < MinWordSize) { 726 PMV.AlignedAddr = Builder.CreateIntrinsic( 727 Intrinsic::ptrmask, {PtrTy, IntTy}, 728 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 729 "AlignedAddr"); 730 731 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 732 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 733 } else { 734 // If the alignment is high enough, the LSB are known 0. 735 PMV.AlignedAddr = Addr; 736 PtrLSB = ConstantInt::getNullValue(IntTy); 737 } 738 739 if (DL.isLittleEndian()) { 740 // turn bytes into bits 741 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 742 } else { 743 // turn bytes into bits, and count from the other side. 744 PMV.ShiftAmt = Builder.CreateShl( 745 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 746 } 747 748 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 749 PMV.Mask = Builder.CreateShl( 750 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 751 "Mask"); 752 753 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 754 755 return PMV; 756 } 757 758 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 759 const PartwordMaskValues &PMV) { 760 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 761 if (PMV.WordType == PMV.ValueType) 762 return WideWord; 763 764 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 765 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 766 return Builder.CreateBitCast(Trunc, PMV.ValueType); 767 } 768 769 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 770 Value *Updated, const PartwordMaskValues &PMV) { 771 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 772 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 773 if (PMV.WordType == PMV.ValueType) 774 return Updated; 775 776 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 777 778 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 779 Value *Shift = 780 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 781 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 782 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 783 return Or; 784 } 785 786 /// Emit IR to implement a masked version of a given atomicrmw 787 /// operation. (That is, only the bits under the Mask should be 788 /// affected by the operation) 789 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 790 IRBuilderBase &Builder, Value *Loaded, 791 Value *Shifted_Inc, Value *Inc, 792 const PartwordMaskValues &PMV) { 793 // TODO: update to use 794 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 795 // to merge bits from two values without requiring PMV.Inv_Mask. 796 switch (Op) { 797 case AtomicRMWInst::Xchg: { 798 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 799 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 800 return FinalVal; 801 } 802 case AtomicRMWInst::Or: 803 case AtomicRMWInst::Xor: 804 case AtomicRMWInst::And: 805 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 806 case AtomicRMWInst::Add: 807 case AtomicRMWInst::Sub: 808 case AtomicRMWInst::Nand: { 809 // The other arithmetic ops need to be masked into place. 810 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 811 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 812 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 813 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 814 return FinalVal; 815 } 816 case AtomicRMWInst::Max: 817 case AtomicRMWInst::Min: 818 case AtomicRMWInst::UMax: 819 case AtomicRMWInst::UMin: 820 case AtomicRMWInst::FAdd: 821 case AtomicRMWInst::FSub: 822 case AtomicRMWInst::FMin: 823 case AtomicRMWInst::FMax: 824 case AtomicRMWInst::UIncWrap: 825 case AtomicRMWInst::UDecWrap: { 826 // Finally, other ops will operate on the full value, so truncate down to 827 // the original size, and expand out again after doing the 828 // operation. Bitcasts will be inserted for FP values. 829 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 830 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 831 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 832 return FinalVal; 833 } 834 default: 835 llvm_unreachable("Unknown atomic op"); 836 } 837 } 838 839 /// Expand a sub-word atomicrmw operation into an appropriate 840 /// word-sized operation. 841 /// 842 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 843 /// way as a typical atomicrmw expansion. The only difference here is 844 /// that the operation inside of the loop may operate upon only a 845 /// part of the value. 846 void AtomicExpand::expandPartwordAtomicRMW( 847 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 848 AtomicOrdering MemOpOrder = AI->getOrdering(); 849 SyncScope::ID SSID = AI->getSyncScopeID(); 850 851 ReplacementIRBuilder Builder(AI, *DL); 852 853 PartwordMaskValues PMV = 854 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 855 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 856 857 Value *ValOperand_Shifted = nullptr; 858 if (AI->getOperation() == AtomicRMWInst::Xchg || 859 AI->getOperation() == AtomicRMWInst::Add || 860 AI->getOperation() == AtomicRMWInst::Sub || 861 AI->getOperation() == AtomicRMWInst::Nand) { 862 ValOperand_Shifted = 863 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 864 PMV.ShiftAmt, "ValOperand_Shifted"); 865 } 866 867 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 868 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 869 ValOperand_Shifted, AI->getValOperand(), PMV); 870 }; 871 872 Value *OldResult; 873 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 874 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 875 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 876 PerformPartwordOp, createCmpXchgInstFun); 877 } else { 878 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 879 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 880 PMV.AlignedAddrAlignment, MemOpOrder, 881 PerformPartwordOp); 882 } 883 884 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 885 AI->replaceAllUsesWith(FinalOldResult); 886 AI->eraseFromParent(); 887 } 888 889 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 890 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 891 ReplacementIRBuilder Builder(AI, *DL); 892 AtomicRMWInst::BinOp Op = AI->getOperation(); 893 894 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 895 Op == AtomicRMWInst::And) && 896 "Unable to widen operation"); 897 898 PartwordMaskValues PMV = 899 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 900 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 901 902 Value *ValOperand_Shifted = 903 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 904 PMV.ShiftAmt, "ValOperand_Shifted"); 905 906 Value *NewOperand; 907 908 if (Op == AtomicRMWInst::And) 909 NewOperand = 910 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 911 else 912 NewOperand = ValOperand_Shifted; 913 914 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 915 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 916 AI->getOrdering(), AI->getSyncScopeID()); 917 // TODO: Preserve metadata 918 919 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 920 AI->replaceAllUsesWith(FinalOldResult); 921 AI->eraseFromParent(); 922 return NewAI; 923 } 924 925 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 926 // The basic idea here is that we're expanding a cmpxchg of a 927 // smaller memory size up to a word-sized cmpxchg. To do this, we 928 // need to add a retry-loop for strong cmpxchg, so that 929 // modifications to other parts of the word don't cause a spurious 930 // failure. 931 932 // This generates code like the following: 933 // [[Setup mask values PMV.*]] 934 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 935 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 936 // %InitLoaded = load i32* %addr 937 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 938 // br partword.cmpxchg.loop 939 // partword.cmpxchg.loop: 940 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 941 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 942 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 943 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 944 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 945 // i32 %FullWord_NewVal success_ordering failure_ordering 946 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 947 // %Success = extractvalue { i32, i1 } %NewCI, 1 948 // br i1 %Success, label %partword.cmpxchg.end, 949 // label %partword.cmpxchg.failure 950 // partword.cmpxchg.failure: 951 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 952 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 953 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 954 // label %partword.cmpxchg.end 955 // partword.cmpxchg.end: 956 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 957 // %FinalOldVal = trunc i32 %tmp1 to i8 958 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 959 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 960 961 Value *Addr = CI->getPointerOperand(); 962 Value *Cmp = CI->getCompareOperand(); 963 Value *NewVal = CI->getNewValOperand(); 964 965 BasicBlock *BB = CI->getParent(); 966 Function *F = BB->getParent(); 967 ReplacementIRBuilder Builder(CI, *DL); 968 LLVMContext &Ctx = Builder.getContext(); 969 970 BasicBlock *EndBB = 971 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 972 auto FailureBB = 973 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 974 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 975 976 // The split call above "helpfully" added a branch at the end of BB 977 // (to the wrong place). 978 std::prev(BB->end())->eraseFromParent(); 979 Builder.SetInsertPoint(BB); 980 981 PartwordMaskValues PMV = 982 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 983 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 984 985 // Shift the incoming values over, into the right location in the word. 986 Value *NewVal_Shifted = 987 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 988 Value *Cmp_Shifted = 989 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 990 991 // Load the entire current word, and mask into place the expected and new 992 // values 993 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 994 InitLoaded->setVolatile(CI->isVolatile()); 995 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 996 Builder.CreateBr(LoopBB); 997 998 // partword.cmpxchg.loop: 999 Builder.SetInsertPoint(LoopBB); 1000 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1001 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1002 1003 // Mask/Or the expected and new values into place in the loaded word. 1004 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1005 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1006 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1007 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1008 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1009 NewCI->setVolatile(CI->isVolatile()); 1010 // When we're building a strong cmpxchg, we need a loop, so you 1011 // might think we could use a weak cmpxchg inside. But, using strong 1012 // allows the below comparison for ShouldContinue, and we're 1013 // expecting the underlying cmpxchg to be a machine instruction, 1014 // which is strong anyways. 1015 NewCI->setWeak(CI->isWeak()); 1016 1017 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1018 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1019 1020 if (CI->isWeak()) 1021 Builder.CreateBr(EndBB); 1022 else 1023 Builder.CreateCondBr(Success, EndBB, FailureBB); 1024 1025 // partword.cmpxchg.failure: 1026 Builder.SetInsertPoint(FailureBB); 1027 // Upon failure, verify that the masked-out part of the loaded value 1028 // has been modified. If it didn't, abort the cmpxchg, since the 1029 // masked-in part must've. 1030 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1031 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1032 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1033 1034 // Add the second value to the phi from above 1035 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1036 1037 // partword.cmpxchg.end: 1038 Builder.SetInsertPoint(CI); 1039 1040 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1041 Value *Res = PoisonValue::get(CI->getType()); 1042 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1043 Res = Builder.CreateInsertValue(Res, Success, 1); 1044 1045 CI->replaceAllUsesWith(Res); 1046 CI->eraseFromParent(); 1047 return true; 1048 } 1049 1050 void AtomicExpand::expandAtomicOpToLLSC( 1051 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1052 AtomicOrdering MemOpOrder, 1053 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1054 ReplacementIRBuilder Builder(I, *DL); 1055 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1056 MemOpOrder, PerformOp); 1057 1058 I->replaceAllUsesWith(Loaded); 1059 I->eraseFromParent(); 1060 } 1061 1062 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1063 ReplacementIRBuilder Builder(AI, *DL); 1064 1065 PartwordMaskValues PMV = 1066 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1067 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1068 1069 // The value operand must be sign-extended for signed min/max so that the 1070 // target's signed comparison instructions can be used. Otherwise, just 1071 // zero-ext. 1072 Instruction::CastOps CastOp = Instruction::ZExt; 1073 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1074 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1075 CastOp = Instruction::SExt; 1076 1077 Value *ValOperand_Shifted = Builder.CreateShl( 1078 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1079 PMV.ShiftAmt, "ValOperand_Shifted"); 1080 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1081 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1082 AI->getOrdering()); 1083 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1084 AI->replaceAllUsesWith(FinalOldResult); 1085 AI->eraseFromParent(); 1086 } 1087 1088 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1089 ReplacementIRBuilder Builder(CI, *DL); 1090 1091 PartwordMaskValues PMV = createMaskInstrs( 1092 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1093 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1094 1095 Value *CmpVal_Shifted = Builder.CreateShl( 1096 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1097 "CmpVal_Shifted"); 1098 Value *NewVal_Shifted = Builder.CreateShl( 1099 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1100 "NewVal_Shifted"); 1101 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1102 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1103 CI->getMergedOrdering()); 1104 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1105 Value *Res = PoisonValue::get(CI->getType()); 1106 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1107 Value *Success = Builder.CreateICmpEQ( 1108 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1109 Res = Builder.CreateInsertValue(Res, Success, 1); 1110 1111 CI->replaceAllUsesWith(Res); 1112 CI->eraseFromParent(); 1113 } 1114 1115 Value *AtomicExpand::insertRMWLLSCLoop( 1116 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1117 AtomicOrdering MemOpOrder, 1118 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1119 LLVMContext &Ctx = Builder.getContext(); 1120 BasicBlock *BB = Builder.GetInsertBlock(); 1121 Function *F = BB->getParent(); 1122 1123 assert(AddrAlign >= 1124 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1125 "Expected at least natural alignment at this point."); 1126 1127 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1128 // 1129 // The standard expansion we produce is: 1130 // [...] 1131 // atomicrmw.start: 1132 // %loaded = @load.linked(%addr) 1133 // %new = some_op iN %loaded, %incr 1134 // %stored = @store_conditional(%new, %addr) 1135 // %try_again = icmp i32 ne %stored, 0 1136 // br i1 %try_again, label %loop, label %atomicrmw.end 1137 // atomicrmw.end: 1138 // [...] 1139 BasicBlock *ExitBB = 1140 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1141 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1142 1143 // The split call above "helpfully" added a branch at the end of BB (to the 1144 // wrong place). 1145 std::prev(BB->end())->eraseFromParent(); 1146 Builder.SetInsertPoint(BB); 1147 Builder.CreateBr(LoopBB); 1148 1149 // Start the main loop block now that we've taken care of the preliminaries. 1150 Builder.SetInsertPoint(LoopBB); 1151 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1152 1153 Value *NewVal = PerformOp(Builder, Loaded); 1154 1155 Value *StoreSuccess = 1156 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1157 Value *TryAgain = Builder.CreateICmpNE( 1158 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1159 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1160 1161 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1162 return Loaded; 1163 } 1164 1165 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1166 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1167 /// IR. As a migration step, we convert back to what use to be the standard 1168 /// way to represent a pointer cmpxchg so that we can update backends one by 1169 /// one. 1170 AtomicCmpXchgInst * 1171 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1172 auto *M = CI->getModule(); 1173 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1174 M->getDataLayout()); 1175 1176 ReplacementIRBuilder Builder(CI, *DL); 1177 1178 Value *Addr = CI->getPointerOperand(); 1179 1180 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1181 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1182 1183 auto *NewCI = Builder.CreateAtomicCmpXchg( 1184 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1185 CI->getFailureOrdering(), CI->getSyncScopeID()); 1186 NewCI->setVolatile(CI->isVolatile()); 1187 NewCI->setWeak(CI->isWeak()); 1188 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1189 1190 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1191 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1192 1193 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1194 1195 Value *Res = PoisonValue::get(CI->getType()); 1196 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1197 Res = Builder.CreateInsertValue(Res, Succ, 1); 1198 1199 CI->replaceAllUsesWith(Res); 1200 CI->eraseFromParent(); 1201 return NewCI; 1202 } 1203 1204 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1205 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1206 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1207 Value *Addr = CI->getPointerOperand(); 1208 BasicBlock *BB = CI->getParent(); 1209 Function *F = BB->getParent(); 1210 LLVMContext &Ctx = F->getContext(); 1211 // If shouldInsertFencesForAtomic() returns true, then the target does not 1212 // want to deal with memory orders, and emitLeading/TrailingFence should take 1213 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1214 // should preserve the ordering. 1215 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1216 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1217 ? AtomicOrdering::Monotonic 1218 : CI->getMergedOrdering(); 1219 1220 // In implementations which use a barrier to achieve release semantics, we can 1221 // delay emitting this barrier until we know a store is actually going to be 1222 // attempted. The cost of this delay is that we need 2 copies of the block 1223 // emitting the load-linked, affecting code size. 1224 // 1225 // Ideally, this logic would be unconditional except for the minsize check 1226 // since in other cases the extra blocks naturally collapse down to the 1227 // minimal loop. Unfortunately, this puts too much stress on later 1228 // optimisations so we avoid emitting the extra logic in those cases too. 1229 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1230 SuccessOrder != AtomicOrdering::Monotonic && 1231 SuccessOrder != AtomicOrdering::Acquire && 1232 !F->hasMinSize(); 1233 1234 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1235 // do it even on minsize. 1236 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1237 1238 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1239 // 1240 // The full expansion we produce is: 1241 // [...] 1242 // %aligned.addr = ... 1243 // cmpxchg.start: 1244 // %unreleasedload = @load.linked(%aligned.addr) 1245 // %unreleasedload.extract = extract value from %unreleasedload 1246 // %should_store = icmp eq %unreleasedload.extract, %desired 1247 // br i1 %should_store, label %cmpxchg.releasingstore, 1248 // label %cmpxchg.nostore 1249 // cmpxchg.releasingstore: 1250 // fence? 1251 // br label cmpxchg.trystore 1252 // cmpxchg.trystore: 1253 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1254 // [%releasedload, %cmpxchg.releasedload] 1255 // %updated.new = insert %new into %loaded.trystore 1256 // %stored = @store_conditional(%updated.new, %aligned.addr) 1257 // %success = icmp eq i32 %stored, 0 1258 // br i1 %success, label %cmpxchg.success, 1259 // label %cmpxchg.releasedload/%cmpxchg.failure 1260 // cmpxchg.releasedload: 1261 // %releasedload = @load.linked(%aligned.addr) 1262 // %releasedload.extract = extract value from %releasedload 1263 // %should_store = icmp eq %releasedload.extract, %desired 1264 // br i1 %should_store, label %cmpxchg.trystore, 1265 // label %cmpxchg.failure 1266 // cmpxchg.success: 1267 // fence? 1268 // br label %cmpxchg.end 1269 // cmpxchg.nostore: 1270 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1271 // [%releasedload, 1272 // %cmpxchg.releasedload/%cmpxchg.trystore] 1273 // @load_linked_fail_balance()? 1274 // br label %cmpxchg.failure 1275 // cmpxchg.failure: 1276 // fence? 1277 // br label %cmpxchg.end 1278 // cmpxchg.end: 1279 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1280 // [%loaded.trystore, %cmpxchg.trystore] 1281 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1282 // %loaded = extract value from %loaded.exit 1283 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1284 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1285 // [...] 1286 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1287 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1288 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1289 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1290 auto ReleasedLoadBB = 1291 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1292 auto TryStoreBB = 1293 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1294 auto ReleasingStoreBB = 1295 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1296 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1297 1298 ReplacementIRBuilder Builder(CI, *DL); 1299 1300 // The split call above "helpfully" added a branch at the end of BB (to the 1301 // wrong place), but we might want a fence too. It's easiest to just remove 1302 // the branch entirely. 1303 std::prev(BB->end())->eraseFromParent(); 1304 Builder.SetInsertPoint(BB); 1305 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1306 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1307 1308 PartwordMaskValues PMV = 1309 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1310 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1311 Builder.CreateBr(StartBB); 1312 1313 // Start the main loop block now that we've taken care of the preliminaries. 1314 Builder.SetInsertPoint(StartBB); 1315 Value *UnreleasedLoad = 1316 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1317 Value *UnreleasedLoadExtract = 1318 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1319 Value *ShouldStore = Builder.CreateICmpEQ( 1320 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1321 1322 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1323 // jump straight past that fence instruction (if it exists). 1324 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1325 1326 Builder.SetInsertPoint(ReleasingStoreBB); 1327 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1328 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1329 Builder.CreateBr(TryStoreBB); 1330 1331 Builder.SetInsertPoint(TryStoreBB); 1332 PHINode *LoadedTryStore = 1333 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1334 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1335 Value *NewValueInsert = 1336 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1337 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1338 PMV.AlignedAddr, MemOpOrder); 1339 StoreSuccess = Builder.CreateICmpEQ( 1340 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1341 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1342 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1343 CI->isWeak() ? FailureBB : RetryBB); 1344 1345 Builder.SetInsertPoint(ReleasedLoadBB); 1346 Value *SecondLoad; 1347 if (HasReleasedLoadBB) { 1348 SecondLoad = 1349 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1350 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1351 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1352 CI->getCompareOperand(), "should_store"); 1353 1354 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1355 // jump straight past that fence instruction (if it exists). 1356 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1357 // Update PHI node in TryStoreBB. 1358 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1359 } else 1360 Builder.CreateUnreachable(); 1361 1362 // Make sure later instructions don't get reordered with a fence if 1363 // necessary. 1364 Builder.SetInsertPoint(SuccessBB); 1365 if (ShouldInsertFencesForAtomic || 1366 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1367 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1368 Builder.CreateBr(ExitBB); 1369 1370 Builder.SetInsertPoint(NoStoreBB); 1371 PHINode *LoadedNoStore = 1372 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1373 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1374 if (HasReleasedLoadBB) 1375 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1376 1377 // In the failing case, where we don't execute the store-conditional, the 1378 // target might want to balance out the load-linked with a dedicated 1379 // instruction (e.g., on ARM, clearing the exclusive monitor). 1380 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1381 Builder.CreateBr(FailureBB); 1382 1383 Builder.SetInsertPoint(FailureBB); 1384 PHINode *LoadedFailure = 1385 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1386 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1387 if (CI->isWeak()) 1388 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1389 if (ShouldInsertFencesForAtomic) 1390 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1391 Builder.CreateBr(ExitBB); 1392 1393 // Finally, we have control-flow based knowledge of whether the cmpxchg 1394 // succeeded or not. We expose this to later passes by converting any 1395 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1396 // PHI. 1397 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1398 PHINode *LoadedExit = 1399 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1400 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1401 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1402 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1403 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1404 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1405 1406 // This is the "exit value" from the cmpxchg expansion. It may be of 1407 // a type wider than the one in the cmpxchg instruction. 1408 Value *LoadedFull = LoadedExit; 1409 1410 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1411 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1412 1413 // Look for any users of the cmpxchg that are just comparing the loaded value 1414 // against the desired one, and replace them with the CFG-derived version. 1415 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1416 for (auto *User : CI->users()) { 1417 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1418 if (!EV) 1419 continue; 1420 1421 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1422 "weird extraction from { iN, i1 }"); 1423 1424 if (EV->getIndices()[0] == 0) 1425 EV->replaceAllUsesWith(Loaded); 1426 else 1427 EV->replaceAllUsesWith(Success); 1428 1429 PrunedInsts.push_back(EV); 1430 } 1431 1432 // We can remove the instructions now we're no longer iterating through them. 1433 for (auto *EV : PrunedInsts) 1434 EV->eraseFromParent(); 1435 1436 if (!CI->use_empty()) { 1437 // Some use of the full struct return that we don't understand has happened, 1438 // so we've got to reconstruct it properly. 1439 Value *Res; 1440 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1441 Res = Builder.CreateInsertValue(Res, Success, 1); 1442 1443 CI->replaceAllUsesWith(Res); 1444 } 1445 1446 CI->eraseFromParent(); 1447 return true; 1448 } 1449 1450 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) { 1451 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1452 if (!C) 1453 return false; 1454 1455 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1456 switch (Op) { 1457 case AtomicRMWInst::Add: 1458 case AtomicRMWInst::Sub: 1459 case AtomicRMWInst::Or: 1460 case AtomicRMWInst::Xor: 1461 return C->isZero(); 1462 case AtomicRMWInst::And: 1463 return C->isMinusOne(); 1464 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1465 default: 1466 return false; 1467 } 1468 } 1469 1470 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1471 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1472 tryExpandAtomicLoad(ResultingLoad); 1473 return true; 1474 } 1475 return false; 1476 } 1477 1478 Value *AtomicExpand::insertRMWCmpXchgLoop( 1479 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1480 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1481 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1482 CreateCmpXchgInstFun CreateCmpXchg) { 1483 LLVMContext &Ctx = Builder.getContext(); 1484 BasicBlock *BB = Builder.GetInsertBlock(); 1485 Function *F = BB->getParent(); 1486 1487 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1488 // 1489 // The standard expansion we produce is: 1490 // [...] 1491 // %init_loaded = load atomic iN* %addr 1492 // br label %loop 1493 // loop: 1494 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1495 // %new = some_op iN %loaded, %incr 1496 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1497 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1498 // %success = extractvalue { iN, i1 } %pair, 1 1499 // br i1 %success, label %atomicrmw.end, label %loop 1500 // atomicrmw.end: 1501 // [...] 1502 BasicBlock *ExitBB = 1503 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1504 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1505 1506 // The split call above "helpfully" added a branch at the end of BB (to the 1507 // wrong place), but we want a load. It's easiest to just remove 1508 // the branch entirely. 1509 std::prev(BB->end())->eraseFromParent(); 1510 Builder.SetInsertPoint(BB); 1511 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1512 Builder.CreateBr(LoopBB); 1513 1514 // Start the main loop block now that we've taken care of the preliminaries. 1515 Builder.SetInsertPoint(LoopBB); 1516 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1517 Loaded->addIncoming(InitLoaded, BB); 1518 1519 Value *NewVal = PerformOp(Builder, Loaded); 1520 1521 Value *NewLoaded = nullptr; 1522 Value *Success = nullptr; 1523 1524 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1525 MemOpOrder == AtomicOrdering::Unordered 1526 ? AtomicOrdering::Monotonic 1527 : MemOpOrder, 1528 SSID, Success, NewLoaded); 1529 assert(Success && NewLoaded); 1530 1531 Loaded->addIncoming(NewLoaded, LoopBB); 1532 1533 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1534 1535 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1536 return NewLoaded; 1537 } 1538 1539 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1540 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1541 unsigned ValueSize = getAtomicOpSize(CI); 1542 1543 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1544 default: 1545 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1546 case TargetLoweringBase::AtomicExpansionKind::None: 1547 if (ValueSize < MinCASSize) 1548 return expandPartwordCmpXchg(CI); 1549 return false; 1550 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1551 return expandAtomicCmpXchg(CI); 1552 } 1553 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1554 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1555 return true; 1556 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1557 return lowerAtomicCmpXchgInst(CI); 1558 } 1559 } 1560 1561 // Note: This function is exposed externally by AtomicExpandUtils.h 1562 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1563 CreateCmpXchgInstFun CreateCmpXchg) { 1564 ReplacementIRBuilder Builder(AI, AI->getModule()->getDataLayout()); 1565 Builder.setIsFPConstrained( 1566 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1567 1568 // FIXME: If FP exceptions are observable, we should force them off for the 1569 // loop for the FP atomics. 1570 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1571 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1572 AI->getOrdering(), AI->getSyncScopeID(), 1573 [&](IRBuilderBase &Builder, Value *Loaded) { 1574 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1575 AI->getValOperand()); 1576 }, 1577 CreateCmpXchg); 1578 1579 AI->replaceAllUsesWith(Loaded); 1580 AI->eraseFromParent(); 1581 return true; 1582 } 1583 1584 // In order to use one of the sized library calls such as 1585 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1586 // must be one of the potentially-specialized sizes, and the value 1587 // type must actually exist in C on the target (otherwise, the 1588 // function wouldn't actually be defined.) 1589 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1590 const DataLayout &DL) { 1591 // TODO: "LargestSize" is an approximation for "largest type that 1592 // you can express in C". It seems to be the case that int128 is 1593 // supported on all 64-bit platforms, otherwise only up to 64-bit 1594 // integers are supported. If we get this wrong, then we'll try to 1595 // call a sized libcall that doesn't actually exist. There should 1596 // really be some more reliable way in LLVM of determining integer 1597 // sizes which are valid in the target's C ABI... 1598 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1599 return Alignment >= Size && 1600 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1601 Size <= LargestSize; 1602 } 1603 1604 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1605 static const RTLIB::Libcall Libcalls[6] = { 1606 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1607 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1608 unsigned Size = getAtomicOpSize(I); 1609 1610 bool expanded = expandAtomicOpToLibcall( 1611 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1612 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1613 if (!expanded) 1614 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1615 } 1616 1617 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1618 static const RTLIB::Libcall Libcalls[6] = { 1619 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1620 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1621 unsigned Size = getAtomicOpSize(I); 1622 1623 bool expanded = expandAtomicOpToLibcall( 1624 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1625 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1626 if (!expanded) 1627 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1628 } 1629 1630 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1631 static const RTLIB::Libcall Libcalls[6] = { 1632 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1633 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1634 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1635 unsigned Size = getAtomicOpSize(I); 1636 1637 bool expanded = expandAtomicOpToLibcall( 1638 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1639 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1640 Libcalls); 1641 if (!expanded) 1642 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1643 } 1644 1645 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1646 static const RTLIB::Libcall LibcallsXchg[6] = { 1647 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1648 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1649 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1650 static const RTLIB::Libcall LibcallsAdd[6] = { 1651 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1652 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1653 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1654 static const RTLIB::Libcall LibcallsSub[6] = { 1655 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1656 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1657 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1658 static const RTLIB::Libcall LibcallsAnd[6] = { 1659 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1660 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1661 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1662 static const RTLIB::Libcall LibcallsOr[6] = { 1663 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1664 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1665 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1666 static const RTLIB::Libcall LibcallsXor[6] = { 1667 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1668 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1669 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1670 static const RTLIB::Libcall LibcallsNand[6] = { 1671 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1672 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1673 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1674 1675 switch (Op) { 1676 case AtomicRMWInst::BAD_BINOP: 1677 llvm_unreachable("Should not have BAD_BINOP."); 1678 case AtomicRMWInst::Xchg: 1679 return ArrayRef(LibcallsXchg); 1680 case AtomicRMWInst::Add: 1681 return ArrayRef(LibcallsAdd); 1682 case AtomicRMWInst::Sub: 1683 return ArrayRef(LibcallsSub); 1684 case AtomicRMWInst::And: 1685 return ArrayRef(LibcallsAnd); 1686 case AtomicRMWInst::Or: 1687 return ArrayRef(LibcallsOr); 1688 case AtomicRMWInst::Xor: 1689 return ArrayRef(LibcallsXor); 1690 case AtomicRMWInst::Nand: 1691 return ArrayRef(LibcallsNand); 1692 case AtomicRMWInst::Max: 1693 case AtomicRMWInst::Min: 1694 case AtomicRMWInst::UMax: 1695 case AtomicRMWInst::UMin: 1696 case AtomicRMWInst::FMax: 1697 case AtomicRMWInst::FMin: 1698 case AtomicRMWInst::FAdd: 1699 case AtomicRMWInst::FSub: 1700 case AtomicRMWInst::UIncWrap: 1701 case AtomicRMWInst::UDecWrap: 1702 // No atomic libcalls are available for max/min/umax/umin. 1703 return {}; 1704 } 1705 llvm_unreachable("Unexpected AtomicRMW operation."); 1706 } 1707 1708 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1709 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1710 1711 unsigned Size = getAtomicOpSize(I); 1712 1713 bool Success = false; 1714 if (!Libcalls.empty()) 1715 Success = expandAtomicOpToLibcall( 1716 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1717 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1718 1719 // The expansion failed: either there were no libcalls at all for 1720 // the operation (min/max), or there were only size-specialized 1721 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1722 // CAS libcall, via a CAS loop, instead. 1723 if (!Success) { 1724 expandAtomicRMWToCmpXchg( 1725 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1726 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1727 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1728 // Create the CAS instruction normally... 1729 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1730 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1731 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1732 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1733 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1734 1735 // ...and then expand the CAS into a libcall. 1736 expandAtomicCASToLibcall(Pair); 1737 }); 1738 } 1739 } 1740 1741 // A helper routine for the above expandAtomic*ToLibcall functions. 1742 // 1743 // 'Libcalls' contains an array of enum values for the particular 1744 // ATOMIC libcalls to be emitted. All of the other arguments besides 1745 // 'I' are extracted from the Instruction subclass by the 1746 // caller. Depending on the particular call, some will be null. 1747 bool AtomicExpand::expandAtomicOpToLibcall( 1748 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1749 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1750 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1751 assert(Libcalls.size() == 6); 1752 1753 LLVMContext &Ctx = I->getContext(); 1754 Module *M = I->getModule(); 1755 const DataLayout &DL = M->getDataLayout(); 1756 IRBuilder<> Builder(I); 1757 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1758 1759 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1760 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1761 1762 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1763 1764 // TODO: the "order" argument type is "int", not int32. So 1765 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1766 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1767 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1768 Constant *OrderingVal = 1769 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1770 Constant *Ordering2Val = nullptr; 1771 if (CASExpected) { 1772 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1773 Ordering2Val = 1774 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1775 } 1776 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1777 1778 RTLIB::Libcall RTLibType; 1779 if (UseSizedLibcall) { 1780 switch (Size) { 1781 case 1: 1782 RTLibType = Libcalls[1]; 1783 break; 1784 case 2: 1785 RTLibType = Libcalls[2]; 1786 break; 1787 case 4: 1788 RTLibType = Libcalls[3]; 1789 break; 1790 case 8: 1791 RTLibType = Libcalls[4]; 1792 break; 1793 case 16: 1794 RTLibType = Libcalls[5]; 1795 break; 1796 } 1797 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1798 RTLibType = Libcalls[0]; 1799 } else { 1800 // Can't use sized function, and there's no generic for this 1801 // operation, so give up. 1802 return false; 1803 } 1804 1805 if (!TLI->getLibcallName(RTLibType)) { 1806 // This target does not implement the requested atomic libcall so give up. 1807 return false; 1808 } 1809 1810 // Build up the function call. There's two kinds. First, the sized 1811 // variants. These calls are going to be one of the following (with 1812 // N=1,2,4,8,16): 1813 // iN __atomic_load_N(iN *ptr, int ordering) 1814 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1815 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1816 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1817 // int success_order, int failure_order) 1818 // 1819 // Note that these functions can be used for non-integer atomic 1820 // operations, the values just need to be bitcast to integers on the 1821 // way in and out. 1822 // 1823 // And, then, the generic variants. They look like the following: 1824 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1825 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1826 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1827 // int ordering) 1828 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1829 // void *desired, int success_order, 1830 // int failure_order) 1831 // 1832 // The different signatures are built up depending on the 1833 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1834 // variables. 1835 1836 AllocaInst *AllocaCASExpected = nullptr; 1837 AllocaInst *AllocaValue = nullptr; 1838 AllocaInst *AllocaResult = nullptr; 1839 1840 Type *ResultTy; 1841 SmallVector<Value *, 6> Args; 1842 AttributeList Attr; 1843 1844 // 'size' argument. 1845 if (!UseSizedLibcall) { 1846 // Note, getIntPtrType is assumed equivalent to size_t. 1847 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1848 } 1849 1850 // 'ptr' argument. 1851 // note: This assumes all address spaces share a common libfunc 1852 // implementation and that addresses are convertable. For systems without 1853 // that property, we'd need to extend this mechanism to support AS-specific 1854 // families of atomic intrinsics. 1855 Value *PtrVal = PointerOperand; 1856 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1857 Args.push_back(PtrVal); 1858 1859 // 'expected' argument, if present. 1860 if (CASExpected) { 1861 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1862 AllocaCASExpected->setAlignment(AllocaAlignment); 1863 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1864 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1865 Args.push_back(AllocaCASExpected); 1866 } 1867 1868 // 'val' argument ('desired' for cas), if present. 1869 if (ValueOperand) { 1870 if (UseSizedLibcall) { 1871 Value *IntValue = 1872 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1873 Args.push_back(IntValue); 1874 } else { 1875 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1876 AllocaValue->setAlignment(AllocaAlignment); 1877 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 1878 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1879 Args.push_back(AllocaValue); 1880 } 1881 } 1882 1883 // 'ret' argument. 1884 if (!CASExpected && HasResult && !UseSizedLibcall) { 1885 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1886 AllocaResult->setAlignment(AllocaAlignment); 1887 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 1888 Args.push_back(AllocaResult); 1889 } 1890 1891 // 'ordering' ('success_order' for cas) argument. 1892 Args.push_back(OrderingVal); 1893 1894 // 'failure_order' argument, if present. 1895 if (Ordering2Val) 1896 Args.push_back(Ordering2Val); 1897 1898 // Now, the return type. 1899 if (CASExpected) { 1900 ResultTy = Type::getInt1Ty(Ctx); 1901 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1902 } else if (HasResult && UseSizedLibcall) 1903 ResultTy = SizedIntTy; 1904 else 1905 ResultTy = Type::getVoidTy(Ctx); 1906 1907 // Done with setting up arguments and return types, create the call: 1908 SmallVector<Type *, 6> ArgTys; 1909 for (Value *Arg : Args) 1910 ArgTys.push_back(Arg->getType()); 1911 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1912 FunctionCallee LibcallFn = 1913 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1914 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1915 Call->setAttributes(Attr); 1916 Value *Result = Call; 1917 1918 // And then, extract the results... 1919 if (ValueOperand && !UseSizedLibcall) 1920 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 1921 1922 if (CASExpected) { 1923 // The final result from the CAS is {load of 'expected' alloca, bool result 1924 // from call} 1925 Type *FinalResultTy = I->getType(); 1926 Value *V = PoisonValue::get(FinalResultTy); 1927 Value *ExpectedOut = Builder.CreateAlignedLoad( 1928 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1929 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 1930 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1931 V = Builder.CreateInsertValue(V, Result, 1); 1932 I->replaceAllUsesWith(V); 1933 } else if (HasResult) { 1934 Value *V; 1935 if (UseSizedLibcall) 1936 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1937 else { 1938 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1939 AllocaAlignment); 1940 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 1941 } 1942 I->replaceAllUsesWith(V); 1943 } 1944 I->eraseFromParent(); 1945 return true; 1946 } 1947