1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpand.h" 23 #include "llvm/CodeGen/AtomicExpandUtils.h" 24 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstIterator.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/AtomicOrdering.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Transforms/Utils/LowerAtomic.h" 55 #include <cassert> 56 #include <cstdint> 57 #include <iterator> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "atomic-expand" 62 63 namespace { 64 65 class AtomicExpandImpl { 66 const TargetLowering *TLI = nullptr; 67 const DataLayout *DL = nullptr; 68 69 private: 70 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 71 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 72 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 73 bool tryExpandAtomicLoad(LoadInst *LI); 74 bool expandAtomicLoadToLL(LoadInst *LI); 75 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 76 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 77 bool tryExpandAtomicStore(StoreInst *SI); 78 void expandAtomicStore(StoreInst *SI); 79 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 80 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 81 Value * 82 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 83 Align AddrAlign, AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 87 AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 89 void expandPartwordAtomicRMW( 90 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 99 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 100 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 122 public: 123 bool run(Function &F, const TargetMachine *TM); 124 }; 125 126 class AtomicExpandLegacy : public FunctionPass { 127 public: 128 static char ID; // Pass identification, replacement for typeid 129 130 AtomicExpandLegacy() : FunctionPass(ID) { 131 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); 132 } 133 134 bool runOnFunction(Function &F) override; 135 }; 136 137 // IRBuilder to be used for replacement atomic instructions. 138 struct ReplacementIRBuilder 139 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { 140 MDNode *MMRAMD = nullptr; 141 142 // Preserves the DebugLoc from I, and preserves still valid metadata. 143 // Enable StrictFP builder mode when appropriate. 144 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 145 : IRBuilder(I->getContext(), DL, 146 IRBuilderCallbackInserter( 147 [this](Instruction *I) { addMMRAMD(I); })) { 148 SetInsertPoint(I); 149 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 150 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP)) 151 this->setIsFPConstrained(true); 152 153 MMRAMD = I->getMetadata(LLVMContext::MD_mmra); 154 } 155 156 void addMMRAMD(Instruction *I) { 157 if (canInstructionHaveMMRAs(*I)) 158 I->setMetadata(LLVMContext::MD_mmra, MMRAMD); 159 } 160 }; 161 162 } // end anonymous namespace 163 164 char AtomicExpandLegacy::ID = 0; 165 166 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; 167 168 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, 169 "Expand Atomic instructions", false, false) 170 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 171 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, 172 "Expand Atomic instructions", false, false) 173 174 // Helper functions to retrieve the size of atomic instructions. 175 static unsigned getAtomicOpSize(LoadInst *LI) { 176 const DataLayout &DL = LI->getDataLayout(); 177 return DL.getTypeStoreSize(LI->getType()); 178 } 179 180 static unsigned getAtomicOpSize(StoreInst *SI) { 181 const DataLayout &DL = SI->getDataLayout(); 182 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 183 } 184 185 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 186 const DataLayout &DL = RMWI->getDataLayout(); 187 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 188 } 189 190 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 191 const DataLayout &DL = CASI->getDataLayout(); 192 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 193 } 194 195 // Determine if a particular atomic operation has a supported size, 196 // and is of appropriate alignment, to be passed through for target 197 // lowering. (Versus turning into a __atomic libcall) 198 template <typename Inst> 199 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 200 unsigned Size = getAtomicOpSize(I); 201 Align Alignment = I->getAlign(); 202 return Alignment >= Size && 203 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 204 } 205 206 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { 207 const auto *Subtarget = TM->getSubtargetImpl(F); 208 if (!Subtarget->enableAtomicExpand()) 209 return false; 210 TLI = Subtarget->getTargetLowering(); 211 DL = &F.getDataLayout(); 212 213 SmallVector<Instruction *, 1> AtomicInsts; 214 215 // Changing control-flow while iterating through it is a bad idea, so gather a 216 // list of all atomic instructions before we start. 217 for (Instruction &I : instructions(F)) 218 if (I.isAtomic() && !isa<FenceInst>(&I)) 219 AtomicInsts.push_back(&I); 220 221 bool MadeChange = false; 222 for (auto *I : AtomicInsts) { 223 auto LI = dyn_cast<LoadInst>(I); 224 auto SI = dyn_cast<StoreInst>(I); 225 auto RMWI = dyn_cast<AtomicRMWInst>(I); 226 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 227 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 228 229 // If the Size/Alignment is not supported, replace with a libcall. 230 if (LI) { 231 if (!atomicSizeSupported(TLI, LI)) { 232 expandAtomicLoadToLibcall(LI); 233 MadeChange = true; 234 continue; 235 } 236 } else if (SI) { 237 if (!atomicSizeSupported(TLI, SI)) { 238 expandAtomicStoreToLibcall(SI); 239 MadeChange = true; 240 continue; 241 } 242 } else if (RMWI) { 243 if (!atomicSizeSupported(TLI, RMWI)) { 244 expandAtomicRMWToLibcall(RMWI); 245 MadeChange = true; 246 continue; 247 } 248 } else if (CASI) { 249 if (!atomicSizeSupported(TLI, CASI)) { 250 expandAtomicCASToLibcall(CASI); 251 MadeChange = true; 252 continue; 253 } 254 } 255 256 if (LI && TLI->shouldCastAtomicLoadInIR(LI) == 257 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 258 I = LI = convertAtomicLoadToIntegerType(LI); 259 MadeChange = true; 260 } else if (SI && 261 TLI->shouldCastAtomicStoreInIR(SI) == 262 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 263 I = SI = convertAtomicStoreToIntegerType(SI); 264 MadeChange = true; 265 } else if (RMWI && 266 TLI->shouldCastAtomicRMWIInIR(RMWI) == 267 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 268 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 269 MadeChange = true; 270 } else if (CASI) { 271 // TODO: when we're ready to make the change at the IR level, we can 272 // extend convertCmpXchgToInteger for floating point too. 273 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 274 // TODO: add a TLI hook to control this so that each target can 275 // convert to lowering the original type one at a time. 276 I = CASI = convertCmpXchgToIntegerType(CASI); 277 MadeChange = true; 278 } 279 } 280 281 if (TLI->shouldInsertFencesForAtomic(I)) { 282 auto FenceOrdering = AtomicOrdering::Monotonic; 283 if (LI && isAcquireOrStronger(LI->getOrdering())) { 284 FenceOrdering = LI->getOrdering(); 285 LI->setOrdering(AtomicOrdering::Monotonic); 286 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 287 FenceOrdering = SI->getOrdering(); 288 SI->setOrdering(AtomicOrdering::Monotonic); 289 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 290 isAcquireOrStronger(RMWI->getOrdering()))) { 291 FenceOrdering = RMWI->getOrdering(); 292 RMWI->setOrdering(AtomicOrdering::Monotonic); 293 } else if (CASI && 294 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 295 TargetLoweringBase::AtomicExpansionKind::None && 296 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 297 isAcquireOrStronger(CASI->getSuccessOrdering()) || 298 isAcquireOrStronger(CASI->getFailureOrdering()))) { 299 // If a compare and swap is lowered to LL/SC, we can do smarter fence 300 // insertion, with a stronger one on the success path than on the 301 // failure path. As a result, fence insertion is directly done by 302 // expandAtomicCmpXchg in that case. 303 FenceOrdering = CASI->getMergedOrdering(); 304 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 305 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 306 } 307 308 if (FenceOrdering != AtomicOrdering::Monotonic) { 309 MadeChange |= bracketInstWithFences(I, FenceOrdering); 310 } 311 } else if (I->hasAtomicStore() && 312 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 313 auto FenceOrdering = AtomicOrdering::Monotonic; 314 if (SI) 315 FenceOrdering = SI->getOrdering(); 316 else if (RMWI) 317 FenceOrdering = RMWI->getOrdering(); 318 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 319 TargetLoweringBase::AtomicExpansionKind::LLSC) 320 // LLSC is handled in expandAtomicCmpXchg(). 321 FenceOrdering = CASI->getSuccessOrdering(); 322 323 IRBuilder Builder(I); 324 if (auto TrailingFence = 325 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 326 TrailingFence->moveAfter(I); 327 MadeChange = true; 328 } 329 } 330 331 if (LI) 332 MadeChange |= tryExpandAtomicLoad(LI); 333 else if (SI) 334 MadeChange |= tryExpandAtomicStore(SI); 335 else if (RMWI) { 336 // There are two different ways of expanding RMW instructions: 337 // - into a load if it is idempotent 338 // - into a Cmpxchg/LL-SC loop otherwise 339 // we try them in that order. 340 341 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 342 MadeChange = true; 343 } else { 344 MadeChange |= tryExpandAtomicRMW(RMWI); 345 } 346 } else if (CASI) 347 MadeChange |= tryExpandAtomicCmpXchg(CASI); 348 } 349 return MadeChange; 350 } 351 352 bool AtomicExpandLegacy::runOnFunction(Function &F) { 353 354 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 355 if (!TPC) 356 return false; 357 auto *TM = &TPC->getTM<TargetMachine>(); 358 AtomicExpandImpl AE; 359 return AE.run(F, TM); 360 } 361 362 FunctionPass *llvm::createAtomicExpandLegacyPass() { 363 return new AtomicExpandLegacy(); 364 } 365 366 PreservedAnalyses AtomicExpandPass::run(Function &F, 367 FunctionAnalysisManager &AM) { 368 AtomicExpandImpl AE; 369 370 bool Changed = AE.run(F, TM); 371 if (!Changed) 372 return PreservedAnalyses::all(); 373 374 return PreservedAnalyses::none(); 375 } 376 377 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, 378 AtomicOrdering Order) { 379 ReplacementIRBuilder Builder(I, *DL); 380 381 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 382 383 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 384 // We have a guard here because not every atomic operation generates a 385 // trailing fence. 386 if (TrailingFence) 387 TrailingFence->moveAfter(I); 388 389 return (LeadingFence || TrailingFence); 390 } 391 392 /// Get the iX type with the same bitwidth as T. 393 IntegerType * 394 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { 395 EVT VT = TLI->getMemValueType(DL, T); 396 unsigned BitWidth = VT.getStoreSizeInBits(); 397 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 398 return IntegerType::get(T->getContext(), BitWidth); 399 } 400 401 /// Convert an atomic load of a non-integral type to an integer load of the 402 /// equivalent bitwidth. See the function comment on 403 /// convertAtomicStoreToIntegerType for background. 404 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { 405 auto *M = LI->getModule(); 406 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 407 408 ReplacementIRBuilder Builder(LI, *DL); 409 410 Value *Addr = LI->getPointerOperand(); 411 412 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 413 NewLI->setAlignment(LI->getAlign()); 414 NewLI->setVolatile(LI->isVolatile()); 415 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 416 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 417 418 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 419 LI->replaceAllUsesWith(NewVal); 420 LI->eraseFromParent(); 421 return NewLI; 422 } 423 424 AtomicRMWInst * 425 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 426 auto *M = RMWI->getModule(); 427 Type *NewTy = 428 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 429 430 ReplacementIRBuilder Builder(RMWI, *DL); 431 432 Value *Addr = RMWI->getPointerOperand(); 433 Value *Val = RMWI->getValOperand(); 434 Value *NewVal = Val->getType()->isPointerTy() 435 ? Builder.CreatePtrToInt(Val, NewTy) 436 : Builder.CreateBitCast(Val, NewTy); 437 438 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 439 RMWI->getAlign(), RMWI->getOrdering(), 440 RMWI->getSyncScopeID()); 441 NewRMWI->setVolatile(RMWI->isVolatile()); 442 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 443 444 Value *NewRVal = RMWI->getType()->isPointerTy() 445 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 446 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 447 RMWI->replaceAllUsesWith(NewRVal); 448 RMWI->eraseFromParent(); 449 return NewRMWI; 450 } 451 452 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { 453 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 454 case TargetLoweringBase::AtomicExpansionKind::None: 455 return false; 456 case TargetLoweringBase::AtomicExpansionKind::LLSC: 457 expandAtomicOpToLLSC( 458 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 459 LI->getOrdering(), 460 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 461 return true; 462 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 463 return expandAtomicLoadToLL(LI); 464 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 465 return expandAtomicLoadToCmpXchg(LI); 466 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 467 LI->setAtomic(AtomicOrdering::NotAtomic); 468 return true; 469 default: 470 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 471 } 472 } 473 474 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { 475 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 476 case TargetLoweringBase::AtomicExpansionKind::None: 477 return false; 478 case TargetLoweringBase::AtomicExpansionKind::Expand: 479 expandAtomicStore(SI); 480 return true; 481 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 482 SI->setAtomic(AtomicOrdering::NotAtomic); 483 return true; 484 default: 485 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 486 } 487 } 488 489 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { 490 ReplacementIRBuilder Builder(LI, *DL); 491 492 // On some architectures, load-linked instructions are atomic for larger 493 // sizes than normal loads. For example, the only 64-bit load guaranteed 494 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 495 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 496 LI->getPointerOperand(), LI->getOrdering()); 497 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 498 499 LI->replaceAllUsesWith(Val); 500 LI->eraseFromParent(); 501 502 return true; 503 } 504 505 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { 506 ReplacementIRBuilder Builder(LI, *DL); 507 AtomicOrdering Order = LI->getOrdering(); 508 if (Order == AtomicOrdering::Unordered) 509 Order = AtomicOrdering::Monotonic; 510 511 Value *Addr = LI->getPointerOperand(); 512 Type *Ty = LI->getType(); 513 Constant *DummyVal = Constant::getNullValue(Ty); 514 515 Value *Pair = Builder.CreateAtomicCmpXchg( 516 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 517 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 518 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 519 520 LI->replaceAllUsesWith(Loaded); 521 LI->eraseFromParent(); 522 523 return true; 524 } 525 526 /// Convert an atomic store of a non-integral type to an integer store of the 527 /// equivalent bitwidth. We used to not support floating point or vector 528 /// atomics in the IR at all. The backends learned to deal with the bitcast 529 /// idiom because that was the only way of expressing the notion of a atomic 530 /// float or vector store. The long term plan is to teach each backend to 531 /// instruction select from the original atomic store, but as a migration 532 /// mechanism, we convert back to the old format which the backends understand. 533 /// Each backend will need individual work to recognize the new format. 534 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { 535 ReplacementIRBuilder Builder(SI, *DL); 536 auto *M = SI->getModule(); 537 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 538 M->getDataLayout()); 539 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 540 541 Value *Addr = SI->getPointerOperand(); 542 543 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 544 NewSI->setAlignment(SI->getAlign()); 545 NewSI->setVolatile(SI->isVolatile()); 546 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 547 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 548 SI->eraseFromParent(); 549 return NewSI; 550 } 551 552 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { 553 // This function is only called on atomic stores that are too large to be 554 // atomic if implemented as a native store. So we replace them by an 555 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 556 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 557 // It is the responsibility of the target to only signal expansion via 558 // shouldExpandAtomicRMW in cases where this is required and possible. 559 ReplacementIRBuilder Builder(SI, *DL); 560 AtomicOrdering Ordering = SI->getOrdering(); 561 assert(Ordering != AtomicOrdering::NotAtomic); 562 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 563 ? AtomicOrdering::Monotonic 564 : Ordering; 565 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 566 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 567 SI->getAlign(), RMWOrdering); 568 SI->eraseFromParent(); 569 570 // Now we have an appropriate swap instruction, lower it as usual. 571 tryExpandAtomicRMW(AI); 572 } 573 574 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 575 Value *Loaded, Value *NewVal, Align AddrAlign, 576 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 577 Value *&Success, Value *&NewLoaded) { 578 Type *OrigTy = NewVal->getType(); 579 580 // This code can go away when cmpxchg supports FP and vector types. 581 assert(!OrigTy->isPointerTy()); 582 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); 583 if (NeedBitcast) { 584 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 585 NewVal = Builder.CreateBitCast(NewVal, IntTy); 586 Loaded = Builder.CreateBitCast(Loaded, IntTy); 587 } 588 589 Value *Pair = Builder.CreateAtomicCmpXchg( 590 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 591 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 592 Success = Builder.CreateExtractValue(Pair, 1, "success"); 593 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 594 595 if (NeedBitcast) 596 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 597 } 598 599 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { 600 LLVMContext &Ctx = AI->getModule()->getContext(); 601 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 602 switch (Kind) { 603 case TargetLoweringBase::AtomicExpansionKind::None: 604 return false; 605 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 606 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 607 unsigned ValueSize = getAtomicOpSize(AI); 608 if (ValueSize < MinCASSize) { 609 expandPartwordAtomicRMW(AI, 610 TargetLoweringBase::AtomicExpansionKind::LLSC); 611 } else { 612 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 613 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 614 AI->getValOperand()); 615 }; 616 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 617 AI->getAlign(), AI->getOrdering(), PerformOp); 618 } 619 return true; 620 } 621 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 622 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 623 unsigned ValueSize = getAtomicOpSize(AI); 624 if (ValueSize < MinCASSize) { 625 expandPartwordAtomicRMW(AI, 626 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 627 } else { 628 SmallVector<StringRef> SSNs; 629 Ctx.getSyncScopeNames(SSNs); 630 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 631 ? "system" 632 : SSNs[AI->getSyncScopeID()]; 633 OptimizationRemarkEmitter ORE(AI->getFunction()); 634 ORE.emit([&]() { 635 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 636 << "A compare and swap loop was generated for an atomic " 637 << AI->getOperationName(AI->getOperation()) << " operation at " 638 << MemScope << " memory scope"; 639 }); 640 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 641 } 642 return true; 643 } 644 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 645 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 646 unsigned ValueSize = getAtomicOpSize(AI); 647 if (ValueSize < MinCASSize) { 648 AtomicRMWInst::BinOp Op = AI->getOperation(); 649 // Widen And/Or/Xor and give the target another chance at expanding it. 650 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 651 Op == AtomicRMWInst::And) { 652 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 653 return true; 654 } 655 } 656 expandAtomicRMWToMaskedIntrinsic(AI); 657 return true; 658 } 659 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 660 TLI->emitBitTestAtomicRMWIntrinsic(AI); 661 return true; 662 } 663 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 664 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 665 return true; 666 } 667 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 668 return lowerAtomicRMWInst(AI); 669 case TargetLoweringBase::AtomicExpansionKind::Expand: 670 TLI->emitExpandAtomicRMW(AI); 671 return true; 672 default: 673 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 674 } 675 } 676 677 namespace { 678 679 struct PartwordMaskValues { 680 // These three fields are guaranteed to be set by createMaskInstrs. 681 Type *WordType = nullptr; 682 Type *ValueType = nullptr; 683 Type *IntValueType = nullptr; 684 Value *AlignedAddr = nullptr; 685 Align AlignedAddrAlignment; 686 // The remaining fields can be null. 687 Value *ShiftAmt = nullptr; 688 Value *Mask = nullptr; 689 Value *Inv_Mask = nullptr; 690 }; 691 692 LLVM_ATTRIBUTE_UNUSED 693 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 694 auto PrintObj = [&O](auto *V) { 695 if (V) 696 O << *V; 697 else 698 O << "nullptr"; 699 O << '\n'; 700 }; 701 O << "PartwordMaskValues {\n"; 702 O << " WordType: "; 703 PrintObj(PMV.WordType); 704 O << " ValueType: "; 705 PrintObj(PMV.ValueType); 706 O << " AlignedAddr: "; 707 PrintObj(PMV.AlignedAddr); 708 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 709 O << " ShiftAmt: "; 710 PrintObj(PMV.ShiftAmt); 711 O << " Mask: "; 712 PrintObj(PMV.Mask); 713 O << " Inv_Mask: "; 714 PrintObj(PMV.Inv_Mask); 715 O << "}\n"; 716 return O; 717 } 718 719 } // end anonymous namespace 720 721 /// This is a helper function which builds instructions to provide 722 /// values necessary for partword atomic operations. It takes an 723 /// incoming address, Addr, and ValueType, and constructs the address, 724 /// shift-amounts and masks needed to work with a larger value of size 725 /// WordSize. 726 /// 727 /// AlignedAddr: Addr rounded down to a multiple of WordSize 728 /// 729 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 730 /// from AlignAddr for it to have the same value as if 731 /// ValueType was loaded from Addr. 732 /// 733 /// Mask: Value to mask with the value loaded from AlignAddr to 734 /// include only the part that would've been loaded from Addr. 735 /// 736 /// Inv_Mask: The inverse of Mask. 737 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 738 Instruction *I, Type *ValueType, 739 Value *Addr, Align AddrAlign, 740 unsigned MinWordSize) { 741 PartwordMaskValues PMV; 742 743 Module *M = I->getModule(); 744 LLVMContext &Ctx = M->getContext(); 745 const DataLayout &DL = M->getDataLayout(); 746 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 747 748 PMV.ValueType = PMV.IntValueType = ValueType; 749 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) 750 PMV.IntValueType = 751 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 752 753 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 754 : ValueType; 755 if (PMV.ValueType == PMV.WordType) { 756 PMV.AlignedAddr = Addr; 757 PMV.AlignedAddrAlignment = AddrAlign; 758 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 759 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 760 return PMV; 761 } 762 763 PMV.AlignedAddrAlignment = Align(MinWordSize); 764 765 assert(ValueSize < MinWordSize); 766 767 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 768 IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace()); 769 Value *PtrLSB; 770 771 if (AddrAlign < MinWordSize) { 772 PMV.AlignedAddr = Builder.CreateIntrinsic( 773 Intrinsic::ptrmask, {PtrTy, IntTy}, 774 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 775 "AlignedAddr"); 776 777 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 778 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 779 } else { 780 // If the alignment is high enough, the LSB are known 0. 781 PMV.AlignedAddr = Addr; 782 PtrLSB = ConstantInt::getNullValue(IntTy); 783 } 784 785 if (DL.isLittleEndian()) { 786 // turn bytes into bits 787 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 788 } else { 789 // turn bytes into bits, and count from the other side. 790 PMV.ShiftAmt = Builder.CreateShl( 791 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 792 } 793 794 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 795 PMV.Mask = Builder.CreateShl( 796 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 797 "Mask"); 798 799 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 800 801 return PMV; 802 } 803 804 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 805 const PartwordMaskValues &PMV) { 806 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 807 if (PMV.WordType == PMV.ValueType) 808 return WideWord; 809 810 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 811 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 812 return Builder.CreateBitCast(Trunc, PMV.ValueType); 813 } 814 815 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 816 Value *Updated, const PartwordMaskValues &PMV) { 817 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 818 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 819 if (PMV.WordType == PMV.ValueType) 820 return Updated; 821 822 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 823 824 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 825 Value *Shift = 826 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 827 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 828 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 829 return Or; 830 } 831 832 /// Emit IR to implement a masked version of a given atomicrmw 833 /// operation. (That is, only the bits under the Mask should be 834 /// affected by the operation) 835 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 836 IRBuilderBase &Builder, Value *Loaded, 837 Value *Shifted_Inc, Value *Inc, 838 const PartwordMaskValues &PMV) { 839 // TODO: update to use 840 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 841 // to merge bits from two values without requiring PMV.Inv_Mask. 842 switch (Op) { 843 case AtomicRMWInst::Xchg: { 844 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 845 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 846 return FinalVal; 847 } 848 case AtomicRMWInst::Or: 849 case AtomicRMWInst::Xor: 850 case AtomicRMWInst::And: 851 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 852 case AtomicRMWInst::Add: 853 case AtomicRMWInst::Sub: 854 case AtomicRMWInst::Nand: { 855 // The other arithmetic ops need to be masked into place. 856 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 857 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 858 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 859 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 860 return FinalVal; 861 } 862 case AtomicRMWInst::Max: 863 case AtomicRMWInst::Min: 864 case AtomicRMWInst::UMax: 865 case AtomicRMWInst::UMin: 866 case AtomicRMWInst::FAdd: 867 case AtomicRMWInst::FSub: 868 case AtomicRMWInst::FMin: 869 case AtomicRMWInst::FMax: 870 case AtomicRMWInst::UIncWrap: 871 case AtomicRMWInst::UDecWrap: { 872 // Finally, other ops will operate on the full value, so truncate down to 873 // the original size, and expand out again after doing the 874 // operation. Bitcasts will be inserted for FP values. 875 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 876 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 877 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 878 return FinalVal; 879 } 880 default: 881 llvm_unreachable("Unknown atomic op"); 882 } 883 } 884 885 /// Expand a sub-word atomicrmw operation into an appropriate 886 /// word-sized operation. 887 /// 888 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 889 /// way as a typical atomicrmw expansion. The only difference here is 890 /// that the operation inside of the loop may operate upon only a 891 /// part of the value. 892 void AtomicExpandImpl::expandPartwordAtomicRMW( 893 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 894 // Widen And/Or/Xor and give the target another chance at expanding it. 895 AtomicRMWInst::BinOp Op = AI->getOperation(); 896 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 897 Op == AtomicRMWInst::And) { 898 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 899 return; 900 } 901 AtomicOrdering MemOpOrder = AI->getOrdering(); 902 SyncScope::ID SSID = AI->getSyncScopeID(); 903 904 ReplacementIRBuilder Builder(AI, *DL); 905 906 PartwordMaskValues PMV = 907 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 908 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 909 910 Value *ValOperand_Shifted = nullptr; 911 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || 912 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { 913 Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType); 914 ValOperand_Shifted = 915 Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt, 916 "ValOperand_Shifted"); 917 } 918 919 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 920 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted, 921 AI->getValOperand(), PMV); 922 }; 923 924 Value *OldResult; 925 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 926 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 927 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 928 PerformPartwordOp, createCmpXchgInstFun); 929 } else { 930 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 931 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 932 PMV.AlignedAddrAlignment, MemOpOrder, 933 PerformPartwordOp); 934 } 935 936 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 937 AI->replaceAllUsesWith(FinalOldResult); 938 AI->eraseFromParent(); 939 } 940 941 /// Copy metadata that's safe to preserve when widening atomics. 942 static void copyMetadataForAtomic(Instruction &Dest, 943 const Instruction &Source) { 944 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 945 Source.getAllMetadata(MD); 946 LLVMContext &Ctx = Dest.getContext(); 947 MDBuilder MDB(Ctx); 948 949 for (auto [ID, N] : MD) { 950 switch (ID) { 951 case LLVMContext::MD_dbg: 952 case LLVMContext::MD_tbaa: 953 case LLVMContext::MD_tbaa_struct: 954 case LLVMContext::MD_alias_scope: 955 case LLVMContext::MD_noalias: 956 case LLVMContext::MD_access_group: 957 case LLVMContext::MD_mmra: 958 Dest.setMetadata(ID, N); 959 break; 960 default: 961 if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory")) 962 Dest.setMetadata(ID, N); 963 else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory")) 964 Dest.setMetadata(ID, N); 965 966 break; 967 } 968 } 969 } 970 971 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 972 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 973 ReplacementIRBuilder Builder(AI, *DL); 974 AtomicRMWInst::BinOp Op = AI->getOperation(); 975 976 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 977 Op == AtomicRMWInst::And) && 978 "Unable to widen operation"); 979 980 PartwordMaskValues PMV = 981 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 982 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 983 984 Value *ValOperand_Shifted = 985 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 986 PMV.ShiftAmt, "ValOperand_Shifted"); 987 988 Value *NewOperand; 989 990 if (Op == AtomicRMWInst::And) 991 NewOperand = 992 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand"); 993 else 994 NewOperand = ValOperand_Shifted; 995 996 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 997 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 998 AI->getOrdering(), AI->getSyncScopeID()); 999 1000 copyMetadataForAtomic(*NewAI, *AI); 1001 1002 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 1003 AI->replaceAllUsesWith(FinalOldResult); 1004 AI->eraseFromParent(); 1005 return NewAI; 1006 } 1007 1008 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 1009 // The basic idea here is that we're expanding a cmpxchg of a 1010 // smaller memory size up to a word-sized cmpxchg. To do this, we 1011 // need to add a retry-loop for strong cmpxchg, so that 1012 // modifications to other parts of the word don't cause a spurious 1013 // failure. 1014 1015 // This generates code like the following: 1016 // [[Setup mask values PMV.*]] 1017 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 1018 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 1019 // %InitLoaded = load i32* %addr 1020 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 1021 // br partword.cmpxchg.loop 1022 // partword.cmpxchg.loop: 1023 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 1024 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 1025 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 1026 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 1027 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 1028 // i32 %FullWord_NewVal success_ordering failure_ordering 1029 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 1030 // %Success = extractvalue { i32, i1 } %NewCI, 1 1031 // br i1 %Success, label %partword.cmpxchg.end, 1032 // label %partword.cmpxchg.failure 1033 // partword.cmpxchg.failure: 1034 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 1035 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 1036 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 1037 // label %partword.cmpxchg.end 1038 // partword.cmpxchg.end: 1039 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 1040 // %FinalOldVal = trunc i32 %tmp1 to i8 1041 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 1042 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 1043 1044 Value *Addr = CI->getPointerOperand(); 1045 Value *Cmp = CI->getCompareOperand(); 1046 Value *NewVal = CI->getNewValOperand(); 1047 1048 BasicBlock *BB = CI->getParent(); 1049 Function *F = BB->getParent(); 1050 ReplacementIRBuilder Builder(CI, *DL); 1051 LLVMContext &Ctx = Builder.getContext(); 1052 1053 BasicBlock *EndBB = 1054 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 1055 auto FailureBB = 1056 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 1057 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 1058 1059 // The split call above "helpfully" added a branch at the end of BB 1060 // (to the wrong place). 1061 std::prev(BB->end())->eraseFromParent(); 1062 Builder.SetInsertPoint(BB); 1063 1064 PartwordMaskValues PMV = 1065 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1066 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1067 1068 // Shift the incoming values over, into the right location in the word. 1069 Value *NewVal_Shifted = 1070 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 1071 Value *Cmp_Shifted = 1072 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 1073 1074 // Load the entire current word, and mask into place the expected and new 1075 // values 1076 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 1077 InitLoaded->setVolatile(CI->isVolatile()); 1078 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 1079 Builder.CreateBr(LoopBB); 1080 1081 // partword.cmpxchg.loop: 1082 Builder.SetInsertPoint(LoopBB); 1083 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1084 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1085 1086 // Mask/Or the expected and new values into place in the loaded word. 1087 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1088 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1089 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1090 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1091 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1092 NewCI->setVolatile(CI->isVolatile()); 1093 // When we're building a strong cmpxchg, we need a loop, so you 1094 // might think we could use a weak cmpxchg inside. But, using strong 1095 // allows the below comparison for ShouldContinue, and we're 1096 // expecting the underlying cmpxchg to be a machine instruction, 1097 // which is strong anyways. 1098 NewCI->setWeak(CI->isWeak()); 1099 1100 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1101 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1102 1103 if (CI->isWeak()) 1104 Builder.CreateBr(EndBB); 1105 else 1106 Builder.CreateCondBr(Success, EndBB, FailureBB); 1107 1108 // partword.cmpxchg.failure: 1109 Builder.SetInsertPoint(FailureBB); 1110 // Upon failure, verify that the masked-out part of the loaded value 1111 // has been modified. If it didn't, abort the cmpxchg, since the 1112 // masked-in part must've. 1113 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1114 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1115 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1116 1117 // Add the second value to the phi from above 1118 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1119 1120 // partword.cmpxchg.end: 1121 Builder.SetInsertPoint(CI); 1122 1123 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1124 Value *Res = PoisonValue::get(CI->getType()); 1125 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1126 Res = Builder.CreateInsertValue(Res, Success, 1); 1127 1128 CI->replaceAllUsesWith(Res); 1129 CI->eraseFromParent(); 1130 return true; 1131 } 1132 1133 void AtomicExpandImpl::expandAtomicOpToLLSC( 1134 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1135 AtomicOrdering MemOpOrder, 1136 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1137 ReplacementIRBuilder Builder(I, *DL); 1138 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1139 MemOpOrder, PerformOp); 1140 1141 I->replaceAllUsesWith(Loaded); 1142 I->eraseFromParent(); 1143 } 1144 1145 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1146 ReplacementIRBuilder Builder(AI, *DL); 1147 1148 PartwordMaskValues PMV = 1149 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1150 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1151 1152 // The value operand must be sign-extended for signed min/max so that the 1153 // target's signed comparison instructions can be used. Otherwise, just 1154 // zero-ext. 1155 Instruction::CastOps CastOp = Instruction::ZExt; 1156 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1157 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1158 CastOp = Instruction::SExt; 1159 1160 Value *ValOperand_Shifted = Builder.CreateShl( 1161 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1162 PMV.ShiftAmt, "ValOperand_Shifted"); 1163 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1164 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1165 AI->getOrdering()); 1166 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1167 AI->replaceAllUsesWith(FinalOldResult); 1168 AI->eraseFromParent(); 1169 } 1170 1171 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( 1172 AtomicCmpXchgInst *CI) { 1173 ReplacementIRBuilder Builder(CI, *DL); 1174 1175 PartwordMaskValues PMV = createMaskInstrs( 1176 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1177 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1178 1179 Value *CmpVal_Shifted = Builder.CreateShl( 1180 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1181 "CmpVal_Shifted"); 1182 Value *NewVal_Shifted = Builder.CreateShl( 1183 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1184 "NewVal_Shifted"); 1185 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1186 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1187 CI->getMergedOrdering()); 1188 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1189 Value *Res = PoisonValue::get(CI->getType()); 1190 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1191 Value *Success = Builder.CreateICmpEQ( 1192 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1193 Res = Builder.CreateInsertValue(Res, Success, 1); 1194 1195 CI->replaceAllUsesWith(Res); 1196 CI->eraseFromParent(); 1197 } 1198 1199 Value *AtomicExpandImpl::insertRMWLLSCLoop( 1200 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1201 AtomicOrdering MemOpOrder, 1202 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1203 LLVMContext &Ctx = Builder.getContext(); 1204 BasicBlock *BB = Builder.GetInsertBlock(); 1205 Function *F = BB->getParent(); 1206 1207 assert(AddrAlign >= 1208 F->getDataLayout().getTypeStoreSize(ResultTy) && 1209 "Expected at least natural alignment at this point."); 1210 1211 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1212 // 1213 // The standard expansion we produce is: 1214 // [...] 1215 // atomicrmw.start: 1216 // %loaded = @load.linked(%addr) 1217 // %new = some_op iN %loaded, %incr 1218 // %stored = @store_conditional(%new, %addr) 1219 // %try_again = icmp i32 ne %stored, 0 1220 // br i1 %try_again, label %loop, label %atomicrmw.end 1221 // atomicrmw.end: 1222 // [...] 1223 BasicBlock *ExitBB = 1224 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1225 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1226 1227 // The split call above "helpfully" added a branch at the end of BB (to the 1228 // wrong place). 1229 std::prev(BB->end())->eraseFromParent(); 1230 Builder.SetInsertPoint(BB); 1231 Builder.CreateBr(LoopBB); 1232 1233 // Start the main loop block now that we've taken care of the preliminaries. 1234 Builder.SetInsertPoint(LoopBB); 1235 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1236 1237 Value *NewVal = PerformOp(Builder, Loaded); 1238 1239 Value *StoreSuccess = 1240 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1241 Value *TryAgain = Builder.CreateICmpNE( 1242 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1243 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1244 1245 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1246 return Loaded; 1247 } 1248 1249 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1250 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1251 /// IR. As a migration step, we convert back to what use to be the standard 1252 /// way to represent a pointer cmpxchg so that we can update backends one by 1253 /// one. 1254 AtomicCmpXchgInst * 1255 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1256 auto *M = CI->getModule(); 1257 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1258 M->getDataLayout()); 1259 1260 ReplacementIRBuilder Builder(CI, *DL); 1261 1262 Value *Addr = CI->getPointerOperand(); 1263 1264 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1265 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1266 1267 auto *NewCI = Builder.CreateAtomicCmpXchg( 1268 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1269 CI->getFailureOrdering(), CI->getSyncScopeID()); 1270 NewCI->setVolatile(CI->isVolatile()); 1271 NewCI->setWeak(CI->isWeak()); 1272 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1273 1274 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1275 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1276 1277 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1278 1279 Value *Res = PoisonValue::get(CI->getType()); 1280 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1281 Res = Builder.CreateInsertValue(Res, Succ, 1); 1282 1283 CI->replaceAllUsesWith(Res); 1284 CI->eraseFromParent(); 1285 return NewCI; 1286 } 1287 1288 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1289 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1290 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1291 Value *Addr = CI->getPointerOperand(); 1292 BasicBlock *BB = CI->getParent(); 1293 Function *F = BB->getParent(); 1294 LLVMContext &Ctx = F->getContext(); 1295 // If shouldInsertFencesForAtomic() returns true, then the target does not 1296 // want to deal with memory orders, and emitLeading/TrailingFence should take 1297 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1298 // should preserve the ordering. 1299 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1300 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1301 ? AtomicOrdering::Monotonic 1302 : CI->getMergedOrdering(); 1303 1304 // In implementations which use a barrier to achieve release semantics, we can 1305 // delay emitting this barrier until we know a store is actually going to be 1306 // attempted. The cost of this delay is that we need 2 copies of the block 1307 // emitting the load-linked, affecting code size. 1308 // 1309 // Ideally, this logic would be unconditional except for the minsize check 1310 // since in other cases the extra blocks naturally collapse down to the 1311 // minimal loop. Unfortunately, this puts too much stress on later 1312 // optimisations so we avoid emitting the extra logic in those cases too. 1313 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1314 SuccessOrder != AtomicOrdering::Monotonic && 1315 SuccessOrder != AtomicOrdering::Acquire && 1316 !F->hasMinSize(); 1317 1318 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1319 // do it even on minsize. 1320 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1321 1322 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1323 // 1324 // The full expansion we produce is: 1325 // [...] 1326 // %aligned.addr = ... 1327 // cmpxchg.start: 1328 // %unreleasedload = @load.linked(%aligned.addr) 1329 // %unreleasedload.extract = extract value from %unreleasedload 1330 // %should_store = icmp eq %unreleasedload.extract, %desired 1331 // br i1 %should_store, label %cmpxchg.releasingstore, 1332 // label %cmpxchg.nostore 1333 // cmpxchg.releasingstore: 1334 // fence? 1335 // br label cmpxchg.trystore 1336 // cmpxchg.trystore: 1337 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1338 // [%releasedload, %cmpxchg.releasedload] 1339 // %updated.new = insert %new into %loaded.trystore 1340 // %stored = @store_conditional(%updated.new, %aligned.addr) 1341 // %success = icmp eq i32 %stored, 0 1342 // br i1 %success, label %cmpxchg.success, 1343 // label %cmpxchg.releasedload/%cmpxchg.failure 1344 // cmpxchg.releasedload: 1345 // %releasedload = @load.linked(%aligned.addr) 1346 // %releasedload.extract = extract value from %releasedload 1347 // %should_store = icmp eq %releasedload.extract, %desired 1348 // br i1 %should_store, label %cmpxchg.trystore, 1349 // label %cmpxchg.failure 1350 // cmpxchg.success: 1351 // fence? 1352 // br label %cmpxchg.end 1353 // cmpxchg.nostore: 1354 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1355 // [%releasedload, 1356 // %cmpxchg.releasedload/%cmpxchg.trystore] 1357 // @load_linked_fail_balance()? 1358 // br label %cmpxchg.failure 1359 // cmpxchg.failure: 1360 // fence? 1361 // br label %cmpxchg.end 1362 // cmpxchg.end: 1363 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1364 // [%loaded.trystore, %cmpxchg.trystore] 1365 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1366 // %loaded = extract value from %loaded.exit 1367 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1368 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1369 // [...] 1370 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1371 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1372 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1373 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1374 auto ReleasedLoadBB = 1375 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1376 auto TryStoreBB = 1377 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1378 auto ReleasingStoreBB = 1379 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1380 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1381 1382 ReplacementIRBuilder Builder(CI, *DL); 1383 1384 // The split call above "helpfully" added a branch at the end of BB (to the 1385 // wrong place), but we might want a fence too. It's easiest to just remove 1386 // the branch entirely. 1387 std::prev(BB->end())->eraseFromParent(); 1388 Builder.SetInsertPoint(BB); 1389 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1390 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1391 1392 PartwordMaskValues PMV = 1393 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1394 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1395 Builder.CreateBr(StartBB); 1396 1397 // Start the main loop block now that we've taken care of the preliminaries. 1398 Builder.SetInsertPoint(StartBB); 1399 Value *UnreleasedLoad = 1400 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1401 Value *UnreleasedLoadExtract = 1402 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1403 Value *ShouldStore = Builder.CreateICmpEQ( 1404 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1405 1406 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1407 // jump straight past that fence instruction (if it exists). 1408 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1409 1410 Builder.SetInsertPoint(ReleasingStoreBB); 1411 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1412 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1413 Builder.CreateBr(TryStoreBB); 1414 1415 Builder.SetInsertPoint(TryStoreBB); 1416 PHINode *LoadedTryStore = 1417 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1418 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1419 Value *NewValueInsert = 1420 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1421 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1422 PMV.AlignedAddr, MemOpOrder); 1423 StoreSuccess = Builder.CreateICmpEQ( 1424 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1425 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1426 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1427 CI->isWeak() ? FailureBB : RetryBB); 1428 1429 Builder.SetInsertPoint(ReleasedLoadBB); 1430 Value *SecondLoad; 1431 if (HasReleasedLoadBB) { 1432 SecondLoad = 1433 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1434 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1435 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1436 CI->getCompareOperand(), "should_store"); 1437 1438 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1439 // jump straight past that fence instruction (if it exists). 1440 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1441 // Update PHI node in TryStoreBB. 1442 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1443 } else 1444 Builder.CreateUnreachable(); 1445 1446 // Make sure later instructions don't get reordered with a fence if 1447 // necessary. 1448 Builder.SetInsertPoint(SuccessBB); 1449 if (ShouldInsertFencesForAtomic || 1450 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1451 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1452 Builder.CreateBr(ExitBB); 1453 1454 Builder.SetInsertPoint(NoStoreBB); 1455 PHINode *LoadedNoStore = 1456 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1457 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1458 if (HasReleasedLoadBB) 1459 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1460 1461 // In the failing case, where we don't execute the store-conditional, the 1462 // target might want to balance out the load-linked with a dedicated 1463 // instruction (e.g., on ARM, clearing the exclusive monitor). 1464 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1465 Builder.CreateBr(FailureBB); 1466 1467 Builder.SetInsertPoint(FailureBB); 1468 PHINode *LoadedFailure = 1469 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1470 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1471 if (CI->isWeak()) 1472 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1473 if (ShouldInsertFencesForAtomic) 1474 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1475 Builder.CreateBr(ExitBB); 1476 1477 // Finally, we have control-flow based knowledge of whether the cmpxchg 1478 // succeeded or not. We expose this to later passes by converting any 1479 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1480 // PHI. 1481 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1482 PHINode *LoadedExit = 1483 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1484 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1485 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1486 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1487 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1488 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1489 1490 // This is the "exit value" from the cmpxchg expansion. It may be of 1491 // a type wider than the one in the cmpxchg instruction. 1492 Value *LoadedFull = LoadedExit; 1493 1494 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1495 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1496 1497 // Look for any users of the cmpxchg that are just comparing the loaded value 1498 // against the desired one, and replace them with the CFG-derived version. 1499 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1500 for (auto *User : CI->users()) { 1501 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1502 if (!EV) 1503 continue; 1504 1505 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1506 "weird extraction from { iN, i1 }"); 1507 1508 if (EV->getIndices()[0] == 0) 1509 EV->replaceAllUsesWith(Loaded); 1510 else 1511 EV->replaceAllUsesWith(Success); 1512 1513 PrunedInsts.push_back(EV); 1514 } 1515 1516 // We can remove the instructions now we're no longer iterating through them. 1517 for (auto *EV : PrunedInsts) 1518 EV->eraseFromParent(); 1519 1520 if (!CI->use_empty()) { 1521 // Some use of the full struct return that we don't understand has happened, 1522 // so we've got to reconstruct it properly. 1523 Value *Res; 1524 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1525 Res = Builder.CreateInsertValue(Res, Success, 1); 1526 1527 CI->replaceAllUsesWith(Res); 1528 } 1529 1530 CI->eraseFromParent(); 1531 return true; 1532 } 1533 1534 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { 1535 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1536 if (!C) 1537 return false; 1538 1539 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1540 switch (Op) { 1541 case AtomicRMWInst::Add: 1542 case AtomicRMWInst::Sub: 1543 case AtomicRMWInst::Or: 1544 case AtomicRMWInst::Xor: 1545 return C->isZero(); 1546 case AtomicRMWInst::And: 1547 return C->isMinusOne(); 1548 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1549 default: 1550 return false; 1551 } 1552 } 1553 1554 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1555 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1556 tryExpandAtomicLoad(ResultingLoad); 1557 return true; 1558 } 1559 return false; 1560 } 1561 1562 Value *AtomicExpandImpl::insertRMWCmpXchgLoop( 1563 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1564 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1565 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1566 CreateCmpXchgInstFun CreateCmpXchg) { 1567 LLVMContext &Ctx = Builder.getContext(); 1568 BasicBlock *BB = Builder.GetInsertBlock(); 1569 Function *F = BB->getParent(); 1570 1571 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1572 // 1573 // The standard expansion we produce is: 1574 // [...] 1575 // %init_loaded = load atomic iN* %addr 1576 // br label %loop 1577 // loop: 1578 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1579 // %new = some_op iN %loaded, %incr 1580 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1581 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1582 // %success = extractvalue { iN, i1 } %pair, 1 1583 // br i1 %success, label %atomicrmw.end, label %loop 1584 // atomicrmw.end: 1585 // [...] 1586 BasicBlock *ExitBB = 1587 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1588 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1589 1590 // The split call above "helpfully" added a branch at the end of BB (to the 1591 // wrong place), but we want a load. It's easiest to just remove 1592 // the branch entirely. 1593 std::prev(BB->end())->eraseFromParent(); 1594 Builder.SetInsertPoint(BB); 1595 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1596 Builder.CreateBr(LoopBB); 1597 1598 // Start the main loop block now that we've taken care of the preliminaries. 1599 Builder.SetInsertPoint(LoopBB); 1600 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1601 Loaded->addIncoming(InitLoaded, BB); 1602 1603 Value *NewVal = PerformOp(Builder, Loaded); 1604 1605 Value *NewLoaded = nullptr; 1606 Value *Success = nullptr; 1607 1608 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1609 MemOpOrder == AtomicOrdering::Unordered 1610 ? AtomicOrdering::Monotonic 1611 : MemOpOrder, 1612 SSID, Success, NewLoaded); 1613 assert(Success && NewLoaded); 1614 1615 Loaded->addIncoming(NewLoaded, LoopBB); 1616 1617 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1618 1619 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1620 return NewLoaded; 1621 } 1622 1623 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1624 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1625 unsigned ValueSize = getAtomicOpSize(CI); 1626 1627 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1628 default: 1629 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1630 case TargetLoweringBase::AtomicExpansionKind::None: 1631 if (ValueSize < MinCASSize) 1632 return expandPartwordCmpXchg(CI); 1633 return false; 1634 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1635 return expandAtomicCmpXchg(CI); 1636 } 1637 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1638 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1639 return true; 1640 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1641 return lowerAtomicCmpXchgInst(CI); 1642 } 1643 } 1644 1645 // Note: This function is exposed externally by AtomicExpandUtils.h 1646 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1647 CreateCmpXchgInstFun CreateCmpXchg) { 1648 ReplacementIRBuilder Builder(AI, AI->getDataLayout()); 1649 Builder.setIsFPConstrained( 1650 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1651 1652 // FIXME: If FP exceptions are observable, we should force them off for the 1653 // loop for the FP atomics. 1654 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( 1655 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1656 AI->getOrdering(), AI->getSyncScopeID(), 1657 [&](IRBuilderBase &Builder, Value *Loaded) { 1658 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1659 AI->getValOperand()); 1660 }, 1661 CreateCmpXchg); 1662 1663 AI->replaceAllUsesWith(Loaded); 1664 AI->eraseFromParent(); 1665 return true; 1666 } 1667 1668 // In order to use one of the sized library calls such as 1669 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1670 // must be one of the potentially-specialized sizes, and the value 1671 // type must actually exist in C on the target (otherwise, the 1672 // function wouldn't actually be defined.) 1673 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1674 const DataLayout &DL) { 1675 // TODO: "LargestSize" is an approximation for "largest type that 1676 // you can express in C". It seems to be the case that int128 is 1677 // supported on all 64-bit platforms, otherwise only up to 64-bit 1678 // integers are supported. If we get this wrong, then we'll try to 1679 // call a sized libcall that doesn't actually exist. There should 1680 // really be some more reliable way in LLVM of determining integer 1681 // sizes which are valid in the target's C ABI... 1682 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1683 return Alignment >= Size && 1684 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1685 Size <= LargestSize; 1686 } 1687 1688 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { 1689 static const RTLIB::Libcall Libcalls[6] = { 1690 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1691 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1692 unsigned Size = getAtomicOpSize(I); 1693 1694 bool expanded = expandAtomicOpToLibcall( 1695 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1696 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1697 if (!expanded) 1698 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1699 } 1700 1701 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { 1702 static const RTLIB::Libcall Libcalls[6] = { 1703 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1704 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1705 unsigned Size = getAtomicOpSize(I); 1706 1707 bool expanded = expandAtomicOpToLibcall( 1708 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1709 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1710 if (!expanded) 1711 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1712 } 1713 1714 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1715 static const RTLIB::Libcall Libcalls[6] = { 1716 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1717 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1718 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1719 unsigned Size = getAtomicOpSize(I); 1720 1721 bool expanded = expandAtomicOpToLibcall( 1722 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1723 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1724 Libcalls); 1725 if (!expanded) 1726 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1727 } 1728 1729 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1730 static const RTLIB::Libcall LibcallsXchg[6] = { 1731 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1732 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1733 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1734 static const RTLIB::Libcall LibcallsAdd[6] = { 1735 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1736 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1737 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1738 static const RTLIB::Libcall LibcallsSub[6] = { 1739 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1740 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1741 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1742 static const RTLIB::Libcall LibcallsAnd[6] = { 1743 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1744 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1745 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1746 static const RTLIB::Libcall LibcallsOr[6] = { 1747 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1748 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1749 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1750 static const RTLIB::Libcall LibcallsXor[6] = { 1751 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1752 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1753 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1754 static const RTLIB::Libcall LibcallsNand[6] = { 1755 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1756 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1757 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1758 1759 switch (Op) { 1760 case AtomicRMWInst::BAD_BINOP: 1761 llvm_unreachable("Should not have BAD_BINOP."); 1762 case AtomicRMWInst::Xchg: 1763 return ArrayRef(LibcallsXchg); 1764 case AtomicRMWInst::Add: 1765 return ArrayRef(LibcallsAdd); 1766 case AtomicRMWInst::Sub: 1767 return ArrayRef(LibcallsSub); 1768 case AtomicRMWInst::And: 1769 return ArrayRef(LibcallsAnd); 1770 case AtomicRMWInst::Or: 1771 return ArrayRef(LibcallsOr); 1772 case AtomicRMWInst::Xor: 1773 return ArrayRef(LibcallsXor); 1774 case AtomicRMWInst::Nand: 1775 return ArrayRef(LibcallsNand); 1776 case AtomicRMWInst::Max: 1777 case AtomicRMWInst::Min: 1778 case AtomicRMWInst::UMax: 1779 case AtomicRMWInst::UMin: 1780 case AtomicRMWInst::FMax: 1781 case AtomicRMWInst::FMin: 1782 case AtomicRMWInst::FAdd: 1783 case AtomicRMWInst::FSub: 1784 case AtomicRMWInst::UIncWrap: 1785 case AtomicRMWInst::UDecWrap: 1786 // No atomic libcalls are available for max/min/umax/umin. 1787 return {}; 1788 } 1789 llvm_unreachable("Unexpected AtomicRMW operation."); 1790 } 1791 1792 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1793 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1794 1795 unsigned Size = getAtomicOpSize(I); 1796 1797 bool Success = false; 1798 if (!Libcalls.empty()) 1799 Success = expandAtomicOpToLibcall( 1800 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1801 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1802 1803 // The expansion failed: either there were no libcalls at all for 1804 // the operation (min/max), or there were only size-specialized 1805 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1806 // CAS libcall, via a CAS loop, instead. 1807 if (!Success) { 1808 expandAtomicRMWToCmpXchg( 1809 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1810 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1811 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1812 // Create the CAS instruction normally... 1813 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1814 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1815 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1816 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1817 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1818 1819 // ...and then expand the CAS into a libcall. 1820 expandAtomicCASToLibcall(Pair); 1821 }); 1822 } 1823 } 1824 1825 // A helper routine for the above expandAtomic*ToLibcall functions. 1826 // 1827 // 'Libcalls' contains an array of enum values for the particular 1828 // ATOMIC libcalls to be emitted. All of the other arguments besides 1829 // 'I' are extracted from the Instruction subclass by the 1830 // caller. Depending on the particular call, some will be null. 1831 bool AtomicExpandImpl::expandAtomicOpToLibcall( 1832 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1833 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1834 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1835 assert(Libcalls.size() == 6); 1836 1837 LLVMContext &Ctx = I->getContext(); 1838 Module *M = I->getModule(); 1839 const DataLayout &DL = M->getDataLayout(); 1840 IRBuilder<> Builder(I); 1841 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1842 1843 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1844 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1845 1846 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1847 1848 // TODO: the "order" argument type is "int", not int32. So 1849 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1850 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1851 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1852 Constant *OrderingVal = 1853 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1854 Constant *Ordering2Val = nullptr; 1855 if (CASExpected) { 1856 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1857 Ordering2Val = 1858 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1859 } 1860 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1861 1862 RTLIB::Libcall RTLibType; 1863 if (UseSizedLibcall) { 1864 switch (Size) { 1865 case 1: 1866 RTLibType = Libcalls[1]; 1867 break; 1868 case 2: 1869 RTLibType = Libcalls[2]; 1870 break; 1871 case 4: 1872 RTLibType = Libcalls[3]; 1873 break; 1874 case 8: 1875 RTLibType = Libcalls[4]; 1876 break; 1877 case 16: 1878 RTLibType = Libcalls[5]; 1879 break; 1880 } 1881 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1882 RTLibType = Libcalls[0]; 1883 } else { 1884 // Can't use sized function, and there's no generic for this 1885 // operation, so give up. 1886 return false; 1887 } 1888 1889 if (!TLI->getLibcallName(RTLibType)) { 1890 // This target does not implement the requested atomic libcall so give up. 1891 return false; 1892 } 1893 1894 // Build up the function call. There's two kinds. First, the sized 1895 // variants. These calls are going to be one of the following (with 1896 // N=1,2,4,8,16): 1897 // iN __atomic_load_N(iN *ptr, int ordering) 1898 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1899 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1900 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1901 // int success_order, int failure_order) 1902 // 1903 // Note that these functions can be used for non-integer atomic 1904 // operations, the values just need to be bitcast to integers on the 1905 // way in and out. 1906 // 1907 // And, then, the generic variants. They look like the following: 1908 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1909 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1910 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1911 // int ordering) 1912 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1913 // void *desired, int success_order, 1914 // int failure_order) 1915 // 1916 // The different signatures are built up depending on the 1917 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1918 // variables. 1919 1920 AllocaInst *AllocaCASExpected = nullptr; 1921 AllocaInst *AllocaValue = nullptr; 1922 AllocaInst *AllocaResult = nullptr; 1923 1924 Type *ResultTy; 1925 SmallVector<Value *, 6> Args; 1926 AttributeList Attr; 1927 1928 // 'size' argument. 1929 if (!UseSizedLibcall) { 1930 // Note, getIntPtrType is assumed equivalent to size_t. 1931 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1932 } 1933 1934 // 'ptr' argument. 1935 // note: This assumes all address spaces share a common libfunc 1936 // implementation and that addresses are convertable. For systems without 1937 // that property, we'd need to extend this mechanism to support AS-specific 1938 // families of atomic intrinsics. 1939 Value *PtrVal = PointerOperand; 1940 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1941 Args.push_back(PtrVal); 1942 1943 // 'expected' argument, if present. 1944 if (CASExpected) { 1945 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1946 AllocaCASExpected->setAlignment(AllocaAlignment); 1947 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1948 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1949 Args.push_back(AllocaCASExpected); 1950 } 1951 1952 // 'val' argument ('desired' for cas), if present. 1953 if (ValueOperand) { 1954 if (UseSizedLibcall) { 1955 Value *IntValue = 1956 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1957 Args.push_back(IntValue); 1958 } else { 1959 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1960 AllocaValue->setAlignment(AllocaAlignment); 1961 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 1962 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1963 Args.push_back(AllocaValue); 1964 } 1965 } 1966 1967 // 'ret' argument. 1968 if (!CASExpected && HasResult && !UseSizedLibcall) { 1969 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1970 AllocaResult->setAlignment(AllocaAlignment); 1971 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 1972 Args.push_back(AllocaResult); 1973 } 1974 1975 // 'ordering' ('success_order' for cas) argument. 1976 Args.push_back(OrderingVal); 1977 1978 // 'failure_order' argument, if present. 1979 if (Ordering2Val) 1980 Args.push_back(Ordering2Val); 1981 1982 // Now, the return type. 1983 if (CASExpected) { 1984 ResultTy = Type::getInt1Ty(Ctx); 1985 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1986 } else if (HasResult && UseSizedLibcall) 1987 ResultTy = SizedIntTy; 1988 else 1989 ResultTy = Type::getVoidTy(Ctx); 1990 1991 // Done with setting up arguments and return types, create the call: 1992 SmallVector<Type *, 6> ArgTys; 1993 for (Value *Arg : Args) 1994 ArgTys.push_back(Arg->getType()); 1995 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1996 FunctionCallee LibcallFn = 1997 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1998 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1999 Call->setAttributes(Attr); 2000 Value *Result = Call; 2001 2002 // And then, extract the results... 2003 if (ValueOperand && !UseSizedLibcall) 2004 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 2005 2006 if (CASExpected) { 2007 // The final result from the CAS is {load of 'expected' alloca, bool result 2008 // from call} 2009 Type *FinalResultTy = I->getType(); 2010 Value *V = PoisonValue::get(FinalResultTy); 2011 Value *ExpectedOut = Builder.CreateAlignedLoad( 2012 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 2013 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 2014 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 2015 V = Builder.CreateInsertValue(V, Result, 1); 2016 I->replaceAllUsesWith(V); 2017 } else if (HasResult) { 2018 Value *V; 2019 if (UseSizedLibcall) 2020 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 2021 else { 2022 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 2023 AllocaAlignment); 2024 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 2025 } 2026 I->replaceAllUsesWith(V); 2027 } 2028 I->eraseFromParent(); 2029 return true; 2030 } 2031