1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/AtomicExpandUtils.h" 21 #include "llvm/CodeGen/RuntimeLibcalls.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 82 Value * 83 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 84 Align AddrAlign, AtomicOrdering MemOpOrder, 85 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 86 void expandAtomicOpToLLSC( 87 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 88 AtomicOrdering MemOpOrder, 89 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 90 void expandPartwordAtomicRMW( 91 AtomicRMWInst *I, 92 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 93 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 94 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 95 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 96 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 97 98 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 99 static Value *insertRMWCmpXchgLoop( 100 IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 101 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 102 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 103 CreateCmpXchgInstFun CreateCmpXchg); 104 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 106 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 107 bool isIdempotentRMW(AtomicRMWInst *RMWI); 108 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 109 110 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 111 Value *PointerOperand, Value *ValueOperand, 112 Value *CASExpected, AtomicOrdering Ordering, 113 AtomicOrdering Ordering2, 114 ArrayRef<RTLIB::Libcall> Libcalls); 115 void expandAtomicLoadToLibcall(LoadInst *LI); 116 void expandAtomicStoreToLibcall(StoreInst *LI); 117 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 118 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 119 120 friend bool 121 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 122 CreateCmpXchgInstFun CreateCmpXchg); 123 }; 124 125 } // end anonymous namespace 126 127 char AtomicExpand::ID = 0; 128 129 char &llvm::AtomicExpandID = AtomicExpand::ID; 130 131 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 132 false, false) 133 134 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 135 136 // Helper functions to retrieve the size of atomic instructions. 137 static unsigned getAtomicOpSize(LoadInst *LI) { 138 const DataLayout &DL = LI->getModule()->getDataLayout(); 139 return DL.getTypeStoreSize(LI->getType()); 140 } 141 142 static unsigned getAtomicOpSize(StoreInst *SI) { 143 const DataLayout &DL = SI->getModule()->getDataLayout(); 144 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 145 } 146 147 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 148 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 149 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 150 } 151 152 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 153 const DataLayout &DL = CASI->getModule()->getDataLayout(); 154 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 155 } 156 157 // Determine if a particular atomic operation has a supported size, 158 // and is of appropriate alignment, to be passed through for target 159 // lowering. (Versus turning into a __atomic libcall) 160 template <typename Inst> 161 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 162 unsigned Size = getAtomicOpSize(I); 163 Align Alignment = I->getAlign(); 164 return Alignment >= Size && 165 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 166 } 167 168 bool AtomicExpand::runOnFunction(Function &F) { 169 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 170 if (!TPC) 171 return false; 172 173 auto &TM = TPC->getTM<TargetMachine>(); 174 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 175 return false; 176 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 177 178 SmallVector<Instruction *, 1> AtomicInsts; 179 180 // Changing control-flow while iterating through it is a bad idea, so gather a 181 // list of all atomic instructions before we start. 182 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 183 Instruction *I = &*II; 184 if (I->isAtomic() && !isa<FenceInst>(I)) 185 AtomicInsts.push_back(I); 186 } 187 188 bool MadeChange = false; 189 for (auto I : AtomicInsts) { 190 auto LI = dyn_cast<LoadInst>(I); 191 auto SI = dyn_cast<StoreInst>(I); 192 auto RMWI = dyn_cast<AtomicRMWInst>(I); 193 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 194 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 195 196 // If the Size/Alignment is not supported, replace with a libcall. 197 if (LI) { 198 if (!atomicSizeSupported(TLI, LI)) { 199 expandAtomicLoadToLibcall(LI); 200 MadeChange = true; 201 continue; 202 } 203 } else if (SI) { 204 if (!atomicSizeSupported(TLI, SI)) { 205 expandAtomicStoreToLibcall(SI); 206 MadeChange = true; 207 continue; 208 } 209 } else if (RMWI) { 210 if (!atomicSizeSupported(TLI, RMWI)) { 211 expandAtomicRMWToLibcall(RMWI); 212 MadeChange = true; 213 continue; 214 } 215 } else if (CASI) { 216 if (!atomicSizeSupported(TLI, CASI)) { 217 expandAtomicCASToLibcall(CASI); 218 MadeChange = true; 219 continue; 220 } 221 } 222 223 if (TLI->shouldInsertFencesForAtomic(I)) { 224 auto FenceOrdering = AtomicOrdering::Monotonic; 225 if (LI && isAcquireOrStronger(LI->getOrdering())) { 226 FenceOrdering = LI->getOrdering(); 227 LI->setOrdering(AtomicOrdering::Monotonic); 228 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 229 FenceOrdering = SI->getOrdering(); 230 SI->setOrdering(AtomicOrdering::Monotonic); 231 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 232 isAcquireOrStronger(RMWI->getOrdering()))) { 233 FenceOrdering = RMWI->getOrdering(); 234 RMWI->setOrdering(AtomicOrdering::Monotonic); 235 } else if (CASI && 236 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 237 TargetLoweringBase::AtomicExpansionKind::None && 238 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 239 isAcquireOrStronger(CASI->getSuccessOrdering()) || 240 isAcquireOrStronger(CASI->getFailureOrdering()))) { 241 // If a compare and swap is lowered to LL/SC, we can do smarter fence 242 // insertion, with a stronger one on the success path than on the 243 // failure path. As a result, fence insertion is directly done by 244 // expandAtomicCmpXchg in that case. 245 FenceOrdering = CASI->getMergedOrdering(); 246 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 247 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 248 } 249 250 if (FenceOrdering != AtomicOrdering::Monotonic) { 251 MadeChange |= bracketInstWithFences(I, FenceOrdering); 252 } 253 } 254 255 if (LI) { 256 if (LI->getType()->isFloatingPointTy()) { 257 // TODO: add a TLI hook to control this so that each target can 258 // convert to lowering the original type one at a time. 259 LI = convertAtomicLoadToIntegerType(LI); 260 assert(LI->getType()->isIntegerTy() && "invariant broken"); 261 MadeChange = true; 262 } 263 264 MadeChange |= tryExpandAtomicLoad(LI); 265 } else if (SI) { 266 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 267 // TODO: add a TLI hook to control this so that each target can 268 // convert to lowering the original type one at a time. 269 SI = convertAtomicStoreToIntegerType(SI); 270 assert(SI->getValueOperand()->getType()->isIntegerTy() && 271 "invariant broken"); 272 MadeChange = true; 273 } 274 275 if (TLI->shouldExpandAtomicStoreInIR(SI)) 276 MadeChange |= expandAtomicStore(SI); 277 } else if (RMWI) { 278 // There are two different ways of expanding RMW instructions: 279 // - into a load if it is idempotent 280 // - into a Cmpxchg/LL-SC loop otherwise 281 // we try them in that order. 282 283 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 284 MadeChange = true; 285 } else { 286 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 287 if (Op == AtomicRMWInst::Xchg && 288 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 289 // TODO: add a TLI hook to control this so that each target can 290 // convert to lowering the original type one at a time. 291 RMWI = convertAtomicXchgToIntegerType(RMWI); 292 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 293 "invariant broken"); 294 MadeChange = true; 295 } 296 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 297 unsigned ValueSize = getAtomicOpSize(RMWI); 298 if (ValueSize < MinCASSize && 299 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 300 Op == AtomicRMWInst::And)) { 301 RMWI = widenPartwordAtomicRMW(RMWI); 302 MadeChange = true; 303 } 304 305 MadeChange |= tryExpandAtomicRMW(RMWI); 306 } 307 } else if (CASI) { 308 // TODO: when we're ready to make the change at the IR level, we can 309 // extend convertCmpXchgToInteger for floating point too. 310 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 311 "unimplemented - floating point not legal at IR level"); 312 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 313 // TODO: add a TLI hook to control this so that each target can 314 // convert to lowering the original type one at a time. 315 CASI = convertCmpXchgToIntegerType(CASI); 316 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 317 "invariant broken"); 318 MadeChange = true; 319 } 320 321 MadeChange |= tryExpandAtomicCmpXchg(CASI); 322 } 323 } 324 return MadeChange; 325 } 326 327 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 328 IRBuilder<> Builder(I); 329 330 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 331 332 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 333 // We have a guard here because not every atomic operation generates a 334 // trailing fence. 335 if (TrailingFence) 336 TrailingFence->moveAfter(I); 337 338 return (LeadingFence || TrailingFence); 339 } 340 341 /// Get the iX type with the same bitwidth as T. 342 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 343 const DataLayout &DL) { 344 EVT VT = TLI->getMemValueType(DL, T); 345 unsigned BitWidth = VT.getStoreSizeInBits(); 346 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 347 return IntegerType::get(T->getContext(), BitWidth); 348 } 349 350 /// Convert an atomic load of a non-integral type to an integer load of the 351 /// equivalent bitwidth. See the function comment on 352 /// convertAtomicStoreToIntegerType for background. 353 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 354 auto *M = LI->getModule(); 355 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 356 M->getDataLayout()); 357 358 IRBuilder<> Builder(LI); 359 360 Value *Addr = LI->getPointerOperand(); 361 Type *PT = PointerType::get(NewTy, 362 Addr->getType()->getPointerAddressSpace()); 363 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 364 365 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 366 NewLI->setAlignment(LI->getAlign()); 367 NewLI->setVolatile(LI->isVolatile()); 368 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 369 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 370 371 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 372 LI->replaceAllUsesWith(NewVal); 373 LI->eraseFromParent(); 374 return NewLI; 375 } 376 377 AtomicRMWInst * 378 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 379 auto *M = RMWI->getModule(); 380 Type *NewTy = 381 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 382 383 IRBuilder<> Builder(RMWI); 384 385 Value *Addr = RMWI->getPointerOperand(); 386 Value *Val = RMWI->getValOperand(); 387 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 388 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 389 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 390 391 auto *NewRMWI = 392 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 393 RMWI->getAlign(), RMWI->getOrdering()); 394 NewRMWI->setVolatile(RMWI->isVolatile()); 395 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 396 397 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 398 RMWI->replaceAllUsesWith(NewRVal); 399 RMWI->eraseFromParent(); 400 return NewRMWI; 401 } 402 403 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 404 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 405 case TargetLoweringBase::AtomicExpansionKind::None: 406 return false; 407 case TargetLoweringBase::AtomicExpansionKind::LLSC: 408 expandAtomicOpToLLSC( 409 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 410 LI->getOrdering(), 411 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 412 return true; 413 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 414 return expandAtomicLoadToLL(LI); 415 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 416 return expandAtomicLoadToCmpXchg(LI); 417 default: 418 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 419 } 420 } 421 422 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 423 IRBuilder<> Builder(LI); 424 425 // On some architectures, load-linked instructions are atomic for larger 426 // sizes than normal loads. For example, the only 64-bit load guaranteed 427 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 428 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 429 LI->getPointerOperand(), LI->getOrdering()); 430 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 431 432 LI->replaceAllUsesWith(Val); 433 LI->eraseFromParent(); 434 435 return true; 436 } 437 438 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 439 IRBuilder<> Builder(LI); 440 AtomicOrdering Order = LI->getOrdering(); 441 if (Order == AtomicOrdering::Unordered) 442 Order = AtomicOrdering::Monotonic; 443 444 Value *Addr = LI->getPointerOperand(); 445 Type *Ty = LI->getType(); 446 Constant *DummyVal = Constant::getNullValue(Ty); 447 448 Value *Pair = Builder.CreateAtomicCmpXchg( 449 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 450 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 451 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 452 453 LI->replaceAllUsesWith(Loaded); 454 LI->eraseFromParent(); 455 456 return true; 457 } 458 459 /// Convert an atomic store of a non-integral type to an integer store of the 460 /// equivalent bitwidth. We used to not support floating point or vector 461 /// atomics in the IR at all. The backends learned to deal with the bitcast 462 /// idiom because that was the only way of expressing the notion of a atomic 463 /// float or vector store. The long term plan is to teach each backend to 464 /// instruction select from the original atomic store, but as a migration 465 /// mechanism, we convert back to the old format which the backends understand. 466 /// Each backend will need individual work to recognize the new format. 467 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 468 IRBuilder<> Builder(SI); 469 auto *M = SI->getModule(); 470 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 471 M->getDataLayout()); 472 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 473 474 Value *Addr = SI->getPointerOperand(); 475 Type *PT = PointerType::get(NewTy, 476 Addr->getType()->getPointerAddressSpace()); 477 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 478 479 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 480 NewSI->setAlignment(SI->getAlign()); 481 NewSI->setVolatile(SI->isVolatile()); 482 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 483 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 484 SI->eraseFromParent(); 485 return NewSI; 486 } 487 488 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 489 // This function is only called on atomic stores that are too large to be 490 // atomic if implemented as a native store. So we replace them by an 491 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 492 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 493 // It is the responsibility of the target to only signal expansion via 494 // shouldExpandAtomicRMW in cases where this is required and possible. 495 IRBuilder<> Builder(SI); 496 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 497 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 498 SI->getAlign(), SI->getOrdering()); 499 SI->eraseFromParent(); 500 501 // Now we have an appropriate swap instruction, lower it as usual. 502 return tryExpandAtomicRMW(AI); 503 } 504 505 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 506 Value *Loaded, Value *NewVal, Align AddrAlign, 507 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 508 Value *&Success, Value *&NewLoaded) { 509 Type *OrigTy = NewVal->getType(); 510 511 // This code can go away when cmpxchg supports FP types. 512 bool NeedBitcast = OrigTy->isFloatingPointTy(); 513 if (NeedBitcast) { 514 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 515 unsigned AS = Addr->getType()->getPointerAddressSpace(); 516 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 517 NewVal = Builder.CreateBitCast(NewVal, IntTy); 518 Loaded = Builder.CreateBitCast(Loaded, IntTy); 519 } 520 521 Value *Pair = Builder.CreateAtomicCmpXchg( 522 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 523 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 524 Success = Builder.CreateExtractValue(Pair, 1, "success"); 525 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 526 527 if (NeedBitcast) 528 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 529 } 530 531 /// Emit IR to implement the given atomicrmw operation on values in registers, 532 /// returning the new value. 533 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 534 Value *Loaded, Value *Inc) { 535 Value *NewVal; 536 switch (Op) { 537 case AtomicRMWInst::Xchg: 538 return Inc; 539 case AtomicRMWInst::Add: 540 return Builder.CreateAdd(Loaded, Inc, "new"); 541 case AtomicRMWInst::Sub: 542 return Builder.CreateSub(Loaded, Inc, "new"); 543 case AtomicRMWInst::And: 544 return Builder.CreateAnd(Loaded, Inc, "new"); 545 case AtomicRMWInst::Nand: 546 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 547 case AtomicRMWInst::Or: 548 return Builder.CreateOr(Loaded, Inc, "new"); 549 case AtomicRMWInst::Xor: 550 return Builder.CreateXor(Loaded, Inc, "new"); 551 case AtomicRMWInst::Max: 552 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 553 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 554 case AtomicRMWInst::Min: 555 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 556 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 557 case AtomicRMWInst::UMax: 558 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 559 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 560 case AtomicRMWInst::UMin: 561 NewVal = Builder.CreateICmpULE(Loaded, Inc); 562 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 563 case AtomicRMWInst::FAdd: 564 return Builder.CreateFAdd(Loaded, Inc, "new"); 565 case AtomicRMWInst::FSub: 566 return Builder.CreateFSub(Loaded, Inc, "new"); 567 default: 568 llvm_unreachable("Unknown atomic op"); 569 } 570 } 571 572 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 573 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 574 case TargetLoweringBase::AtomicExpansionKind::None: 575 return false; 576 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 577 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 578 unsigned ValueSize = getAtomicOpSize(AI); 579 if (ValueSize < MinCASSize) { 580 expandPartwordAtomicRMW(AI, 581 TargetLoweringBase::AtomicExpansionKind::LLSC); 582 } else { 583 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 584 return performAtomicOp(AI->getOperation(), Builder, Loaded, 585 AI->getValOperand()); 586 }; 587 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 588 AI->getAlign(), AI->getOrdering(), PerformOp); 589 } 590 return true; 591 } 592 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 593 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 594 unsigned ValueSize = getAtomicOpSize(AI); 595 if (ValueSize < MinCASSize) { 596 // TODO: Handle atomicrmw fadd/fsub 597 if (AI->getType()->isFloatingPointTy()) 598 return false; 599 600 expandPartwordAtomicRMW(AI, 601 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 602 } else { 603 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 604 } 605 return true; 606 } 607 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 608 expandAtomicRMWToMaskedIntrinsic(AI); 609 return true; 610 } 611 default: 612 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 613 } 614 } 615 616 namespace { 617 618 struct PartwordMaskValues { 619 // These three fields are guaranteed to be set by createMaskInstrs. 620 Type *WordType = nullptr; 621 Type *ValueType = nullptr; 622 Value *AlignedAddr = nullptr; 623 Align AlignedAddrAlignment; 624 // The remaining fields can be null. 625 Value *ShiftAmt = nullptr; 626 Value *Mask = nullptr; 627 Value *Inv_Mask = nullptr; 628 }; 629 630 LLVM_ATTRIBUTE_UNUSED 631 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 632 auto PrintObj = [&O](auto *V) { 633 if (V) 634 O << *V; 635 else 636 O << "nullptr"; 637 O << '\n'; 638 }; 639 O << "PartwordMaskValues {\n"; 640 O << " WordType: "; 641 PrintObj(PMV.WordType); 642 O << " ValueType: "; 643 PrintObj(PMV.ValueType); 644 O << " AlignedAddr: "; 645 PrintObj(PMV.AlignedAddr); 646 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 647 O << " ShiftAmt: "; 648 PrintObj(PMV.ShiftAmt); 649 O << " Mask: "; 650 PrintObj(PMV.Mask); 651 O << " Inv_Mask: "; 652 PrintObj(PMV.Inv_Mask); 653 O << "}\n"; 654 return O; 655 } 656 657 } // end anonymous namespace 658 659 /// This is a helper function which builds instructions to provide 660 /// values necessary for partword atomic operations. It takes an 661 /// incoming address, Addr, and ValueType, and constructs the address, 662 /// shift-amounts and masks needed to work with a larger value of size 663 /// WordSize. 664 /// 665 /// AlignedAddr: Addr rounded down to a multiple of WordSize 666 /// 667 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 668 /// from AlignAddr for it to have the same value as if 669 /// ValueType was loaded from Addr. 670 /// 671 /// Mask: Value to mask with the value loaded from AlignAddr to 672 /// include only the part that would've been loaded from Addr. 673 /// 674 /// Inv_Mask: The inverse of Mask. 675 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 676 Type *ValueType, Value *Addr, 677 Align AddrAlign, 678 unsigned MinWordSize) { 679 PartwordMaskValues PMV; 680 681 Module *M = I->getModule(); 682 LLVMContext &Ctx = M->getContext(); 683 const DataLayout &DL = M->getDataLayout(); 684 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 685 686 PMV.ValueType = ValueType; 687 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 688 : ValueType; 689 if (PMV.ValueType == PMV.WordType) { 690 PMV.AlignedAddr = Addr; 691 PMV.AlignedAddrAlignment = AddrAlign; 692 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 693 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0); 694 return PMV; 695 } 696 697 assert(ValueSize < MinWordSize); 698 699 Type *WordPtrType = 700 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 701 702 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 703 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 704 PMV.AlignedAddr = Builder.CreateIntToPtr( 705 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 706 "AlignedAddr"); 707 PMV.AlignedAddrAlignment = Align(MinWordSize); 708 709 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 710 if (DL.isLittleEndian()) { 711 // turn bytes into bits 712 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 713 } else { 714 // turn bytes into bits, and count from the other side. 715 PMV.ShiftAmt = Builder.CreateShl( 716 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 717 } 718 719 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 720 PMV.Mask = Builder.CreateShl( 721 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 722 "Mask"); 723 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 724 return PMV; 725 } 726 727 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 728 const PartwordMaskValues &PMV) { 729 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 730 if (PMV.WordType == PMV.ValueType) 731 return WideWord; 732 733 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 734 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 735 return Trunc; 736 } 737 738 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 739 Value *Updated, const PartwordMaskValues &PMV) { 740 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 741 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 742 if (PMV.WordType == PMV.ValueType) 743 return Updated; 744 745 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 746 Value *Shift = 747 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 748 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 749 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 750 return Or; 751 } 752 753 /// Emit IR to implement a masked version of a given atomicrmw 754 /// operation. (That is, only the bits under the Mask should be 755 /// affected by the operation) 756 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 757 IRBuilder<> &Builder, Value *Loaded, 758 Value *Shifted_Inc, Value *Inc, 759 const PartwordMaskValues &PMV) { 760 // TODO: update to use 761 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 762 // to merge bits from two values without requiring PMV.Inv_Mask. 763 switch (Op) { 764 case AtomicRMWInst::Xchg: { 765 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 766 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 767 return FinalVal; 768 } 769 case AtomicRMWInst::Or: 770 case AtomicRMWInst::Xor: 771 case AtomicRMWInst::And: 772 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 773 case AtomicRMWInst::Add: 774 case AtomicRMWInst::Sub: 775 case AtomicRMWInst::Nand: { 776 // The other arithmetic ops need to be masked into place. 777 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 778 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 779 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 780 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 781 return FinalVal; 782 } 783 case AtomicRMWInst::Max: 784 case AtomicRMWInst::Min: 785 case AtomicRMWInst::UMax: 786 case AtomicRMWInst::UMin: { 787 // Finally, comparison ops will operate on the full value, so 788 // truncate down to the original size, and expand out again after 789 // doing the operation. 790 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 791 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 792 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 793 return FinalVal; 794 } 795 default: 796 llvm_unreachable("Unknown atomic op"); 797 } 798 } 799 800 /// Expand a sub-word atomicrmw operation into an appropriate 801 /// word-sized operation. 802 /// 803 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 804 /// way as a typical atomicrmw expansion. The only difference here is 805 /// that the operation inside of the loop may operate upon only a 806 /// part of the value. 807 void AtomicExpand::expandPartwordAtomicRMW( 808 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 809 AtomicOrdering MemOpOrder = AI->getOrdering(); 810 SyncScope::ID SSID = AI->getSyncScopeID(); 811 812 IRBuilder<> Builder(AI); 813 814 PartwordMaskValues PMV = 815 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 816 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 817 818 Value *ValOperand_Shifted = 819 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 820 PMV.ShiftAmt, "ValOperand_Shifted"); 821 822 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 823 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 824 ValOperand_Shifted, AI->getValOperand(), PMV); 825 }; 826 827 Value *OldResult; 828 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 829 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 830 PMV.AlignedAddrAlignment, MemOpOrder, 831 SSID, PerformPartwordOp, 832 createCmpXchgInstFun); 833 } else { 834 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 835 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 836 PMV.AlignedAddrAlignment, MemOpOrder, 837 PerformPartwordOp); 838 } 839 840 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 841 AI->replaceAllUsesWith(FinalOldResult); 842 AI->eraseFromParent(); 843 } 844 845 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 846 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 847 IRBuilder<> Builder(AI); 848 AtomicRMWInst::BinOp Op = AI->getOperation(); 849 850 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 851 Op == AtomicRMWInst::And) && 852 "Unable to widen operation"); 853 854 PartwordMaskValues PMV = 855 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 856 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 857 858 Value *ValOperand_Shifted = 859 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 860 PMV.ShiftAmt, "ValOperand_Shifted"); 861 862 Value *NewOperand; 863 864 if (Op == AtomicRMWInst::And) 865 NewOperand = 866 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 867 else 868 NewOperand = ValOperand_Shifted; 869 870 AtomicRMWInst *NewAI = 871 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 872 PMV.AlignedAddrAlignment, AI->getOrdering()); 873 874 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 875 AI->replaceAllUsesWith(FinalOldResult); 876 AI->eraseFromParent(); 877 return NewAI; 878 } 879 880 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 881 // The basic idea here is that we're expanding a cmpxchg of a 882 // smaller memory size up to a word-sized cmpxchg. To do this, we 883 // need to add a retry-loop for strong cmpxchg, so that 884 // modifications to other parts of the word don't cause a spurious 885 // failure. 886 887 // This generates code like the following: 888 // [[Setup mask values PMV.*]] 889 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 890 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 891 // %InitLoaded = load i32* %addr 892 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 893 // br partword.cmpxchg.loop 894 // partword.cmpxchg.loop: 895 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 896 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 897 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 898 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 899 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 900 // i32 %FullWord_NewVal success_ordering failure_ordering 901 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 902 // %Success = extractvalue { i32, i1 } %NewCI, 1 903 // br i1 %Success, label %partword.cmpxchg.end, 904 // label %partword.cmpxchg.failure 905 // partword.cmpxchg.failure: 906 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 907 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 908 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 909 // label %partword.cmpxchg.end 910 // partword.cmpxchg.end: 911 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 912 // %FinalOldVal = trunc i32 %tmp1 to i8 913 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 914 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 915 916 Value *Addr = CI->getPointerOperand(); 917 Value *Cmp = CI->getCompareOperand(); 918 Value *NewVal = CI->getNewValOperand(); 919 920 BasicBlock *BB = CI->getParent(); 921 Function *F = BB->getParent(); 922 IRBuilder<> Builder(CI); 923 LLVMContext &Ctx = Builder.getContext(); 924 925 BasicBlock *EndBB = 926 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 927 auto FailureBB = 928 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 929 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 930 931 // The split call above "helpfully" added a branch at the end of BB 932 // (to the wrong place). 933 std::prev(BB->end())->eraseFromParent(); 934 Builder.SetInsertPoint(BB); 935 936 PartwordMaskValues PMV = 937 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 938 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 939 940 // Shift the incoming values over, into the right location in the word. 941 Value *NewVal_Shifted = 942 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 943 Value *Cmp_Shifted = 944 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 945 946 // Load the entire current word, and mask into place the expected and new 947 // values 948 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 949 InitLoaded->setVolatile(CI->isVolatile()); 950 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 951 Builder.CreateBr(LoopBB); 952 953 // partword.cmpxchg.loop: 954 Builder.SetInsertPoint(LoopBB); 955 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 956 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 957 958 // Mask/Or the expected and new values into place in the loaded word. 959 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 960 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 961 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 962 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 963 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 964 NewCI->setVolatile(CI->isVolatile()); 965 // When we're building a strong cmpxchg, we need a loop, so you 966 // might think we could use a weak cmpxchg inside. But, using strong 967 // allows the below comparison for ShouldContinue, and we're 968 // expecting the underlying cmpxchg to be a machine instruction, 969 // which is strong anyways. 970 NewCI->setWeak(CI->isWeak()); 971 972 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 973 Value *Success = Builder.CreateExtractValue(NewCI, 1); 974 975 if (CI->isWeak()) 976 Builder.CreateBr(EndBB); 977 else 978 Builder.CreateCondBr(Success, EndBB, FailureBB); 979 980 // partword.cmpxchg.failure: 981 Builder.SetInsertPoint(FailureBB); 982 // Upon failure, verify that the masked-out part of the loaded value 983 // has been modified. If it didn't, abort the cmpxchg, since the 984 // masked-in part must've. 985 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 986 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 987 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 988 989 // Add the second value to the phi from above 990 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 991 992 // partword.cmpxchg.end: 993 Builder.SetInsertPoint(CI); 994 995 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 996 Value *Res = UndefValue::get(CI->getType()); 997 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 998 Res = Builder.CreateInsertValue(Res, Success, 1); 999 1000 CI->replaceAllUsesWith(Res); 1001 CI->eraseFromParent(); 1002 return true; 1003 } 1004 1005 void AtomicExpand::expandAtomicOpToLLSC( 1006 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1007 AtomicOrdering MemOpOrder, 1008 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1009 IRBuilder<> Builder(I); 1010 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1011 MemOpOrder, PerformOp); 1012 1013 I->replaceAllUsesWith(Loaded); 1014 I->eraseFromParent(); 1015 } 1016 1017 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1018 IRBuilder<> Builder(AI); 1019 1020 PartwordMaskValues PMV = 1021 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1022 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1023 1024 // The value operand must be sign-extended for signed min/max so that the 1025 // target's signed comparison instructions can be used. Otherwise, just 1026 // zero-ext. 1027 Instruction::CastOps CastOp = Instruction::ZExt; 1028 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1029 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1030 CastOp = Instruction::SExt; 1031 1032 Value *ValOperand_Shifted = Builder.CreateShl( 1033 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1034 PMV.ShiftAmt, "ValOperand_Shifted"); 1035 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1036 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1037 AI->getOrdering()); 1038 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1039 AI->replaceAllUsesWith(FinalOldResult); 1040 AI->eraseFromParent(); 1041 } 1042 1043 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1044 IRBuilder<> Builder(CI); 1045 1046 PartwordMaskValues PMV = createMaskInstrs( 1047 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1048 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1049 1050 Value *CmpVal_Shifted = Builder.CreateShl( 1051 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1052 "CmpVal_Shifted"); 1053 Value *NewVal_Shifted = Builder.CreateShl( 1054 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1055 "NewVal_Shifted"); 1056 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1057 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1058 CI->getMergedOrdering()); 1059 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1060 Value *Res = UndefValue::get(CI->getType()); 1061 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1062 Value *Success = Builder.CreateICmpEQ( 1063 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1064 Res = Builder.CreateInsertValue(Res, Success, 1); 1065 1066 CI->replaceAllUsesWith(Res); 1067 CI->eraseFromParent(); 1068 } 1069 1070 Value *AtomicExpand::insertRMWLLSCLoop( 1071 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1072 AtomicOrdering MemOpOrder, 1073 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1074 LLVMContext &Ctx = Builder.getContext(); 1075 BasicBlock *BB = Builder.GetInsertBlock(); 1076 Function *F = BB->getParent(); 1077 1078 assert(AddrAlign >= 1079 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1080 "Expected at least natural alignment at this point."); 1081 1082 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1083 // 1084 // The standard expansion we produce is: 1085 // [...] 1086 // atomicrmw.start: 1087 // %loaded = @load.linked(%addr) 1088 // %new = some_op iN %loaded, %incr 1089 // %stored = @store_conditional(%new, %addr) 1090 // %try_again = icmp i32 ne %stored, 0 1091 // br i1 %try_again, label %loop, label %atomicrmw.end 1092 // atomicrmw.end: 1093 // [...] 1094 BasicBlock *ExitBB = 1095 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1096 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1097 1098 // The split call above "helpfully" added a branch at the end of BB (to the 1099 // wrong place). 1100 std::prev(BB->end())->eraseFromParent(); 1101 Builder.SetInsertPoint(BB); 1102 Builder.CreateBr(LoopBB); 1103 1104 // Start the main loop block now that we've taken care of the preliminaries. 1105 Builder.SetInsertPoint(LoopBB); 1106 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1107 1108 Value *NewVal = PerformOp(Builder, Loaded); 1109 1110 Value *StoreSuccess = 1111 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1112 Value *TryAgain = Builder.CreateICmpNE( 1113 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1114 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1115 1116 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1117 return Loaded; 1118 } 1119 1120 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1121 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1122 /// IR. As a migration step, we convert back to what use to be the standard 1123 /// way to represent a pointer cmpxchg so that we can update backends one by 1124 /// one. 1125 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1126 auto *M = CI->getModule(); 1127 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1128 M->getDataLayout()); 1129 1130 IRBuilder<> Builder(CI); 1131 1132 Value *Addr = CI->getPointerOperand(); 1133 Type *PT = PointerType::get(NewTy, 1134 Addr->getType()->getPointerAddressSpace()); 1135 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1136 1137 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1138 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1139 1140 auto *NewCI = Builder.CreateAtomicCmpXchg( 1141 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1142 CI->getFailureOrdering(), CI->getSyncScopeID()); 1143 NewCI->setVolatile(CI->isVolatile()); 1144 NewCI->setWeak(CI->isWeak()); 1145 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1146 1147 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1148 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1149 1150 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1151 1152 Value *Res = UndefValue::get(CI->getType()); 1153 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1154 Res = Builder.CreateInsertValue(Res, Succ, 1); 1155 1156 CI->replaceAllUsesWith(Res); 1157 CI->eraseFromParent(); 1158 return NewCI; 1159 } 1160 1161 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1162 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1163 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1164 Value *Addr = CI->getPointerOperand(); 1165 BasicBlock *BB = CI->getParent(); 1166 Function *F = BB->getParent(); 1167 LLVMContext &Ctx = F->getContext(); 1168 // If shouldInsertFencesForAtomic() returns true, then the target does not 1169 // want to deal with memory orders, and emitLeading/TrailingFence should take 1170 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1171 // should preserve the ordering. 1172 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1173 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1174 ? AtomicOrdering::Monotonic 1175 : CI->getMergedOrdering(); 1176 1177 // In implementations which use a barrier to achieve release semantics, we can 1178 // delay emitting this barrier until we know a store is actually going to be 1179 // attempted. The cost of this delay is that we need 2 copies of the block 1180 // emitting the load-linked, affecting code size. 1181 // 1182 // Ideally, this logic would be unconditional except for the minsize check 1183 // since in other cases the extra blocks naturally collapse down to the 1184 // minimal loop. Unfortunately, this puts too much stress on later 1185 // optimisations so we avoid emitting the extra logic in those cases too. 1186 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1187 SuccessOrder != AtomicOrdering::Monotonic && 1188 SuccessOrder != AtomicOrdering::Acquire && 1189 !F->hasMinSize(); 1190 1191 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1192 // do it even on minsize. 1193 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1194 1195 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1196 // 1197 // The full expansion we produce is: 1198 // [...] 1199 // %aligned.addr = ... 1200 // cmpxchg.start: 1201 // %unreleasedload = @load.linked(%aligned.addr) 1202 // %unreleasedload.extract = extract value from %unreleasedload 1203 // %should_store = icmp eq %unreleasedload.extract, %desired 1204 // br i1 %should_store, label %cmpxchg.releasingstore, 1205 // label %cmpxchg.nostore 1206 // cmpxchg.releasingstore: 1207 // fence? 1208 // br label cmpxchg.trystore 1209 // cmpxchg.trystore: 1210 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1211 // [%releasedload, %cmpxchg.releasedload] 1212 // %updated.new = insert %new into %loaded.trystore 1213 // %stored = @store_conditional(%updated.new, %aligned.addr) 1214 // %success = icmp eq i32 %stored, 0 1215 // br i1 %success, label %cmpxchg.success, 1216 // label %cmpxchg.releasedload/%cmpxchg.failure 1217 // cmpxchg.releasedload: 1218 // %releasedload = @load.linked(%aligned.addr) 1219 // %releasedload.extract = extract value from %releasedload 1220 // %should_store = icmp eq %releasedload.extract, %desired 1221 // br i1 %should_store, label %cmpxchg.trystore, 1222 // label %cmpxchg.failure 1223 // cmpxchg.success: 1224 // fence? 1225 // br label %cmpxchg.end 1226 // cmpxchg.nostore: 1227 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1228 // [%releasedload, 1229 // %cmpxchg.releasedload/%cmpxchg.trystore] 1230 // @load_linked_fail_balance()? 1231 // br label %cmpxchg.failure 1232 // cmpxchg.failure: 1233 // fence? 1234 // br label %cmpxchg.end 1235 // cmpxchg.end: 1236 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1237 // [%loaded.trystore, %cmpxchg.trystore] 1238 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1239 // %loaded = extract value from %loaded.exit 1240 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1241 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1242 // [...] 1243 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1244 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1245 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1246 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1247 auto ReleasedLoadBB = 1248 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1249 auto TryStoreBB = 1250 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1251 auto ReleasingStoreBB = 1252 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1253 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1254 1255 // This grabs the DebugLoc from CI 1256 IRBuilder<> Builder(CI); 1257 1258 // The split call above "helpfully" added a branch at the end of BB (to the 1259 // wrong place), but we might want a fence too. It's easiest to just remove 1260 // the branch entirely. 1261 std::prev(BB->end())->eraseFromParent(); 1262 Builder.SetInsertPoint(BB); 1263 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1264 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1265 1266 PartwordMaskValues PMV = 1267 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1268 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1269 Builder.CreateBr(StartBB); 1270 1271 // Start the main loop block now that we've taken care of the preliminaries. 1272 Builder.SetInsertPoint(StartBB); 1273 Value *UnreleasedLoad = 1274 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1275 Value *UnreleasedLoadExtract = 1276 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1277 Value *ShouldStore = Builder.CreateICmpEQ( 1278 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1279 1280 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1281 // jump straight past that fence instruction (if it exists). 1282 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1283 1284 Builder.SetInsertPoint(ReleasingStoreBB); 1285 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1286 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1287 Builder.CreateBr(TryStoreBB); 1288 1289 Builder.SetInsertPoint(TryStoreBB); 1290 PHINode *LoadedTryStore = 1291 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1292 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1293 Value *NewValueInsert = 1294 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1295 Value *StoreSuccess = 1296 TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr, 1297 MemOpOrder); 1298 StoreSuccess = Builder.CreateICmpEQ( 1299 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1300 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1301 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1302 CI->isWeak() ? FailureBB : RetryBB); 1303 1304 Builder.SetInsertPoint(ReleasedLoadBB); 1305 Value *SecondLoad; 1306 if (HasReleasedLoadBB) { 1307 SecondLoad = 1308 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1309 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1310 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1311 CI->getCompareOperand(), "should_store"); 1312 1313 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1314 // jump straight past that fence instruction (if it exists). 1315 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1316 // Update PHI node in TryStoreBB. 1317 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1318 } else 1319 Builder.CreateUnreachable(); 1320 1321 // Make sure later instructions don't get reordered with a fence if 1322 // necessary. 1323 Builder.SetInsertPoint(SuccessBB); 1324 if (ShouldInsertFencesForAtomic) 1325 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1326 Builder.CreateBr(ExitBB); 1327 1328 Builder.SetInsertPoint(NoStoreBB); 1329 PHINode *LoadedNoStore = 1330 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1331 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1332 if (HasReleasedLoadBB) 1333 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1334 1335 // In the failing case, where we don't execute the store-conditional, the 1336 // target might want to balance out the load-linked with a dedicated 1337 // instruction (e.g., on ARM, clearing the exclusive monitor). 1338 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1339 Builder.CreateBr(FailureBB); 1340 1341 Builder.SetInsertPoint(FailureBB); 1342 PHINode *LoadedFailure = 1343 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1344 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1345 if (CI->isWeak()) 1346 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1347 if (ShouldInsertFencesForAtomic) 1348 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1349 Builder.CreateBr(ExitBB); 1350 1351 // Finally, we have control-flow based knowledge of whether the cmpxchg 1352 // succeeded or not. We expose this to later passes by converting any 1353 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1354 // PHI. 1355 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1356 PHINode *LoadedExit = 1357 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1358 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1359 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1360 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1361 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1362 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1363 1364 // This is the "exit value" from the cmpxchg expansion. It may be of 1365 // a type wider than the one in the cmpxchg instruction. 1366 Value *LoadedFull = LoadedExit; 1367 1368 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1369 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1370 1371 // Look for any users of the cmpxchg that are just comparing the loaded value 1372 // against the desired one, and replace them with the CFG-derived version. 1373 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1374 for (auto User : CI->users()) { 1375 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1376 if (!EV) 1377 continue; 1378 1379 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1380 "weird extraction from { iN, i1 }"); 1381 1382 if (EV->getIndices()[0] == 0) 1383 EV->replaceAllUsesWith(Loaded); 1384 else 1385 EV->replaceAllUsesWith(Success); 1386 1387 PrunedInsts.push_back(EV); 1388 } 1389 1390 // We can remove the instructions now we're no longer iterating through them. 1391 for (auto EV : PrunedInsts) 1392 EV->eraseFromParent(); 1393 1394 if (!CI->use_empty()) { 1395 // Some use of the full struct return that we don't understand has happened, 1396 // so we've got to reconstruct it properly. 1397 Value *Res; 1398 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1399 Res = Builder.CreateInsertValue(Res, Success, 1); 1400 1401 CI->replaceAllUsesWith(Res); 1402 } 1403 1404 CI->eraseFromParent(); 1405 return true; 1406 } 1407 1408 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1409 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1410 if(!C) 1411 return false; 1412 1413 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1414 switch(Op) { 1415 case AtomicRMWInst::Add: 1416 case AtomicRMWInst::Sub: 1417 case AtomicRMWInst::Or: 1418 case AtomicRMWInst::Xor: 1419 return C->isZero(); 1420 case AtomicRMWInst::And: 1421 return C->isMinusOne(); 1422 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1423 default: 1424 return false; 1425 } 1426 } 1427 1428 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1429 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1430 tryExpandAtomicLoad(ResultingLoad); 1431 return true; 1432 } 1433 return false; 1434 } 1435 1436 Value *AtomicExpand::insertRMWCmpXchgLoop( 1437 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1438 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1439 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1440 CreateCmpXchgInstFun CreateCmpXchg) { 1441 LLVMContext &Ctx = Builder.getContext(); 1442 BasicBlock *BB = Builder.GetInsertBlock(); 1443 Function *F = BB->getParent(); 1444 1445 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1446 // 1447 // The standard expansion we produce is: 1448 // [...] 1449 // %init_loaded = load atomic iN* %addr 1450 // br label %loop 1451 // loop: 1452 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1453 // %new = some_op iN %loaded, %incr 1454 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1455 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1456 // %success = extractvalue { iN, i1 } %pair, 1 1457 // br i1 %success, label %atomicrmw.end, label %loop 1458 // atomicrmw.end: 1459 // [...] 1460 BasicBlock *ExitBB = 1461 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1462 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1463 1464 // The split call above "helpfully" added a branch at the end of BB (to the 1465 // wrong place), but we want a load. It's easiest to just remove 1466 // the branch entirely. 1467 std::prev(BB->end())->eraseFromParent(); 1468 Builder.SetInsertPoint(BB); 1469 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1470 Builder.CreateBr(LoopBB); 1471 1472 // Start the main loop block now that we've taken care of the preliminaries. 1473 Builder.SetInsertPoint(LoopBB); 1474 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1475 Loaded->addIncoming(InitLoaded, BB); 1476 1477 Value *NewVal = PerformOp(Builder, Loaded); 1478 1479 Value *NewLoaded = nullptr; 1480 Value *Success = nullptr; 1481 1482 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1483 MemOpOrder == AtomicOrdering::Unordered 1484 ? AtomicOrdering::Monotonic 1485 : MemOpOrder, 1486 SSID, Success, NewLoaded); 1487 assert(Success && NewLoaded); 1488 1489 Loaded->addIncoming(NewLoaded, LoopBB); 1490 1491 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1492 1493 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1494 return NewLoaded; 1495 } 1496 1497 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1498 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1499 unsigned ValueSize = getAtomicOpSize(CI); 1500 1501 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1502 default: 1503 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1504 case TargetLoweringBase::AtomicExpansionKind::None: 1505 if (ValueSize < MinCASSize) 1506 return expandPartwordCmpXchg(CI); 1507 return false; 1508 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1509 return expandAtomicCmpXchg(CI); 1510 } 1511 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1512 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1513 return true; 1514 } 1515 } 1516 1517 // Note: This function is exposed externally by AtomicExpandUtils.h 1518 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1519 CreateCmpXchgInstFun CreateCmpXchg) { 1520 IRBuilder<> Builder(AI); 1521 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1522 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1523 AI->getOrdering(), AI->getSyncScopeID(), 1524 [&](IRBuilder<> &Builder, Value *Loaded) { 1525 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1526 AI->getValOperand()); 1527 }, 1528 CreateCmpXchg); 1529 1530 AI->replaceAllUsesWith(Loaded); 1531 AI->eraseFromParent(); 1532 return true; 1533 } 1534 1535 // In order to use one of the sized library calls such as 1536 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1537 // must be one of the potentially-specialized sizes, and the value 1538 // type must actually exist in C on the target (otherwise, the 1539 // function wouldn't actually be defined.) 1540 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1541 const DataLayout &DL) { 1542 // TODO: "LargestSize" is an approximation for "largest type that 1543 // you can express in C". It seems to be the case that int128 is 1544 // supported on all 64-bit platforms, otherwise only up to 64-bit 1545 // integers are supported. If we get this wrong, then we'll try to 1546 // call a sized libcall that doesn't actually exist. There should 1547 // really be some more reliable way in LLVM of determining integer 1548 // sizes which are valid in the target's C ABI... 1549 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1550 return Alignment >= Size && 1551 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1552 Size <= LargestSize; 1553 } 1554 1555 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1556 static const RTLIB::Libcall Libcalls[6] = { 1557 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1558 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1559 unsigned Size = getAtomicOpSize(I); 1560 1561 bool expanded = expandAtomicOpToLibcall( 1562 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1563 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1564 if (!expanded) 1565 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1566 } 1567 1568 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1569 static const RTLIB::Libcall Libcalls[6] = { 1570 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1571 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1572 unsigned Size = getAtomicOpSize(I); 1573 1574 bool expanded = expandAtomicOpToLibcall( 1575 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1576 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1577 if (!expanded) 1578 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1579 } 1580 1581 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1582 static const RTLIB::Libcall Libcalls[6] = { 1583 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1584 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1585 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1586 unsigned Size = getAtomicOpSize(I); 1587 1588 bool expanded = expandAtomicOpToLibcall( 1589 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1590 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1591 Libcalls); 1592 if (!expanded) 1593 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1594 } 1595 1596 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1597 static const RTLIB::Libcall LibcallsXchg[6] = { 1598 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1599 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1600 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1601 static const RTLIB::Libcall LibcallsAdd[6] = { 1602 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1603 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1604 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1605 static const RTLIB::Libcall LibcallsSub[6] = { 1606 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1607 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1608 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1609 static const RTLIB::Libcall LibcallsAnd[6] = { 1610 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1611 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1612 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1613 static const RTLIB::Libcall LibcallsOr[6] = { 1614 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1615 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1616 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1617 static const RTLIB::Libcall LibcallsXor[6] = { 1618 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1619 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1620 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1621 static const RTLIB::Libcall LibcallsNand[6] = { 1622 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1623 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1624 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1625 1626 switch (Op) { 1627 case AtomicRMWInst::BAD_BINOP: 1628 llvm_unreachable("Should not have BAD_BINOP."); 1629 case AtomicRMWInst::Xchg: 1630 return makeArrayRef(LibcallsXchg); 1631 case AtomicRMWInst::Add: 1632 return makeArrayRef(LibcallsAdd); 1633 case AtomicRMWInst::Sub: 1634 return makeArrayRef(LibcallsSub); 1635 case AtomicRMWInst::And: 1636 return makeArrayRef(LibcallsAnd); 1637 case AtomicRMWInst::Or: 1638 return makeArrayRef(LibcallsOr); 1639 case AtomicRMWInst::Xor: 1640 return makeArrayRef(LibcallsXor); 1641 case AtomicRMWInst::Nand: 1642 return makeArrayRef(LibcallsNand); 1643 case AtomicRMWInst::Max: 1644 case AtomicRMWInst::Min: 1645 case AtomicRMWInst::UMax: 1646 case AtomicRMWInst::UMin: 1647 case AtomicRMWInst::FAdd: 1648 case AtomicRMWInst::FSub: 1649 // No atomic libcalls are available for max/min/umax/umin. 1650 return {}; 1651 } 1652 llvm_unreachable("Unexpected AtomicRMW operation."); 1653 } 1654 1655 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1656 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1657 1658 unsigned Size = getAtomicOpSize(I); 1659 1660 bool Success = false; 1661 if (!Libcalls.empty()) 1662 Success = expandAtomicOpToLibcall( 1663 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1664 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1665 1666 // The expansion failed: either there were no libcalls at all for 1667 // the operation (min/max), or there were only size-specialized 1668 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1669 // CAS libcall, via a CAS loop, instead. 1670 if (!Success) { 1671 expandAtomicRMWToCmpXchg( 1672 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1673 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1674 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1675 // Create the CAS instruction normally... 1676 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1677 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1678 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1679 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1680 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1681 1682 // ...and then expand the CAS into a libcall. 1683 expandAtomicCASToLibcall(Pair); 1684 }); 1685 } 1686 } 1687 1688 // A helper routine for the above expandAtomic*ToLibcall functions. 1689 // 1690 // 'Libcalls' contains an array of enum values for the particular 1691 // ATOMIC libcalls to be emitted. All of the other arguments besides 1692 // 'I' are extracted from the Instruction subclass by the 1693 // caller. Depending on the particular call, some will be null. 1694 bool AtomicExpand::expandAtomicOpToLibcall( 1695 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1696 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1697 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1698 assert(Libcalls.size() == 6); 1699 1700 LLVMContext &Ctx = I->getContext(); 1701 Module *M = I->getModule(); 1702 const DataLayout &DL = M->getDataLayout(); 1703 IRBuilder<> Builder(I); 1704 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1705 1706 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1707 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1708 1709 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1710 1711 // TODO: the "order" argument type is "int", not int32. So 1712 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1713 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1714 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1715 Constant *OrderingVal = 1716 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1717 Constant *Ordering2Val = nullptr; 1718 if (CASExpected) { 1719 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1720 Ordering2Val = 1721 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1722 } 1723 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1724 1725 RTLIB::Libcall RTLibType; 1726 if (UseSizedLibcall) { 1727 switch (Size) { 1728 case 1: RTLibType = Libcalls[1]; break; 1729 case 2: RTLibType = Libcalls[2]; break; 1730 case 4: RTLibType = Libcalls[3]; break; 1731 case 8: RTLibType = Libcalls[4]; break; 1732 case 16: RTLibType = Libcalls[5]; break; 1733 } 1734 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1735 RTLibType = Libcalls[0]; 1736 } else { 1737 // Can't use sized function, and there's no generic for this 1738 // operation, so give up. 1739 return false; 1740 } 1741 1742 if (!TLI->getLibcallName(RTLibType)) { 1743 // This target does not implement the requested atomic libcall so give up. 1744 return false; 1745 } 1746 1747 // Build up the function call. There's two kinds. First, the sized 1748 // variants. These calls are going to be one of the following (with 1749 // N=1,2,4,8,16): 1750 // iN __atomic_load_N(iN *ptr, int ordering) 1751 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1752 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1753 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1754 // int success_order, int failure_order) 1755 // 1756 // Note that these functions can be used for non-integer atomic 1757 // operations, the values just need to be bitcast to integers on the 1758 // way in and out. 1759 // 1760 // And, then, the generic variants. They look like the following: 1761 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1762 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1763 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1764 // int ordering) 1765 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1766 // void *desired, int success_order, 1767 // int failure_order) 1768 // 1769 // The different signatures are built up depending on the 1770 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1771 // variables. 1772 1773 AllocaInst *AllocaCASExpected = nullptr; 1774 Value *AllocaCASExpected_i8 = nullptr; 1775 AllocaInst *AllocaValue = nullptr; 1776 Value *AllocaValue_i8 = nullptr; 1777 AllocaInst *AllocaResult = nullptr; 1778 Value *AllocaResult_i8 = nullptr; 1779 1780 Type *ResultTy; 1781 SmallVector<Value *, 6> Args; 1782 AttributeList Attr; 1783 1784 // 'size' argument. 1785 if (!UseSizedLibcall) { 1786 // Note, getIntPtrType is assumed equivalent to size_t. 1787 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1788 } 1789 1790 // 'ptr' argument. 1791 // note: This assumes all address spaces share a common libfunc 1792 // implementation and that addresses are convertable. For systems without 1793 // that property, we'd need to extend this mechanism to support AS-specific 1794 // families of atomic intrinsics. 1795 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1796 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1797 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1798 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1799 Args.push_back(PtrVal); 1800 1801 // 'expected' argument, if present. 1802 if (CASExpected) { 1803 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1804 AllocaCASExpected->setAlignment(AllocaAlignment); 1805 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1806 1807 AllocaCASExpected_i8 = 1808 Builder.CreateBitCast(AllocaCASExpected, 1809 Type::getInt8PtrTy(Ctx, AllocaAS)); 1810 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1811 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1812 Args.push_back(AllocaCASExpected_i8); 1813 } 1814 1815 // 'val' argument ('desired' for cas), if present. 1816 if (ValueOperand) { 1817 if (UseSizedLibcall) { 1818 Value *IntValue = 1819 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1820 Args.push_back(IntValue); 1821 } else { 1822 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1823 AllocaValue->setAlignment(AllocaAlignment); 1824 AllocaValue_i8 = 1825 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1826 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1827 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1828 Args.push_back(AllocaValue_i8); 1829 } 1830 } 1831 1832 // 'ret' argument. 1833 if (!CASExpected && HasResult && !UseSizedLibcall) { 1834 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1835 AllocaResult->setAlignment(AllocaAlignment); 1836 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1837 AllocaResult_i8 = 1838 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1839 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1840 Args.push_back(AllocaResult_i8); 1841 } 1842 1843 // 'ordering' ('success_order' for cas) argument. 1844 Args.push_back(OrderingVal); 1845 1846 // 'failure_order' argument, if present. 1847 if (Ordering2Val) 1848 Args.push_back(Ordering2Val); 1849 1850 // Now, the return type. 1851 if (CASExpected) { 1852 ResultTy = Type::getInt1Ty(Ctx); 1853 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1854 } else if (HasResult && UseSizedLibcall) 1855 ResultTy = SizedIntTy; 1856 else 1857 ResultTy = Type::getVoidTy(Ctx); 1858 1859 // Done with setting up arguments and return types, create the call: 1860 SmallVector<Type *, 6> ArgTys; 1861 for (Value *Arg : Args) 1862 ArgTys.push_back(Arg->getType()); 1863 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1864 FunctionCallee LibcallFn = 1865 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1866 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1867 Call->setAttributes(Attr); 1868 Value *Result = Call; 1869 1870 // And then, extract the results... 1871 if (ValueOperand && !UseSizedLibcall) 1872 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1873 1874 if (CASExpected) { 1875 // The final result from the CAS is {load of 'expected' alloca, bool result 1876 // from call} 1877 Type *FinalResultTy = I->getType(); 1878 Value *V = UndefValue::get(FinalResultTy); 1879 Value *ExpectedOut = Builder.CreateAlignedLoad( 1880 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1881 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1882 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1883 V = Builder.CreateInsertValue(V, Result, 1); 1884 I->replaceAllUsesWith(V); 1885 } else if (HasResult) { 1886 Value *V; 1887 if (UseSizedLibcall) 1888 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1889 else { 1890 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1891 AllocaAlignment); 1892 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1893 } 1894 I->replaceAllUsesWith(V); 1895 } 1896 I->eraseFromParent(); 1897 return true; 1898 } 1899