xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstSimplifyFolder.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/CodeGen/AtomicExpand.h"
23 #include "llvm/CodeGen/AtomicExpandUtils.h"
24 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Transforms/Utils/LowerAtomic.h"
55 #include <cassert>
56 #include <cstdint>
57 #include <iterator>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "atomic-expand"
62 
63 namespace {
64 
65 class AtomicExpandImpl {
66   const TargetLowering *TLI = nullptr;
67   const DataLayout *DL = nullptr;
68 
69 private:
70   bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
71   IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
72   LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
73   bool tryExpandAtomicLoad(LoadInst *LI);
74   bool expandAtomicLoadToLL(LoadInst *LI);
75   bool expandAtomicLoadToCmpXchg(LoadInst *LI);
76   StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
77   bool tryExpandAtomicStore(StoreInst *SI);
78   void expandAtomicStore(StoreInst *SI);
79   bool tryExpandAtomicRMW(AtomicRMWInst *AI);
80   AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
81   Value *
82   insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr,
83                     Align AddrAlign, AtomicOrdering MemOpOrder,
84                     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
85   void expandAtomicOpToLLSC(
86       Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
87       AtomicOrdering MemOpOrder,
88       function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
89   void expandPartwordAtomicRMW(
90       AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91   AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92   bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93   void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94   void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95 
96   AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97   static Value *insertRMWCmpXchgLoop(
98       IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
99       AtomicOrdering MemOpOrder, SyncScope::ID SSID,
100       function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
101       CreateCmpXchgInstFun CreateCmpXchg);
102   bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103 
104   bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105   bool isIdempotentRMW(AtomicRMWInst *RMWI);
106   bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107 
108   bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
109                                Value *PointerOperand, Value *ValueOperand,
110                                Value *CASExpected, AtomicOrdering Ordering,
111                                AtomicOrdering Ordering2,
112                                ArrayRef<RTLIB::Libcall> Libcalls);
113   void expandAtomicLoadToLibcall(LoadInst *LI);
114   void expandAtomicStoreToLibcall(StoreInst *LI);
115   void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116   void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117 
118   friend bool
119   llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120                                  CreateCmpXchgInstFun CreateCmpXchg);
121 
122 public:
123   bool run(Function &F, const TargetMachine *TM);
124 };
125 
126 class AtomicExpandLegacy : public FunctionPass {
127 public:
128   static char ID; // Pass identification, replacement for typeid
129 
130   AtomicExpandLegacy() : FunctionPass(ID) {
131     initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry());
132   }
133 
134   bool runOnFunction(Function &F) override;
135 };
136 
137 // IRBuilder to be used for replacement atomic instructions.
138 struct ReplacementIRBuilder
139     : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> {
140   MDNode *MMRAMD = nullptr;
141 
142   // Preserves the DebugLoc from I, and preserves still valid metadata.
143   // Enable StrictFP builder mode when appropriate.
144   explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL)
145       : IRBuilder(I->getContext(), DL,
146                   IRBuilderCallbackInserter(
147                       [this](Instruction *I) { addMMRAMD(I); })) {
148     SetInsertPoint(I);
149     this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections});
150     if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP))
151       this->setIsFPConstrained(true);
152 
153     MMRAMD = I->getMetadata(LLVMContext::MD_mmra);
154   }
155 
156   void addMMRAMD(Instruction *I) {
157     if (canInstructionHaveMMRAs(*I))
158       I->setMetadata(LLVMContext::MD_mmra, MMRAMD);
159   }
160 };
161 
162 } // end anonymous namespace
163 
164 char AtomicExpandLegacy::ID = 0;
165 
166 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID;
167 
168 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE,
169                       "Expand Atomic instructions", false, false)
170 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
171 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE,
172                     "Expand Atomic instructions", false, false)
173 
174 // Helper functions to retrieve the size of atomic instructions.
175 static unsigned getAtomicOpSize(LoadInst *LI) {
176   const DataLayout &DL = LI->getDataLayout();
177   return DL.getTypeStoreSize(LI->getType());
178 }
179 
180 static unsigned getAtomicOpSize(StoreInst *SI) {
181   const DataLayout &DL = SI->getDataLayout();
182   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
183 }
184 
185 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
186   const DataLayout &DL = RMWI->getDataLayout();
187   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
188 }
189 
190 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
191   const DataLayout &DL = CASI->getDataLayout();
192   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
193 }
194 
195 // Determine if a particular atomic operation has a supported size,
196 // and is of appropriate alignment, to be passed through for target
197 // lowering. (Versus turning into a __atomic libcall)
198 template <typename Inst>
199 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
200   unsigned Size = getAtomicOpSize(I);
201   Align Alignment = I->getAlign();
202   return Alignment >= Size &&
203          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
204 }
205 
206 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) {
207   const auto *Subtarget = TM->getSubtargetImpl(F);
208   if (!Subtarget->enableAtomicExpand())
209     return false;
210   TLI = Subtarget->getTargetLowering();
211   DL = &F.getDataLayout();
212 
213   SmallVector<Instruction *, 1> AtomicInsts;
214 
215   // Changing control-flow while iterating through it is a bad idea, so gather a
216   // list of all atomic instructions before we start.
217   for (Instruction &I : instructions(F))
218     if (I.isAtomic() && !isa<FenceInst>(&I))
219       AtomicInsts.push_back(&I);
220 
221   bool MadeChange = false;
222   for (auto *I : AtomicInsts) {
223     auto LI = dyn_cast<LoadInst>(I);
224     auto SI = dyn_cast<StoreInst>(I);
225     auto RMWI = dyn_cast<AtomicRMWInst>(I);
226     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
227     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
228 
229     // If the Size/Alignment is not supported, replace with a libcall.
230     if (LI) {
231       if (!atomicSizeSupported(TLI, LI)) {
232         expandAtomicLoadToLibcall(LI);
233         MadeChange = true;
234         continue;
235       }
236     } else if (SI) {
237       if (!atomicSizeSupported(TLI, SI)) {
238         expandAtomicStoreToLibcall(SI);
239         MadeChange = true;
240         continue;
241       }
242     } else if (RMWI) {
243       if (!atomicSizeSupported(TLI, RMWI)) {
244         expandAtomicRMWToLibcall(RMWI);
245         MadeChange = true;
246         continue;
247       }
248     } else if (CASI) {
249       if (!atomicSizeSupported(TLI, CASI)) {
250         expandAtomicCASToLibcall(CASI);
251         MadeChange = true;
252         continue;
253       }
254     }
255 
256     if (LI && TLI->shouldCastAtomicLoadInIR(LI) ==
257                   TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
258       I = LI = convertAtomicLoadToIntegerType(LI);
259       MadeChange = true;
260     } else if (SI &&
261                TLI->shouldCastAtomicStoreInIR(SI) ==
262                    TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
263       I = SI = convertAtomicStoreToIntegerType(SI);
264       MadeChange = true;
265     } else if (RMWI &&
266                TLI->shouldCastAtomicRMWIInIR(RMWI) ==
267                    TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
268       I = RMWI = convertAtomicXchgToIntegerType(RMWI);
269       MadeChange = true;
270     } else if (CASI) {
271       // TODO: when we're ready to make the change at the IR level, we can
272       // extend convertCmpXchgToInteger for floating point too.
273       if (CASI->getCompareOperand()->getType()->isPointerTy()) {
274         // TODO: add a TLI hook to control this so that each target can
275         // convert to lowering the original type one at a time.
276         I = CASI = convertCmpXchgToIntegerType(CASI);
277         MadeChange = true;
278       }
279     }
280 
281     if (TLI->shouldInsertFencesForAtomic(I)) {
282       auto FenceOrdering = AtomicOrdering::Monotonic;
283       if (LI && isAcquireOrStronger(LI->getOrdering())) {
284         FenceOrdering = LI->getOrdering();
285         LI->setOrdering(AtomicOrdering::Monotonic);
286       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
287         FenceOrdering = SI->getOrdering();
288         SI->setOrdering(AtomicOrdering::Monotonic);
289       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
290                           isAcquireOrStronger(RMWI->getOrdering()))) {
291         FenceOrdering = RMWI->getOrdering();
292         RMWI->setOrdering(AtomicOrdering::Monotonic);
293       } else if (CASI &&
294                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
295                      TargetLoweringBase::AtomicExpansionKind::None &&
296                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
297                   isAcquireOrStronger(CASI->getSuccessOrdering()) ||
298                   isAcquireOrStronger(CASI->getFailureOrdering()))) {
299         // If a compare and swap is lowered to LL/SC, we can do smarter fence
300         // insertion, with a stronger one on the success path than on the
301         // failure path. As a result, fence insertion is directly done by
302         // expandAtomicCmpXchg in that case.
303         FenceOrdering = CASI->getMergedOrdering();
304         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
305         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
306       }
307 
308       if (FenceOrdering != AtomicOrdering::Monotonic) {
309         MadeChange |= bracketInstWithFences(I, FenceOrdering);
310       }
311     } else if (I->hasAtomicStore() &&
312                TLI->shouldInsertTrailingFenceForAtomicStore(I)) {
313       auto FenceOrdering = AtomicOrdering::Monotonic;
314       if (SI)
315         FenceOrdering = SI->getOrdering();
316       else if (RMWI)
317         FenceOrdering = RMWI->getOrdering();
318       else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) !=
319                            TargetLoweringBase::AtomicExpansionKind::LLSC)
320         // LLSC is handled in expandAtomicCmpXchg().
321         FenceOrdering = CASI->getSuccessOrdering();
322 
323       IRBuilder Builder(I);
324       if (auto TrailingFence =
325               TLI->emitTrailingFence(Builder, I, FenceOrdering)) {
326         TrailingFence->moveAfter(I);
327         MadeChange = true;
328       }
329     }
330 
331     if (LI)
332       MadeChange |= tryExpandAtomicLoad(LI);
333     else if (SI)
334       MadeChange |= tryExpandAtomicStore(SI);
335     else if (RMWI) {
336       // There are two different ways of expanding RMW instructions:
337       // - into a load if it is idempotent
338       // - into a Cmpxchg/LL-SC loop otherwise
339       // we try them in that order.
340 
341       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
342         MadeChange = true;
343       } else {
344         MadeChange |= tryExpandAtomicRMW(RMWI);
345       }
346     } else if (CASI)
347       MadeChange |= tryExpandAtomicCmpXchg(CASI);
348   }
349   return MadeChange;
350 }
351 
352 bool AtomicExpandLegacy::runOnFunction(Function &F) {
353 
354   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
355   if (!TPC)
356     return false;
357   auto *TM = &TPC->getTM<TargetMachine>();
358   AtomicExpandImpl AE;
359   return AE.run(F, TM);
360 }
361 
362 FunctionPass *llvm::createAtomicExpandLegacyPass() {
363   return new AtomicExpandLegacy();
364 }
365 
366 PreservedAnalyses AtomicExpandPass::run(Function &F,
367                                         FunctionAnalysisManager &AM) {
368   AtomicExpandImpl AE;
369 
370   bool Changed = AE.run(F, TM);
371   if (!Changed)
372     return PreservedAnalyses::all();
373 
374   return PreservedAnalyses::none();
375 }
376 
377 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I,
378                                              AtomicOrdering Order) {
379   ReplacementIRBuilder Builder(I, *DL);
380 
381   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
382 
383   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
384   // We have a guard here because not every atomic operation generates a
385   // trailing fence.
386   if (TrailingFence)
387     TrailingFence->moveAfter(I);
388 
389   return (LeadingFence || TrailingFence);
390 }
391 
392 /// Get the iX type with the same bitwidth as T.
393 IntegerType *
394 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) {
395   EVT VT = TLI->getMemValueType(DL, T);
396   unsigned BitWidth = VT.getStoreSizeInBits();
397   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
398   return IntegerType::get(T->getContext(), BitWidth);
399 }
400 
401 /// Convert an atomic load of a non-integral type to an integer load of the
402 /// equivalent bitwidth.  See the function comment on
403 /// convertAtomicStoreToIntegerType for background.
404 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) {
405   auto *M = LI->getModule();
406   Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
407 
408   ReplacementIRBuilder Builder(LI, *DL);
409 
410   Value *Addr = LI->getPointerOperand();
411 
412   auto *NewLI = Builder.CreateLoad(NewTy, Addr);
413   NewLI->setAlignment(LI->getAlign());
414   NewLI->setVolatile(LI->isVolatile());
415   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
416   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
417 
418   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
419   LI->replaceAllUsesWith(NewVal);
420   LI->eraseFromParent();
421   return NewLI;
422 }
423 
424 AtomicRMWInst *
425 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
426   auto *M = RMWI->getModule();
427   Type *NewTy =
428       getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
429 
430   ReplacementIRBuilder Builder(RMWI, *DL);
431 
432   Value *Addr = RMWI->getPointerOperand();
433   Value *Val = RMWI->getValOperand();
434   Value *NewVal = Val->getType()->isPointerTy()
435                       ? Builder.CreatePtrToInt(Val, NewTy)
436                       : Builder.CreateBitCast(Val, NewTy);
437 
438   auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal,
439                                           RMWI->getAlign(), RMWI->getOrdering(),
440                                           RMWI->getSyncScopeID());
441   NewRMWI->setVolatile(RMWI->isVolatile());
442   LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
443 
444   Value *NewRVal = RMWI->getType()->isPointerTy()
445                        ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
446                        : Builder.CreateBitCast(NewRMWI, RMWI->getType());
447   RMWI->replaceAllUsesWith(NewRVal);
448   RMWI->eraseFromParent();
449   return NewRMWI;
450 }
451 
452 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) {
453   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
454   case TargetLoweringBase::AtomicExpansionKind::None:
455     return false;
456   case TargetLoweringBase::AtomicExpansionKind::LLSC:
457     expandAtomicOpToLLSC(
458         LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
459         LI->getOrdering(),
460         [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; });
461     return true;
462   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
463     return expandAtomicLoadToLL(LI);
464   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
465     return expandAtomicLoadToCmpXchg(LI);
466   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
467     LI->setAtomic(AtomicOrdering::NotAtomic);
468     return true;
469   default:
470     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
471   }
472 }
473 
474 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) {
475   switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
476   case TargetLoweringBase::AtomicExpansionKind::None:
477     return false;
478   case TargetLoweringBase::AtomicExpansionKind::Expand:
479     expandAtomicStore(SI);
480     return true;
481   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
482     SI->setAtomic(AtomicOrdering::NotAtomic);
483     return true;
484   default:
485     llvm_unreachable("Unhandled case in tryExpandAtomicStore");
486   }
487 }
488 
489 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) {
490   ReplacementIRBuilder Builder(LI, *DL);
491 
492   // On some architectures, load-linked instructions are atomic for larger
493   // sizes than normal loads. For example, the only 64-bit load guaranteed
494   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
495   Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
496                                    LI->getPointerOperand(), LI->getOrdering());
497   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
498 
499   LI->replaceAllUsesWith(Val);
500   LI->eraseFromParent();
501 
502   return true;
503 }
504 
505 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) {
506   ReplacementIRBuilder Builder(LI, *DL);
507   AtomicOrdering Order = LI->getOrdering();
508   if (Order == AtomicOrdering::Unordered)
509     Order = AtomicOrdering::Monotonic;
510 
511   Value *Addr = LI->getPointerOperand();
512   Type *Ty = LI->getType();
513   Constant *DummyVal = Constant::getNullValue(Ty);
514 
515   Value *Pair = Builder.CreateAtomicCmpXchg(
516       Addr, DummyVal, DummyVal, LI->getAlign(), Order,
517       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
518   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
519 
520   LI->replaceAllUsesWith(Loaded);
521   LI->eraseFromParent();
522 
523   return true;
524 }
525 
526 /// Convert an atomic store of a non-integral type to an integer store of the
527 /// equivalent bitwidth.  We used to not support floating point or vector
528 /// atomics in the IR at all.  The backends learned to deal with the bitcast
529 /// idiom because that was the only way of expressing the notion of a atomic
530 /// float or vector store.  The long term plan is to teach each backend to
531 /// instruction select from the original atomic store, but as a migration
532 /// mechanism, we convert back to the old format which the backends understand.
533 /// Each backend will need individual work to recognize the new format.
534 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) {
535   ReplacementIRBuilder Builder(SI, *DL);
536   auto *M = SI->getModule();
537   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
538                                             M->getDataLayout());
539   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
540 
541   Value *Addr = SI->getPointerOperand();
542 
543   StoreInst *NewSI = Builder.CreateStore(NewVal, Addr);
544   NewSI->setAlignment(SI->getAlign());
545   NewSI->setVolatile(SI->isVolatile());
546   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
547   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
548   SI->eraseFromParent();
549   return NewSI;
550 }
551 
552 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) {
553   // This function is only called on atomic stores that are too large to be
554   // atomic if implemented as a native store. So we replace them by an
555   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
556   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
557   // It is the responsibility of the target to only signal expansion via
558   // shouldExpandAtomicRMW in cases where this is required and possible.
559   ReplacementIRBuilder Builder(SI, *DL);
560   AtomicOrdering Ordering = SI->getOrdering();
561   assert(Ordering != AtomicOrdering::NotAtomic);
562   AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
563                                    ? AtomicOrdering::Monotonic
564                                    : Ordering;
565   AtomicRMWInst *AI = Builder.CreateAtomicRMW(
566       AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
567       SI->getAlign(), RMWOrdering);
568   SI->eraseFromParent();
569 
570   // Now we have an appropriate swap instruction, lower it as usual.
571   tryExpandAtomicRMW(AI);
572 }
573 
574 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr,
575                                  Value *Loaded, Value *NewVal, Align AddrAlign,
576                                  AtomicOrdering MemOpOrder, SyncScope::ID SSID,
577                                  Value *&Success, Value *&NewLoaded) {
578   Type *OrigTy = NewVal->getType();
579 
580   // This code can go away when cmpxchg supports FP and vector types.
581   assert(!OrigTy->isPointerTy());
582   bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy();
583   if (NeedBitcast) {
584     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
585     NewVal = Builder.CreateBitCast(NewVal, IntTy);
586     Loaded = Builder.CreateBitCast(Loaded, IntTy);
587   }
588 
589   Value *Pair = Builder.CreateAtomicCmpXchg(
590       Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
591       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
592   Success = Builder.CreateExtractValue(Pair, 1, "success");
593   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
594 
595   if (NeedBitcast)
596     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
597 }
598 
599 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) {
600   LLVMContext &Ctx = AI->getModule()->getContext();
601   TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
602   switch (Kind) {
603   case TargetLoweringBase::AtomicExpansionKind::None:
604     return false;
605   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
606     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
607     unsigned ValueSize = getAtomicOpSize(AI);
608     if (ValueSize < MinCASSize) {
609       expandPartwordAtomicRMW(AI,
610                               TargetLoweringBase::AtomicExpansionKind::LLSC);
611     } else {
612       auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) {
613         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
614                                    AI->getValOperand());
615       };
616       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
617                            AI->getAlign(), AI->getOrdering(), PerformOp);
618     }
619     return true;
620   }
621   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
622     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
623     unsigned ValueSize = getAtomicOpSize(AI);
624     if (ValueSize < MinCASSize) {
625       expandPartwordAtomicRMW(AI,
626                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
627     } else {
628       SmallVector<StringRef> SSNs;
629       Ctx.getSyncScopeNames(SSNs);
630       auto MemScope = SSNs[AI->getSyncScopeID()].empty()
631                           ? "system"
632                           : SSNs[AI->getSyncScopeID()];
633       OptimizationRemarkEmitter ORE(AI->getFunction());
634       ORE.emit([&]() {
635         return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
636                << "A compare and swap loop was generated for an atomic "
637                << AI->getOperationName(AI->getOperation()) << " operation at "
638                << MemScope << " memory scope";
639       });
640       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
641     }
642     return true;
643   }
644   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
645     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
646     unsigned ValueSize = getAtomicOpSize(AI);
647     if (ValueSize < MinCASSize) {
648       AtomicRMWInst::BinOp Op = AI->getOperation();
649       // Widen And/Or/Xor and give the target another chance at expanding it.
650       if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
651           Op == AtomicRMWInst::And) {
652         tryExpandAtomicRMW(widenPartwordAtomicRMW(AI));
653         return true;
654       }
655     }
656     expandAtomicRMWToMaskedIntrinsic(AI);
657     return true;
658   }
659   case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
660     TLI->emitBitTestAtomicRMWIntrinsic(AI);
661     return true;
662   }
663   case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: {
664     TLI->emitCmpArithAtomicRMWIntrinsic(AI);
665     return true;
666   }
667   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
668     return lowerAtomicRMWInst(AI);
669   case TargetLoweringBase::AtomicExpansionKind::Expand:
670     TLI->emitExpandAtomicRMW(AI);
671     return true;
672   default:
673     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
674   }
675 }
676 
677 namespace {
678 
679 struct PartwordMaskValues {
680   // These three fields are guaranteed to be set by createMaskInstrs.
681   Type *WordType = nullptr;
682   Type *ValueType = nullptr;
683   Type *IntValueType = nullptr;
684   Value *AlignedAddr = nullptr;
685   Align AlignedAddrAlignment;
686   // The remaining fields can be null.
687   Value *ShiftAmt = nullptr;
688   Value *Mask = nullptr;
689   Value *Inv_Mask = nullptr;
690 };
691 
692 LLVM_ATTRIBUTE_UNUSED
693 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
694   auto PrintObj = [&O](auto *V) {
695     if (V)
696       O << *V;
697     else
698       O << "nullptr";
699     O << '\n';
700   };
701   O << "PartwordMaskValues {\n";
702   O << "  WordType: ";
703   PrintObj(PMV.WordType);
704   O << "  ValueType: ";
705   PrintObj(PMV.ValueType);
706   O << "  AlignedAddr: ";
707   PrintObj(PMV.AlignedAddr);
708   O << "  AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
709   O << "  ShiftAmt: ";
710   PrintObj(PMV.ShiftAmt);
711   O << "  Mask: ";
712   PrintObj(PMV.Mask);
713   O << "  Inv_Mask: ";
714   PrintObj(PMV.Inv_Mask);
715   O << "}\n";
716   return O;
717 }
718 
719 } // end anonymous namespace
720 
721 /// This is a helper function which builds instructions to provide
722 /// values necessary for partword atomic operations. It takes an
723 /// incoming address, Addr, and ValueType, and constructs the address,
724 /// shift-amounts and masks needed to work with a larger value of size
725 /// WordSize.
726 ///
727 /// AlignedAddr: Addr rounded down to a multiple of WordSize
728 ///
729 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
730 ///           from AlignAddr for it to have the same value as if
731 ///           ValueType was loaded from Addr.
732 ///
733 /// Mask: Value to mask with the value loaded from AlignAddr to
734 ///       include only the part that would've been loaded from Addr.
735 ///
736 /// Inv_Mask: The inverse of Mask.
737 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder,
738                                            Instruction *I, Type *ValueType,
739                                            Value *Addr, Align AddrAlign,
740                                            unsigned MinWordSize) {
741   PartwordMaskValues PMV;
742 
743   Module *M = I->getModule();
744   LLVMContext &Ctx = M->getContext();
745   const DataLayout &DL = M->getDataLayout();
746   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
747 
748   PMV.ValueType = PMV.IntValueType = ValueType;
749   if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy())
750     PMV.IntValueType =
751         Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits());
752 
753   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
754                                          : ValueType;
755   if (PMV.ValueType == PMV.WordType) {
756     PMV.AlignedAddr = Addr;
757     PMV.AlignedAddrAlignment = AddrAlign;
758     PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
759     PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
760     return PMV;
761   }
762 
763   PMV.AlignedAddrAlignment = Align(MinWordSize);
764 
765   assert(ValueSize < MinWordSize);
766 
767   PointerType *PtrTy = cast<PointerType>(Addr->getType());
768   IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace());
769   Value *PtrLSB;
770 
771   if (AddrAlign < MinWordSize) {
772     PMV.AlignedAddr = Builder.CreateIntrinsic(
773         Intrinsic::ptrmask, {PtrTy, IntTy},
774         {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr,
775         "AlignedAddr");
776 
777     Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
778     PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
779   } else {
780     // If the alignment is high enough, the LSB are known 0.
781     PMV.AlignedAddr = Addr;
782     PtrLSB = ConstantInt::getNullValue(IntTy);
783   }
784 
785   if (DL.isLittleEndian()) {
786     // turn bytes into bits
787     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
788   } else {
789     // turn bytes into bits, and count from the other side.
790     PMV.ShiftAmt = Builder.CreateShl(
791         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
792   }
793 
794   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
795   PMV.Mask = Builder.CreateShl(
796       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
797       "Mask");
798 
799   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
800 
801   return PMV;
802 }
803 
804 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord,
805                                  const PartwordMaskValues &PMV) {
806   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
807   if (PMV.WordType == PMV.ValueType)
808     return WideWord;
809 
810   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
811   Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted");
812   return Builder.CreateBitCast(Trunc, PMV.ValueType);
813 }
814 
815 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord,
816                                 Value *Updated, const PartwordMaskValues &PMV) {
817   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
818   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
819   if (PMV.WordType == PMV.ValueType)
820     return Updated;
821 
822   Updated = Builder.CreateBitCast(Updated, PMV.IntValueType);
823 
824   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
825   Value *Shift =
826       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
827   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
828   Value *Or = Builder.CreateOr(And, Shift, "inserted");
829   return Or;
830 }
831 
832 /// Emit IR to implement a masked version of a given atomicrmw
833 /// operation. (That is, only the bits under the Mask should be
834 /// affected by the operation)
835 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
836                                     IRBuilderBase &Builder, Value *Loaded,
837                                     Value *Shifted_Inc, Value *Inc,
838                                     const PartwordMaskValues &PMV) {
839   // TODO: update to use
840   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
841   // to merge bits from two values without requiring PMV.Inv_Mask.
842   switch (Op) {
843   case AtomicRMWInst::Xchg: {
844     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
845     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
846     return FinalVal;
847   }
848   case AtomicRMWInst::Or:
849   case AtomicRMWInst::Xor:
850   case AtomicRMWInst::And:
851     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
852   case AtomicRMWInst::Add:
853   case AtomicRMWInst::Sub:
854   case AtomicRMWInst::Nand: {
855     // The other arithmetic ops need to be masked into place.
856     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
857     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
858     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
859     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
860     return FinalVal;
861   }
862   case AtomicRMWInst::Max:
863   case AtomicRMWInst::Min:
864   case AtomicRMWInst::UMax:
865   case AtomicRMWInst::UMin:
866   case AtomicRMWInst::FAdd:
867   case AtomicRMWInst::FSub:
868   case AtomicRMWInst::FMin:
869   case AtomicRMWInst::FMax:
870   case AtomicRMWInst::UIncWrap:
871   case AtomicRMWInst::UDecWrap: {
872     // Finally, other ops will operate on the full value, so truncate down to
873     // the original size, and expand out again after doing the
874     // operation. Bitcasts will be inserted for FP values.
875     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
876     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
877     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
878     return FinalVal;
879   }
880   default:
881     llvm_unreachable("Unknown atomic op");
882   }
883 }
884 
885 /// Expand a sub-word atomicrmw operation into an appropriate
886 /// word-sized operation.
887 ///
888 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
889 /// way as a typical atomicrmw expansion. The only difference here is
890 /// that the operation inside of the loop may operate upon only a
891 /// part of the value.
892 void AtomicExpandImpl::expandPartwordAtomicRMW(
893     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
894   // Widen And/Or/Xor and give the target another chance at expanding it.
895   AtomicRMWInst::BinOp Op = AI->getOperation();
896   if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
897       Op == AtomicRMWInst::And) {
898     tryExpandAtomicRMW(widenPartwordAtomicRMW(AI));
899     return;
900   }
901   AtomicOrdering MemOpOrder = AI->getOrdering();
902   SyncScope::ID SSID = AI->getSyncScopeID();
903 
904   ReplacementIRBuilder Builder(AI, *DL);
905 
906   PartwordMaskValues PMV =
907       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
908                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
909 
910   Value *ValOperand_Shifted = nullptr;
911   if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add ||
912       Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) {
913     Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType);
914     ValOperand_Shifted =
915         Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt,
916                           "ValOperand_Shifted");
917   }
918 
919   auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) {
920     return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted,
921                                  AI->getValOperand(), PMV);
922   };
923 
924   Value *OldResult;
925   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
926     OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
927                                      PMV.AlignedAddrAlignment, MemOpOrder, SSID,
928                                      PerformPartwordOp, createCmpXchgInstFun);
929   } else {
930     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
931     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
932                                   PMV.AlignedAddrAlignment, MemOpOrder,
933                                   PerformPartwordOp);
934   }
935 
936   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
937   AI->replaceAllUsesWith(FinalOldResult);
938   AI->eraseFromParent();
939 }
940 
941 /// Copy metadata that's safe to preserve when widening atomics.
942 static void copyMetadataForAtomic(Instruction &Dest,
943                                   const Instruction &Source) {
944   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
945   Source.getAllMetadata(MD);
946   LLVMContext &Ctx = Dest.getContext();
947   MDBuilder MDB(Ctx);
948 
949   for (auto [ID, N] : MD) {
950     switch (ID) {
951     case LLVMContext::MD_dbg:
952     case LLVMContext::MD_tbaa:
953     case LLVMContext::MD_tbaa_struct:
954     case LLVMContext::MD_alias_scope:
955     case LLVMContext::MD_noalias:
956     case LLVMContext::MD_access_group:
957     case LLVMContext::MD_mmra:
958       Dest.setMetadata(ID, N);
959       break;
960     default:
961       if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory"))
962         Dest.setMetadata(ID, N);
963       else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory"))
964         Dest.setMetadata(ID, N);
965 
966       break;
967     }
968   }
969 }
970 
971 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
972 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
973   ReplacementIRBuilder Builder(AI, *DL);
974   AtomicRMWInst::BinOp Op = AI->getOperation();
975 
976   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
977           Op == AtomicRMWInst::And) &&
978          "Unable to widen operation");
979 
980   PartwordMaskValues PMV =
981       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
982                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
983 
984   Value *ValOperand_Shifted =
985       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
986                         PMV.ShiftAmt, "ValOperand_Shifted");
987 
988   Value *NewOperand;
989 
990   if (Op == AtomicRMWInst::And)
991     NewOperand =
992         Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand");
993   else
994     NewOperand = ValOperand_Shifted;
995 
996   AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(
997       Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment,
998       AI->getOrdering(), AI->getSyncScopeID());
999 
1000   copyMetadataForAtomic(*NewAI, *AI);
1001 
1002   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
1003   AI->replaceAllUsesWith(FinalOldResult);
1004   AI->eraseFromParent();
1005   return NewAI;
1006 }
1007 
1008 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
1009   // The basic idea here is that we're expanding a cmpxchg of a
1010   // smaller memory size up to a word-sized cmpxchg. To do this, we
1011   // need to add a retry-loop for strong cmpxchg, so that
1012   // modifications to other parts of the word don't cause a spurious
1013   // failure.
1014 
1015   // This generates code like the following:
1016   //     [[Setup mask values PMV.*]]
1017   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
1018   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
1019   //     %InitLoaded = load i32* %addr
1020   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
1021   //     br partword.cmpxchg.loop
1022   // partword.cmpxchg.loop:
1023   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
1024   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
1025   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
1026   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
1027   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
1028   //        i32 %FullWord_NewVal success_ordering failure_ordering
1029   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
1030   //     %Success = extractvalue { i32, i1 } %NewCI, 1
1031   //     br i1 %Success, label %partword.cmpxchg.end,
1032   //        label %partword.cmpxchg.failure
1033   // partword.cmpxchg.failure:
1034   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
1035   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
1036   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
1037   //         label %partword.cmpxchg.end
1038   // partword.cmpxchg.end:
1039   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
1040   //    %FinalOldVal = trunc i32 %tmp1 to i8
1041   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
1042   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
1043 
1044   Value *Addr = CI->getPointerOperand();
1045   Value *Cmp = CI->getCompareOperand();
1046   Value *NewVal = CI->getNewValOperand();
1047 
1048   BasicBlock *BB = CI->getParent();
1049   Function *F = BB->getParent();
1050   ReplacementIRBuilder Builder(CI, *DL);
1051   LLVMContext &Ctx = Builder.getContext();
1052 
1053   BasicBlock *EndBB =
1054       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
1055   auto FailureBB =
1056       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
1057   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
1058 
1059   // The split call above "helpfully" added a branch at the end of BB
1060   // (to the wrong place).
1061   std::prev(BB->end())->eraseFromParent();
1062   Builder.SetInsertPoint(BB);
1063 
1064   PartwordMaskValues PMV =
1065       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1066                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1067 
1068   // Shift the incoming values over, into the right location in the word.
1069   Value *NewVal_Shifted =
1070       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
1071   Value *Cmp_Shifted =
1072       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
1073 
1074   // Load the entire current word, and mask into place the expected and new
1075   // values
1076   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
1077   InitLoaded->setVolatile(CI->isVolatile());
1078   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
1079   Builder.CreateBr(LoopBB);
1080 
1081   // partword.cmpxchg.loop:
1082   Builder.SetInsertPoint(LoopBB);
1083   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
1084   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
1085 
1086   // Mask/Or the expected and new values into place in the loaded word.
1087   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
1088   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
1089   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
1090       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
1091       CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
1092   NewCI->setVolatile(CI->isVolatile());
1093   // When we're building a strong cmpxchg, we need a loop, so you
1094   // might think we could use a weak cmpxchg inside. But, using strong
1095   // allows the below comparison for ShouldContinue, and we're
1096   // expecting the underlying cmpxchg to be a machine instruction,
1097   // which is strong anyways.
1098   NewCI->setWeak(CI->isWeak());
1099 
1100   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1101   Value *Success = Builder.CreateExtractValue(NewCI, 1);
1102 
1103   if (CI->isWeak())
1104     Builder.CreateBr(EndBB);
1105   else
1106     Builder.CreateCondBr(Success, EndBB, FailureBB);
1107 
1108   // partword.cmpxchg.failure:
1109   Builder.SetInsertPoint(FailureBB);
1110   // Upon failure, verify that the masked-out part of the loaded value
1111   // has been modified.  If it didn't, abort the cmpxchg, since the
1112   // masked-in part must've.
1113   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
1114   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
1115   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
1116 
1117   // Add the second value to the phi from above
1118   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
1119 
1120   // partword.cmpxchg.end:
1121   Builder.SetInsertPoint(CI);
1122 
1123   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1124   Value *Res = PoisonValue::get(CI->getType());
1125   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1126   Res = Builder.CreateInsertValue(Res, Success, 1);
1127 
1128   CI->replaceAllUsesWith(Res);
1129   CI->eraseFromParent();
1130   return true;
1131 }
1132 
1133 void AtomicExpandImpl::expandAtomicOpToLLSC(
1134     Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1135     AtomicOrdering MemOpOrder,
1136     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1137   ReplacementIRBuilder Builder(I, *DL);
1138   Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1139                                     MemOpOrder, PerformOp);
1140 
1141   I->replaceAllUsesWith(Loaded);
1142   I->eraseFromParent();
1143 }
1144 
1145 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1146   ReplacementIRBuilder Builder(AI, *DL);
1147 
1148   PartwordMaskValues PMV =
1149       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1150                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1151 
1152   // The value operand must be sign-extended for signed min/max so that the
1153   // target's signed comparison instructions can be used. Otherwise, just
1154   // zero-ext.
1155   Instruction::CastOps CastOp = Instruction::ZExt;
1156   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1157   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1158     CastOp = Instruction::SExt;
1159 
1160   Value *ValOperand_Shifted = Builder.CreateShl(
1161       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1162       PMV.ShiftAmt, "ValOperand_Shifted");
1163   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1164       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1165       AI->getOrdering());
1166   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1167   AI->replaceAllUsesWith(FinalOldResult);
1168   AI->eraseFromParent();
1169 }
1170 
1171 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic(
1172     AtomicCmpXchgInst *CI) {
1173   ReplacementIRBuilder Builder(CI, *DL);
1174 
1175   PartwordMaskValues PMV = createMaskInstrs(
1176       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1177       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1178 
1179   Value *CmpVal_Shifted = Builder.CreateShl(
1180       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1181       "CmpVal_Shifted");
1182   Value *NewVal_Shifted = Builder.CreateShl(
1183       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1184       "NewVal_Shifted");
1185   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1186       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1187       CI->getMergedOrdering());
1188   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1189   Value *Res = PoisonValue::get(CI->getType());
1190   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1191   Value *Success = Builder.CreateICmpEQ(
1192       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1193   Res = Builder.CreateInsertValue(Res, Success, 1);
1194 
1195   CI->replaceAllUsesWith(Res);
1196   CI->eraseFromParent();
1197 }
1198 
1199 Value *AtomicExpandImpl::insertRMWLLSCLoop(
1200     IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1201     AtomicOrdering MemOpOrder,
1202     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1203   LLVMContext &Ctx = Builder.getContext();
1204   BasicBlock *BB = Builder.GetInsertBlock();
1205   Function *F = BB->getParent();
1206 
1207   assert(AddrAlign >=
1208              F->getDataLayout().getTypeStoreSize(ResultTy) &&
1209          "Expected at least natural alignment at this point.");
1210 
1211   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1212   //
1213   // The standard expansion we produce is:
1214   //     [...]
1215   // atomicrmw.start:
1216   //     %loaded = @load.linked(%addr)
1217   //     %new = some_op iN %loaded, %incr
1218   //     %stored = @store_conditional(%new, %addr)
1219   //     %try_again = icmp i32 ne %stored, 0
1220   //     br i1 %try_again, label %loop, label %atomicrmw.end
1221   // atomicrmw.end:
1222   //     [...]
1223   BasicBlock *ExitBB =
1224       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1225   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1226 
1227   // The split call above "helpfully" added a branch at the end of BB (to the
1228   // wrong place).
1229   std::prev(BB->end())->eraseFromParent();
1230   Builder.SetInsertPoint(BB);
1231   Builder.CreateBr(LoopBB);
1232 
1233   // Start the main loop block now that we've taken care of the preliminaries.
1234   Builder.SetInsertPoint(LoopBB);
1235   Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1236 
1237   Value *NewVal = PerformOp(Builder, Loaded);
1238 
1239   Value *StoreSuccess =
1240       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1241   Value *TryAgain = Builder.CreateICmpNE(
1242       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1243   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1244 
1245   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1246   return Loaded;
1247 }
1248 
1249 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1250 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1251 /// IR.  As a migration step, we convert back to what use to be the standard
1252 /// way to represent a pointer cmpxchg so that we can update backends one by
1253 /// one.
1254 AtomicCmpXchgInst *
1255 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1256   auto *M = CI->getModule();
1257   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1258                                             M->getDataLayout());
1259 
1260   ReplacementIRBuilder Builder(CI, *DL);
1261 
1262   Value *Addr = CI->getPointerOperand();
1263 
1264   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1265   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1266 
1267   auto *NewCI = Builder.CreateAtomicCmpXchg(
1268       Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1269       CI->getFailureOrdering(), CI->getSyncScopeID());
1270   NewCI->setVolatile(CI->isVolatile());
1271   NewCI->setWeak(CI->isWeak());
1272   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1273 
1274   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1275   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1276 
1277   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1278 
1279   Value *Res = PoisonValue::get(CI->getType());
1280   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1281   Res = Builder.CreateInsertValue(Res, Succ, 1);
1282 
1283   CI->replaceAllUsesWith(Res);
1284   CI->eraseFromParent();
1285   return NewCI;
1286 }
1287 
1288 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1289   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1290   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1291   Value *Addr = CI->getPointerOperand();
1292   BasicBlock *BB = CI->getParent();
1293   Function *F = BB->getParent();
1294   LLVMContext &Ctx = F->getContext();
1295   // If shouldInsertFencesForAtomic() returns true, then the target does not
1296   // want to deal with memory orders, and emitLeading/TrailingFence should take
1297   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1298   // should preserve the ordering.
1299   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1300   AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1301                                   ? AtomicOrdering::Monotonic
1302                                   : CI->getMergedOrdering();
1303 
1304   // In implementations which use a barrier to achieve release semantics, we can
1305   // delay emitting this barrier until we know a store is actually going to be
1306   // attempted. The cost of this delay is that we need 2 copies of the block
1307   // emitting the load-linked, affecting code size.
1308   //
1309   // Ideally, this logic would be unconditional except for the minsize check
1310   // since in other cases the extra blocks naturally collapse down to the
1311   // minimal loop. Unfortunately, this puts too much stress on later
1312   // optimisations so we avoid emitting the extra logic in those cases too.
1313   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1314                            SuccessOrder != AtomicOrdering::Monotonic &&
1315                            SuccessOrder != AtomicOrdering::Acquire &&
1316                            !F->hasMinSize();
1317 
1318   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1319   // do it even on minsize.
1320   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1321 
1322   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1323   //
1324   // The full expansion we produce is:
1325   //     [...]
1326   // %aligned.addr = ...
1327   // cmpxchg.start:
1328   //     %unreleasedload = @load.linked(%aligned.addr)
1329   //     %unreleasedload.extract = extract value from %unreleasedload
1330   //     %should_store = icmp eq %unreleasedload.extract, %desired
1331   //     br i1 %should_store, label %cmpxchg.releasingstore,
1332   //                          label %cmpxchg.nostore
1333   // cmpxchg.releasingstore:
1334   //     fence?
1335   //     br label cmpxchg.trystore
1336   // cmpxchg.trystore:
1337   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1338   //                            [%releasedload, %cmpxchg.releasedload]
1339   //     %updated.new = insert %new into %loaded.trystore
1340   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1341   //     %success = icmp eq i32 %stored, 0
1342   //     br i1 %success, label %cmpxchg.success,
1343   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1344   // cmpxchg.releasedload:
1345   //     %releasedload = @load.linked(%aligned.addr)
1346   //     %releasedload.extract = extract value from %releasedload
1347   //     %should_store = icmp eq %releasedload.extract, %desired
1348   //     br i1 %should_store, label %cmpxchg.trystore,
1349   //                          label %cmpxchg.failure
1350   // cmpxchg.success:
1351   //     fence?
1352   //     br label %cmpxchg.end
1353   // cmpxchg.nostore:
1354   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1355   //                           [%releasedload,
1356   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1357   //     @load_linked_fail_balance()?
1358   //     br label %cmpxchg.failure
1359   // cmpxchg.failure:
1360   //     fence?
1361   //     br label %cmpxchg.end
1362   // cmpxchg.end:
1363   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1364   //                        [%loaded.trystore, %cmpxchg.trystore]
1365   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1366   //     %loaded = extract value from %loaded.exit
1367   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1368   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1369   //     [...]
1370   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1371   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1372   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1373   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1374   auto ReleasedLoadBB =
1375       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1376   auto TryStoreBB =
1377       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1378   auto ReleasingStoreBB =
1379       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1380   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1381 
1382   ReplacementIRBuilder Builder(CI, *DL);
1383 
1384   // The split call above "helpfully" added a branch at the end of BB (to the
1385   // wrong place), but we might want a fence too. It's easiest to just remove
1386   // the branch entirely.
1387   std::prev(BB->end())->eraseFromParent();
1388   Builder.SetInsertPoint(BB);
1389   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1390     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1391 
1392   PartwordMaskValues PMV =
1393       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1394                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1395   Builder.CreateBr(StartBB);
1396 
1397   // Start the main loop block now that we've taken care of the preliminaries.
1398   Builder.SetInsertPoint(StartBB);
1399   Value *UnreleasedLoad =
1400       TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1401   Value *UnreleasedLoadExtract =
1402       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1403   Value *ShouldStore = Builder.CreateICmpEQ(
1404       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1405 
1406   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1407   // jump straight past that fence instruction (if it exists).
1408   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1409 
1410   Builder.SetInsertPoint(ReleasingStoreBB);
1411   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1412     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1413   Builder.CreateBr(TryStoreBB);
1414 
1415   Builder.SetInsertPoint(TryStoreBB);
1416   PHINode *LoadedTryStore =
1417       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1418   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1419   Value *NewValueInsert =
1420       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1421   Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1422                                                   PMV.AlignedAddr, MemOpOrder);
1423   StoreSuccess = Builder.CreateICmpEQ(
1424       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1425   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1426   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1427                        CI->isWeak() ? FailureBB : RetryBB);
1428 
1429   Builder.SetInsertPoint(ReleasedLoadBB);
1430   Value *SecondLoad;
1431   if (HasReleasedLoadBB) {
1432     SecondLoad =
1433         TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1434     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1435     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1436                                        CI->getCompareOperand(), "should_store");
1437 
1438     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1439     // jump straight past that fence instruction (if it exists).
1440     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1441     // Update PHI node in TryStoreBB.
1442     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1443   } else
1444     Builder.CreateUnreachable();
1445 
1446   // Make sure later instructions don't get reordered with a fence if
1447   // necessary.
1448   Builder.SetInsertPoint(SuccessBB);
1449   if (ShouldInsertFencesForAtomic ||
1450       TLI->shouldInsertTrailingFenceForAtomicStore(CI))
1451     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1452   Builder.CreateBr(ExitBB);
1453 
1454   Builder.SetInsertPoint(NoStoreBB);
1455   PHINode *LoadedNoStore =
1456       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1457   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1458   if (HasReleasedLoadBB)
1459     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1460 
1461   // In the failing case, where we don't execute the store-conditional, the
1462   // target might want to balance out the load-linked with a dedicated
1463   // instruction (e.g., on ARM, clearing the exclusive monitor).
1464   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1465   Builder.CreateBr(FailureBB);
1466 
1467   Builder.SetInsertPoint(FailureBB);
1468   PHINode *LoadedFailure =
1469       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1470   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1471   if (CI->isWeak())
1472     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1473   if (ShouldInsertFencesForAtomic)
1474     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1475   Builder.CreateBr(ExitBB);
1476 
1477   // Finally, we have control-flow based knowledge of whether the cmpxchg
1478   // succeeded or not. We expose this to later passes by converting any
1479   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1480   // PHI.
1481   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1482   PHINode *LoadedExit =
1483       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1484   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1485   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1486   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1487   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1488   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1489 
1490   // This is the "exit value" from the cmpxchg expansion. It may be of
1491   // a type wider than the one in the cmpxchg instruction.
1492   Value *LoadedFull = LoadedExit;
1493 
1494   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1495   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1496 
1497   // Look for any users of the cmpxchg that are just comparing the loaded value
1498   // against the desired one, and replace them with the CFG-derived version.
1499   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1500   for (auto *User : CI->users()) {
1501     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1502     if (!EV)
1503       continue;
1504 
1505     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1506            "weird extraction from { iN, i1 }");
1507 
1508     if (EV->getIndices()[0] == 0)
1509       EV->replaceAllUsesWith(Loaded);
1510     else
1511       EV->replaceAllUsesWith(Success);
1512 
1513     PrunedInsts.push_back(EV);
1514   }
1515 
1516   // We can remove the instructions now we're no longer iterating through them.
1517   for (auto *EV : PrunedInsts)
1518     EV->eraseFromParent();
1519 
1520   if (!CI->use_empty()) {
1521     // Some use of the full struct return that we don't understand has happened,
1522     // so we've got to reconstruct it properly.
1523     Value *Res;
1524     Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0);
1525     Res = Builder.CreateInsertValue(Res, Success, 1);
1526 
1527     CI->replaceAllUsesWith(Res);
1528   }
1529 
1530   CI->eraseFromParent();
1531   return true;
1532 }
1533 
1534 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) {
1535   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1536   if (!C)
1537     return false;
1538 
1539   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1540   switch (Op) {
1541   case AtomicRMWInst::Add:
1542   case AtomicRMWInst::Sub:
1543   case AtomicRMWInst::Or:
1544   case AtomicRMWInst::Xor:
1545     return C->isZero();
1546   case AtomicRMWInst::And:
1547     return C->isMinusOne();
1548   // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1549   default:
1550     return false;
1551   }
1552 }
1553 
1554 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1555   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1556     tryExpandAtomicLoad(ResultingLoad);
1557     return true;
1558   }
1559   return false;
1560 }
1561 
1562 Value *AtomicExpandImpl::insertRMWCmpXchgLoop(
1563     IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1564     AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1565     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
1566     CreateCmpXchgInstFun CreateCmpXchg) {
1567   LLVMContext &Ctx = Builder.getContext();
1568   BasicBlock *BB = Builder.GetInsertBlock();
1569   Function *F = BB->getParent();
1570 
1571   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1572   //
1573   // The standard expansion we produce is:
1574   //     [...]
1575   //     %init_loaded = load atomic iN* %addr
1576   //     br label %loop
1577   // loop:
1578   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1579   //     %new = some_op iN %loaded, %incr
1580   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1581   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1582   //     %success = extractvalue { iN, i1 } %pair, 1
1583   //     br i1 %success, label %atomicrmw.end, label %loop
1584   // atomicrmw.end:
1585   //     [...]
1586   BasicBlock *ExitBB =
1587       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1588   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1589 
1590   // The split call above "helpfully" added a branch at the end of BB (to the
1591   // wrong place), but we want a load. It's easiest to just remove
1592   // the branch entirely.
1593   std::prev(BB->end())->eraseFromParent();
1594   Builder.SetInsertPoint(BB);
1595   LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1596   Builder.CreateBr(LoopBB);
1597 
1598   // Start the main loop block now that we've taken care of the preliminaries.
1599   Builder.SetInsertPoint(LoopBB);
1600   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1601   Loaded->addIncoming(InitLoaded, BB);
1602 
1603   Value *NewVal = PerformOp(Builder, Loaded);
1604 
1605   Value *NewLoaded = nullptr;
1606   Value *Success = nullptr;
1607 
1608   CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1609                 MemOpOrder == AtomicOrdering::Unordered
1610                     ? AtomicOrdering::Monotonic
1611                     : MemOpOrder,
1612                 SSID, Success, NewLoaded);
1613   assert(Success && NewLoaded);
1614 
1615   Loaded->addIncoming(NewLoaded, LoopBB);
1616 
1617   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1618 
1619   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1620   return NewLoaded;
1621 }
1622 
1623 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1624   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1625   unsigned ValueSize = getAtomicOpSize(CI);
1626 
1627   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1628   default:
1629     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1630   case TargetLoweringBase::AtomicExpansionKind::None:
1631     if (ValueSize < MinCASSize)
1632       return expandPartwordCmpXchg(CI);
1633     return false;
1634   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1635     return expandAtomicCmpXchg(CI);
1636   }
1637   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1638     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1639     return true;
1640   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1641     return lowerAtomicCmpXchgInst(CI);
1642   }
1643 }
1644 
1645 // Note: This function is exposed externally by AtomicExpandUtils.h
1646 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1647                                     CreateCmpXchgInstFun CreateCmpXchg) {
1648   ReplacementIRBuilder Builder(AI, AI->getDataLayout());
1649   Builder.setIsFPConstrained(
1650       AI->getFunction()->hasFnAttribute(Attribute::StrictFP));
1651 
1652   // FIXME: If FP exceptions are observable, we should force them off for the
1653   // loop for the FP atomics.
1654   Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop(
1655       Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1656       AI->getOrdering(), AI->getSyncScopeID(),
1657       [&](IRBuilderBase &Builder, Value *Loaded) {
1658         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1659                                    AI->getValOperand());
1660       },
1661       CreateCmpXchg);
1662 
1663   AI->replaceAllUsesWith(Loaded);
1664   AI->eraseFromParent();
1665   return true;
1666 }
1667 
1668 // In order to use one of the sized library calls such as
1669 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1670 // must be one of the potentially-specialized sizes, and the value
1671 // type must actually exist in C on the target (otherwise, the
1672 // function wouldn't actually be defined.)
1673 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1674                                   const DataLayout &DL) {
1675   // TODO: "LargestSize" is an approximation for "largest type that
1676   // you can express in C". It seems to be the case that int128 is
1677   // supported on all 64-bit platforms, otherwise only up to 64-bit
1678   // integers are supported. If we get this wrong, then we'll try to
1679   // call a sized libcall that doesn't actually exist. There should
1680   // really be some more reliable way in LLVM of determining integer
1681   // sizes which are valid in the target's C ABI...
1682   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1683   return Alignment >= Size &&
1684          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1685          Size <= LargestSize;
1686 }
1687 
1688 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) {
1689   static const RTLIB::Libcall Libcalls[6] = {
1690       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1691       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1692   unsigned Size = getAtomicOpSize(I);
1693 
1694   bool expanded = expandAtomicOpToLibcall(
1695       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1696       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1697   if (!expanded)
1698     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1699 }
1700 
1701 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) {
1702   static const RTLIB::Libcall Libcalls[6] = {
1703       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1704       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1705   unsigned Size = getAtomicOpSize(I);
1706 
1707   bool expanded = expandAtomicOpToLibcall(
1708       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1709       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1710   if (!expanded)
1711     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1712 }
1713 
1714 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1715   static const RTLIB::Libcall Libcalls[6] = {
1716       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1717       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1718       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1719   unsigned Size = getAtomicOpSize(I);
1720 
1721   bool expanded = expandAtomicOpToLibcall(
1722       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1723       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1724       Libcalls);
1725   if (!expanded)
1726     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1727 }
1728 
1729 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1730   static const RTLIB::Libcall LibcallsXchg[6] = {
1731       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1732       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1733       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1734   static const RTLIB::Libcall LibcallsAdd[6] = {
1735       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1736       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1737       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1738   static const RTLIB::Libcall LibcallsSub[6] = {
1739       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1740       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1741       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1742   static const RTLIB::Libcall LibcallsAnd[6] = {
1743       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1744       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1745       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1746   static const RTLIB::Libcall LibcallsOr[6] = {
1747       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1748       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1749       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1750   static const RTLIB::Libcall LibcallsXor[6] = {
1751       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1752       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1753       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1754   static const RTLIB::Libcall LibcallsNand[6] = {
1755       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1756       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1757       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1758 
1759   switch (Op) {
1760   case AtomicRMWInst::BAD_BINOP:
1761     llvm_unreachable("Should not have BAD_BINOP.");
1762   case AtomicRMWInst::Xchg:
1763     return ArrayRef(LibcallsXchg);
1764   case AtomicRMWInst::Add:
1765     return ArrayRef(LibcallsAdd);
1766   case AtomicRMWInst::Sub:
1767     return ArrayRef(LibcallsSub);
1768   case AtomicRMWInst::And:
1769     return ArrayRef(LibcallsAnd);
1770   case AtomicRMWInst::Or:
1771     return ArrayRef(LibcallsOr);
1772   case AtomicRMWInst::Xor:
1773     return ArrayRef(LibcallsXor);
1774   case AtomicRMWInst::Nand:
1775     return ArrayRef(LibcallsNand);
1776   case AtomicRMWInst::Max:
1777   case AtomicRMWInst::Min:
1778   case AtomicRMWInst::UMax:
1779   case AtomicRMWInst::UMin:
1780   case AtomicRMWInst::FMax:
1781   case AtomicRMWInst::FMin:
1782   case AtomicRMWInst::FAdd:
1783   case AtomicRMWInst::FSub:
1784   case AtomicRMWInst::UIncWrap:
1785   case AtomicRMWInst::UDecWrap:
1786     // No atomic libcalls are available for max/min/umax/umin.
1787     return {};
1788   }
1789   llvm_unreachable("Unexpected AtomicRMW operation.");
1790 }
1791 
1792 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1793   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1794 
1795   unsigned Size = getAtomicOpSize(I);
1796 
1797   bool Success = false;
1798   if (!Libcalls.empty())
1799     Success = expandAtomicOpToLibcall(
1800         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1801         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1802 
1803   // The expansion failed: either there were no libcalls at all for
1804   // the operation (min/max), or there were only size-specialized
1805   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1806   // CAS libcall, via a CAS loop, instead.
1807   if (!Success) {
1808     expandAtomicRMWToCmpXchg(
1809         I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded,
1810                   Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1811                   SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1812           // Create the CAS instruction normally...
1813           AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1814               Addr, Loaded, NewVal, Alignment, MemOpOrder,
1815               AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1816           Success = Builder.CreateExtractValue(Pair, 1, "success");
1817           NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1818 
1819           // ...and then expand the CAS into a libcall.
1820           expandAtomicCASToLibcall(Pair);
1821         });
1822   }
1823 }
1824 
1825 // A helper routine for the above expandAtomic*ToLibcall functions.
1826 //
1827 // 'Libcalls' contains an array of enum values for the particular
1828 // ATOMIC libcalls to be emitted. All of the other arguments besides
1829 // 'I' are extracted from the Instruction subclass by the
1830 // caller. Depending on the particular call, some will be null.
1831 bool AtomicExpandImpl::expandAtomicOpToLibcall(
1832     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1833     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1834     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1835   assert(Libcalls.size() == 6);
1836 
1837   LLVMContext &Ctx = I->getContext();
1838   Module *M = I->getModule();
1839   const DataLayout &DL = M->getDataLayout();
1840   IRBuilder<> Builder(I);
1841   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1842 
1843   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1844   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1845 
1846   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1847 
1848   // TODO: the "order" argument type is "int", not int32. So
1849   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1850   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1851   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1852   Constant *OrderingVal =
1853       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1854   Constant *Ordering2Val = nullptr;
1855   if (CASExpected) {
1856     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1857     Ordering2Val =
1858         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1859   }
1860   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1861 
1862   RTLIB::Libcall RTLibType;
1863   if (UseSizedLibcall) {
1864     switch (Size) {
1865     case 1:
1866       RTLibType = Libcalls[1];
1867       break;
1868     case 2:
1869       RTLibType = Libcalls[2];
1870       break;
1871     case 4:
1872       RTLibType = Libcalls[3];
1873       break;
1874     case 8:
1875       RTLibType = Libcalls[4];
1876       break;
1877     case 16:
1878       RTLibType = Libcalls[5];
1879       break;
1880     }
1881   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1882     RTLibType = Libcalls[0];
1883   } else {
1884     // Can't use sized function, and there's no generic for this
1885     // operation, so give up.
1886     return false;
1887   }
1888 
1889   if (!TLI->getLibcallName(RTLibType)) {
1890     // This target does not implement the requested atomic libcall so give up.
1891     return false;
1892   }
1893 
1894   // Build up the function call. There's two kinds. First, the sized
1895   // variants.  These calls are going to be one of the following (with
1896   // N=1,2,4,8,16):
1897   //  iN    __atomic_load_N(iN *ptr, int ordering)
1898   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1899   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1900   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1901   //                                    int success_order, int failure_order)
1902   //
1903   // Note that these functions can be used for non-integer atomic
1904   // operations, the values just need to be bitcast to integers on the
1905   // way in and out.
1906   //
1907   // And, then, the generic variants. They look like the following:
1908   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1909   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1910   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1911   //                          int ordering)
1912   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1913   //                                  void *desired, int success_order,
1914   //                                  int failure_order)
1915   //
1916   // The different signatures are built up depending on the
1917   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1918   // variables.
1919 
1920   AllocaInst *AllocaCASExpected = nullptr;
1921   AllocaInst *AllocaValue = nullptr;
1922   AllocaInst *AllocaResult = nullptr;
1923 
1924   Type *ResultTy;
1925   SmallVector<Value *, 6> Args;
1926   AttributeList Attr;
1927 
1928   // 'size' argument.
1929   if (!UseSizedLibcall) {
1930     // Note, getIntPtrType is assumed equivalent to size_t.
1931     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1932   }
1933 
1934   // 'ptr' argument.
1935   // note: This assumes all address spaces share a common libfunc
1936   // implementation and that addresses are convertable.  For systems without
1937   // that property, we'd need to extend this mechanism to support AS-specific
1938   // families of atomic intrinsics.
1939   Value *PtrVal = PointerOperand;
1940   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx));
1941   Args.push_back(PtrVal);
1942 
1943   // 'expected' argument, if present.
1944   if (CASExpected) {
1945     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1946     AllocaCASExpected->setAlignment(AllocaAlignment);
1947     Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64);
1948     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1949     Args.push_back(AllocaCASExpected);
1950   }
1951 
1952   // 'val' argument ('desired' for cas), if present.
1953   if (ValueOperand) {
1954     if (UseSizedLibcall) {
1955       Value *IntValue =
1956           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1957       Args.push_back(IntValue);
1958     } else {
1959       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1960       AllocaValue->setAlignment(AllocaAlignment);
1961       Builder.CreateLifetimeStart(AllocaValue, SizeVal64);
1962       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1963       Args.push_back(AllocaValue);
1964     }
1965   }
1966 
1967   // 'ret' argument.
1968   if (!CASExpected && HasResult && !UseSizedLibcall) {
1969     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1970     AllocaResult->setAlignment(AllocaAlignment);
1971     Builder.CreateLifetimeStart(AllocaResult, SizeVal64);
1972     Args.push_back(AllocaResult);
1973   }
1974 
1975   // 'ordering' ('success_order' for cas) argument.
1976   Args.push_back(OrderingVal);
1977 
1978   // 'failure_order' argument, if present.
1979   if (Ordering2Val)
1980     Args.push_back(Ordering2Val);
1981 
1982   // Now, the return type.
1983   if (CASExpected) {
1984     ResultTy = Type::getInt1Ty(Ctx);
1985     Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1986   } else if (HasResult && UseSizedLibcall)
1987     ResultTy = SizedIntTy;
1988   else
1989     ResultTy = Type::getVoidTy(Ctx);
1990 
1991   // Done with setting up arguments and return types, create the call:
1992   SmallVector<Type *, 6> ArgTys;
1993   for (Value *Arg : Args)
1994     ArgTys.push_back(Arg->getType());
1995   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1996   FunctionCallee LibcallFn =
1997       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1998   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1999   Call->setAttributes(Attr);
2000   Value *Result = Call;
2001 
2002   // And then, extract the results...
2003   if (ValueOperand && !UseSizedLibcall)
2004     Builder.CreateLifetimeEnd(AllocaValue, SizeVal64);
2005 
2006   if (CASExpected) {
2007     // The final result from the CAS is {load of 'expected' alloca, bool result
2008     // from call}
2009     Type *FinalResultTy = I->getType();
2010     Value *V = PoisonValue::get(FinalResultTy);
2011     Value *ExpectedOut = Builder.CreateAlignedLoad(
2012         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
2013     Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64);
2014     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
2015     V = Builder.CreateInsertValue(V, Result, 1);
2016     I->replaceAllUsesWith(V);
2017   } else if (HasResult) {
2018     Value *V;
2019     if (UseSizedLibcall)
2020       V = Builder.CreateBitOrPointerCast(Result, I->getType());
2021     else {
2022       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
2023                                     AllocaAlignment);
2024       Builder.CreateLifetimeEnd(AllocaResult, SizeVal64);
2025     }
2026     I->replaceAllUsesWith(V);
2027   }
2028   I->eraseFromParent();
2029   return true;
2030 }
2031