xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp (revision 19fae0f66023a97a9b464b3beeeabb2081f575b3)
1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstSimplifyFolder.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/CodeGen/AtomicExpandUtils.h"
23 #include "llvm/CodeGen/RuntimeLibcalls.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/User.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/AtomicOrdering.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Transforms/Utils/LowerAtomic.h"
52 #include <cassert>
53 #include <cstdint>
54 #include <iterator>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "atomic-expand"
59 
60 namespace {
61 
62 class AtomicExpand : public FunctionPass {
63   const TargetLowering *TLI = nullptr;
64   const DataLayout *DL = nullptr;
65 
66 public:
67   static char ID; // Pass identification, replacement for typeid
68 
69   AtomicExpand() : FunctionPass(ID) {
70     initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
71   }
72 
73   bool runOnFunction(Function &F) override;
74 
75 private:
76   bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
77   IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
78   LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
79   bool tryExpandAtomicLoad(LoadInst *LI);
80   bool expandAtomicLoadToLL(LoadInst *LI);
81   bool expandAtomicLoadToCmpXchg(LoadInst *LI);
82   StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
83   bool tryExpandAtomicStore(StoreInst *SI);
84   void expandAtomicStore(StoreInst *SI);
85   bool tryExpandAtomicRMW(AtomicRMWInst *AI);
86   AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
87   Value *
88   insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr,
89                     Align AddrAlign, AtomicOrdering MemOpOrder,
90                     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
91   void expandAtomicOpToLLSC(
92       Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
93       AtomicOrdering MemOpOrder,
94       function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
95   void expandPartwordAtomicRMW(
96       AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
97   AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
98   bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
99   void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
100   void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
101 
102   AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
103   static Value *insertRMWCmpXchgLoop(
104       IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
105       AtomicOrdering MemOpOrder, SyncScope::ID SSID,
106       function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
107       CreateCmpXchgInstFun CreateCmpXchg);
108   bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
109 
110   bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
111   bool isIdempotentRMW(AtomicRMWInst *RMWI);
112   bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
113 
114   bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
115                                Value *PointerOperand, Value *ValueOperand,
116                                Value *CASExpected, AtomicOrdering Ordering,
117                                AtomicOrdering Ordering2,
118                                ArrayRef<RTLIB::Libcall> Libcalls);
119   void expandAtomicLoadToLibcall(LoadInst *LI);
120   void expandAtomicStoreToLibcall(StoreInst *LI);
121   void expandAtomicRMWToLibcall(AtomicRMWInst *I);
122   void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
123 
124   friend bool
125   llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
126                                  CreateCmpXchgInstFun CreateCmpXchg);
127 };
128 
129 // IRBuilder to be used for replacement atomic instructions.
130 struct ReplacementIRBuilder : IRBuilder<InstSimplifyFolder> {
131   // Preserves the DebugLoc from I, and preserves still valid metadata.
132   explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL)
133       : IRBuilder(I->getContext(), DL) {
134     SetInsertPoint(I);
135     this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections});
136   }
137 };
138 
139 } // end anonymous namespace
140 
141 char AtomicExpand::ID = 0;
142 
143 char &llvm::AtomicExpandID = AtomicExpand::ID;
144 
145 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false,
146                 false)
147 
148 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
149 
150 // Helper functions to retrieve the size of atomic instructions.
151 static unsigned getAtomicOpSize(LoadInst *LI) {
152   const DataLayout &DL = LI->getModule()->getDataLayout();
153   return DL.getTypeStoreSize(LI->getType());
154 }
155 
156 static unsigned getAtomicOpSize(StoreInst *SI) {
157   const DataLayout &DL = SI->getModule()->getDataLayout();
158   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
159 }
160 
161 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
162   const DataLayout &DL = RMWI->getModule()->getDataLayout();
163   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
164 }
165 
166 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
167   const DataLayout &DL = CASI->getModule()->getDataLayout();
168   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
169 }
170 
171 // Determine if a particular atomic operation has a supported size,
172 // and is of appropriate alignment, to be passed through for target
173 // lowering. (Versus turning into a __atomic libcall)
174 template <typename Inst>
175 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
176   unsigned Size = getAtomicOpSize(I);
177   Align Alignment = I->getAlign();
178   return Alignment >= Size &&
179          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
180 }
181 
182 bool AtomicExpand::runOnFunction(Function &F) {
183   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
184   if (!TPC)
185     return false;
186 
187   auto &TM = TPC->getTM<TargetMachine>();
188   const auto *Subtarget = TM.getSubtargetImpl(F);
189   if (!Subtarget->enableAtomicExpand())
190     return false;
191   TLI = Subtarget->getTargetLowering();
192   DL = &F.getParent()->getDataLayout();
193 
194   SmallVector<Instruction *, 1> AtomicInsts;
195 
196   // Changing control-flow while iterating through it is a bad idea, so gather a
197   // list of all atomic instructions before we start.
198   for (Instruction &I : instructions(F))
199     if (I.isAtomic() && !isa<FenceInst>(&I))
200       AtomicInsts.push_back(&I);
201 
202   bool MadeChange = false;
203   for (auto *I : AtomicInsts) {
204     auto LI = dyn_cast<LoadInst>(I);
205     auto SI = dyn_cast<StoreInst>(I);
206     auto RMWI = dyn_cast<AtomicRMWInst>(I);
207     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
208     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
209 
210     // If the Size/Alignment is not supported, replace with a libcall.
211     if (LI) {
212       if (!atomicSizeSupported(TLI, LI)) {
213         expandAtomicLoadToLibcall(LI);
214         MadeChange = true;
215         continue;
216       }
217     } else if (SI) {
218       if (!atomicSizeSupported(TLI, SI)) {
219         expandAtomicStoreToLibcall(SI);
220         MadeChange = true;
221         continue;
222       }
223     } else if (RMWI) {
224       if (!atomicSizeSupported(TLI, RMWI)) {
225         expandAtomicRMWToLibcall(RMWI);
226         MadeChange = true;
227         continue;
228       }
229     } else if (CASI) {
230       if (!atomicSizeSupported(TLI, CASI)) {
231         expandAtomicCASToLibcall(CASI);
232         MadeChange = true;
233         continue;
234       }
235     }
236 
237     if (LI && TLI->shouldCastAtomicLoadInIR(LI) ==
238                   TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
239       I = LI = convertAtomicLoadToIntegerType(LI);
240       MadeChange = true;
241     } else if (SI &&
242                TLI->shouldCastAtomicStoreInIR(SI) ==
243                    TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
244       I = SI = convertAtomicStoreToIntegerType(SI);
245       MadeChange = true;
246     } else if (RMWI &&
247                TLI->shouldCastAtomicRMWIInIR(RMWI) ==
248                    TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
249       I = RMWI = convertAtomicXchgToIntegerType(RMWI);
250       MadeChange = true;
251     } else if (CASI) {
252       // TODO: when we're ready to make the change at the IR level, we can
253       // extend convertCmpXchgToInteger for floating point too.
254       if (CASI->getCompareOperand()->getType()->isPointerTy()) {
255         // TODO: add a TLI hook to control this so that each target can
256         // convert to lowering the original type one at a time.
257         I = CASI = convertCmpXchgToIntegerType(CASI);
258         MadeChange = true;
259       }
260     }
261 
262     if (TLI->shouldInsertFencesForAtomic(I)) {
263       auto FenceOrdering = AtomicOrdering::Monotonic;
264       if (LI && isAcquireOrStronger(LI->getOrdering())) {
265         FenceOrdering = LI->getOrdering();
266         LI->setOrdering(AtomicOrdering::Monotonic);
267       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
268         FenceOrdering = SI->getOrdering();
269         SI->setOrdering(AtomicOrdering::Monotonic);
270       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
271                           isAcquireOrStronger(RMWI->getOrdering()))) {
272         FenceOrdering = RMWI->getOrdering();
273         RMWI->setOrdering(AtomicOrdering::Monotonic);
274       } else if (CASI &&
275                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
276                      TargetLoweringBase::AtomicExpansionKind::None &&
277                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
278                   isAcquireOrStronger(CASI->getSuccessOrdering()) ||
279                   isAcquireOrStronger(CASI->getFailureOrdering()))) {
280         // If a compare and swap is lowered to LL/SC, we can do smarter fence
281         // insertion, with a stronger one on the success path than on the
282         // failure path. As a result, fence insertion is directly done by
283         // expandAtomicCmpXchg in that case.
284         FenceOrdering = CASI->getMergedOrdering();
285         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
286         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
287       }
288 
289       if (FenceOrdering != AtomicOrdering::Monotonic) {
290         MadeChange |= bracketInstWithFences(I, FenceOrdering);
291       }
292     } else if (I->hasAtomicStore() &&
293                TLI->shouldInsertTrailingFenceForAtomicStore(I)) {
294       auto FenceOrdering = AtomicOrdering::Monotonic;
295       if (SI)
296         FenceOrdering = SI->getOrdering();
297       else if (RMWI)
298         FenceOrdering = RMWI->getOrdering();
299       else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) !=
300                            TargetLoweringBase::AtomicExpansionKind::LLSC)
301         // LLSC is handled in expandAtomicCmpXchg().
302         FenceOrdering = CASI->getSuccessOrdering();
303 
304       IRBuilder Builder(I);
305       if (auto TrailingFence =
306               TLI->emitTrailingFence(Builder, I, FenceOrdering)) {
307         TrailingFence->moveAfter(I);
308         MadeChange = true;
309       }
310     }
311 
312     if (LI)
313       MadeChange |= tryExpandAtomicLoad(LI);
314     else if (SI)
315       MadeChange |= tryExpandAtomicStore(SI);
316     else if (RMWI) {
317       // There are two different ways of expanding RMW instructions:
318       // - into a load if it is idempotent
319       // - into a Cmpxchg/LL-SC loop otherwise
320       // we try them in that order.
321 
322       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
323         MadeChange = true;
324       } else {
325         AtomicRMWInst::BinOp Op = RMWI->getOperation();
326         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
327         unsigned ValueSize = getAtomicOpSize(RMWI);
328         if (ValueSize < MinCASSize &&
329             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
330              Op == AtomicRMWInst::And)) {
331           RMWI = widenPartwordAtomicRMW(RMWI);
332           MadeChange = true;
333         }
334 
335         MadeChange |= tryExpandAtomicRMW(RMWI);
336       }
337     } else if (CASI)
338       MadeChange |= tryExpandAtomicCmpXchg(CASI);
339   }
340   return MadeChange;
341 }
342 
343 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
344   ReplacementIRBuilder Builder(I, *DL);
345 
346   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
347 
348   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
349   // We have a guard here because not every atomic operation generates a
350   // trailing fence.
351   if (TrailingFence)
352     TrailingFence->moveAfter(I);
353 
354   return (LeadingFence || TrailingFence);
355 }
356 
357 /// Get the iX type with the same bitwidth as T.
358 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
359                                                        const DataLayout &DL) {
360   EVT VT = TLI->getMemValueType(DL, T);
361   unsigned BitWidth = VT.getStoreSizeInBits();
362   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
363   return IntegerType::get(T->getContext(), BitWidth);
364 }
365 
366 /// Convert an atomic load of a non-integral type to an integer load of the
367 /// equivalent bitwidth.  See the function comment on
368 /// convertAtomicStoreToIntegerType for background.
369 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
370   auto *M = LI->getModule();
371   Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
372 
373   ReplacementIRBuilder Builder(LI, *DL);
374 
375   Value *Addr = LI->getPointerOperand();
376   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
377   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
378 
379   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
380   NewLI->setAlignment(LI->getAlign());
381   NewLI->setVolatile(LI->isVolatile());
382   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
383   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
384 
385   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
386   LI->replaceAllUsesWith(NewVal);
387   LI->eraseFromParent();
388   return NewLI;
389 }
390 
391 AtomicRMWInst *
392 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
393   auto *M = RMWI->getModule();
394   Type *NewTy =
395       getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
396 
397   ReplacementIRBuilder Builder(RMWI, *DL);
398 
399   Value *Addr = RMWI->getPointerOperand();
400   Value *Val = RMWI->getValOperand();
401   Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
402   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
403   Value *NewVal = Val->getType()->isPointerTy()
404                       ? Builder.CreatePtrToInt(Val, NewTy)
405                       : Builder.CreateBitCast(Val, NewTy);
406 
407   auto *NewRMWI =
408       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
409                               RMWI->getAlign(), RMWI->getOrdering());
410   NewRMWI->setVolatile(RMWI->isVolatile());
411   LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
412 
413   Value *NewRVal = RMWI->getType()->isPointerTy()
414                        ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
415                        : Builder.CreateBitCast(NewRMWI, RMWI->getType());
416   RMWI->replaceAllUsesWith(NewRVal);
417   RMWI->eraseFromParent();
418   return NewRMWI;
419 }
420 
421 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
422   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
423   case TargetLoweringBase::AtomicExpansionKind::None:
424     return false;
425   case TargetLoweringBase::AtomicExpansionKind::LLSC:
426     expandAtomicOpToLLSC(
427         LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
428         LI->getOrdering(),
429         [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; });
430     return true;
431   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
432     return expandAtomicLoadToLL(LI);
433   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
434     return expandAtomicLoadToCmpXchg(LI);
435   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
436     LI->setAtomic(AtomicOrdering::NotAtomic);
437     return true;
438   default:
439     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
440   }
441 }
442 
443 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) {
444   switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
445   case TargetLoweringBase::AtomicExpansionKind::None:
446     return false;
447   case TargetLoweringBase::AtomicExpansionKind::Expand:
448     expandAtomicStore(SI);
449     return true;
450   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
451     SI->setAtomic(AtomicOrdering::NotAtomic);
452     return true;
453   default:
454     llvm_unreachable("Unhandled case in tryExpandAtomicStore");
455   }
456 }
457 
458 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
459   ReplacementIRBuilder Builder(LI, *DL);
460 
461   // On some architectures, load-linked instructions are atomic for larger
462   // sizes than normal loads. For example, the only 64-bit load guaranteed
463   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
464   Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
465                                    LI->getPointerOperand(), LI->getOrdering());
466   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
467 
468   LI->replaceAllUsesWith(Val);
469   LI->eraseFromParent();
470 
471   return true;
472 }
473 
474 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
475   ReplacementIRBuilder Builder(LI, *DL);
476   AtomicOrdering Order = LI->getOrdering();
477   if (Order == AtomicOrdering::Unordered)
478     Order = AtomicOrdering::Monotonic;
479 
480   Value *Addr = LI->getPointerOperand();
481   Type *Ty = LI->getType();
482   Constant *DummyVal = Constant::getNullValue(Ty);
483 
484   Value *Pair = Builder.CreateAtomicCmpXchg(
485       Addr, DummyVal, DummyVal, LI->getAlign(), Order,
486       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
487   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
488 
489   LI->replaceAllUsesWith(Loaded);
490   LI->eraseFromParent();
491 
492   return true;
493 }
494 
495 /// Convert an atomic store of a non-integral type to an integer store of the
496 /// equivalent bitwidth.  We used to not support floating point or vector
497 /// atomics in the IR at all.  The backends learned to deal with the bitcast
498 /// idiom because that was the only way of expressing the notion of a atomic
499 /// float or vector store.  The long term plan is to teach each backend to
500 /// instruction select from the original atomic store, but as a migration
501 /// mechanism, we convert back to the old format which the backends understand.
502 /// Each backend will need individual work to recognize the new format.
503 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
504   ReplacementIRBuilder Builder(SI, *DL);
505   auto *M = SI->getModule();
506   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
507                                             M->getDataLayout());
508   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
509 
510   Value *Addr = SI->getPointerOperand();
511   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
512   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
513 
514   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
515   NewSI->setAlignment(SI->getAlign());
516   NewSI->setVolatile(SI->isVolatile());
517   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
518   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
519   SI->eraseFromParent();
520   return NewSI;
521 }
522 
523 void AtomicExpand::expandAtomicStore(StoreInst *SI) {
524   // This function is only called on atomic stores that are too large to be
525   // atomic if implemented as a native store. So we replace them by an
526   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
527   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
528   // It is the responsibility of the target to only signal expansion via
529   // shouldExpandAtomicRMW in cases where this is required and possible.
530   ReplacementIRBuilder Builder(SI, *DL);
531   AtomicOrdering Ordering = SI->getOrdering();
532   assert(Ordering != AtomicOrdering::NotAtomic);
533   AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
534                                    ? AtomicOrdering::Monotonic
535                                    : Ordering;
536   AtomicRMWInst *AI = Builder.CreateAtomicRMW(
537       AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
538       SI->getAlign(), RMWOrdering);
539   SI->eraseFromParent();
540 
541   // Now we have an appropriate swap instruction, lower it as usual.
542   tryExpandAtomicRMW(AI);
543 }
544 
545 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr,
546                                  Value *Loaded, Value *NewVal, Align AddrAlign,
547                                  AtomicOrdering MemOpOrder, SyncScope::ID SSID,
548                                  Value *&Success, Value *&NewLoaded) {
549   Type *OrigTy = NewVal->getType();
550 
551   // This code can go away when cmpxchg supports FP types.
552   assert(!OrigTy->isPointerTy());
553   bool NeedBitcast = OrigTy->isFloatingPointTy();
554   if (NeedBitcast) {
555     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
556     unsigned AS = Addr->getType()->getPointerAddressSpace();
557     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
558     NewVal = Builder.CreateBitCast(NewVal, IntTy);
559     Loaded = Builder.CreateBitCast(Loaded, IntTy);
560   }
561 
562   Value *Pair = Builder.CreateAtomicCmpXchg(
563       Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
564       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
565   Success = Builder.CreateExtractValue(Pair, 1, "success");
566   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
567 
568   if (NeedBitcast)
569     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
570 }
571 
572 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
573   LLVMContext &Ctx = AI->getModule()->getContext();
574   TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
575   switch (Kind) {
576   case TargetLoweringBase::AtomicExpansionKind::None:
577     return false;
578   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
579     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
580     unsigned ValueSize = getAtomicOpSize(AI);
581     if (ValueSize < MinCASSize) {
582       expandPartwordAtomicRMW(AI,
583                               TargetLoweringBase::AtomicExpansionKind::LLSC);
584     } else {
585       auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) {
586         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
587                                    AI->getValOperand());
588       };
589       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
590                            AI->getAlign(), AI->getOrdering(), PerformOp);
591     }
592     return true;
593   }
594   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
595     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
596     unsigned ValueSize = getAtomicOpSize(AI);
597     if (ValueSize < MinCASSize) {
598       expandPartwordAtomicRMW(AI,
599                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
600     } else {
601       SmallVector<StringRef> SSNs;
602       Ctx.getSyncScopeNames(SSNs);
603       auto MemScope = SSNs[AI->getSyncScopeID()].empty()
604                           ? "system"
605                           : SSNs[AI->getSyncScopeID()];
606       OptimizationRemarkEmitter ORE(AI->getFunction());
607       ORE.emit([&]() {
608         return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
609                << "A compare and swap loop was generated for an atomic "
610                << AI->getOperationName(AI->getOperation()) << " operation at "
611                << MemScope << " memory scope";
612       });
613       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
614     }
615     return true;
616   }
617   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
618     expandAtomicRMWToMaskedIntrinsic(AI);
619     return true;
620   }
621   case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
622     TLI->emitBitTestAtomicRMWIntrinsic(AI);
623     return true;
624   }
625   case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: {
626     TLI->emitCmpArithAtomicRMWIntrinsic(AI);
627     return true;
628   }
629   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
630     return lowerAtomicRMWInst(AI);
631   case TargetLoweringBase::AtomicExpansionKind::Expand:
632     TLI->emitExpandAtomicRMW(AI);
633     return true;
634   default:
635     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
636   }
637 }
638 
639 namespace {
640 
641 struct PartwordMaskValues {
642   // These three fields are guaranteed to be set by createMaskInstrs.
643   Type *WordType = nullptr;
644   Type *ValueType = nullptr;
645   Type *IntValueType = nullptr;
646   Value *AlignedAddr = nullptr;
647   Align AlignedAddrAlignment;
648   // The remaining fields can be null.
649   Value *ShiftAmt = nullptr;
650   Value *Mask = nullptr;
651   Value *Inv_Mask = nullptr;
652 };
653 
654 LLVM_ATTRIBUTE_UNUSED
655 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
656   auto PrintObj = [&O](auto *V) {
657     if (V)
658       O << *V;
659     else
660       O << "nullptr";
661     O << '\n';
662   };
663   O << "PartwordMaskValues {\n";
664   O << "  WordType: ";
665   PrintObj(PMV.WordType);
666   O << "  ValueType: ";
667   PrintObj(PMV.ValueType);
668   O << "  AlignedAddr: ";
669   PrintObj(PMV.AlignedAddr);
670   O << "  AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
671   O << "  ShiftAmt: ";
672   PrintObj(PMV.ShiftAmt);
673   O << "  Mask: ";
674   PrintObj(PMV.Mask);
675   O << "  Inv_Mask: ";
676   PrintObj(PMV.Inv_Mask);
677   O << "}\n";
678   return O;
679 }
680 
681 } // end anonymous namespace
682 
683 /// This is a helper function which builds instructions to provide
684 /// values necessary for partword atomic operations. It takes an
685 /// incoming address, Addr, and ValueType, and constructs the address,
686 /// shift-amounts and masks needed to work with a larger value of size
687 /// WordSize.
688 ///
689 /// AlignedAddr: Addr rounded down to a multiple of WordSize
690 ///
691 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
692 ///           from AlignAddr for it to have the same value as if
693 ///           ValueType was loaded from Addr.
694 ///
695 /// Mask: Value to mask with the value loaded from AlignAddr to
696 ///       include only the part that would've been loaded from Addr.
697 ///
698 /// Inv_Mask: The inverse of Mask.
699 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder,
700                                            Instruction *I, Type *ValueType,
701                                            Value *Addr, Align AddrAlign,
702                                            unsigned MinWordSize) {
703   PartwordMaskValues PMV;
704 
705   Module *M = I->getModule();
706   LLVMContext &Ctx = M->getContext();
707   const DataLayout &DL = M->getDataLayout();
708   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
709 
710   PMV.ValueType = PMV.IntValueType = ValueType;
711   if (PMV.ValueType->isFloatingPointTy())
712     PMV.IntValueType =
713         Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits());
714 
715   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
716                                          : ValueType;
717   if (PMV.ValueType == PMV.WordType) {
718     PMV.AlignedAddr = Addr;
719     PMV.AlignedAddrAlignment = AddrAlign;
720     PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
721     PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
722     return PMV;
723   }
724 
725   PMV.AlignedAddrAlignment = Align(MinWordSize);
726 
727   assert(ValueSize < MinWordSize);
728 
729   PointerType *PtrTy = cast<PointerType>(Addr->getType());
730   Type *WordPtrType = PMV.WordType->getPointerTo(PtrTy->getAddressSpace());
731   IntegerType *IntTy = DL.getIntPtrType(Ctx, PtrTy->getAddressSpace());
732   Value *PtrLSB;
733 
734   if (AddrAlign < MinWordSize) {
735     PMV.AlignedAddr = Builder.CreateIntrinsic(
736         Intrinsic::ptrmask, {PtrTy, IntTy},
737         {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr,
738         "AlignedAddr");
739 
740     Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
741     PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
742   } else {
743     // If the alignment is high enough, the LSB are known 0.
744     PMV.AlignedAddr = Addr;
745     PtrLSB = ConstantInt::getNullValue(IntTy);
746   }
747 
748   if (DL.isLittleEndian()) {
749     // turn bytes into bits
750     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
751   } else {
752     // turn bytes into bits, and count from the other side.
753     PMV.ShiftAmt = Builder.CreateShl(
754         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
755   }
756 
757   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
758   PMV.Mask = Builder.CreateShl(
759       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
760       "Mask");
761 
762   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
763 
764   // Cast for typed pointers.
765   PMV.AlignedAddr =
766     Builder.CreateBitCast(PMV.AlignedAddr, WordPtrType, "AlignedAddr");
767 
768   return PMV;
769 }
770 
771 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord,
772                                  const PartwordMaskValues &PMV) {
773   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
774   if (PMV.WordType == PMV.ValueType)
775     return WideWord;
776 
777   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
778   Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted");
779   return Builder.CreateBitCast(Trunc, PMV.ValueType);
780 }
781 
782 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord,
783                                 Value *Updated, const PartwordMaskValues &PMV) {
784   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
785   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
786   if (PMV.WordType == PMV.ValueType)
787     return Updated;
788 
789   Updated = Builder.CreateBitCast(Updated, PMV.IntValueType);
790 
791   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
792   Value *Shift =
793       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
794   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
795   Value *Or = Builder.CreateOr(And, Shift, "inserted");
796   return Or;
797 }
798 
799 /// Emit IR to implement a masked version of a given atomicrmw
800 /// operation. (That is, only the bits under the Mask should be
801 /// affected by the operation)
802 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
803                                     IRBuilderBase &Builder, Value *Loaded,
804                                     Value *Shifted_Inc, Value *Inc,
805                                     const PartwordMaskValues &PMV) {
806   // TODO: update to use
807   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
808   // to merge bits from two values without requiring PMV.Inv_Mask.
809   switch (Op) {
810   case AtomicRMWInst::Xchg: {
811     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
812     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
813     return FinalVal;
814   }
815   case AtomicRMWInst::Or:
816   case AtomicRMWInst::Xor:
817   case AtomicRMWInst::And:
818     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
819   case AtomicRMWInst::Add:
820   case AtomicRMWInst::Sub:
821   case AtomicRMWInst::Nand: {
822     // The other arithmetic ops need to be masked into place.
823     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
824     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
825     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
826     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
827     return FinalVal;
828   }
829   case AtomicRMWInst::Max:
830   case AtomicRMWInst::Min:
831   case AtomicRMWInst::UMax:
832   case AtomicRMWInst::UMin:
833   case AtomicRMWInst::FAdd:
834   case AtomicRMWInst::FSub:
835   case AtomicRMWInst::FMin:
836   case AtomicRMWInst::FMax:
837   case AtomicRMWInst::UIncWrap:
838   case AtomicRMWInst::UDecWrap: {
839     // Finally, other ops will operate on the full value, so truncate down to
840     // the original size, and expand out again after doing the
841     // operation. Bitcasts will be inserted for FP values.
842     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
843     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
844     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
845     return FinalVal;
846   }
847   default:
848     llvm_unreachable("Unknown atomic op");
849   }
850 }
851 
852 /// Expand a sub-word atomicrmw operation into an appropriate
853 /// word-sized operation.
854 ///
855 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
856 /// way as a typical atomicrmw expansion. The only difference here is
857 /// that the operation inside of the loop may operate upon only a
858 /// part of the value.
859 void AtomicExpand::expandPartwordAtomicRMW(
860     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
861   AtomicOrdering MemOpOrder = AI->getOrdering();
862   SyncScope::ID SSID = AI->getSyncScopeID();
863 
864   ReplacementIRBuilder Builder(AI, *DL);
865 
866   PartwordMaskValues PMV =
867       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
868                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
869 
870   Value *ValOperand_Shifted = nullptr;
871   if (AI->getOperation() == AtomicRMWInst::Xchg ||
872       AI->getOperation() == AtomicRMWInst::Add ||
873       AI->getOperation() == AtomicRMWInst::Sub ||
874       AI->getOperation() == AtomicRMWInst::Nand) {
875     ValOperand_Shifted =
876         Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
877                           PMV.ShiftAmt, "ValOperand_Shifted");
878   }
879 
880   auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) {
881     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
882                                  ValOperand_Shifted, AI->getValOperand(), PMV);
883   };
884 
885   Value *OldResult;
886   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
887     OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
888                                      PMV.AlignedAddrAlignment, MemOpOrder, SSID,
889                                      PerformPartwordOp, createCmpXchgInstFun);
890   } else {
891     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
892     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
893                                   PMV.AlignedAddrAlignment, MemOpOrder,
894                                   PerformPartwordOp);
895   }
896 
897   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
898   AI->replaceAllUsesWith(FinalOldResult);
899   AI->eraseFromParent();
900 }
901 
902 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
903 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
904   ReplacementIRBuilder Builder(AI, *DL);
905   AtomicRMWInst::BinOp Op = AI->getOperation();
906 
907   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
908           Op == AtomicRMWInst::And) &&
909          "Unable to widen operation");
910 
911   PartwordMaskValues PMV =
912       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
913                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
914 
915   Value *ValOperand_Shifted =
916       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
917                         PMV.ShiftAmt, "ValOperand_Shifted");
918 
919   Value *NewOperand;
920 
921   if (Op == AtomicRMWInst::And)
922     NewOperand =
923         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
924   else
925     NewOperand = ValOperand_Shifted;
926 
927   AtomicRMWInst *NewAI =
928       Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
929                               PMV.AlignedAddrAlignment, AI->getOrdering());
930 
931   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
932   AI->replaceAllUsesWith(FinalOldResult);
933   AI->eraseFromParent();
934   return NewAI;
935 }
936 
937 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
938   // The basic idea here is that we're expanding a cmpxchg of a
939   // smaller memory size up to a word-sized cmpxchg. To do this, we
940   // need to add a retry-loop for strong cmpxchg, so that
941   // modifications to other parts of the word don't cause a spurious
942   // failure.
943 
944   // This generates code like the following:
945   //     [[Setup mask values PMV.*]]
946   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
947   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
948   //     %InitLoaded = load i32* %addr
949   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
950   //     br partword.cmpxchg.loop
951   // partword.cmpxchg.loop:
952   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
953   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
954   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
955   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
956   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
957   //        i32 %FullWord_NewVal success_ordering failure_ordering
958   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
959   //     %Success = extractvalue { i32, i1 } %NewCI, 1
960   //     br i1 %Success, label %partword.cmpxchg.end,
961   //        label %partword.cmpxchg.failure
962   // partword.cmpxchg.failure:
963   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
964   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
965   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
966   //         label %partword.cmpxchg.end
967   // partword.cmpxchg.end:
968   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
969   //    %FinalOldVal = trunc i32 %tmp1 to i8
970   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
971   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
972 
973   Value *Addr = CI->getPointerOperand();
974   Value *Cmp = CI->getCompareOperand();
975   Value *NewVal = CI->getNewValOperand();
976 
977   BasicBlock *BB = CI->getParent();
978   Function *F = BB->getParent();
979   ReplacementIRBuilder Builder(CI, *DL);
980   LLVMContext &Ctx = Builder.getContext();
981 
982   BasicBlock *EndBB =
983       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
984   auto FailureBB =
985       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
986   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
987 
988   // The split call above "helpfully" added a branch at the end of BB
989   // (to the wrong place).
990   std::prev(BB->end())->eraseFromParent();
991   Builder.SetInsertPoint(BB);
992 
993   PartwordMaskValues PMV =
994       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
995                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
996 
997   // Shift the incoming values over, into the right location in the word.
998   Value *NewVal_Shifted =
999       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
1000   Value *Cmp_Shifted =
1001       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
1002 
1003   // Load the entire current word, and mask into place the expected and new
1004   // values
1005   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
1006   InitLoaded->setVolatile(CI->isVolatile());
1007   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
1008   Builder.CreateBr(LoopBB);
1009 
1010   // partword.cmpxchg.loop:
1011   Builder.SetInsertPoint(LoopBB);
1012   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
1013   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
1014 
1015   // Mask/Or the expected and new values into place in the loaded word.
1016   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
1017   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
1018   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
1019       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
1020       CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
1021   NewCI->setVolatile(CI->isVolatile());
1022   // When we're building a strong cmpxchg, we need a loop, so you
1023   // might think we could use a weak cmpxchg inside. But, using strong
1024   // allows the below comparison for ShouldContinue, and we're
1025   // expecting the underlying cmpxchg to be a machine instruction,
1026   // which is strong anyways.
1027   NewCI->setWeak(CI->isWeak());
1028 
1029   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1030   Value *Success = Builder.CreateExtractValue(NewCI, 1);
1031 
1032   if (CI->isWeak())
1033     Builder.CreateBr(EndBB);
1034   else
1035     Builder.CreateCondBr(Success, EndBB, FailureBB);
1036 
1037   // partword.cmpxchg.failure:
1038   Builder.SetInsertPoint(FailureBB);
1039   // Upon failure, verify that the masked-out part of the loaded value
1040   // has been modified.  If it didn't, abort the cmpxchg, since the
1041   // masked-in part must've.
1042   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
1043   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
1044   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
1045 
1046   // Add the second value to the phi from above
1047   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
1048 
1049   // partword.cmpxchg.end:
1050   Builder.SetInsertPoint(CI);
1051 
1052   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1053   Value *Res = PoisonValue::get(CI->getType());
1054   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1055   Res = Builder.CreateInsertValue(Res, Success, 1);
1056 
1057   CI->replaceAllUsesWith(Res);
1058   CI->eraseFromParent();
1059   return true;
1060 }
1061 
1062 void AtomicExpand::expandAtomicOpToLLSC(
1063     Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1064     AtomicOrdering MemOpOrder,
1065     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1066   ReplacementIRBuilder Builder(I, *DL);
1067   Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1068                                     MemOpOrder, PerformOp);
1069 
1070   I->replaceAllUsesWith(Loaded);
1071   I->eraseFromParent();
1072 }
1073 
1074 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1075   ReplacementIRBuilder Builder(AI, *DL);
1076 
1077   PartwordMaskValues PMV =
1078       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1079                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1080 
1081   // The value operand must be sign-extended for signed min/max so that the
1082   // target's signed comparison instructions can be used. Otherwise, just
1083   // zero-ext.
1084   Instruction::CastOps CastOp = Instruction::ZExt;
1085   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1086   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1087     CastOp = Instruction::SExt;
1088 
1089   Value *ValOperand_Shifted = Builder.CreateShl(
1090       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1091       PMV.ShiftAmt, "ValOperand_Shifted");
1092   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1093       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1094       AI->getOrdering());
1095   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1096   AI->replaceAllUsesWith(FinalOldResult);
1097   AI->eraseFromParent();
1098 }
1099 
1100 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1101   ReplacementIRBuilder Builder(CI, *DL);
1102 
1103   PartwordMaskValues PMV = createMaskInstrs(
1104       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1105       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1106 
1107   Value *CmpVal_Shifted = Builder.CreateShl(
1108       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1109       "CmpVal_Shifted");
1110   Value *NewVal_Shifted = Builder.CreateShl(
1111       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1112       "NewVal_Shifted");
1113   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1114       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1115       CI->getMergedOrdering());
1116   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1117   Value *Res = PoisonValue::get(CI->getType());
1118   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1119   Value *Success = Builder.CreateICmpEQ(
1120       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1121   Res = Builder.CreateInsertValue(Res, Success, 1);
1122 
1123   CI->replaceAllUsesWith(Res);
1124   CI->eraseFromParent();
1125 }
1126 
1127 Value *AtomicExpand::insertRMWLLSCLoop(
1128     IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1129     AtomicOrdering MemOpOrder,
1130     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1131   LLVMContext &Ctx = Builder.getContext();
1132   BasicBlock *BB = Builder.GetInsertBlock();
1133   Function *F = BB->getParent();
1134 
1135   assert(AddrAlign >=
1136              F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1137          "Expected at least natural alignment at this point.");
1138 
1139   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1140   //
1141   // The standard expansion we produce is:
1142   //     [...]
1143   // atomicrmw.start:
1144   //     %loaded = @load.linked(%addr)
1145   //     %new = some_op iN %loaded, %incr
1146   //     %stored = @store_conditional(%new, %addr)
1147   //     %try_again = icmp i32 ne %stored, 0
1148   //     br i1 %try_again, label %loop, label %atomicrmw.end
1149   // atomicrmw.end:
1150   //     [...]
1151   BasicBlock *ExitBB =
1152       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1153   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1154 
1155   // The split call above "helpfully" added a branch at the end of BB (to the
1156   // wrong place).
1157   std::prev(BB->end())->eraseFromParent();
1158   Builder.SetInsertPoint(BB);
1159   Builder.CreateBr(LoopBB);
1160 
1161   // Start the main loop block now that we've taken care of the preliminaries.
1162   Builder.SetInsertPoint(LoopBB);
1163   Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1164 
1165   Value *NewVal = PerformOp(Builder, Loaded);
1166 
1167   Value *StoreSuccess =
1168       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1169   Value *TryAgain = Builder.CreateICmpNE(
1170       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1171   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1172 
1173   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1174   return Loaded;
1175 }
1176 
1177 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1178 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1179 /// IR.  As a migration step, we convert back to what use to be the standard
1180 /// way to represent a pointer cmpxchg so that we can update backends one by
1181 /// one.
1182 AtomicCmpXchgInst *
1183 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1184   auto *M = CI->getModule();
1185   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1186                                             M->getDataLayout());
1187 
1188   ReplacementIRBuilder Builder(CI, *DL);
1189 
1190   Value *Addr = CI->getPointerOperand();
1191   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
1192   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1193 
1194   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1195   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1196 
1197   auto *NewCI = Builder.CreateAtomicCmpXchg(
1198       NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1199       CI->getFailureOrdering(), CI->getSyncScopeID());
1200   NewCI->setVolatile(CI->isVolatile());
1201   NewCI->setWeak(CI->isWeak());
1202   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1203 
1204   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1205   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1206 
1207   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1208 
1209   Value *Res = PoisonValue::get(CI->getType());
1210   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1211   Res = Builder.CreateInsertValue(Res, Succ, 1);
1212 
1213   CI->replaceAllUsesWith(Res);
1214   CI->eraseFromParent();
1215   return NewCI;
1216 }
1217 
1218 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1219   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1220   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1221   Value *Addr = CI->getPointerOperand();
1222   BasicBlock *BB = CI->getParent();
1223   Function *F = BB->getParent();
1224   LLVMContext &Ctx = F->getContext();
1225   // If shouldInsertFencesForAtomic() returns true, then the target does not
1226   // want to deal with memory orders, and emitLeading/TrailingFence should take
1227   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1228   // should preserve the ordering.
1229   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1230   AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1231                                   ? AtomicOrdering::Monotonic
1232                                   : CI->getMergedOrdering();
1233 
1234   // In implementations which use a barrier to achieve release semantics, we can
1235   // delay emitting this barrier until we know a store is actually going to be
1236   // attempted. The cost of this delay is that we need 2 copies of the block
1237   // emitting the load-linked, affecting code size.
1238   //
1239   // Ideally, this logic would be unconditional except for the minsize check
1240   // since in other cases the extra blocks naturally collapse down to the
1241   // minimal loop. Unfortunately, this puts too much stress on later
1242   // optimisations so we avoid emitting the extra logic in those cases too.
1243   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1244                            SuccessOrder != AtomicOrdering::Monotonic &&
1245                            SuccessOrder != AtomicOrdering::Acquire &&
1246                            !F->hasMinSize();
1247 
1248   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1249   // do it even on minsize.
1250   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1251 
1252   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1253   //
1254   // The full expansion we produce is:
1255   //     [...]
1256   // %aligned.addr = ...
1257   // cmpxchg.start:
1258   //     %unreleasedload = @load.linked(%aligned.addr)
1259   //     %unreleasedload.extract = extract value from %unreleasedload
1260   //     %should_store = icmp eq %unreleasedload.extract, %desired
1261   //     br i1 %should_store, label %cmpxchg.releasingstore,
1262   //                          label %cmpxchg.nostore
1263   // cmpxchg.releasingstore:
1264   //     fence?
1265   //     br label cmpxchg.trystore
1266   // cmpxchg.trystore:
1267   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1268   //                            [%releasedload, %cmpxchg.releasedload]
1269   //     %updated.new = insert %new into %loaded.trystore
1270   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1271   //     %success = icmp eq i32 %stored, 0
1272   //     br i1 %success, label %cmpxchg.success,
1273   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1274   // cmpxchg.releasedload:
1275   //     %releasedload = @load.linked(%aligned.addr)
1276   //     %releasedload.extract = extract value from %releasedload
1277   //     %should_store = icmp eq %releasedload.extract, %desired
1278   //     br i1 %should_store, label %cmpxchg.trystore,
1279   //                          label %cmpxchg.failure
1280   // cmpxchg.success:
1281   //     fence?
1282   //     br label %cmpxchg.end
1283   // cmpxchg.nostore:
1284   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1285   //                           [%releasedload,
1286   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1287   //     @load_linked_fail_balance()?
1288   //     br label %cmpxchg.failure
1289   // cmpxchg.failure:
1290   //     fence?
1291   //     br label %cmpxchg.end
1292   // cmpxchg.end:
1293   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1294   //                        [%loaded.trystore, %cmpxchg.trystore]
1295   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1296   //     %loaded = extract value from %loaded.exit
1297   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1298   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1299   //     [...]
1300   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1301   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1302   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1303   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1304   auto ReleasedLoadBB =
1305       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1306   auto TryStoreBB =
1307       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1308   auto ReleasingStoreBB =
1309       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1310   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1311 
1312   ReplacementIRBuilder Builder(CI, *DL);
1313 
1314   // The split call above "helpfully" added a branch at the end of BB (to the
1315   // wrong place), but we might want a fence too. It's easiest to just remove
1316   // the branch entirely.
1317   std::prev(BB->end())->eraseFromParent();
1318   Builder.SetInsertPoint(BB);
1319   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1320     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1321 
1322   PartwordMaskValues PMV =
1323       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1324                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1325   Builder.CreateBr(StartBB);
1326 
1327   // Start the main loop block now that we've taken care of the preliminaries.
1328   Builder.SetInsertPoint(StartBB);
1329   Value *UnreleasedLoad =
1330       TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1331   Value *UnreleasedLoadExtract =
1332       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1333   Value *ShouldStore = Builder.CreateICmpEQ(
1334       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1335 
1336   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1337   // jump straight past that fence instruction (if it exists).
1338   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1339 
1340   Builder.SetInsertPoint(ReleasingStoreBB);
1341   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1342     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1343   Builder.CreateBr(TryStoreBB);
1344 
1345   Builder.SetInsertPoint(TryStoreBB);
1346   PHINode *LoadedTryStore =
1347       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1348   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1349   Value *NewValueInsert =
1350       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1351   Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1352                                                   PMV.AlignedAddr, MemOpOrder);
1353   StoreSuccess = Builder.CreateICmpEQ(
1354       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1355   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1356   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1357                        CI->isWeak() ? FailureBB : RetryBB);
1358 
1359   Builder.SetInsertPoint(ReleasedLoadBB);
1360   Value *SecondLoad;
1361   if (HasReleasedLoadBB) {
1362     SecondLoad =
1363         TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1364     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1365     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1366                                        CI->getCompareOperand(), "should_store");
1367 
1368     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1369     // jump straight past that fence instruction (if it exists).
1370     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1371     // Update PHI node in TryStoreBB.
1372     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1373   } else
1374     Builder.CreateUnreachable();
1375 
1376   // Make sure later instructions don't get reordered with a fence if
1377   // necessary.
1378   Builder.SetInsertPoint(SuccessBB);
1379   if (ShouldInsertFencesForAtomic ||
1380       TLI->shouldInsertTrailingFenceForAtomicStore(CI))
1381     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1382   Builder.CreateBr(ExitBB);
1383 
1384   Builder.SetInsertPoint(NoStoreBB);
1385   PHINode *LoadedNoStore =
1386       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1387   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1388   if (HasReleasedLoadBB)
1389     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1390 
1391   // In the failing case, where we don't execute the store-conditional, the
1392   // target might want to balance out the load-linked with a dedicated
1393   // instruction (e.g., on ARM, clearing the exclusive monitor).
1394   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1395   Builder.CreateBr(FailureBB);
1396 
1397   Builder.SetInsertPoint(FailureBB);
1398   PHINode *LoadedFailure =
1399       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1400   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1401   if (CI->isWeak())
1402     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1403   if (ShouldInsertFencesForAtomic)
1404     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1405   Builder.CreateBr(ExitBB);
1406 
1407   // Finally, we have control-flow based knowledge of whether the cmpxchg
1408   // succeeded or not. We expose this to later passes by converting any
1409   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1410   // PHI.
1411   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1412   PHINode *LoadedExit =
1413       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1414   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1415   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1416   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1417   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1418   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1419 
1420   // This is the "exit value" from the cmpxchg expansion. It may be of
1421   // a type wider than the one in the cmpxchg instruction.
1422   Value *LoadedFull = LoadedExit;
1423 
1424   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1425   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1426 
1427   // Look for any users of the cmpxchg that are just comparing the loaded value
1428   // against the desired one, and replace them with the CFG-derived version.
1429   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1430   for (auto *User : CI->users()) {
1431     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1432     if (!EV)
1433       continue;
1434 
1435     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1436            "weird extraction from { iN, i1 }");
1437 
1438     if (EV->getIndices()[0] == 0)
1439       EV->replaceAllUsesWith(Loaded);
1440     else
1441       EV->replaceAllUsesWith(Success);
1442 
1443     PrunedInsts.push_back(EV);
1444   }
1445 
1446   // We can remove the instructions now we're no longer iterating through them.
1447   for (auto *EV : PrunedInsts)
1448     EV->eraseFromParent();
1449 
1450   if (!CI->use_empty()) {
1451     // Some use of the full struct return that we don't understand has happened,
1452     // so we've got to reconstruct it properly.
1453     Value *Res;
1454     Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0);
1455     Res = Builder.CreateInsertValue(Res, Success, 1);
1456 
1457     CI->replaceAllUsesWith(Res);
1458   }
1459 
1460   CI->eraseFromParent();
1461   return true;
1462 }
1463 
1464 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) {
1465   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1466   if (!C)
1467     return false;
1468 
1469   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1470   switch (Op) {
1471   case AtomicRMWInst::Add:
1472   case AtomicRMWInst::Sub:
1473   case AtomicRMWInst::Or:
1474   case AtomicRMWInst::Xor:
1475     return C->isZero();
1476   case AtomicRMWInst::And:
1477     return C->isMinusOne();
1478   // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1479   default:
1480     return false;
1481   }
1482 }
1483 
1484 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1485   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1486     tryExpandAtomicLoad(ResultingLoad);
1487     return true;
1488   }
1489   return false;
1490 }
1491 
1492 Value *AtomicExpand::insertRMWCmpXchgLoop(
1493     IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1494     AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1495     function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
1496     CreateCmpXchgInstFun CreateCmpXchg) {
1497   LLVMContext &Ctx = Builder.getContext();
1498   BasicBlock *BB = Builder.GetInsertBlock();
1499   Function *F = BB->getParent();
1500 
1501   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1502   //
1503   // The standard expansion we produce is:
1504   //     [...]
1505   //     %init_loaded = load atomic iN* %addr
1506   //     br label %loop
1507   // loop:
1508   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1509   //     %new = some_op iN %loaded, %incr
1510   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1511   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1512   //     %success = extractvalue { iN, i1 } %pair, 1
1513   //     br i1 %success, label %atomicrmw.end, label %loop
1514   // atomicrmw.end:
1515   //     [...]
1516   BasicBlock *ExitBB =
1517       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1518   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1519 
1520   // The split call above "helpfully" added a branch at the end of BB (to the
1521   // wrong place), but we want a load. It's easiest to just remove
1522   // the branch entirely.
1523   std::prev(BB->end())->eraseFromParent();
1524   Builder.SetInsertPoint(BB);
1525   LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1526   Builder.CreateBr(LoopBB);
1527 
1528   // Start the main loop block now that we've taken care of the preliminaries.
1529   Builder.SetInsertPoint(LoopBB);
1530   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1531   Loaded->addIncoming(InitLoaded, BB);
1532 
1533   Value *NewVal = PerformOp(Builder, Loaded);
1534 
1535   Value *NewLoaded = nullptr;
1536   Value *Success = nullptr;
1537 
1538   CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1539                 MemOpOrder == AtomicOrdering::Unordered
1540                     ? AtomicOrdering::Monotonic
1541                     : MemOpOrder,
1542                 SSID, Success, NewLoaded);
1543   assert(Success && NewLoaded);
1544 
1545   Loaded->addIncoming(NewLoaded, LoopBB);
1546 
1547   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1548 
1549   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1550   return NewLoaded;
1551 }
1552 
1553 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1554   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1555   unsigned ValueSize = getAtomicOpSize(CI);
1556 
1557   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1558   default:
1559     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1560   case TargetLoweringBase::AtomicExpansionKind::None:
1561     if (ValueSize < MinCASSize)
1562       return expandPartwordCmpXchg(CI);
1563     return false;
1564   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1565     return expandAtomicCmpXchg(CI);
1566   }
1567   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1568     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1569     return true;
1570   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1571     return lowerAtomicCmpXchgInst(CI);
1572   }
1573 }
1574 
1575 // Note: This function is exposed externally by AtomicExpandUtils.h
1576 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1577                                     CreateCmpXchgInstFun CreateCmpXchg) {
1578   ReplacementIRBuilder Builder(AI, AI->getModule()->getDataLayout());
1579   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1580       Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1581       AI->getOrdering(), AI->getSyncScopeID(),
1582       [&](IRBuilderBase &Builder, Value *Loaded) {
1583         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1584                                    AI->getValOperand());
1585       },
1586       CreateCmpXchg);
1587 
1588   AI->replaceAllUsesWith(Loaded);
1589   AI->eraseFromParent();
1590   return true;
1591 }
1592 
1593 // In order to use one of the sized library calls such as
1594 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1595 // must be one of the potentially-specialized sizes, and the value
1596 // type must actually exist in C on the target (otherwise, the
1597 // function wouldn't actually be defined.)
1598 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1599                                   const DataLayout &DL) {
1600   // TODO: "LargestSize" is an approximation for "largest type that
1601   // you can express in C". It seems to be the case that int128 is
1602   // supported on all 64-bit platforms, otherwise only up to 64-bit
1603   // integers are supported. If we get this wrong, then we'll try to
1604   // call a sized libcall that doesn't actually exist. There should
1605   // really be some more reliable way in LLVM of determining integer
1606   // sizes which are valid in the target's C ABI...
1607   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1608   return Alignment >= Size &&
1609          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1610          Size <= LargestSize;
1611 }
1612 
1613 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1614   static const RTLIB::Libcall Libcalls[6] = {
1615       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1616       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1617   unsigned Size = getAtomicOpSize(I);
1618 
1619   bool expanded = expandAtomicOpToLibcall(
1620       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1621       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1622   if (!expanded)
1623     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1624 }
1625 
1626 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1627   static const RTLIB::Libcall Libcalls[6] = {
1628       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1629       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1630   unsigned Size = getAtomicOpSize(I);
1631 
1632   bool expanded = expandAtomicOpToLibcall(
1633       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1634       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1635   if (!expanded)
1636     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1637 }
1638 
1639 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1640   static const RTLIB::Libcall Libcalls[6] = {
1641       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1642       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1643       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1644   unsigned Size = getAtomicOpSize(I);
1645 
1646   bool expanded = expandAtomicOpToLibcall(
1647       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1648       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1649       Libcalls);
1650   if (!expanded)
1651     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1652 }
1653 
1654 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1655   static const RTLIB::Libcall LibcallsXchg[6] = {
1656       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1657       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1658       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1659   static const RTLIB::Libcall LibcallsAdd[6] = {
1660       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1661       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1662       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1663   static const RTLIB::Libcall LibcallsSub[6] = {
1664       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1665       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1666       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1667   static const RTLIB::Libcall LibcallsAnd[6] = {
1668       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1669       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1670       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1671   static const RTLIB::Libcall LibcallsOr[6] = {
1672       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1673       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1674       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1675   static const RTLIB::Libcall LibcallsXor[6] = {
1676       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1677       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1678       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1679   static const RTLIB::Libcall LibcallsNand[6] = {
1680       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1681       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1682       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1683 
1684   switch (Op) {
1685   case AtomicRMWInst::BAD_BINOP:
1686     llvm_unreachable("Should not have BAD_BINOP.");
1687   case AtomicRMWInst::Xchg:
1688     return ArrayRef(LibcallsXchg);
1689   case AtomicRMWInst::Add:
1690     return ArrayRef(LibcallsAdd);
1691   case AtomicRMWInst::Sub:
1692     return ArrayRef(LibcallsSub);
1693   case AtomicRMWInst::And:
1694     return ArrayRef(LibcallsAnd);
1695   case AtomicRMWInst::Or:
1696     return ArrayRef(LibcallsOr);
1697   case AtomicRMWInst::Xor:
1698     return ArrayRef(LibcallsXor);
1699   case AtomicRMWInst::Nand:
1700     return ArrayRef(LibcallsNand);
1701   case AtomicRMWInst::Max:
1702   case AtomicRMWInst::Min:
1703   case AtomicRMWInst::UMax:
1704   case AtomicRMWInst::UMin:
1705   case AtomicRMWInst::FMax:
1706   case AtomicRMWInst::FMin:
1707   case AtomicRMWInst::FAdd:
1708   case AtomicRMWInst::FSub:
1709   case AtomicRMWInst::UIncWrap:
1710   case AtomicRMWInst::UDecWrap:
1711     // No atomic libcalls are available for max/min/umax/umin.
1712     return {};
1713   }
1714   llvm_unreachable("Unexpected AtomicRMW operation.");
1715 }
1716 
1717 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1718   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1719 
1720   unsigned Size = getAtomicOpSize(I);
1721 
1722   bool Success = false;
1723   if (!Libcalls.empty())
1724     Success = expandAtomicOpToLibcall(
1725         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1726         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1727 
1728   // The expansion failed: either there were no libcalls at all for
1729   // the operation (min/max), or there were only size-specialized
1730   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1731   // CAS libcall, via a CAS loop, instead.
1732   if (!Success) {
1733     expandAtomicRMWToCmpXchg(
1734         I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded,
1735                   Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1736                   SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1737           // Create the CAS instruction normally...
1738           AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1739               Addr, Loaded, NewVal, Alignment, MemOpOrder,
1740               AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1741           Success = Builder.CreateExtractValue(Pair, 1, "success");
1742           NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1743 
1744           // ...and then expand the CAS into a libcall.
1745           expandAtomicCASToLibcall(Pair);
1746         });
1747   }
1748 }
1749 
1750 // A helper routine for the above expandAtomic*ToLibcall functions.
1751 //
1752 // 'Libcalls' contains an array of enum values for the particular
1753 // ATOMIC libcalls to be emitted. All of the other arguments besides
1754 // 'I' are extracted from the Instruction subclass by the
1755 // caller. Depending on the particular call, some will be null.
1756 bool AtomicExpand::expandAtomicOpToLibcall(
1757     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1758     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1759     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1760   assert(Libcalls.size() == 6);
1761 
1762   LLVMContext &Ctx = I->getContext();
1763   Module *M = I->getModule();
1764   const DataLayout &DL = M->getDataLayout();
1765   IRBuilder<> Builder(I);
1766   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1767 
1768   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1769   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1770 
1771   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1772 
1773   // TODO: the "order" argument type is "int", not int32. So
1774   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1775   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1776   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1777   Constant *OrderingVal =
1778       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1779   Constant *Ordering2Val = nullptr;
1780   if (CASExpected) {
1781     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1782     Ordering2Val =
1783         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1784   }
1785   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1786 
1787   RTLIB::Libcall RTLibType;
1788   if (UseSizedLibcall) {
1789     switch (Size) {
1790     case 1:
1791       RTLibType = Libcalls[1];
1792       break;
1793     case 2:
1794       RTLibType = Libcalls[2];
1795       break;
1796     case 4:
1797       RTLibType = Libcalls[3];
1798       break;
1799     case 8:
1800       RTLibType = Libcalls[4];
1801       break;
1802     case 16:
1803       RTLibType = Libcalls[5];
1804       break;
1805     }
1806   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1807     RTLibType = Libcalls[0];
1808   } else {
1809     // Can't use sized function, and there's no generic for this
1810     // operation, so give up.
1811     return false;
1812   }
1813 
1814   if (!TLI->getLibcallName(RTLibType)) {
1815     // This target does not implement the requested atomic libcall so give up.
1816     return false;
1817   }
1818 
1819   // Build up the function call. There's two kinds. First, the sized
1820   // variants.  These calls are going to be one of the following (with
1821   // N=1,2,4,8,16):
1822   //  iN    __atomic_load_N(iN *ptr, int ordering)
1823   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1824   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1825   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1826   //                                    int success_order, int failure_order)
1827   //
1828   // Note that these functions can be used for non-integer atomic
1829   // operations, the values just need to be bitcast to integers on the
1830   // way in and out.
1831   //
1832   // And, then, the generic variants. They look like the following:
1833   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1834   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1835   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1836   //                          int ordering)
1837   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1838   //                                  void *desired, int success_order,
1839   //                                  int failure_order)
1840   //
1841   // The different signatures are built up depending on the
1842   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1843   // variables.
1844 
1845   AllocaInst *AllocaCASExpected = nullptr;
1846   Value *AllocaCASExpected_i8 = nullptr;
1847   AllocaInst *AllocaValue = nullptr;
1848   Value *AllocaValue_i8 = nullptr;
1849   AllocaInst *AllocaResult = nullptr;
1850   Value *AllocaResult_i8 = nullptr;
1851 
1852   Type *ResultTy;
1853   SmallVector<Value *, 6> Args;
1854   AttributeList Attr;
1855 
1856   // 'size' argument.
1857   if (!UseSizedLibcall) {
1858     // Note, getIntPtrType is assumed equivalent to size_t.
1859     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1860   }
1861 
1862   // 'ptr' argument.
1863   // note: This assumes all address spaces share a common libfunc
1864   // implementation and that addresses are convertable.  For systems without
1865   // that property, we'd need to extend this mechanism to support AS-specific
1866   // families of atomic intrinsics.
1867   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1868   Value *PtrVal =
1869       Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS));
1870   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1871   Args.push_back(PtrVal);
1872 
1873   // 'expected' argument, if present.
1874   if (CASExpected) {
1875     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1876     AllocaCASExpected->setAlignment(AllocaAlignment);
1877     unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1878 
1879     AllocaCASExpected_i8 = Builder.CreateBitCast(
1880         AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS));
1881     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1882     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1883     Args.push_back(AllocaCASExpected_i8);
1884   }
1885 
1886   // 'val' argument ('desired' for cas), if present.
1887   if (ValueOperand) {
1888     if (UseSizedLibcall) {
1889       Value *IntValue =
1890           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1891       Args.push_back(IntValue);
1892     } else {
1893       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1894       AllocaValue->setAlignment(AllocaAlignment);
1895       AllocaValue_i8 =
1896           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1897       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1898       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1899       Args.push_back(AllocaValue_i8);
1900     }
1901   }
1902 
1903   // 'ret' argument.
1904   if (!CASExpected && HasResult && !UseSizedLibcall) {
1905     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1906     AllocaResult->setAlignment(AllocaAlignment);
1907     unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1908     AllocaResult_i8 =
1909         Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1910     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1911     Args.push_back(AllocaResult_i8);
1912   }
1913 
1914   // 'ordering' ('success_order' for cas) argument.
1915   Args.push_back(OrderingVal);
1916 
1917   // 'failure_order' argument, if present.
1918   if (Ordering2Val)
1919     Args.push_back(Ordering2Val);
1920 
1921   // Now, the return type.
1922   if (CASExpected) {
1923     ResultTy = Type::getInt1Ty(Ctx);
1924     Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1925   } else if (HasResult && UseSizedLibcall)
1926     ResultTy = SizedIntTy;
1927   else
1928     ResultTy = Type::getVoidTy(Ctx);
1929 
1930   // Done with setting up arguments and return types, create the call:
1931   SmallVector<Type *, 6> ArgTys;
1932   for (Value *Arg : Args)
1933     ArgTys.push_back(Arg->getType());
1934   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1935   FunctionCallee LibcallFn =
1936       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1937   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1938   Call->setAttributes(Attr);
1939   Value *Result = Call;
1940 
1941   // And then, extract the results...
1942   if (ValueOperand && !UseSizedLibcall)
1943     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1944 
1945   if (CASExpected) {
1946     // The final result from the CAS is {load of 'expected' alloca, bool result
1947     // from call}
1948     Type *FinalResultTy = I->getType();
1949     Value *V = PoisonValue::get(FinalResultTy);
1950     Value *ExpectedOut = Builder.CreateAlignedLoad(
1951         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1952     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1953     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1954     V = Builder.CreateInsertValue(V, Result, 1);
1955     I->replaceAllUsesWith(V);
1956   } else if (HasResult) {
1957     Value *V;
1958     if (UseSizedLibcall)
1959       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1960     else {
1961       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1962                                     AllocaAlignment);
1963       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1964     }
1965     I->replaceAllUsesWith(V);
1966   }
1967   I->eraseFromParent();
1968   return true;
1969 }
1970