xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp (revision b9fa1500cb2265b95927e19b9d2119ca26d65be3)
1 //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
10 #include "LiveDebugValues/LiveDebugValues.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/DenseMapInfo.h"
13 #include "llvm/ADT/IntervalMap.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/UniqueVector.h"
18 #include "llvm/Analysis/Interval.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugProgramInstruction.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/IR/PrintPasses.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include <assert.h>
35 #include <cstdint>
36 #include <optional>
37 #include <queue>
38 #include <sstream>
39 #include <unordered_map>
40 
41 using namespace llvm;
42 #define DEBUG_TYPE "debug-ata"
43 
44 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
45 STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
46 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
47 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
48 
49 static cl::opt<unsigned>
50     MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
51                  cl::desc("Maximum num basic blocks before debug info dropped"),
52                  cl::Hidden);
53 /// Option for debugging the pass, determines if the memory location fragment
54 /// filling happens after generating the variable locations.
55 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
56                                           cl::Hidden);
57 /// Print the results of the analysis. Respects -filter-print-funcs.
58 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
59                                   cl::Hidden);
60 
61 /// Coalesce adjacent dbg locs describing memory locations that have contiguous
62 /// fragments. This reduces the cost of LiveDebugValues which does SSA
63 /// construction for each explicitly stated variable fragment.
64 static cl::opt<cl::boolOrDefault>
65     CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
66 
67 // Implicit conversions are disabled for enum class types, so unfortunately we
68 // need to create a DenseMapInfo wrapper around the specified underlying type.
69 template <> struct llvm::DenseMapInfo<VariableID> {
70   using Wrapped = DenseMapInfo<unsigned>;
71   static inline VariableID getEmptyKey() {
72     return static_cast<VariableID>(Wrapped::getEmptyKey());
73   }
74   static inline VariableID getTombstoneKey() {
75     return static_cast<VariableID>(Wrapped::getTombstoneKey());
76   }
77   static unsigned getHashValue(const VariableID &Val) {
78     return Wrapped::getHashValue(static_cast<unsigned>(Val));
79   }
80   static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
81     return LHS == RHS;
82   }
83 };
84 
85 using VarLocInsertPt = PointerUnion<const Instruction *, const DPValue *>;
86 
87 namespace std {
88 template <> struct hash<VarLocInsertPt> {
89   using argument_type = VarLocInsertPt;
90   using result_type = std::size_t;
91 
92   result_type operator()(const argument_type &Arg) const {
93     return std::hash<void *>()(Arg.getOpaqueValue());
94   }
95 };
96 } // namespace std
97 
98 /// Helper class to build FunctionVarLocs, since that class isn't easy to
99 /// modify. TODO: There's not a great deal of value in the split, it could be
100 /// worth merging the two classes.
101 class FunctionVarLocsBuilder {
102   friend FunctionVarLocs;
103   UniqueVector<DebugVariable> Variables;
104   // Use an unordered_map so we don't invalidate iterators after
105   // insert/modifications.
106   std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
107 
108   SmallVector<VarLocInfo> SingleLocVars;
109 
110 public:
111   unsigned getNumVariables() const { return Variables.size(); }
112 
113   /// Find or insert \p V and return the ID.
114   VariableID insertVariable(DebugVariable V) {
115     return static_cast<VariableID>(Variables.insert(V));
116   }
117 
118   /// Get a variable from its \p ID.
119   const DebugVariable &getVariable(VariableID ID) const {
120     return Variables[static_cast<unsigned>(ID)];
121   }
122 
123   /// Return ptr to wedge of defs or nullptr if no defs come just before /p
124   /// Before.
125   const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const {
126     auto R = VarLocsBeforeInst.find(Before);
127     if (R == VarLocsBeforeInst.end())
128       return nullptr;
129     return &R->second;
130   }
131 
132   /// Replace the defs that come just before /p Before with /p Wedge.
133   void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) {
134     VarLocsBeforeInst[Before] = std::move(Wedge);
135   }
136 
137   /// Add a def for a variable that is valid for its lifetime.
138   void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
139                        RawLocationWrapper R) {
140     VarLocInfo VarLoc;
141     VarLoc.VariableID = insertVariable(Var);
142     VarLoc.Expr = Expr;
143     VarLoc.DL = DL;
144     VarLoc.Values = R;
145     SingleLocVars.emplace_back(VarLoc);
146   }
147 
148   /// Add a def to the wedge of defs just before /p Before.
149   void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr,
150                  DebugLoc DL, RawLocationWrapper R) {
151     VarLocInfo VarLoc;
152     VarLoc.VariableID = insertVariable(Var);
153     VarLoc.Expr = Expr;
154     VarLoc.DL = DL;
155     VarLoc.Values = R;
156     VarLocsBeforeInst[Before].emplace_back(VarLoc);
157   }
158 };
159 
160 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
161   // Print the variable table first. TODO: Sorting by variable could make the
162   // output more stable?
163   unsigned Counter = -1;
164   OS << "=== Variables ===\n";
165   for (const DebugVariable &V : Variables) {
166     ++Counter;
167     // Skip first entry because it is a dummy entry.
168     if (Counter == 0) {
169       continue;
170     }
171     OS << "[" << Counter << "] " << V.getVariable()->getName();
172     if (auto F = V.getFragment())
173       OS << " bits [" << F->OffsetInBits << ", "
174          << F->OffsetInBits + F->SizeInBits << ")";
175     if (const auto *IA = V.getInlinedAt())
176       OS << " inlined-at " << *IA;
177     OS << "\n";
178   }
179 
180   auto PrintLoc = [&OS](const VarLocInfo &Loc) {
181     OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
182        << " Expr=" << *Loc.Expr << " Values=(";
183     for (auto *Op : Loc.Values.location_ops()) {
184       errs() << Op->getName() << " ";
185     }
186     errs() << ")\n";
187   };
188 
189   // Print the single location variables.
190   OS << "=== Single location vars ===\n";
191   for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
192        ++It) {
193     PrintLoc(*It);
194   }
195 
196   // Print the non-single-location defs in line with IR.
197   OS << "=== In-line variable defs ===";
198   for (const BasicBlock &BB : Fn) {
199     OS << "\n" << BB.getName() << ":\n";
200     for (const Instruction &I : BB) {
201       for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
202         PrintLoc(*It);
203       }
204       OS << I << "\n";
205     }
206   }
207 }
208 
209 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
210   // Add the single-location variables first.
211   for (const auto &VarLoc : Builder.SingleLocVars)
212     VarLocRecords.emplace_back(VarLoc);
213   // Mark the end of the section.
214   SingleVarLocEnd = VarLocRecords.size();
215 
216   // Insert a contiguous block of VarLocInfos for each instruction, mapping it
217   // to the start and end position in the vector with VarLocsBeforeInst. This
218   // block includes VarLocs for any DPValues attached to that instruction.
219   for (auto &P : Builder.VarLocsBeforeInst) {
220     // Process VarLocs attached to a DPValue alongside their marker Instruction.
221     if (isa<const DPValue *>(P.first))
222       continue;
223     const Instruction *I = cast<const Instruction *>(P.first);
224     unsigned BlockStart = VarLocRecords.size();
225     // Any VarLocInfos attached to a DPValue should now be remapped to their
226     // marker Instruction, in order of DPValue appearance and prior to any
227     // VarLocInfos attached directly to that instruction.
228     for (const DPValue &DPV : I->getDbgValueRange()) {
229       // Even though DPV defines a variable location, VarLocsBeforeInst can
230       // still be empty if that VarLoc was redundant.
231       if (!Builder.VarLocsBeforeInst.count(&DPV))
232         continue;
233       for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DPV])
234         VarLocRecords.emplace_back(VarLoc);
235     }
236     for (const VarLocInfo &VarLoc : P.second)
237       VarLocRecords.emplace_back(VarLoc);
238     unsigned BlockEnd = VarLocRecords.size();
239     // Record the start and end indices.
240     if (BlockEnd != BlockStart)
241       VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
242   }
243 
244   // Copy the Variables vector from the builder's UniqueVector.
245   assert(Variables.empty() && "Expect clear before init");
246   // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
247   // are one-based) so reserve an extra and insert a dummy.
248   Variables.reserve(Builder.Variables.size() + 1);
249   Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
250   Variables.append(Builder.Variables.begin(), Builder.Variables.end());
251 }
252 
253 void FunctionVarLocs::clear() {
254   Variables.clear();
255   VarLocRecords.clear();
256   VarLocsBeforeInst.clear();
257   SingleVarLocEnd = 0;
258 }
259 
260 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
261 /// Start as far as possible. Prepend \Expression with the offset and append it
262 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
263 /// value and modified expression.
264 static std::pair<Value *, DIExpression *>
265 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
266                                   DIExpression *Expression) {
267   APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
268   Value *End =
269       Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
270   SmallVector<uint64_t, 3> Ops;
271   if (OffsetInBytes.getBoolValue()) {
272     Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
273     Expression = DIExpression::prependOpcodes(
274         Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
275   }
276   Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
277   return {End, Expression};
278 }
279 
280 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
281 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
282 /// expression is too complex to interpret.
283 static std::optional<int64_t>
284 getDerefOffsetInBytes(const DIExpression *DIExpr) {
285   int64_t Offset = 0;
286   const unsigned NumElements = DIExpr->getNumElements();
287   const auto Elements = DIExpr->getElements();
288   unsigned ExpectedDerefIdx = 0;
289   // Extract the offset.
290   if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
291     Offset = Elements[1];
292     ExpectedDerefIdx = 2;
293   } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
294     ExpectedDerefIdx = 3;
295     if (Elements[2] == dwarf::DW_OP_plus)
296       Offset = Elements[1];
297     else if (Elements[2] == dwarf::DW_OP_minus)
298       Offset = -Elements[1];
299     else
300       return std::nullopt;
301   }
302 
303   // If that's all there is it means there's no deref.
304   if (ExpectedDerefIdx >= NumElements)
305     return std::nullopt;
306 
307   // Check the next element is DW_OP_deref - otherwise this is too complex or
308   // isn't a deref expression.
309   if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
310     return std::nullopt;
311 
312   // Check the final operation is either the DW_OP_deref or is a fragment.
313   if (NumElements == ExpectedDerefIdx + 1)
314     return Offset; // Ends with deref.
315   unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
316   unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
317   if (NumElements == ExpectedFragFinalIdx + 1 &&
318       Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
319     return Offset; // Ends with deref + fragment.
320 
321   // Don't bother trying to interpret anything more complex.
322   return std::nullopt;
323 }
324 
325 /// A whole (unfragmented) source variable.
326 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
327 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
328   return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
329 }
330 static DebugAggregate getAggregate(const DebugVariable &Var) {
331   return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
332 }
333 
334 static bool shouldCoalesceFragments(Function &F) {
335   // Enabling fragment coalescing reduces compiler run time when instruction
336   // referencing is enabled. However, it may cause LiveDebugVariables to create
337   // incorrect locations. Since instruction-referencing mode effectively
338   // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
339   // has not been explicitly set and instruction-referencing is turned on.
340   switch (CoalesceAdjacentFragmentsOpt) {
341   case cl::boolOrDefault::BOU_UNSET:
342     return debuginfoShouldUseDebugInstrRef(
343         Triple(F.getParent()->getTargetTriple()));
344   case cl::boolOrDefault::BOU_TRUE:
345     return true;
346   case cl::boolOrDefault::BOU_FALSE:
347     return false;
348   }
349   llvm_unreachable("Unknown boolOrDefault value");
350 }
351 
352 namespace {
353 /// In dwarf emission, the following sequence
354 ///    1. dbg.value ... Fragment(0, 64)
355 ///    2. dbg.value ... Fragment(0, 32)
356 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
357 /// the intersection of the fragments to having "no location"). This makes
358 /// sense for implicit location values because splitting the computed values
359 /// could be troublesome, and is probably quite uncommon.  When we convert
360 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
361 /// a location (memory) rather than a value means we don't need to worry about
362 /// splitting any values, so we try to recover the rest of the fragment
363 /// location here.
364 /// This class performs a(nother) dataflow analysis over the function, adding
365 /// variable locations so that any bits of a variable with a memory location
366 /// have that location explicitly reinstated at each subsequent variable
367 /// location definition that that doesn't overwrite those bits. i.e. after a
368 /// variable location def, insert new defs for the memory location with
369 /// fragments for the difference of "all bits currently in memory" and "the
370 /// fragment of the second def".
371 class MemLocFragmentFill {
372   Function &Fn;
373   FunctionVarLocsBuilder *FnVarLocs;
374   const DenseSet<DebugAggregate> *VarsWithStackSlot;
375   bool CoalesceAdjacentFragments;
376 
377   // 0 = no memory location.
378   using BaseAddress = unsigned;
379   using OffsetInBitsTy = unsigned;
380   using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
381   using FragsInMemMap = IntervalMap<
382       OffsetInBitsTy, BaseAddress,
383       IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
384       FragTraits>;
385   FragsInMemMap::Allocator IntervalMapAlloc;
386   using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
387 
388   /// IDs for memory location base addresses in maps. Use 0 to indicate that
389   /// there's no memory location.
390   UniqueVector<RawLocationWrapper> Bases;
391   UniqueVector<DebugAggregate> Aggregates;
392   DenseMap<const BasicBlock *, VarFragMap> LiveIn;
393   DenseMap<const BasicBlock *, VarFragMap> LiveOut;
394 
395   struct FragMemLoc {
396     unsigned Var;
397     unsigned Base;
398     unsigned OffsetInBits;
399     unsigned SizeInBits;
400     DebugLoc DL;
401   };
402   using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>;
403 
404   /// BBInsertBeforeMap holds a description for the set of location defs to be
405   /// inserted after the analysis is complete. It is updated during the dataflow
406   /// and the entry for a block is CLEARED each time it is (re-)visited. After
407   /// the dataflow is complete, each block entry will contain the set of defs
408   /// calculated during the final (fixed-point) iteration.
409   DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
410 
411   static bool intervalMapsAreEqual(const FragsInMemMap &A,
412                                    const FragsInMemMap &B) {
413     auto AIt = A.begin(), AEnd = A.end();
414     auto BIt = B.begin(), BEnd = B.end();
415     for (; AIt != AEnd; ++AIt, ++BIt) {
416       if (BIt == BEnd)
417         return false; // B has fewer elements than A.
418       if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
419         return false; // Interval is different.
420       if (*AIt != *BIt)
421         return false; // Value at interval is different.
422     }
423     // AIt == AEnd. Check BIt is also now at end.
424     return BIt == BEnd;
425   }
426 
427   static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
428     if (A.size() != B.size())
429       return false;
430     for (const auto &APair : A) {
431       auto BIt = B.find(APair.first);
432       if (BIt == B.end())
433         return false;
434       if (!intervalMapsAreEqual(APair.second, BIt->second))
435         return false;
436     }
437     return true;
438   }
439 
440   /// Return a string for the value that \p BaseID represents.
441   std::string toString(unsigned BaseID) {
442     if (BaseID)
443       return Bases[BaseID].getVariableLocationOp(0)->getName().str();
444     else
445       return "None";
446   }
447 
448   /// Format string describing an FragsInMemMap (IntervalMap) interval.
449   std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
450     std::string String;
451     std::stringstream S(String);
452     if (It.valid()) {
453       S << "[" << It.start() << ", " << It.stop()
454         << "): " << toString(It.value());
455     } else {
456       S << "invalid iterator (end)";
457     }
458     if (Newline)
459       S << "\n";
460     return S.str();
461   };
462 
463   FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
464     FragsInMemMap Result(IntervalMapAlloc);
465     for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
466       LLVM_DEBUG(dbgs() << "a " << toString(AIt));
467       // This is basically copied from process() and inverted (process is
468       // performing something like a union whereas this is more of an
469       // intersect).
470 
471       // There's no work to do if interval `a` overlaps no fragments in map `B`.
472       if (!B.overlaps(AIt.start(), AIt.stop()))
473         continue;
474 
475       // Does StartBit intersect an existing fragment?
476       auto FirstOverlap = B.find(AIt.start());
477       assert(FirstOverlap != B.end());
478       bool IntersectStart = FirstOverlap.start() < AIt.start();
479       LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
480                         << ", IntersectStart: " << IntersectStart << "\n");
481 
482       // Does EndBit intersect an existing fragment?
483       auto LastOverlap = B.find(AIt.stop());
484       bool IntersectEnd =
485           LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
486       LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
487                         << ", IntersectEnd: " << IntersectEnd << "\n");
488 
489       // Check if both ends of `a` intersect the same interval `b`.
490       if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
491         // Insert `a` (`a` is contained in `b`) if the values match.
492         // [ a ]
493         // [ - b - ]
494         // -
495         // [ r ]
496         LLVM_DEBUG(dbgs() << "- a is contained within "
497                           << toString(FirstOverlap));
498         if (*AIt && *AIt == *FirstOverlap)
499           Result.insert(AIt.start(), AIt.stop(), *AIt);
500       } else {
501         // There's an overlap but `a` is not fully contained within
502         // `b`. Shorten any end-point intersections.
503         //     [ - a - ]
504         // [ - b - ]
505         // -
506         //     [ r ]
507         auto Next = FirstOverlap;
508         if (IntersectStart) {
509           LLVM_DEBUG(dbgs() << "- insert intersection of a and "
510                             << toString(FirstOverlap));
511           if (*AIt && *AIt == *FirstOverlap)
512             Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
513           ++Next;
514         }
515         // [ - a - ]
516         //     [ - b - ]
517         // -
518         //     [ r ]
519         if (IntersectEnd) {
520           LLVM_DEBUG(dbgs() << "- insert intersection of a and "
521                             << toString(LastOverlap));
522           if (*AIt && *AIt == *LastOverlap)
523             Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
524         }
525 
526         // Insert all intervals in map `B` that are contained within interval
527         // `a` where the values match.
528         // [ -  - a -  - ]
529         // [ b1 ]   [ b2 ]
530         // -
531         // [ r1 ]   [ r2 ]
532         while (Next != B.end() && Next.start() < AIt.stop() &&
533                Next.stop() <= AIt.stop()) {
534           LLVM_DEBUG(dbgs()
535                      << "- insert intersection of a and " << toString(Next));
536           if (*AIt && *AIt == *Next)
537             Result.insert(Next.start(), Next.stop(), *Next);
538           ++Next;
539         }
540       }
541     }
542     return Result;
543   }
544 
545   /// Meet \p A and \p B, storing the result in \p A.
546   void meetVars(VarFragMap &A, const VarFragMap &B) {
547     // Meet A and B.
548     //
549     // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
550     for (auto It = A.begin(), End = A.end(); It != End; ++It) {
551       unsigned AVar = It->first;
552       FragsInMemMap &AFrags = It->second;
553       auto BIt = B.find(AVar);
554       if (BIt == B.end()) {
555         A.erase(It);
556         continue; // Var has no bits defined in B.
557       }
558       LLVM_DEBUG(dbgs() << "meet fragment maps for "
559                         << Aggregates[AVar].first->getName() << "\n");
560       AFrags = meetFragments(AFrags, BIt->second);
561     }
562   }
563 
564   bool meet(const BasicBlock &BB,
565             const SmallPtrSet<BasicBlock *, 16> &Visited) {
566     LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
567                       << "\n");
568 
569     VarFragMap BBLiveIn;
570     bool FirstMeet = true;
571     // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
572     // locs.
573     for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
574       // Ignore preds that haven't been processed yet. This is essentially the
575       // same as initialising all variables to implicit top value (⊤) which is
576       // the identity value for the meet operation.
577       const BasicBlock *Pred = *I;
578       if (!Visited.count(Pred))
579         continue;
580 
581       auto PredLiveOut = LiveOut.find(Pred);
582       assert(PredLiveOut != LiveOut.end());
583 
584       if (FirstMeet) {
585         LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
586         BBLiveIn = PredLiveOut->second;
587         FirstMeet = false;
588       } else {
589         LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
590                           << "\n");
591         meetVars(BBLiveIn, PredLiveOut->second);
592       }
593 
594       // An empty set is ⊥ for the intersect-like meet operation. If we've
595       // already got ⊥ there's no need to run the code - we know the result is
596       // ⊥ since `meet(a, ⊥) = ⊥`.
597       if (BBLiveIn.size() == 0)
598         break;
599     }
600 
601     auto CurrentLiveInEntry = LiveIn.find(&BB);
602     // If there's no LiveIn entry for the block yet, add it.
603     if (CurrentLiveInEntry == LiveIn.end()) {
604       LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
605                         << "\n");
606       LiveIn[&BB] = std::move(BBLiveIn);
607       return /*Changed=*/true;
608     }
609 
610     // If the LiveIn set has changed (expensive check) update it and return
611     // true.
612     if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
613       LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
614       CurrentLiveInEntry->second = std::move(BBLiveIn);
615       return /*Changed=*/true;
616     }
617 
618     LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
619     return /*Changed=*/false;
620   }
621 
622   void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
623                     unsigned StartBit, unsigned EndBit, unsigned Base,
624                     DebugLoc DL) {
625     assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
626     if (!Base)
627       return;
628     FragMemLoc Loc;
629     Loc.Var = Var;
630     Loc.OffsetInBits = StartBit;
631     Loc.SizeInBits = EndBit - StartBit;
632     assert(Base && "Expected a non-zero ID for Base address");
633     Loc.Base = Base;
634     Loc.DL = DL;
635     BBInsertBeforeMap[&BB][Before].push_back(Loc);
636     LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
637                       << " bits [" << StartBit << ", " << EndBit << ")\n");
638   }
639 
640   /// Inserts a new dbg def if the interval found when looking up \p StartBit
641   /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
642   /// indicates - assuming StartBit->EndBit has just been inserted - that the
643   /// slice has been coalesced in the map).
644   void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
645                          unsigned StartBit, unsigned EndBit, unsigned Base,
646                          DebugLoc DL, const FragsInMemMap &FragMap) {
647     if (!CoalesceAdjacentFragments)
648       return;
649     // We've inserted the location into the map. The map will have coalesced
650     // adjacent intervals (variable fragments) that describe the same memory
651     // location. Use this knowledge to insert a debug location that describes
652     // that coalesced fragment. This may eclipse other locs we've just
653     // inserted. This is okay as redundant locs will be cleaned up later.
654     auto CoalescedFrag = FragMap.find(StartBit);
655     // Bail if no coalescing has taken place.
656     if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
657       return;
658 
659     LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
660                       << " to " << CoalescedFrag.stop() << "\n");
661     insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
662                  Base, DL);
663   }
664 
665   void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
666               VarFragMap &LiveSet) {
667     DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
668     if (skipVariable(DbgVar.getVariable()))
669       return;
670     // Don't bother doing anything for this variables if we know it's fully
671     // promoted. We're only interested in variables that (sometimes) live on
672     // the stack here.
673     if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
674       return;
675     unsigned Var = Aggregates.insert(
676         DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
677 
678     // [StartBit: EndBit) are the bits affected by this def.
679     const DIExpression *DIExpr = VarLoc.Expr;
680     unsigned StartBit;
681     unsigned EndBit;
682     if (auto Frag = DIExpr->getFragmentInfo()) {
683       StartBit = Frag->OffsetInBits;
684       EndBit = StartBit + Frag->SizeInBits;
685     } else {
686       assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
687       StartBit = 0;
688       EndBit = *DbgVar.getVariable()->getSizeInBits();
689     }
690 
691     // We will only fill fragments for simple memory-describing dbg.value
692     // intrinsics. If the fragment offset is the same as the offset from the
693     // base pointer, do The Thing, otherwise fall back to normal dbg.value
694     // behaviour. AssignmentTrackingLowering has generated DIExpressions
695     // written in terms of the base pointer.
696     // TODO: Remove this condition since the fragment offset doesn't always
697     // equal the offset from base pointer (e.g. for a SROA-split variable).
698     const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
699     const unsigned Base =
700         DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
701             ? Bases.insert(VarLoc.Values)
702             : 0;
703     LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
704                       << StartBit << ", " << EndBit << "): " << toString(Base)
705                       << "\n");
706 
707     // First of all, any locs that use mem that are disrupted need reinstating.
708     // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
709     // with existing intervals so this code involves a lot of fiddling around
710     // with intervals to do that manually.
711     auto FragIt = LiveSet.find(Var);
712 
713     // Check if the variable does not exist in the map.
714     if (FragIt == LiveSet.end()) {
715       // Add this variable to the BB map.
716       auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
717       assert(P.second && "Var already in map?");
718       // Add the interval to the fragment map.
719       P.first->second.insert(StartBit, EndBit, Base);
720       return;
721     }
722     // The variable has an entry in the map.
723 
724     FragsInMemMap &FragMap = FragIt->second;
725     // First check the easy case: the new fragment `f` doesn't overlap with any
726     // intervals.
727     if (!FragMap.overlaps(StartBit, EndBit)) {
728       LLVM_DEBUG(dbgs() << "- No overlaps\n");
729       FragMap.insert(StartBit, EndBit, Base);
730       coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
731                         FragMap);
732       return;
733     }
734     // There is at least one overlap.
735 
736     // Does StartBit intersect an existing fragment?
737     auto FirstOverlap = FragMap.find(StartBit);
738     assert(FirstOverlap != FragMap.end());
739     bool IntersectStart = FirstOverlap.start() < StartBit;
740 
741     // Does EndBit intersect an existing fragment?
742     auto LastOverlap = FragMap.find(EndBit);
743     bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
744 
745     // Check if both ends of `f` intersect the same interval `i`.
746     if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
747       LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
748       // Shorten `i` so that there's space to insert `f`.
749       //      [ f ]
750       // [  -   i   -  ]
751       // +
752       // [ i ][ f ][ i ]
753 
754       // Save values for use after inserting a new interval.
755       auto EndBitOfOverlap = FirstOverlap.stop();
756       unsigned OverlapValue = FirstOverlap.value();
757 
758       // Shorten the overlapping interval.
759       FirstOverlap.setStop(StartBit);
760       insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
761                    OverlapValue, VarLoc.DL);
762 
763       // Insert a new interval to represent the end part.
764       FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
765       insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
766                    VarLoc.DL);
767 
768       // Insert the new (middle) fragment now there is space.
769       FragMap.insert(StartBit, EndBit, Base);
770     } else {
771       // There's an overlap but `f` may not be fully contained within
772       // `i`. Shorten any end-point intersections so that we can then
773       // insert `f`.
774       //      [ - f - ]
775       // [ - i - ]
776       // |   |
777       // [ i ]
778       // Shorten any end-point intersections.
779       if (IntersectStart) {
780         LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
781         // Split off at the intersection.
782         FirstOverlap.setStop(StartBit);
783         insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
784                      *FirstOverlap, VarLoc.DL);
785       }
786       // [ - f - ]
787       //      [ - i - ]
788       //          |   |
789       //          [ i ]
790       if (IntersectEnd) {
791         LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
792         // Split off at the intersection.
793         LastOverlap.setStart(EndBit);
794         insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
795                      VarLoc.DL);
796       }
797 
798       LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
799       // FirstOverlap and LastOverlap have been shortened such that they're
800       // no longer overlapping with [StartBit, EndBit). Delete any overlaps
801       // that remain (these will be fully contained within `f`).
802       // [ - f - ]       }
803       //      [ - i - ]  } Intersection shortening that has happened above.
804       //          |   |  }
805       //          [ i ]  }
806       // -----------------
807       // [i2 ]           } Intervals fully contained within `f` get erased.
808       // -----------------
809       // [ - f - ][ i ]  } Completed insertion.
810       auto It = FirstOverlap;
811       if (IntersectStart)
812         ++It; // IntersectStart: first overlap has been shortened.
813       while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
814         LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
815         It.erase(); // This increments It after removing the interval.
816       }
817       // We've dealt with all the overlaps now!
818       assert(!FragMap.overlaps(StartBit, EndBit));
819       LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
820       FragMap.insert(StartBit, EndBit, Base);
821     }
822 
823     coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
824                       FragMap);
825   }
826 
827   bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
828 
829   void process(BasicBlock &BB, VarFragMap &LiveSet) {
830     BBInsertBeforeMap[&BB].clear();
831     for (auto &I : BB) {
832       for (auto &DPV : I.getDbgValueRange()) {
833         if (const auto *Locs = FnVarLocs->getWedge(&DPV)) {
834           for (const VarLocInfo &Loc : *Locs) {
835             addDef(Loc, &DPV, *I.getParent(), LiveSet);
836           }
837         }
838       }
839       if (const auto *Locs = FnVarLocs->getWedge(&I)) {
840         for (const VarLocInfo &Loc : *Locs) {
841           addDef(Loc, &I, *I.getParent(), LiveSet);
842         }
843       }
844     }
845   }
846 
847 public:
848   MemLocFragmentFill(Function &Fn,
849                      const DenseSet<DebugAggregate> *VarsWithStackSlot,
850                      bool CoalesceAdjacentFragments)
851       : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
852         CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
853 
854   /// Add variable locations to \p FnVarLocs so that any bits of a variable
855   /// with a memory location have that location explicitly reinstated at each
856   /// subsequent variable location definition that that doesn't overwrite those
857   /// bits. i.e. after a variable location def, insert new defs for the memory
858   /// location with fragments for the difference of "all bits currently in
859   /// memory" and "the fragment of the second def". e.g.
860   ///
861   ///     Before:
862   ///
863   ///     var x bits 0 to 63:  value in memory
864   ///     more instructions
865   ///     var x bits 0 to 31:  value is %0
866   ///
867   ///     After:
868   ///
869   ///     var x bits 0 to 63:  value in memory
870   ///     more instructions
871   ///     var x bits 0 to 31:  value is %0
872   ///     var x bits 32 to 61: value in memory ; <-- new loc def
873   ///
874   void run(FunctionVarLocsBuilder *FnVarLocs) {
875     if (!EnableMemLocFragFill)
876       return;
877 
878     this->FnVarLocs = FnVarLocs;
879 
880     // Prepare for traversal.
881     //
882     ReversePostOrderTraversal<Function *> RPOT(&Fn);
883     std::priority_queue<unsigned int, std::vector<unsigned int>,
884                         std::greater<unsigned int>>
885         Worklist;
886     std::priority_queue<unsigned int, std::vector<unsigned int>,
887                         std::greater<unsigned int>>
888         Pending;
889     DenseMap<unsigned int, BasicBlock *> OrderToBB;
890     DenseMap<BasicBlock *, unsigned int> BBToOrder;
891     { // Init OrderToBB and BBToOrder.
892       unsigned int RPONumber = 0;
893       for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
894         OrderToBB[RPONumber] = *RI;
895         BBToOrder[*RI] = RPONumber;
896         Worklist.push(RPONumber);
897         ++RPONumber;
898       }
899       LiveIn.init(RPONumber);
900       LiveOut.init(RPONumber);
901     }
902 
903     // Perform the traversal.
904     //
905     // This is a standard "intersect of predecessor outs" dataflow problem. To
906     // solve it, we perform meet() and process() using the two worklist method
907     // until the LiveIn data for each block becomes unchanging.
908     //
909     // This dataflow is essentially working on maps of sets and at each meet we
910     // intersect the maps and the mapped sets. So, initialized live-in maps
911     // monotonically decrease in value throughout the dataflow.
912     SmallPtrSet<BasicBlock *, 16> Visited;
913     while (!Worklist.empty() || !Pending.empty()) {
914       // We track what is on the pending worklist to avoid inserting the same
915       // thing twice.  We could avoid this with a custom priority queue, but
916       // this is probably not worth it.
917       SmallPtrSet<BasicBlock *, 16> OnPending;
918       LLVM_DEBUG(dbgs() << "Processing Worklist\n");
919       while (!Worklist.empty()) {
920         BasicBlock *BB = OrderToBB[Worklist.top()];
921         LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
922         Worklist.pop();
923         bool InChanged = meet(*BB, Visited);
924         // Always consider LiveIn changed on the first visit.
925         InChanged |= Visited.insert(BB).second;
926         if (InChanged) {
927           LLVM_DEBUG(dbgs()
928                      << BB->getName() << " has new InLocs, process it\n");
929           //  Mutate a copy of LiveIn while processing BB. Once we've processed
930           //  the terminator LiveSet is the LiveOut set for BB.
931           //  This is an expensive copy!
932           VarFragMap LiveSet = LiveIn[BB];
933 
934           // Process the instructions in the block.
935           process(*BB, LiveSet);
936 
937           // Relatively expensive check: has anything changed in LiveOut for BB?
938           if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
939             LLVM_DEBUG(dbgs() << BB->getName()
940                               << " has new OutLocs, add succs to worklist: [ ");
941             LiveOut[BB] = std::move(LiveSet);
942             for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
943               if (OnPending.insert(*I).second) {
944                 LLVM_DEBUG(dbgs() << I->getName() << " ");
945                 Pending.push(BBToOrder[*I]);
946               }
947             }
948             LLVM_DEBUG(dbgs() << "]\n");
949           }
950         }
951       }
952       Worklist.swap(Pending);
953       // At this point, pending must be empty, since it was just the empty
954       // worklist
955       assert(Pending.empty() && "Pending should be empty");
956     }
957 
958     // Insert new location defs.
959     for (auto &Pair : BBInsertBeforeMap) {
960       InsertMap &Map = Pair.second;
961       for (auto &Pair : Map) {
962         auto InsertBefore = Pair.first;
963         assert(InsertBefore && "should never be null");
964         auto FragMemLocs = Pair.second;
965         auto &Ctx = Fn.getContext();
966 
967         for (auto &FragMemLoc : FragMemLocs) {
968           DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
969           if (FragMemLoc.SizeInBits !=
970               *Aggregates[FragMemLoc.Var].first->getSizeInBits())
971             Expr = *DIExpression::createFragmentExpression(
972                 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
973           Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
974                                        FragMemLoc.OffsetInBits / 8);
975           DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
976                             FragMemLoc.DL.getInlinedAt());
977           FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
978                                Bases[FragMemLoc.Base]);
979         }
980       }
981     }
982   }
983 };
984 
985 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
986 /// that interprets assignment tracking debug info metadata and stores in IR to
987 /// create a map of variable locations.
988 class AssignmentTrackingLowering {
989 public:
990   /// The kind of location in use for a variable, where Mem is the stack home,
991   /// Val is an SSA value or const, and None means that there is not one single
992   /// kind (either because there are multiple or because there is none; it may
993   /// prove useful to split this into two values in the future).
994   ///
995   /// LocKind is a join-semilattice with the partial order:
996   /// None > Mem, Val
997   ///
998   /// i.e.
999   /// join(Mem, Mem)   = Mem
1000   /// join(Val, Val)   = Val
1001   /// join(Mem, Val)   = None
1002   /// join(None, Mem)  = None
1003   /// join(None, Val)  = None
1004   /// join(None, None) = None
1005   ///
1006   /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1007   /// to name assignments and are not tracking the actual stored values.
1008   /// Therefore currently there's no way to ensure that Mem values and Val
1009   /// values are the same. This could be a future extension, though it's not
1010   /// clear that many additional locations would be recovered that way in
1011   /// practice as the likelihood of this sitation arising naturally seems
1012   /// incredibly low.
1013   enum class LocKind { Mem, Val, None };
1014 
1015   /// An abstraction of the assignment of a value to a variable or memory
1016   /// location.
1017   ///
1018   /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1019   /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1020   /// can't) know the ID of the last assignment that took place.
1021   ///
1022   /// The Status of the Assignment (Known or NoneOrPhi) is another
1023   /// join-semilattice. The partial order is:
1024   /// NoneOrPhi > Known {id_0, id_1, ...id_N}
1025   ///
1026   /// i.e. for all values x and y where x != y:
1027   /// join(x, x) = x
1028   /// join(x, y) = NoneOrPhi
1029   using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DPValue *>;
1030   struct Assignment {
1031     enum S { Known, NoneOrPhi } Status;
1032     /// ID of the assignment. nullptr if Status is not Known.
1033     DIAssignID *ID;
1034     /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1035     /// May be nullptr.
1036     AssignRecord Source;
1037 
1038     bool isSameSourceAssignment(const Assignment &Other) const {
1039       // Don't include Source in the equality check. Assignments are
1040       // defined by their ID, not debug intrinsic(s).
1041       return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
1042     }
1043     void dump(raw_ostream &OS) {
1044       static const char *LUT[] = {"Known", "NoneOrPhi"};
1045       OS << LUT[Status] << "(id=";
1046       if (ID)
1047         OS << ID;
1048       else
1049         OS << "null";
1050       OS << ", s=";
1051       if (Source.isNull())
1052         OS << "null";
1053       else if (isa<DbgAssignIntrinsic *>(Source))
1054         OS << Source.get<DbgAssignIntrinsic *>();
1055       else
1056         OS << Source.get<DPValue *>();
1057       OS << ")";
1058     }
1059 
1060     static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
1061       return Assignment(Known, ID, Source);
1062     }
1063     static Assignment make(DIAssignID *ID, DPValue *Source) {
1064       assert(Source->isDbgAssign() &&
1065              "Cannot make an assignment from a non-assign DPValue");
1066       return Assignment(Known, ID, Source);
1067     }
1068     static Assignment make(DIAssignID *ID, AssignRecord Source) {
1069       return Assignment(Known, ID, Source);
1070     }
1071     static Assignment makeFromMemDef(DIAssignID *ID) {
1072       return Assignment(Known, ID);
1073     }
1074     static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); }
1075     // Again, need a Top value?
1076     Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this?
1077     Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) {
1078       // If the Status is Known then we expect there to be an assignment ID.
1079       assert(Status == NoneOrPhi || ID);
1080     }
1081     Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
1082         : Status(Status), ID(ID), Source(Source) {
1083       // If the Status is Known then we expect there to be an assignment ID.
1084       assert(Status == NoneOrPhi || ID);
1085     }
1086     Assignment(S Status, DIAssignID *ID, DPValue *Source)
1087         : Status(Status), ID(ID), Source(Source) {
1088       // If the Status is Known then we expect there to be an assignment ID.
1089       assert(Status == NoneOrPhi || ID);
1090     }
1091     Assignment(S Status, DIAssignID *ID, AssignRecord Source)
1092         : Status(Status), ID(ID), Source(Source) {
1093       // If the Status is Known then we expect there to be an assignment ID.
1094       assert(Status == NoneOrPhi || ID);
1095     }
1096   };
1097 
1098   using AssignmentMap = SmallVector<Assignment>;
1099   using LocMap = SmallVector<LocKind>;
1100   using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
1101   using UntaggedStoreAssignmentMap =
1102       DenseMap<const Instruction *,
1103                SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
1104 
1105 private:
1106   /// The highest numbered VariableID for partially promoted variables plus 1,
1107   /// the values for which start at 1.
1108   unsigned TrackedVariablesVectorSize = 0;
1109   /// Map a variable to the set of variables that it fully contains.
1110   OverlapMap VarContains;
1111   /// Map untagged stores to the variable fragments they assign to. Used by
1112   /// processUntaggedInstruction.
1113   UntaggedStoreAssignmentMap UntaggedStoreVars;
1114 
1115   // Machinery to defer inserting dbg.values.
1116   using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>;
1117   InstInsertMap InsertBeforeMap;
1118   /// Clear the location definitions currently cached for insertion after /p
1119   /// After.
1120   void resetInsertionPoint(Instruction &After);
1121   void resetInsertionPoint(DPValue &After);
1122 
1123   // emitDbgValue can be called with:
1124   //   Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DPValue*]
1125   // Since AssignRecord can be cast to one of the latter two types, and all
1126   // other types have a shared interface, we use a template to handle the latter
1127   // three types, and an explicit overload for AssignRecord that forwards to
1128   // the template version with the right type.
1129   void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After);
1130   template <typename T>
1131   void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After);
1132 
1133   static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1134                            const AssignmentMap &B) {
1135     return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1136       return A[VarID].isSameSourceAssignment(B[VarID]);
1137     });
1138   }
1139 
1140   /// Represents the stack and debug assignments in a block. Used to describe
1141   /// the live-in and live-out values for blocks, as well as the "current"
1142   /// value as we process each instruction in a block.
1143   struct BlockInfo {
1144     /// The set of variables (VariableID) being tracked in this block.
1145     BitVector VariableIDsInBlock;
1146     /// Dominating assignment to memory for each variable, indexed by
1147     /// VariableID.
1148     AssignmentMap StackHomeValue;
1149     /// Dominating assignemnt to each variable, indexed by VariableID.
1150     AssignmentMap DebugValue;
1151     /// Location kind for each variable. LiveLoc indicates whether the
1152     /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1153     /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1154     /// preference. This cannot be derived by inspecting DebugValue and
1155     /// StackHomeValue due to the fact that there's no distinction in
1156     /// Assignment (the class) between whether an assignment is unknown or a
1157     /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1158     /// words, the memory location may well be valid while both DebugValue and
1159     /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1160     /// Indexed by VariableID.
1161     LocMap LiveLoc;
1162 
1163   public:
1164     enum AssignmentKind { Stack, Debug };
1165     const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1166       switch (Kind) {
1167       case Stack:
1168         return StackHomeValue;
1169       case Debug:
1170         return DebugValue;
1171       }
1172       llvm_unreachable("Unknown AssignmentKind");
1173     }
1174     AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1175       return const_cast<AssignmentMap &>(
1176           const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1177     }
1178 
1179     bool isVariableTracked(VariableID Var) const {
1180       return VariableIDsInBlock[static_cast<unsigned>(Var)];
1181     }
1182 
1183     const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1184       assert(isVariableTracked(Var) && "Var not tracked in block");
1185       return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1186     }
1187 
1188     LocKind getLocKind(VariableID Var) const {
1189       assert(isVariableTracked(Var) && "Var not tracked in block");
1190       return LiveLoc[static_cast<unsigned>(Var)];
1191     }
1192 
1193     /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1194     /// fragments contained win \p Var.
1195     void setLocKind(VariableID Var, LocKind K) {
1196       VariableIDsInBlock.set(static_cast<unsigned>(Var));
1197       LiveLoc[static_cast<unsigned>(Var)] = K;
1198     }
1199 
1200     /// Set the assignment in the \p Kind assignment map for \p Var only: does
1201     /// not set the assignment for VariableIDs of fragments contained win \p
1202     /// Var.
1203     void setAssignment(AssignmentKind Kind, VariableID Var,
1204                        const Assignment &AV) {
1205       VariableIDsInBlock.set(static_cast<unsigned>(Var));
1206       getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1207     }
1208 
1209     /// Return true if there is an assignment matching \p AV in the \p Kind
1210     /// assignment map. Does consider assignments for VariableIDs of fragments
1211     /// contained win \p Var.
1212     bool hasAssignment(AssignmentKind Kind, VariableID Var,
1213                        const Assignment &AV) const {
1214       if (!isVariableTracked(Var))
1215         return false;
1216       return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1217     }
1218 
1219     /// Compare every element in each map to determine structural equality
1220     /// (slow).
1221     bool operator==(const BlockInfo &Other) const {
1222       return VariableIDsInBlock == Other.VariableIDsInBlock &&
1223              LiveLoc == Other.LiveLoc &&
1224              mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1225                           Other.StackHomeValue) &&
1226              mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1227     }
1228     bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1229     bool isValid() {
1230       return LiveLoc.size() == DebugValue.size() &&
1231              LiveLoc.size() == StackHomeValue.size();
1232     }
1233 
1234     /// Clear everything and initialise with ⊤-values for all variables.
1235     void init(int NumVars) {
1236       StackHomeValue.clear();
1237       DebugValue.clear();
1238       LiveLoc.clear();
1239       VariableIDsInBlock = BitVector(NumVars);
1240       StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1241                             Assignment::makeNoneOrPhi());
1242       DebugValue.insert(DebugValue.begin(), NumVars,
1243                         Assignment::makeNoneOrPhi());
1244       LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1245     }
1246 
1247     /// Helper for join.
1248     template <typename ElmtType, typename FnInputType>
1249     static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1250                          const SmallVector<ElmtType> &A,
1251                          const SmallVector<ElmtType> &B,
1252                          ElmtType (*Fn)(FnInputType, FnInputType)) {
1253       Target[Index] = Fn(A[Index], B[Index]);
1254     }
1255 
1256     /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1257     static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1258       // Join A and B.
1259       //
1260       // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1261       // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1262       // Join = Intersect ∪ Difference
1263       //
1264       // This is achieved by performing a join on elements from A and B with
1265       // variables common to both A and B (join elements indexed by var
1266       // intersect), then adding ⊤-value elements for vars in A xor B. The
1267       // latter part is equivalent to performing join on elements with variables
1268       // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1269       // BlockInfo::init initializes all variable entries to the ⊤ value so we
1270       // don't need to explicitly perform that step as Join.VariableIDsInBlock
1271       // is set to the union of the variables in A and B at the end of this
1272       // function.
1273       BlockInfo Join;
1274       Join.init(NumVars);
1275 
1276       BitVector Intersect = A.VariableIDsInBlock;
1277       Intersect &= B.VariableIDsInBlock;
1278 
1279       for (auto VarID : Intersect.set_bits()) {
1280         joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1281         joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1282                  joinAssignment);
1283         joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1284                  joinAssignment);
1285       }
1286 
1287       Join.VariableIDsInBlock = A.VariableIDsInBlock;
1288       Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1289       assert(Join.isValid());
1290       return Join;
1291     }
1292   };
1293 
1294   Function &Fn;
1295   const DataLayout &Layout;
1296   const DenseSet<DebugAggregate> *VarsWithStackSlot;
1297   FunctionVarLocsBuilder *FnVarLocs;
1298   DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1299   DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1300 
1301   /// Helper for process methods to track variables touched each frame.
1302   DenseSet<VariableID> VarsTouchedThisFrame;
1303 
1304   /// The set of variables that sometimes are not located in their stack home.
1305   DenseSet<DebugAggregate> NotAlwaysStackHomed;
1306 
1307   VariableID getVariableID(const DebugVariable &Var) {
1308     return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1309   }
1310 
1311   /// Join the LiveOut values of preds that are contained in \p Visited into
1312   /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1313   /// values monotonically increase. See the @link joinMethods join methods
1314   /// @endlink documentation for more info.
1315   bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1316   ///@name joinMethods
1317   /// Functions that implement `join` (the least upper bound) for the
1318   /// join-semilattice types used in the dataflow. There is an explicit bottom
1319   /// value (⊥) for some types and and explicit top value (⊤) for all types.
1320   /// By definition:
1321   ///
1322   ///     Join(A, B) >= A && Join(A, B) >= B
1323   ///     Join(A, ⊥) = A
1324   ///     Join(A, ⊤) = ⊤
1325   ///
1326   /// These invariants are important for monotonicity.
1327   ///
1328   /// For the map-type functions, all unmapped keys in an empty map are
1329   /// associated with a bottom value (⊥). This represents their values being
1330   /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1331   /// only present in one) represents either a variable going out of scope or
1332   /// dropped debug info. It is assumed the key is associated with a top value
1333   /// (⊤) in this case (unknown location / assignment).
1334   ///@{
1335   static LocKind joinKind(LocKind A, LocKind B);
1336   static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1337   BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1338   ///@}
1339 
1340   /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1341   /// LiveSet must be initialized with the current live-in locations before
1342   /// calling this.
1343   void process(BasicBlock &BB, BlockInfo *LiveSet);
1344   ///@name processMethods
1345   /// Methods to process instructions in order to update the LiveSet (current
1346   /// location information).
1347   ///@{
1348   void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1349   void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
1350   /// Update \p LiveSet after encountering an instruction with a DIAssignID
1351   /// attachment, \p I.
1352   void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1353   /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1354   /// attachment, \p I.
1355   void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1356   void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet);
1357   void processDPValue(DPValue &DPV, BlockInfo *LiveSet);
1358   void processDbgValue(PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord,
1359                        BlockInfo *LiveSet);
1360   /// Add an assignment to memory for the variable /p Var.
1361   void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1362   /// Add an assignment to the variable /p Var.
1363   void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1364   ///@}
1365 
1366   /// Set the LocKind for \p Var.
1367   void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1368   /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1369   /// have been called for \p Var first.
1370   LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1371   /// Return true if \p Var has an assignment in \p M matching \p AV.
1372   bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1373                             VariableID Var, const Assignment &AV);
1374   /// Return the set of VariableIDs corresponding the fragments contained fully
1375   /// within the variable/fragment \p Var.
1376   ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1377 
1378   /// Mark \p Var as having been touched this frame. Note, this applies only
1379   /// to the exact fragment \p Var and not to any fragments contained within.
1380   void touchFragment(VariableID Var);
1381 
1382   /// Emit info for variables that are fully promoted.
1383   bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1384 
1385 public:
1386   AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1387                              const DenseSet<DebugAggregate> *VarsWithStackSlot)
1388       : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1389   /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1390   /// true if any variable locations have been added to FnVarLocs.
1391   bool run(FunctionVarLocsBuilder *FnVarLocs);
1392 };
1393 } // namespace
1394 
1395 ArrayRef<VariableID>
1396 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1397   auto R = VarContains.find(Var);
1398   if (R == VarContains.end())
1399     return std::nullopt;
1400   return R->second;
1401 }
1402 
1403 void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1404   VarsTouchedThisFrame.insert(Var);
1405 }
1406 
1407 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1408                                             LocKind K) {
1409   auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1410     LiveSet->setLocKind(Var, K);
1411     touchFragment(Var);
1412   };
1413   SetKind(LiveSet, Var, K);
1414 
1415   // Update the LocKind for all fragments contained within Var.
1416   for (VariableID Frag : getContainedFragments(Var))
1417     SetKind(LiveSet, Frag, K);
1418 }
1419 
1420 AssignmentTrackingLowering::LocKind
1421 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1422   return LiveSet->getLocKind(Var);
1423 }
1424 
1425 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1426                                            const Assignment &AV) {
1427   LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1428 
1429   // Use this assigment for all fragments contained within Var, but do not
1430   // provide a Source because we cannot convert Var's value to a value for the
1431   // fragment.
1432   Assignment FragAV = AV;
1433   FragAV.Source = nullptr;
1434   for (VariableID Frag : getContainedFragments(Var))
1435     LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1436 }
1437 
1438 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1439                                            const Assignment &AV) {
1440   LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1441 
1442   // Use this assigment for all fragments contained within Var, but do not
1443   // provide a Source because we cannot convert Var's value to a value for the
1444   // fragment.
1445   Assignment FragAV = AV;
1446   FragAV.Source = nullptr;
1447   for (VariableID Frag : getContainedFragments(Var))
1448     LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1449 }
1450 
1451 static DIAssignID *getIDFromInst(const Instruction &I) {
1452   return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1453 }
1454 
1455 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1456   return cast<DIAssignID>(DAI.getAssignID());
1457 }
1458 
1459 static DIAssignID *getIDFromMarker(const DPValue &DPV) {
1460   assert(DPV.isDbgAssign() &&
1461          "Cannot get a DIAssignID from a non-assign DPValue!");
1462   return DPV.getAssignID();
1463 }
1464 
1465 /// Return true if \p Var has an assignment in \p M matching \p AV.
1466 bool AssignmentTrackingLowering::hasVarWithAssignment(
1467     BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1468     const Assignment &AV) {
1469   if (!LiveSet->hasAssignment(Kind, Var, AV))
1470     return false;
1471 
1472   // Check all the frags contained within Var as these will have all been
1473   // mapped to AV at the last store to Var.
1474   for (VariableID Frag : getContainedFragments(Var))
1475     if (!LiveSet->hasAssignment(Kind, Frag, AV))
1476       return false;
1477   return true;
1478 }
1479 
1480 #ifndef NDEBUG
1481 const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1482   using LocKind = AssignmentTrackingLowering::LocKind;
1483   switch (Loc) {
1484   case LocKind::Val:
1485     return "Val";
1486   case LocKind::Mem:
1487     return "Mem";
1488   case LocKind::None:
1489     return "None";
1490   };
1491   llvm_unreachable("unknown LocKind");
1492 }
1493 #endif
1494 
1495 VarLocInsertPt getNextNode(const DPValue *DPV) {
1496   auto NextIt = ++(DPV->getIterator());
1497   if (NextIt == DPV->getMarker()->getDbgValueRange().end())
1498     return DPV->getMarker()->MarkedInstr;
1499   return &*NextIt;
1500 }
1501 VarLocInsertPt getNextNode(const Instruction *Inst) {
1502   const Instruction *Next = Inst->getNextNode();
1503   if (!Next->hasDbgValues())
1504     return Next;
1505   return &*Next->getDbgValueRange().begin();
1506 }
1507 VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) {
1508   if (isa<const Instruction *>(InsertPt))
1509     return getNextNode(cast<const Instruction *>(InsertPt));
1510   return getNextNode(cast<const DPValue *>(InsertPt));
1511 }
1512 
1513 DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) {
1514   return cast<DbgAssignIntrinsic>(DVI);
1515 }
1516 
1517 DPValue *CastToDbgAssign(DPValue *DPV) {
1518   assert(DPV->isDbgAssign() &&
1519          "Attempted to cast non-assign DPValue to DPVAssign.");
1520   return DPV;
1521 }
1522 
1523 void AssignmentTrackingLowering::emitDbgValue(
1524     AssignmentTrackingLowering::LocKind Kind,
1525     AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) {
1526   if (isa<DbgAssignIntrinsic *>(Source))
1527     emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After);
1528   else
1529     emitDbgValue(Kind, cast<DPValue *>(Source), After);
1530 }
1531 template <typename T>
1532 void AssignmentTrackingLowering::emitDbgValue(
1533     AssignmentTrackingLowering::LocKind Kind, const T Source,
1534     VarLocInsertPt After) {
1535 
1536   DILocation *DL = Source->getDebugLoc();
1537   auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1538     assert(Expr);
1539     if (!Val)
1540       Val = ValueAsMetadata::get(
1541           PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1542 
1543     // Find a suitable insert point.
1544     auto InsertBefore = getNextNode(After);
1545     assert(InsertBefore && "Shouldn't be inserting after a terminator");
1546 
1547     VariableID Var = getVariableID(DebugVariable(Source));
1548     VarLocInfo VarLoc;
1549     VarLoc.VariableID = static_cast<VariableID>(Var);
1550     VarLoc.Expr = Expr;
1551     VarLoc.Values = RawLocationWrapper(Val);
1552     VarLoc.DL = DL;
1553     // Insert it into the map for later.
1554     InsertBeforeMap[InsertBefore].push_back(VarLoc);
1555   };
1556 
1557   // NOTE: This block can mutate Kind.
1558   if (Kind == LocKind::Mem) {
1559     const auto *Assign = CastToDbgAssign(Source);
1560     // Check the address hasn't been dropped (e.g. the debug uses may not have
1561     // been replaced before deleting a Value).
1562     if (Assign->isKillAddress()) {
1563       // The address isn't valid so treat this as a non-memory def.
1564       Kind = LocKind::Val;
1565     } else {
1566       Value *Val = Assign->getAddress();
1567       DIExpression *Expr = Assign->getAddressExpression();
1568       assert(!Expr->getFragmentInfo() &&
1569              "fragment info should be stored in value-expression only");
1570       // Copy the fragment info over from the value-expression to the new
1571       // DIExpression.
1572       if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1573         auto FragInfo = *OptFragInfo;
1574         Expr = *DIExpression::createFragmentExpression(
1575             Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1576       }
1577       // The address-expression has an implicit deref, add it now.
1578       std::tie(Val, Expr) =
1579           walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1580       Emit(ValueAsMetadata::get(Val), Expr);
1581       return;
1582     }
1583   }
1584 
1585   if (Kind == LocKind::Val) {
1586     Emit(Source->getRawLocation(), Source->getExpression());
1587     return;
1588   }
1589 
1590   if (Kind == LocKind::None) {
1591     Emit(nullptr, Source->getExpression());
1592     return;
1593   }
1594 }
1595 
1596 void AssignmentTrackingLowering::processNonDbgInstruction(
1597     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1598   if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1599     processTaggedInstruction(I, LiveSet);
1600   else
1601     processUntaggedInstruction(I, LiveSet);
1602 }
1603 
1604 void AssignmentTrackingLowering::processUntaggedInstruction(
1605     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1606   // Interpret stack stores that are not tagged as an assignment in memory for
1607   // the variables associated with that address. These stores may not be tagged
1608   // because a) the store cannot be represented using dbg.assigns (non-const
1609   // length or offset) or b) the tag was accidentally dropped during
1610   // optimisations. For these stores we fall back to assuming that the stack
1611   // home is a valid location for the variables. The benefit is that this
1612   // prevents us missing an assignment and therefore incorrectly maintaining
1613   // earlier location definitions, and in many cases it should be a reasonable
1614   // assumption. However, this will occasionally lead to slight
1615   // inaccuracies. The value of a hoisted untagged store will be visible
1616   // "early", for example.
1617   assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1618   auto It = UntaggedStoreVars.find(&I);
1619   if (It == UntaggedStoreVars.end())
1620     return; // No variables associated with the store destination.
1621 
1622   LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1623                     << "\n");
1624   // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1625   // and mem def, set lockind to Mem, and emit a location def for each.
1626   for (auto [Var, Info] : It->second) {
1627     // This instruction is treated as both a debug and memory assignment,
1628     // meaning the memory location should be used. We don't have an assignment
1629     // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1630     addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1631     addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1632     setLocKind(LiveSet, Var, LocKind::Mem);
1633     LLVM_DEBUG(dbgs() << "  setting Stack LocKind to: " << locStr(LocKind::Mem)
1634                       << "\n");
1635     // Build the dbg location def to insert.
1636     //
1637     // DIExpression: Add fragment and offset.
1638     DebugVariable V = FnVarLocs->getVariable(Var);
1639     DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1640     if (auto Frag = V.getFragment()) {
1641       auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1642                                                       Frag->SizeInBits);
1643       assert(R && "unexpected createFragmentExpression failure");
1644       DIE = *R;
1645     }
1646     SmallVector<uint64_t, 3> Ops;
1647     if (Info.OffsetInBits)
1648       Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1649     Ops.push_back(dwarf::DW_OP_deref);
1650     DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1651                                        /*EntryValue=*/false);
1652     // Find a suitable insert point, before the next instruction or DPValue
1653     // after I.
1654     auto InsertBefore = getNextNode(&I);
1655     assert(InsertBefore && "Shouldn't be inserting after a terminator");
1656 
1657     // Get DILocation for this unrecorded assignment.
1658     DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1659     const DILocation *DILoc = DILocation::get(
1660         Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1661 
1662     VarLocInfo VarLoc;
1663     VarLoc.VariableID = static_cast<VariableID>(Var);
1664     VarLoc.Expr = DIE;
1665     VarLoc.Values = RawLocationWrapper(
1666         ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1667     VarLoc.DL = DILoc;
1668     // 3. Insert it into the map for later.
1669     InsertBeforeMap[InsertBefore].push_back(VarLoc);
1670   }
1671 }
1672 
1673 void AssignmentTrackingLowering::processTaggedInstruction(
1674     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1675   auto Linked = at::getAssignmentMarkers(&I);
1676   auto LinkedDPAssigns = at::getDPVAssignmentMarkers(&I);
1677   // No dbg.assign intrinsics linked.
1678   // FIXME: All vars that have a stack slot this store modifies that don't have
1679   // a dbg.assign linked to it should probably treat this like an untagged
1680   // store.
1681   if (Linked.empty() && LinkedDPAssigns.empty())
1682     return;
1683 
1684   LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1685   auto ProcessLinkedAssign = [&](auto *Assign) {
1686     VariableID Var = getVariableID(DebugVariable(Assign));
1687     // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1688     // that is linked to a store.
1689     assert(VarsWithStackSlot->count(getAggregate(Assign)) &&
1690            "expected Assign's variable to have stack slot");
1691 
1692     Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1693     addMemDef(LiveSet, Var, AV);
1694 
1695     LLVM_DEBUG(dbgs() << "   linked to " << *Assign << "\n");
1696     LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1697                       << " -> ");
1698 
1699     // The last assignment to the stack is now AV. Check if the last debug
1700     // assignment has a matching Assignment.
1701     if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1702       // The StackHomeValue and DebugValue for this variable match so we can
1703       // emit a stack home location here.
1704       LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1705       LLVM_DEBUG(dbgs() << "   Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1706       LLVM_DEBUG(dbgs() << "   Debug val: ";
1707                  LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1708                  dbgs() << "\n");
1709       setLocKind(LiveSet, Var, LocKind::Mem);
1710       emitDbgValue(LocKind::Mem, Assign, &I);
1711       return;
1712     }
1713 
1714     // The StackHomeValue and DebugValue for this variable do not match. I.e.
1715     // The value currently stored in the stack is not what we'd expect to
1716     // see, so we cannot use emit a stack home location here. Now we will
1717     // look at the live LocKind for the variable and determine an appropriate
1718     // dbg.value to emit.
1719     LocKind PrevLoc = getLocKind(LiveSet, Var);
1720     switch (PrevLoc) {
1721     case LocKind::Val: {
1722       // The value in memory in memory has changed but we're not currently
1723       // using the memory location. Do nothing.
1724       LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1725       setLocKind(LiveSet, Var, LocKind::Val);
1726     } break;
1727     case LocKind::Mem: {
1728       // There's been an assignment to memory that we were using as a
1729       // location for this variable, and the Assignment doesn't match what
1730       // we'd expect to see in memory.
1731       Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1732       if (DbgAV.Status == Assignment::NoneOrPhi) {
1733         // We need to terminate any previously open location now.
1734         LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1735         setLocKind(LiveSet, Var, LocKind::None);
1736         emitDbgValue(LocKind::None, Assign, &I);
1737       } else {
1738         // The previous DebugValue Value can be used here.
1739         LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1740         setLocKind(LiveSet, Var, LocKind::Val);
1741         if (DbgAV.Source) {
1742           emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1743         } else {
1744           // PrevAV.Source is nullptr so we must emit undef here.
1745           emitDbgValue(LocKind::None, Assign, &I);
1746         }
1747       }
1748     } break;
1749     case LocKind::None: {
1750       // There's been an assignment to memory and we currently are
1751       // not tracking a location for the variable. Do not emit anything.
1752       LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1753       setLocKind(LiveSet, Var, LocKind::None);
1754     } break;
1755     }
1756   };
1757   for (DbgAssignIntrinsic *DAI : Linked)
1758     ProcessLinkedAssign(DAI);
1759   for (DPValue *DPV : LinkedDPAssigns)
1760     ProcessLinkedAssign(DPV);
1761 }
1762 
1763 void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign,
1764                                                   BlockInfo *LiveSet) {
1765   auto ProcessDbgAssignImpl = [&](auto *DbgAssign) {
1766     // Only bother tracking variables that are at some point stack homed. Other
1767     // variables can be dealt with trivially later.
1768     if (!VarsWithStackSlot->count(getAggregate(DbgAssign)))
1769       return;
1770 
1771     VariableID Var = getVariableID(DebugVariable(DbgAssign));
1772     Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign);
1773     addDbgDef(LiveSet, Var, AV);
1774 
1775     LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";);
1776     LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1777                       << " -> ");
1778 
1779     // Check if the DebugValue and StackHomeValue both hold the same
1780     // Assignment.
1781     if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1782       // They match. We can use the stack home because the debug intrinsics
1783       // state that an assignment happened here, and we know that specific
1784       // assignment was the last one to take place in memory for this variable.
1785       LocKind Kind;
1786       if (DbgAssign->isKillAddress()) {
1787         LLVM_DEBUG(
1788             dbgs()
1789                 << "Val, Stack matches Debug program but address is killed\n";);
1790         Kind = LocKind::Val;
1791       } else {
1792         LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1793         Kind = LocKind::Mem;
1794       };
1795       setLocKind(LiveSet, Var, Kind);
1796       emitDbgValue(Kind, DbgAssign, DbgAssign);
1797     } else {
1798       // The last assignment to the memory location isn't the one that we want
1799       // to show to the user so emit a dbg.value(Value). Value may be undef.
1800       LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1801       setLocKind(LiveSet, Var, LocKind::Val);
1802       emitDbgValue(LocKind::Val, DbgAssign, DbgAssign);
1803     }
1804   };
1805   if (isa<DPValue *>(Assign))
1806     return ProcessDbgAssignImpl(cast<DPValue *>(Assign));
1807   return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign));
1808 }
1809 
1810 void AssignmentTrackingLowering::processDbgValue(
1811     PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord,
1812     BlockInfo *LiveSet) {
1813   auto ProcessDbgValueImpl = [&](auto *DbgValue) {
1814     // Only other tracking variables that are at some point stack homed.
1815     // Other variables can be dealt with trivally later.
1816     if (!VarsWithStackSlot->count(getAggregate(DbgValue)))
1817       return;
1818 
1819     VariableID Var = getVariableID(DebugVariable(DbgValue));
1820     // We have no ID to create an Assignment with so we mark this assignment as
1821     // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1822     // the assignment responsible for setting this value.
1823     // This is fine; dbg.values are essentially interchangable with unlinked
1824     // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1825     // PHIs for promoted variables.
1826     Assignment AV = Assignment::makeNoneOrPhi();
1827     addDbgDef(LiveSet, Var, AV);
1828 
1829     LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";);
1830     LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1831                       << " -> Val, dbg.value override");
1832 
1833     setLocKind(LiveSet, Var, LocKind::Val);
1834     emitDbgValue(LocKind::Val, DbgValue, DbgValue);
1835   };
1836   if (isa<DPValue *>(DbgValueRecord))
1837     return ProcessDbgValueImpl(cast<DPValue *>(DbgValueRecord));
1838   return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord));
1839 }
1840 
1841 template <typename T> static bool hasZeroSizedFragment(T &DbgValue) {
1842   if (auto F = DbgValue.getExpression()->getFragmentInfo())
1843     return F->SizeInBits == 0;
1844   return false;
1845 }
1846 
1847 void AssignmentTrackingLowering::processDbgInstruction(
1848     DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1849   auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
1850   if (!DVI)
1851     return;
1852 
1853   // Ignore assignments to zero bits of the variable.
1854   if (hasZeroSizedFragment(*DVI))
1855     return;
1856 
1857   if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1858     processDbgAssign(DAI, LiveSet);
1859   else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1860     processDbgValue(DVI, LiveSet);
1861 }
1862 void AssignmentTrackingLowering::processDPValue(
1863     DPValue &DPV, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1864   // Ignore assignments to zero bits of the variable.
1865   if (hasZeroSizedFragment(DPV))
1866     return;
1867 
1868   if (DPV.isDbgAssign())
1869     processDbgAssign(&DPV, LiveSet);
1870   else if (DPV.isDbgValue())
1871     processDbgValue(&DPV, LiveSet);
1872 }
1873 
1874 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1875   assert(!After.isTerminator() && "Can't insert after a terminator");
1876   auto *R = InsertBeforeMap.find(getNextNode(&After));
1877   if (R == InsertBeforeMap.end())
1878     return;
1879   R->second.clear();
1880 }
1881 void AssignmentTrackingLowering::resetInsertionPoint(DPValue &After) {
1882   auto *R = InsertBeforeMap.find(getNextNode(&After));
1883   if (R == InsertBeforeMap.end())
1884     return;
1885   R->second.clear();
1886 }
1887 
1888 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1889   // If the block starts with DPValues, we need to process those DPValues as
1890   // their own frame without processing any instructions first.
1891   bool ProcessedLeadingDPValues = !BB.begin()->hasDbgValues();
1892   for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1893     assert(VarsTouchedThisFrame.empty());
1894     // Process the instructions in "frames". A "frame" includes a single
1895     // non-debug instruction followed any debug instructions before the
1896     // next non-debug instruction.
1897 
1898     // Skip the current instruction if it has unprocessed DPValues attached (see
1899     // comment above `ProcessedLeadingDPValues`).
1900     if (ProcessedLeadingDPValues) {
1901       // II is now either a debug intrinsic, a non-debug instruction with no
1902       // attached DPValues, or a non-debug instruction with attached processed
1903       // DPValues.
1904       // II has not been processed.
1905       if (!isa<DbgInfoIntrinsic>(&*II)) {
1906         if (II->isTerminator())
1907           break;
1908         resetInsertionPoint(*II);
1909         processNonDbgInstruction(*II, LiveSet);
1910         assert(LiveSet->isValid());
1911         ++II;
1912       }
1913     }
1914     // II is now either a debug intrinsic, a non-debug instruction with no
1915     // attached DPValues, or a non-debug instruction with attached unprocessed
1916     // DPValues.
1917     if (II != EI && II->hasDbgValues()) {
1918       for (DPValue &DPV : II->getDbgValueRange()) {
1919         resetInsertionPoint(DPV);
1920         processDPValue(DPV, LiveSet);
1921         assert(LiveSet->isValid());
1922       }
1923     }
1924     ProcessedLeadingDPValues = true;
1925     while (II != EI) {
1926       auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
1927       if (!Dbg)
1928         break;
1929       resetInsertionPoint(*II);
1930       processDbgInstruction(*Dbg, LiveSet);
1931       assert(LiveSet->isValid());
1932       ++II;
1933     }
1934     // II is now a non-debug instruction either with no attached DPValues, or
1935     // with attached processed DPValues. II has not been processed, and all
1936     // debug instructions or DPValues in the frame preceding II have been
1937     // processed.
1938 
1939     // We've processed everything in the "frame". Now determine which variables
1940     // cannot be represented by a dbg.declare.
1941     for (auto Var : VarsTouchedThisFrame) {
1942       LocKind Loc = getLocKind(LiveSet, Var);
1943       // If a variable's LocKind is anything other than LocKind::Mem then we
1944       // must note that it cannot be represented with a dbg.declare.
1945       // Note that this check is enough without having to check the result of
1946       // joins() because for join to produce anything other than Mem after
1947       // we've already seen a Mem we'd be joining None or Val with Mem. In that
1948       // case, we've already hit this codepath when we set the LocKind to Val
1949       // or None in that block.
1950       if (Loc != LocKind::Mem) {
1951         DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1952         DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1953         NotAlwaysStackHomed.insert(Aggr);
1954       }
1955     }
1956     VarsTouchedThisFrame.clear();
1957   }
1958 }
1959 
1960 AssignmentTrackingLowering::LocKind
1961 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1962   // Partial order:
1963   // None > Mem, Val
1964   return A == B ? A : LocKind::None;
1965 }
1966 
1967 AssignmentTrackingLowering::Assignment
1968 AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1969                                            const Assignment &B) {
1970   // Partial order:
1971   // NoneOrPhi(null, null) > Known(v, ?s)
1972 
1973   // If either are NoneOrPhi the join is NoneOrPhi.
1974   // If either value is different then the result is
1975   // NoneOrPhi (joining two values is a Phi).
1976   if (!A.isSameSourceAssignment(B))
1977     return Assignment::makeNoneOrPhi();
1978   if (A.Status == Assignment::NoneOrPhi)
1979     return Assignment::makeNoneOrPhi();
1980 
1981   // Source is used to lookup the value + expression in the debug program if
1982   // the stack slot gets assigned a value earlier than expected. Because
1983   // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1984   // It's unlikely that we're losing out on much coverage by avoiding that
1985   // extra work.
1986   // The Source may differ in this situation:
1987   // Pred.1:
1988   //   dbg.assign i32 0, ..., !1, ...
1989   // Pred.2:
1990   //   dbg.assign i32 1, ..., !1, ...
1991   // Here the same assignment (!1) was performed in both preds in the source,
1992   // but we can't use either one unless they are identical (e.g. .we don't
1993   // want to arbitrarily pick between constant values).
1994   auto JoinSource = [&]() -> AssignRecord {
1995     if (A.Source == B.Source)
1996       return A.Source;
1997     if (!A.Source || !B.Source)
1998       return AssignRecord();
1999     assert(isa<DPValue *>(A.Source) == isa<DPValue *>(B.Source));
2000     if (isa<DPValue *>(A.Source) &&
2001         cast<DPValue *>(A.Source)->isEquivalentTo(*cast<DPValue *>(B.Source)))
2002       return A.Source;
2003     if (isa<DbgAssignIntrinsic *>(A.Source) &&
2004         cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo(
2005             cast<DbgAssignIntrinsic *>(B.Source)))
2006       return A.Source;
2007     return AssignRecord();
2008   };
2009   AssignRecord Source = JoinSource();
2010   assert(A.Status == B.Status && A.Status == Assignment::Known);
2011   assert(A.ID == B.ID);
2012   return Assignment::make(A.ID, Source);
2013 }
2014 
2015 AssignmentTrackingLowering::BlockInfo
2016 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
2017                                           const BlockInfo &B) {
2018   return BlockInfo::join(A, B, TrackedVariablesVectorSize);
2019 }
2020 
2021 bool AssignmentTrackingLowering::join(
2022     const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
2023 
2024   SmallVector<const BasicBlock *> VisitedPreds;
2025   // Ignore backedges if we have not visited the predecessor yet. As the
2026   // predecessor hasn't yet had locations propagated into it, most locations
2027   // will not yet be valid, so treat them as all being uninitialized and
2028   // potentially valid. If a location guessed to be correct here is
2029   // invalidated later, we will remove it when we revisit this block. This
2030   // is essentially the same as initialising all LocKinds and Assignments to
2031   // an implicit ⊥ value which is the identity value for the join operation.
2032   for (const BasicBlock *Pred : predecessors(&BB)) {
2033     if (Visited.count(Pred))
2034       VisitedPreds.push_back(Pred);
2035   }
2036 
2037   // No preds visited yet.
2038   if (VisitedPreds.empty()) {
2039     auto It = LiveIn.try_emplace(&BB, BlockInfo());
2040     bool DidInsert = It.second;
2041     if (DidInsert)
2042       It.first->second.init(TrackedVariablesVectorSize);
2043     return /*Changed*/ DidInsert;
2044   }
2045 
2046   // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
2047   if (VisitedPreds.size() == 1) {
2048     const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
2049     auto CurrentLiveInEntry = LiveIn.find(&BB);
2050 
2051     // Check if there isn't an entry, or there is but the LiveIn set has
2052     // changed (expensive check).
2053     if (CurrentLiveInEntry == LiveIn.end())
2054       LiveIn.insert(std::make_pair(&BB, PredLiveOut));
2055     else if (PredLiveOut != CurrentLiveInEntry->second)
2056       CurrentLiveInEntry->second = PredLiveOut;
2057     else
2058       return /*Changed*/ false;
2059     return /*Changed*/ true;
2060   }
2061 
2062   // More than one pred. Join LiveOuts of blocks 1 and 2.
2063   assert(VisitedPreds.size() > 1);
2064   const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
2065   const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
2066   BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
2067 
2068   // Join the LiveOuts of subsequent blocks.
2069   ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
2070   for (const BasicBlock *Pred : Tail) {
2071     const auto &PredLiveOut = LiveOut.find(Pred);
2072     assert(PredLiveOut != LiveOut.end() &&
2073            "block should have been processed already");
2074     BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
2075   }
2076 
2077   // Save the joined result for BB.
2078   auto CurrentLiveInEntry = LiveIn.find(&BB);
2079   // Check if there isn't an entry, or there is but the LiveIn set has changed
2080   // (expensive check).
2081   if (CurrentLiveInEntry == LiveIn.end())
2082     LiveIn.try_emplace(&BB, std::move(BBLiveIn));
2083   else if (BBLiveIn != CurrentLiveInEntry->second)
2084     CurrentLiveInEntry->second = std::move(BBLiveIn);
2085   else
2086     return /*Changed*/ false;
2087   return /*Changed*/ true;
2088 }
2089 
2090 /// Return true if A fully contains B.
2091 static bool fullyContains(DIExpression::FragmentInfo A,
2092                           DIExpression::FragmentInfo B) {
2093   auto ALeft = A.OffsetInBits;
2094   auto BLeft = B.OffsetInBits;
2095   if (BLeft < ALeft)
2096     return false;
2097 
2098   auto ARight = ALeft + A.SizeInBits;
2099   auto BRight = BLeft + B.SizeInBits;
2100   if (BRight > ARight)
2101     return false;
2102   return true;
2103 }
2104 
2105 static std::optional<at::AssignmentInfo>
2106 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
2107   // Don't bother checking if this is an AllocaInst. We know this
2108   // instruction has no tag which means there are no variables associated
2109   // with it.
2110   if (const auto *SI = dyn_cast<StoreInst>(&I))
2111     return at::getAssignmentInfo(Layout, SI);
2112   if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
2113     return at::getAssignmentInfo(Layout, MI);
2114   // Alloca or non-store-like inst.
2115   return std::nullopt;
2116 }
2117 
2118 DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) {
2119   return dyn_cast<DbgDeclareInst>(DVI);
2120 }
2121 
2122 DPValue *DynCastToDbgDeclare(DPValue *DPV) {
2123   return DPV->isDbgDeclare() ? DPV : nullptr;
2124 }
2125 
2126 /// Build a map of {Variable x: Variables y} where all variable fragments
2127 /// contained within the variable fragment x are in set y. This means that
2128 /// y does not contain all overlaps because partial overlaps are excluded.
2129 ///
2130 /// While we're iterating over the function, add single location defs for
2131 /// dbg.declares to \p FnVarLocs.
2132 ///
2133 /// Variables that are interesting to this pass in are added to
2134 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
2135 /// the last interesting variable plus 1, meaning variables with ID 1
2136 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2137 /// subsequent variables are either stack homed or fully promoted.
2138 ///
2139 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2140 /// the stored-to variable fragments.
2141 ///
2142 /// These tasks are bundled together to reduce the number of times we need
2143 /// to iterate over the function as they can be achieved together in one pass.
2144 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
2145     Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
2146     const DenseSet<DebugAggregate> &VarsWithStackSlot,
2147     AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
2148     unsigned &TrackedVariablesVectorSize) {
2149   DenseSet<DebugVariable> Seen;
2150   // Map of Variable: [Fragments].
2151   DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
2152   // Iterate over all instructions:
2153   // - dbg.declare    -> add single location variable record
2154   // - dbg.*          -> Add fragments to FragmentMap
2155   // - untagged store -> Add fragments to FragmentMap and update
2156   //                     UntaggedStoreVars.
2157   // We need to add fragments for untagged stores too so that we can correctly
2158   // clobber overlapped fragment locations later.
2159   SmallVector<DbgDeclareInst *> InstDeclares;
2160   SmallVector<DPValue *> DPDeclares;
2161   auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) {
2162     if (auto *Declare = DynCastToDbgDeclare(Record)) {
2163       DeclareList.push_back(Declare);
2164       return;
2165     }
2166     DebugVariable DV = DebugVariable(Record);
2167     DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2168     if (!VarsWithStackSlot.contains(DA))
2169       return;
2170     if (Seen.insert(DV).second)
2171       FragmentMap[DA].push_back(DV);
2172   };
2173   for (auto &BB : Fn) {
2174     for (auto &I : BB) {
2175       for (auto &DPV : I.getDbgValueRange())
2176         ProcessDbgRecord(&DPV, DPDeclares);
2177       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2178         ProcessDbgRecord(DII, InstDeclares);
2179       } else if (auto Info = getUntaggedStoreAssignmentInfo(
2180                      I, Fn.getParent()->getDataLayout())) {
2181         // Find markers linked to this alloca.
2182         auto HandleDbgAssignForStore = [&](auto *Assign) {
2183           std::optional<DIExpression::FragmentInfo> FragInfo;
2184 
2185           // Skip this assignment if the affected bits are outside of the
2186           // variable fragment.
2187           if (!at::calculateFragmentIntersect(
2188                   I.getModule()->getDataLayout(), Info->Base,
2189                   Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) ||
2190               (FragInfo && FragInfo->SizeInBits == 0))
2191             return;
2192 
2193           // FragInfo from calculateFragmentIntersect is nullopt if the
2194           // resultant fragment matches DAI's fragment or entire variable - in
2195           // which case copy the fragment info from DAI. If FragInfo is still
2196           // nullopt after the copy it means "no fragment info" instead, which
2197           // is how it is usually interpreted.
2198           if (!FragInfo)
2199             FragInfo = Assign->getExpression()->getFragmentInfo();
2200 
2201           DebugVariable DV =
2202               DebugVariable(Assign->getVariable(), FragInfo,
2203                             Assign->getDebugLoc().getInlinedAt());
2204           DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2205           if (!VarsWithStackSlot.contains(DA))
2206             return;
2207 
2208           // Cache this info for later.
2209           UntaggedStoreVars[&I].push_back(
2210               {FnVarLocs->insertVariable(DV), *Info});
2211 
2212           if (Seen.insert(DV).second)
2213             FragmentMap[DA].push_back(DV);
2214         };
2215         for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base))
2216           HandleDbgAssignForStore(DAI);
2217         for (DPValue *DPV : at::getDPVAssignmentMarkers(Info->Base))
2218           HandleDbgAssignForStore(DPV);
2219       }
2220     }
2221   }
2222 
2223   // Sort the fragment map for each DebugAggregate in ascending
2224   // order of fragment size - there should be no duplicates.
2225   for (auto &Pair : FragmentMap) {
2226     SmallVector<DebugVariable, 8> &Frags = Pair.second;
2227     std::sort(Frags.begin(), Frags.end(),
2228               [](const DebugVariable &Next, const DebugVariable &Elmt) {
2229                 return Elmt.getFragmentOrDefault().SizeInBits >
2230                        Next.getFragmentOrDefault().SizeInBits;
2231               });
2232     // Check for duplicates.
2233     assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2234   }
2235 
2236   // Build the map.
2237   AssignmentTrackingLowering::OverlapMap Map;
2238   for (auto &Pair : FragmentMap) {
2239     auto &Frags = Pair.second;
2240     for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2241       DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2242       // Find the frags that this is contained within.
2243       //
2244       // Because Frags is sorted by size and none have the same offset and
2245       // size, we know that this frag can only be contained by subsequent
2246       // elements.
2247       SmallVector<DebugVariable, 8>::iterator OtherIt = It;
2248       ++OtherIt;
2249       VariableID ThisVar = FnVarLocs->insertVariable(*It);
2250       for (; OtherIt != IEnd; ++OtherIt) {
2251         DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2252         VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2253         if (fullyContains(OtherFrag, Frag))
2254           Map[OtherVar].push_back(ThisVar);
2255       }
2256     }
2257   }
2258 
2259   // VariableIDs are 1-based so the variable-tracking bitvector needs
2260   // NumVariables plus 1 bits.
2261   TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2262 
2263   // Finally, insert the declares afterwards, so the first IDs are all
2264   // partially stack homed vars.
2265   for (auto *DDI : InstDeclares)
2266     FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
2267                                DDI->getDebugLoc(), DDI->getWrappedLocation());
2268   for (auto *DPV : DPDeclares)
2269     FnVarLocs->addSingleLocVar(DebugVariable(DPV), DPV->getExpression(),
2270                                DPV->getDebugLoc(),
2271                                RawLocationWrapper(DPV->getRawLocation()));
2272   return Map;
2273 }
2274 
2275 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2276   if (Fn.size() > MaxNumBlocks) {
2277     LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2278                       << ": too many blocks (" << Fn.size() << ")\n");
2279     at::deleteAll(&Fn);
2280     return false;
2281   }
2282 
2283   FnVarLocs = FnVarLocsBuilder;
2284 
2285   // The general structure here is inspired by VarLocBasedImpl.cpp
2286   // (LiveDebugValues).
2287 
2288   // Build the variable fragment overlap map.
2289   // Note that this pass doesn't handle partial overlaps correctly (FWIW
2290   // neither does LiveDebugVariables) because that is difficult to do and
2291   // appears to be rare occurance.
2292   VarContains = buildOverlapMapAndRecordDeclares(
2293       Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
2294       TrackedVariablesVectorSize);
2295 
2296   // Prepare for traversal.
2297   ReversePostOrderTraversal<Function *> RPOT(&Fn);
2298   std::priority_queue<unsigned int, std::vector<unsigned int>,
2299                       std::greater<unsigned int>>
2300       Worklist;
2301   std::priority_queue<unsigned int, std::vector<unsigned int>,
2302                       std::greater<unsigned int>>
2303       Pending;
2304   DenseMap<unsigned int, BasicBlock *> OrderToBB;
2305   DenseMap<BasicBlock *, unsigned int> BBToOrder;
2306   { // Init OrderToBB and BBToOrder.
2307     unsigned int RPONumber = 0;
2308     for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
2309       OrderToBB[RPONumber] = *RI;
2310       BBToOrder[*RI] = RPONumber;
2311       Worklist.push(RPONumber);
2312       ++RPONumber;
2313     }
2314     LiveIn.init(RPONumber);
2315     LiveOut.init(RPONumber);
2316   }
2317 
2318   // Perform the traversal.
2319   //
2320   // This is a standard "union of predecessor outs" dataflow problem. To solve
2321   // it, we perform join() and process() using the two worklist method until
2322   // the LiveIn data for each block becomes unchanging. The "proof" that this
2323   // terminates can be put together by looking at the comments around LocKind,
2324   // Assignment, and the various join methods, which show that all the elements
2325   // involved are made up of join-semilattices; LiveIn(n) can only
2326   // monotonically increase in value throughout the dataflow.
2327   //
2328   SmallPtrSet<BasicBlock *, 16> Visited;
2329   while (!Worklist.empty()) {
2330     // We track what is on the pending worklist to avoid inserting the same
2331     // thing twice.
2332     SmallPtrSet<BasicBlock *, 16> OnPending;
2333     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2334     while (!Worklist.empty()) {
2335       BasicBlock *BB = OrderToBB[Worklist.top()];
2336       LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2337       Worklist.pop();
2338       bool InChanged = join(*BB, Visited);
2339       // Always consider LiveIn changed on the first visit.
2340       InChanged |= Visited.insert(BB).second;
2341       if (InChanged) {
2342         LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2343         // Mutate a copy of LiveIn while processing BB. After calling process
2344         // LiveSet is the LiveOut set for BB.
2345         BlockInfo LiveSet = LiveIn[BB];
2346 
2347         // Process the instructions in the block.
2348         process(*BB, &LiveSet);
2349 
2350         // Relatively expensive check: has anything changed in LiveOut for BB?
2351         if (LiveOut[BB] != LiveSet) {
2352           LLVM_DEBUG(dbgs() << BB->getName()
2353                             << " has new OutLocs, add succs to worklist: [ ");
2354           LiveOut[BB] = std::move(LiveSet);
2355           for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
2356             if (OnPending.insert(*I).second) {
2357               LLVM_DEBUG(dbgs() << I->getName() << " ");
2358               Pending.push(BBToOrder[*I]);
2359             }
2360           }
2361           LLVM_DEBUG(dbgs() << "]\n");
2362         }
2363       }
2364     }
2365     Worklist.swap(Pending);
2366     // At this point, pending must be empty, since it was just the empty
2367     // worklist
2368     assert(Pending.empty() && "Pending should be empty");
2369   }
2370 
2371   // That's the hard part over. Now we just have some admin to do.
2372 
2373   // Record whether we inserted any intrinsics.
2374   bool InsertedAnyIntrinsics = false;
2375 
2376   // Identify and add defs for single location variables.
2377   //
2378   // Go through all of the defs that we plan to add. If the aggregate variable
2379   // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2380   // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2381   // we can identify those uneeded defs later.
2382   DenseSet<DebugAggregate> AlwaysStackHomed;
2383   for (const auto &Pair : InsertBeforeMap) {
2384     auto &Vec = Pair.second;
2385     for (VarLocInfo VarLoc : Vec) {
2386       DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2387       DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2388 
2389       // Skip this Var if it's not always stack homed.
2390       if (NotAlwaysStackHomed.contains(Aggr))
2391         continue;
2392 
2393       // Skip complex cases such as when different fragments of a variable have
2394       // been split into different allocas. Skipping in this case means falling
2395       // back to using a list of defs (which could reduce coverage, but is no
2396       // less correct).
2397       bool Simple =
2398           VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2399       if (!Simple) {
2400         NotAlwaysStackHomed.insert(Aggr);
2401         continue;
2402       }
2403 
2404       // All source assignments to this variable remain and all stores to any
2405       // part of the variable store to the same address (with varying
2406       // offsets). We can just emit a single location for the whole variable.
2407       //
2408       // Unless we've already done so, create the single location def now.
2409       if (AlwaysStackHomed.insert(Aggr).second) {
2410         assert(!VarLoc.Values.hasArgList());
2411         // TODO: When more complex cases are handled VarLoc.Expr should be
2412         // built appropriately rather than always using an empty DIExpression.
2413         // The assert below is a reminder.
2414         assert(Simple);
2415         VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2416         DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2417         FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2418         InsertedAnyIntrinsics = true;
2419       }
2420     }
2421   }
2422 
2423   // Insert the other DEFs.
2424   for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2425     SmallVector<VarLocInfo> NewDefs;
2426     for (const VarLocInfo &VarLoc : Vec) {
2427       DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2428       DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2429       // If this variable is always stack homed then we have already inserted a
2430       // dbg.declare and deleted this dbg.value.
2431       if (AlwaysStackHomed.contains(Aggr))
2432         continue;
2433       NewDefs.push_back(VarLoc);
2434       InsertedAnyIntrinsics = true;
2435     }
2436 
2437     FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2438   }
2439 
2440   InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2441 
2442   return InsertedAnyIntrinsics;
2443 }
2444 
2445 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2446     FunctionVarLocsBuilder *FnVarLocs) {
2447   bool InsertedAnyIntrinsics = false;
2448   // Go through every block, translating debug intrinsics for fully promoted
2449   // variables into FnVarLocs location defs. No analysis required for these.
2450   auto TranslateDbgRecord = [&](auto *Record) {
2451     // Skip variables that haven't been promoted - we've dealt with those
2452     // already.
2453     if (VarsWithStackSlot->contains(getAggregate(Record)))
2454       return;
2455     auto InsertBefore = getNextNode(Record);
2456     assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2457     FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record),
2458                          Record->getExpression(), Record->getDebugLoc(),
2459                          RawLocationWrapper(Record->getRawLocation()));
2460     InsertedAnyIntrinsics = true;
2461   };
2462   for (auto &BB : Fn) {
2463     for (auto &I : BB) {
2464       // Skip instructions other than dbg.values and dbg.assigns.
2465       for (DPValue &DPV : I.getDbgValueRange())
2466         if (DPV.isDbgValue() || DPV.isDbgAssign())
2467           TranslateDbgRecord(&DPV);
2468       auto *DVI = dyn_cast<DbgValueInst>(&I);
2469       if (DVI)
2470         TranslateDbgRecord(DVI);
2471     }
2472   }
2473   return InsertedAnyIntrinsics;
2474 }
2475 
2476 /// Remove redundant definitions within sequences of consecutive location defs.
2477 /// This is done using a backward scan to keep the last def describing a
2478 /// specific variable/fragment.
2479 ///
2480 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2481 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2482 /// FunctionVarLocsBuilder instead of with intrinsics.
2483 static bool
2484 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2485                                         FunctionVarLocsBuilder &FnVarLocs) {
2486   bool Changed = false;
2487   SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
2488   // Scan over the entire block, not just over the instructions mapped by
2489   // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2490   // instructions.
2491   for (const Instruction &I : reverse(*BB)) {
2492     if (!isa<DbgVariableIntrinsic>(I)) {
2493       // Sequence of consecutive defs ended. Clear map for the next one.
2494       VariableDefinedBytes.clear();
2495     }
2496 
2497     auto HandleLocsForWedge = [&](auto *WedgePosition) {
2498       // Get the location defs that start just before this instruction.
2499       const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2500       if (!Locs)
2501         return;
2502 
2503       NumWedgesScanned++;
2504       bool ChangedThisWedge = false;
2505       // The new pruned set of defs, reversed because we're scanning backwards.
2506       SmallVector<VarLocInfo> NewDefsReversed;
2507 
2508       // Iterate over the existing defs in reverse.
2509       for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2510         NumDefsScanned++;
2511         DebugAggregate Aggr =
2512             getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2513         uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2514         uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
2515 
2516         // Cutoff for large variables to prevent expensive bitvector operations.
2517         const uint64_t MaxSizeBytes = 2048;
2518 
2519         if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
2520           // If the size is unknown (0) then keep this location def to be safe.
2521           // Do the same for defs of large variables, which would be expensive
2522           // to represent with a BitVector.
2523           NewDefsReversed.push_back(*RIt);
2524           continue;
2525         }
2526 
2527         // Only keep this location definition if it is not fully eclipsed by
2528         // other definitions in this wedge that come after it
2529 
2530         // Inert the bytes the location definition defines.
2531         auto InsertResult =
2532             VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
2533         bool FirstDefinition = InsertResult.second;
2534         BitVector &DefinedBytes = InsertResult.first->second;
2535 
2536         DIExpression::FragmentInfo Fragment =
2537             RIt->Expr->getFragmentInfo().value_or(
2538                 DIExpression::FragmentInfo(SizeInBits, 0));
2539         bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2540         uint64_t StartInBytes = Fragment.startInBits() / 8;
2541         uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
2542 
2543         // If this defines any previously undefined bytes, keep it.
2544         if (FirstDefinition || InvalidFragment ||
2545             DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
2546           if (!InvalidFragment)
2547             DefinedBytes.set(StartInBytes, EndInBytes);
2548           NewDefsReversed.push_back(*RIt);
2549           continue;
2550         }
2551 
2552         // Redundant def found: throw it away. Since the wedge of defs is being
2553         // rebuilt, doing nothing is the same as deleting an entry.
2554         ChangedThisWedge = true;
2555         NumDefsRemoved++;
2556       }
2557 
2558       // Un-reverse the defs and replace the wedge with the pruned version.
2559       if (ChangedThisWedge) {
2560         std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2561         FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed));
2562         NumWedgesChanged++;
2563         Changed = true;
2564       }
2565     };
2566     HandleLocsForWedge(&I);
2567     for (DPValue &DPV : reverse(I.getDbgValueRange()))
2568       HandleLocsForWedge(&DPV);
2569   }
2570 
2571   return Changed;
2572 }
2573 
2574 /// Remove redundant location defs using a forward scan. This can remove a
2575 /// location definition that is redundant due to indicating that a variable has
2576 /// the same value as is already being indicated by an earlier def.
2577 ///
2578 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2579 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2580 /// FunctionVarLocsBuilder instead of with intrinsics
2581 static bool
2582 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2583                                        FunctionVarLocsBuilder &FnVarLocs) {
2584   bool Changed = false;
2585   DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
2586       VariableMap;
2587 
2588   // Scan over the entire block, not just over the instructions mapped by
2589   // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2590   // instructions.
2591   for (const Instruction &I : *BB) {
2592     // Get the defs that come just before this instruction.
2593     auto HandleLocsForWedge = [&](auto *WedgePosition) {
2594       const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2595       if (!Locs)
2596         return;
2597 
2598       NumWedgesScanned++;
2599       bool ChangedThisWedge = false;
2600       // The new pruned set of defs.
2601       SmallVector<VarLocInfo> NewDefs;
2602 
2603       // Iterate over the existing defs.
2604       for (const VarLocInfo &Loc : *Locs) {
2605         NumDefsScanned++;
2606         DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2607                           std::nullopt, Loc.DL.getInlinedAt());
2608         auto VMI = VariableMap.find(Key);
2609 
2610         // Update the map if we found a new value/expression describing the
2611         // variable, or if the variable wasn't mapped already.
2612         if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
2613             VMI->second.second != Loc.Expr) {
2614           VariableMap[Key] = {Loc.Values, Loc.Expr};
2615           NewDefs.push_back(Loc);
2616           continue;
2617         }
2618 
2619         // Did not insert this Loc, which is the same as removing it.
2620         ChangedThisWedge = true;
2621         NumDefsRemoved++;
2622       }
2623 
2624       // Replace the existing wedge with the pruned version.
2625       if (ChangedThisWedge) {
2626         FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2627         NumWedgesChanged++;
2628         Changed = true;
2629       }
2630     };
2631 
2632     for (DPValue &DPV : I.getDbgValueRange())
2633       HandleLocsForWedge(&DPV);
2634     HandleLocsForWedge(&I);
2635   }
2636 
2637   return Changed;
2638 }
2639 
2640 static bool
2641 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2642                                  FunctionVarLocsBuilder &FnVarLocs) {
2643   assert(BB->isEntryBlock());
2644   // Do extra work to ensure that we remove semantically unimportant undefs.
2645   //
2646   // This is to work around the fact that SelectionDAG will hoist dbg.values
2647   // using argument values to the top of the entry block. That can move arg
2648   // dbg.values before undef and constant dbg.values which they previously
2649   // followed. The easiest thing to do is to just try to feed SelectionDAG
2650   // input it's happy with.
2651   //
2652   // Map of {Variable x: Fragments y} where the fragments y of variable x have
2653   // have at least one non-undef location defined already. Don't use directly,
2654   // instead call DefineBits and HasDefinedBits.
2655   SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2656       VarsWithDef;
2657   // Specify that V (a fragment of A) has a non-undef location.
2658   auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2659     VarsWithDef[A].insert(V.getFragmentOrDefault());
2660   };
2661   // Return true if a non-undef location has been defined for V (a fragment of
2662   // A). Doesn't imply that the location is currently non-undef, just that a
2663   // non-undef location has been seen previously.
2664   auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2665     auto FragsIt = VarsWithDef.find(A);
2666     if (FragsIt == VarsWithDef.end())
2667       return false;
2668     return llvm::any_of(FragsIt->second, [V](auto Frag) {
2669       return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2670     });
2671   };
2672 
2673   bool Changed = false;
2674   DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2675 
2676   // Scan over the entire block, not just over the instructions mapped by
2677   // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2678   // instructions.
2679   for (const Instruction &I : *BB) {
2680     // Get the defs that come just before this instruction.
2681     auto HandleLocsForWedge = [&](auto *WedgePosition) {
2682       const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2683       if (!Locs)
2684         return;
2685 
2686       NumWedgesScanned++;
2687       bool ChangedThisWedge = false;
2688       // The new pruned set of defs.
2689       SmallVector<VarLocInfo> NewDefs;
2690 
2691       // Iterate over the existing defs.
2692       for (const VarLocInfo &Loc : *Locs) {
2693         NumDefsScanned++;
2694         DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2695                             Loc.DL.getInlinedAt()};
2696         DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2697 
2698         // Remove undef entries that are encountered before any non-undef
2699         // intrinsics from the entry block.
2700         if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2701           // Did not insert this Loc, which is the same as removing it.
2702           NumDefsRemoved++;
2703           ChangedThisWedge = true;
2704           continue;
2705         }
2706 
2707         DefineBits(Aggr, Var);
2708         NewDefs.push_back(Loc);
2709       }
2710 
2711       // Replace the existing wedge with the pruned version.
2712       if (ChangedThisWedge) {
2713         FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2714         NumWedgesChanged++;
2715         Changed = true;
2716       }
2717     };
2718     for (DPValue &DPV : I.getDbgValueRange())
2719       HandleLocsForWedge(&DPV);
2720     HandleLocsForWedge(&I);
2721   }
2722 
2723   return Changed;
2724 }
2725 
2726 static bool removeRedundantDbgLocs(const BasicBlock *BB,
2727                                    FunctionVarLocsBuilder &FnVarLocs) {
2728   bool MadeChanges = false;
2729   MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2730   if (BB->isEntryBlock())
2731     MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2732   MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2733 
2734   if (MadeChanges)
2735     LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2736                       << "\n");
2737   return MadeChanges;
2738 }
2739 
2740 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2741   DenseSet<DebugAggregate> Result;
2742   for (auto &BB : Fn) {
2743     for (auto &I : BB) {
2744       // Any variable linked to an instruction is considered
2745       // interesting. Ideally we only need to check Allocas, however, a
2746       // DIAssignID might get dropped from an alloca but not stores. In that
2747       // case, we need to consider the variable interesting for NFC behaviour
2748       // with this change. TODO: Consider only looking at allocas.
2749       for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2750         Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2751       }
2752       for (DPValue *DPV : at::getDPVAssignmentMarkers(&I)) {
2753         Result.insert({DPV->getVariable(), DPV->getDebugLoc().getInlinedAt()});
2754       }
2755     }
2756   }
2757   return Result;
2758 }
2759 
2760 static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2761                             FunctionVarLocsBuilder *FnVarLocs) {
2762   // The analysis will generate location definitions for all variables, but we
2763   // only need to perform a dataflow on the set of variables which have a stack
2764   // slot. Find those now.
2765   DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2766 
2767   bool Changed = false;
2768 
2769   // Use a scope block to clean up AssignmentTrackingLowering before running
2770   // MemLocFragmentFill to reduce peak memory consumption.
2771   {
2772     AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2773     Changed = Pass.run(FnVarLocs);
2774   }
2775 
2776   if (Changed) {
2777     MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2778                             shouldCoalesceFragments(Fn));
2779     Pass.run(FnVarLocs);
2780 
2781     // Remove redundant entries. As well as reducing memory consumption and
2782     // avoiding waiting cycles later by burning some now, this has another
2783     // important job. That is to work around some SelectionDAG quirks. See
2784     // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2785     for (auto &BB : Fn)
2786       removeRedundantDbgLocs(&BB, *FnVarLocs);
2787   }
2788 }
2789 
2790 FunctionVarLocs
2791 DebugAssignmentTrackingAnalysis::run(Function &F,
2792                                      FunctionAnalysisManager &FAM) {
2793   if (!isAssignmentTrackingEnabled(*F.getParent()))
2794     return FunctionVarLocs();
2795 
2796   auto &DL = F.getParent()->getDataLayout();
2797 
2798   FunctionVarLocsBuilder Builder;
2799   analyzeFunction(F, DL, &Builder);
2800 
2801   // Save these results.
2802   FunctionVarLocs Results;
2803   Results.init(Builder);
2804   return Results;
2805 }
2806 
2807 AnalysisKey DebugAssignmentTrackingAnalysis::Key;
2808 
2809 PreservedAnalyses
2810 DebugAssignmentTrackingPrinterPass::run(Function &F,
2811                                         FunctionAnalysisManager &FAM) {
2812   FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F);
2813   return PreservedAnalyses::all();
2814 }
2815 
2816 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2817   if (!isAssignmentTrackingEnabled(*F.getParent()))
2818     return false;
2819 
2820   LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2821                     << "\n");
2822   auto DL = std::make_unique<DataLayout>(F.getParent());
2823 
2824   // Clear previous results.
2825   Results->clear();
2826 
2827   FunctionVarLocsBuilder Builder;
2828   analyzeFunction(F, *DL.get(), &Builder);
2829 
2830   // Save these results.
2831   Results->init(Builder);
2832 
2833   if (PrintResults && isFunctionInPrintList(F.getName()))
2834     Results->print(errs(), F);
2835 
2836   // Return false because this pass does not modify the function.
2837   return false;
2838 }
2839 
2840 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2841     : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2842 
2843 char AssignmentTrackingAnalysis::ID = 0;
2844 
2845 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2846                 "Assignment Tracking Analysis", false, true)
2847