1 //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 10 #include "LiveDebugValues/LiveDebugValues.h" 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/DenseMapInfo.h" 13 #include "llvm/ADT/IntervalMap.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/UniqueVector.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugProgramInstruction.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/PassManager.h" 28 #include "llvm/IR/PrintPasses.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include <assert.h> 35 #include <cstdint> 36 #include <optional> 37 #include <queue> 38 #include <sstream> 39 #include <unordered_map> 40 41 using namespace llvm; 42 #define DEBUG_TYPE "debug-ata" 43 44 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal"); 45 STATISTIC(NumDefsRemoved, "Number of dbg locs removed"); 46 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned"); 47 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed"); 48 49 static cl::opt<unsigned> 50 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), 51 cl::desc("Maximum num basic blocks before debug info dropped"), 52 cl::Hidden); 53 /// Option for debugging the pass, determines if the memory location fragment 54 /// filling happens after generating the variable locations. 55 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), 56 cl::Hidden); 57 /// Print the results of the analysis. Respects -filter-print-funcs. 58 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false), 59 cl::Hidden); 60 61 /// Coalesce adjacent dbg locs describing memory locations that have contiguous 62 /// fragments. This reduces the cost of LiveDebugValues which does SSA 63 /// construction for each explicitly stated variable fragment. 64 static cl::opt<cl::boolOrDefault> 65 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden); 66 67 // Implicit conversions are disabled for enum class types, so unfortunately we 68 // need to create a DenseMapInfo wrapper around the specified underlying type. 69 template <> struct llvm::DenseMapInfo<VariableID> { 70 using Wrapped = DenseMapInfo<unsigned>; 71 static inline VariableID getEmptyKey() { 72 return static_cast<VariableID>(Wrapped::getEmptyKey()); 73 } 74 static inline VariableID getTombstoneKey() { 75 return static_cast<VariableID>(Wrapped::getTombstoneKey()); 76 } 77 static unsigned getHashValue(const VariableID &Val) { 78 return Wrapped::getHashValue(static_cast<unsigned>(Val)); 79 } 80 static bool isEqual(const VariableID &LHS, const VariableID &RHS) { 81 return LHS == RHS; 82 } 83 }; 84 85 using VarLocInsertPt = PointerUnion<const Instruction *, const DbgRecord *>; 86 87 namespace std { 88 template <> struct hash<VarLocInsertPt> { 89 using argument_type = VarLocInsertPt; 90 using result_type = std::size_t; 91 92 result_type operator()(const argument_type &Arg) const { 93 return std::hash<void *>()(Arg.getOpaqueValue()); 94 } 95 }; 96 } // namespace std 97 98 /// Helper class to build FunctionVarLocs, since that class isn't easy to 99 /// modify. TODO: There's not a great deal of value in the split, it could be 100 /// worth merging the two classes. 101 class FunctionVarLocsBuilder { 102 friend FunctionVarLocs; 103 UniqueVector<DebugVariable> Variables; 104 // Use an unordered_map so we don't invalidate iterators after 105 // insert/modifications. 106 std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst; 107 108 SmallVector<VarLocInfo> SingleLocVars; 109 110 public: 111 unsigned getNumVariables() const { return Variables.size(); } 112 113 /// Find or insert \p V and return the ID. 114 VariableID insertVariable(DebugVariable V) { 115 return static_cast<VariableID>(Variables.insert(V)); 116 } 117 118 /// Get a variable from its \p ID. 119 const DebugVariable &getVariable(VariableID ID) const { 120 return Variables[static_cast<unsigned>(ID)]; 121 } 122 123 /// Return ptr to wedge of defs or nullptr if no defs come just before /p 124 /// Before. 125 const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const { 126 auto R = VarLocsBeforeInst.find(Before); 127 if (R == VarLocsBeforeInst.end()) 128 return nullptr; 129 return &R->second; 130 } 131 132 /// Replace the defs that come just before /p Before with /p Wedge. 133 void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) { 134 VarLocsBeforeInst[Before] = std::move(Wedge); 135 } 136 137 /// Add a def for a variable that is valid for its lifetime. 138 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, 139 RawLocationWrapper R) { 140 VarLocInfo VarLoc; 141 VarLoc.VariableID = insertVariable(Var); 142 VarLoc.Expr = Expr; 143 VarLoc.DL = DL; 144 VarLoc.Values = R; 145 SingleLocVars.emplace_back(VarLoc); 146 } 147 148 /// Add a def to the wedge of defs just before /p Before. 149 void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr, 150 DebugLoc DL, RawLocationWrapper R) { 151 VarLocInfo VarLoc; 152 VarLoc.VariableID = insertVariable(Var); 153 VarLoc.Expr = Expr; 154 VarLoc.DL = DL; 155 VarLoc.Values = R; 156 VarLocsBeforeInst[Before].emplace_back(VarLoc); 157 } 158 }; 159 160 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { 161 // Print the variable table first. TODO: Sorting by variable could make the 162 // output more stable? 163 unsigned Counter = -1; 164 OS << "=== Variables ===\n"; 165 for (const DebugVariable &V : Variables) { 166 ++Counter; 167 // Skip first entry because it is a dummy entry. 168 if (Counter == 0) { 169 continue; 170 } 171 OS << "[" << Counter << "] " << V.getVariable()->getName(); 172 if (auto F = V.getFragment()) 173 OS << " bits [" << F->OffsetInBits << ", " 174 << F->OffsetInBits + F->SizeInBits << ")"; 175 if (const auto *IA = V.getInlinedAt()) 176 OS << " inlined-at " << *IA; 177 OS << "\n"; 178 } 179 180 auto PrintLoc = [&OS](const VarLocInfo &Loc) { 181 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" 182 << " Expr=" << *Loc.Expr << " Values=("; 183 for (auto *Op : Loc.Values.location_ops()) { 184 errs() << Op->getName() << " "; 185 } 186 errs() << ")\n"; 187 }; 188 189 // Print the single location variables. 190 OS << "=== Single location vars ===\n"; 191 for (auto It = single_locs_begin(), End = single_locs_end(); It != End; 192 ++It) { 193 PrintLoc(*It); 194 } 195 196 // Print the non-single-location defs in line with IR. 197 OS << "=== In-line variable defs ==="; 198 for (const BasicBlock &BB : Fn) { 199 OS << "\n" << BB.getName() << ":\n"; 200 for (const Instruction &I : BB) { 201 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) { 202 PrintLoc(*It); 203 } 204 OS << I << "\n"; 205 } 206 } 207 } 208 209 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { 210 // Add the single-location variables first. 211 for (const auto &VarLoc : Builder.SingleLocVars) 212 VarLocRecords.emplace_back(VarLoc); 213 // Mark the end of the section. 214 SingleVarLocEnd = VarLocRecords.size(); 215 216 // Insert a contiguous block of VarLocInfos for each instruction, mapping it 217 // to the start and end position in the vector with VarLocsBeforeInst. This 218 // block includes VarLocs for any DbgVariableRecords attached to that 219 // instruction. 220 for (auto &P : Builder.VarLocsBeforeInst) { 221 // Process VarLocs attached to a DbgRecord alongside their marker 222 // Instruction. 223 if (isa<const DbgRecord *>(P.first)) 224 continue; 225 const Instruction *I = cast<const Instruction *>(P.first); 226 unsigned BlockStart = VarLocRecords.size(); 227 // Any VarLocInfos attached to a DbgRecord should now be remapped to their 228 // marker Instruction, in order of DbgRecord appearance and prior to any 229 // VarLocInfos attached directly to that instruction. 230 for (const DbgVariableRecord &DVR : filterDbgVars(I->getDbgRecordRange())) { 231 // Even though DVR defines a variable location, VarLocsBeforeInst can 232 // still be empty if that VarLoc was redundant. 233 if (!Builder.VarLocsBeforeInst.count(&DVR)) 234 continue; 235 for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DVR]) 236 VarLocRecords.emplace_back(VarLoc); 237 } 238 for (const VarLocInfo &VarLoc : P.second) 239 VarLocRecords.emplace_back(VarLoc); 240 unsigned BlockEnd = VarLocRecords.size(); 241 // Record the start and end indices. 242 if (BlockEnd != BlockStart) 243 VarLocsBeforeInst[I] = {BlockStart, BlockEnd}; 244 } 245 246 // Copy the Variables vector from the builder's UniqueVector. 247 assert(Variables.empty() && "Expect clear before init"); 248 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values 249 // are one-based) so reserve an extra and insert a dummy. 250 Variables.reserve(Builder.Variables.size() + 1); 251 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr)); 252 Variables.append(Builder.Variables.begin(), Builder.Variables.end()); 253 } 254 255 void FunctionVarLocs::clear() { 256 Variables.clear(); 257 VarLocRecords.clear(); 258 VarLocsBeforeInst.clear(); 259 SingleVarLocEnd = 0; 260 } 261 262 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p 263 /// Start as far as possible. Prepend \Expression with the offset and append it 264 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to 265 /// value and modified expression. 266 static std::pair<Value *, DIExpression *> 267 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, 268 DIExpression *Expression) { 269 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false); 270 Value *End = 271 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes); 272 SmallVector<uint64_t, 3> Ops; 273 if (OffsetInBytes.getBoolValue()) { 274 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; 275 Expression = DIExpression::prependOpcodes( 276 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); 277 } 278 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref}); 279 return {End, Expression}; 280 } 281 282 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression 283 /// doesn't explicitly describe a memory location with DW_OP_deref or if the 284 /// expression is too complex to interpret. 285 static std::optional<int64_t> 286 getDerefOffsetInBytes(const DIExpression *DIExpr) { 287 int64_t Offset = 0; 288 const unsigned NumElements = DIExpr->getNumElements(); 289 const auto Elements = DIExpr->getElements(); 290 unsigned ExpectedDerefIdx = 0; 291 // Extract the offset. 292 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { 293 Offset = Elements[1]; 294 ExpectedDerefIdx = 2; 295 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { 296 ExpectedDerefIdx = 3; 297 if (Elements[2] == dwarf::DW_OP_plus) 298 Offset = Elements[1]; 299 else if (Elements[2] == dwarf::DW_OP_minus) 300 Offset = -Elements[1]; 301 else 302 return std::nullopt; 303 } 304 305 // If that's all there is it means there's no deref. 306 if (ExpectedDerefIdx >= NumElements) 307 return std::nullopt; 308 309 // Check the next element is DW_OP_deref - otherwise this is too complex or 310 // isn't a deref expression. 311 if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref) 312 return std::nullopt; 313 314 // Check the final operation is either the DW_OP_deref or is a fragment. 315 if (NumElements == ExpectedDerefIdx + 1) 316 return Offset; // Ends with deref. 317 unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1; 318 unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2; 319 if (NumElements == ExpectedFragFinalIdx + 1 && 320 Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment) 321 return Offset; // Ends with deref + fragment. 322 323 // Don't bother trying to interpret anything more complex. 324 return std::nullopt; 325 } 326 327 /// A whole (unfragmented) source variable. 328 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>; 329 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) { 330 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt()); 331 } 332 static DebugAggregate getAggregate(const DebugVariable &Var) { 333 return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); 334 } 335 336 static bool shouldCoalesceFragments(Function &F) { 337 // Enabling fragment coalescing reduces compiler run time when instruction 338 // referencing is enabled. However, it may cause LiveDebugVariables to create 339 // incorrect locations. Since instruction-referencing mode effectively 340 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag 341 // has not been explicitly set and instruction-referencing is turned on. 342 switch (CoalesceAdjacentFragmentsOpt) { 343 case cl::boolOrDefault::BOU_UNSET: 344 return debuginfoShouldUseDebugInstrRef( 345 Triple(F.getParent()->getTargetTriple())); 346 case cl::boolOrDefault::BOU_TRUE: 347 return true; 348 case cl::boolOrDefault::BOU_FALSE: 349 return false; 350 } 351 llvm_unreachable("Unknown boolOrDefault value"); 352 } 353 354 namespace { 355 /// In dwarf emission, the following sequence 356 /// 1. dbg.value ... Fragment(0, 64) 357 /// 2. dbg.value ... Fragment(0, 32) 358 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in 359 /// the intersection of the fragments to having "no location"). This makes 360 /// sense for implicit location values because splitting the computed values 361 /// could be troublesome, and is probably quite uncommon. When we convert 362 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing 363 /// a location (memory) rather than a value means we don't need to worry about 364 /// splitting any values, so we try to recover the rest of the fragment 365 /// location here. 366 /// This class performs a(nother) dataflow analysis over the function, adding 367 /// variable locations so that any bits of a variable with a memory location 368 /// have that location explicitly reinstated at each subsequent variable 369 /// location definition that that doesn't overwrite those bits. i.e. after a 370 /// variable location def, insert new defs for the memory location with 371 /// fragments for the difference of "all bits currently in memory" and "the 372 /// fragment of the second def". 373 class MemLocFragmentFill { 374 Function &Fn; 375 FunctionVarLocsBuilder *FnVarLocs; 376 const DenseSet<DebugAggregate> *VarsWithStackSlot; 377 bool CoalesceAdjacentFragments; 378 379 // 0 = no memory location. 380 using BaseAddress = unsigned; 381 using OffsetInBitsTy = unsigned; 382 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>; 383 using FragsInMemMap = IntervalMap< 384 OffsetInBitsTy, BaseAddress, 385 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize, 386 FragTraits>; 387 FragsInMemMap::Allocator IntervalMapAlloc; 388 using VarFragMap = DenseMap<unsigned, FragsInMemMap>; 389 390 /// IDs for memory location base addresses in maps. Use 0 to indicate that 391 /// there's no memory location. 392 UniqueVector<RawLocationWrapper> Bases; 393 UniqueVector<DebugAggregate> Aggregates; 394 DenseMap<const BasicBlock *, VarFragMap> LiveIn; 395 DenseMap<const BasicBlock *, VarFragMap> LiveOut; 396 397 struct FragMemLoc { 398 unsigned Var; 399 unsigned Base; 400 unsigned OffsetInBits; 401 unsigned SizeInBits; 402 DebugLoc DL; 403 }; 404 using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>; 405 406 /// BBInsertBeforeMap holds a description for the set of location defs to be 407 /// inserted after the analysis is complete. It is updated during the dataflow 408 /// and the entry for a block is CLEARED each time it is (re-)visited. After 409 /// the dataflow is complete, each block entry will contain the set of defs 410 /// calculated during the final (fixed-point) iteration. 411 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap; 412 413 static bool intervalMapsAreEqual(const FragsInMemMap &A, 414 const FragsInMemMap &B) { 415 auto AIt = A.begin(), AEnd = A.end(); 416 auto BIt = B.begin(), BEnd = B.end(); 417 for (; AIt != AEnd; ++AIt, ++BIt) { 418 if (BIt == BEnd) 419 return false; // B has fewer elements than A. 420 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) 421 return false; // Interval is different. 422 if (*AIt != *BIt) 423 return false; // Value at interval is different. 424 } 425 // AIt == AEnd. Check BIt is also now at end. 426 return BIt == BEnd; 427 } 428 429 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { 430 if (A.size() != B.size()) 431 return false; 432 for (const auto &APair : A) { 433 auto BIt = B.find(APair.first); 434 if (BIt == B.end()) 435 return false; 436 if (!intervalMapsAreEqual(APair.second, BIt->second)) 437 return false; 438 } 439 return true; 440 } 441 442 /// Return a string for the value that \p BaseID represents. 443 std::string toString(unsigned BaseID) { 444 if (BaseID) 445 return Bases[BaseID].getVariableLocationOp(0)->getName().str(); 446 else 447 return "None"; 448 } 449 450 /// Format string describing an FragsInMemMap (IntervalMap) interval. 451 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { 452 std::string String; 453 std::stringstream S(String); 454 if (It.valid()) { 455 S << "[" << It.start() << ", " << It.stop() 456 << "): " << toString(It.value()); 457 } else { 458 S << "invalid iterator (end)"; 459 } 460 if (Newline) 461 S << "\n"; 462 return S.str(); 463 }; 464 465 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { 466 FragsInMemMap Result(IntervalMapAlloc); 467 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { 468 LLVM_DEBUG(dbgs() << "a " << toString(AIt)); 469 // This is basically copied from process() and inverted (process is 470 // performing something like a union whereas this is more of an 471 // intersect). 472 473 // There's no work to do if interval `a` overlaps no fragments in map `B`. 474 if (!B.overlaps(AIt.start(), AIt.stop())) 475 continue; 476 477 // Does StartBit intersect an existing fragment? 478 auto FirstOverlap = B.find(AIt.start()); 479 assert(FirstOverlap != B.end()); 480 bool IntersectStart = FirstOverlap.start() < AIt.start(); 481 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) 482 << ", IntersectStart: " << IntersectStart << "\n"); 483 484 // Does EndBit intersect an existing fragment? 485 auto LastOverlap = B.find(AIt.stop()); 486 bool IntersectEnd = 487 LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); 488 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) 489 << ", IntersectEnd: " << IntersectEnd << "\n"); 490 491 // Check if both ends of `a` intersect the same interval `b`. 492 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 493 // Insert `a` (`a` is contained in `b`) if the values match. 494 // [ a ] 495 // [ - b - ] 496 // - 497 // [ r ] 498 LLVM_DEBUG(dbgs() << "- a is contained within " 499 << toString(FirstOverlap)); 500 if (*AIt && *AIt == *FirstOverlap) 501 Result.insert(AIt.start(), AIt.stop(), *AIt); 502 } else { 503 // There's an overlap but `a` is not fully contained within 504 // `b`. Shorten any end-point intersections. 505 // [ - a - ] 506 // [ - b - ] 507 // - 508 // [ r ] 509 auto Next = FirstOverlap; 510 if (IntersectStart) { 511 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 512 << toString(FirstOverlap)); 513 if (*AIt && *AIt == *FirstOverlap) 514 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt); 515 ++Next; 516 } 517 // [ - a - ] 518 // [ - b - ] 519 // - 520 // [ r ] 521 if (IntersectEnd) { 522 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 523 << toString(LastOverlap)); 524 if (*AIt && *AIt == *LastOverlap) 525 Result.insert(LastOverlap.start(), AIt.stop(), *AIt); 526 } 527 528 // Insert all intervals in map `B` that are contained within interval 529 // `a` where the values match. 530 // [ - - a - - ] 531 // [ b1 ] [ b2 ] 532 // - 533 // [ r1 ] [ r2 ] 534 while (Next != B.end() && Next.start() < AIt.stop() && 535 Next.stop() <= AIt.stop()) { 536 LLVM_DEBUG(dbgs() 537 << "- insert intersection of a and " << toString(Next)); 538 if (*AIt && *AIt == *Next) 539 Result.insert(Next.start(), Next.stop(), *Next); 540 ++Next; 541 } 542 } 543 } 544 return Result; 545 } 546 547 /// Meet \p A and \p B, storing the result in \p A. 548 void meetVars(VarFragMap &A, const VarFragMap &B) { 549 // Meet A and B. 550 // 551 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) 552 for (auto It = A.begin(), End = A.end(); It != End; ++It) { 553 unsigned AVar = It->first; 554 FragsInMemMap &AFrags = It->second; 555 auto BIt = B.find(AVar); 556 if (BIt == B.end()) { 557 A.erase(It); 558 continue; // Var has no bits defined in B. 559 } 560 LLVM_DEBUG(dbgs() << "meet fragment maps for " 561 << Aggregates[AVar].first->getName() << "\n"); 562 AFrags = meetFragments(AFrags, BIt->second); 563 } 564 } 565 566 bool meet(const BasicBlock &BB, 567 const SmallPtrSet<BasicBlock *, 16> &Visited) { 568 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() 569 << "\n"); 570 571 VarFragMap BBLiveIn; 572 bool FirstMeet = true; 573 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut 574 // locs. 575 for (const BasicBlock *Pred : predecessors(&BB)) { 576 // Ignore preds that haven't been processed yet. This is essentially the 577 // same as initialising all variables to implicit top value (⊤) which is 578 // the identity value for the meet operation. 579 if (!Visited.count(Pred)) 580 continue; 581 582 auto PredLiveOut = LiveOut.find(Pred); 583 assert(PredLiveOut != LiveOut.end()); 584 585 if (FirstMeet) { 586 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n"); 587 BBLiveIn = PredLiveOut->second; 588 FirstMeet = false; 589 } else { 590 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() 591 << "\n"); 592 meetVars(BBLiveIn, PredLiveOut->second); 593 } 594 595 // An empty set is ⊥ for the intersect-like meet operation. If we've 596 // already got ⊥ there's no need to run the code - we know the result is 597 // ⊥ since `meet(a, ⊥) = ⊥`. 598 if (BBLiveIn.size() == 0) 599 break; 600 } 601 602 auto CurrentLiveInEntry = LiveIn.find(&BB); 603 // If there's no LiveIn entry for the block yet, add it. 604 if (CurrentLiveInEntry == LiveIn.end()) { 605 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() 606 << "\n"); 607 LiveIn[&BB] = std::move(BBLiveIn); 608 return /*Changed=*/true; 609 } 610 611 // If the LiveIn set has changed (expensive check) update it and return 612 // true. 613 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) { 614 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n"); 615 CurrentLiveInEntry->second = std::move(BBLiveIn); 616 return /*Changed=*/true; 617 } 618 619 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n"); 620 return /*Changed=*/false; 621 } 622 623 void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var, 624 unsigned StartBit, unsigned EndBit, unsigned Base, 625 DebugLoc DL) { 626 assert(StartBit < EndBit && "Cannot create fragment of size <= 0"); 627 if (!Base) 628 return; 629 FragMemLoc Loc; 630 Loc.Var = Var; 631 Loc.OffsetInBits = StartBit; 632 Loc.SizeInBits = EndBit - StartBit; 633 assert(Base && "Expected a non-zero ID for Base address"); 634 Loc.Base = Base; 635 Loc.DL = DL; 636 BBInsertBeforeMap[&BB][Before].push_back(Loc); 637 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() 638 << " bits [" << StartBit << ", " << EndBit << ")\n"); 639 } 640 641 /// Inserts a new dbg def if the interval found when looking up \p StartBit 642 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which 643 /// indicates - assuming StartBit->EndBit has just been inserted - that the 644 /// slice has been coalesced in the map). 645 void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var, 646 unsigned StartBit, unsigned EndBit, unsigned Base, 647 DebugLoc DL, const FragsInMemMap &FragMap) { 648 if (!CoalesceAdjacentFragments) 649 return; 650 // We've inserted the location into the map. The map will have coalesced 651 // adjacent intervals (variable fragments) that describe the same memory 652 // location. Use this knowledge to insert a debug location that describes 653 // that coalesced fragment. This may eclipse other locs we've just 654 // inserted. This is okay as redundant locs will be cleaned up later. 655 auto CoalescedFrag = FragMap.find(StartBit); 656 // Bail if no coalescing has taken place. 657 if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit) 658 return; 659 660 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start() 661 << " to " << CoalescedFrag.stop() << "\n"); 662 insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(), 663 Base, DL); 664 } 665 666 void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB, 667 VarFragMap &LiveSet) { 668 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID); 669 if (skipVariable(DbgVar.getVariable())) 670 return; 671 // Don't bother doing anything for this variables if we know it's fully 672 // promoted. We're only interested in variables that (sometimes) live on 673 // the stack here. 674 if (!VarsWithStackSlot->count(getAggregate(DbgVar))) 675 return; 676 unsigned Var = Aggregates.insert( 677 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); 678 679 // [StartBit: EndBit) are the bits affected by this def. 680 const DIExpression *DIExpr = VarLoc.Expr; 681 unsigned StartBit; 682 unsigned EndBit; 683 if (auto Frag = DIExpr->getFragmentInfo()) { 684 StartBit = Frag->OffsetInBits; 685 EndBit = StartBit + Frag->SizeInBits; 686 } else { 687 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits())); 688 StartBit = 0; 689 EndBit = *DbgVar.getVariable()->getSizeInBits(); 690 } 691 692 // We will only fill fragments for simple memory-describing dbg.value 693 // intrinsics. If the fragment offset is the same as the offset from the 694 // base pointer, do The Thing, otherwise fall back to normal dbg.value 695 // behaviour. AssignmentTrackingLowering has generated DIExpressions 696 // written in terms of the base pointer. 697 // TODO: Remove this condition since the fragment offset doesn't always 698 // equal the offset from base pointer (e.g. for a SROA-split variable). 699 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); 700 const unsigned Base = 701 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit 702 ? Bases.insert(VarLoc.Values) 703 : 0; 704 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" 705 << StartBit << ", " << EndBit << "): " << toString(Base) 706 << "\n"); 707 708 // First of all, any locs that use mem that are disrupted need reinstating. 709 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap 710 // with existing intervals so this code involves a lot of fiddling around 711 // with intervals to do that manually. 712 auto FragIt = LiveSet.find(Var); 713 714 // Check if the variable does not exist in the map. 715 if (FragIt == LiveSet.end()) { 716 // Add this variable to the BB map. 717 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc)); 718 assert(P.second && "Var already in map?"); 719 // Add the interval to the fragment map. 720 P.first->second.insert(StartBit, EndBit, Base); 721 return; 722 } 723 // The variable has an entry in the map. 724 725 FragsInMemMap &FragMap = FragIt->second; 726 // First check the easy case: the new fragment `f` doesn't overlap with any 727 // intervals. 728 if (!FragMap.overlaps(StartBit, EndBit)) { 729 LLVM_DEBUG(dbgs() << "- No overlaps\n"); 730 FragMap.insert(StartBit, EndBit, Base); 731 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL, 732 FragMap); 733 return; 734 } 735 // There is at least one overlap. 736 737 // Does StartBit intersect an existing fragment? 738 auto FirstOverlap = FragMap.find(StartBit); 739 assert(FirstOverlap != FragMap.end()); 740 bool IntersectStart = FirstOverlap.start() < StartBit; 741 742 // Does EndBit intersect an existing fragment? 743 auto LastOverlap = FragMap.find(EndBit); 744 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; 745 746 // Check if both ends of `f` intersect the same interval `i`. 747 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 748 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n"); 749 // Shorten `i` so that there's space to insert `f`. 750 // [ f ] 751 // [ - i - ] 752 // + 753 // [ i ][ f ][ i ] 754 755 // Save values for use after inserting a new interval. 756 auto EndBitOfOverlap = FirstOverlap.stop(); 757 unsigned OverlapValue = FirstOverlap.value(); 758 759 // Shorten the overlapping interval. 760 FirstOverlap.setStop(StartBit); 761 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 762 OverlapValue, VarLoc.DL); 763 764 // Insert a new interval to represent the end part. 765 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue); 766 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue, 767 VarLoc.DL); 768 769 // Insert the new (middle) fragment now there is space. 770 FragMap.insert(StartBit, EndBit, Base); 771 } else { 772 // There's an overlap but `f` may not be fully contained within 773 // `i`. Shorten any end-point intersections so that we can then 774 // insert `f`. 775 // [ - f - ] 776 // [ - i - ] 777 // | | 778 // [ i ] 779 // Shorten any end-point intersections. 780 if (IntersectStart) { 781 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n"); 782 // Split off at the intersection. 783 FirstOverlap.setStop(StartBit); 784 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 785 *FirstOverlap, VarLoc.DL); 786 } 787 // [ - f - ] 788 // [ - i - ] 789 // | | 790 // [ i ] 791 if (IntersectEnd) { 792 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n"); 793 // Split off at the intersection. 794 LastOverlap.setStart(EndBit); 795 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap, 796 VarLoc.DL); 797 } 798 799 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n"); 800 // FirstOverlap and LastOverlap have been shortened such that they're 801 // no longer overlapping with [StartBit, EndBit). Delete any overlaps 802 // that remain (these will be fully contained within `f`). 803 // [ - f - ] } 804 // [ - i - ] } Intersection shortening that has happened above. 805 // | | } 806 // [ i ] } 807 // ----------------- 808 // [i2 ] } Intervals fully contained within `f` get erased. 809 // ----------------- 810 // [ - f - ][ i ] } Completed insertion. 811 auto It = FirstOverlap; 812 if (IntersectStart) 813 ++It; // IntersectStart: first overlap has been shortened. 814 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { 815 LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); 816 It.erase(); // This increments It after removing the interval. 817 } 818 // We've dealt with all the overlaps now! 819 assert(!FragMap.overlaps(StartBit, EndBit)); 820 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n"); 821 FragMap.insert(StartBit, EndBit, Base); 822 } 823 824 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL, 825 FragMap); 826 } 827 828 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } 829 830 void process(BasicBlock &BB, VarFragMap &LiveSet) { 831 BBInsertBeforeMap[&BB].clear(); 832 for (auto &I : BB) { 833 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 834 if (const auto *Locs = FnVarLocs->getWedge(&DVR)) { 835 for (const VarLocInfo &Loc : *Locs) { 836 addDef(Loc, &DVR, *I.getParent(), LiveSet); 837 } 838 } 839 } 840 if (const auto *Locs = FnVarLocs->getWedge(&I)) { 841 for (const VarLocInfo &Loc : *Locs) { 842 addDef(Loc, &I, *I.getParent(), LiveSet); 843 } 844 } 845 } 846 } 847 848 public: 849 MemLocFragmentFill(Function &Fn, 850 const DenseSet<DebugAggregate> *VarsWithStackSlot, 851 bool CoalesceAdjacentFragments) 852 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot), 853 CoalesceAdjacentFragments(CoalesceAdjacentFragments) {} 854 855 /// Add variable locations to \p FnVarLocs so that any bits of a variable 856 /// with a memory location have that location explicitly reinstated at each 857 /// subsequent variable location definition that that doesn't overwrite those 858 /// bits. i.e. after a variable location def, insert new defs for the memory 859 /// location with fragments for the difference of "all bits currently in 860 /// memory" and "the fragment of the second def". e.g. 861 /// 862 /// Before: 863 /// 864 /// var x bits 0 to 63: value in memory 865 /// more instructions 866 /// var x bits 0 to 31: value is %0 867 /// 868 /// After: 869 /// 870 /// var x bits 0 to 63: value in memory 871 /// more instructions 872 /// var x bits 0 to 31: value is %0 873 /// var x bits 32 to 61: value in memory ; <-- new loc def 874 /// 875 void run(FunctionVarLocsBuilder *FnVarLocs) { 876 if (!EnableMemLocFragFill) 877 return; 878 879 this->FnVarLocs = FnVarLocs; 880 881 // Prepare for traversal. 882 // 883 ReversePostOrderTraversal<Function *> RPOT(&Fn); 884 std::priority_queue<unsigned int, std::vector<unsigned int>, 885 std::greater<unsigned int>> 886 Worklist; 887 std::priority_queue<unsigned int, std::vector<unsigned int>, 888 std::greater<unsigned int>> 889 Pending; 890 DenseMap<unsigned int, BasicBlock *> OrderToBB; 891 DenseMap<BasicBlock *, unsigned int> BBToOrder; 892 { // Init OrderToBB and BBToOrder. 893 unsigned int RPONumber = 0; 894 for (BasicBlock *BB : RPOT) { 895 OrderToBB[RPONumber] = BB; 896 BBToOrder[BB] = RPONumber; 897 Worklist.push(RPONumber); 898 ++RPONumber; 899 } 900 LiveIn.init(RPONumber); 901 LiveOut.init(RPONumber); 902 } 903 904 // Perform the traversal. 905 // 906 // This is a standard "intersect of predecessor outs" dataflow problem. To 907 // solve it, we perform meet() and process() using the two worklist method 908 // until the LiveIn data for each block becomes unchanging. 909 // 910 // This dataflow is essentially working on maps of sets and at each meet we 911 // intersect the maps and the mapped sets. So, initialized live-in maps 912 // monotonically decrease in value throughout the dataflow. 913 SmallPtrSet<BasicBlock *, 16> Visited; 914 while (!Worklist.empty() || !Pending.empty()) { 915 // We track what is on the pending worklist to avoid inserting the same 916 // thing twice. We could avoid this with a custom priority queue, but 917 // this is probably not worth it. 918 SmallPtrSet<BasicBlock *, 16> OnPending; 919 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 920 while (!Worklist.empty()) { 921 BasicBlock *BB = OrderToBB[Worklist.top()]; 922 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 923 Worklist.pop(); 924 bool InChanged = meet(*BB, Visited); 925 // Always consider LiveIn changed on the first visit. 926 InChanged |= Visited.insert(BB).second; 927 if (InChanged) { 928 LLVM_DEBUG(dbgs() 929 << BB->getName() << " has new InLocs, process it\n"); 930 // Mutate a copy of LiveIn while processing BB. Once we've processed 931 // the terminator LiveSet is the LiveOut set for BB. 932 // This is an expensive copy! 933 VarFragMap LiveSet = LiveIn[BB]; 934 935 // Process the instructions in the block. 936 process(*BB, LiveSet); 937 938 // Relatively expensive check: has anything changed in LiveOut for BB? 939 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) { 940 LLVM_DEBUG(dbgs() << BB->getName() 941 << " has new OutLocs, add succs to worklist: [ "); 942 LiveOut[BB] = std::move(LiveSet); 943 for (BasicBlock *Succ : successors(BB)) { 944 if (OnPending.insert(Succ).second) { 945 LLVM_DEBUG(dbgs() << Succ->getName() << " "); 946 Pending.push(BBToOrder[Succ]); 947 } 948 } 949 LLVM_DEBUG(dbgs() << "]\n"); 950 } 951 } 952 } 953 Worklist.swap(Pending); 954 // At this point, pending must be empty, since it was just the empty 955 // worklist 956 assert(Pending.empty() && "Pending should be empty"); 957 } 958 959 // Insert new location defs. 960 for (auto &Pair : BBInsertBeforeMap) { 961 InsertMap &Map = Pair.second; 962 for (auto &Pair : Map) { 963 auto InsertBefore = Pair.first; 964 assert(InsertBefore && "should never be null"); 965 auto FragMemLocs = Pair.second; 966 auto &Ctx = Fn.getContext(); 967 968 for (auto &FragMemLoc : FragMemLocs) { 969 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt); 970 if (FragMemLoc.SizeInBits != 971 *Aggregates[FragMemLoc.Var].first->getSizeInBits()) 972 Expr = *DIExpression::createFragmentExpression( 973 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits); 974 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, 975 FragMemLoc.OffsetInBits / 8); 976 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, 977 FragMemLoc.DL.getInlinedAt()); 978 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL, 979 Bases[FragMemLoc.Base]); 980 } 981 } 982 } 983 } 984 }; 985 986 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function 987 /// that interprets assignment tracking debug info metadata and stores in IR to 988 /// create a map of variable locations. 989 class AssignmentTrackingLowering { 990 public: 991 /// The kind of location in use for a variable, where Mem is the stack home, 992 /// Val is an SSA value or const, and None means that there is not one single 993 /// kind (either because there are multiple or because there is none; it may 994 /// prove useful to split this into two values in the future). 995 /// 996 /// LocKind is a join-semilattice with the partial order: 997 /// None > Mem, Val 998 /// 999 /// i.e. 1000 /// join(Mem, Mem) = Mem 1001 /// join(Val, Val) = Val 1002 /// join(Mem, Val) = None 1003 /// join(None, Mem) = None 1004 /// join(None, Val) = None 1005 /// join(None, None) = None 1006 /// 1007 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID 1008 /// to name assignments and are not tracking the actual stored values. 1009 /// Therefore currently there's no way to ensure that Mem values and Val 1010 /// values are the same. This could be a future extension, though it's not 1011 /// clear that many additional locations would be recovered that way in 1012 /// practice as the likelihood of this sitation arising naturally seems 1013 /// incredibly low. 1014 enum class LocKind { Mem, Val, None }; 1015 1016 /// An abstraction of the assignment of a value to a variable or memory 1017 /// location. 1018 /// 1019 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a 1020 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or 1021 /// can't) know the ID of the last assignment that took place. 1022 /// 1023 /// The Status of the Assignment (Known or NoneOrPhi) is another 1024 /// join-semilattice. The partial order is: 1025 /// NoneOrPhi > Known {id_0, id_1, ...id_N} 1026 /// 1027 /// i.e. for all values x and y where x != y: 1028 /// join(x, x) = x 1029 /// join(x, y) = NoneOrPhi 1030 using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DbgVariableRecord *>; 1031 struct Assignment { 1032 enum S { Known, NoneOrPhi } Status; 1033 /// ID of the assignment. nullptr if Status is not Known. 1034 DIAssignID *ID; 1035 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. 1036 /// May be nullptr. 1037 AssignRecord Source; 1038 1039 bool isSameSourceAssignment(const Assignment &Other) const { 1040 // Don't include Source in the equality check. Assignments are 1041 // defined by their ID, not debug intrinsic(s). 1042 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID); 1043 } 1044 void dump(raw_ostream &OS) { 1045 static const char *LUT[] = {"Known", "NoneOrPhi"}; 1046 OS << LUT[Status] << "(id="; 1047 if (ID) 1048 OS << ID; 1049 else 1050 OS << "null"; 1051 OS << ", s="; 1052 if (Source.isNull()) 1053 OS << "null"; 1054 else if (isa<DbgAssignIntrinsic *>(Source)) 1055 OS << Source.get<DbgAssignIntrinsic *>(); 1056 else 1057 OS << Source.get<DbgVariableRecord *>(); 1058 OS << ")"; 1059 } 1060 1061 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) { 1062 return Assignment(Known, ID, Source); 1063 } 1064 static Assignment make(DIAssignID *ID, DbgVariableRecord *Source) { 1065 assert(Source->isDbgAssign() && 1066 "Cannot make an assignment from a non-assign DbgVariableRecord"); 1067 return Assignment(Known, ID, Source); 1068 } 1069 static Assignment make(DIAssignID *ID, AssignRecord Source) { 1070 return Assignment(Known, ID, Source); 1071 } 1072 static Assignment makeFromMemDef(DIAssignID *ID) { 1073 return Assignment(Known, ID); 1074 } 1075 static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); } 1076 // Again, need a Top value? 1077 Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this? 1078 Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) { 1079 // If the Status is Known then we expect there to be an assignment ID. 1080 assert(Status == NoneOrPhi || ID); 1081 } 1082 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source) 1083 : Status(Status), ID(ID), Source(Source) { 1084 // If the Status is Known then we expect there to be an assignment ID. 1085 assert(Status == NoneOrPhi || ID); 1086 } 1087 Assignment(S Status, DIAssignID *ID, DbgVariableRecord *Source) 1088 : Status(Status), ID(ID), Source(Source) { 1089 // If the Status is Known then we expect there to be an assignment ID. 1090 assert(Status == NoneOrPhi || ID); 1091 } 1092 Assignment(S Status, DIAssignID *ID, AssignRecord Source) 1093 : Status(Status), ID(ID), Source(Source) { 1094 // If the Status is Known then we expect there to be an assignment ID. 1095 assert(Status == NoneOrPhi || ID); 1096 } 1097 }; 1098 1099 using AssignmentMap = SmallVector<Assignment>; 1100 using LocMap = SmallVector<LocKind>; 1101 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>; 1102 using UntaggedStoreAssignmentMap = 1103 DenseMap<const Instruction *, 1104 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>; 1105 1106 private: 1107 /// The highest numbered VariableID for partially promoted variables plus 1, 1108 /// the values for which start at 1. 1109 unsigned TrackedVariablesVectorSize = 0; 1110 /// Map a variable to the set of variables that it fully contains. 1111 OverlapMap VarContains; 1112 /// Map untagged stores to the variable fragments they assign to. Used by 1113 /// processUntaggedInstruction. 1114 UntaggedStoreAssignmentMap UntaggedStoreVars; 1115 1116 // Machinery to defer inserting dbg.values. 1117 using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>; 1118 InstInsertMap InsertBeforeMap; 1119 /// Clear the location definitions currently cached for insertion after /p 1120 /// After. 1121 void resetInsertionPoint(Instruction &After); 1122 void resetInsertionPoint(DbgVariableRecord &After); 1123 1124 // emitDbgValue can be called with: 1125 // Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DbgVariableRecord*] 1126 // Since AssignRecord can be cast to one of the latter two types, and all 1127 // other types have a shared interface, we use a template to handle the latter 1128 // three types, and an explicit overload for AssignRecord that forwards to 1129 // the template version with the right type. 1130 void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After); 1131 template <typename T> 1132 void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After); 1133 1134 static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A, 1135 const AssignmentMap &B) { 1136 return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) { 1137 return A[VarID].isSameSourceAssignment(B[VarID]); 1138 }); 1139 } 1140 1141 /// Represents the stack and debug assignments in a block. Used to describe 1142 /// the live-in and live-out values for blocks, as well as the "current" 1143 /// value as we process each instruction in a block. 1144 struct BlockInfo { 1145 /// The set of variables (VariableID) being tracked in this block. 1146 BitVector VariableIDsInBlock; 1147 /// Dominating assignment to memory for each variable, indexed by 1148 /// VariableID. 1149 AssignmentMap StackHomeValue; 1150 /// Dominating assignemnt to each variable, indexed by VariableID. 1151 AssignmentMap DebugValue; 1152 /// Location kind for each variable. LiveLoc indicates whether the 1153 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue 1154 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of 1155 /// preference. This cannot be derived by inspecting DebugValue and 1156 /// StackHomeValue due to the fact that there's no distinction in 1157 /// Assignment (the class) between whether an assignment is unknown or a 1158 /// merge of multiple assignments (both are Status::NoneOrPhi). In other 1159 /// words, the memory location may well be valid while both DebugValue and 1160 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. 1161 /// Indexed by VariableID. 1162 LocMap LiveLoc; 1163 1164 public: 1165 enum AssignmentKind { Stack, Debug }; 1166 const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const { 1167 switch (Kind) { 1168 case Stack: 1169 return StackHomeValue; 1170 case Debug: 1171 return DebugValue; 1172 } 1173 llvm_unreachable("Unknown AssignmentKind"); 1174 } 1175 AssignmentMap &getAssignmentMap(AssignmentKind Kind) { 1176 return const_cast<AssignmentMap &>( 1177 const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind)); 1178 } 1179 1180 bool isVariableTracked(VariableID Var) const { 1181 return VariableIDsInBlock[static_cast<unsigned>(Var)]; 1182 } 1183 1184 const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const { 1185 assert(isVariableTracked(Var) && "Var not tracked in block"); 1186 return getAssignmentMap(Kind)[static_cast<unsigned>(Var)]; 1187 } 1188 1189 LocKind getLocKind(VariableID Var) const { 1190 assert(isVariableTracked(Var) && "Var not tracked in block"); 1191 return LiveLoc[static_cast<unsigned>(Var)]; 1192 } 1193 1194 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of 1195 /// fragments contained win \p Var. 1196 void setLocKind(VariableID Var, LocKind K) { 1197 VariableIDsInBlock.set(static_cast<unsigned>(Var)); 1198 LiveLoc[static_cast<unsigned>(Var)] = K; 1199 } 1200 1201 /// Set the assignment in the \p Kind assignment map for \p Var only: does 1202 /// not set the assignment for VariableIDs of fragments contained win \p 1203 /// Var. 1204 void setAssignment(AssignmentKind Kind, VariableID Var, 1205 const Assignment &AV) { 1206 VariableIDsInBlock.set(static_cast<unsigned>(Var)); 1207 getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV; 1208 } 1209 1210 /// Return true if there is an assignment matching \p AV in the \p Kind 1211 /// assignment map. Does consider assignments for VariableIDs of fragments 1212 /// contained win \p Var. 1213 bool hasAssignment(AssignmentKind Kind, VariableID Var, 1214 const Assignment &AV) const { 1215 if (!isVariableTracked(Var)) 1216 return false; 1217 return AV.isSameSourceAssignment(getAssignment(Kind, Var)); 1218 } 1219 1220 /// Compare every element in each map to determine structural equality 1221 /// (slow). 1222 bool operator==(const BlockInfo &Other) const { 1223 return VariableIDsInBlock == Other.VariableIDsInBlock && 1224 LiveLoc == Other.LiveLoc && 1225 mapsAreEqual(VariableIDsInBlock, StackHomeValue, 1226 Other.StackHomeValue) && 1227 mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue); 1228 } 1229 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } 1230 bool isValid() { 1231 return LiveLoc.size() == DebugValue.size() && 1232 LiveLoc.size() == StackHomeValue.size(); 1233 } 1234 1235 /// Clear everything and initialise with ⊤-values for all variables. 1236 void init(int NumVars) { 1237 StackHomeValue.clear(); 1238 DebugValue.clear(); 1239 LiveLoc.clear(); 1240 VariableIDsInBlock = BitVector(NumVars); 1241 StackHomeValue.insert(StackHomeValue.begin(), NumVars, 1242 Assignment::makeNoneOrPhi()); 1243 DebugValue.insert(DebugValue.begin(), NumVars, 1244 Assignment::makeNoneOrPhi()); 1245 LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None); 1246 } 1247 1248 /// Helper for join. 1249 template <typename ElmtType, typename FnInputType> 1250 static void joinElmt(int Index, SmallVector<ElmtType> &Target, 1251 const SmallVector<ElmtType> &A, 1252 const SmallVector<ElmtType> &B, 1253 ElmtType (*Fn)(FnInputType, FnInputType)) { 1254 Target[Index] = Fn(A[Index], B[Index]); 1255 } 1256 1257 /// See comment for AssignmentTrackingLowering::joinBlockInfo. 1258 static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) { 1259 // Join A and B. 1260 // 1261 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b) 1262 // Difference = join(x, ⊤) for x where Var(x) is in A xor B 1263 // Join = Intersect ∪ Difference 1264 // 1265 // This is achieved by performing a join on elements from A and B with 1266 // variables common to both A and B (join elements indexed by var 1267 // intersect), then adding ⊤-value elements for vars in A xor B. The 1268 // latter part is equivalent to performing join on elements with variables 1269 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤. 1270 // BlockInfo::init initializes all variable entries to the ⊤ value so we 1271 // don't need to explicitly perform that step as Join.VariableIDsInBlock 1272 // is set to the union of the variables in A and B at the end of this 1273 // function. 1274 BlockInfo Join; 1275 Join.init(NumVars); 1276 1277 BitVector Intersect = A.VariableIDsInBlock; 1278 Intersect &= B.VariableIDsInBlock; 1279 1280 for (auto VarID : Intersect.set_bits()) { 1281 joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind); 1282 joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue, 1283 joinAssignment); 1284 joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue, 1285 joinAssignment); 1286 } 1287 1288 Join.VariableIDsInBlock = A.VariableIDsInBlock; 1289 Join.VariableIDsInBlock |= B.VariableIDsInBlock; 1290 assert(Join.isValid()); 1291 return Join; 1292 } 1293 }; 1294 1295 Function &Fn; 1296 const DataLayout &Layout; 1297 const DenseSet<DebugAggregate> *VarsWithStackSlot; 1298 FunctionVarLocsBuilder *FnVarLocs; 1299 DenseMap<const BasicBlock *, BlockInfo> LiveIn; 1300 DenseMap<const BasicBlock *, BlockInfo> LiveOut; 1301 1302 /// Helper for process methods to track variables touched each frame. 1303 DenseSet<VariableID> VarsTouchedThisFrame; 1304 1305 /// The set of variables that sometimes are not located in their stack home. 1306 DenseSet<DebugAggregate> NotAlwaysStackHomed; 1307 1308 VariableID getVariableID(const DebugVariable &Var) { 1309 return static_cast<VariableID>(FnVarLocs->insertVariable(Var)); 1310 } 1311 1312 /// Join the LiveOut values of preds that are contained in \p Visited into 1313 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] 1314 /// values monotonically increase. See the @link joinMethods join methods 1315 /// @endlink documentation for more info. 1316 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited); 1317 ///@name joinMethods 1318 /// Functions that implement `join` (the least upper bound) for the 1319 /// join-semilattice types used in the dataflow. There is an explicit bottom 1320 /// value (⊥) for some types and and explicit top value (⊤) for all types. 1321 /// By definition: 1322 /// 1323 /// Join(A, B) >= A && Join(A, B) >= B 1324 /// Join(A, ⊥) = A 1325 /// Join(A, ⊤) = ⊤ 1326 /// 1327 /// These invariants are important for monotonicity. 1328 /// 1329 /// For the map-type functions, all unmapped keys in an empty map are 1330 /// associated with a bottom value (⊥). This represents their values being 1331 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key 1332 /// only present in one) represents either a variable going out of scope or 1333 /// dropped debug info. It is assumed the key is associated with a top value 1334 /// (⊤) in this case (unknown location / assignment). 1335 ///@{ 1336 static LocKind joinKind(LocKind A, LocKind B); 1337 static Assignment joinAssignment(const Assignment &A, const Assignment &B); 1338 BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); 1339 ///@} 1340 1341 /// Process the instructions in \p BB updating \p LiveSet along the way. \p 1342 /// LiveSet must be initialized with the current live-in locations before 1343 /// calling this. 1344 void process(BasicBlock &BB, BlockInfo *LiveSet); 1345 ///@name processMethods 1346 /// Methods to process instructions in order to update the LiveSet (current 1347 /// location information). 1348 ///@{ 1349 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1350 void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet); 1351 /// Update \p LiveSet after encountering an instruction with a DIAssignID 1352 /// attachment, \p I. 1353 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1354 /// Update \p LiveSet after encountering an instruciton without a DIAssignID 1355 /// attachment, \p I. 1356 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1357 void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet); 1358 void processDbgVariableRecord(DbgVariableRecord &DVR, BlockInfo *LiveSet); 1359 void processDbgValue( 1360 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord, 1361 BlockInfo *LiveSet); 1362 /// Add an assignment to memory for the variable /p Var. 1363 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1364 /// Add an assignment to the variable /p Var. 1365 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1366 ///@} 1367 1368 /// Set the LocKind for \p Var. 1369 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); 1370 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to 1371 /// have been called for \p Var first. 1372 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); 1373 /// Return true if \p Var has an assignment in \p M matching \p AV. 1374 bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, 1375 VariableID Var, const Assignment &AV); 1376 /// Return the set of VariableIDs corresponding the fragments contained fully 1377 /// within the variable/fragment \p Var. 1378 ArrayRef<VariableID> getContainedFragments(VariableID Var) const; 1379 1380 /// Mark \p Var as having been touched this frame. Note, this applies only 1381 /// to the exact fragment \p Var and not to any fragments contained within. 1382 void touchFragment(VariableID Var); 1383 1384 /// Emit info for variables that are fully promoted. 1385 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); 1386 1387 public: 1388 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, 1389 const DenseSet<DebugAggregate> *VarsWithStackSlot) 1390 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} 1391 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns 1392 /// true if any variable locations have been added to FnVarLocs. 1393 bool run(FunctionVarLocsBuilder *FnVarLocs); 1394 }; 1395 } // namespace 1396 1397 ArrayRef<VariableID> 1398 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const { 1399 auto R = VarContains.find(Var); 1400 if (R == VarContains.end()) 1401 return std::nullopt; 1402 return R->second; 1403 } 1404 1405 void AssignmentTrackingLowering::touchFragment(VariableID Var) { 1406 VarsTouchedThisFrame.insert(Var); 1407 } 1408 1409 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, 1410 LocKind K) { 1411 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { 1412 LiveSet->setLocKind(Var, K); 1413 touchFragment(Var); 1414 }; 1415 SetKind(LiveSet, Var, K); 1416 1417 // Update the LocKind for all fragments contained within Var. 1418 for (VariableID Frag : getContainedFragments(Var)) 1419 SetKind(LiveSet, Frag, K); 1420 } 1421 1422 AssignmentTrackingLowering::LocKind 1423 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { 1424 return LiveSet->getLocKind(Var); 1425 } 1426 1427 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, 1428 const Assignment &AV) { 1429 LiveSet->setAssignment(BlockInfo::Stack, Var, AV); 1430 1431 // Use this assigment for all fragments contained within Var, but do not 1432 // provide a Source because we cannot convert Var's value to a value for the 1433 // fragment. 1434 Assignment FragAV = AV; 1435 FragAV.Source = nullptr; 1436 for (VariableID Frag : getContainedFragments(Var)) 1437 LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV); 1438 } 1439 1440 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, 1441 const Assignment &AV) { 1442 LiveSet->setAssignment(BlockInfo::Debug, Var, AV); 1443 1444 // Use this assigment for all fragments contained within Var, but do not 1445 // provide a Source because we cannot convert Var's value to a value for the 1446 // fragment. 1447 Assignment FragAV = AV; 1448 FragAV.Source = nullptr; 1449 for (VariableID Frag : getContainedFragments(Var)) 1450 LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV); 1451 } 1452 1453 static DIAssignID *getIDFromInst(const Instruction &I) { 1454 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID)); 1455 } 1456 1457 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) { 1458 return cast<DIAssignID>(DAI.getAssignID()); 1459 } 1460 1461 static DIAssignID *getIDFromMarker(const DbgVariableRecord &DVR) { 1462 assert(DVR.isDbgAssign() && 1463 "Cannot get a DIAssignID from a non-assign DbgVariableRecord!"); 1464 return DVR.getAssignID(); 1465 } 1466 1467 /// Return true if \p Var has an assignment in \p M matching \p AV. 1468 bool AssignmentTrackingLowering::hasVarWithAssignment( 1469 BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var, 1470 const Assignment &AV) { 1471 if (!LiveSet->hasAssignment(Kind, Var, AV)) 1472 return false; 1473 1474 // Check all the frags contained within Var as these will have all been 1475 // mapped to AV at the last store to Var. 1476 for (VariableID Frag : getContainedFragments(Var)) 1477 if (!LiveSet->hasAssignment(Kind, Frag, AV)) 1478 return false; 1479 return true; 1480 } 1481 1482 #ifndef NDEBUG 1483 const char *locStr(AssignmentTrackingLowering::LocKind Loc) { 1484 using LocKind = AssignmentTrackingLowering::LocKind; 1485 switch (Loc) { 1486 case LocKind::Val: 1487 return "Val"; 1488 case LocKind::Mem: 1489 return "Mem"; 1490 case LocKind::None: 1491 return "None"; 1492 }; 1493 llvm_unreachable("unknown LocKind"); 1494 } 1495 #endif 1496 1497 VarLocInsertPt getNextNode(const DbgRecord *DVR) { 1498 auto NextIt = ++(DVR->getIterator()); 1499 if (NextIt == DVR->getMarker()->getDbgRecordRange().end()) 1500 return DVR->getMarker()->MarkedInstr; 1501 return &*NextIt; 1502 } 1503 VarLocInsertPt getNextNode(const Instruction *Inst) { 1504 const Instruction *Next = Inst->getNextNode(); 1505 if (!Next->hasDbgRecords()) 1506 return Next; 1507 return &*Next->getDbgRecordRange().begin(); 1508 } 1509 VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) { 1510 if (isa<const Instruction *>(InsertPt)) 1511 return getNextNode(cast<const Instruction *>(InsertPt)); 1512 return getNextNode(cast<const DbgRecord *>(InsertPt)); 1513 } 1514 1515 DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) { 1516 return cast<DbgAssignIntrinsic>(DVI); 1517 } 1518 1519 DbgVariableRecord *CastToDbgAssign(DbgVariableRecord *DVR) { 1520 assert(DVR->isDbgAssign() && 1521 "Attempted to cast non-assign DbgVariableRecord to DVRAssign."); 1522 return DVR; 1523 } 1524 1525 void AssignmentTrackingLowering::emitDbgValue( 1526 AssignmentTrackingLowering::LocKind Kind, 1527 AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) { 1528 if (isa<DbgAssignIntrinsic *>(Source)) 1529 emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After); 1530 else 1531 emitDbgValue(Kind, cast<DbgVariableRecord *>(Source), After); 1532 } 1533 template <typename T> 1534 void AssignmentTrackingLowering::emitDbgValue( 1535 AssignmentTrackingLowering::LocKind Kind, const T Source, 1536 VarLocInsertPt After) { 1537 1538 DILocation *DL = Source->getDebugLoc(); 1539 auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) { 1540 assert(Expr); 1541 if (!Val) 1542 Val = ValueAsMetadata::get( 1543 PoisonValue::get(Type::getInt1Ty(Source->getContext()))); 1544 1545 // Find a suitable insert point. 1546 auto InsertBefore = getNextNode(After); 1547 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1548 1549 VariableID Var = getVariableID(DebugVariable(Source)); 1550 VarLocInfo VarLoc; 1551 VarLoc.VariableID = static_cast<VariableID>(Var); 1552 VarLoc.Expr = Expr; 1553 VarLoc.Values = RawLocationWrapper(Val); 1554 VarLoc.DL = DL; 1555 // Insert it into the map for later. 1556 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1557 }; 1558 1559 // NOTE: This block can mutate Kind. 1560 if (Kind == LocKind::Mem) { 1561 const auto *Assign = CastToDbgAssign(Source); 1562 // Check the address hasn't been dropped (e.g. the debug uses may not have 1563 // been replaced before deleting a Value). 1564 if (Assign->isKillAddress()) { 1565 // The address isn't valid so treat this as a non-memory def. 1566 Kind = LocKind::Val; 1567 } else { 1568 Value *Val = Assign->getAddress(); 1569 DIExpression *Expr = Assign->getAddressExpression(); 1570 assert(!Expr->getFragmentInfo() && 1571 "fragment info should be stored in value-expression only"); 1572 // Copy the fragment info over from the value-expression to the new 1573 // DIExpression. 1574 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { 1575 auto FragInfo = *OptFragInfo; 1576 Expr = *DIExpression::createFragmentExpression( 1577 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits); 1578 } 1579 // The address-expression has an implicit deref, add it now. 1580 std::tie(Val, Expr) = 1581 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr); 1582 Emit(ValueAsMetadata::get(Val), Expr); 1583 return; 1584 } 1585 } 1586 1587 if (Kind == LocKind::Val) { 1588 Emit(Source->getRawLocation(), Source->getExpression()); 1589 return; 1590 } 1591 1592 if (Kind == LocKind::None) { 1593 Emit(nullptr, Source->getExpression()); 1594 return; 1595 } 1596 } 1597 1598 void AssignmentTrackingLowering::processNonDbgInstruction( 1599 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1600 if (I.hasMetadata(LLVMContext::MD_DIAssignID)) 1601 processTaggedInstruction(I, LiveSet); 1602 else 1603 processUntaggedInstruction(I, LiveSet); 1604 } 1605 1606 void AssignmentTrackingLowering::processUntaggedInstruction( 1607 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1608 // Interpret stack stores that are not tagged as an assignment in memory for 1609 // the variables associated with that address. These stores may not be tagged 1610 // because a) the store cannot be represented using dbg.assigns (non-const 1611 // length or offset) or b) the tag was accidentally dropped during 1612 // optimisations. For these stores we fall back to assuming that the stack 1613 // home is a valid location for the variables. The benefit is that this 1614 // prevents us missing an assignment and therefore incorrectly maintaining 1615 // earlier location definitions, and in many cases it should be a reasonable 1616 // assumption. However, this will occasionally lead to slight 1617 // inaccuracies. The value of a hoisted untagged store will be visible 1618 // "early", for example. 1619 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); 1620 auto It = UntaggedStoreVars.find(&I); 1621 if (It == UntaggedStoreVars.end()) 1622 return; // No variables associated with the store destination. 1623 1624 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I 1625 << "\n"); 1626 // Iterate over the variables that this store affects, add a NoneOrPhi dbg 1627 // and mem def, set lockind to Mem, and emit a location def for each. 1628 for (auto [Var, Info] : It->second) { 1629 // This instruction is treated as both a debug and memory assignment, 1630 // meaning the memory location should be used. We don't have an assignment 1631 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. 1632 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1633 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1634 setLocKind(LiveSet, Var, LocKind::Mem); 1635 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) 1636 << "\n"); 1637 // Build the dbg location def to insert. 1638 // 1639 // DIExpression: Add fragment and offset. 1640 DebugVariable V = FnVarLocs->getVariable(Var); 1641 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt); 1642 if (auto Frag = V.getFragment()) { 1643 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits, 1644 Frag->SizeInBits); 1645 assert(R && "unexpected createFragmentExpression failure"); 1646 DIE = *R; 1647 } 1648 SmallVector<uint64_t, 3> Ops; 1649 if (Info.OffsetInBits) 1650 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; 1651 Ops.push_back(dwarf::DW_OP_deref); 1652 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false, 1653 /*EntryValue=*/false); 1654 // Find a suitable insert point, before the next instruction or DbgRecord 1655 // after I. 1656 auto InsertBefore = getNextNode(&I); 1657 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1658 1659 // Get DILocation for this unrecorded assignment. 1660 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); 1661 const DILocation *DILoc = DILocation::get( 1662 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt); 1663 1664 VarLocInfo VarLoc; 1665 VarLoc.VariableID = static_cast<VariableID>(Var); 1666 VarLoc.Expr = DIE; 1667 VarLoc.Values = RawLocationWrapper( 1668 ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base))); 1669 VarLoc.DL = DILoc; 1670 // 3. Insert it into the map for later. 1671 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1672 } 1673 } 1674 1675 void AssignmentTrackingLowering::processTaggedInstruction( 1676 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1677 auto Linked = at::getAssignmentMarkers(&I); 1678 auto LinkedDPAssigns = at::getDVRAssignmentMarkers(&I); 1679 // No dbg.assign intrinsics linked. 1680 // FIXME: All vars that have a stack slot this store modifies that don't have 1681 // a dbg.assign linked to it should probably treat this like an untagged 1682 // store. 1683 if (Linked.empty() && LinkedDPAssigns.empty()) 1684 return; 1685 1686 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n"); 1687 auto ProcessLinkedAssign = [&](auto *Assign) { 1688 VariableID Var = getVariableID(DebugVariable(Assign)); 1689 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable 1690 // that is linked to a store. 1691 assert(VarsWithStackSlot->count(getAggregate(Assign)) && 1692 "expected Assign's variable to have stack slot"); 1693 1694 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I)); 1695 addMemDef(LiveSet, Var, AV); 1696 1697 LLVM_DEBUG(dbgs() << " linked to " << *Assign << "\n"); 1698 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1699 << " -> "); 1700 1701 // The last assignment to the stack is now AV. Check if the last debug 1702 // assignment has a matching Assignment. 1703 if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) { 1704 // The StackHomeValue and DebugValue for this variable match so we can 1705 // emit a stack home location here. 1706 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1707 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n"); 1708 LLVM_DEBUG(dbgs() << " Debug val: "; 1709 LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs()); 1710 dbgs() << "\n"); 1711 setLocKind(LiveSet, Var, LocKind::Mem); 1712 emitDbgValue(LocKind::Mem, Assign, &I); 1713 return; 1714 } 1715 1716 // The StackHomeValue and DebugValue for this variable do not match. I.e. 1717 // The value currently stored in the stack is not what we'd expect to 1718 // see, so we cannot use emit a stack home location here. Now we will 1719 // look at the live LocKind for the variable and determine an appropriate 1720 // dbg.value to emit. 1721 LocKind PrevLoc = getLocKind(LiveSet, Var); 1722 switch (PrevLoc) { 1723 case LocKind::Val: { 1724 // The value in memory in memory has changed but we're not currently 1725 // using the memory location. Do nothing. 1726 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";); 1727 setLocKind(LiveSet, Var, LocKind::Val); 1728 } break; 1729 case LocKind::Mem: { 1730 // There's been an assignment to memory that we were using as a 1731 // location for this variable, and the Assignment doesn't match what 1732 // we'd expect to see in memory. 1733 Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var); 1734 if (DbgAV.Status == Assignment::NoneOrPhi) { 1735 // We need to terminate any previously open location now. 1736 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";); 1737 setLocKind(LiveSet, Var, LocKind::None); 1738 emitDbgValue(LocKind::None, Assign, &I); 1739 } else { 1740 // The previous DebugValue Value can be used here. 1741 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";); 1742 setLocKind(LiveSet, Var, LocKind::Val); 1743 if (DbgAV.Source) { 1744 emitDbgValue(LocKind::Val, DbgAV.Source, &I); 1745 } else { 1746 // PrevAV.Source is nullptr so we must emit undef here. 1747 emitDbgValue(LocKind::None, Assign, &I); 1748 } 1749 } 1750 } break; 1751 case LocKind::None: { 1752 // There's been an assignment to memory and we currently are 1753 // not tracking a location for the variable. Do not emit anything. 1754 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";); 1755 setLocKind(LiveSet, Var, LocKind::None); 1756 } break; 1757 } 1758 }; 1759 for (DbgAssignIntrinsic *DAI : Linked) 1760 ProcessLinkedAssign(DAI); 1761 for (DbgVariableRecord *DVR : LinkedDPAssigns) 1762 ProcessLinkedAssign(DVR); 1763 } 1764 1765 void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign, 1766 BlockInfo *LiveSet) { 1767 auto ProcessDbgAssignImpl = [&](auto *DbgAssign) { 1768 // Only bother tracking variables that are at some point stack homed. Other 1769 // variables can be dealt with trivially later. 1770 if (!VarsWithStackSlot->count(getAggregate(DbgAssign))) 1771 return; 1772 1773 VariableID Var = getVariableID(DebugVariable(DbgAssign)); 1774 Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign); 1775 addDbgDef(LiveSet, Var, AV); 1776 1777 LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";); 1778 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1779 << " -> "); 1780 1781 // Check if the DebugValue and StackHomeValue both hold the same 1782 // Assignment. 1783 if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) { 1784 // They match. We can use the stack home because the debug intrinsics 1785 // state that an assignment happened here, and we know that specific 1786 // assignment was the last one to take place in memory for this variable. 1787 LocKind Kind; 1788 if (DbgAssign->isKillAddress()) { 1789 LLVM_DEBUG( 1790 dbgs() 1791 << "Val, Stack matches Debug program but address is killed\n";); 1792 Kind = LocKind::Val; 1793 } else { 1794 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1795 Kind = LocKind::Mem; 1796 }; 1797 setLocKind(LiveSet, Var, Kind); 1798 emitDbgValue(Kind, DbgAssign, DbgAssign); 1799 } else { 1800 // The last assignment to the memory location isn't the one that we want 1801 // to show to the user so emit a dbg.value(Value). Value may be undef. 1802 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";); 1803 setLocKind(LiveSet, Var, LocKind::Val); 1804 emitDbgValue(LocKind::Val, DbgAssign, DbgAssign); 1805 } 1806 }; 1807 if (isa<DbgVariableRecord *>(Assign)) 1808 return ProcessDbgAssignImpl(cast<DbgVariableRecord *>(Assign)); 1809 return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign)); 1810 } 1811 1812 void AssignmentTrackingLowering::processDbgValue( 1813 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord, 1814 BlockInfo *LiveSet) { 1815 auto ProcessDbgValueImpl = [&](auto *DbgValue) { 1816 // Only other tracking variables that are at some point stack homed. 1817 // Other variables can be dealt with trivally later. 1818 if (!VarsWithStackSlot->count(getAggregate(DbgValue))) 1819 return; 1820 1821 VariableID Var = getVariableID(DebugVariable(DbgValue)); 1822 // We have no ID to create an Assignment with so we mark this assignment as 1823 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine 1824 // the assignment responsible for setting this value. 1825 // This is fine; dbg.values are essentially interchangable with unlinked 1826 // dbg.assigns, and some passes such as mem2reg and instcombine add them to 1827 // PHIs for promoted variables. 1828 Assignment AV = Assignment::makeNoneOrPhi(); 1829 addDbgDef(LiveSet, Var, AV); 1830 1831 LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";); 1832 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1833 << " -> Val, dbg.value override"); 1834 1835 setLocKind(LiveSet, Var, LocKind::Val); 1836 emitDbgValue(LocKind::Val, DbgValue, DbgValue); 1837 }; 1838 if (isa<DbgVariableRecord *>(DbgValueRecord)) 1839 return ProcessDbgValueImpl(cast<DbgVariableRecord *>(DbgValueRecord)); 1840 return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord)); 1841 } 1842 1843 template <typename T> static bool hasZeroSizedFragment(T &DbgValue) { 1844 if (auto F = DbgValue.getExpression()->getFragmentInfo()) 1845 return F->SizeInBits == 0; 1846 return false; 1847 } 1848 1849 void AssignmentTrackingLowering::processDbgInstruction( 1850 DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1851 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 1852 if (!DVI) 1853 return; 1854 1855 // Ignore assignments to zero bits of the variable. 1856 if (hasZeroSizedFragment(*DVI)) 1857 return; 1858 1859 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I)) 1860 processDbgAssign(DAI, LiveSet); 1861 else if (auto *DVI = dyn_cast<DbgValueInst>(&I)) 1862 processDbgValue(DVI, LiveSet); 1863 } 1864 void AssignmentTrackingLowering::processDbgVariableRecord( 1865 DbgVariableRecord &DVR, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1866 // Ignore assignments to zero bits of the variable. 1867 if (hasZeroSizedFragment(DVR)) 1868 return; 1869 1870 if (DVR.isDbgAssign()) 1871 processDbgAssign(&DVR, LiveSet); 1872 else if (DVR.isDbgValue()) 1873 processDbgValue(&DVR, LiveSet); 1874 } 1875 1876 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { 1877 assert(!After.isTerminator() && "Can't insert after a terminator"); 1878 auto *R = InsertBeforeMap.find(getNextNode(&After)); 1879 if (R == InsertBeforeMap.end()) 1880 return; 1881 R->second.clear(); 1882 } 1883 void AssignmentTrackingLowering::resetInsertionPoint(DbgVariableRecord &After) { 1884 auto *R = InsertBeforeMap.find(getNextNode(&After)); 1885 if (R == InsertBeforeMap.end()) 1886 return; 1887 R->second.clear(); 1888 } 1889 1890 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { 1891 // If the block starts with DbgRecords, we need to process those DbgRecords as 1892 // their own frame without processing any instructions first. 1893 bool ProcessedLeadingDbgRecords = !BB.begin()->hasDbgRecords(); 1894 for (auto II = BB.begin(), EI = BB.end(); II != EI;) { 1895 assert(VarsTouchedThisFrame.empty()); 1896 // Process the instructions in "frames". A "frame" includes a single 1897 // non-debug instruction followed any debug instructions before the 1898 // next non-debug instruction. 1899 1900 // Skip the current instruction if it has unprocessed DbgRecords attached 1901 // (see comment above `ProcessedLeadingDbgRecords`). 1902 if (ProcessedLeadingDbgRecords) { 1903 // II is now either a debug intrinsic, a non-debug instruction with no 1904 // attached DbgRecords, or a non-debug instruction with attached processed 1905 // DbgRecords. 1906 // II has not been processed. 1907 if (!isa<DbgInfoIntrinsic>(&*II)) { 1908 if (II->isTerminator()) 1909 break; 1910 resetInsertionPoint(*II); 1911 processNonDbgInstruction(*II, LiveSet); 1912 assert(LiveSet->isValid()); 1913 ++II; 1914 } 1915 } 1916 // II is now either a debug intrinsic, a non-debug instruction with no 1917 // attached DbgRecords, or a non-debug instruction with attached unprocessed 1918 // DbgRecords. 1919 if (II != EI && II->hasDbgRecords()) { 1920 // Skip over non-variable debug records (i.e., labels). They're going to 1921 // be read from IR (possibly re-ordering them within the debug record 1922 // range) rather than from the analysis results. 1923 for (DbgVariableRecord &DVR : filterDbgVars(II->getDbgRecordRange())) { 1924 resetInsertionPoint(DVR); 1925 processDbgVariableRecord(DVR, LiveSet); 1926 assert(LiveSet->isValid()); 1927 } 1928 } 1929 ProcessedLeadingDbgRecords = true; 1930 while (II != EI) { 1931 auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II); 1932 if (!Dbg) 1933 break; 1934 resetInsertionPoint(*II); 1935 processDbgInstruction(*Dbg, LiveSet); 1936 assert(LiveSet->isValid()); 1937 ++II; 1938 } 1939 // II is now a non-debug instruction either with no attached DbgRecords, or 1940 // with attached processed DbgRecords. II has not been processed, and all 1941 // debug instructions or DbgRecords in the frame preceding II have been 1942 // processed. 1943 1944 // We've processed everything in the "frame". Now determine which variables 1945 // cannot be represented by a dbg.declare. 1946 for (auto Var : VarsTouchedThisFrame) { 1947 LocKind Loc = getLocKind(LiveSet, Var); 1948 // If a variable's LocKind is anything other than LocKind::Mem then we 1949 // must note that it cannot be represented with a dbg.declare. 1950 // Note that this check is enough without having to check the result of 1951 // joins() because for join to produce anything other than Mem after 1952 // we've already seen a Mem we'd be joining None or Val with Mem. In that 1953 // case, we've already hit this codepath when we set the LocKind to Val 1954 // or None in that block. 1955 if (Loc != LocKind::Mem) { 1956 DebugVariable DbgVar = FnVarLocs->getVariable(Var); 1957 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; 1958 NotAlwaysStackHomed.insert(Aggr); 1959 } 1960 } 1961 VarsTouchedThisFrame.clear(); 1962 } 1963 } 1964 1965 AssignmentTrackingLowering::LocKind 1966 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { 1967 // Partial order: 1968 // None > Mem, Val 1969 return A == B ? A : LocKind::None; 1970 } 1971 1972 AssignmentTrackingLowering::Assignment 1973 AssignmentTrackingLowering::joinAssignment(const Assignment &A, 1974 const Assignment &B) { 1975 // Partial order: 1976 // NoneOrPhi(null, null) > Known(v, ?s) 1977 1978 // If either are NoneOrPhi the join is NoneOrPhi. 1979 // If either value is different then the result is 1980 // NoneOrPhi (joining two values is a Phi). 1981 if (!A.isSameSourceAssignment(B)) 1982 return Assignment::makeNoneOrPhi(); 1983 if (A.Status == Assignment::NoneOrPhi) 1984 return Assignment::makeNoneOrPhi(); 1985 1986 // Source is used to lookup the value + expression in the debug program if 1987 // the stack slot gets assigned a value earlier than expected. Because 1988 // we're only tracking the one dbg.assign, we can't capture debug PHIs. 1989 // It's unlikely that we're losing out on much coverage by avoiding that 1990 // extra work. 1991 // The Source may differ in this situation: 1992 // Pred.1: 1993 // dbg.assign i32 0, ..., !1, ... 1994 // Pred.2: 1995 // dbg.assign i32 1, ..., !1, ... 1996 // Here the same assignment (!1) was performed in both preds in the source, 1997 // but we can't use either one unless they are identical (e.g. .we don't 1998 // want to arbitrarily pick between constant values). 1999 auto JoinSource = [&]() -> AssignRecord { 2000 if (A.Source == B.Source) 2001 return A.Source; 2002 if (!A.Source || !B.Source) 2003 return AssignRecord(); 2004 assert(isa<DbgVariableRecord *>(A.Source) == 2005 isa<DbgVariableRecord *>(B.Source)); 2006 if (isa<DbgVariableRecord *>(A.Source) && 2007 cast<DbgVariableRecord *>(A.Source)->isEquivalentTo( 2008 *cast<DbgVariableRecord *>(B.Source))) 2009 return A.Source; 2010 if (isa<DbgAssignIntrinsic *>(A.Source) && 2011 cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo( 2012 cast<DbgAssignIntrinsic *>(B.Source))) 2013 return A.Source; 2014 return AssignRecord(); 2015 }; 2016 AssignRecord Source = JoinSource(); 2017 assert(A.Status == B.Status && A.Status == Assignment::Known); 2018 assert(A.ID == B.ID); 2019 return Assignment::make(A.ID, Source); 2020 } 2021 2022 AssignmentTrackingLowering::BlockInfo 2023 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, 2024 const BlockInfo &B) { 2025 return BlockInfo::join(A, B, TrackedVariablesVectorSize); 2026 } 2027 2028 bool AssignmentTrackingLowering::join( 2029 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) { 2030 2031 SmallVector<const BasicBlock *> VisitedPreds; 2032 // Ignore backedges if we have not visited the predecessor yet. As the 2033 // predecessor hasn't yet had locations propagated into it, most locations 2034 // will not yet be valid, so treat them as all being uninitialized and 2035 // potentially valid. If a location guessed to be correct here is 2036 // invalidated later, we will remove it when we revisit this block. This 2037 // is essentially the same as initialising all LocKinds and Assignments to 2038 // an implicit ⊥ value which is the identity value for the join operation. 2039 for (const BasicBlock *Pred : predecessors(&BB)) { 2040 if (Visited.count(Pred)) 2041 VisitedPreds.push_back(Pred); 2042 } 2043 2044 // No preds visited yet. 2045 if (VisitedPreds.empty()) { 2046 auto It = LiveIn.try_emplace(&BB, BlockInfo()); 2047 bool DidInsert = It.second; 2048 if (DidInsert) 2049 It.first->second.init(TrackedVariablesVectorSize); 2050 return /*Changed*/ DidInsert; 2051 } 2052 2053 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn. 2054 if (VisitedPreds.size() == 1) { 2055 const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second; 2056 auto CurrentLiveInEntry = LiveIn.find(&BB); 2057 2058 // Check if there isn't an entry, or there is but the LiveIn set has 2059 // changed (expensive check). 2060 if (CurrentLiveInEntry == LiveIn.end()) 2061 LiveIn.insert(std::make_pair(&BB, PredLiveOut)); 2062 else if (PredLiveOut != CurrentLiveInEntry->second) 2063 CurrentLiveInEntry->second = PredLiveOut; 2064 else 2065 return /*Changed*/ false; 2066 return /*Changed*/ true; 2067 } 2068 2069 // More than one pred. Join LiveOuts of blocks 1 and 2. 2070 assert(VisitedPreds.size() > 1); 2071 const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second; 2072 const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second; 2073 BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1); 2074 2075 // Join the LiveOuts of subsequent blocks. 2076 ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2); 2077 for (const BasicBlock *Pred : Tail) { 2078 const auto &PredLiveOut = LiveOut.find(Pred); 2079 assert(PredLiveOut != LiveOut.end() && 2080 "block should have been processed already"); 2081 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second); 2082 } 2083 2084 // Save the joined result for BB. 2085 auto CurrentLiveInEntry = LiveIn.find(&BB); 2086 // Check if there isn't an entry, or there is but the LiveIn set has changed 2087 // (expensive check). 2088 if (CurrentLiveInEntry == LiveIn.end()) 2089 LiveIn.try_emplace(&BB, std::move(BBLiveIn)); 2090 else if (BBLiveIn != CurrentLiveInEntry->second) 2091 CurrentLiveInEntry->second = std::move(BBLiveIn); 2092 else 2093 return /*Changed*/ false; 2094 return /*Changed*/ true; 2095 } 2096 2097 /// Return true if A fully contains B. 2098 static bool fullyContains(DIExpression::FragmentInfo A, 2099 DIExpression::FragmentInfo B) { 2100 auto ALeft = A.OffsetInBits; 2101 auto BLeft = B.OffsetInBits; 2102 if (BLeft < ALeft) 2103 return false; 2104 2105 auto ARight = ALeft + A.SizeInBits; 2106 auto BRight = BLeft + B.SizeInBits; 2107 if (BRight > ARight) 2108 return false; 2109 return true; 2110 } 2111 2112 static std::optional<at::AssignmentInfo> 2113 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { 2114 // Don't bother checking if this is an AllocaInst. We know this 2115 // instruction has no tag which means there are no variables associated 2116 // with it. 2117 if (const auto *SI = dyn_cast<StoreInst>(&I)) 2118 return at::getAssignmentInfo(Layout, SI); 2119 if (const auto *MI = dyn_cast<MemIntrinsic>(&I)) 2120 return at::getAssignmentInfo(Layout, MI); 2121 // Alloca or non-store-like inst. 2122 return std::nullopt; 2123 } 2124 2125 DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) { 2126 return dyn_cast<DbgDeclareInst>(DVI); 2127 } 2128 2129 DbgVariableRecord *DynCastToDbgDeclare(DbgVariableRecord *DVR) { 2130 return DVR->isDbgDeclare() ? DVR : nullptr; 2131 } 2132 2133 /// Build a map of {Variable x: Variables y} where all variable fragments 2134 /// contained within the variable fragment x are in set y. This means that 2135 /// y does not contain all overlaps because partial overlaps are excluded. 2136 /// 2137 /// While we're iterating over the function, add single location defs for 2138 /// dbg.declares to \p FnVarLocs. 2139 /// 2140 /// Variables that are interesting to this pass in are added to 2141 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of 2142 /// the last interesting variable plus 1, meaning variables with ID 1 2143 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The 2144 /// subsequent variables are either stack homed or fully promoted. 2145 /// 2146 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to 2147 /// the stored-to variable fragments. 2148 /// 2149 /// These tasks are bundled together to reduce the number of times we need 2150 /// to iterate over the function as they can be achieved together in one pass. 2151 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( 2152 Function &Fn, FunctionVarLocsBuilder *FnVarLocs, 2153 const DenseSet<DebugAggregate> &VarsWithStackSlot, 2154 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars, 2155 unsigned &TrackedVariablesVectorSize) { 2156 DenseSet<DebugVariable> Seen; 2157 // Map of Variable: [Fragments]. 2158 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap; 2159 // Iterate over all instructions: 2160 // - dbg.declare -> add single location variable record 2161 // - dbg.* -> Add fragments to FragmentMap 2162 // - untagged store -> Add fragments to FragmentMap and update 2163 // UntaggedStoreVars. 2164 // We need to add fragments for untagged stores too so that we can correctly 2165 // clobber overlapped fragment locations later. 2166 SmallVector<DbgDeclareInst *> InstDeclares; 2167 SmallVector<DbgVariableRecord *> DPDeclares; 2168 auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) { 2169 if (auto *Declare = DynCastToDbgDeclare(Record)) { 2170 DeclareList.push_back(Declare); 2171 return; 2172 } 2173 DebugVariable DV = DebugVariable(Record); 2174 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 2175 if (!VarsWithStackSlot.contains(DA)) 2176 return; 2177 if (Seen.insert(DV).second) 2178 FragmentMap[DA].push_back(DV); 2179 }; 2180 for (auto &BB : Fn) { 2181 for (auto &I : BB) { 2182 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 2183 ProcessDbgRecord(&DVR, DPDeclares); 2184 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2185 ProcessDbgRecord(DII, InstDeclares); 2186 } else if (auto Info = getUntaggedStoreAssignmentInfo( 2187 I, Fn.getDataLayout())) { 2188 // Find markers linked to this alloca. 2189 auto HandleDbgAssignForStore = [&](auto *Assign) { 2190 std::optional<DIExpression::FragmentInfo> FragInfo; 2191 2192 // Skip this assignment if the affected bits are outside of the 2193 // variable fragment. 2194 if (!at::calculateFragmentIntersect( 2195 I.getDataLayout(), Info->Base, 2196 Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) || 2197 (FragInfo && FragInfo->SizeInBits == 0)) 2198 return; 2199 2200 // FragInfo from calculateFragmentIntersect is nullopt if the 2201 // resultant fragment matches DAI's fragment or entire variable - in 2202 // which case copy the fragment info from DAI. If FragInfo is still 2203 // nullopt after the copy it means "no fragment info" instead, which 2204 // is how it is usually interpreted. 2205 if (!FragInfo) 2206 FragInfo = Assign->getExpression()->getFragmentInfo(); 2207 2208 DebugVariable DV = 2209 DebugVariable(Assign->getVariable(), FragInfo, 2210 Assign->getDebugLoc().getInlinedAt()); 2211 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 2212 if (!VarsWithStackSlot.contains(DA)) 2213 return; 2214 2215 // Cache this info for later. 2216 UntaggedStoreVars[&I].push_back( 2217 {FnVarLocs->insertVariable(DV), *Info}); 2218 2219 if (Seen.insert(DV).second) 2220 FragmentMap[DA].push_back(DV); 2221 }; 2222 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) 2223 HandleDbgAssignForStore(DAI); 2224 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(Info->Base)) 2225 HandleDbgAssignForStore(DVR); 2226 } 2227 } 2228 } 2229 2230 // Sort the fragment map for each DebugAggregate in ascending 2231 // order of fragment size - there should be no duplicates. 2232 for (auto &Pair : FragmentMap) { 2233 SmallVector<DebugVariable, 8> &Frags = Pair.second; 2234 std::sort(Frags.begin(), Frags.end(), 2235 [](const DebugVariable &Next, const DebugVariable &Elmt) { 2236 return Elmt.getFragmentOrDefault().SizeInBits > 2237 Next.getFragmentOrDefault().SizeInBits; 2238 }); 2239 // Check for duplicates. 2240 assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end()); 2241 } 2242 2243 // Build the map. 2244 AssignmentTrackingLowering::OverlapMap Map; 2245 for (auto &Pair : FragmentMap) { 2246 auto &Frags = Pair.second; 2247 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { 2248 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); 2249 // Find the frags that this is contained within. 2250 // 2251 // Because Frags is sorted by size and none have the same offset and 2252 // size, we know that this frag can only be contained by subsequent 2253 // elements. 2254 SmallVector<DebugVariable, 8>::iterator OtherIt = It; 2255 ++OtherIt; 2256 VariableID ThisVar = FnVarLocs->insertVariable(*It); 2257 for (; OtherIt != IEnd; ++OtherIt) { 2258 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); 2259 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt); 2260 if (fullyContains(OtherFrag, Frag)) 2261 Map[OtherVar].push_back(ThisVar); 2262 } 2263 } 2264 } 2265 2266 // VariableIDs are 1-based so the variable-tracking bitvector needs 2267 // NumVariables plus 1 bits. 2268 TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1; 2269 2270 // Finally, insert the declares afterwards, so the first IDs are all 2271 // partially stack homed vars. 2272 for (auto *DDI : InstDeclares) 2273 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(), 2274 DDI->getDebugLoc(), DDI->getWrappedLocation()); 2275 for (auto *DVR : DPDeclares) 2276 FnVarLocs->addSingleLocVar(DebugVariable(DVR), DVR->getExpression(), 2277 DVR->getDebugLoc(), 2278 RawLocationWrapper(DVR->getRawLocation())); 2279 return Map; 2280 } 2281 2282 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { 2283 if (Fn.size() > MaxNumBlocks) { 2284 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() 2285 << ": too many blocks (" << Fn.size() << ")\n"); 2286 at::deleteAll(&Fn); 2287 return false; 2288 } 2289 2290 FnVarLocs = FnVarLocsBuilder; 2291 2292 // The general structure here is inspired by VarLocBasedImpl.cpp 2293 // (LiveDebugValues). 2294 2295 // Build the variable fragment overlap map. 2296 // Note that this pass doesn't handle partial overlaps correctly (FWIW 2297 // neither does LiveDebugVariables) because that is difficult to do and 2298 // appears to be rare occurance. 2299 VarContains = buildOverlapMapAndRecordDeclares( 2300 Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars, 2301 TrackedVariablesVectorSize); 2302 2303 // Prepare for traversal. 2304 ReversePostOrderTraversal<Function *> RPOT(&Fn); 2305 std::priority_queue<unsigned int, std::vector<unsigned int>, 2306 std::greater<unsigned int>> 2307 Worklist; 2308 std::priority_queue<unsigned int, std::vector<unsigned int>, 2309 std::greater<unsigned int>> 2310 Pending; 2311 DenseMap<unsigned int, BasicBlock *> OrderToBB; 2312 DenseMap<BasicBlock *, unsigned int> BBToOrder; 2313 { // Init OrderToBB and BBToOrder. 2314 unsigned int RPONumber = 0; 2315 for (BasicBlock *BB : RPOT) { 2316 OrderToBB[RPONumber] = BB; 2317 BBToOrder[BB] = RPONumber; 2318 Worklist.push(RPONumber); 2319 ++RPONumber; 2320 } 2321 LiveIn.init(RPONumber); 2322 LiveOut.init(RPONumber); 2323 } 2324 2325 // Perform the traversal. 2326 // 2327 // This is a standard "union of predecessor outs" dataflow problem. To solve 2328 // it, we perform join() and process() using the two worklist method until 2329 // the LiveIn data for each block becomes unchanging. The "proof" that this 2330 // terminates can be put together by looking at the comments around LocKind, 2331 // Assignment, and the various join methods, which show that all the elements 2332 // involved are made up of join-semilattices; LiveIn(n) can only 2333 // monotonically increase in value throughout the dataflow. 2334 // 2335 SmallPtrSet<BasicBlock *, 16> Visited; 2336 while (!Worklist.empty()) { 2337 // We track what is on the pending worklist to avoid inserting the same 2338 // thing twice. 2339 SmallPtrSet<BasicBlock *, 16> OnPending; 2340 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2341 while (!Worklist.empty()) { 2342 BasicBlock *BB = OrderToBB[Worklist.top()]; 2343 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 2344 Worklist.pop(); 2345 bool InChanged = join(*BB, Visited); 2346 // Always consider LiveIn changed on the first visit. 2347 InChanged |= Visited.insert(BB).second; 2348 if (InChanged) { 2349 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); 2350 // Mutate a copy of LiveIn while processing BB. After calling process 2351 // LiveSet is the LiveOut set for BB. 2352 BlockInfo LiveSet = LiveIn[BB]; 2353 2354 // Process the instructions in the block. 2355 process(*BB, &LiveSet); 2356 2357 // Relatively expensive check: has anything changed in LiveOut for BB? 2358 if (LiveOut[BB] != LiveSet) { 2359 LLVM_DEBUG(dbgs() << BB->getName() 2360 << " has new OutLocs, add succs to worklist: [ "); 2361 LiveOut[BB] = std::move(LiveSet); 2362 for (BasicBlock *Succ : successors(BB)) { 2363 if (OnPending.insert(Succ).second) { 2364 LLVM_DEBUG(dbgs() << Succ->getName() << " "); 2365 Pending.push(BBToOrder[Succ]); 2366 } 2367 } 2368 LLVM_DEBUG(dbgs() << "]\n"); 2369 } 2370 } 2371 } 2372 Worklist.swap(Pending); 2373 // At this point, pending must be empty, since it was just the empty 2374 // worklist 2375 assert(Pending.empty() && "Pending should be empty"); 2376 } 2377 2378 // That's the hard part over. Now we just have some admin to do. 2379 2380 // Record whether we inserted any intrinsics. 2381 bool InsertedAnyIntrinsics = false; 2382 2383 // Identify and add defs for single location variables. 2384 // 2385 // Go through all of the defs that we plan to add. If the aggregate variable 2386 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single 2387 // location def and omit the rest. Add an entry to AlwaysStackHomed so that 2388 // we can identify those uneeded defs later. 2389 DenseSet<DebugAggregate> AlwaysStackHomed; 2390 for (const auto &Pair : InsertBeforeMap) { 2391 auto &Vec = Pair.second; 2392 for (VarLocInfo VarLoc : Vec) { 2393 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2394 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2395 2396 // Skip this Var if it's not always stack homed. 2397 if (NotAlwaysStackHomed.contains(Aggr)) 2398 continue; 2399 2400 // Skip complex cases such as when different fragments of a variable have 2401 // been split into different allocas. Skipping in this case means falling 2402 // back to using a list of defs (which could reduce coverage, but is no 2403 // less correct). 2404 bool Simple = 2405 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); 2406 if (!Simple) { 2407 NotAlwaysStackHomed.insert(Aggr); 2408 continue; 2409 } 2410 2411 // All source assignments to this variable remain and all stores to any 2412 // part of the variable store to the same address (with varying 2413 // offsets). We can just emit a single location for the whole variable. 2414 // 2415 // Unless we've already done so, create the single location def now. 2416 if (AlwaysStackHomed.insert(Aggr).second) { 2417 assert(!VarLoc.Values.hasArgList()); 2418 // TODO: When more complex cases are handled VarLoc.Expr should be 2419 // built appropriately rather than always using an empty DIExpression. 2420 // The assert below is a reminder. 2421 assert(Simple); 2422 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt); 2423 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2424 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values); 2425 InsertedAnyIntrinsics = true; 2426 } 2427 } 2428 } 2429 2430 // Insert the other DEFs. 2431 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { 2432 SmallVector<VarLocInfo> NewDefs; 2433 for (const VarLocInfo &VarLoc : Vec) { 2434 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2435 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2436 // If this variable is always stack homed then we have already inserted a 2437 // dbg.declare and deleted this dbg.value. 2438 if (AlwaysStackHomed.contains(Aggr)) 2439 continue; 2440 NewDefs.push_back(VarLoc); 2441 InsertedAnyIntrinsics = true; 2442 } 2443 2444 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs)); 2445 } 2446 2447 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); 2448 2449 return InsertedAnyIntrinsics; 2450 } 2451 2452 bool AssignmentTrackingLowering::emitPromotedVarLocs( 2453 FunctionVarLocsBuilder *FnVarLocs) { 2454 bool InsertedAnyIntrinsics = false; 2455 // Go through every block, translating debug intrinsics for fully promoted 2456 // variables into FnVarLocs location defs. No analysis required for these. 2457 auto TranslateDbgRecord = [&](auto *Record) { 2458 // Skip variables that haven't been promoted - we've dealt with those 2459 // already. 2460 if (VarsWithStackSlot->contains(getAggregate(Record))) 2461 return; 2462 auto InsertBefore = getNextNode(Record); 2463 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator"); 2464 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record), 2465 Record->getExpression(), Record->getDebugLoc(), 2466 RawLocationWrapper(Record->getRawLocation())); 2467 InsertedAnyIntrinsics = true; 2468 }; 2469 for (auto &BB : Fn) { 2470 for (auto &I : BB) { 2471 // Skip instructions other than dbg.values and dbg.assigns. 2472 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 2473 if (DVR.isDbgValue() || DVR.isDbgAssign()) 2474 TranslateDbgRecord(&DVR); 2475 auto *DVI = dyn_cast<DbgValueInst>(&I); 2476 if (DVI) 2477 TranslateDbgRecord(DVI); 2478 } 2479 } 2480 return InsertedAnyIntrinsics; 2481 } 2482 2483 /// Remove redundant definitions within sequences of consecutive location defs. 2484 /// This is done using a backward scan to keep the last def describing a 2485 /// specific variable/fragment. 2486 /// 2487 /// This implements removeRedundantDbgInstrsUsingBackwardScan from 2488 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2489 /// FunctionVarLocsBuilder instead of with intrinsics. 2490 static bool 2491 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, 2492 FunctionVarLocsBuilder &FnVarLocs) { 2493 bool Changed = false; 2494 SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes; 2495 // Scan over the entire block, not just over the instructions mapped by 2496 // FnVarLocs, because wedges in FnVarLocs may only be separated by debug 2497 // instructions. 2498 for (const Instruction &I : reverse(*BB)) { 2499 if (!isa<DbgVariableIntrinsic>(I)) { 2500 // Sequence of consecutive defs ended. Clear map for the next one. 2501 VariableDefinedBytes.clear(); 2502 } 2503 2504 auto HandleLocsForWedge = [&](auto *WedgePosition) { 2505 // Get the location defs that start just before this instruction. 2506 const auto *Locs = FnVarLocs.getWedge(WedgePosition); 2507 if (!Locs) 2508 return; 2509 2510 NumWedgesScanned++; 2511 bool ChangedThisWedge = false; 2512 // The new pruned set of defs, reversed because we're scanning backwards. 2513 SmallVector<VarLocInfo> NewDefsReversed; 2514 2515 // Iterate over the existing defs in reverse. 2516 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { 2517 NumDefsScanned++; 2518 DebugAggregate Aggr = 2519 getAggregate(FnVarLocs.getVariable(RIt->VariableID)); 2520 uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0); 2521 uint64_t SizeInBytes = divideCeil(SizeInBits, 8); 2522 2523 // Cutoff for large variables to prevent expensive bitvector operations. 2524 const uint64_t MaxSizeBytes = 2048; 2525 2526 if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) { 2527 // If the size is unknown (0) then keep this location def to be safe. 2528 // Do the same for defs of large variables, which would be expensive 2529 // to represent with a BitVector. 2530 NewDefsReversed.push_back(*RIt); 2531 continue; 2532 } 2533 2534 // Only keep this location definition if it is not fully eclipsed by 2535 // other definitions in this wedge that come after it 2536 2537 // Inert the bytes the location definition defines. 2538 auto InsertResult = 2539 VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes)); 2540 bool FirstDefinition = InsertResult.second; 2541 BitVector &DefinedBytes = InsertResult.first->second; 2542 2543 DIExpression::FragmentInfo Fragment = 2544 RIt->Expr->getFragmentInfo().value_or( 2545 DIExpression::FragmentInfo(SizeInBits, 0)); 2546 bool InvalidFragment = Fragment.endInBits() > SizeInBits; 2547 uint64_t StartInBytes = Fragment.startInBits() / 8; 2548 uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8); 2549 2550 // If this defines any previously undefined bytes, keep it. 2551 if (FirstDefinition || InvalidFragment || 2552 DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) { 2553 if (!InvalidFragment) 2554 DefinedBytes.set(StartInBytes, EndInBytes); 2555 NewDefsReversed.push_back(*RIt); 2556 continue; 2557 } 2558 2559 // Redundant def found: throw it away. Since the wedge of defs is being 2560 // rebuilt, doing nothing is the same as deleting an entry. 2561 ChangedThisWedge = true; 2562 NumDefsRemoved++; 2563 } 2564 2565 // Un-reverse the defs and replace the wedge with the pruned version. 2566 if (ChangedThisWedge) { 2567 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end()); 2568 FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed)); 2569 NumWedgesChanged++; 2570 Changed = true; 2571 } 2572 }; 2573 HandleLocsForWedge(&I); 2574 for (DbgVariableRecord &DVR : reverse(filterDbgVars(I.getDbgRecordRange()))) 2575 HandleLocsForWedge(&DVR); 2576 } 2577 2578 return Changed; 2579 } 2580 2581 /// Remove redundant location defs using a forward scan. This can remove a 2582 /// location definition that is redundant due to indicating that a variable has 2583 /// the same value as is already being indicated by an earlier def. 2584 /// 2585 /// This implements removeRedundantDbgInstrsUsingForwardScan from 2586 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2587 /// FunctionVarLocsBuilder instead of with intrinsics 2588 static bool 2589 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, 2590 FunctionVarLocsBuilder &FnVarLocs) { 2591 bool Changed = false; 2592 DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>> 2593 VariableMap; 2594 2595 // Scan over the entire block, not just over the instructions mapped by 2596 // FnVarLocs, because wedges in FnVarLocs may only be separated by debug 2597 // instructions. 2598 for (const Instruction &I : *BB) { 2599 // Get the defs that come just before this instruction. 2600 auto HandleLocsForWedge = [&](auto *WedgePosition) { 2601 const auto *Locs = FnVarLocs.getWedge(WedgePosition); 2602 if (!Locs) 2603 return; 2604 2605 NumWedgesScanned++; 2606 bool ChangedThisWedge = false; 2607 // The new pruned set of defs. 2608 SmallVector<VarLocInfo> NewDefs; 2609 2610 // Iterate over the existing defs. 2611 for (const VarLocInfo &Loc : *Locs) { 2612 NumDefsScanned++; 2613 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2614 std::nullopt, Loc.DL.getInlinedAt()); 2615 auto VMI = VariableMap.find(Key); 2616 2617 // Update the map if we found a new value/expression describing the 2618 // variable, or if the variable wasn't mapped already. 2619 if (VMI == VariableMap.end() || VMI->second.first != Loc.Values || 2620 VMI->second.second != Loc.Expr) { 2621 VariableMap[Key] = {Loc.Values, Loc.Expr}; 2622 NewDefs.push_back(Loc); 2623 continue; 2624 } 2625 2626 // Did not insert this Loc, which is the same as removing it. 2627 ChangedThisWedge = true; 2628 NumDefsRemoved++; 2629 } 2630 2631 // Replace the existing wedge with the pruned version. 2632 if (ChangedThisWedge) { 2633 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs)); 2634 NumWedgesChanged++; 2635 Changed = true; 2636 } 2637 }; 2638 2639 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 2640 HandleLocsForWedge(&DVR); 2641 HandleLocsForWedge(&I); 2642 } 2643 2644 return Changed; 2645 } 2646 2647 static bool 2648 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, 2649 FunctionVarLocsBuilder &FnVarLocs) { 2650 assert(BB->isEntryBlock()); 2651 // Do extra work to ensure that we remove semantically unimportant undefs. 2652 // 2653 // This is to work around the fact that SelectionDAG will hoist dbg.values 2654 // using argument values to the top of the entry block. That can move arg 2655 // dbg.values before undef and constant dbg.values which they previously 2656 // followed. The easiest thing to do is to just try to feed SelectionDAG 2657 // input it's happy with. 2658 // 2659 // Map of {Variable x: Fragments y} where the fragments y of variable x have 2660 // have at least one non-undef location defined already. Don't use directly, 2661 // instead call DefineBits and HasDefinedBits. 2662 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>> 2663 VarsWithDef; 2664 // Specify that V (a fragment of A) has a non-undef location. 2665 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2666 VarsWithDef[A].insert(V.getFragmentOrDefault()); 2667 }; 2668 // Return true if a non-undef location has been defined for V (a fragment of 2669 // A). Doesn't imply that the location is currently non-undef, just that a 2670 // non-undef location has been seen previously. 2671 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2672 auto FragsIt = VarsWithDef.find(A); 2673 if (FragsIt == VarsWithDef.end()) 2674 return false; 2675 return llvm::any_of(FragsIt->second, [V](auto Frag) { 2676 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); 2677 }); 2678 }; 2679 2680 bool Changed = false; 2681 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2682 2683 // Scan over the entire block, not just over the instructions mapped by 2684 // FnVarLocs, because wedges in FnVarLocs may only be separated by debug 2685 // instructions. 2686 for (const Instruction &I : *BB) { 2687 // Get the defs that come just before this instruction. 2688 auto HandleLocsForWedge = [&](auto *WedgePosition) { 2689 const auto *Locs = FnVarLocs.getWedge(WedgePosition); 2690 if (!Locs) 2691 return; 2692 2693 NumWedgesScanned++; 2694 bool ChangedThisWedge = false; 2695 // The new pruned set of defs. 2696 SmallVector<VarLocInfo> NewDefs; 2697 2698 // Iterate over the existing defs. 2699 for (const VarLocInfo &Loc : *Locs) { 2700 NumDefsScanned++; 2701 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2702 Loc.DL.getInlinedAt()}; 2703 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID); 2704 2705 // Remove undef entries that are encountered before any non-undef 2706 // intrinsics from the entry block. 2707 if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) { 2708 // Did not insert this Loc, which is the same as removing it. 2709 NumDefsRemoved++; 2710 ChangedThisWedge = true; 2711 continue; 2712 } 2713 2714 DefineBits(Aggr, Var); 2715 NewDefs.push_back(Loc); 2716 } 2717 2718 // Replace the existing wedge with the pruned version. 2719 if (ChangedThisWedge) { 2720 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs)); 2721 NumWedgesChanged++; 2722 Changed = true; 2723 } 2724 }; 2725 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 2726 HandleLocsForWedge(&DVR); 2727 HandleLocsForWedge(&I); 2728 } 2729 2730 return Changed; 2731 } 2732 2733 static bool removeRedundantDbgLocs(const BasicBlock *BB, 2734 FunctionVarLocsBuilder &FnVarLocs) { 2735 bool MadeChanges = false; 2736 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); 2737 if (BB->isEntryBlock()) 2738 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); 2739 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); 2740 2741 if (MadeChanges) 2742 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() 2743 << "\n"); 2744 return MadeChanges; 2745 } 2746 2747 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) { 2748 DenseSet<DebugAggregate> Result; 2749 for (auto &BB : Fn) { 2750 for (auto &I : BB) { 2751 // Any variable linked to an instruction is considered 2752 // interesting. Ideally we only need to check Allocas, however, a 2753 // DIAssignID might get dropped from an alloca but not stores. In that 2754 // case, we need to consider the variable interesting for NFC behaviour 2755 // with this change. TODO: Consider only looking at allocas. 2756 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) { 2757 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()}); 2758 } 2759 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(&I)) { 2760 Result.insert({DVR->getVariable(), DVR->getDebugLoc().getInlinedAt()}); 2761 } 2762 } 2763 } 2764 return Result; 2765 } 2766 2767 static void analyzeFunction(Function &Fn, const DataLayout &Layout, 2768 FunctionVarLocsBuilder *FnVarLocs) { 2769 // The analysis will generate location definitions for all variables, but we 2770 // only need to perform a dataflow on the set of variables which have a stack 2771 // slot. Find those now. 2772 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn); 2773 2774 bool Changed = false; 2775 2776 // Use a scope block to clean up AssignmentTrackingLowering before running 2777 // MemLocFragmentFill to reduce peak memory consumption. 2778 { 2779 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); 2780 Changed = Pass.run(FnVarLocs); 2781 } 2782 2783 if (Changed) { 2784 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot, 2785 shouldCoalesceFragments(Fn)); 2786 Pass.run(FnVarLocs); 2787 2788 // Remove redundant entries. As well as reducing memory consumption and 2789 // avoiding waiting cycles later by burning some now, this has another 2790 // important job. That is to work around some SelectionDAG quirks. See 2791 // removeRedundantDbgLocsUsingForwardScan comments for more info on that. 2792 for (auto &BB : Fn) 2793 removeRedundantDbgLocs(&BB, *FnVarLocs); 2794 } 2795 } 2796 2797 FunctionVarLocs 2798 DebugAssignmentTrackingAnalysis::run(Function &F, 2799 FunctionAnalysisManager &FAM) { 2800 if (!isAssignmentTrackingEnabled(*F.getParent())) 2801 return FunctionVarLocs(); 2802 2803 auto &DL = F.getDataLayout(); 2804 2805 FunctionVarLocsBuilder Builder; 2806 analyzeFunction(F, DL, &Builder); 2807 2808 // Save these results. 2809 FunctionVarLocs Results; 2810 Results.init(Builder); 2811 return Results; 2812 } 2813 2814 AnalysisKey DebugAssignmentTrackingAnalysis::Key; 2815 2816 PreservedAnalyses 2817 DebugAssignmentTrackingPrinterPass::run(Function &F, 2818 FunctionAnalysisManager &FAM) { 2819 FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F); 2820 return PreservedAnalyses::all(); 2821 } 2822 2823 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { 2824 if (!isAssignmentTrackingEnabled(*F.getParent())) 2825 return false; 2826 2827 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() 2828 << "\n"); 2829 auto DL = std::make_unique<DataLayout>(F.getParent()); 2830 2831 // Clear previous results. 2832 Results->clear(); 2833 2834 FunctionVarLocsBuilder Builder; 2835 analyzeFunction(F, *DL.get(), &Builder); 2836 2837 // Save these results. 2838 Results->init(Builder); 2839 2840 if (PrintResults && isFunctionInPrintList(F.getName())) 2841 Results->print(errs(), F); 2842 2843 // Return false because this pass does not modify the function. 2844 return false; 2845 } 2846 2847 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() 2848 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {} 2849 2850 char AssignmentTrackingAnalysis::ID = 0; 2851 2852 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, 2853 "Assignment Tracking Analysis", false, true) 2854