1 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 2 #include "llvm/ADT/DenseMapInfo.h" 3 #include "llvm/ADT/IntervalMap.h" 4 #include "llvm/ADT/PostOrderIterator.h" 5 #include "llvm/ADT/STLExtras.h" 6 #include "llvm/ADT/SmallSet.h" 7 #include "llvm/ADT/Statistic.h" 8 #include "llvm/ADT/UniqueVector.h" 9 #include "llvm/Analysis/Interval.h" 10 #include "llvm/BinaryFormat/Dwarf.h" 11 #include "llvm/IR/BasicBlock.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/DebugInfo.h" 14 #include "llvm/IR/Function.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PassManager.h" 18 #include "llvm/IR/PrintPasses.h" 19 #include "llvm/InitializePasses.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include <assert.h> 25 #include <cstdint> 26 #include <optional> 27 #include <sstream> 28 #include <unordered_map> 29 30 using namespace llvm; 31 #define DEBUG_TYPE "debug-ata" 32 33 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal"); 34 STATISTIC(NumDefsRemoved, "Number of dbg locs removed"); 35 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned"); 36 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed"); 37 38 static cl::opt<unsigned> 39 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), 40 cl::desc("Maximum num basic blocks before debug info dropped"), 41 cl::Hidden); 42 /// Option for debugging the pass, determines if the memory location fragment 43 /// filling happens after generating the variable locations. 44 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), 45 cl::Hidden); 46 /// Print the results of the analysis. Respects -filter-print-funcs. 47 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false), 48 cl::Hidden); 49 50 // Implicit conversions are disabled for enum class types, so unfortunately we 51 // need to create a DenseMapInfo wrapper around the specified underlying type. 52 template <> struct llvm::DenseMapInfo<VariableID> { 53 using Wrapped = DenseMapInfo<unsigned>; 54 static inline VariableID getEmptyKey() { 55 return static_cast<VariableID>(Wrapped::getEmptyKey()); 56 } 57 static inline VariableID getTombstoneKey() { 58 return static_cast<VariableID>(Wrapped::getTombstoneKey()); 59 } 60 static unsigned getHashValue(const VariableID &Val) { 61 return Wrapped::getHashValue(static_cast<unsigned>(Val)); 62 } 63 static bool isEqual(const VariableID &LHS, const VariableID &RHS) { 64 return LHS == RHS; 65 } 66 }; 67 68 /// Helper class to build FunctionVarLocs, since that class isn't easy to 69 /// modify. TODO: There's not a great deal of value in the split, it could be 70 /// worth merging the two classes. 71 class FunctionVarLocsBuilder { 72 friend FunctionVarLocs; 73 UniqueVector<DebugVariable> Variables; 74 // Use an unordered_map so we don't invalidate iterators after 75 // insert/modifications. 76 std::unordered_map<const Instruction *, SmallVector<VarLocInfo>> 77 VarLocsBeforeInst; 78 79 SmallVector<VarLocInfo> SingleLocVars; 80 81 public: 82 /// Find or insert \p V and return the ID. 83 VariableID insertVariable(DebugVariable V) { 84 return static_cast<VariableID>(Variables.insert(V)); 85 } 86 87 /// Get a variable from its \p ID. 88 const DebugVariable &getVariable(VariableID ID) const { 89 return Variables[static_cast<unsigned>(ID)]; 90 } 91 92 /// Return ptr to wedge of defs or nullptr if no defs come just before /p 93 /// Before. 94 const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const { 95 auto R = VarLocsBeforeInst.find(Before); 96 if (R == VarLocsBeforeInst.end()) 97 return nullptr; 98 return &R->second; 99 } 100 101 /// Replace the defs that come just before /p Before with /p Wedge. 102 void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) { 103 VarLocsBeforeInst[Before] = std::move(Wedge); 104 } 105 106 /// Add a def for a variable that is valid for its lifetime. 107 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, 108 Value *V) { 109 VarLocInfo VarLoc; 110 VarLoc.VariableID = insertVariable(Var); 111 VarLoc.Expr = Expr; 112 VarLoc.DL = DL; 113 VarLoc.V = V; 114 SingleLocVars.emplace_back(VarLoc); 115 } 116 117 /// Add a def to the wedge of defs just before /p Before. 118 void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr, 119 DebugLoc DL, Value *V) { 120 VarLocInfo VarLoc; 121 VarLoc.VariableID = insertVariable(Var); 122 VarLoc.Expr = Expr; 123 VarLoc.DL = DL; 124 VarLoc.V = V; 125 VarLocsBeforeInst[Before].emplace_back(VarLoc); 126 } 127 }; 128 129 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { 130 // Print the variable table first. TODO: Sorting by variable could make the 131 // output more stable? 132 unsigned Counter = -1; 133 OS << "=== Variables ===\n"; 134 for (const DebugVariable &V : Variables) { 135 ++Counter; 136 // Skip first entry because it is a dummy entry. 137 if (Counter == 0) { 138 continue; 139 } 140 OS << "[" << Counter << "] " << V.getVariable()->getName(); 141 if (auto F = V.getFragment()) 142 OS << " bits [" << F->OffsetInBits << ", " 143 << F->OffsetInBits + F->SizeInBits << ")"; 144 if (const auto *IA = V.getInlinedAt()) 145 OS << " inlined-at " << *IA; 146 OS << "\n"; 147 } 148 149 auto PrintLoc = [&OS](const VarLocInfo &Loc) { 150 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" 151 << " Expr=" << *Loc.Expr << " V=" << *Loc.V << "\n"; 152 }; 153 154 // Print the single location variables. 155 OS << "=== Single location vars ===\n"; 156 for (auto It = single_locs_begin(), End = single_locs_end(); It != End; 157 ++It) { 158 PrintLoc(*It); 159 } 160 161 // Print the non-single-location defs in line with IR. 162 OS << "=== In-line variable defs ==="; 163 for (const BasicBlock &BB : Fn) { 164 OS << "\n" << BB.getName() << ":\n"; 165 for (const Instruction &I : BB) { 166 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) { 167 PrintLoc(*It); 168 } 169 OS << I << "\n"; 170 } 171 } 172 } 173 174 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { 175 // Add the single-location variables first. 176 for (const auto &VarLoc : Builder.SingleLocVars) 177 VarLocRecords.emplace_back(VarLoc); 178 // Mark the end of the section. 179 SingleVarLocEnd = VarLocRecords.size(); 180 181 // Insert a contiguous block of VarLocInfos for each instruction, mapping it 182 // to the start and end position in the vector with VarLocsBeforeInst. 183 for (auto &P : Builder.VarLocsBeforeInst) { 184 unsigned BlockStart = VarLocRecords.size(); 185 for (const VarLocInfo &VarLoc : P.second) 186 VarLocRecords.emplace_back(VarLoc); 187 unsigned BlockEnd = VarLocRecords.size(); 188 // Record the start and end indices. 189 if (BlockEnd != BlockStart) 190 VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd}; 191 } 192 193 // Copy the Variables vector from the builder's UniqueVector. 194 assert(Variables.empty() && "Expect clear before init"); 195 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values 196 // are one-based) so reserve an extra and insert a dummy. 197 Variables.reserve(Builder.Variables.size() + 1); 198 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr)); 199 Variables.append(Builder.Variables.begin(), Builder.Variables.end()); 200 } 201 202 void FunctionVarLocs::clear() { 203 Variables.clear(); 204 VarLocRecords.clear(); 205 VarLocsBeforeInst.clear(); 206 SingleVarLocEnd = 0; 207 } 208 209 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p 210 /// Start as far as possible. Prepend \Expression with the offset and append it 211 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to 212 /// value and modified expression. 213 static std::pair<Value *, DIExpression *> 214 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, 215 DIExpression *Expression) { 216 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false); 217 Value *End = 218 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes); 219 SmallVector<uint64_t, 3> Ops; 220 if (OffsetInBytes.getBoolValue()) { 221 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; 222 Expression = DIExpression::prependOpcodes( 223 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); 224 } 225 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref}); 226 return {End, Expression}; 227 } 228 229 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression 230 /// doesn't explicitly describe a memory location with DW_OP_deref or if the 231 /// expression is too complex to interpret. 232 static std::optional<int64_t> 233 getDerefOffsetInBytes(const DIExpression *DIExpr) { 234 int64_t Offset = 0; 235 const unsigned NumElements = DIExpr->getNumElements(); 236 const auto Elements = DIExpr->getElements(); 237 unsigned NextElement = 0; 238 // Extract the offset. 239 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { 240 Offset = Elements[1]; 241 NextElement = 2; 242 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { 243 NextElement = 3; 244 if (Elements[2] == dwarf::DW_OP_plus) 245 Offset = Elements[1]; 246 else if (Elements[2] == dwarf::DW_OP_minus) 247 Offset = -Elements[1]; 248 else 249 return std::nullopt; 250 } 251 252 // If that's all there is it means there's no deref. 253 if (NextElement >= NumElements) 254 return std::nullopt; 255 256 // Check the next element is DW_OP_deref - otherwise this is too complex or 257 // isn't a deref expression. 258 if (Elements[NextElement] != dwarf::DW_OP_deref) 259 return std::nullopt; 260 261 // Check the final operation is either the DW_OP_deref or is a fragment. 262 if (NumElements == NextElement + 1) 263 return Offset; // Ends with deref. 264 else if (NumElements == NextElement + 3 && 265 Elements[NextElement] == dwarf::DW_OP_LLVM_fragment) 266 return Offset; // Ends with deref + fragment. 267 268 // Don't bother trying to interpret anything more complex. 269 return std::nullopt; 270 } 271 272 /// A whole (unfragmented) source variable. 273 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>; 274 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) { 275 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt()); 276 } 277 static DebugAggregate getAggregate(const DebugVariable &Var) { 278 return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); 279 } 280 281 namespace { 282 /// In dwarf emission, the following sequence 283 /// 1. dbg.value ... Fragment(0, 64) 284 /// 2. dbg.value ... Fragment(0, 32) 285 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in 286 /// the intersection of the fragments to having "no location"). This makes 287 /// sense for implicit location values because splitting the computed values 288 /// could be troublesome, and is probably quite uncommon. When we convert 289 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing 290 /// a location (memory) rather than a value means we don't need to worry about 291 /// splitting any values, so we try to recover the rest of the fragment 292 /// location here. 293 /// This class performs a(nother) dataflow analysis over the function, adding 294 /// variable locations so that any bits of a variable with a memory location 295 /// have that location explicitly reinstated at each subsequent variable 296 /// location definition that that doesn't overwrite those bits. i.e. after a 297 /// variable location def, insert new defs for the memory location with 298 /// fragments for the difference of "all bits currently in memory" and "the 299 /// fragment of the second def". 300 class MemLocFragmentFill { 301 Function &Fn; 302 FunctionVarLocsBuilder *FnVarLocs; 303 const DenseSet<DebugAggregate> *VarsWithStackSlot; 304 305 // 0 = no memory location. 306 using BaseAddress = unsigned; 307 using OffsetInBitsTy = unsigned; 308 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>; 309 using FragsInMemMap = IntervalMap< 310 OffsetInBitsTy, BaseAddress, 311 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize, 312 FragTraits>; 313 FragsInMemMap::Allocator IntervalMapAlloc; 314 using VarFragMap = DenseMap<unsigned, FragsInMemMap>; 315 316 /// IDs for memory location base addresses in maps. Use 0 to indicate that 317 /// there's no memory location. 318 UniqueVector<Value *> Bases; 319 UniqueVector<DebugAggregate> Aggregates; 320 DenseMap<const BasicBlock *, VarFragMap> LiveIn; 321 DenseMap<const BasicBlock *, VarFragMap> LiveOut; 322 323 struct FragMemLoc { 324 unsigned Var; 325 unsigned Base; 326 unsigned OffsetInBits; 327 unsigned SizeInBits; 328 DebugLoc DL; 329 }; 330 using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>; 331 332 /// BBInsertBeforeMap holds a description for the set of location defs to be 333 /// inserted after the analysis is complete. It is updated during the dataflow 334 /// and the entry for a block is CLEARED each time it is (re-)visited. After 335 /// the dataflow is complete, each block entry will contain the set of defs 336 /// calculated during the final (fixed-point) iteration. 337 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap; 338 339 static bool intervalMapsAreEqual(const FragsInMemMap &A, 340 const FragsInMemMap &B) { 341 auto AIt = A.begin(), AEnd = A.end(); 342 auto BIt = B.begin(), BEnd = B.end(); 343 for (; AIt != AEnd; ++AIt, ++BIt) { 344 if (BIt == BEnd) 345 return false; // B has fewer elements than A. 346 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) 347 return false; // Interval is different. 348 if (*AIt != *BIt) 349 return false; // Value at interval is different. 350 } 351 // AIt == AEnd. Check BIt is also now at end. 352 return BIt == BEnd; 353 } 354 355 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { 356 if (A.size() != B.size()) 357 return false; 358 for (const auto &APair : A) { 359 auto BIt = B.find(APair.first); 360 if (BIt == B.end()) 361 return false; 362 if (!intervalMapsAreEqual(APair.second, BIt->second)) 363 return false; 364 } 365 return true; 366 } 367 368 /// Return a string for the value that \p BaseID represents. 369 std::string toString(unsigned BaseID) { 370 if (BaseID) 371 return Bases[BaseID]->getName().str(); 372 else 373 return "None"; 374 } 375 376 /// Format string describing an FragsInMemMap (IntervalMap) interval. 377 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { 378 std::string String; 379 std::stringstream S(String); 380 if (It.valid()) { 381 S << "[" << It.start() << ", " << It.stop() 382 << "): " << toString(It.value()); 383 } else { 384 S << "invalid iterator (end)"; 385 } 386 if (Newline) 387 S << "\n"; 388 return S.str(); 389 }; 390 391 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { 392 FragsInMemMap Result(IntervalMapAlloc); 393 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { 394 LLVM_DEBUG(dbgs() << "a " << toString(AIt)); 395 // This is basically copied from process() and inverted (process is 396 // performing something like a union whereas this is more of an 397 // intersect). 398 399 // There's no work to do if interval `a` overlaps no fragments in map `B`. 400 if (!B.overlaps(AIt.start(), AIt.stop())) 401 continue; 402 403 // Does StartBit intersect an existing fragment? 404 auto FirstOverlap = B.find(AIt.start()); 405 assert(FirstOverlap != B.end()); 406 bool IntersectStart = FirstOverlap.start() < AIt.start(); 407 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) 408 << ", IntersectStart: " << IntersectStart << "\n"); 409 410 // Does EndBit intersect an existing fragment? 411 auto LastOverlap = B.find(AIt.stop()); 412 bool IntersectEnd = 413 LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); 414 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) 415 << ", IntersectEnd: " << IntersectEnd << "\n"); 416 417 // Check if both ends of `a` intersect the same interval `b`. 418 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 419 // Insert `a` (`a` is contained in `b`) if the values match. 420 // [ a ] 421 // [ - b - ] 422 // - 423 // [ r ] 424 LLVM_DEBUG(dbgs() << "- a is contained within " 425 << toString(FirstOverlap)); 426 if (*AIt && *AIt == *FirstOverlap) 427 Result.insert(AIt.start(), AIt.stop(), *AIt); 428 } else { 429 // There's an overlap but `a` is not fully contained within 430 // `b`. Shorten any end-point intersections. 431 // [ - a - ] 432 // [ - b - ] 433 // - 434 // [ r ] 435 auto Next = FirstOverlap; 436 if (IntersectStart) { 437 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 438 << toString(FirstOverlap)); 439 if (*AIt && *AIt == *FirstOverlap) 440 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt); 441 ++Next; 442 } 443 // [ - a - ] 444 // [ - b - ] 445 // - 446 // [ r ] 447 if (IntersectEnd) { 448 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 449 << toString(LastOverlap)); 450 if (*AIt && *AIt == *LastOverlap) 451 Result.insert(LastOverlap.start(), AIt.stop(), *AIt); 452 } 453 454 // Insert all intervals in map `B` that are contained within interval 455 // `a` where the values match. 456 // [ - - a - - ] 457 // [ b1 ] [ b2 ] 458 // - 459 // [ r1 ] [ r2 ] 460 while (Next != B.end() && Next.start() < AIt.stop() && 461 Next.stop() <= AIt.stop()) { 462 LLVM_DEBUG(dbgs() 463 << "- insert intersection of a and " << toString(Next)); 464 if (*AIt && *AIt == *Next) 465 Result.insert(Next.start(), Next.stop(), *Next); 466 ++Next; 467 } 468 } 469 } 470 return Result; 471 } 472 473 /// Meet \p A and \p B, storing the result in \p A. 474 void meetVars(VarFragMap &A, const VarFragMap &B) { 475 // Meet A and B. 476 // 477 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) 478 for (auto It = A.begin(), End = A.end(); It != End; ++It) { 479 unsigned AVar = It->first; 480 FragsInMemMap &AFrags = It->second; 481 auto BIt = B.find(AVar); 482 if (BIt == B.end()) { 483 A.erase(It); 484 continue; // Var has no bits defined in B. 485 } 486 LLVM_DEBUG(dbgs() << "meet fragment maps for " 487 << Aggregates[AVar].first->getName() << "\n"); 488 AFrags = meetFragments(AFrags, BIt->second); 489 } 490 } 491 492 bool meet(const BasicBlock &BB, 493 const SmallPtrSet<BasicBlock *, 16> &Visited) { 494 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() 495 << "\n"); 496 497 VarFragMap BBLiveIn; 498 bool FirstMeet = true; 499 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut 500 // locs. 501 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 502 // Ignore preds that haven't been processed yet. This is essentially the 503 // same as initialising all variables to implicit top value (⊤) which is 504 // the identity value for the meet operation. 505 const BasicBlock *Pred = *I; 506 if (!Visited.count(Pred)) 507 continue; 508 509 auto PredLiveOut = LiveOut.find(Pred); 510 assert(PredLiveOut != LiveOut.end()); 511 512 if (FirstMeet) { 513 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n"); 514 BBLiveIn = PredLiveOut->second; 515 FirstMeet = false; 516 } else { 517 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() 518 << "\n"); 519 meetVars(BBLiveIn, PredLiveOut->second); 520 } 521 522 // An empty set is ⊥ for the intersect-like meet operation. If we've 523 // already got ⊥ there's no need to run the code - we know the result is 524 // ⊥ since `meet(a, ⊥) = ⊥`. 525 if (BBLiveIn.size() == 0) 526 break; 527 } 528 529 auto CurrentLiveInEntry = LiveIn.find(&BB); 530 // If there's no LiveIn entry for the block yet, add it. 531 if (CurrentLiveInEntry == LiveIn.end()) { 532 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() 533 << "\n"); 534 LiveIn[&BB] = std::move(BBLiveIn); 535 return /*Changed=*/true; 536 } 537 538 // If the LiveIn set has changed (expensive check) update it and return 539 // true. 540 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) { 541 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n"); 542 CurrentLiveInEntry->second = std::move(BBLiveIn); 543 return /*Changed=*/true; 544 } 545 546 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n"); 547 return /*Changed=*/false; 548 } 549 550 void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var, 551 unsigned StartBit, unsigned EndBit, unsigned Base, 552 DebugLoc DL) { 553 assert(StartBit < EndBit && "Cannot create fragment of size <= 0"); 554 if (!Base) 555 return; 556 FragMemLoc Loc; 557 Loc.Var = Var; 558 Loc.OffsetInBits = StartBit; 559 Loc.SizeInBits = EndBit - StartBit; 560 assert(Base && "Expected a non-zero ID for Base address"); 561 Loc.Base = Base; 562 Loc.DL = DL; 563 BBInsertBeforeMap[&BB][&Before].push_back(Loc); 564 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() 565 << " bits [" << StartBit << ", " << EndBit << ")\n"); 566 } 567 568 void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB, 569 VarFragMap &LiveSet) { 570 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID); 571 if (skipVariable(DbgVar.getVariable())) 572 return; 573 // Don't bother doing anything for this variables if we know it's fully 574 // promoted. We're only interested in variables that (sometimes) live on 575 // the stack here. 576 if (!VarsWithStackSlot->count(getAggregate(DbgVar))) 577 return; 578 unsigned Var = Aggregates.insert( 579 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); 580 581 // [StartBit: EndBit) are the bits affected by this def. 582 const DIExpression *DIExpr = VarLoc.Expr; 583 unsigned StartBit; 584 unsigned EndBit; 585 if (auto Frag = DIExpr->getFragmentInfo()) { 586 StartBit = Frag->OffsetInBits; 587 EndBit = StartBit + Frag->SizeInBits; 588 } else { 589 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits())); 590 StartBit = 0; 591 EndBit = *DbgVar.getVariable()->getSizeInBits(); 592 } 593 594 // We will only fill fragments for simple memory-describing dbg.value 595 // intrinsics. If the fragment offset is the same as the offset from the 596 // base pointer, do The Thing, otherwise fall back to normal dbg.value 597 // behaviour. AssignmentTrackingLowering has generated DIExpressions 598 // written in terms of the base pointer. 599 // TODO: Remove this condition since the fragment offset doesn't always 600 // equal the offset from base pointer (e.g. for a SROA-split variable). 601 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); 602 const unsigned Base = 603 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit 604 ? Bases.insert(VarLoc.V) 605 : 0; 606 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" 607 << StartBit << ", " << EndBit << "): " << toString(Base) 608 << "\n"); 609 610 // First of all, any locs that use mem that are disrupted need reinstating. 611 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap 612 // with existing intervals so this code involves a lot of fiddling around 613 // with intervals to do that manually. 614 auto FragIt = LiveSet.find(Var); 615 616 // Check if the variable does not exist in the map. 617 if (FragIt == LiveSet.end()) { 618 // Add this variable to the BB map. 619 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc)); 620 assert(P.second && "Var already in map?"); 621 // Add the interval to the fragment map. 622 P.first->second.insert(StartBit, EndBit, Base); 623 return; 624 } 625 // The variable has an entry in the map. 626 627 FragsInMemMap &FragMap = FragIt->second; 628 // First check the easy case: the new fragment `f` doesn't overlap with any 629 // intervals. 630 if (!FragMap.overlaps(StartBit, EndBit)) { 631 LLVM_DEBUG(dbgs() << "- No overlaps\n"); 632 FragMap.insert(StartBit, EndBit, Base); 633 return; 634 } 635 // There is at least one overlap. 636 637 // Does StartBit intersect an existing fragment? 638 auto FirstOverlap = FragMap.find(StartBit); 639 assert(FirstOverlap != FragMap.end()); 640 bool IntersectStart = FirstOverlap.start() < StartBit; 641 642 // Does EndBit intersect an existing fragment? 643 auto LastOverlap = FragMap.find(EndBit); 644 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; 645 646 // Check if both ends of `f` intersect the same interval `i`. 647 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 648 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n"); 649 // Shorten `i` so that there's space to insert `f`. 650 // [ f ] 651 // [ - i - ] 652 // + 653 // [ i ][ f ][ i ] 654 655 // Save values for use after inserting a new interval. 656 auto EndBitOfOverlap = FirstOverlap.stop(); 657 unsigned OverlapValue = FirstOverlap.value(); 658 659 // Shorten the overlapping interval. 660 FirstOverlap.setStop(StartBit); 661 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 662 OverlapValue, VarLoc.DL); 663 664 // Insert a new interval to represent the end part. 665 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue); 666 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue, 667 VarLoc.DL); 668 669 // Insert the new (middle) fragment now there is space. 670 FragMap.insert(StartBit, EndBit, Base); 671 } else { 672 // There's an overlap but `f` may not be fully contained within 673 // `i`. Shorten any end-point intersections so that we can then 674 // insert `f`. 675 // [ - f - ] 676 // [ - i - ] 677 // | | 678 // [ i ] 679 // Shorten any end-point intersections. 680 if (IntersectStart) { 681 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n"); 682 // Split off at the intersection. 683 FirstOverlap.setStop(StartBit); 684 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 685 *FirstOverlap, VarLoc.DL); 686 } 687 // [ - f - ] 688 // [ - i - ] 689 // | | 690 // [ i ] 691 if (IntersectEnd) { 692 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n"); 693 // Split off at the intersection. 694 LastOverlap.setStart(EndBit); 695 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap, 696 VarLoc.DL); 697 } 698 699 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n"); 700 // FirstOverlap and LastOverlap have been shortened such that they're 701 // no longer overlapping with [StartBit, EndBit). Delete any overlaps 702 // that remain (these will be fully contained within `f`). 703 // [ - f - ] } 704 // [ - i - ] } Intersection shortening that has happened above. 705 // | | } 706 // [ i ] } 707 // ----------------- 708 // [i2 ] } Intervals fully contained within `f` get erased. 709 // ----------------- 710 // [ - f - ][ i ] } Completed insertion. 711 auto It = FirstOverlap; 712 if (IntersectStart) 713 ++It; // IntersectStart: first overlap has been shortened. 714 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { 715 LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); 716 It.erase(); // This increments It after removing the interval. 717 } 718 // We've dealt with all the overlaps now! 719 assert(!FragMap.overlaps(StartBit, EndBit)); 720 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n"); 721 FragMap.insert(StartBit, EndBit, Base); 722 } 723 } 724 725 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } 726 727 void process(BasicBlock &BB, VarFragMap &LiveSet) { 728 BBInsertBeforeMap[&BB].clear(); 729 for (auto &I : BB) { 730 if (const auto *Locs = FnVarLocs->getWedge(&I)) { 731 for (const VarLocInfo &Loc : *Locs) { 732 addDef(Loc, I, *I.getParent(), LiveSet); 733 } 734 } 735 } 736 } 737 738 public: 739 MemLocFragmentFill(Function &Fn, 740 const DenseSet<DebugAggregate> *VarsWithStackSlot) 741 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {} 742 743 /// Add variable locations to \p FnVarLocs so that any bits of a variable 744 /// with a memory location have that location explicitly reinstated at each 745 /// subsequent variable location definition that that doesn't overwrite those 746 /// bits. i.e. after a variable location def, insert new defs for the memory 747 /// location with fragments for the difference of "all bits currently in 748 /// memory" and "the fragment of the second def". e.g. 749 /// 750 /// Before: 751 /// 752 /// var x bits 0 to 63: value in memory 753 /// more instructions 754 /// var x bits 0 to 31: value is %0 755 /// 756 /// After: 757 /// 758 /// var x bits 0 to 63: value in memory 759 /// more instructions 760 /// var x bits 0 to 31: value is %0 761 /// var x bits 32 to 61: value in memory ; <-- new loc def 762 /// 763 void run(FunctionVarLocsBuilder *FnVarLocs) { 764 if (!EnableMemLocFragFill) 765 return; 766 767 this->FnVarLocs = FnVarLocs; 768 769 // Prepare for traversal. 770 // 771 ReversePostOrderTraversal<Function *> RPOT(&Fn); 772 std::priority_queue<unsigned int, std::vector<unsigned int>, 773 std::greater<unsigned int>> 774 Worklist; 775 std::priority_queue<unsigned int, std::vector<unsigned int>, 776 std::greater<unsigned int>> 777 Pending; 778 DenseMap<unsigned int, BasicBlock *> OrderToBB; 779 DenseMap<BasicBlock *, unsigned int> BBToOrder; 780 { // Init OrderToBB and BBToOrder. 781 unsigned int RPONumber = 0; 782 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 783 OrderToBB[RPONumber] = *RI; 784 BBToOrder[*RI] = RPONumber; 785 Worklist.push(RPONumber); 786 ++RPONumber; 787 } 788 LiveIn.init(RPONumber); 789 LiveOut.init(RPONumber); 790 } 791 792 // Perform the traversal. 793 // 794 // This is a standard "intersect of predecessor outs" dataflow problem. To 795 // solve it, we perform meet() and process() using the two worklist method 796 // until the LiveIn data for each block becomes unchanging. 797 // 798 // This dataflow is essentially working on maps of sets and at each meet we 799 // intersect the maps and the mapped sets. So, initialized live-in maps 800 // monotonically decrease in value throughout the dataflow. 801 SmallPtrSet<BasicBlock *, 16> Visited; 802 while (!Worklist.empty() || !Pending.empty()) { 803 // We track what is on the pending worklist to avoid inserting the same 804 // thing twice. We could avoid this with a custom priority queue, but 805 // this is probably not worth it. 806 SmallPtrSet<BasicBlock *, 16> OnPending; 807 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 808 while (!Worklist.empty()) { 809 BasicBlock *BB = OrderToBB[Worklist.top()]; 810 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 811 Worklist.pop(); 812 bool InChanged = meet(*BB, Visited); 813 // Always consider LiveIn changed on the first visit. 814 InChanged |= Visited.insert(BB).second; 815 if (InChanged) { 816 LLVM_DEBUG(dbgs() 817 << BB->getName() << " has new InLocs, process it\n"); 818 // Mutate a copy of LiveIn while processing BB. Once we've processed 819 // the terminator LiveSet is the LiveOut set for BB. 820 // This is an expensive copy! 821 VarFragMap LiveSet = LiveIn[BB]; 822 823 // Process the instructions in the block. 824 process(*BB, LiveSet); 825 826 // Relatively expensive check: has anything changed in LiveOut for BB? 827 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) { 828 LLVM_DEBUG(dbgs() << BB->getName() 829 << " has new OutLocs, add succs to worklist: [ "); 830 LiveOut[BB] = std::move(LiveSet); 831 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 832 if (OnPending.insert(*I).second) { 833 LLVM_DEBUG(dbgs() << I->getName() << " "); 834 Pending.push(BBToOrder[*I]); 835 } 836 } 837 LLVM_DEBUG(dbgs() << "]\n"); 838 } 839 } 840 } 841 Worklist.swap(Pending); 842 // At this point, pending must be empty, since it was just the empty 843 // worklist 844 assert(Pending.empty() && "Pending should be empty"); 845 } 846 847 // Insert new location defs. 848 for (auto Pair : BBInsertBeforeMap) { 849 InsertMap &Map = Pair.second; 850 for (auto Pair : Map) { 851 Instruction *InsertBefore = Pair.first; 852 assert(InsertBefore && "should never be null"); 853 auto FragMemLocs = Pair.second; 854 auto &Ctx = Fn.getContext(); 855 856 for (auto FragMemLoc : FragMemLocs) { 857 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt); 858 Expr = *DIExpression::createFragmentExpression( 859 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits); 860 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, 861 FragMemLoc.OffsetInBits / 8); 862 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, 863 FragMemLoc.DL.getInlinedAt()); 864 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL, 865 Bases[FragMemLoc.Base]); 866 } 867 } 868 } 869 } 870 }; 871 872 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function 873 /// that interprets assignment tracking debug info metadata and stores in IR to 874 /// create a map of variable locations. 875 class AssignmentTrackingLowering { 876 public: 877 /// The kind of location in use for a variable, where Mem is the stack home, 878 /// Val is an SSA value or const, and None means that there is not one single 879 /// kind (either because there are multiple or because there is none; it may 880 /// prove useful to split this into two values in the future). 881 /// 882 /// LocKind is a join-semilattice with the partial order: 883 /// None > Mem, Val 884 /// 885 /// i.e. 886 /// join(Mem, Mem) = Mem 887 /// join(Val, Val) = Val 888 /// join(Mem, Val) = None 889 /// join(None, Mem) = None 890 /// join(None, Val) = None 891 /// join(None, None) = None 892 /// 893 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID 894 /// to name assignments and are not tracking the actual stored values. 895 /// Therefore currently there's no way to ensure that Mem values and Val 896 /// values are the same. This could be a future extension, though it's not 897 /// clear that many additional locations would be recovered that way in 898 /// practice as the likelihood of this sitation arising naturally seems 899 /// incredibly low. 900 enum class LocKind { Mem, Val, None }; 901 902 /// An abstraction of the assignment of a value to a variable or memory 903 /// location. 904 /// 905 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a 906 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or 907 /// can't) know the ID of the last assignment that took place. 908 /// 909 /// The Status of the Assignment (Known or NoneOrPhi) is another 910 /// join-semilattice. The partial order is: 911 /// NoneOrPhi > Known {id_0, id_1, ...id_N} 912 /// 913 /// i.e. for all values x and y where x != y: 914 /// join(x, x) = x 915 /// join(x, y) = NoneOrPhi 916 struct Assignment { 917 enum S { Known, NoneOrPhi } Status; 918 /// ID of the assignment. nullptr if Status is not Known. 919 DIAssignID *ID; 920 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. 921 /// May be nullptr. 922 DbgAssignIntrinsic *Source; 923 924 bool isSameSourceAssignment(const Assignment &Other) const { 925 // Don't include Source in the equality check. Assignments are 926 // defined by their ID, not debug intrinsic(s). 927 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID); 928 } 929 void dump(raw_ostream &OS) { 930 static const char *LUT[] = {"Known", "NoneOrPhi"}; 931 OS << LUT[Status] << "(id="; 932 if (ID) 933 OS << ID; 934 else 935 OS << "null"; 936 OS << ", s="; 937 if (Source) 938 OS << *Source; 939 else 940 OS << "null"; 941 OS << ")"; 942 } 943 944 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) { 945 return Assignment(Known, ID, Source); 946 } 947 static Assignment makeFromMemDef(DIAssignID *ID) { 948 return Assignment(Known, ID, nullptr); 949 } 950 static Assignment makeNoneOrPhi() { 951 return Assignment(NoneOrPhi, nullptr, nullptr); 952 } 953 // Again, need a Top value? 954 Assignment() 955 : Status(NoneOrPhi), ID(nullptr), Source(nullptr) { 956 } // Can we delete this? 957 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source) 958 : Status(Status), ID(ID), Source(Source) { 959 // If the Status is Known then we expect there to be an assignment ID. 960 assert(Status == NoneOrPhi || ID); 961 } 962 }; 963 964 using AssignmentMap = DenseMap<VariableID, Assignment>; 965 using LocMap = DenseMap<VariableID, LocKind>; 966 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID, 4>>; 967 using UntaggedStoreAssignmentMap = 968 DenseMap<const Instruction *, 969 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>; 970 971 private: 972 /// Map a variable to the set of variables that it fully contains. 973 OverlapMap VarContains; 974 /// Map untagged stores to the variable fragments they assign to. Used by 975 /// processUntaggedInstruction. 976 UntaggedStoreAssignmentMap UntaggedStoreVars; 977 978 // Machinery to defer inserting dbg.values. 979 using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>; 980 InsertMap InsertBeforeMap; 981 /// Clear the location definitions currently cached for insertion after /p 982 /// After. 983 void resetInsertionPoint(Instruction &After); 984 void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source, 985 Instruction *After); 986 987 static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) { 988 if (A.size() != B.size()) 989 return false; 990 for (const auto &Pair : A) { 991 VariableID Var = Pair.first; 992 const Assignment &AV = Pair.second; 993 auto R = B.find(Var); 994 // Check if this entry exists in B, otherwise ret false. 995 if (R == B.end()) 996 return false; 997 // Check that the assignment value is the same. 998 if (!AV.isSameSourceAssignment(R->second)) 999 return false; 1000 } 1001 return true; 1002 } 1003 1004 /// Represents the stack and debug assignments in a block. Used to describe 1005 /// the live-in and live-out values for blocks, as well as the "current" 1006 /// value as we process each instruction in a block. 1007 struct BlockInfo { 1008 /// Dominating assignment to memory for each variable. 1009 AssignmentMap StackHomeValue; 1010 /// Dominating assignemnt to each variable. 1011 AssignmentMap DebugValue; 1012 /// Location kind for each variable. LiveLoc indicates whether the 1013 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue 1014 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of 1015 /// preference. This cannot be derived by inspecting DebugValue and 1016 /// StackHomeValue due to the fact that there's no distinction in 1017 /// Assignment (the class) between whether an assignment is unknown or a 1018 /// merge of multiple assignments (both are Status::NoneOrPhi). In other 1019 /// words, the memory location may well be valid while both DebugValue and 1020 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. 1021 LocMap LiveLoc; 1022 1023 /// Compare every element in each map to determine structural equality 1024 /// (slow). 1025 bool operator==(const BlockInfo &Other) const { 1026 return LiveLoc == Other.LiveLoc && 1027 mapsAreEqual(StackHomeValue, Other.StackHomeValue) && 1028 mapsAreEqual(DebugValue, Other.DebugValue); 1029 } 1030 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } 1031 bool isValid() { 1032 return LiveLoc.size() == DebugValue.size() && 1033 LiveLoc.size() == StackHomeValue.size(); 1034 } 1035 }; 1036 1037 Function &Fn; 1038 const DataLayout &Layout; 1039 const DenseSet<DebugAggregate> *VarsWithStackSlot; 1040 FunctionVarLocsBuilder *FnVarLocs; 1041 DenseMap<const BasicBlock *, BlockInfo> LiveIn; 1042 DenseMap<const BasicBlock *, BlockInfo> LiveOut; 1043 1044 /// Helper for process methods to track variables touched each frame. 1045 DenseSet<VariableID> VarsTouchedThisFrame; 1046 1047 /// The set of variables that sometimes are not located in their stack home. 1048 DenseSet<DebugAggregate> NotAlwaysStackHomed; 1049 1050 VariableID getVariableID(const DebugVariable &Var) { 1051 return static_cast<VariableID>(FnVarLocs->insertVariable(Var)); 1052 } 1053 1054 /// Join the LiveOut values of preds that are contained in \p Visited into 1055 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] 1056 /// values monotonically increase. See the @link joinMethods join methods 1057 /// @endlink documentation for more info. 1058 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited); 1059 ///@name joinMethods 1060 /// Functions that implement `join` (the least upper bound) for the 1061 /// join-semilattice types used in the dataflow. There is an explicit bottom 1062 /// value (⊥) for some types and and explicit top value (⊤) for all types. 1063 /// By definition: 1064 /// 1065 /// Join(A, B) >= A && Join(A, B) >= B 1066 /// Join(A, ⊥) = A 1067 /// Join(A, ⊤) = ⊤ 1068 /// 1069 /// These invariants are important for monotonicity. 1070 /// 1071 /// For the map-type functions, all unmapped keys in an empty map are 1072 /// associated with a bottom value (⊥). This represents their values being 1073 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key 1074 /// only present in one) represents either a variable going out of scope or 1075 /// dropped debug info. It is assumed the key is associated with a top value 1076 /// (⊤) in this case (unknown location / assignment). 1077 ///@{ 1078 static LocKind joinKind(LocKind A, LocKind B); 1079 static LocMap joinLocMap(const LocMap &A, const LocMap &B); 1080 static Assignment joinAssignment(const Assignment &A, const Assignment &B); 1081 static AssignmentMap joinAssignmentMap(const AssignmentMap &A, 1082 const AssignmentMap &B); 1083 static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); 1084 ///@} 1085 1086 /// Process the instructions in \p BB updating \p LiveSet along the way. \p 1087 /// LiveSet must be initialized with the current live-in locations before 1088 /// calling this. 1089 void process(BasicBlock &BB, BlockInfo *LiveSet); 1090 ///@name processMethods 1091 /// Methods to process instructions in order to update the LiveSet (current 1092 /// location information). 1093 ///@{ 1094 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1095 void processDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1096 /// Update \p LiveSet after encountering an instruction with a DIAssignID 1097 /// attachment, \p I. 1098 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1099 /// Update \p LiveSet after encountering an instruciton without a DIAssignID 1100 /// attachment, \p I. 1101 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1102 void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet); 1103 void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet); 1104 /// Add an assignment to memory for the variable /p Var. 1105 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1106 /// Add an assignment to the variable /p Var. 1107 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1108 ///@} 1109 1110 /// Set the LocKind for \p Var. 1111 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); 1112 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to 1113 /// have been called for \p Var first. 1114 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); 1115 /// Return true if \p Var has an assignment in \p M matching \p AV. 1116 bool hasVarWithAssignment(VariableID Var, const Assignment &AV, 1117 const AssignmentMap &M); 1118 1119 /// Emit info for variables that are fully promoted. 1120 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); 1121 1122 public: 1123 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, 1124 const DenseSet<DebugAggregate> *VarsWithStackSlot) 1125 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} 1126 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns 1127 /// true if any variable locations have been added to FnVarLocs. 1128 bool run(FunctionVarLocsBuilder *FnVarLocs); 1129 }; 1130 } // namespace 1131 1132 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, 1133 LocKind K) { 1134 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { 1135 VarsTouchedThisFrame.insert(Var); 1136 LiveSet->LiveLoc[Var] = K; 1137 }; 1138 SetKind(LiveSet, Var, K); 1139 1140 // Update the LocKind for all fragments contained within Var. 1141 for (VariableID Frag : VarContains[Var]) 1142 SetKind(LiveSet, Frag, K); 1143 } 1144 1145 AssignmentTrackingLowering::LocKind 1146 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { 1147 auto Pair = LiveSet->LiveLoc.find(Var); 1148 assert(Pair != LiveSet->LiveLoc.end()); 1149 return Pair->second; 1150 } 1151 1152 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, 1153 const Assignment &AV) { 1154 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { 1155 LiveSet->StackHomeValue[Var] = AV; 1156 // Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet. 1157 LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()}); 1158 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers 1159 // of addMemDef will call setLocKind to override. 1160 LiveSet->LiveLoc.insert({Var, LocKind::None}); 1161 }; 1162 AddDef(LiveSet, Var, AV); 1163 1164 // Use this assigment for all fragments contained within Var, but do not 1165 // provide a Source because we cannot convert Var's value to a value for the 1166 // fragment. 1167 Assignment FragAV = AV; 1168 FragAV.Source = nullptr; 1169 for (VariableID Frag : VarContains[Var]) 1170 AddDef(LiveSet, Frag, FragAV); 1171 } 1172 1173 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, 1174 const Assignment &AV) { 1175 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { 1176 LiveSet->DebugValue[Var] = AV; 1177 // Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet. 1178 LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()}); 1179 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers 1180 // of addDbgDef will call setLocKind to override. 1181 LiveSet->LiveLoc.insert({Var, LocKind::None}); 1182 }; 1183 AddDef(LiveSet, Var, AV); 1184 1185 // Use this assigment for all fragments contained within Var, but do not 1186 // provide a Source because we cannot convert Var's value to a value for the 1187 // fragment. 1188 Assignment FragAV = AV; 1189 FragAV.Source = nullptr; 1190 for (VariableID Frag : VarContains[Var]) 1191 AddDef(LiveSet, Frag, FragAV); 1192 } 1193 1194 static DIAssignID *getIDFromInst(const Instruction &I) { 1195 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID)); 1196 } 1197 1198 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) { 1199 return cast<DIAssignID>(DAI.getAssignID()); 1200 } 1201 1202 /// Return true if \p Var has an assignment in \p M matching \p AV. 1203 bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var, 1204 const Assignment &AV, 1205 const AssignmentMap &M) { 1206 auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV, 1207 const AssignmentMap &M) { 1208 auto R = M.find(Var); 1209 if (R == M.end()) 1210 return false; 1211 return AV.isSameSourceAssignment(R->second); 1212 }; 1213 1214 if (!AssignmentIsMapped(Var, AV, M)) 1215 return false; 1216 1217 // Check all the frags contained within Var as these will have all been 1218 // mapped to AV at the last store to Var. 1219 for (VariableID Frag : VarContains[Var]) 1220 if (!AssignmentIsMapped(Frag, AV, M)) 1221 return false; 1222 return true; 1223 } 1224 1225 #ifndef NDEBUG 1226 const char *locStr(AssignmentTrackingLowering::LocKind Loc) { 1227 using LocKind = AssignmentTrackingLowering::LocKind; 1228 switch (Loc) { 1229 case LocKind::Val: 1230 return "Val"; 1231 case LocKind::Mem: 1232 return "Mem"; 1233 case LocKind::None: 1234 return "None"; 1235 }; 1236 llvm_unreachable("unknown LocKind"); 1237 } 1238 #endif 1239 1240 void AssignmentTrackingLowering::emitDbgValue( 1241 AssignmentTrackingLowering::LocKind Kind, 1242 const DbgVariableIntrinsic *Source, Instruction *After) { 1243 1244 DILocation *DL = Source->getDebugLoc(); 1245 auto Emit = [this, Source, After, DL](Value *Val, DIExpression *Expr) { 1246 assert(Expr); 1247 if (!Val) 1248 Val = PoisonValue::get(Type::getInt1Ty(Source->getContext())); 1249 1250 // Find a suitable insert point. 1251 Instruction *InsertBefore = After->getNextNode(); 1252 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1253 1254 VariableID Var = getVariableID(DebugVariable(Source)); 1255 VarLocInfo VarLoc; 1256 VarLoc.VariableID = static_cast<VariableID>(Var); 1257 VarLoc.Expr = Expr; 1258 VarLoc.V = Val; 1259 VarLoc.DL = DL; 1260 // Insert it into the map for later. 1261 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1262 }; 1263 1264 // NOTE: This block can mutate Kind. 1265 if (Kind == LocKind::Mem) { 1266 const auto *DAI = cast<DbgAssignIntrinsic>(Source); 1267 // Check the address hasn't been dropped (e.g. the debug uses may not have 1268 // been replaced before deleting a Value). 1269 if (DAI->isKillAddress()) { 1270 // The address isn't valid so treat this as a non-memory def. 1271 Kind = LocKind::Val; 1272 } else { 1273 Value *Val = DAI->getAddress(); 1274 DIExpression *Expr = DAI->getAddressExpression(); 1275 assert(!Expr->getFragmentInfo() && 1276 "fragment info should be stored in value-expression only"); 1277 // Copy the fragment info over from the value-expression to the new 1278 // DIExpression. 1279 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { 1280 auto FragInfo = *OptFragInfo; 1281 Expr = *DIExpression::createFragmentExpression( 1282 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits); 1283 } 1284 // The address-expression has an implicit deref, add it now. 1285 std::tie(Val, Expr) = 1286 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr); 1287 Emit(Val, Expr); 1288 return; 1289 } 1290 } 1291 1292 if (Kind == LocKind::Val) { 1293 /// Get the value component, converting to Undef if it is variadic. 1294 Value *Val = 1295 Source->hasArgList() ? nullptr : Source->getVariableLocationOp(0); 1296 Emit(Val, Source->getExpression()); 1297 return; 1298 } 1299 1300 if (Kind == LocKind::None) { 1301 Emit(nullptr, Source->getExpression()); 1302 return; 1303 } 1304 } 1305 1306 void AssignmentTrackingLowering::processNonDbgInstruction( 1307 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1308 if (I.hasMetadata(LLVMContext::MD_DIAssignID)) 1309 processTaggedInstruction(I, LiveSet); 1310 else 1311 processUntaggedInstruction(I, LiveSet); 1312 } 1313 1314 void AssignmentTrackingLowering::processUntaggedInstruction( 1315 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1316 // Interpret stack stores that are not tagged as an assignment in memory for 1317 // the variables associated with that address. These stores may not be tagged 1318 // because a) the store cannot be represented using dbg.assigns (non-const 1319 // length or offset) or b) the tag was accidentally dropped during 1320 // optimisations. For these stores we fall back to assuming that the stack 1321 // home is a valid location for the variables. The benefit is that this 1322 // prevents us missing an assignment and therefore incorrectly maintaining 1323 // earlier location definitions, and in many cases it should be a reasonable 1324 // assumption. However, this will occasionally lead to slight 1325 // inaccuracies. The value of a hoisted untagged store will be visible 1326 // "early", for example. 1327 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); 1328 auto It = UntaggedStoreVars.find(&I); 1329 if (It == UntaggedStoreVars.end()) 1330 return; // No variables associated with the store destination. 1331 1332 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I 1333 << "\n"); 1334 // Iterate over the variables that this store affects, add a NoneOrPhi dbg 1335 // and mem def, set lockind to Mem, and emit a location def for each. 1336 for (auto [Var, Info] : It->second) { 1337 // This instruction is treated as both a debug and memory assignment, 1338 // meaning the memory location should be used. We don't have an assignment 1339 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. 1340 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1341 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1342 setLocKind(LiveSet, Var, LocKind::Mem); 1343 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) 1344 << "\n"); 1345 // Build the dbg location def to insert. 1346 // 1347 // DIExpression: Add fragment and offset. 1348 DebugVariable V = FnVarLocs->getVariable(Var); 1349 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt); 1350 if (auto Frag = V.getFragment()) { 1351 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits, 1352 Frag->SizeInBits); 1353 assert(R && "unexpected createFragmentExpression failure"); 1354 DIE = *R; 1355 } 1356 SmallVector<uint64_t, 3> Ops; 1357 if (Info.OffsetInBits) 1358 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; 1359 Ops.push_back(dwarf::DW_OP_deref); 1360 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false, 1361 /*EntryValue=*/false); 1362 // Find a suitable insert point. 1363 Instruction *InsertBefore = I.getNextNode(); 1364 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1365 1366 // Get DILocation for this unrecorded assignment. 1367 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); 1368 const DILocation *DILoc = DILocation::get( 1369 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt); 1370 1371 VarLocInfo VarLoc; 1372 VarLoc.VariableID = static_cast<VariableID>(Var); 1373 VarLoc.Expr = DIE; 1374 VarLoc.V = const_cast<AllocaInst *>(Info.Base); 1375 VarLoc.DL = DILoc; 1376 // 3. Insert it into the map for later. 1377 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1378 } 1379 } 1380 1381 void AssignmentTrackingLowering::processTaggedInstruction( 1382 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1383 auto Linked = at::getAssignmentMarkers(&I); 1384 // No dbg.assign intrinsics linked. 1385 // FIXME: All vars that have a stack slot this store modifies that don't have 1386 // a dbg.assign linked to it should probably treat this like an untagged 1387 // store. 1388 if (Linked.empty()) 1389 return; 1390 1391 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n"); 1392 for (DbgAssignIntrinsic *DAI : Linked) { 1393 VariableID Var = getVariableID(DebugVariable(DAI)); 1394 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable 1395 // that is linked to a store. 1396 assert(VarsWithStackSlot->count(getAggregate(DAI)) && 1397 "expected DAI's variable to have stack slot"); 1398 1399 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I)); 1400 addMemDef(LiveSet, Var, AV); 1401 1402 LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n"); 1403 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1404 << " -> "); 1405 1406 // The last assignment to the stack is now AV. Check if the last debug 1407 // assignment has a matching Assignment. 1408 if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) { 1409 // The StackHomeValue and DebugValue for this variable match so we can 1410 // emit a stack home location here. 1411 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1412 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n"); 1413 LLVM_DEBUG(dbgs() << " Debug val: "; 1414 LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n"); 1415 setLocKind(LiveSet, Var, LocKind::Mem); 1416 emitDbgValue(LocKind::Mem, DAI, &I); 1417 continue; 1418 } 1419 1420 // The StackHomeValue and DebugValue for this variable do not match. I.e. 1421 // The value currently stored in the stack is not what we'd expect to 1422 // see, so we cannot use emit a stack home location here. Now we will 1423 // look at the live LocKind for the variable and determine an appropriate 1424 // dbg.value to emit. 1425 LocKind PrevLoc = getLocKind(LiveSet, Var); 1426 switch (PrevLoc) { 1427 case LocKind::Val: { 1428 // The value in memory in memory has changed but we're not currently 1429 // using the memory location. Do nothing. 1430 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";); 1431 setLocKind(LiveSet, Var, LocKind::Val); 1432 } break; 1433 case LocKind::Mem: { 1434 // There's been an assignment to memory that we were using as a 1435 // location for this variable, and the Assignment doesn't match what 1436 // we'd expect to see in memory. 1437 if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) { 1438 // We need to terminate any previously open location now. 1439 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";); 1440 setLocKind(LiveSet, Var, LocKind::None); 1441 emitDbgValue(LocKind::None, DAI, &I); 1442 } else { 1443 // The previous DebugValue Value can be used here. 1444 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";); 1445 setLocKind(LiveSet, Var, LocKind::Val); 1446 Assignment PrevAV = LiveSet->DebugValue.lookup(Var); 1447 if (PrevAV.Source) { 1448 emitDbgValue(LocKind::Val, PrevAV.Source, &I); 1449 } else { 1450 // PrevAV.Source is nullptr so we must emit undef here. 1451 emitDbgValue(LocKind::None, DAI, &I); 1452 } 1453 } 1454 } break; 1455 case LocKind::None: { 1456 // There's been an assignment to memory and we currently are 1457 // not tracking a location for the variable. Do not emit anything. 1458 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";); 1459 setLocKind(LiveSet, Var, LocKind::None); 1460 } break; 1461 } 1462 } 1463 } 1464 1465 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI, 1466 BlockInfo *LiveSet) { 1467 // Only bother tracking variables that are at some point stack homed. Other 1468 // variables can be dealt with trivially later. 1469 if (!VarsWithStackSlot->count(getAggregate(&DAI))) 1470 return; 1471 1472 VariableID Var = getVariableID(DebugVariable(&DAI)); 1473 Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI); 1474 addDbgDef(LiveSet, Var, AV); 1475 1476 LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";); 1477 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1478 << " -> "); 1479 1480 // Check if the DebugValue and StackHomeValue both hold the same 1481 // Assignment. 1482 if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) { 1483 // They match. We can use the stack home because the debug intrinsics state 1484 // that an assignment happened here, and we know that specific assignment 1485 // was the last one to take place in memory for this variable. 1486 LocKind Kind; 1487 if (DAI.isKillAddress()) { 1488 LLVM_DEBUG( 1489 dbgs() 1490 << "Val, Stack matches Debug program but address is killed\n";); 1491 Kind = LocKind::Val; 1492 } else { 1493 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1494 Kind = LocKind::Mem; 1495 }; 1496 setLocKind(LiveSet, Var, Kind); 1497 emitDbgValue(Kind, &DAI, &DAI); 1498 } else { 1499 // The last assignment to the memory location isn't the one that we want to 1500 // show to the user so emit a dbg.value(Value). Value may be undef. 1501 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";); 1502 setLocKind(LiveSet, Var, LocKind::Val); 1503 emitDbgValue(LocKind::Val, &DAI, &DAI); 1504 } 1505 } 1506 1507 void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI, 1508 BlockInfo *LiveSet) { 1509 // Only other tracking variables that are at some point stack homed. 1510 // Other variables can be dealt with trivally later. 1511 if (!VarsWithStackSlot->count(getAggregate(&DVI))) 1512 return; 1513 1514 VariableID Var = getVariableID(DebugVariable(&DVI)); 1515 // We have no ID to create an Assignment with so we mark this assignment as 1516 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine 1517 // the assignment responsible for setting this value. 1518 // This is fine; dbg.values are essentially interchangable with unlinked 1519 // dbg.assigns, and some passes such as mem2reg and instcombine add them to 1520 // PHIs for promoted variables. 1521 Assignment AV = Assignment::makeNoneOrPhi(); 1522 addDbgDef(LiveSet, Var, AV); 1523 1524 LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";); 1525 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1526 << " -> Val, dbg.value override"); 1527 1528 setLocKind(LiveSet, Var, LocKind::Val); 1529 emitDbgValue(LocKind::Val, &DVI, &DVI); 1530 } 1531 1532 void AssignmentTrackingLowering::processDbgInstruction( 1533 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1534 assert(!isa<DbgAddrIntrinsic>(&I) && "unexpected dbg.addr"); 1535 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I)) 1536 processDbgAssign(*DAI, LiveSet); 1537 else if (auto *DVI = dyn_cast<DbgValueInst>(&I)) 1538 processDbgValue(*DVI, LiveSet); 1539 } 1540 1541 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { 1542 assert(!After.isTerminator() && "Can't insert after a terminator"); 1543 auto R = InsertBeforeMap.find(After.getNextNode()); 1544 if (R == InsertBeforeMap.end()) 1545 return; 1546 R->second.clear(); 1547 } 1548 1549 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { 1550 for (auto II = BB.begin(), EI = BB.end(); II != EI;) { 1551 assert(VarsTouchedThisFrame.empty()); 1552 // Process the instructions in "frames". A "frame" includes a single 1553 // non-debug instruction followed any debug instructions before the 1554 // next non-debug instruction. 1555 if (!isa<DbgInfoIntrinsic>(&*II)) { 1556 if (II->isTerminator()) 1557 break; 1558 resetInsertionPoint(*II); 1559 processNonDbgInstruction(*II, LiveSet); 1560 assert(LiveSet->isValid()); 1561 ++II; 1562 } 1563 while (II != EI) { 1564 if (!isa<DbgInfoIntrinsic>(&*II)) 1565 break; 1566 resetInsertionPoint(*II); 1567 processDbgInstruction(*II, LiveSet); 1568 assert(LiveSet->isValid()); 1569 ++II; 1570 } 1571 1572 // We've processed everything in the "frame". Now determine which variables 1573 // cannot be represented by a dbg.declare. 1574 for (auto Var : VarsTouchedThisFrame) { 1575 LocKind Loc = getLocKind(LiveSet, Var); 1576 // If a variable's LocKind is anything other than LocKind::Mem then we 1577 // must note that it cannot be represented with a dbg.declare. 1578 // Note that this check is enough without having to check the result of 1579 // joins() because for join to produce anything other than Mem after 1580 // we've already seen a Mem we'd be joining None or Val with Mem. In that 1581 // case, we've already hit this codepath when we set the LocKind to Val 1582 // or None in that block. 1583 if (Loc != LocKind::Mem) { 1584 DebugVariable DbgVar = FnVarLocs->getVariable(Var); 1585 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; 1586 NotAlwaysStackHomed.insert(Aggr); 1587 } 1588 } 1589 VarsTouchedThisFrame.clear(); 1590 } 1591 } 1592 1593 AssignmentTrackingLowering::LocKind 1594 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { 1595 // Partial order: 1596 // None > Mem, Val 1597 return A == B ? A : LocKind::None; 1598 } 1599 1600 AssignmentTrackingLowering::LocMap 1601 AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) { 1602 // Join A and B. 1603 // 1604 // U = join(a, b) for a in A, b in B where Var(a) == Var(b) 1605 // D = join(x, ⊤) for x where Var(x) is in A xor B 1606 // Join = U ∪ D 1607 // 1608 // This is achieved by performing a join on elements from A and B with 1609 // variables common to both A and B (join elements indexed by var intersect), 1610 // then adding LocKind::None elements for vars in A xor B. The latter part is 1611 // equivalent to performing join on elements with variables in A xor B with 1612 // LocKind::None (⊤) since join(x, ⊤) = ⊤. 1613 LocMap Join; 1614 SmallVector<VariableID, 16> SymmetricDifference; 1615 // Insert the join of the elements with common vars into Join. Add the 1616 // remaining elements to into SymmetricDifference. 1617 for (const auto &[Var, Loc] : A) { 1618 // If this Var doesn't exist in B then add it to the symmetric difference 1619 // set. 1620 auto R = B.find(Var); 1621 if (R == B.end()) { 1622 SymmetricDifference.push_back(Var); 1623 continue; 1624 } 1625 // There is an entry for Var in both, join it. 1626 Join[Var] = joinKind(Loc, R->second); 1627 } 1628 unsigned IntersectSize = Join.size(); 1629 (void)IntersectSize; 1630 1631 // Add the elements in B with variables that are not in A into 1632 // SymmetricDifference. 1633 for (const auto &Pair : B) { 1634 VariableID Var = Pair.first; 1635 if (A.count(Var) == 0) 1636 SymmetricDifference.push_back(Var); 1637 } 1638 1639 // Add SymmetricDifference elements to Join and return the result. 1640 for (const auto &Var : SymmetricDifference) 1641 Join.insert({Var, LocKind::None}); 1642 1643 assert(Join.size() == (IntersectSize + SymmetricDifference.size())); 1644 assert(Join.size() >= A.size() && Join.size() >= B.size()); 1645 return Join; 1646 } 1647 1648 AssignmentTrackingLowering::Assignment 1649 AssignmentTrackingLowering::joinAssignment(const Assignment &A, 1650 const Assignment &B) { 1651 // Partial order: 1652 // NoneOrPhi(null, null) > Known(v, ?s) 1653 1654 // If either are NoneOrPhi the join is NoneOrPhi. 1655 // If either value is different then the result is 1656 // NoneOrPhi (joining two values is a Phi). 1657 if (!A.isSameSourceAssignment(B)) 1658 return Assignment::makeNoneOrPhi(); 1659 if (A.Status == Assignment::NoneOrPhi) 1660 return Assignment::makeNoneOrPhi(); 1661 1662 // Source is used to lookup the value + expression in the debug program if 1663 // the stack slot gets assigned a value earlier than expected. Because 1664 // we're only tracking the one dbg.assign, we can't capture debug PHIs. 1665 // It's unlikely that we're losing out on much coverage by avoiding that 1666 // extra work. 1667 // The Source may differ in this situation: 1668 // Pred.1: 1669 // dbg.assign i32 0, ..., !1, ... 1670 // Pred.2: 1671 // dbg.assign i32 1, ..., !1, ... 1672 // Here the same assignment (!1) was performed in both preds in the source, 1673 // but we can't use either one unless they are identical (e.g. .we don't 1674 // want to arbitrarily pick between constant values). 1675 auto JoinSource = [&]() -> DbgAssignIntrinsic * { 1676 if (A.Source == B.Source) 1677 return A.Source; 1678 if (A.Source == nullptr || B.Source == nullptr) 1679 return nullptr; 1680 if (A.Source->isIdenticalTo(B.Source)) 1681 return A.Source; 1682 return nullptr; 1683 }; 1684 DbgAssignIntrinsic *Source = JoinSource(); 1685 assert(A.Status == B.Status && A.Status == Assignment::Known); 1686 assert(A.ID == B.ID); 1687 return Assignment::make(A.ID, Source); 1688 } 1689 1690 AssignmentTrackingLowering::AssignmentMap 1691 AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A, 1692 const AssignmentMap &B) { 1693 // Join A and B. 1694 // 1695 // U = join(a, b) for a in A, b in B where Var(a) == Var(b) 1696 // D = join(x, ⊤) for x where Var(x) is in A xor B 1697 // Join = U ∪ D 1698 // 1699 // This is achieved by performing a join on elements from A and B with 1700 // variables common to both A and B (join elements indexed by var intersect), 1701 // then adding LocKind::None elements for vars in A xor B. The latter part is 1702 // equivalent to performing join on elements with variables in A xor B with 1703 // Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤. 1704 AssignmentMap Join; 1705 SmallVector<VariableID, 16> SymmetricDifference; 1706 // Insert the join of the elements with common vars into Join. Add the 1707 // remaining elements to into SymmetricDifference. 1708 for (const auto &[Var, AV] : A) { 1709 // If this Var doesn't exist in B then add it to the symmetric difference 1710 // set. 1711 auto R = B.find(Var); 1712 if (R == B.end()) { 1713 SymmetricDifference.push_back(Var); 1714 continue; 1715 } 1716 // There is an entry for Var in both, join it. 1717 Join[Var] = joinAssignment(AV, R->second); 1718 } 1719 unsigned IntersectSize = Join.size(); 1720 (void)IntersectSize; 1721 1722 // Add the elements in B with variables that are not in A into 1723 // SymmetricDifference. 1724 for (const auto &Pair : B) { 1725 VariableID Var = Pair.first; 1726 if (A.count(Var) == 0) 1727 SymmetricDifference.push_back(Var); 1728 } 1729 1730 // Add SymmetricDifference elements to Join and return the result. 1731 for (auto Var : SymmetricDifference) 1732 Join.insert({Var, Assignment::makeNoneOrPhi()}); 1733 1734 assert(Join.size() == (IntersectSize + SymmetricDifference.size())); 1735 assert(Join.size() >= A.size() && Join.size() >= B.size()); 1736 return Join; 1737 } 1738 1739 AssignmentTrackingLowering::BlockInfo 1740 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, 1741 const BlockInfo &B) { 1742 BlockInfo Join; 1743 Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc); 1744 Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue); 1745 Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue); 1746 assert(Join.isValid()); 1747 return Join; 1748 } 1749 1750 bool AssignmentTrackingLowering::join( 1751 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) { 1752 BlockInfo BBLiveIn; 1753 bool FirstJoin = true; 1754 // LiveIn locs for BB is the join of the already-processed preds' LiveOut 1755 // locs. 1756 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 1757 // Ignore backedges if we have not visited the predecessor yet. As the 1758 // predecessor hasn't yet had locations propagated into it, most locations 1759 // will not yet be valid, so treat them as all being uninitialized and 1760 // potentially valid. If a location guessed to be correct here is 1761 // invalidated later, we will remove it when we revisit this block. This 1762 // is essentially the same as initialising all LocKinds and Assignments to 1763 // an implicit ⊥ value which is the identity value for the join operation. 1764 const BasicBlock *Pred = *I; 1765 if (!Visited.count(Pred)) 1766 continue; 1767 1768 auto PredLiveOut = LiveOut.find(Pred); 1769 // Pred must have been processed already. See comment at start of this loop. 1770 assert(PredLiveOut != LiveOut.end()); 1771 1772 // Perform the join of BBLiveIn (current live-in info) and PrevLiveOut. 1773 if (FirstJoin) 1774 BBLiveIn = PredLiveOut->second; 1775 else 1776 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second); 1777 FirstJoin = false; 1778 } 1779 1780 auto CurrentLiveInEntry = LiveIn.find(&BB); 1781 // Check if there isn't an entry, or there is but the LiveIn set has changed 1782 // (expensive check). 1783 if (CurrentLiveInEntry == LiveIn.end() || 1784 BBLiveIn != CurrentLiveInEntry->second) { 1785 LiveIn[&BB] = std::move(BBLiveIn); 1786 // A change has occured. 1787 return true; 1788 } 1789 // No change. 1790 return false; 1791 } 1792 1793 /// Return true if A fully contains B. 1794 static bool fullyContains(DIExpression::FragmentInfo A, 1795 DIExpression::FragmentInfo B) { 1796 auto ALeft = A.OffsetInBits; 1797 auto BLeft = B.OffsetInBits; 1798 if (BLeft < ALeft) 1799 return false; 1800 1801 auto ARight = ALeft + A.SizeInBits; 1802 auto BRight = BLeft + B.SizeInBits; 1803 if (BRight > ARight) 1804 return false; 1805 return true; 1806 } 1807 1808 static std::optional<at::AssignmentInfo> 1809 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { 1810 // Don't bother checking if this is an AllocaInst. We know this 1811 // instruction has no tag which means there are no variables associated 1812 // with it. 1813 if (const auto *SI = dyn_cast<StoreInst>(&I)) 1814 return at::getAssignmentInfo(Layout, SI); 1815 if (const auto *MI = dyn_cast<MemIntrinsic>(&I)) 1816 return at::getAssignmentInfo(Layout, MI); 1817 // Alloca or non-store-like inst. 1818 return std::nullopt; 1819 } 1820 1821 /// Build a map of {Variable x: Variables y} where all variable fragments 1822 /// contained within the variable fragment x are in set y. This means that 1823 /// y does not contain all overlaps because partial overlaps are excluded. 1824 /// 1825 /// While we're iterating over the function, add single location defs for 1826 /// dbg.declares to \p FnVarLocs 1827 /// 1828 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to 1829 /// the stored-to variable fragments. 1830 /// 1831 /// These tasks are bundled together to reduce the number of times we need 1832 /// to iterate over the function as they can be achieved together in one pass. 1833 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( 1834 Function &Fn, FunctionVarLocsBuilder *FnVarLocs, 1835 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) { 1836 DenseSet<DebugVariable> Seen; 1837 // Map of Variable: [Fragments]. 1838 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap; 1839 // Iterate over all instructions: 1840 // - dbg.declare -> add single location variable record 1841 // - dbg.* -> Add fragments to FragmentMap 1842 // - untagged store -> Add fragments to FragmentMap and update 1843 // UntaggedStoreVars. 1844 // We need to add fragments for untagged stores too so that we can correctly 1845 // clobber overlapped fragment locations later. 1846 for (auto &BB : Fn) { 1847 for (auto &I : BB) { 1848 if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) { 1849 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(), 1850 DDI->getDebugLoc(), DDI->getAddress()); 1851 } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1852 DebugVariable DV = DebugVariable(DII); 1853 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 1854 if (Seen.insert(DV).second) 1855 FragmentMap[DA].push_back(DV); 1856 } else if (auto Info = getUntaggedStoreAssignmentInfo( 1857 I, Fn.getParent()->getDataLayout())) { 1858 // Find markers linked to this alloca. 1859 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) { 1860 // Discard the fragment if it covers the entire variable. 1861 std::optional<DIExpression::FragmentInfo> FragInfo = 1862 [&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> { 1863 DIExpression::FragmentInfo F; 1864 F.OffsetInBits = Info->OffsetInBits; 1865 F.SizeInBits = Info->SizeInBits; 1866 if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo()) 1867 F.OffsetInBits += ExistingFrag->OffsetInBits; 1868 if (auto Sz = DAI->getVariable()->getSizeInBits()) { 1869 if (F.OffsetInBits == 0 && F.SizeInBits == *Sz) 1870 return std::nullopt; 1871 } 1872 return F; 1873 }(); 1874 1875 DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo, 1876 DAI->getDebugLoc().getInlinedAt()); 1877 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 1878 1879 // Cache this info for later. 1880 UntaggedStoreVars[&I].push_back( 1881 {FnVarLocs->insertVariable(DV), *Info}); 1882 1883 if (Seen.insert(DV).second) 1884 FragmentMap[DA].push_back(DV); 1885 } 1886 } 1887 } 1888 } 1889 1890 // Sort the fragment map for each DebugAggregate in non-descending 1891 // order of fragment size. Assert no entries are duplicates. 1892 for (auto &Pair : FragmentMap) { 1893 SmallVector<DebugVariable, 8> &Frags = Pair.second; 1894 std::sort( 1895 Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) { 1896 assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault())); 1897 return Elmt.getFragmentOrDefault().SizeInBits > 1898 Next.getFragmentOrDefault().SizeInBits; 1899 }); 1900 } 1901 1902 // Build the map. 1903 AssignmentTrackingLowering::OverlapMap Map; 1904 for (auto Pair : FragmentMap) { 1905 auto &Frags = Pair.second; 1906 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { 1907 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); 1908 // Find the frags that this is contained within. 1909 // 1910 // Because Frags is sorted by size and none have the same offset and 1911 // size, we know that this frag can only be contained by subsequent 1912 // elements. 1913 SmallVector<DebugVariable, 8>::iterator OtherIt = It; 1914 ++OtherIt; 1915 VariableID ThisVar = FnVarLocs->insertVariable(*It); 1916 for (; OtherIt != IEnd; ++OtherIt) { 1917 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); 1918 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt); 1919 if (fullyContains(OtherFrag, Frag)) 1920 Map[OtherVar].push_back(ThisVar); 1921 } 1922 } 1923 } 1924 1925 return Map; 1926 } 1927 1928 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { 1929 if (Fn.size() > MaxNumBlocks) { 1930 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() 1931 << ": too many blocks (" << Fn.size() << ")\n"); 1932 at::deleteAll(&Fn); 1933 return false; 1934 } 1935 1936 FnVarLocs = FnVarLocsBuilder; 1937 1938 // The general structure here is inspired by VarLocBasedImpl.cpp 1939 // (LiveDebugValues). 1940 1941 // Build the variable fragment overlap map. 1942 // Note that this pass doesn't handle partial overlaps correctly (FWIW 1943 // neither does LiveDebugVariables) because that is difficult to do and 1944 // appears to be rare occurance. 1945 VarContains = 1946 buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars); 1947 1948 // Prepare for traversal. 1949 ReversePostOrderTraversal<Function *> RPOT(&Fn); 1950 std::priority_queue<unsigned int, std::vector<unsigned int>, 1951 std::greater<unsigned int>> 1952 Worklist; 1953 std::priority_queue<unsigned int, std::vector<unsigned int>, 1954 std::greater<unsigned int>> 1955 Pending; 1956 DenseMap<unsigned int, BasicBlock *> OrderToBB; 1957 DenseMap<BasicBlock *, unsigned int> BBToOrder; 1958 { // Init OrderToBB and BBToOrder. 1959 unsigned int RPONumber = 0; 1960 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 1961 OrderToBB[RPONumber] = *RI; 1962 BBToOrder[*RI] = RPONumber; 1963 Worklist.push(RPONumber); 1964 ++RPONumber; 1965 } 1966 LiveIn.init(RPONumber); 1967 LiveOut.init(RPONumber); 1968 } 1969 1970 // Perform the traversal. 1971 // 1972 // This is a standard "union of predecessor outs" dataflow problem. To solve 1973 // it, we perform join() and process() using the two worklist method until 1974 // the LiveIn data for each block becomes unchanging. The "proof" that this 1975 // terminates can be put together by looking at the comments around LocKind, 1976 // Assignment, and the various join methods, which show that all the elements 1977 // involved are made up of join-semilattices; LiveIn(n) can only 1978 // monotonically increase in value throughout the dataflow. 1979 // 1980 SmallPtrSet<BasicBlock *, 16> Visited; 1981 while (!Worklist.empty()) { 1982 // We track what is on the pending worklist to avoid inserting the same 1983 // thing twice. 1984 SmallPtrSet<BasicBlock *, 16> OnPending; 1985 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 1986 while (!Worklist.empty()) { 1987 BasicBlock *BB = OrderToBB[Worklist.top()]; 1988 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 1989 Worklist.pop(); 1990 bool InChanged = join(*BB, Visited); 1991 // Always consider LiveIn changed on the first visit. 1992 InChanged |= Visited.insert(BB).second; 1993 if (InChanged) { 1994 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); 1995 // Mutate a copy of LiveIn while processing BB. After calling process 1996 // LiveSet is the LiveOut set for BB. 1997 BlockInfo LiveSet = LiveIn[BB]; 1998 1999 // Process the instructions in the block. 2000 process(*BB, &LiveSet); 2001 2002 // Relatively expensive check: has anything changed in LiveOut for BB? 2003 if (LiveOut[BB] != LiveSet) { 2004 LLVM_DEBUG(dbgs() << BB->getName() 2005 << " has new OutLocs, add succs to worklist: [ "); 2006 LiveOut[BB] = std::move(LiveSet); 2007 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 2008 if (OnPending.insert(*I).second) { 2009 LLVM_DEBUG(dbgs() << I->getName() << " "); 2010 Pending.push(BBToOrder[*I]); 2011 } 2012 } 2013 LLVM_DEBUG(dbgs() << "]\n"); 2014 } 2015 } 2016 } 2017 Worklist.swap(Pending); 2018 // At this point, pending must be empty, since it was just the empty 2019 // worklist 2020 assert(Pending.empty() && "Pending should be empty"); 2021 } 2022 2023 // That's the hard part over. Now we just have some admin to do. 2024 2025 // Record whether we inserted any intrinsics. 2026 bool InsertedAnyIntrinsics = false; 2027 2028 // Identify and add defs for single location variables. 2029 // 2030 // Go through all of the defs that we plan to add. If the aggregate variable 2031 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single 2032 // location def and omit the rest. Add an entry to AlwaysStackHomed so that 2033 // we can identify those uneeded defs later. 2034 DenseSet<DebugAggregate> AlwaysStackHomed; 2035 for (const auto &Pair : InsertBeforeMap) { 2036 const auto &Vec = Pair.second; 2037 for (VarLocInfo VarLoc : Vec) { 2038 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2039 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2040 2041 // Skip this Var if it's not always stack homed. 2042 if (NotAlwaysStackHomed.contains(Aggr)) 2043 continue; 2044 2045 // Skip complex cases such as when different fragments of a variable have 2046 // been split into different allocas. Skipping in this case means falling 2047 // back to using a list of defs (which could reduce coverage, but is no 2048 // less correct). 2049 bool Simple = 2050 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); 2051 if (!Simple) { 2052 NotAlwaysStackHomed.insert(Aggr); 2053 continue; 2054 } 2055 2056 // All source assignments to this variable remain and all stores to any 2057 // part of the variable store to the same address (with varying 2058 // offsets). We can just emit a single location for the whole variable. 2059 // 2060 // Unless we've already done so, create the single location def now. 2061 if (AlwaysStackHomed.insert(Aggr).second) { 2062 assert(isa<AllocaInst>(VarLoc.V)); 2063 // TODO: When more complex cases are handled VarLoc.Expr should be 2064 // built appropriately rather than always using an empty DIExpression. 2065 // The assert below is a reminder. 2066 assert(Simple); 2067 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt); 2068 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2069 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.V); 2070 InsertedAnyIntrinsics = true; 2071 } 2072 } 2073 } 2074 2075 // Insert the other DEFs. 2076 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { 2077 SmallVector<VarLocInfo> NewDefs; 2078 for (const VarLocInfo &VarLoc : Vec) { 2079 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2080 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2081 // If this variable is always stack homed then we have already inserted a 2082 // dbg.declare and deleted this dbg.value. 2083 if (AlwaysStackHomed.contains(Aggr)) 2084 continue; 2085 NewDefs.push_back(VarLoc); 2086 InsertedAnyIntrinsics = true; 2087 } 2088 2089 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs)); 2090 } 2091 2092 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); 2093 2094 return InsertedAnyIntrinsics; 2095 } 2096 2097 bool AssignmentTrackingLowering::emitPromotedVarLocs( 2098 FunctionVarLocsBuilder *FnVarLocs) { 2099 bool InsertedAnyIntrinsics = false; 2100 // Go through every block, translating debug intrinsics for fully promoted 2101 // variables into FnVarLocs location defs. No analysis required for these. 2102 for (auto &BB : Fn) { 2103 for (auto &I : BB) { 2104 // Skip instructions other than dbg.values and dbg.assigns. 2105 auto *DVI = dyn_cast<DbgValueInst>(&I); 2106 if (!DVI) 2107 continue; 2108 // Skip variables that haven't been promoted - we've dealt with those 2109 // already. 2110 if (VarsWithStackSlot->contains(getAggregate(DVI))) 2111 continue; 2112 // Wrapper to get a single value (or undef) from DVI. 2113 auto GetValue = [DVI]() -> Value * { 2114 // We can't handle variadic DIExpressions yet so treat those as 2115 // kill locations. 2116 if (DVI->isKillLocation() || DVI->getValue() == nullptr || 2117 DVI->hasArgList()) 2118 return PoisonValue::get(Type::getInt32Ty(DVI->getContext())); 2119 return DVI->getValue(); 2120 }; 2121 Instruction *InsertBefore = I.getNextNode(); 2122 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator"); 2123 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI), 2124 DVI->getExpression(), DVI->getDebugLoc(), 2125 GetValue()); 2126 InsertedAnyIntrinsics = true; 2127 } 2128 } 2129 return InsertedAnyIntrinsics; 2130 } 2131 2132 /// Remove redundant definitions within sequences of consecutive location defs. 2133 /// This is done using a backward scan to keep the last def describing a 2134 /// specific variable/fragment. 2135 /// 2136 /// This implements removeRedundantDbgInstrsUsingBackwardScan from 2137 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2138 /// FunctionVarLocsBuilder instead of with intrinsics. 2139 static bool 2140 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, 2141 FunctionVarLocsBuilder &FnVarLocs) { 2142 bool Changed = false; 2143 SmallDenseSet<DebugVariable> VariableSet; 2144 2145 // Scan over the entire block, not just over the instructions mapped by 2146 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2147 // instructions. 2148 for (const Instruction &I : reverse(*BB)) { 2149 if (!isa<DbgVariableIntrinsic>(I)) { 2150 // Sequence of consecutive defs ended. Clear map for the next one. 2151 VariableSet.clear(); 2152 } 2153 2154 // Get the location defs that start just before this instruction. 2155 const auto *Locs = FnVarLocs.getWedge(&I); 2156 if (!Locs) 2157 continue; 2158 2159 NumWedgesScanned++; 2160 bool ChangedThisWedge = false; 2161 // The new pruned set of defs, reversed because we're scanning backwards. 2162 SmallVector<VarLocInfo> NewDefsReversed; 2163 2164 // Iterate over the existing defs in reverse. 2165 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { 2166 NumDefsScanned++; 2167 const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID); 2168 bool FirstDefOfFragment = VariableSet.insert(Key).second; 2169 2170 // If the same variable fragment is described more than once it is enough 2171 // to keep the last one (i.e. the first found in this reverse iteration). 2172 if (FirstDefOfFragment) { 2173 // New def found: keep it. 2174 NewDefsReversed.push_back(*RIt); 2175 } else { 2176 // Redundant def found: throw it away. Since the wedge of defs is being 2177 // rebuilt, doing nothing is the same as deleting an entry. 2178 ChangedThisWedge = true; 2179 NumDefsRemoved++; 2180 } 2181 continue; 2182 } 2183 2184 // Un-reverse the defs and replace the wedge with the pruned version. 2185 if (ChangedThisWedge) { 2186 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end()); 2187 FnVarLocs.setWedge(&I, std::move(NewDefsReversed)); 2188 NumWedgesChanged++; 2189 Changed = true; 2190 } 2191 } 2192 2193 return Changed; 2194 } 2195 2196 /// Remove redundant location defs using a forward scan. This can remove a 2197 /// location definition that is redundant due to indicating that a variable has 2198 /// the same value as is already being indicated by an earlier def. 2199 /// 2200 /// This implements removeRedundantDbgInstrsUsingForwardScan from 2201 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2202 /// FunctionVarLocsBuilder instead of with intrinsics 2203 static bool 2204 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, 2205 FunctionVarLocsBuilder &FnVarLocs) { 2206 bool Changed = false; 2207 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2208 2209 // Scan over the entire block, not just over the instructions mapped by 2210 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2211 // instructions. 2212 for (const Instruction &I : *BB) { 2213 // Get the defs that come just before this instruction. 2214 const auto *Locs = FnVarLocs.getWedge(&I); 2215 if (!Locs) 2216 continue; 2217 2218 NumWedgesScanned++; 2219 bool ChangedThisWedge = false; 2220 // The new pruned set of defs. 2221 SmallVector<VarLocInfo> NewDefs; 2222 2223 // Iterate over the existing defs. 2224 for (const VarLocInfo &Loc : *Locs) { 2225 NumDefsScanned++; 2226 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2227 std::nullopt, Loc.DL.getInlinedAt()); 2228 auto VMI = VariableMap.find(Key); 2229 2230 // Update the map if we found a new value/expression describing the 2231 // variable, or if the variable wasn't mapped already. 2232 if (VMI == VariableMap.end() || VMI->second.first != Loc.V || 2233 VMI->second.second != Loc.Expr) { 2234 VariableMap[Key] = {Loc.V, Loc.Expr}; 2235 NewDefs.push_back(Loc); 2236 continue; 2237 } 2238 2239 // Did not insert this Loc, which is the same as removing it. 2240 ChangedThisWedge = true; 2241 NumDefsRemoved++; 2242 } 2243 2244 // Replace the existing wedge with the pruned version. 2245 if (ChangedThisWedge) { 2246 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2247 NumWedgesChanged++; 2248 Changed = true; 2249 } 2250 } 2251 2252 return Changed; 2253 } 2254 2255 static bool 2256 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, 2257 FunctionVarLocsBuilder &FnVarLocs) { 2258 assert(BB->isEntryBlock()); 2259 // Do extra work to ensure that we remove semantically unimportant undefs. 2260 // 2261 // This is to work around the fact that SelectionDAG will hoist dbg.values 2262 // using argument values to the top of the entry block. That can move arg 2263 // dbg.values before undef and constant dbg.values which they previously 2264 // followed. The easiest thing to do is to just try to feed SelectionDAG 2265 // input it's happy with. 2266 // 2267 // Map of {Variable x: Fragments y} where the fragments y of variable x have 2268 // have at least one non-undef location defined already. Don't use directly, 2269 // instead call DefineBits and HasDefinedBits. 2270 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>> 2271 VarsWithDef; 2272 // Specify that V (a fragment of A) has a non-undef location. 2273 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2274 VarsWithDef[A].insert(V.getFragmentOrDefault()); 2275 }; 2276 // Return true if a non-undef location has been defined for V (a fragment of 2277 // A). Doesn't imply that the location is currently non-undef, just that a 2278 // non-undef location has been seen previously. 2279 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2280 auto FragsIt = VarsWithDef.find(A); 2281 if (FragsIt == VarsWithDef.end()) 2282 return false; 2283 return llvm::any_of(FragsIt->second, [V](auto Frag) { 2284 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); 2285 }); 2286 }; 2287 2288 bool Changed = false; 2289 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2290 2291 // Scan over the entire block, not just over the instructions mapped by 2292 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2293 // instructions. 2294 for (const Instruction &I : *BB) { 2295 // Get the defs that come just before this instruction. 2296 const auto *Locs = FnVarLocs.getWedge(&I); 2297 if (!Locs) 2298 continue; 2299 2300 NumWedgesScanned++; 2301 bool ChangedThisWedge = false; 2302 // The new pruned set of defs. 2303 SmallVector<VarLocInfo> NewDefs; 2304 2305 // Iterate over the existing defs. 2306 for (const VarLocInfo &Loc : *Locs) { 2307 NumDefsScanned++; 2308 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2309 Loc.DL.getInlinedAt()}; 2310 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID); 2311 2312 // Remove undef entries that are encountered before any non-undef 2313 // intrinsics from the entry block. 2314 if (isa<UndefValue>(Loc.V) && !HasDefinedBits(Aggr, Var)) { 2315 // Did not insert this Loc, which is the same as removing it. 2316 NumDefsRemoved++; 2317 ChangedThisWedge = true; 2318 continue; 2319 } 2320 2321 DefineBits(Aggr, Var); 2322 NewDefs.push_back(Loc); 2323 } 2324 2325 // Replace the existing wedge with the pruned version. 2326 if (ChangedThisWedge) { 2327 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2328 NumWedgesChanged++; 2329 Changed = true; 2330 } 2331 } 2332 2333 return Changed; 2334 } 2335 2336 static bool removeRedundantDbgLocs(const BasicBlock *BB, 2337 FunctionVarLocsBuilder &FnVarLocs) { 2338 bool MadeChanges = false; 2339 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); 2340 if (BB->isEntryBlock()) 2341 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); 2342 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); 2343 2344 if (MadeChanges) 2345 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() 2346 << "\n"); 2347 return MadeChanges; 2348 } 2349 2350 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) { 2351 DenseSet<DebugAggregate> Result; 2352 for (auto &BB : Fn) { 2353 for (auto &I : BB) { 2354 // Any variable linked to an instruction is considered 2355 // interesting. Ideally we only need to check Allocas, however, a 2356 // DIAssignID might get dropped from an alloca but not stores. In that 2357 // case, we need to consider the variable interesting for NFC behaviour 2358 // with this change. TODO: Consider only looking at allocas. 2359 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) { 2360 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()}); 2361 } 2362 } 2363 } 2364 return Result; 2365 } 2366 2367 static void analyzeFunction(Function &Fn, const DataLayout &Layout, 2368 FunctionVarLocsBuilder *FnVarLocs) { 2369 // The analysis will generate location definitions for all variables, but we 2370 // only need to perform a dataflow on the set of variables which have a stack 2371 // slot. Find those now. 2372 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn); 2373 2374 bool Changed = false; 2375 2376 // Use a scope block to clean up AssignmentTrackingLowering before running 2377 // MemLocFragmentFill to reduce peak memory consumption. 2378 { 2379 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); 2380 Changed = Pass.run(FnVarLocs); 2381 } 2382 2383 if (Changed) { 2384 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot); 2385 Pass.run(FnVarLocs); 2386 2387 // Remove redundant entries. As well as reducing memory consumption and 2388 // avoiding waiting cycles later by burning some now, this has another 2389 // important job. That is to work around some SelectionDAG quirks. See 2390 // removeRedundantDbgLocsUsingForwardScan comments for more info on that. 2391 for (auto &BB : Fn) 2392 removeRedundantDbgLocs(&BB, *FnVarLocs); 2393 } 2394 } 2395 2396 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { 2397 if (!isAssignmentTrackingEnabled(*F.getParent())) 2398 return false; 2399 2400 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() 2401 << "\n"); 2402 auto DL = std::make_unique<DataLayout>(F.getParent()); 2403 2404 // Clear previous results. 2405 Results->clear(); 2406 2407 FunctionVarLocsBuilder Builder; 2408 analyzeFunction(F, *DL.get(), &Builder); 2409 2410 // Save these results. 2411 Results->init(Builder); 2412 2413 if (PrintResults && isFunctionInPrintList(F.getName())) 2414 Results->print(errs(), F); 2415 2416 // Return false because this pass does not modify the function. 2417 return false; 2418 } 2419 2420 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() 2421 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {} 2422 2423 char AssignmentTrackingAnalysis::ID = 0; 2424 2425 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, 2426 "Assignment Tracking Analysis", false, true) 2427