xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
10 #include "LiveDebugValues/LiveDebugValues.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/DenseMapInfo.h"
13 #include "llvm/ADT/IntervalMap.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/UniqueVector.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DebugProgramInstruction.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/IR/PrintPasses.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include <assert.h>
35 #include <cstdint>
36 #include <optional>
37 #include <queue>
38 #include <sstream>
39 #include <unordered_map>
40 
41 using namespace llvm;
42 #define DEBUG_TYPE "debug-ata"
43 
44 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
45 STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
46 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
47 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
48 
49 static cl::opt<unsigned>
50     MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
51                  cl::desc("Maximum num basic blocks before debug info dropped"),
52                  cl::Hidden);
53 /// Option for debugging the pass, determines if the memory location fragment
54 /// filling happens after generating the variable locations.
55 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
56                                           cl::Hidden);
57 /// Print the results of the analysis. Respects -filter-print-funcs.
58 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
59                                   cl::Hidden);
60 
61 /// Coalesce adjacent dbg locs describing memory locations that have contiguous
62 /// fragments. This reduces the cost of LiveDebugValues which does SSA
63 /// construction for each explicitly stated variable fragment.
64 static cl::opt<cl::boolOrDefault>
65     CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
66 
67 // Implicit conversions are disabled for enum class types, so unfortunately we
68 // need to create a DenseMapInfo wrapper around the specified underlying type.
69 template <> struct llvm::DenseMapInfo<VariableID> {
70   using Wrapped = DenseMapInfo<unsigned>;
71   static inline VariableID getEmptyKey() {
72     return static_cast<VariableID>(Wrapped::getEmptyKey());
73   }
74   static inline VariableID getTombstoneKey() {
75     return static_cast<VariableID>(Wrapped::getTombstoneKey());
76   }
77   static unsigned getHashValue(const VariableID &Val) {
78     return Wrapped::getHashValue(static_cast<unsigned>(Val));
79   }
80   static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
81     return LHS == RHS;
82   }
83 };
84 
85 using VarLocInsertPt = PointerUnion<const Instruction *, const DbgRecord *>;
86 
87 namespace std {
88 template <> struct hash<VarLocInsertPt> {
89   using argument_type = VarLocInsertPt;
90   using result_type = std::size_t;
91 
92   result_type operator()(const argument_type &Arg) const {
93     return std::hash<void *>()(Arg.getOpaqueValue());
94   }
95 };
96 } // namespace std
97 
98 /// Helper class to build FunctionVarLocs, since that class isn't easy to
99 /// modify. TODO: There's not a great deal of value in the split, it could be
100 /// worth merging the two classes.
101 class FunctionVarLocsBuilder {
102   friend FunctionVarLocs;
103   UniqueVector<DebugVariable> Variables;
104   // Use an unordered_map so we don't invalidate iterators after
105   // insert/modifications.
106   std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
107 
108   SmallVector<VarLocInfo> SingleLocVars;
109 
110 public:
111   unsigned getNumVariables() const { return Variables.size(); }
112 
113   /// Find or insert \p V and return the ID.
114   VariableID insertVariable(DebugVariable V) {
115     return static_cast<VariableID>(Variables.insert(V));
116   }
117 
118   /// Get a variable from its \p ID.
119   const DebugVariable &getVariable(VariableID ID) const {
120     return Variables[static_cast<unsigned>(ID)];
121   }
122 
123   /// Return ptr to wedge of defs or nullptr if no defs come just before /p
124   /// Before.
125   const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const {
126     auto R = VarLocsBeforeInst.find(Before);
127     if (R == VarLocsBeforeInst.end())
128       return nullptr;
129     return &R->second;
130   }
131 
132   /// Replace the defs that come just before /p Before with /p Wedge.
133   void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) {
134     VarLocsBeforeInst[Before] = std::move(Wedge);
135   }
136 
137   /// Add a def for a variable that is valid for its lifetime.
138   void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
139                        RawLocationWrapper R) {
140     VarLocInfo VarLoc;
141     VarLoc.VariableID = insertVariable(Var);
142     VarLoc.Expr = Expr;
143     VarLoc.DL = DL;
144     VarLoc.Values = R;
145     SingleLocVars.emplace_back(VarLoc);
146   }
147 
148   /// Add a def to the wedge of defs just before /p Before.
149   void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr,
150                  DebugLoc DL, RawLocationWrapper R) {
151     VarLocInfo VarLoc;
152     VarLoc.VariableID = insertVariable(Var);
153     VarLoc.Expr = Expr;
154     VarLoc.DL = DL;
155     VarLoc.Values = R;
156     VarLocsBeforeInst[Before].emplace_back(VarLoc);
157   }
158 };
159 
160 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
161   // Print the variable table first. TODO: Sorting by variable could make the
162   // output more stable?
163   unsigned Counter = -1;
164   OS << "=== Variables ===\n";
165   for (const DebugVariable &V : Variables) {
166     ++Counter;
167     // Skip first entry because it is a dummy entry.
168     if (Counter == 0) {
169       continue;
170     }
171     OS << "[" << Counter << "] " << V.getVariable()->getName();
172     if (auto F = V.getFragment())
173       OS << " bits [" << F->OffsetInBits << ", "
174          << F->OffsetInBits + F->SizeInBits << ")";
175     if (const auto *IA = V.getInlinedAt())
176       OS << " inlined-at " << *IA;
177     OS << "\n";
178   }
179 
180   auto PrintLoc = [&OS](const VarLocInfo &Loc) {
181     OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
182        << " Expr=" << *Loc.Expr << " Values=(";
183     for (auto *Op : Loc.Values.location_ops()) {
184       errs() << Op->getName() << " ";
185     }
186     errs() << ")\n";
187   };
188 
189   // Print the single location variables.
190   OS << "=== Single location vars ===\n";
191   for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
192        ++It) {
193     PrintLoc(*It);
194   }
195 
196   // Print the non-single-location defs in line with IR.
197   OS << "=== In-line variable defs ===";
198   for (const BasicBlock &BB : Fn) {
199     OS << "\n" << BB.getName() << ":\n";
200     for (const Instruction &I : BB) {
201       for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
202         PrintLoc(*It);
203       }
204       OS << I << "\n";
205     }
206   }
207 }
208 
209 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
210   // Add the single-location variables first.
211   for (const auto &VarLoc : Builder.SingleLocVars)
212     VarLocRecords.emplace_back(VarLoc);
213   // Mark the end of the section.
214   SingleVarLocEnd = VarLocRecords.size();
215 
216   // Insert a contiguous block of VarLocInfos for each instruction, mapping it
217   // to the start and end position in the vector with VarLocsBeforeInst. This
218   // block includes VarLocs for any DbgVariableRecords attached to that
219   // instruction.
220   for (auto &P : Builder.VarLocsBeforeInst) {
221     // Process VarLocs attached to a DbgRecord alongside their marker
222     // Instruction.
223     if (isa<const DbgRecord *>(P.first))
224       continue;
225     const Instruction *I = cast<const Instruction *>(P.first);
226     unsigned BlockStart = VarLocRecords.size();
227     // Any VarLocInfos attached to a DbgRecord should now be remapped to their
228     // marker Instruction, in order of DbgRecord appearance and prior to any
229     // VarLocInfos attached directly to that instruction.
230     for (const DbgVariableRecord &DVR : filterDbgVars(I->getDbgRecordRange())) {
231       // Even though DVR defines a variable location, VarLocsBeforeInst can
232       // still be empty if that VarLoc was redundant.
233       if (!Builder.VarLocsBeforeInst.count(&DVR))
234         continue;
235       for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DVR])
236         VarLocRecords.emplace_back(VarLoc);
237     }
238     for (const VarLocInfo &VarLoc : P.second)
239       VarLocRecords.emplace_back(VarLoc);
240     unsigned BlockEnd = VarLocRecords.size();
241     // Record the start and end indices.
242     if (BlockEnd != BlockStart)
243       VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
244   }
245 
246   // Copy the Variables vector from the builder's UniqueVector.
247   assert(Variables.empty() && "Expect clear before init");
248   // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
249   // are one-based) so reserve an extra and insert a dummy.
250   Variables.reserve(Builder.Variables.size() + 1);
251   Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
252   Variables.append(Builder.Variables.begin(), Builder.Variables.end());
253 }
254 
255 void FunctionVarLocs::clear() {
256   Variables.clear();
257   VarLocRecords.clear();
258   VarLocsBeforeInst.clear();
259   SingleVarLocEnd = 0;
260 }
261 
262 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
263 /// Start as far as possible. Prepend \Expression with the offset and append it
264 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
265 /// value and modified expression.
266 static std::pair<Value *, DIExpression *>
267 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
268                                   DIExpression *Expression) {
269   APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
270   Value *End =
271       Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
272   SmallVector<uint64_t, 3> Ops;
273   if (OffsetInBytes.getBoolValue()) {
274     Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
275     Expression = DIExpression::prependOpcodes(
276         Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
277   }
278   Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
279   return {End, Expression};
280 }
281 
282 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
283 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
284 /// expression is too complex to interpret.
285 static std::optional<int64_t>
286 getDerefOffsetInBytes(const DIExpression *DIExpr) {
287   int64_t Offset = 0;
288   const unsigned NumElements = DIExpr->getNumElements();
289   const auto Elements = DIExpr->getElements();
290   unsigned ExpectedDerefIdx = 0;
291   // Extract the offset.
292   if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
293     Offset = Elements[1];
294     ExpectedDerefIdx = 2;
295   } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
296     ExpectedDerefIdx = 3;
297     if (Elements[2] == dwarf::DW_OP_plus)
298       Offset = Elements[1];
299     else if (Elements[2] == dwarf::DW_OP_minus)
300       Offset = -Elements[1];
301     else
302       return std::nullopt;
303   }
304 
305   // If that's all there is it means there's no deref.
306   if (ExpectedDerefIdx >= NumElements)
307     return std::nullopt;
308 
309   // Check the next element is DW_OP_deref - otherwise this is too complex or
310   // isn't a deref expression.
311   if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
312     return std::nullopt;
313 
314   // Check the final operation is either the DW_OP_deref or is a fragment.
315   if (NumElements == ExpectedDerefIdx + 1)
316     return Offset; // Ends with deref.
317   unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
318   unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
319   if (NumElements == ExpectedFragFinalIdx + 1 &&
320       Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
321     return Offset; // Ends with deref + fragment.
322 
323   // Don't bother trying to interpret anything more complex.
324   return std::nullopt;
325 }
326 
327 /// A whole (unfragmented) source variable.
328 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
329 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
330   return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
331 }
332 static DebugAggregate getAggregate(const DebugVariable &Var) {
333   return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
334 }
335 
336 static bool shouldCoalesceFragments(Function &F) {
337   // Enabling fragment coalescing reduces compiler run time when instruction
338   // referencing is enabled. However, it may cause LiveDebugVariables to create
339   // incorrect locations. Since instruction-referencing mode effectively
340   // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
341   // has not been explicitly set and instruction-referencing is turned on.
342   switch (CoalesceAdjacentFragmentsOpt) {
343   case cl::boolOrDefault::BOU_UNSET:
344     return debuginfoShouldUseDebugInstrRef(
345         Triple(F.getParent()->getTargetTriple()));
346   case cl::boolOrDefault::BOU_TRUE:
347     return true;
348   case cl::boolOrDefault::BOU_FALSE:
349     return false;
350   }
351   llvm_unreachable("Unknown boolOrDefault value");
352 }
353 
354 namespace {
355 /// In dwarf emission, the following sequence
356 ///    1. dbg.value ... Fragment(0, 64)
357 ///    2. dbg.value ... Fragment(0, 32)
358 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
359 /// the intersection of the fragments to having "no location"). This makes
360 /// sense for implicit location values because splitting the computed values
361 /// could be troublesome, and is probably quite uncommon.  When we convert
362 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
363 /// a location (memory) rather than a value means we don't need to worry about
364 /// splitting any values, so we try to recover the rest of the fragment
365 /// location here.
366 /// This class performs a(nother) dataflow analysis over the function, adding
367 /// variable locations so that any bits of a variable with a memory location
368 /// have that location explicitly reinstated at each subsequent variable
369 /// location definition that that doesn't overwrite those bits. i.e. after a
370 /// variable location def, insert new defs for the memory location with
371 /// fragments for the difference of "all bits currently in memory" and "the
372 /// fragment of the second def".
373 class MemLocFragmentFill {
374   Function &Fn;
375   FunctionVarLocsBuilder *FnVarLocs;
376   const DenseSet<DebugAggregate> *VarsWithStackSlot;
377   bool CoalesceAdjacentFragments;
378 
379   // 0 = no memory location.
380   using BaseAddress = unsigned;
381   using OffsetInBitsTy = unsigned;
382   using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
383   using FragsInMemMap = IntervalMap<
384       OffsetInBitsTy, BaseAddress,
385       IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
386       FragTraits>;
387   FragsInMemMap::Allocator IntervalMapAlloc;
388   using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
389 
390   /// IDs for memory location base addresses in maps. Use 0 to indicate that
391   /// there's no memory location.
392   UniqueVector<RawLocationWrapper> Bases;
393   UniqueVector<DebugAggregate> Aggregates;
394   DenseMap<const BasicBlock *, VarFragMap> LiveIn;
395   DenseMap<const BasicBlock *, VarFragMap> LiveOut;
396 
397   struct FragMemLoc {
398     unsigned Var;
399     unsigned Base;
400     unsigned OffsetInBits;
401     unsigned SizeInBits;
402     DebugLoc DL;
403   };
404   using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>;
405 
406   /// BBInsertBeforeMap holds a description for the set of location defs to be
407   /// inserted after the analysis is complete. It is updated during the dataflow
408   /// and the entry for a block is CLEARED each time it is (re-)visited. After
409   /// the dataflow is complete, each block entry will contain the set of defs
410   /// calculated during the final (fixed-point) iteration.
411   DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
412 
413   static bool intervalMapsAreEqual(const FragsInMemMap &A,
414                                    const FragsInMemMap &B) {
415     auto AIt = A.begin(), AEnd = A.end();
416     auto BIt = B.begin(), BEnd = B.end();
417     for (; AIt != AEnd; ++AIt, ++BIt) {
418       if (BIt == BEnd)
419         return false; // B has fewer elements than A.
420       if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
421         return false; // Interval is different.
422       if (*AIt != *BIt)
423         return false; // Value at interval is different.
424     }
425     // AIt == AEnd. Check BIt is also now at end.
426     return BIt == BEnd;
427   }
428 
429   static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
430     if (A.size() != B.size())
431       return false;
432     for (const auto &APair : A) {
433       auto BIt = B.find(APair.first);
434       if (BIt == B.end())
435         return false;
436       if (!intervalMapsAreEqual(APair.second, BIt->second))
437         return false;
438     }
439     return true;
440   }
441 
442   /// Return a string for the value that \p BaseID represents.
443   std::string toString(unsigned BaseID) {
444     if (BaseID)
445       return Bases[BaseID].getVariableLocationOp(0)->getName().str();
446     else
447       return "None";
448   }
449 
450   /// Format string describing an FragsInMemMap (IntervalMap) interval.
451   std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
452     std::string String;
453     std::stringstream S(String);
454     if (It.valid()) {
455       S << "[" << It.start() << ", " << It.stop()
456         << "): " << toString(It.value());
457     } else {
458       S << "invalid iterator (end)";
459     }
460     if (Newline)
461       S << "\n";
462     return S.str();
463   };
464 
465   FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
466     FragsInMemMap Result(IntervalMapAlloc);
467     for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
468       LLVM_DEBUG(dbgs() << "a " << toString(AIt));
469       // This is basically copied from process() and inverted (process is
470       // performing something like a union whereas this is more of an
471       // intersect).
472 
473       // There's no work to do if interval `a` overlaps no fragments in map `B`.
474       if (!B.overlaps(AIt.start(), AIt.stop()))
475         continue;
476 
477       // Does StartBit intersect an existing fragment?
478       auto FirstOverlap = B.find(AIt.start());
479       assert(FirstOverlap != B.end());
480       bool IntersectStart = FirstOverlap.start() < AIt.start();
481       LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
482                         << ", IntersectStart: " << IntersectStart << "\n");
483 
484       // Does EndBit intersect an existing fragment?
485       auto LastOverlap = B.find(AIt.stop());
486       bool IntersectEnd =
487           LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
488       LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
489                         << ", IntersectEnd: " << IntersectEnd << "\n");
490 
491       // Check if both ends of `a` intersect the same interval `b`.
492       if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
493         // Insert `a` (`a` is contained in `b`) if the values match.
494         // [ a ]
495         // [ - b - ]
496         // -
497         // [ r ]
498         LLVM_DEBUG(dbgs() << "- a is contained within "
499                           << toString(FirstOverlap));
500         if (*AIt && *AIt == *FirstOverlap)
501           Result.insert(AIt.start(), AIt.stop(), *AIt);
502       } else {
503         // There's an overlap but `a` is not fully contained within
504         // `b`. Shorten any end-point intersections.
505         //     [ - a - ]
506         // [ - b - ]
507         // -
508         //     [ r ]
509         auto Next = FirstOverlap;
510         if (IntersectStart) {
511           LLVM_DEBUG(dbgs() << "- insert intersection of a and "
512                             << toString(FirstOverlap));
513           if (*AIt && *AIt == *FirstOverlap)
514             Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
515           ++Next;
516         }
517         // [ - a - ]
518         //     [ - b - ]
519         // -
520         //     [ r ]
521         if (IntersectEnd) {
522           LLVM_DEBUG(dbgs() << "- insert intersection of a and "
523                             << toString(LastOverlap));
524           if (*AIt && *AIt == *LastOverlap)
525             Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
526         }
527 
528         // Insert all intervals in map `B` that are contained within interval
529         // `a` where the values match.
530         // [ -  - a -  - ]
531         // [ b1 ]   [ b2 ]
532         // -
533         // [ r1 ]   [ r2 ]
534         while (Next != B.end() && Next.start() < AIt.stop() &&
535                Next.stop() <= AIt.stop()) {
536           LLVM_DEBUG(dbgs()
537                      << "- insert intersection of a and " << toString(Next));
538           if (*AIt && *AIt == *Next)
539             Result.insert(Next.start(), Next.stop(), *Next);
540           ++Next;
541         }
542       }
543     }
544     return Result;
545   }
546 
547   /// Meet \p A and \p B, storing the result in \p A.
548   void meetVars(VarFragMap &A, const VarFragMap &B) {
549     // Meet A and B.
550     //
551     // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
552     for (auto It = A.begin(), End = A.end(); It != End; ++It) {
553       unsigned AVar = It->first;
554       FragsInMemMap &AFrags = It->second;
555       auto BIt = B.find(AVar);
556       if (BIt == B.end()) {
557         A.erase(It);
558         continue; // Var has no bits defined in B.
559       }
560       LLVM_DEBUG(dbgs() << "meet fragment maps for "
561                         << Aggregates[AVar].first->getName() << "\n");
562       AFrags = meetFragments(AFrags, BIt->second);
563     }
564   }
565 
566   bool meet(const BasicBlock &BB,
567             const SmallPtrSet<BasicBlock *, 16> &Visited) {
568     LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
569                       << "\n");
570 
571     VarFragMap BBLiveIn;
572     bool FirstMeet = true;
573     // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
574     // locs.
575     for (const BasicBlock *Pred : predecessors(&BB)) {
576       // Ignore preds that haven't been processed yet. This is essentially the
577       // same as initialising all variables to implicit top value (⊤) which is
578       // the identity value for the meet operation.
579       if (!Visited.count(Pred))
580         continue;
581 
582       auto PredLiveOut = LiveOut.find(Pred);
583       assert(PredLiveOut != LiveOut.end());
584 
585       if (FirstMeet) {
586         LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
587         BBLiveIn = PredLiveOut->second;
588         FirstMeet = false;
589       } else {
590         LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
591                           << "\n");
592         meetVars(BBLiveIn, PredLiveOut->second);
593       }
594 
595       // An empty set is ⊥ for the intersect-like meet operation. If we've
596       // already got ⊥ there's no need to run the code - we know the result is
597       // ⊥ since `meet(a, ⊥) = ⊥`.
598       if (BBLiveIn.size() == 0)
599         break;
600     }
601 
602     auto CurrentLiveInEntry = LiveIn.find(&BB);
603     // If there's no LiveIn entry for the block yet, add it.
604     if (CurrentLiveInEntry == LiveIn.end()) {
605       LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
606                         << "\n");
607       LiveIn[&BB] = std::move(BBLiveIn);
608       return /*Changed=*/true;
609     }
610 
611     // If the LiveIn set has changed (expensive check) update it and return
612     // true.
613     if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
614       LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
615       CurrentLiveInEntry->second = std::move(BBLiveIn);
616       return /*Changed=*/true;
617     }
618 
619     LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
620     return /*Changed=*/false;
621   }
622 
623   void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
624                     unsigned StartBit, unsigned EndBit, unsigned Base,
625                     DebugLoc DL) {
626     assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
627     if (!Base)
628       return;
629     FragMemLoc Loc;
630     Loc.Var = Var;
631     Loc.OffsetInBits = StartBit;
632     Loc.SizeInBits = EndBit - StartBit;
633     assert(Base && "Expected a non-zero ID for Base address");
634     Loc.Base = Base;
635     Loc.DL = DL;
636     BBInsertBeforeMap[&BB][Before].push_back(Loc);
637     LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
638                       << " bits [" << StartBit << ", " << EndBit << ")\n");
639   }
640 
641   /// Inserts a new dbg def if the interval found when looking up \p StartBit
642   /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
643   /// indicates - assuming StartBit->EndBit has just been inserted - that the
644   /// slice has been coalesced in the map).
645   void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
646                          unsigned StartBit, unsigned EndBit, unsigned Base,
647                          DebugLoc DL, const FragsInMemMap &FragMap) {
648     if (!CoalesceAdjacentFragments)
649       return;
650     // We've inserted the location into the map. The map will have coalesced
651     // adjacent intervals (variable fragments) that describe the same memory
652     // location. Use this knowledge to insert a debug location that describes
653     // that coalesced fragment. This may eclipse other locs we've just
654     // inserted. This is okay as redundant locs will be cleaned up later.
655     auto CoalescedFrag = FragMap.find(StartBit);
656     // Bail if no coalescing has taken place.
657     if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
658       return;
659 
660     LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
661                       << " to " << CoalescedFrag.stop() << "\n");
662     insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
663                  Base, DL);
664   }
665 
666   void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
667               VarFragMap &LiveSet) {
668     DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
669     if (skipVariable(DbgVar.getVariable()))
670       return;
671     // Don't bother doing anything for this variables if we know it's fully
672     // promoted. We're only interested in variables that (sometimes) live on
673     // the stack here.
674     if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
675       return;
676     unsigned Var = Aggregates.insert(
677         DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
678 
679     // [StartBit: EndBit) are the bits affected by this def.
680     const DIExpression *DIExpr = VarLoc.Expr;
681     unsigned StartBit;
682     unsigned EndBit;
683     if (auto Frag = DIExpr->getFragmentInfo()) {
684       StartBit = Frag->OffsetInBits;
685       EndBit = StartBit + Frag->SizeInBits;
686     } else {
687       assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
688       StartBit = 0;
689       EndBit = *DbgVar.getVariable()->getSizeInBits();
690     }
691 
692     // We will only fill fragments for simple memory-describing dbg.value
693     // intrinsics. If the fragment offset is the same as the offset from the
694     // base pointer, do The Thing, otherwise fall back to normal dbg.value
695     // behaviour. AssignmentTrackingLowering has generated DIExpressions
696     // written in terms of the base pointer.
697     // TODO: Remove this condition since the fragment offset doesn't always
698     // equal the offset from base pointer (e.g. for a SROA-split variable).
699     const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
700     const unsigned Base =
701         DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
702             ? Bases.insert(VarLoc.Values)
703             : 0;
704     LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
705                       << StartBit << ", " << EndBit << "): " << toString(Base)
706                       << "\n");
707 
708     // First of all, any locs that use mem that are disrupted need reinstating.
709     // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
710     // with existing intervals so this code involves a lot of fiddling around
711     // with intervals to do that manually.
712     auto FragIt = LiveSet.find(Var);
713 
714     // Check if the variable does not exist in the map.
715     if (FragIt == LiveSet.end()) {
716       // Add this variable to the BB map.
717       auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
718       assert(P.second && "Var already in map?");
719       // Add the interval to the fragment map.
720       P.first->second.insert(StartBit, EndBit, Base);
721       return;
722     }
723     // The variable has an entry in the map.
724 
725     FragsInMemMap &FragMap = FragIt->second;
726     // First check the easy case: the new fragment `f` doesn't overlap with any
727     // intervals.
728     if (!FragMap.overlaps(StartBit, EndBit)) {
729       LLVM_DEBUG(dbgs() << "- No overlaps\n");
730       FragMap.insert(StartBit, EndBit, Base);
731       coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
732                         FragMap);
733       return;
734     }
735     // There is at least one overlap.
736 
737     // Does StartBit intersect an existing fragment?
738     auto FirstOverlap = FragMap.find(StartBit);
739     assert(FirstOverlap != FragMap.end());
740     bool IntersectStart = FirstOverlap.start() < StartBit;
741 
742     // Does EndBit intersect an existing fragment?
743     auto LastOverlap = FragMap.find(EndBit);
744     bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
745 
746     // Check if both ends of `f` intersect the same interval `i`.
747     if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
748       LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
749       // Shorten `i` so that there's space to insert `f`.
750       //      [ f ]
751       // [  -   i   -  ]
752       // +
753       // [ i ][ f ][ i ]
754 
755       // Save values for use after inserting a new interval.
756       auto EndBitOfOverlap = FirstOverlap.stop();
757       unsigned OverlapValue = FirstOverlap.value();
758 
759       // Shorten the overlapping interval.
760       FirstOverlap.setStop(StartBit);
761       insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
762                    OverlapValue, VarLoc.DL);
763 
764       // Insert a new interval to represent the end part.
765       FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
766       insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
767                    VarLoc.DL);
768 
769       // Insert the new (middle) fragment now there is space.
770       FragMap.insert(StartBit, EndBit, Base);
771     } else {
772       // There's an overlap but `f` may not be fully contained within
773       // `i`. Shorten any end-point intersections so that we can then
774       // insert `f`.
775       //      [ - f - ]
776       // [ - i - ]
777       // |   |
778       // [ i ]
779       // Shorten any end-point intersections.
780       if (IntersectStart) {
781         LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
782         // Split off at the intersection.
783         FirstOverlap.setStop(StartBit);
784         insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
785                      *FirstOverlap, VarLoc.DL);
786       }
787       // [ - f - ]
788       //      [ - i - ]
789       //          |   |
790       //          [ i ]
791       if (IntersectEnd) {
792         LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
793         // Split off at the intersection.
794         LastOverlap.setStart(EndBit);
795         insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
796                      VarLoc.DL);
797       }
798 
799       LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
800       // FirstOverlap and LastOverlap have been shortened such that they're
801       // no longer overlapping with [StartBit, EndBit). Delete any overlaps
802       // that remain (these will be fully contained within `f`).
803       // [ - f - ]       }
804       //      [ - i - ]  } Intersection shortening that has happened above.
805       //          |   |  }
806       //          [ i ]  }
807       // -----------------
808       // [i2 ]           } Intervals fully contained within `f` get erased.
809       // -----------------
810       // [ - f - ][ i ]  } Completed insertion.
811       auto It = FirstOverlap;
812       if (IntersectStart)
813         ++It; // IntersectStart: first overlap has been shortened.
814       while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
815         LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
816         It.erase(); // This increments It after removing the interval.
817       }
818       // We've dealt with all the overlaps now!
819       assert(!FragMap.overlaps(StartBit, EndBit));
820       LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
821       FragMap.insert(StartBit, EndBit, Base);
822     }
823 
824     coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
825                       FragMap);
826   }
827 
828   bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
829 
830   void process(BasicBlock &BB, VarFragMap &LiveSet) {
831     BBInsertBeforeMap[&BB].clear();
832     for (auto &I : BB) {
833       for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
834         if (const auto *Locs = FnVarLocs->getWedge(&DVR)) {
835           for (const VarLocInfo &Loc : *Locs) {
836             addDef(Loc, &DVR, *I.getParent(), LiveSet);
837           }
838         }
839       }
840       if (const auto *Locs = FnVarLocs->getWedge(&I)) {
841         for (const VarLocInfo &Loc : *Locs) {
842           addDef(Loc, &I, *I.getParent(), LiveSet);
843         }
844       }
845     }
846   }
847 
848 public:
849   MemLocFragmentFill(Function &Fn,
850                      const DenseSet<DebugAggregate> *VarsWithStackSlot,
851                      bool CoalesceAdjacentFragments)
852       : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
853         CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
854 
855   /// Add variable locations to \p FnVarLocs so that any bits of a variable
856   /// with a memory location have that location explicitly reinstated at each
857   /// subsequent variable location definition that that doesn't overwrite those
858   /// bits. i.e. after a variable location def, insert new defs for the memory
859   /// location with fragments for the difference of "all bits currently in
860   /// memory" and "the fragment of the second def". e.g.
861   ///
862   ///     Before:
863   ///
864   ///     var x bits 0 to 63:  value in memory
865   ///     more instructions
866   ///     var x bits 0 to 31:  value is %0
867   ///
868   ///     After:
869   ///
870   ///     var x bits 0 to 63:  value in memory
871   ///     more instructions
872   ///     var x bits 0 to 31:  value is %0
873   ///     var x bits 32 to 61: value in memory ; <-- new loc def
874   ///
875   void run(FunctionVarLocsBuilder *FnVarLocs) {
876     if (!EnableMemLocFragFill)
877       return;
878 
879     this->FnVarLocs = FnVarLocs;
880 
881     // Prepare for traversal.
882     //
883     ReversePostOrderTraversal<Function *> RPOT(&Fn);
884     std::priority_queue<unsigned int, std::vector<unsigned int>,
885                         std::greater<unsigned int>>
886         Worklist;
887     std::priority_queue<unsigned int, std::vector<unsigned int>,
888                         std::greater<unsigned int>>
889         Pending;
890     DenseMap<unsigned int, BasicBlock *> OrderToBB;
891     DenseMap<BasicBlock *, unsigned int> BBToOrder;
892     { // Init OrderToBB and BBToOrder.
893       unsigned int RPONumber = 0;
894       for (BasicBlock *BB : RPOT) {
895         OrderToBB[RPONumber] = BB;
896         BBToOrder[BB] = RPONumber;
897         Worklist.push(RPONumber);
898         ++RPONumber;
899       }
900       LiveIn.init(RPONumber);
901       LiveOut.init(RPONumber);
902     }
903 
904     // Perform the traversal.
905     //
906     // This is a standard "intersect of predecessor outs" dataflow problem. To
907     // solve it, we perform meet() and process() using the two worklist method
908     // until the LiveIn data for each block becomes unchanging.
909     //
910     // This dataflow is essentially working on maps of sets and at each meet we
911     // intersect the maps and the mapped sets. So, initialized live-in maps
912     // monotonically decrease in value throughout the dataflow.
913     SmallPtrSet<BasicBlock *, 16> Visited;
914     while (!Worklist.empty() || !Pending.empty()) {
915       // We track what is on the pending worklist to avoid inserting the same
916       // thing twice.  We could avoid this with a custom priority queue, but
917       // this is probably not worth it.
918       SmallPtrSet<BasicBlock *, 16> OnPending;
919       LLVM_DEBUG(dbgs() << "Processing Worklist\n");
920       while (!Worklist.empty()) {
921         BasicBlock *BB = OrderToBB[Worklist.top()];
922         LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
923         Worklist.pop();
924         bool InChanged = meet(*BB, Visited);
925         // Always consider LiveIn changed on the first visit.
926         InChanged |= Visited.insert(BB).second;
927         if (InChanged) {
928           LLVM_DEBUG(dbgs()
929                      << BB->getName() << " has new InLocs, process it\n");
930           //  Mutate a copy of LiveIn while processing BB. Once we've processed
931           //  the terminator LiveSet is the LiveOut set for BB.
932           //  This is an expensive copy!
933           VarFragMap LiveSet = LiveIn[BB];
934 
935           // Process the instructions in the block.
936           process(*BB, LiveSet);
937 
938           // Relatively expensive check: has anything changed in LiveOut for BB?
939           if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
940             LLVM_DEBUG(dbgs() << BB->getName()
941                               << " has new OutLocs, add succs to worklist: [ ");
942             LiveOut[BB] = std::move(LiveSet);
943             for (BasicBlock *Succ : successors(BB)) {
944               if (OnPending.insert(Succ).second) {
945                 LLVM_DEBUG(dbgs() << Succ->getName() << " ");
946                 Pending.push(BBToOrder[Succ]);
947               }
948             }
949             LLVM_DEBUG(dbgs() << "]\n");
950           }
951         }
952       }
953       Worklist.swap(Pending);
954       // At this point, pending must be empty, since it was just the empty
955       // worklist
956       assert(Pending.empty() && "Pending should be empty");
957     }
958 
959     // Insert new location defs.
960     for (auto &Pair : BBInsertBeforeMap) {
961       InsertMap &Map = Pair.second;
962       for (auto &Pair : Map) {
963         auto InsertBefore = Pair.first;
964         assert(InsertBefore && "should never be null");
965         auto FragMemLocs = Pair.second;
966         auto &Ctx = Fn.getContext();
967 
968         for (auto &FragMemLoc : FragMemLocs) {
969           DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
970           if (FragMemLoc.SizeInBits !=
971               *Aggregates[FragMemLoc.Var].first->getSizeInBits())
972             Expr = *DIExpression::createFragmentExpression(
973                 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
974           Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
975                                        FragMemLoc.OffsetInBits / 8);
976           DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
977                             FragMemLoc.DL.getInlinedAt());
978           FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
979                                Bases[FragMemLoc.Base]);
980         }
981       }
982     }
983   }
984 };
985 
986 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
987 /// that interprets assignment tracking debug info metadata and stores in IR to
988 /// create a map of variable locations.
989 class AssignmentTrackingLowering {
990 public:
991   /// The kind of location in use for a variable, where Mem is the stack home,
992   /// Val is an SSA value or const, and None means that there is not one single
993   /// kind (either because there are multiple or because there is none; it may
994   /// prove useful to split this into two values in the future).
995   ///
996   /// LocKind is a join-semilattice with the partial order:
997   /// None > Mem, Val
998   ///
999   /// i.e.
1000   /// join(Mem, Mem)   = Mem
1001   /// join(Val, Val)   = Val
1002   /// join(Mem, Val)   = None
1003   /// join(None, Mem)  = None
1004   /// join(None, Val)  = None
1005   /// join(None, None) = None
1006   ///
1007   /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1008   /// to name assignments and are not tracking the actual stored values.
1009   /// Therefore currently there's no way to ensure that Mem values and Val
1010   /// values are the same. This could be a future extension, though it's not
1011   /// clear that many additional locations would be recovered that way in
1012   /// practice as the likelihood of this sitation arising naturally seems
1013   /// incredibly low.
1014   enum class LocKind { Mem, Val, None };
1015 
1016   /// An abstraction of the assignment of a value to a variable or memory
1017   /// location.
1018   ///
1019   /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1020   /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1021   /// can't) know the ID of the last assignment that took place.
1022   ///
1023   /// The Status of the Assignment (Known or NoneOrPhi) is another
1024   /// join-semilattice. The partial order is:
1025   /// NoneOrPhi > Known {id_0, id_1, ...id_N}
1026   ///
1027   /// i.e. for all values x and y where x != y:
1028   /// join(x, x) = x
1029   /// join(x, y) = NoneOrPhi
1030   using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DbgVariableRecord *>;
1031   struct Assignment {
1032     enum S { Known, NoneOrPhi } Status;
1033     /// ID of the assignment. nullptr if Status is not Known.
1034     DIAssignID *ID;
1035     /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1036     /// May be nullptr.
1037     AssignRecord Source;
1038 
1039     bool isSameSourceAssignment(const Assignment &Other) const {
1040       // Don't include Source in the equality check. Assignments are
1041       // defined by their ID, not debug intrinsic(s).
1042       return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
1043     }
1044     void dump(raw_ostream &OS) {
1045       static const char *LUT[] = {"Known", "NoneOrPhi"};
1046       OS << LUT[Status] << "(id=";
1047       if (ID)
1048         OS << ID;
1049       else
1050         OS << "null";
1051       OS << ", s=";
1052       if (Source.isNull())
1053         OS << "null";
1054       else if (isa<DbgAssignIntrinsic *>(Source))
1055         OS << Source.get<DbgAssignIntrinsic *>();
1056       else
1057         OS << Source.get<DbgVariableRecord *>();
1058       OS << ")";
1059     }
1060 
1061     static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
1062       return Assignment(Known, ID, Source);
1063     }
1064     static Assignment make(DIAssignID *ID, DbgVariableRecord *Source) {
1065       assert(Source->isDbgAssign() &&
1066              "Cannot make an assignment from a non-assign DbgVariableRecord");
1067       return Assignment(Known, ID, Source);
1068     }
1069     static Assignment make(DIAssignID *ID, AssignRecord Source) {
1070       return Assignment(Known, ID, Source);
1071     }
1072     static Assignment makeFromMemDef(DIAssignID *ID) {
1073       return Assignment(Known, ID);
1074     }
1075     static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); }
1076     // Again, need a Top value?
1077     Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this?
1078     Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) {
1079       // If the Status is Known then we expect there to be an assignment ID.
1080       assert(Status == NoneOrPhi || ID);
1081     }
1082     Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
1083         : Status(Status), ID(ID), Source(Source) {
1084       // If the Status is Known then we expect there to be an assignment ID.
1085       assert(Status == NoneOrPhi || ID);
1086     }
1087     Assignment(S Status, DIAssignID *ID, DbgVariableRecord *Source)
1088         : Status(Status), ID(ID), Source(Source) {
1089       // If the Status is Known then we expect there to be an assignment ID.
1090       assert(Status == NoneOrPhi || ID);
1091     }
1092     Assignment(S Status, DIAssignID *ID, AssignRecord Source)
1093         : Status(Status), ID(ID), Source(Source) {
1094       // If the Status is Known then we expect there to be an assignment ID.
1095       assert(Status == NoneOrPhi || ID);
1096     }
1097   };
1098 
1099   using AssignmentMap = SmallVector<Assignment>;
1100   using LocMap = SmallVector<LocKind>;
1101   using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
1102   using UntaggedStoreAssignmentMap =
1103       DenseMap<const Instruction *,
1104                SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
1105 
1106 private:
1107   /// The highest numbered VariableID for partially promoted variables plus 1,
1108   /// the values for which start at 1.
1109   unsigned TrackedVariablesVectorSize = 0;
1110   /// Map a variable to the set of variables that it fully contains.
1111   OverlapMap VarContains;
1112   /// Map untagged stores to the variable fragments they assign to. Used by
1113   /// processUntaggedInstruction.
1114   UntaggedStoreAssignmentMap UntaggedStoreVars;
1115 
1116   // Machinery to defer inserting dbg.values.
1117   using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>;
1118   InstInsertMap InsertBeforeMap;
1119   /// Clear the location definitions currently cached for insertion after /p
1120   /// After.
1121   void resetInsertionPoint(Instruction &After);
1122   void resetInsertionPoint(DbgVariableRecord &After);
1123 
1124   // emitDbgValue can be called with:
1125   //   Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DbgVariableRecord*]
1126   // Since AssignRecord can be cast to one of the latter two types, and all
1127   // other types have a shared interface, we use a template to handle the latter
1128   // three types, and an explicit overload for AssignRecord that forwards to
1129   // the template version with the right type.
1130   void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After);
1131   template <typename T>
1132   void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After);
1133 
1134   static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1135                            const AssignmentMap &B) {
1136     return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1137       return A[VarID].isSameSourceAssignment(B[VarID]);
1138     });
1139   }
1140 
1141   /// Represents the stack and debug assignments in a block. Used to describe
1142   /// the live-in and live-out values for blocks, as well as the "current"
1143   /// value as we process each instruction in a block.
1144   struct BlockInfo {
1145     /// The set of variables (VariableID) being tracked in this block.
1146     BitVector VariableIDsInBlock;
1147     /// Dominating assignment to memory for each variable, indexed by
1148     /// VariableID.
1149     AssignmentMap StackHomeValue;
1150     /// Dominating assignemnt to each variable, indexed by VariableID.
1151     AssignmentMap DebugValue;
1152     /// Location kind for each variable. LiveLoc indicates whether the
1153     /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1154     /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1155     /// preference. This cannot be derived by inspecting DebugValue and
1156     /// StackHomeValue due to the fact that there's no distinction in
1157     /// Assignment (the class) between whether an assignment is unknown or a
1158     /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1159     /// words, the memory location may well be valid while both DebugValue and
1160     /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1161     /// Indexed by VariableID.
1162     LocMap LiveLoc;
1163 
1164   public:
1165     enum AssignmentKind { Stack, Debug };
1166     const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1167       switch (Kind) {
1168       case Stack:
1169         return StackHomeValue;
1170       case Debug:
1171         return DebugValue;
1172       }
1173       llvm_unreachable("Unknown AssignmentKind");
1174     }
1175     AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1176       return const_cast<AssignmentMap &>(
1177           const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1178     }
1179 
1180     bool isVariableTracked(VariableID Var) const {
1181       return VariableIDsInBlock[static_cast<unsigned>(Var)];
1182     }
1183 
1184     const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1185       assert(isVariableTracked(Var) && "Var not tracked in block");
1186       return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1187     }
1188 
1189     LocKind getLocKind(VariableID Var) const {
1190       assert(isVariableTracked(Var) && "Var not tracked in block");
1191       return LiveLoc[static_cast<unsigned>(Var)];
1192     }
1193 
1194     /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1195     /// fragments contained win \p Var.
1196     void setLocKind(VariableID Var, LocKind K) {
1197       VariableIDsInBlock.set(static_cast<unsigned>(Var));
1198       LiveLoc[static_cast<unsigned>(Var)] = K;
1199     }
1200 
1201     /// Set the assignment in the \p Kind assignment map for \p Var only: does
1202     /// not set the assignment for VariableIDs of fragments contained win \p
1203     /// Var.
1204     void setAssignment(AssignmentKind Kind, VariableID Var,
1205                        const Assignment &AV) {
1206       VariableIDsInBlock.set(static_cast<unsigned>(Var));
1207       getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1208     }
1209 
1210     /// Return true if there is an assignment matching \p AV in the \p Kind
1211     /// assignment map. Does consider assignments for VariableIDs of fragments
1212     /// contained win \p Var.
1213     bool hasAssignment(AssignmentKind Kind, VariableID Var,
1214                        const Assignment &AV) const {
1215       if (!isVariableTracked(Var))
1216         return false;
1217       return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1218     }
1219 
1220     /// Compare every element in each map to determine structural equality
1221     /// (slow).
1222     bool operator==(const BlockInfo &Other) const {
1223       return VariableIDsInBlock == Other.VariableIDsInBlock &&
1224              LiveLoc == Other.LiveLoc &&
1225              mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1226                           Other.StackHomeValue) &&
1227              mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1228     }
1229     bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1230     bool isValid() {
1231       return LiveLoc.size() == DebugValue.size() &&
1232              LiveLoc.size() == StackHomeValue.size();
1233     }
1234 
1235     /// Clear everything and initialise with ⊤-values for all variables.
1236     void init(int NumVars) {
1237       StackHomeValue.clear();
1238       DebugValue.clear();
1239       LiveLoc.clear();
1240       VariableIDsInBlock = BitVector(NumVars);
1241       StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1242                             Assignment::makeNoneOrPhi());
1243       DebugValue.insert(DebugValue.begin(), NumVars,
1244                         Assignment::makeNoneOrPhi());
1245       LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1246     }
1247 
1248     /// Helper for join.
1249     template <typename ElmtType, typename FnInputType>
1250     static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1251                          const SmallVector<ElmtType> &A,
1252                          const SmallVector<ElmtType> &B,
1253                          ElmtType (*Fn)(FnInputType, FnInputType)) {
1254       Target[Index] = Fn(A[Index], B[Index]);
1255     }
1256 
1257     /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1258     static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1259       // Join A and B.
1260       //
1261       // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1262       // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1263       // Join = Intersect ∪ Difference
1264       //
1265       // This is achieved by performing a join on elements from A and B with
1266       // variables common to both A and B (join elements indexed by var
1267       // intersect), then adding ⊤-value elements for vars in A xor B. The
1268       // latter part is equivalent to performing join on elements with variables
1269       // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1270       // BlockInfo::init initializes all variable entries to the ⊤ value so we
1271       // don't need to explicitly perform that step as Join.VariableIDsInBlock
1272       // is set to the union of the variables in A and B at the end of this
1273       // function.
1274       BlockInfo Join;
1275       Join.init(NumVars);
1276 
1277       BitVector Intersect = A.VariableIDsInBlock;
1278       Intersect &= B.VariableIDsInBlock;
1279 
1280       for (auto VarID : Intersect.set_bits()) {
1281         joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1282         joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1283                  joinAssignment);
1284         joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1285                  joinAssignment);
1286       }
1287 
1288       Join.VariableIDsInBlock = A.VariableIDsInBlock;
1289       Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1290       assert(Join.isValid());
1291       return Join;
1292     }
1293   };
1294 
1295   Function &Fn;
1296   const DataLayout &Layout;
1297   const DenseSet<DebugAggregate> *VarsWithStackSlot;
1298   FunctionVarLocsBuilder *FnVarLocs;
1299   DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1300   DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1301 
1302   /// Helper for process methods to track variables touched each frame.
1303   DenseSet<VariableID> VarsTouchedThisFrame;
1304 
1305   /// The set of variables that sometimes are not located in their stack home.
1306   DenseSet<DebugAggregate> NotAlwaysStackHomed;
1307 
1308   VariableID getVariableID(const DebugVariable &Var) {
1309     return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1310   }
1311 
1312   /// Join the LiveOut values of preds that are contained in \p Visited into
1313   /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1314   /// values monotonically increase. See the @link joinMethods join methods
1315   /// @endlink documentation for more info.
1316   bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1317   ///@name joinMethods
1318   /// Functions that implement `join` (the least upper bound) for the
1319   /// join-semilattice types used in the dataflow. There is an explicit bottom
1320   /// value (⊥) for some types and and explicit top value (⊤) for all types.
1321   /// By definition:
1322   ///
1323   ///     Join(A, B) >= A && Join(A, B) >= B
1324   ///     Join(A, ⊥) = A
1325   ///     Join(A, ⊤) = ⊤
1326   ///
1327   /// These invariants are important for monotonicity.
1328   ///
1329   /// For the map-type functions, all unmapped keys in an empty map are
1330   /// associated with a bottom value (⊥). This represents their values being
1331   /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1332   /// only present in one) represents either a variable going out of scope or
1333   /// dropped debug info. It is assumed the key is associated with a top value
1334   /// (⊤) in this case (unknown location / assignment).
1335   ///@{
1336   static LocKind joinKind(LocKind A, LocKind B);
1337   static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1338   BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1339   ///@}
1340 
1341   /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1342   /// LiveSet must be initialized with the current live-in locations before
1343   /// calling this.
1344   void process(BasicBlock &BB, BlockInfo *LiveSet);
1345   ///@name processMethods
1346   /// Methods to process instructions in order to update the LiveSet (current
1347   /// location information).
1348   ///@{
1349   void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1350   void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
1351   /// Update \p LiveSet after encountering an instruction with a DIAssignID
1352   /// attachment, \p I.
1353   void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1354   /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1355   /// attachment, \p I.
1356   void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1357   void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet);
1358   void processDbgVariableRecord(DbgVariableRecord &DVR, BlockInfo *LiveSet);
1359   void processDbgValue(
1360       PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord,
1361       BlockInfo *LiveSet);
1362   /// Add an assignment to memory for the variable /p Var.
1363   void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1364   /// Add an assignment to the variable /p Var.
1365   void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1366   ///@}
1367 
1368   /// Set the LocKind for \p Var.
1369   void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1370   /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1371   /// have been called for \p Var first.
1372   LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1373   /// Return true if \p Var has an assignment in \p M matching \p AV.
1374   bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1375                             VariableID Var, const Assignment &AV);
1376   /// Return the set of VariableIDs corresponding the fragments contained fully
1377   /// within the variable/fragment \p Var.
1378   ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1379 
1380   /// Mark \p Var as having been touched this frame. Note, this applies only
1381   /// to the exact fragment \p Var and not to any fragments contained within.
1382   void touchFragment(VariableID Var);
1383 
1384   /// Emit info for variables that are fully promoted.
1385   bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1386 
1387 public:
1388   AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1389                              const DenseSet<DebugAggregate> *VarsWithStackSlot)
1390       : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1391   /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1392   /// true if any variable locations have been added to FnVarLocs.
1393   bool run(FunctionVarLocsBuilder *FnVarLocs);
1394 };
1395 } // namespace
1396 
1397 ArrayRef<VariableID>
1398 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1399   auto R = VarContains.find(Var);
1400   if (R == VarContains.end())
1401     return std::nullopt;
1402   return R->second;
1403 }
1404 
1405 void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1406   VarsTouchedThisFrame.insert(Var);
1407 }
1408 
1409 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1410                                             LocKind K) {
1411   auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1412     LiveSet->setLocKind(Var, K);
1413     touchFragment(Var);
1414   };
1415   SetKind(LiveSet, Var, K);
1416 
1417   // Update the LocKind for all fragments contained within Var.
1418   for (VariableID Frag : getContainedFragments(Var))
1419     SetKind(LiveSet, Frag, K);
1420 }
1421 
1422 AssignmentTrackingLowering::LocKind
1423 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1424   return LiveSet->getLocKind(Var);
1425 }
1426 
1427 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1428                                            const Assignment &AV) {
1429   LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1430 
1431   // Use this assigment for all fragments contained within Var, but do not
1432   // provide a Source because we cannot convert Var's value to a value for the
1433   // fragment.
1434   Assignment FragAV = AV;
1435   FragAV.Source = nullptr;
1436   for (VariableID Frag : getContainedFragments(Var))
1437     LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1438 }
1439 
1440 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1441                                            const Assignment &AV) {
1442   LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1443 
1444   // Use this assigment for all fragments contained within Var, but do not
1445   // provide a Source because we cannot convert Var's value to a value for the
1446   // fragment.
1447   Assignment FragAV = AV;
1448   FragAV.Source = nullptr;
1449   for (VariableID Frag : getContainedFragments(Var))
1450     LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1451 }
1452 
1453 static DIAssignID *getIDFromInst(const Instruction &I) {
1454   return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1455 }
1456 
1457 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1458   return cast<DIAssignID>(DAI.getAssignID());
1459 }
1460 
1461 static DIAssignID *getIDFromMarker(const DbgVariableRecord &DVR) {
1462   assert(DVR.isDbgAssign() &&
1463          "Cannot get a DIAssignID from a non-assign DbgVariableRecord!");
1464   return DVR.getAssignID();
1465 }
1466 
1467 /// Return true if \p Var has an assignment in \p M matching \p AV.
1468 bool AssignmentTrackingLowering::hasVarWithAssignment(
1469     BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1470     const Assignment &AV) {
1471   if (!LiveSet->hasAssignment(Kind, Var, AV))
1472     return false;
1473 
1474   // Check all the frags contained within Var as these will have all been
1475   // mapped to AV at the last store to Var.
1476   for (VariableID Frag : getContainedFragments(Var))
1477     if (!LiveSet->hasAssignment(Kind, Frag, AV))
1478       return false;
1479   return true;
1480 }
1481 
1482 #ifndef NDEBUG
1483 const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1484   using LocKind = AssignmentTrackingLowering::LocKind;
1485   switch (Loc) {
1486   case LocKind::Val:
1487     return "Val";
1488   case LocKind::Mem:
1489     return "Mem";
1490   case LocKind::None:
1491     return "None";
1492   };
1493   llvm_unreachable("unknown LocKind");
1494 }
1495 #endif
1496 
1497 VarLocInsertPt getNextNode(const DbgRecord *DVR) {
1498   auto NextIt = ++(DVR->getIterator());
1499   if (NextIt == DVR->getMarker()->getDbgRecordRange().end())
1500     return DVR->getMarker()->MarkedInstr;
1501   return &*NextIt;
1502 }
1503 VarLocInsertPt getNextNode(const Instruction *Inst) {
1504   const Instruction *Next = Inst->getNextNode();
1505   if (!Next->hasDbgRecords())
1506     return Next;
1507   return &*Next->getDbgRecordRange().begin();
1508 }
1509 VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) {
1510   if (isa<const Instruction *>(InsertPt))
1511     return getNextNode(cast<const Instruction *>(InsertPt));
1512   return getNextNode(cast<const DbgRecord *>(InsertPt));
1513 }
1514 
1515 DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) {
1516   return cast<DbgAssignIntrinsic>(DVI);
1517 }
1518 
1519 DbgVariableRecord *CastToDbgAssign(DbgVariableRecord *DVR) {
1520   assert(DVR->isDbgAssign() &&
1521          "Attempted to cast non-assign DbgVariableRecord to DVRAssign.");
1522   return DVR;
1523 }
1524 
1525 void AssignmentTrackingLowering::emitDbgValue(
1526     AssignmentTrackingLowering::LocKind Kind,
1527     AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) {
1528   if (isa<DbgAssignIntrinsic *>(Source))
1529     emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After);
1530   else
1531     emitDbgValue(Kind, cast<DbgVariableRecord *>(Source), After);
1532 }
1533 template <typename T>
1534 void AssignmentTrackingLowering::emitDbgValue(
1535     AssignmentTrackingLowering::LocKind Kind, const T Source,
1536     VarLocInsertPt After) {
1537 
1538   DILocation *DL = Source->getDebugLoc();
1539   auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1540     assert(Expr);
1541     if (!Val)
1542       Val = ValueAsMetadata::get(
1543           PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1544 
1545     // Find a suitable insert point.
1546     auto InsertBefore = getNextNode(After);
1547     assert(InsertBefore && "Shouldn't be inserting after a terminator");
1548 
1549     VariableID Var = getVariableID(DebugVariable(Source));
1550     VarLocInfo VarLoc;
1551     VarLoc.VariableID = static_cast<VariableID>(Var);
1552     VarLoc.Expr = Expr;
1553     VarLoc.Values = RawLocationWrapper(Val);
1554     VarLoc.DL = DL;
1555     // Insert it into the map for later.
1556     InsertBeforeMap[InsertBefore].push_back(VarLoc);
1557   };
1558 
1559   // NOTE: This block can mutate Kind.
1560   if (Kind == LocKind::Mem) {
1561     const auto *Assign = CastToDbgAssign(Source);
1562     // Check the address hasn't been dropped (e.g. the debug uses may not have
1563     // been replaced before deleting a Value).
1564     if (Assign->isKillAddress()) {
1565       // The address isn't valid so treat this as a non-memory def.
1566       Kind = LocKind::Val;
1567     } else {
1568       Value *Val = Assign->getAddress();
1569       DIExpression *Expr = Assign->getAddressExpression();
1570       assert(!Expr->getFragmentInfo() &&
1571              "fragment info should be stored in value-expression only");
1572       // Copy the fragment info over from the value-expression to the new
1573       // DIExpression.
1574       if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1575         auto FragInfo = *OptFragInfo;
1576         Expr = *DIExpression::createFragmentExpression(
1577             Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1578       }
1579       // The address-expression has an implicit deref, add it now.
1580       std::tie(Val, Expr) =
1581           walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1582       Emit(ValueAsMetadata::get(Val), Expr);
1583       return;
1584     }
1585   }
1586 
1587   if (Kind == LocKind::Val) {
1588     Emit(Source->getRawLocation(), Source->getExpression());
1589     return;
1590   }
1591 
1592   if (Kind == LocKind::None) {
1593     Emit(nullptr, Source->getExpression());
1594     return;
1595   }
1596 }
1597 
1598 void AssignmentTrackingLowering::processNonDbgInstruction(
1599     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1600   if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1601     processTaggedInstruction(I, LiveSet);
1602   else
1603     processUntaggedInstruction(I, LiveSet);
1604 }
1605 
1606 void AssignmentTrackingLowering::processUntaggedInstruction(
1607     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1608   // Interpret stack stores that are not tagged as an assignment in memory for
1609   // the variables associated with that address. These stores may not be tagged
1610   // because a) the store cannot be represented using dbg.assigns (non-const
1611   // length or offset) or b) the tag was accidentally dropped during
1612   // optimisations. For these stores we fall back to assuming that the stack
1613   // home is a valid location for the variables. The benefit is that this
1614   // prevents us missing an assignment and therefore incorrectly maintaining
1615   // earlier location definitions, and in many cases it should be a reasonable
1616   // assumption. However, this will occasionally lead to slight
1617   // inaccuracies. The value of a hoisted untagged store will be visible
1618   // "early", for example.
1619   assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1620   auto It = UntaggedStoreVars.find(&I);
1621   if (It == UntaggedStoreVars.end())
1622     return; // No variables associated with the store destination.
1623 
1624   LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1625                     << "\n");
1626   // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1627   // and mem def, set lockind to Mem, and emit a location def for each.
1628   for (auto [Var, Info] : It->second) {
1629     // This instruction is treated as both a debug and memory assignment,
1630     // meaning the memory location should be used. We don't have an assignment
1631     // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1632     addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1633     addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1634     setLocKind(LiveSet, Var, LocKind::Mem);
1635     LLVM_DEBUG(dbgs() << "  setting Stack LocKind to: " << locStr(LocKind::Mem)
1636                       << "\n");
1637     // Build the dbg location def to insert.
1638     //
1639     // DIExpression: Add fragment and offset.
1640     DebugVariable V = FnVarLocs->getVariable(Var);
1641     DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1642     if (auto Frag = V.getFragment()) {
1643       auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1644                                                       Frag->SizeInBits);
1645       assert(R && "unexpected createFragmentExpression failure");
1646       DIE = *R;
1647     }
1648     SmallVector<uint64_t, 3> Ops;
1649     if (Info.OffsetInBits)
1650       Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1651     Ops.push_back(dwarf::DW_OP_deref);
1652     DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1653                                        /*EntryValue=*/false);
1654     // Find a suitable insert point, before the next instruction or DbgRecord
1655     // after I.
1656     auto InsertBefore = getNextNode(&I);
1657     assert(InsertBefore && "Shouldn't be inserting after a terminator");
1658 
1659     // Get DILocation for this unrecorded assignment.
1660     DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1661     const DILocation *DILoc = DILocation::get(
1662         Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1663 
1664     VarLocInfo VarLoc;
1665     VarLoc.VariableID = static_cast<VariableID>(Var);
1666     VarLoc.Expr = DIE;
1667     VarLoc.Values = RawLocationWrapper(
1668         ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1669     VarLoc.DL = DILoc;
1670     // 3. Insert it into the map for later.
1671     InsertBeforeMap[InsertBefore].push_back(VarLoc);
1672   }
1673 }
1674 
1675 void AssignmentTrackingLowering::processTaggedInstruction(
1676     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1677   auto Linked = at::getAssignmentMarkers(&I);
1678   auto LinkedDPAssigns = at::getDVRAssignmentMarkers(&I);
1679   // No dbg.assign intrinsics linked.
1680   // FIXME: All vars that have a stack slot this store modifies that don't have
1681   // a dbg.assign linked to it should probably treat this like an untagged
1682   // store.
1683   if (Linked.empty() && LinkedDPAssigns.empty())
1684     return;
1685 
1686   LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1687   auto ProcessLinkedAssign = [&](auto *Assign) {
1688     VariableID Var = getVariableID(DebugVariable(Assign));
1689     // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1690     // that is linked to a store.
1691     assert(VarsWithStackSlot->count(getAggregate(Assign)) &&
1692            "expected Assign's variable to have stack slot");
1693 
1694     Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1695     addMemDef(LiveSet, Var, AV);
1696 
1697     LLVM_DEBUG(dbgs() << "   linked to " << *Assign << "\n");
1698     LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1699                       << " -> ");
1700 
1701     // The last assignment to the stack is now AV. Check if the last debug
1702     // assignment has a matching Assignment.
1703     if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1704       // The StackHomeValue and DebugValue for this variable match so we can
1705       // emit a stack home location here.
1706       LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1707       LLVM_DEBUG(dbgs() << "   Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1708       LLVM_DEBUG(dbgs() << "   Debug val: ";
1709                  LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1710                  dbgs() << "\n");
1711       setLocKind(LiveSet, Var, LocKind::Mem);
1712       emitDbgValue(LocKind::Mem, Assign, &I);
1713       return;
1714     }
1715 
1716     // The StackHomeValue and DebugValue for this variable do not match. I.e.
1717     // The value currently stored in the stack is not what we'd expect to
1718     // see, so we cannot use emit a stack home location here. Now we will
1719     // look at the live LocKind for the variable and determine an appropriate
1720     // dbg.value to emit.
1721     LocKind PrevLoc = getLocKind(LiveSet, Var);
1722     switch (PrevLoc) {
1723     case LocKind::Val: {
1724       // The value in memory in memory has changed but we're not currently
1725       // using the memory location. Do nothing.
1726       LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1727       setLocKind(LiveSet, Var, LocKind::Val);
1728     } break;
1729     case LocKind::Mem: {
1730       // There's been an assignment to memory that we were using as a
1731       // location for this variable, and the Assignment doesn't match what
1732       // we'd expect to see in memory.
1733       Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1734       if (DbgAV.Status == Assignment::NoneOrPhi) {
1735         // We need to terminate any previously open location now.
1736         LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1737         setLocKind(LiveSet, Var, LocKind::None);
1738         emitDbgValue(LocKind::None, Assign, &I);
1739       } else {
1740         // The previous DebugValue Value can be used here.
1741         LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1742         setLocKind(LiveSet, Var, LocKind::Val);
1743         if (DbgAV.Source) {
1744           emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1745         } else {
1746           // PrevAV.Source is nullptr so we must emit undef here.
1747           emitDbgValue(LocKind::None, Assign, &I);
1748         }
1749       }
1750     } break;
1751     case LocKind::None: {
1752       // There's been an assignment to memory and we currently are
1753       // not tracking a location for the variable. Do not emit anything.
1754       LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1755       setLocKind(LiveSet, Var, LocKind::None);
1756     } break;
1757     }
1758   };
1759   for (DbgAssignIntrinsic *DAI : Linked)
1760     ProcessLinkedAssign(DAI);
1761   for (DbgVariableRecord *DVR : LinkedDPAssigns)
1762     ProcessLinkedAssign(DVR);
1763 }
1764 
1765 void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign,
1766                                                   BlockInfo *LiveSet) {
1767   auto ProcessDbgAssignImpl = [&](auto *DbgAssign) {
1768     // Only bother tracking variables that are at some point stack homed. Other
1769     // variables can be dealt with trivially later.
1770     if (!VarsWithStackSlot->count(getAggregate(DbgAssign)))
1771       return;
1772 
1773     VariableID Var = getVariableID(DebugVariable(DbgAssign));
1774     Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign);
1775     addDbgDef(LiveSet, Var, AV);
1776 
1777     LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";);
1778     LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1779                       << " -> ");
1780 
1781     // Check if the DebugValue and StackHomeValue both hold the same
1782     // Assignment.
1783     if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1784       // They match. We can use the stack home because the debug intrinsics
1785       // state that an assignment happened here, and we know that specific
1786       // assignment was the last one to take place in memory for this variable.
1787       LocKind Kind;
1788       if (DbgAssign->isKillAddress()) {
1789         LLVM_DEBUG(
1790             dbgs()
1791                 << "Val, Stack matches Debug program but address is killed\n";);
1792         Kind = LocKind::Val;
1793       } else {
1794         LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1795         Kind = LocKind::Mem;
1796       };
1797       setLocKind(LiveSet, Var, Kind);
1798       emitDbgValue(Kind, DbgAssign, DbgAssign);
1799     } else {
1800       // The last assignment to the memory location isn't the one that we want
1801       // to show to the user so emit a dbg.value(Value). Value may be undef.
1802       LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1803       setLocKind(LiveSet, Var, LocKind::Val);
1804       emitDbgValue(LocKind::Val, DbgAssign, DbgAssign);
1805     }
1806   };
1807   if (isa<DbgVariableRecord *>(Assign))
1808     return ProcessDbgAssignImpl(cast<DbgVariableRecord *>(Assign));
1809   return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign));
1810 }
1811 
1812 void AssignmentTrackingLowering::processDbgValue(
1813     PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord,
1814     BlockInfo *LiveSet) {
1815   auto ProcessDbgValueImpl = [&](auto *DbgValue) {
1816     // Only other tracking variables that are at some point stack homed.
1817     // Other variables can be dealt with trivally later.
1818     if (!VarsWithStackSlot->count(getAggregate(DbgValue)))
1819       return;
1820 
1821     VariableID Var = getVariableID(DebugVariable(DbgValue));
1822     // We have no ID to create an Assignment with so we mark this assignment as
1823     // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1824     // the assignment responsible for setting this value.
1825     // This is fine; dbg.values are essentially interchangable with unlinked
1826     // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1827     // PHIs for promoted variables.
1828     Assignment AV = Assignment::makeNoneOrPhi();
1829     addDbgDef(LiveSet, Var, AV);
1830 
1831     LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";);
1832     LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1833                       << " -> Val, dbg.value override");
1834 
1835     setLocKind(LiveSet, Var, LocKind::Val);
1836     emitDbgValue(LocKind::Val, DbgValue, DbgValue);
1837   };
1838   if (isa<DbgVariableRecord *>(DbgValueRecord))
1839     return ProcessDbgValueImpl(cast<DbgVariableRecord *>(DbgValueRecord));
1840   return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord));
1841 }
1842 
1843 template <typename T> static bool hasZeroSizedFragment(T &DbgValue) {
1844   if (auto F = DbgValue.getExpression()->getFragmentInfo())
1845     return F->SizeInBits == 0;
1846   return false;
1847 }
1848 
1849 void AssignmentTrackingLowering::processDbgInstruction(
1850     DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1851   auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
1852   if (!DVI)
1853     return;
1854 
1855   // Ignore assignments to zero bits of the variable.
1856   if (hasZeroSizedFragment(*DVI))
1857     return;
1858 
1859   if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1860     processDbgAssign(DAI, LiveSet);
1861   else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1862     processDbgValue(DVI, LiveSet);
1863 }
1864 void AssignmentTrackingLowering::processDbgVariableRecord(
1865     DbgVariableRecord &DVR, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1866   // Ignore assignments to zero bits of the variable.
1867   if (hasZeroSizedFragment(DVR))
1868     return;
1869 
1870   if (DVR.isDbgAssign())
1871     processDbgAssign(&DVR, LiveSet);
1872   else if (DVR.isDbgValue())
1873     processDbgValue(&DVR, LiveSet);
1874 }
1875 
1876 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1877   assert(!After.isTerminator() && "Can't insert after a terminator");
1878   auto *R = InsertBeforeMap.find(getNextNode(&After));
1879   if (R == InsertBeforeMap.end())
1880     return;
1881   R->second.clear();
1882 }
1883 void AssignmentTrackingLowering::resetInsertionPoint(DbgVariableRecord &After) {
1884   auto *R = InsertBeforeMap.find(getNextNode(&After));
1885   if (R == InsertBeforeMap.end())
1886     return;
1887   R->second.clear();
1888 }
1889 
1890 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1891   // If the block starts with DbgRecords, we need to process those DbgRecords as
1892   // their own frame without processing any instructions first.
1893   bool ProcessedLeadingDbgRecords = !BB.begin()->hasDbgRecords();
1894   for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1895     assert(VarsTouchedThisFrame.empty());
1896     // Process the instructions in "frames". A "frame" includes a single
1897     // non-debug instruction followed any debug instructions before the
1898     // next non-debug instruction.
1899 
1900     // Skip the current instruction if it has unprocessed DbgRecords attached
1901     // (see comment above `ProcessedLeadingDbgRecords`).
1902     if (ProcessedLeadingDbgRecords) {
1903       // II is now either a debug intrinsic, a non-debug instruction with no
1904       // attached DbgRecords, or a non-debug instruction with attached processed
1905       // DbgRecords.
1906       // II has not been processed.
1907       if (!isa<DbgInfoIntrinsic>(&*II)) {
1908         if (II->isTerminator())
1909           break;
1910         resetInsertionPoint(*II);
1911         processNonDbgInstruction(*II, LiveSet);
1912         assert(LiveSet->isValid());
1913         ++II;
1914       }
1915     }
1916     // II is now either a debug intrinsic, a non-debug instruction with no
1917     // attached DbgRecords, or a non-debug instruction with attached unprocessed
1918     // DbgRecords.
1919     if (II != EI && II->hasDbgRecords()) {
1920       // Skip over non-variable debug records (i.e., labels). They're going to
1921       // be read from IR (possibly re-ordering them within the debug record
1922       // range) rather than from the analysis results.
1923       for (DbgVariableRecord &DVR : filterDbgVars(II->getDbgRecordRange())) {
1924         resetInsertionPoint(DVR);
1925         processDbgVariableRecord(DVR, LiveSet);
1926         assert(LiveSet->isValid());
1927       }
1928     }
1929     ProcessedLeadingDbgRecords = true;
1930     while (II != EI) {
1931       auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
1932       if (!Dbg)
1933         break;
1934       resetInsertionPoint(*II);
1935       processDbgInstruction(*Dbg, LiveSet);
1936       assert(LiveSet->isValid());
1937       ++II;
1938     }
1939     // II is now a non-debug instruction either with no attached DbgRecords, or
1940     // with attached processed DbgRecords. II has not been processed, and all
1941     // debug instructions or DbgRecords in the frame preceding II have been
1942     // processed.
1943 
1944     // We've processed everything in the "frame". Now determine which variables
1945     // cannot be represented by a dbg.declare.
1946     for (auto Var : VarsTouchedThisFrame) {
1947       LocKind Loc = getLocKind(LiveSet, Var);
1948       // If a variable's LocKind is anything other than LocKind::Mem then we
1949       // must note that it cannot be represented with a dbg.declare.
1950       // Note that this check is enough without having to check the result of
1951       // joins() because for join to produce anything other than Mem after
1952       // we've already seen a Mem we'd be joining None or Val with Mem. In that
1953       // case, we've already hit this codepath when we set the LocKind to Val
1954       // or None in that block.
1955       if (Loc != LocKind::Mem) {
1956         DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1957         DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1958         NotAlwaysStackHomed.insert(Aggr);
1959       }
1960     }
1961     VarsTouchedThisFrame.clear();
1962   }
1963 }
1964 
1965 AssignmentTrackingLowering::LocKind
1966 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1967   // Partial order:
1968   // None > Mem, Val
1969   return A == B ? A : LocKind::None;
1970 }
1971 
1972 AssignmentTrackingLowering::Assignment
1973 AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1974                                            const Assignment &B) {
1975   // Partial order:
1976   // NoneOrPhi(null, null) > Known(v, ?s)
1977 
1978   // If either are NoneOrPhi the join is NoneOrPhi.
1979   // If either value is different then the result is
1980   // NoneOrPhi (joining two values is a Phi).
1981   if (!A.isSameSourceAssignment(B))
1982     return Assignment::makeNoneOrPhi();
1983   if (A.Status == Assignment::NoneOrPhi)
1984     return Assignment::makeNoneOrPhi();
1985 
1986   // Source is used to lookup the value + expression in the debug program if
1987   // the stack slot gets assigned a value earlier than expected. Because
1988   // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1989   // It's unlikely that we're losing out on much coverage by avoiding that
1990   // extra work.
1991   // The Source may differ in this situation:
1992   // Pred.1:
1993   //   dbg.assign i32 0, ..., !1, ...
1994   // Pred.2:
1995   //   dbg.assign i32 1, ..., !1, ...
1996   // Here the same assignment (!1) was performed in both preds in the source,
1997   // but we can't use either one unless they are identical (e.g. .we don't
1998   // want to arbitrarily pick between constant values).
1999   auto JoinSource = [&]() -> AssignRecord {
2000     if (A.Source == B.Source)
2001       return A.Source;
2002     if (!A.Source || !B.Source)
2003       return AssignRecord();
2004     assert(isa<DbgVariableRecord *>(A.Source) ==
2005            isa<DbgVariableRecord *>(B.Source));
2006     if (isa<DbgVariableRecord *>(A.Source) &&
2007         cast<DbgVariableRecord *>(A.Source)->isEquivalentTo(
2008             *cast<DbgVariableRecord *>(B.Source)))
2009       return A.Source;
2010     if (isa<DbgAssignIntrinsic *>(A.Source) &&
2011         cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo(
2012             cast<DbgAssignIntrinsic *>(B.Source)))
2013       return A.Source;
2014     return AssignRecord();
2015   };
2016   AssignRecord Source = JoinSource();
2017   assert(A.Status == B.Status && A.Status == Assignment::Known);
2018   assert(A.ID == B.ID);
2019   return Assignment::make(A.ID, Source);
2020 }
2021 
2022 AssignmentTrackingLowering::BlockInfo
2023 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
2024                                           const BlockInfo &B) {
2025   return BlockInfo::join(A, B, TrackedVariablesVectorSize);
2026 }
2027 
2028 bool AssignmentTrackingLowering::join(
2029     const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
2030 
2031   SmallVector<const BasicBlock *> VisitedPreds;
2032   // Ignore backedges if we have not visited the predecessor yet. As the
2033   // predecessor hasn't yet had locations propagated into it, most locations
2034   // will not yet be valid, so treat them as all being uninitialized and
2035   // potentially valid. If a location guessed to be correct here is
2036   // invalidated later, we will remove it when we revisit this block. This
2037   // is essentially the same as initialising all LocKinds and Assignments to
2038   // an implicit ⊥ value which is the identity value for the join operation.
2039   for (const BasicBlock *Pred : predecessors(&BB)) {
2040     if (Visited.count(Pred))
2041       VisitedPreds.push_back(Pred);
2042   }
2043 
2044   // No preds visited yet.
2045   if (VisitedPreds.empty()) {
2046     auto It = LiveIn.try_emplace(&BB, BlockInfo());
2047     bool DidInsert = It.second;
2048     if (DidInsert)
2049       It.first->second.init(TrackedVariablesVectorSize);
2050     return /*Changed*/ DidInsert;
2051   }
2052 
2053   // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
2054   if (VisitedPreds.size() == 1) {
2055     const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
2056     auto CurrentLiveInEntry = LiveIn.find(&BB);
2057 
2058     // Check if there isn't an entry, or there is but the LiveIn set has
2059     // changed (expensive check).
2060     if (CurrentLiveInEntry == LiveIn.end())
2061       LiveIn.insert(std::make_pair(&BB, PredLiveOut));
2062     else if (PredLiveOut != CurrentLiveInEntry->second)
2063       CurrentLiveInEntry->second = PredLiveOut;
2064     else
2065       return /*Changed*/ false;
2066     return /*Changed*/ true;
2067   }
2068 
2069   // More than one pred. Join LiveOuts of blocks 1 and 2.
2070   assert(VisitedPreds.size() > 1);
2071   const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
2072   const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
2073   BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
2074 
2075   // Join the LiveOuts of subsequent blocks.
2076   ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
2077   for (const BasicBlock *Pred : Tail) {
2078     const auto &PredLiveOut = LiveOut.find(Pred);
2079     assert(PredLiveOut != LiveOut.end() &&
2080            "block should have been processed already");
2081     BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
2082   }
2083 
2084   // Save the joined result for BB.
2085   auto CurrentLiveInEntry = LiveIn.find(&BB);
2086   // Check if there isn't an entry, or there is but the LiveIn set has changed
2087   // (expensive check).
2088   if (CurrentLiveInEntry == LiveIn.end())
2089     LiveIn.try_emplace(&BB, std::move(BBLiveIn));
2090   else if (BBLiveIn != CurrentLiveInEntry->second)
2091     CurrentLiveInEntry->second = std::move(BBLiveIn);
2092   else
2093     return /*Changed*/ false;
2094   return /*Changed*/ true;
2095 }
2096 
2097 /// Return true if A fully contains B.
2098 static bool fullyContains(DIExpression::FragmentInfo A,
2099                           DIExpression::FragmentInfo B) {
2100   auto ALeft = A.OffsetInBits;
2101   auto BLeft = B.OffsetInBits;
2102   if (BLeft < ALeft)
2103     return false;
2104 
2105   auto ARight = ALeft + A.SizeInBits;
2106   auto BRight = BLeft + B.SizeInBits;
2107   if (BRight > ARight)
2108     return false;
2109   return true;
2110 }
2111 
2112 static std::optional<at::AssignmentInfo>
2113 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
2114   // Don't bother checking if this is an AllocaInst. We know this
2115   // instruction has no tag which means there are no variables associated
2116   // with it.
2117   if (const auto *SI = dyn_cast<StoreInst>(&I))
2118     return at::getAssignmentInfo(Layout, SI);
2119   if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
2120     return at::getAssignmentInfo(Layout, MI);
2121   // Alloca or non-store-like inst.
2122   return std::nullopt;
2123 }
2124 
2125 DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) {
2126   return dyn_cast<DbgDeclareInst>(DVI);
2127 }
2128 
2129 DbgVariableRecord *DynCastToDbgDeclare(DbgVariableRecord *DVR) {
2130   return DVR->isDbgDeclare() ? DVR : nullptr;
2131 }
2132 
2133 /// Build a map of {Variable x: Variables y} where all variable fragments
2134 /// contained within the variable fragment x are in set y. This means that
2135 /// y does not contain all overlaps because partial overlaps are excluded.
2136 ///
2137 /// While we're iterating over the function, add single location defs for
2138 /// dbg.declares to \p FnVarLocs.
2139 ///
2140 /// Variables that are interesting to this pass in are added to
2141 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
2142 /// the last interesting variable plus 1, meaning variables with ID 1
2143 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2144 /// subsequent variables are either stack homed or fully promoted.
2145 ///
2146 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2147 /// the stored-to variable fragments.
2148 ///
2149 /// These tasks are bundled together to reduce the number of times we need
2150 /// to iterate over the function as they can be achieved together in one pass.
2151 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
2152     Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
2153     const DenseSet<DebugAggregate> &VarsWithStackSlot,
2154     AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
2155     unsigned &TrackedVariablesVectorSize) {
2156   DenseSet<DebugVariable> Seen;
2157   // Map of Variable: [Fragments].
2158   DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
2159   // Iterate over all instructions:
2160   // - dbg.declare    -> add single location variable record
2161   // - dbg.*          -> Add fragments to FragmentMap
2162   // - untagged store -> Add fragments to FragmentMap and update
2163   //                     UntaggedStoreVars.
2164   // We need to add fragments for untagged stores too so that we can correctly
2165   // clobber overlapped fragment locations later.
2166   SmallVector<DbgDeclareInst *> InstDeclares;
2167   SmallVector<DbgVariableRecord *> DPDeclares;
2168   auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) {
2169     if (auto *Declare = DynCastToDbgDeclare(Record)) {
2170       DeclareList.push_back(Declare);
2171       return;
2172     }
2173     DebugVariable DV = DebugVariable(Record);
2174     DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2175     if (!VarsWithStackSlot.contains(DA))
2176       return;
2177     if (Seen.insert(DV).second)
2178       FragmentMap[DA].push_back(DV);
2179   };
2180   for (auto &BB : Fn) {
2181     for (auto &I : BB) {
2182       for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2183         ProcessDbgRecord(&DVR, DPDeclares);
2184       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2185         ProcessDbgRecord(DII, InstDeclares);
2186       } else if (auto Info = getUntaggedStoreAssignmentInfo(
2187                      I, Fn.getDataLayout())) {
2188         // Find markers linked to this alloca.
2189         auto HandleDbgAssignForStore = [&](auto *Assign) {
2190           std::optional<DIExpression::FragmentInfo> FragInfo;
2191 
2192           // Skip this assignment if the affected bits are outside of the
2193           // variable fragment.
2194           if (!at::calculateFragmentIntersect(
2195                   I.getDataLayout(), Info->Base,
2196                   Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) ||
2197               (FragInfo && FragInfo->SizeInBits == 0))
2198             return;
2199 
2200           // FragInfo from calculateFragmentIntersect is nullopt if the
2201           // resultant fragment matches DAI's fragment or entire variable - in
2202           // which case copy the fragment info from DAI. If FragInfo is still
2203           // nullopt after the copy it means "no fragment info" instead, which
2204           // is how it is usually interpreted.
2205           if (!FragInfo)
2206             FragInfo = Assign->getExpression()->getFragmentInfo();
2207 
2208           DebugVariable DV =
2209               DebugVariable(Assign->getVariable(), FragInfo,
2210                             Assign->getDebugLoc().getInlinedAt());
2211           DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2212           if (!VarsWithStackSlot.contains(DA))
2213             return;
2214 
2215           // Cache this info for later.
2216           UntaggedStoreVars[&I].push_back(
2217               {FnVarLocs->insertVariable(DV), *Info});
2218 
2219           if (Seen.insert(DV).second)
2220             FragmentMap[DA].push_back(DV);
2221         };
2222         for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base))
2223           HandleDbgAssignForStore(DAI);
2224         for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(Info->Base))
2225           HandleDbgAssignForStore(DVR);
2226       }
2227     }
2228   }
2229 
2230   // Sort the fragment map for each DebugAggregate in ascending
2231   // order of fragment size - there should be no duplicates.
2232   for (auto &Pair : FragmentMap) {
2233     SmallVector<DebugVariable, 8> &Frags = Pair.second;
2234     std::sort(Frags.begin(), Frags.end(),
2235               [](const DebugVariable &Next, const DebugVariable &Elmt) {
2236                 return Elmt.getFragmentOrDefault().SizeInBits >
2237                        Next.getFragmentOrDefault().SizeInBits;
2238               });
2239     // Check for duplicates.
2240     assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2241   }
2242 
2243   // Build the map.
2244   AssignmentTrackingLowering::OverlapMap Map;
2245   for (auto &Pair : FragmentMap) {
2246     auto &Frags = Pair.second;
2247     for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2248       DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2249       // Find the frags that this is contained within.
2250       //
2251       // Because Frags is sorted by size and none have the same offset and
2252       // size, we know that this frag can only be contained by subsequent
2253       // elements.
2254       SmallVector<DebugVariable, 8>::iterator OtherIt = It;
2255       ++OtherIt;
2256       VariableID ThisVar = FnVarLocs->insertVariable(*It);
2257       for (; OtherIt != IEnd; ++OtherIt) {
2258         DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2259         VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2260         if (fullyContains(OtherFrag, Frag))
2261           Map[OtherVar].push_back(ThisVar);
2262       }
2263     }
2264   }
2265 
2266   // VariableIDs are 1-based so the variable-tracking bitvector needs
2267   // NumVariables plus 1 bits.
2268   TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2269 
2270   // Finally, insert the declares afterwards, so the first IDs are all
2271   // partially stack homed vars.
2272   for (auto *DDI : InstDeclares)
2273     FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
2274                                DDI->getDebugLoc(), DDI->getWrappedLocation());
2275   for (auto *DVR : DPDeclares)
2276     FnVarLocs->addSingleLocVar(DebugVariable(DVR), DVR->getExpression(),
2277                                DVR->getDebugLoc(),
2278                                RawLocationWrapper(DVR->getRawLocation()));
2279   return Map;
2280 }
2281 
2282 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2283   if (Fn.size() > MaxNumBlocks) {
2284     LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2285                       << ": too many blocks (" << Fn.size() << ")\n");
2286     at::deleteAll(&Fn);
2287     return false;
2288   }
2289 
2290   FnVarLocs = FnVarLocsBuilder;
2291 
2292   // The general structure here is inspired by VarLocBasedImpl.cpp
2293   // (LiveDebugValues).
2294 
2295   // Build the variable fragment overlap map.
2296   // Note that this pass doesn't handle partial overlaps correctly (FWIW
2297   // neither does LiveDebugVariables) because that is difficult to do and
2298   // appears to be rare occurance.
2299   VarContains = buildOverlapMapAndRecordDeclares(
2300       Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
2301       TrackedVariablesVectorSize);
2302 
2303   // Prepare for traversal.
2304   ReversePostOrderTraversal<Function *> RPOT(&Fn);
2305   std::priority_queue<unsigned int, std::vector<unsigned int>,
2306                       std::greater<unsigned int>>
2307       Worklist;
2308   std::priority_queue<unsigned int, std::vector<unsigned int>,
2309                       std::greater<unsigned int>>
2310       Pending;
2311   DenseMap<unsigned int, BasicBlock *> OrderToBB;
2312   DenseMap<BasicBlock *, unsigned int> BBToOrder;
2313   { // Init OrderToBB and BBToOrder.
2314     unsigned int RPONumber = 0;
2315     for (BasicBlock *BB : RPOT) {
2316       OrderToBB[RPONumber] = BB;
2317       BBToOrder[BB] = RPONumber;
2318       Worklist.push(RPONumber);
2319       ++RPONumber;
2320     }
2321     LiveIn.init(RPONumber);
2322     LiveOut.init(RPONumber);
2323   }
2324 
2325   // Perform the traversal.
2326   //
2327   // This is a standard "union of predecessor outs" dataflow problem. To solve
2328   // it, we perform join() and process() using the two worklist method until
2329   // the LiveIn data for each block becomes unchanging. The "proof" that this
2330   // terminates can be put together by looking at the comments around LocKind,
2331   // Assignment, and the various join methods, which show that all the elements
2332   // involved are made up of join-semilattices; LiveIn(n) can only
2333   // monotonically increase in value throughout the dataflow.
2334   //
2335   SmallPtrSet<BasicBlock *, 16> Visited;
2336   while (!Worklist.empty()) {
2337     // We track what is on the pending worklist to avoid inserting the same
2338     // thing twice.
2339     SmallPtrSet<BasicBlock *, 16> OnPending;
2340     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2341     while (!Worklist.empty()) {
2342       BasicBlock *BB = OrderToBB[Worklist.top()];
2343       LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2344       Worklist.pop();
2345       bool InChanged = join(*BB, Visited);
2346       // Always consider LiveIn changed on the first visit.
2347       InChanged |= Visited.insert(BB).second;
2348       if (InChanged) {
2349         LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2350         // Mutate a copy of LiveIn while processing BB. After calling process
2351         // LiveSet is the LiveOut set for BB.
2352         BlockInfo LiveSet = LiveIn[BB];
2353 
2354         // Process the instructions in the block.
2355         process(*BB, &LiveSet);
2356 
2357         // Relatively expensive check: has anything changed in LiveOut for BB?
2358         if (LiveOut[BB] != LiveSet) {
2359           LLVM_DEBUG(dbgs() << BB->getName()
2360                             << " has new OutLocs, add succs to worklist: [ ");
2361           LiveOut[BB] = std::move(LiveSet);
2362           for (BasicBlock *Succ : successors(BB)) {
2363             if (OnPending.insert(Succ).second) {
2364               LLVM_DEBUG(dbgs() << Succ->getName() << " ");
2365               Pending.push(BBToOrder[Succ]);
2366             }
2367           }
2368           LLVM_DEBUG(dbgs() << "]\n");
2369         }
2370       }
2371     }
2372     Worklist.swap(Pending);
2373     // At this point, pending must be empty, since it was just the empty
2374     // worklist
2375     assert(Pending.empty() && "Pending should be empty");
2376   }
2377 
2378   // That's the hard part over. Now we just have some admin to do.
2379 
2380   // Record whether we inserted any intrinsics.
2381   bool InsertedAnyIntrinsics = false;
2382 
2383   // Identify and add defs for single location variables.
2384   //
2385   // Go through all of the defs that we plan to add. If the aggregate variable
2386   // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2387   // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2388   // we can identify those uneeded defs later.
2389   DenseSet<DebugAggregate> AlwaysStackHomed;
2390   for (const auto &Pair : InsertBeforeMap) {
2391     auto &Vec = Pair.second;
2392     for (VarLocInfo VarLoc : Vec) {
2393       DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2394       DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2395 
2396       // Skip this Var if it's not always stack homed.
2397       if (NotAlwaysStackHomed.contains(Aggr))
2398         continue;
2399 
2400       // Skip complex cases such as when different fragments of a variable have
2401       // been split into different allocas. Skipping in this case means falling
2402       // back to using a list of defs (which could reduce coverage, but is no
2403       // less correct).
2404       bool Simple =
2405           VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2406       if (!Simple) {
2407         NotAlwaysStackHomed.insert(Aggr);
2408         continue;
2409       }
2410 
2411       // All source assignments to this variable remain and all stores to any
2412       // part of the variable store to the same address (with varying
2413       // offsets). We can just emit a single location for the whole variable.
2414       //
2415       // Unless we've already done so, create the single location def now.
2416       if (AlwaysStackHomed.insert(Aggr).second) {
2417         assert(!VarLoc.Values.hasArgList());
2418         // TODO: When more complex cases are handled VarLoc.Expr should be
2419         // built appropriately rather than always using an empty DIExpression.
2420         // The assert below is a reminder.
2421         assert(Simple);
2422         VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2423         DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2424         FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2425         InsertedAnyIntrinsics = true;
2426       }
2427     }
2428   }
2429 
2430   // Insert the other DEFs.
2431   for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2432     SmallVector<VarLocInfo> NewDefs;
2433     for (const VarLocInfo &VarLoc : Vec) {
2434       DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2435       DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2436       // If this variable is always stack homed then we have already inserted a
2437       // dbg.declare and deleted this dbg.value.
2438       if (AlwaysStackHomed.contains(Aggr))
2439         continue;
2440       NewDefs.push_back(VarLoc);
2441       InsertedAnyIntrinsics = true;
2442     }
2443 
2444     FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2445   }
2446 
2447   InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2448 
2449   return InsertedAnyIntrinsics;
2450 }
2451 
2452 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2453     FunctionVarLocsBuilder *FnVarLocs) {
2454   bool InsertedAnyIntrinsics = false;
2455   // Go through every block, translating debug intrinsics for fully promoted
2456   // variables into FnVarLocs location defs. No analysis required for these.
2457   auto TranslateDbgRecord = [&](auto *Record) {
2458     // Skip variables that haven't been promoted - we've dealt with those
2459     // already.
2460     if (VarsWithStackSlot->contains(getAggregate(Record)))
2461       return;
2462     auto InsertBefore = getNextNode(Record);
2463     assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2464     FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record),
2465                          Record->getExpression(), Record->getDebugLoc(),
2466                          RawLocationWrapper(Record->getRawLocation()));
2467     InsertedAnyIntrinsics = true;
2468   };
2469   for (auto &BB : Fn) {
2470     for (auto &I : BB) {
2471       // Skip instructions other than dbg.values and dbg.assigns.
2472       for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2473         if (DVR.isDbgValue() || DVR.isDbgAssign())
2474           TranslateDbgRecord(&DVR);
2475       auto *DVI = dyn_cast<DbgValueInst>(&I);
2476       if (DVI)
2477         TranslateDbgRecord(DVI);
2478     }
2479   }
2480   return InsertedAnyIntrinsics;
2481 }
2482 
2483 /// Remove redundant definitions within sequences of consecutive location defs.
2484 /// This is done using a backward scan to keep the last def describing a
2485 /// specific variable/fragment.
2486 ///
2487 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2488 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2489 /// FunctionVarLocsBuilder instead of with intrinsics.
2490 static bool
2491 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2492                                         FunctionVarLocsBuilder &FnVarLocs) {
2493   bool Changed = false;
2494   SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
2495   // Scan over the entire block, not just over the instructions mapped by
2496   // FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2497   // instructions.
2498   for (const Instruction &I : reverse(*BB)) {
2499     if (!isa<DbgVariableIntrinsic>(I)) {
2500       // Sequence of consecutive defs ended. Clear map for the next one.
2501       VariableDefinedBytes.clear();
2502     }
2503 
2504     auto HandleLocsForWedge = [&](auto *WedgePosition) {
2505       // Get the location defs that start just before this instruction.
2506       const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2507       if (!Locs)
2508         return;
2509 
2510       NumWedgesScanned++;
2511       bool ChangedThisWedge = false;
2512       // The new pruned set of defs, reversed because we're scanning backwards.
2513       SmallVector<VarLocInfo> NewDefsReversed;
2514 
2515       // Iterate over the existing defs in reverse.
2516       for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2517         NumDefsScanned++;
2518         DebugAggregate Aggr =
2519             getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2520         uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2521         uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
2522 
2523         // Cutoff for large variables to prevent expensive bitvector operations.
2524         const uint64_t MaxSizeBytes = 2048;
2525 
2526         if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
2527           // If the size is unknown (0) then keep this location def to be safe.
2528           // Do the same for defs of large variables, which would be expensive
2529           // to represent with a BitVector.
2530           NewDefsReversed.push_back(*RIt);
2531           continue;
2532         }
2533 
2534         // Only keep this location definition if it is not fully eclipsed by
2535         // other definitions in this wedge that come after it
2536 
2537         // Inert the bytes the location definition defines.
2538         auto InsertResult =
2539             VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
2540         bool FirstDefinition = InsertResult.second;
2541         BitVector &DefinedBytes = InsertResult.first->second;
2542 
2543         DIExpression::FragmentInfo Fragment =
2544             RIt->Expr->getFragmentInfo().value_or(
2545                 DIExpression::FragmentInfo(SizeInBits, 0));
2546         bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2547         uint64_t StartInBytes = Fragment.startInBits() / 8;
2548         uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
2549 
2550         // If this defines any previously undefined bytes, keep it.
2551         if (FirstDefinition || InvalidFragment ||
2552             DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
2553           if (!InvalidFragment)
2554             DefinedBytes.set(StartInBytes, EndInBytes);
2555           NewDefsReversed.push_back(*RIt);
2556           continue;
2557         }
2558 
2559         // Redundant def found: throw it away. Since the wedge of defs is being
2560         // rebuilt, doing nothing is the same as deleting an entry.
2561         ChangedThisWedge = true;
2562         NumDefsRemoved++;
2563       }
2564 
2565       // Un-reverse the defs and replace the wedge with the pruned version.
2566       if (ChangedThisWedge) {
2567         std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2568         FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed));
2569         NumWedgesChanged++;
2570         Changed = true;
2571       }
2572     };
2573     HandleLocsForWedge(&I);
2574     for (DbgVariableRecord &DVR : reverse(filterDbgVars(I.getDbgRecordRange())))
2575       HandleLocsForWedge(&DVR);
2576   }
2577 
2578   return Changed;
2579 }
2580 
2581 /// Remove redundant location defs using a forward scan. This can remove a
2582 /// location definition that is redundant due to indicating that a variable has
2583 /// the same value as is already being indicated by an earlier def.
2584 ///
2585 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2586 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2587 /// FunctionVarLocsBuilder instead of with intrinsics
2588 static bool
2589 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2590                                        FunctionVarLocsBuilder &FnVarLocs) {
2591   bool Changed = false;
2592   DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
2593       VariableMap;
2594 
2595   // Scan over the entire block, not just over the instructions mapped by
2596   // FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2597   // instructions.
2598   for (const Instruction &I : *BB) {
2599     // Get the defs that come just before this instruction.
2600     auto HandleLocsForWedge = [&](auto *WedgePosition) {
2601       const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2602       if (!Locs)
2603         return;
2604 
2605       NumWedgesScanned++;
2606       bool ChangedThisWedge = false;
2607       // The new pruned set of defs.
2608       SmallVector<VarLocInfo> NewDefs;
2609 
2610       // Iterate over the existing defs.
2611       for (const VarLocInfo &Loc : *Locs) {
2612         NumDefsScanned++;
2613         DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2614                           std::nullopt, Loc.DL.getInlinedAt());
2615         auto VMI = VariableMap.find(Key);
2616 
2617         // Update the map if we found a new value/expression describing the
2618         // variable, or if the variable wasn't mapped already.
2619         if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
2620             VMI->second.second != Loc.Expr) {
2621           VariableMap[Key] = {Loc.Values, Loc.Expr};
2622           NewDefs.push_back(Loc);
2623           continue;
2624         }
2625 
2626         // Did not insert this Loc, which is the same as removing it.
2627         ChangedThisWedge = true;
2628         NumDefsRemoved++;
2629       }
2630 
2631       // Replace the existing wedge with the pruned version.
2632       if (ChangedThisWedge) {
2633         FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2634         NumWedgesChanged++;
2635         Changed = true;
2636       }
2637     };
2638 
2639     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2640       HandleLocsForWedge(&DVR);
2641     HandleLocsForWedge(&I);
2642   }
2643 
2644   return Changed;
2645 }
2646 
2647 static bool
2648 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2649                                  FunctionVarLocsBuilder &FnVarLocs) {
2650   assert(BB->isEntryBlock());
2651   // Do extra work to ensure that we remove semantically unimportant undefs.
2652   //
2653   // This is to work around the fact that SelectionDAG will hoist dbg.values
2654   // using argument values to the top of the entry block. That can move arg
2655   // dbg.values before undef and constant dbg.values which they previously
2656   // followed. The easiest thing to do is to just try to feed SelectionDAG
2657   // input it's happy with.
2658   //
2659   // Map of {Variable x: Fragments y} where the fragments y of variable x have
2660   // have at least one non-undef location defined already. Don't use directly,
2661   // instead call DefineBits and HasDefinedBits.
2662   SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2663       VarsWithDef;
2664   // Specify that V (a fragment of A) has a non-undef location.
2665   auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2666     VarsWithDef[A].insert(V.getFragmentOrDefault());
2667   };
2668   // Return true if a non-undef location has been defined for V (a fragment of
2669   // A). Doesn't imply that the location is currently non-undef, just that a
2670   // non-undef location has been seen previously.
2671   auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2672     auto FragsIt = VarsWithDef.find(A);
2673     if (FragsIt == VarsWithDef.end())
2674       return false;
2675     return llvm::any_of(FragsIt->second, [V](auto Frag) {
2676       return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2677     });
2678   };
2679 
2680   bool Changed = false;
2681   DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2682 
2683   // Scan over the entire block, not just over the instructions mapped by
2684   // FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2685   // instructions.
2686   for (const Instruction &I : *BB) {
2687     // Get the defs that come just before this instruction.
2688     auto HandleLocsForWedge = [&](auto *WedgePosition) {
2689       const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2690       if (!Locs)
2691         return;
2692 
2693       NumWedgesScanned++;
2694       bool ChangedThisWedge = false;
2695       // The new pruned set of defs.
2696       SmallVector<VarLocInfo> NewDefs;
2697 
2698       // Iterate over the existing defs.
2699       for (const VarLocInfo &Loc : *Locs) {
2700         NumDefsScanned++;
2701         DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2702                             Loc.DL.getInlinedAt()};
2703         DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2704 
2705         // Remove undef entries that are encountered before any non-undef
2706         // intrinsics from the entry block.
2707         if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2708           // Did not insert this Loc, which is the same as removing it.
2709           NumDefsRemoved++;
2710           ChangedThisWedge = true;
2711           continue;
2712         }
2713 
2714         DefineBits(Aggr, Var);
2715         NewDefs.push_back(Loc);
2716       }
2717 
2718       // Replace the existing wedge with the pruned version.
2719       if (ChangedThisWedge) {
2720         FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2721         NumWedgesChanged++;
2722         Changed = true;
2723       }
2724     };
2725     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2726       HandleLocsForWedge(&DVR);
2727     HandleLocsForWedge(&I);
2728   }
2729 
2730   return Changed;
2731 }
2732 
2733 static bool removeRedundantDbgLocs(const BasicBlock *BB,
2734                                    FunctionVarLocsBuilder &FnVarLocs) {
2735   bool MadeChanges = false;
2736   MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2737   if (BB->isEntryBlock())
2738     MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2739   MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2740 
2741   if (MadeChanges)
2742     LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2743                       << "\n");
2744   return MadeChanges;
2745 }
2746 
2747 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2748   DenseSet<DebugAggregate> Result;
2749   for (auto &BB : Fn) {
2750     for (auto &I : BB) {
2751       // Any variable linked to an instruction is considered
2752       // interesting. Ideally we only need to check Allocas, however, a
2753       // DIAssignID might get dropped from an alloca but not stores. In that
2754       // case, we need to consider the variable interesting for NFC behaviour
2755       // with this change. TODO: Consider only looking at allocas.
2756       for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2757         Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2758       }
2759       for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(&I)) {
2760         Result.insert({DVR->getVariable(), DVR->getDebugLoc().getInlinedAt()});
2761       }
2762     }
2763   }
2764   return Result;
2765 }
2766 
2767 static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2768                             FunctionVarLocsBuilder *FnVarLocs) {
2769   // The analysis will generate location definitions for all variables, but we
2770   // only need to perform a dataflow on the set of variables which have a stack
2771   // slot. Find those now.
2772   DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2773 
2774   bool Changed = false;
2775 
2776   // Use a scope block to clean up AssignmentTrackingLowering before running
2777   // MemLocFragmentFill to reduce peak memory consumption.
2778   {
2779     AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2780     Changed = Pass.run(FnVarLocs);
2781   }
2782 
2783   if (Changed) {
2784     MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2785                             shouldCoalesceFragments(Fn));
2786     Pass.run(FnVarLocs);
2787 
2788     // Remove redundant entries. As well as reducing memory consumption and
2789     // avoiding waiting cycles later by burning some now, this has another
2790     // important job. That is to work around some SelectionDAG quirks. See
2791     // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2792     for (auto &BB : Fn)
2793       removeRedundantDbgLocs(&BB, *FnVarLocs);
2794   }
2795 }
2796 
2797 FunctionVarLocs
2798 DebugAssignmentTrackingAnalysis::run(Function &F,
2799                                      FunctionAnalysisManager &FAM) {
2800   if (!isAssignmentTrackingEnabled(*F.getParent()))
2801     return FunctionVarLocs();
2802 
2803   auto &DL = F.getDataLayout();
2804 
2805   FunctionVarLocsBuilder Builder;
2806   analyzeFunction(F, DL, &Builder);
2807 
2808   // Save these results.
2809   FunctionVarLocs Results;
2810   Results.init(Builder);
2811   return Results;
2812 }
2813 
2814 AnalysisKey DebugAssignmentTrackingAnalysis::Key;
2815 
2816 PreservedAnalyses
2817 DebugAssignmentTrackingPrinterPass::run(Function &F,
2818                                         FunctionAnalysisManager &FAM) {
2819   FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F);
2820   return PreservedAnalyses::all();
2821 }
2822 
2823 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2824   if (!isAssignmentTrackingEnabled(*F.getParent()))
2825     return false;
2826 
2827   LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2828                     << "\n");
2829   auto DL = std::make_unique<DataLayout>(F.getParent());
2830 
2831   // Clear previous results.
2832   Results->clear();
2833 
2834   FunctionVarLocsBuilder Builder;
2835   analyzeFunction(F, *DL.get(), &Builder);
2836 
2837   // Save these results.
2838   Results->init(Builder);
2839 
2840   if (PrintResults && isFunctionInPrintList(F.getName()))
2841     Results->print(errs(), F);
2842 
2843   // Return false because this pass does not modify the function.
2844   return false;
2845 }
2846 
2847 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2848     : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2849 
2850 char AssignmentTrackingAnalysis::ID = 0;
2851 
2852 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2853                 "Assignment Tracking Analysis", false, true)
2854