1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing exception info into assembly files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "EHStreamer.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/Dwarf.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineOperand.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/MC/MCTargetOptions.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/LEB128.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstdint> 35 #include <vector> 36 37 using namespace llvm; 38 39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 40 41 EHStreamer::~EHStreamer() = default; 42 43 /// How many leading type ids two landing pads have in common. 44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 45 const LandingPadInfo *R) { 46 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 47 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end()) 48 .first - 49 LIds.begin(); 50 } 51 52 /// Compute the actions table and gather the first action index for each landing 53 /// pad site. 54 void EHStreamer::computeActionsTable( 55 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 56 SmallVectorImpl<ActionEntry> &Actions, 57 SmallVectorImpl<unsigned> &FirstActions) { 58 // The action table follows the call-site table in the LSDA. The individual 59 // records are of two types: 60 // 61 // * Catch clause 62 // * Exception specification 63 // 64 // The two record kinds have the same format, with only small differences. 65 // They are distinguished by the "switch value" field: Catch clauses 66 // (TypeInfos) have strictly positive switch values, and exception 67 // specifications (FilterIds) have strictly negative switch values. Value 0 68 // indicates a catch-all clause. 69 // 70 // Negative type IDs index into FilterIds. Positive type IDs index into 71 // TypeInfos. The value written for a positive type ID is just the type ID 72 // itself. For a negative type ID, however, the value written is the 73 // (negative) byte offset of the corresponding FilterIds entry. The byte 74 // offset is usually equal to the type ID (because the FilterIds entries are 75 // written using a variable width encoding, which outputs one byte per entry 76 // as long as the value written is not too large) but can differ. This kind 77 // of complication does not occur for positive type IDs because type infos are 78 // output using a fixed width encoding. FilterOffsets[i] holds the byte 79 // offset corresponding to FilterIds[i]. 80 81 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds(); 82 SmallVector<int, 16> FilterOffsets; 83 FilterOffsets.reserve(FilterIds.size()); 84 int Offset = -1; 85 86 for (unsigned FilterId : FilterIds) { 87 FilterOffsets.push_back(Offset); 88 Offset -= getULEB128Size(FilterId); 89 } 90 91 FirstActions.reserve(LandingPads.size()); 92 93 int FirstAction = 0; 94 unsigned SizeActions = 0; // Total size of all action entries for a function 95 const LandingPadInfo *PrevLPI = nullptr; 96 97 for (const LandingPadInfo *LPI : LandingPads) { 98 const std::vector<int> &TypeIds = LPI->TypeIds; 99 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 100 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad 101 102 if (NumShared < TypeIds.size()) { 103 // Size of one action entry (typeid + next action) 104 unsigned SizeActionEntry = 0; 105 unsigned PrevAction = (unsigned)-1; 106 107 if (NumShared) { 108 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 109 assert(Actions.size()); 110 PrevAction = Actions.size() - 1; 111 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) + 112 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 113 114 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 115 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 116 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 117 SizeActionEntry += -Actions[PrevAction].NextAction; 118 PrevAction = Actions[PrevAction].Previous; 119 } 120 } 121 122 // Compute the actions. 123 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 124 int TypeID = TypeIds[J]; 125 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 126 int ValueForTypeID = 127 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; 128 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 129 130 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0; 131 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction); 132 SizeSiteActions += SizeActionEntry; 133 134 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 135 Actions.push_back(Action); 136 PrevAction = Actions.size() - 1; 137 } 138 139 // Record the first action of the landing pad site. 140 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1; 141 } // else identical - re-use previous FirstAction 142 143 // Information used when creating the call-site table. The action record 144 // field of the call site record is the offset of the first associated 145 // action record, relative to the start of the actions table. This value is 146 // biased by 1 (1 indicating the start of the actions table), and 0 147 // indicates that there are no actions. 148 FirstActions.push_back(FirstAction); 149 150 // Compute this sites contribution to size. 151 SizeActions += SizeSiteActions; 152 153 PrevLPI = LPI; 154 } 155 } 156 157 /// Return `true' if this is a call to a function marked `nounwind'. Return 158 /// `false' otherwise. 159 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 160 assert(MI->isCall() && "This should be a call instruction!"); 161 162 bool MarkedNoUnwind = false; 163 bool SawFunc = false; 164 165 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 166 const MachineOperand &MO = MI->getOperand(I); 167 168 if (!MO.isGlobal()) continue; 169 170 const Function *F = dyn_cast<Function>(MO.getGlobal()); 171 if (!F) continue; 172 173 if (SawFunc) { 174 // Be conservative. If we have more than one function operand for this 175 // call, then we can't make the assumption that it's the callee and 176 // not a parameter to the call. 177 // 178 // FIXME: Determine if there's a way to say that `F' is the callee or 179 // parameter. 180 MarkedNoUnwind = false; 181 break; 182 } 183 184 MarkedNoUnwind = F->doesNotThrow(); 185 SawFunc = true; 186 } 187 188 return MarkedNoUnwind; 189 } 190 191 void EHStreamer::computePadMap( 192 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 193 RangeMapType &PadMap) { 194 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 195 // by try-range labels when lowered). Ordinary calls do not, so appropriate 196 // try-ranges for them need be deduced so we can put them in the LSDA. 197 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 198 const LandingPadInfo *LandingPad = LandingPads[i]; 199 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 200 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 201 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 202 PadRange P = { i, j }; 203 PadMap[BeginLabel] = P; 204 } 205 } 206 } 207 208 /// Compute the call-site table. The entry for an invoke has a try-range 209 /// containing the call, a non-zero landing pad, and an appropriate action. The 210 /// entry for an ordinary call has a try-range containing the call and zero for 211 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 212 /// must not be contained in the try-range of any entry - they form gaps in the 213 /// table. Entries must be ordered by try-range address. 214 /// 215 /// Call-sites are split into one or more call-site ranges associated with 216 /// different sections of the function. 217 /// 218 /// - Without -basic-block-sections, all call-sites are grouped into one 219 /// call-site-range corresponding to the function section. 220 /// 221 /// - With -basic-block-sections, one call-site range is created for each 222 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively 223 // set to the beginning and ending of the corresponding section and its 224 // ExceptionLabel set to the exception symbol dedicated for this section. 225 // Later, one LSDA header will be emitted for each call-site range with its 226 // call-sites following. The action table and type info table will be 227 // shared across all ranges. 228 void EHStreamer::computeCallSiteTable( 229 SmallVectorImpl<CallSiteEntry> &CallSites, 230 SmallVectorImpl<CallSiteRange> &CallSiteRanges, 231 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 232 const SmallVectorImpl<unsigned> &FirstActions) { 233 RangeMapType PadMap; 234 computePadMap(LandingPads, PadMap); 235 236 // The end label of the previous invoke or nounwind try-range. 237 MCSymbol *LastLabel = Asm->getFunctionBegin(); 238 239 // Whether there is a potentially throwing instruction (currently this means 240 // an ordinary call) between the end of the previous try-range and now. 241 bool SawPotentiallyThrowing = false; 242 243 // Whether the last CallSite entry was for an invoke. 244 bool PreviousIsInvoke = false; 245 246 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 247 248 // Visit all instructions in order of address. 249 for (const auto &MBB : *Asm->MF) { 250 if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) { 251 // We start a call-site range upon function entry and at the beginning of 252 // every basic block section. 253 CallSiteRanges.push_back( 254 {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel, 255 Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel, 256 Asm->getMBBExceptionSym(MBB), CallSites.size()}); 257 PreviousIsInvoke = false; 258 SawPotentiallyThrowing = false; 259 LastLabel = nullptr; 260 } 261 262 if (MBB.isEHPad()) 263 CallSiteRanges.back().IsLPRange = true; 264 265 for (const auto &MI : MBB) { 266 if (!MI.isEHLabel()) { 267 if (MI.isCall()) 268 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 269 continue; 270 } 271 272 // End of the previous try-range? 273 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 274 if (BeginLabel == LastLabel) 275 SawPotentiallyThrowing = false; 276 277 // Beginning of a new try-range? 278 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 279 if (L == PadMap.end()) 280 // Nope, it was just some random label. 281 continue; 282 283 const PadRange &P = L->second; 284 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 285 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 286 "Inconsistent landing pad map!"); 287 288 // For Dwarf and AIX exception handling (SjLj handling doesn't use this). 289 // If some instruction between the previous try-range and this one may 290 // throw, create a call-site entry with no landing pad for the region 291 // between the try-ranges. 292 if (SawPotentiallyThrowing && 293 (Asm->MAI->usesCFIForEH() || 294 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) { 295 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0}); 296 PreviousIsInvoke = false; 297 } 298 299 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 300 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 301 302 if (!LandingPad->LandingPadLabel) { 303 // Create a gap. 304 PreviousIsInvoke = false; 305 } else { 306 // This try-range is for an invoke. 307 CallSiteEntry Site = { 308 BeginLabel, 309 LastLabel, 310 LandingPad, 311 FirstActions[P.PadIndex] 312 }; 313 314 // Try to merge with the previous call-site. SJLJ doesn't do this 315 if (PreviousIsInvoke && !IsSJLJ) { 316 CallSiteEntry &Prev = CallSites.back(); 317 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { 318 // Extend the range of the previous entry. 319 Prev.EndLabel = Site.EndLabel; 320 continue; 321 } 322 } 323 324 // Otherwise, create a new call-site. 325 if (!IsSJLJ) 326 CallSites.push_back(Site); 327 else { 328 // SjLj EH must maintain the call sites in the order assigned 329 // to them by the SjLjPrepare pass. 330 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel); 331 if (CallSites.size() < SiteNo) 332 CallSites.resize(SiteNo); 333 CallSites[SiteNo - 1] = Site; 334 } 335 PreviousIsInvoke = true; 336 } 337 } 338 339 // We end the call-site range upon function exit and at the end of every 340 // basic block section. 341 if (&MBB == &Asm->MF->back() || MBB.isEndSection()) { 342 // If some instruction between the previous try-range and the end of the 343 // function may throw, create a call-site entry with no landing pad for 344 // the region following the try-range. 345 if (SawPotentiallyThrowing && !IsSJLJ) { 346 CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel, 347 nullptr, 0}; 348 CallSites.push_back(Site); 349 SawPotentiallyThrowing = false; 350 } 351 CallSiteRanges.back().CallSiteEndIdx = CallSites.size(); 352 } 353 } 354 } 355 356 /// Emit landing pads and actions. 357 /// 358 /// The general organization of the table is complex, but the basic concepts are 359 /// easy. First there is a header which describes the location and organization 360 /// of the three components that follow. 361 /// 362 /// 1. The landing pad site information describes the range of code covered by 363 /// the try. In our case it's an accumulation of the ranges covered by the 364 /// invokes in the try. There is also a reference to the landing pad that 365 /// handles the exception once processed. Finally an index into the actions 366 /// table. 367 /// 2. The action table, in our case, is composed of pairs of type IDs and next 368 /// action offset. Starting with the action index from the landing pad 369 /// site, each type ID is checked for a match to the current exception. If 370 /// it matches then the exception and type id are passed on to the landing 371 /// pad. Otherwise the next action is looked up. This chain is terminated 372 /// with a next action of zero. If no type id is found then the frame is 373 /// unwound and handling continues. 374 /// 3. Type ID table contains references to all the C++ typeinfo for all 375 /// catches in the function. This tables is reverse indexed base 1. 376 /// 377 /// Returns the starting symbol of an exception table. 378 MCSymbol *EHStreamer::emitExceptionTable() { 379 const MachineFunction *MF = Asm->MF; 380 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 381 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 382 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads(); 383 384 // Sort the landing pads in order of their type ids. This is used to fold 385 // duplicate actions. 386 SmallVector<const LandingPadInfo *, 64> LandingPads; 387 LandingPads.reserve(PadInfos.size()); 388 389 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 390 LandingPads.push_back(&PadInfos[i]); 391 392 // Order landing pads lexicographically by type id. 393 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) { 394 return L->TypeIds < R->TypeIds; 395 }); 396 397 // Compute the actions table and gather the first action index for each 398 // landing pad site. 399 SmallVector<ActionEntry, 32> Actions; 400 SmallVector<unsigned, 64> FirstActions; 401 computeActionsTable(LandingPads, Actions, FirstActions); 402 403 // Compute the call-site table and call-site ranges. Normally, there is only 404 // one call-site-range which covers the whole funciton. With 405 // -basic-block-sections, there is one call-site-range per basic block 406 // section. 407 SmallVector<CallSiteEntry, 64> CallSites; 408 SmallVector<CallSiteRange, 4> CallSiteRanges; 409 computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions); 410 411 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 412 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm; 413 bool HasLEB128Directives = Asm->MAI->hasLEB128Directives(); 414 unsigned CallSiteEncoding = 415 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) : 416 Asm->getObjFileLowering().getCallSiteEncoding(); 417 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty(); 418 419 // Type infos. 420 MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA( 421 MF->getFunction(), *Asm->CurrentFnSym, Asm->TM); 422 unsigned TTypeEncoding; 423 424 if (!HaveTTData) { 425 // If there is no TypeInfo, then we just explicitly say that we're omitting 426 // that bit. 427 TTypeEncoding = dwarf::DW_EH_PE_omit; 428 } else { 429 // Okay, we have actual filters or typeinfos to emit. As such, we need to 430 // pick a type encoding for them. We're about to emit a list of pointers to 431 // typeinfo objects at the end of the LSDA. However, unless we're in static 432 // mode, this reference will require a relocation by the dynamic linker. 433 // 434 // Because of this, we have a couple of options: 435 // 436 // 1) If we are in -static mode, we can always use an absolute reference 437 // from the LSDA, because the static linker will resolve it. 438 // 439 // 2) Otherwise, if the LSDA section is writable, we can output the direct 440 // reference to the typeinfo and allow the dynamic linker to relocate 441 // it. Since it is in a writable section, the dynamic linker won't 442 // have a problem. 443 // 444 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 445 // we need to use some form of indirection. For example, on Darwin, 446 // we can output a statically-relocatable reference to a dyld stub. The 447 // offset to the stub is constant, but the contents are in a section 448 // that is updated by the dynamic linker. This is easy enough, but we 449 // need to tell the personality function of the unwinder to indirect 450 // through the dyld stub. 451 // 452 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 453 // somewhere. This predicate should be moved to a shared location that is 454 // in target-independent code. 455 // 456 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 457 } 458 459 // Begin the exception table. 460 // Sometimes we want not to emit the data into separate section (e.g. ARM 461 // EHABI). In this case LSDASection will be NULL. 462 if (LSDASection) 463 Asm->OutStreamer->SwitchSection(LSDASection); 464 Asm->emitAlignment(Align(4)); 465 466 // Emit the LSDA. 467 MCSymbol *GCCETSym = 468 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ 469 Twine(Asm->getFunctionNumber())); 470 Asm->OutStreamer->emitLabel(GCCETSym); 471 MCSymbol *CstEndLabel = Asm->createTempSymbol( 472 CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end"); 473 474 MCSymbol *TTBaseLabel = nullptr; 475 if (HaveTTData) 476 TTBaseLabel = Asm->createTempSymbol("ttbase"); 477 478 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 479 480 // Helper for emitting references (offsets) for type table and the end of the 481 // call-site table (which marks the beginning of the action table). 482 // * For Itanium, these references will be emitted for every callsite range. 483 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header. 484 auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() { 485 Asm->emitEncodingByte(TTypeEncoding, "@TType"); 486 if (HaveTTData) { 487 // N.B.: There is a dependency loop between the size of the TTBase uleb128 488 // here and the amount of padding before the aligned type table. The 489 // assembler must sometimes pad this uleb128 or insert extra padding 490 // before the type table. See PR35809 or GNU as bug 4029. 491 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref"); 492 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel); 493 Asm->OutStreamer->emitLabel(TTBaseRefLabel); 494 } 495 496 // The Action table follows the call-site table. So we emit the 497 // label difference from here (start of the call-site table for SJLJ and 498 // Wasm, and start of a call-site range for Itanium) to the end of the 499 // whole call-site table (end of the last call-site range for Itanium). 500 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin"); 501 Asm->emitEncodingByte(CallSiteEncoding, "Call site"); 502 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel); 503 Asm->OutStreamer->emitLabel(CstBeginLabel); 504 }; 505 506 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef. 507 // For some platforms, the system assembler does not accept the form of 508 // `.uleb128 label2 - label1`. In those situations, we would need to calculate 509 // the size between label1 and label2 manually. 510 // In this case, we would need to calculate the LSDA size and the call 511 // site table size. 512 auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() { 513 assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives && 514 "Targets supporting .uleb128 do not need to take this path."); 515 if (CallSiteRanges.size() > 1) 516 report_fatal_error( 517 "-fbasic-block-sections is not yet supported on " 518 "platforms that do not have general LEB128 directive support."); 519 520 uint64_t CallSiteTableSize = 0; 521 const CallSiteRange &CSRange = CallSiteRanges.back(); 522 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; 523 CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) { 524 const CallSiteEntry &S = CallSites[CallSiteIdx]; 525 // Each call site entry consists of 3 udata4 fields (12 bytes) and 526 // 1 ULEB128 field. 527 CallSiteTableSize += 12 + getULEB128Size(S.Action); 528 assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows."); 529 } 530 531 Asm->emitEncodingByte(TTypeEncoding, "@TType"); 532 if (HaveTTData) { 533 const unsigned ByteSizeOfCallSiteOffset = 534 getULEB128Size(CallSiteTableSize); 535 uint64_t ActionTableSize = 0; 536 for (const ActionEntry &Action : Actions) { 537 // Each action entry consists of two SLEB128 fields. 538 ActionTableSize += getSLEB128Size(Action.ValueForTypeID) + 539 getSLEB128Size(Action.NextAction); 540 assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows."); 541 } 542 543 const unsigned TypeInfoSize = 544 Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size(); 545 546 const uint64_t LSDASizeBeforeAlign = 547 1 // Call site encoding byte. 548 + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize. 549 + CallSiteTableSize // Call site table content. 550 + ActionTableSize; // Action table content. 551 552 const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize; 553 const unsigned ByteSizeOfLSDAWithoutAlign = 554 getULEB128Size(LSDASizeWithoutAlign); 555 const uint64_t DisplacementBeforeAlign = 556 2 // LPStartEncoding and TypeTableEncoding. 557 + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign; 558 559 // The type info area starts with 4 byte alignment. 560 const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4; 561 uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal; 562 const unsigned ByteSizeOfLSDAWithAlign = 563 getULEB128Size(LSDASizeWithAlign); 564 565 // The LSDASizeWithAlign could use 1 byte less padding for alignment 566 // when the data we use to represent the LSDA Size "needs" to be 1 byte 567 // larger than the one previously calculated without alignment. 568 if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign) 569 LSDASizeWithAlign -= 1; 570 571 Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign, 572 ByteSizeOfLSDAWithAlign); 573 } 574 575 Asm->emitEncodingByte(CallSiteEncoding, "Call site"); 576 Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize); 577 }; 578 579 // SjLj / Wasm Exception handling 580 if (IsSJLJ || IsWasm) { 581 Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front())); 582 583 // emit the LSDA header. 584 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 585 EmitTypeTableRefAndCallSiteTableEndRef(); 586 587 unsigned idx = 0; 588 for (SmallVectorImpl<CallSiteEntry>::const_iterator 589 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 590 const CallSiteEntry &S = *I; 591 592 // Index of the call site entry. 593 if (VerboseAsm) { 594 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); 595 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); 596 } 597 Asm->emitULEB128(idx); 598 599 // Offset of the first associated action record, relative to the start of 600 // the action table. This value is biased by 1 (1 indicates the start of 601 // the action table), and 0 indicates that there are no actions. 602 if (VerboseAsm) { 603 if (S.Action == 0) 604 Asm->OutStreamer->AddComment(" Action: cleanup"); 605 else 606 Asm->OutStreamer->AddComment(" Action: " + 607 Twine((S.Action - 1) / 2 + 1)); 608 } 609 Asm->emitULEB128(S.Action); 610 } 611 Asm->OutStreamer->emitLabel(CstEndLabel); 612 } else { 613 // Itanium LSDA exception handling 614 615 // The call-site table is a list of all call sites that may throw an 616 // exception (including C++ 'throw' statements) in the procedure 617 // fragment. It immediately follows the LSDA header. Each entry indicates, 618 // for a given call, the first corresponding action record and corresponding 619 // landing pad. 620 // 621 // The table begins with the number of bytes, stored as an LEB128 622 // compressed, unsigned integer. The records immediately follow the record 623 // count. They are sorted in increasing call-site address. Each record 624 // indicates: 625 // 626 // * The position of the call-site. 627 // * The position of the landing pad. 628 // * The first action record for that call site. 629 // 630 // A missing entry in the call-site table indicates that a call is not 631 // supposed to throw. 632 633 assert(CallSiteRanges.size() != 0 && "No call-site ranges!"); 634 635 // There should be only one call-site range which includes all the landing 636 // pads. Find that call-site range here. 637 const CallSiteRange *LandingPadRange = nullptr; 638 for (const CallSiteRange &CSRange : CallSiteRanges) { 639 if (CSRange.IsLPRange) { 640 assert(LandingPadRange == nullptr && 641 "All landing pads must be in a single callsite range."); 642 LandingPadRange = &CSRange; 643 } 644 } 645 646 // The call-site table is split into its call-site ranges, each being 647 // emitted as: 648 // [ LPStartEncoding | LPStart ] 649 // [ TypeTableEncoding | TypeTableOffset ] 650 // [ CallSiteEncoding | CallSiteTableEndOffset ] 651 // cst_begin -> { call-site entries contained in this range } 652 // 653 // and is followed by the next call-site range. 654 // 655 // For each call-site range, CallSiteTableEndOffset is computed as the 656 // difference between cst_begin of that range and the last call-site-table's 657 // end label. This offset is used to find the action table. 658 659 unsigned Entry = 0; 660 for (const CallSiteRange &CSRange : CallSiteRanges) { 661 if (CSRange.CallSiteBeginIdx != 0) { 662 // Align the call-site range for all ranges except the first. The 663 // first range is already aligned due to the exception table alignment. 664 Asm->emitAlignment(Align(4)); 665 } 666 Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel); 667 668 // Emit the LSDA header. 669 // If only one call-site range exists, LPStart is omitted as it is the 670 // same as the function entry. 671 if (CallSiteRanges.size() == 1) { 672 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 673 } else if (!Asm->isPositionIndependent()) { 674 // For more than one call-site ranges, LPStart must be explicitly 675 // specified. 676 // For non-PIC we can simply use the absolute value. 677 Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart"); 678 Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel, 679 Asm->MAI->getCodePointerSize()); 680 } else { 681 // For PIC mode, we Emit a PC-relative address for LPStart. 682 Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart"); 683 MCContext &Context = Asm->OutStreamer->getContext(); 684 MCSymbol *Dot = Context.createTempSymbol(); 685 Asm->OutStreamer->emitLabel(Dot); 686 Asm->OutStreamer->emitValue( 687 MCBinaryExpr::createSub( 688 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel, 689 Context), 690 MCSymbolRefExpr::create(Dot, Context), Context), 691 Asm->MAI->getCodePointerSize()); 692 } 693 694 if (HasLEB128Directives) 695 EmitTypeTableRefAndCallSiteTableEndRef(); 696 else 697 EmitTypeTableOffsetAndCallSiteTableOffset(); 698 699 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; 700 CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) { 701 const CallSiteEntry &S = CallSites[CallSiteIdx]; 702 703 MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel; 704 MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel; 705 706 MCSymbol *BeginLabel = S.BeginLabel; 707 if (!BeginLabel) 708 BeginLabel = EHFuncBeginSym; 709 MCSymbol *EndLabel = S.EndLabel; 710 if (!EndLabel) 711 EndLabel = EHFuncEndSym; 712 713 // Offset of the call site relative to the start of the procedure. 714 if (VerboseAsm) 715 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + 716 " <<"); 717 Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding); 718 if (VerboseAsm) 719 Asm->OutStreamer->AddComment(Twine(" Call between ") + 720 BeginLabel->getName() + " and " + 721 EndLabel->getName()); 722 Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding); 723 724 // Offset of the landing pad relative to the start of the landing pad 725 // fragment. 726 if (!S.LPad) { 727 if (VerboseAsm) 728 Asm->OutStreamer->AddComment(" has no landing pad"); 729 Asm->emitCallSiteValue(0, CallSiteEncoding); 730 } else { 731 if (VerboseAsm) 732 Asm->OutStreamer->AddComment(Twine(" jumps to ") + 733 S.LPad->LandingPadLabel->getName()); 734 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel, 735 LandingPadRange->FragmentBeginLabel, 736 CallSiteEncoding); 737 } 738 739 // Offset of the first associated action record, relative to the start 740 // of the action table. This value is biased by 1 (1 indicates the start 741 // of the action table), and 0 indicates that there are no actions. 742 if (VerboseAsm) { 743 if (S.Action == 0) 744 Asm->OutStreamer->AddComment(" On action: cleanup"); 745 else 746 Asm->OutStreamer->AddComment(" On action: " + 747 Twine((S.Action - 1) / 2 + 1)); 748 } 749 Asm->emitULEB128(S.Action); 750 } 751 } 752 Asm->OutStreamer->emitLabel(CstEndLabel); 753 } 754 755 // Emit the Action Table. 756 int Entry = 0; 757 for (const ActionEntry &Action : Actions) { 758 if (VerboseAsm) { 759 // Emit comments that decode the action table. 760 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); 761 } 762 763 // Type Filter 764 // 765 // Used by the runtime to match the type of the thrown exception to the 766 // type of the catch clauses or the types in the exception specification. 767 if (VerboseAsm) { 768 if (Action.ValueForTypeID > 0) 769 Asm->OutStreamer->AddComment(" Catch TypeInfo " + 770 Twine(Action.ValueForTypeID)); 771 else if (Action.ValueForTypeID < 0) 772 Asm->OutStreamer->AddComment(" Filter TypeInfo " + 773 Twine(Action.ValueForTypeID)); 774 else 775 Asm->OutStreamer->AddComment(" Cleanup"); 776 } 777 Asm->emitSLEB128(Action.ValueForTypeID); 778 779 // Action Record 780 if (VerboseAsm) { 781 if (Action.Previous == unsigned(-1)) { 782 Asm->OutStreamer->AddComment(" No further actions"); 783 } else { 784 Asm->OutStreamer->AddComment(" Continue to action " + 785 Twine(Action.Previous + 1)); 786 } 787 } 788 Asm->emitSLEB128(Action.NextAction); 789 } 790 791 if (HaveTTData) { 792 Asm->emitAlignment(Align(4)); 793 emitTypeInfos(TTypeEncoding, TTBaseLabel); 794 } 795 796 Asm->emitAlignment(Align(4)); 797 return GCCETSym; 798 } 799 800 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) { 801 const MachineFunction *MF = Asm->MF; 802 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 803 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 804 805 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 806 807 int Entry = 0; 808 // Emit the Catch TypeInfos. 809 if (VerboseAsm && !TypeInfos.empty()) { 810 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); 811 Asm->OutStreamer->AddBlankLine(); 812 Entry = TypeInfos.size(); 813 } 814 815 for (const GlobalValue *GV : llvm::reverse(TypeInfos)) { 816 if (VerboseAsm) 817 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); 818 Asm->emitTTypeReference(GV, TTypeEncoding); 819 } 820 821 Asm->OutStreamer->emitLabel(TTBaseLabel); 822 823 // Emit the Exception Specifications. 824 if (VerboseAsm && !FilterIds.empty()) { 825 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); 826 Asm->OutStreamer->AddBlankLine(); 827 Entry = 0; 828 } 829 for (std::vector<unsigned>::const_iterator 830 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 831 unsigned TypeID = *I; 832 if (VerboseAsm) { 833 --Entry; 834 if (isFilterEHSelector(TypeID)) 835 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); 836 } 837 838 Asm->emitULEB128(TypeID); 839 } 840 } 841