xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40 
41 EHStreamer::~EHStreamer() = default;
42 
43 /// How many leading type ids two landing pads have in common.
44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45                                    const LandingPadInfo *R) {
46   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47   return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
48              .first -
49          LIds.begin();
50 }
51 
52 /// Compute the actions table and gather the first action index for each landing
53 /// pad site.
54 void EHStreamer::computeActionsTable(
55     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
56     SmallVectorImpl<ActionEntry> &Actions,
57     SmallVectorImpl<unsigned> &FirstActions) {
58   // The action table follows the call-site table in the LSDA. The individual
59   // records are of two types:
60   //
61   //   * Catch clause
62   //   * Exception specification
63   //
64   // The two record kinds have the same format, with only small differences.
65   // They are distinguished by the "switch value" field: Catch clauses
66   // (TypeInfos) have strictly positive switch values, and exception
67   // specifications (FilterIds) have strictly negative switch values. Value 0
68   // indicates a catch-all clause.
69   //
70   // Negative type IDs index into FilterIds. Positive type IDs index into
71   // TypeInfos.  The value written for a positive type ID is just the type ID
72   // itself.  For a negative type ID, however, the value written is the
73   // (negative) byte offset of the corresponding FilterIds entry.  The byte
74   // offset is usually equal to the type ID (because the FilterIds entries are
75   // written using a variable width encoding, which outputs one byte per entry
76   // as long as the value written is not too large) but can differ.  This kind
77   // of complication does not occur for positive type IDs because type infos are
78   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
79   // offset corresponding to FilterIds[i].
80 
81   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
82   SmallVector<int, 16> FilterOffsets;
83   FilterOffsets.reserve(FilterIds.size());
84   int Offset = -1;
85 
86   for (std::vector<unsigned>::const_iterator
87          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
88     FilterOffsets.push_back(Offset);
89     Offset -= getULEB128Size(*I);
90   }
91 
92   FirstActions.reserve(LandingPads.size());
93 
94   int FirstAction = 0;
95   unsigned SizeActions = 0; // Total size of all action entries for a function
96   const LandingPadInfo *PrevLPI = nullptr;
97 
98   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
99          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
100     const LandingPadInfo *LPI = *I;
101     const std::vector<int> &TypeIds = LPI->TypeIds;
102     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
103     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
104 
105     if (NumShared < TypeIds.size()) {
106       // Size of one action entry (typeid + next action)
107       unsigned SizeActionEntry = 0;
108       unsigned PrevAction = (unsigned)-1;
109 
110       if (NumShared) {
111         unsigned SizePrevIds = PrevLPI->TypeIds.size();
112         assert(Actions.size());
113         PrevAction = Actions.size() - 1;
114         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
115                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
116 
117         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
118           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
119           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
120           SizeActionEntry += -Actions[PrevAction].NextAction;
121           PrevAction = Actions[PrevAction].Previous;
122         }
123       }
124 
125       // Compute the actions.
126       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
127         int TypeID = TypeIds[J];
128         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
129         int ValueForTypeID =
130             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
131         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
132 
133         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
134         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
135         SizeSiteActions += SizeActionEntry;
136 
137         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
138         Actions.push_back(Action);
139         PrevAction = Actions.size() - 1;
140       }
141 
142       // Record the first action of the landing pad site.
143       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
144     } // else identical - re-use previous FirstAction
145 
146     // Information used when creating the call-site table. The action record
147     // field of the call site record is the offset of the first associated
148     // action record, relative to the start of the actions table. This value is
149     // biased by 1 (1 indicating the start of the actions table), and 0
150     // indicates that there are no actions.
151     FirstActions.push_back(FirstAction);
152 
153     // Compute this sites contribution to size.
154     SizeActions += SizeSiteActions;
155 
156     PrevLPI = LPI;
157   }
158 }
159 
160 /// Return `true' if this is a call to a function marked `nounwind'. Return
161 /// `false' otherwise.
162 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
163   assert(MI->isCall() && "This should be a call instruction!");
164 
165   bool MarkedNoUnwind = false;
166   bool SawFunc = false;
167 
168   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
169     const MachineOperand &MO = MI->getOperand(I);
170 
171     if (!MO.isGlobal()) continue;
172 
173     const Function *F = dyn_cast<Function>(MO.getGlobal());
174     if (!F) continue;
175 
176     if (SawFunc) {
177       // Be conservative. If we have more than one function operand for this
178       // call, then we can't make the assumption that it's the callee and
179       // not a parameter to the call.
180       //
181       // FIXME: Determine if there's a way to say that `F' is the callee or
182       // parameter.
183       MarkedNoUnwind = false;
184       break;
185     }
186 
187     MarkedNoUnwind = F->doesNotThrow();
188     SawFunc = true;
189   }
190 
191   return MarkedNoUnwind;
192 }
193 
194 void EHStreamer::computePadMap(
195     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
196     RangeMapType &PadMap) {
197   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
198   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
199   // try-ranges for them need be deduced so we can put them in the LSDA.
200   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
201     const LandingPadInfo *LandingPad = LandingPads[i];
202     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
203       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
204       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
205       PadRange P = { i, j };
206       PadMap[BeginLabel] = P;
207     }
208   }
209 }
210 
211 /// Compute the call-site table.  The entry for an invoke has a try-range
212 /// containing the call, a non-zero landing pad, and an appropriate action.  The
213 /// entry for an ordinary call has a try-range containing the call and zero for
214 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
215 /// must not be contained in the try-range of any entry - they form gaps in the
216 /// table.  Entries must be ordered by try-range address.
217 ///
218 /// Call-sites are split into one or more call-site ranges associated with
219 /// different sections of the function.
220 ///
221 ///   - Without -basic-block-sections, all call-sites are grouped into one
222 ///     call-site-range corresponding to the function section.
223 ///
224 ///   - With -basic-block-sections, one call-site range is created for each
225 ///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
226 //      set to the beginning and ending of the corresponding section and its
227 //      ExceptionLabel set to the exception symbol dedicated for this section.
228 //      Later, one LSDA header will be emitted for each call-site range with its
229 //      call-sites following. The action table and type info table will be
230 //      shared across all ranges.
231 void EHStreamer::computeCallSiteTable(
232     SmallVectorImpl<CallSiteEntry> &CallSites,
233     SmallVectorImpl<CallSiteRange> &CallSiteRanges,
234     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
235     const SmallVectorImpl<unsigned> &FirstActions) {
236   RangeMapType PadMap;
237   computePadMap(LandingPads, PadMap);
238 
239   // The end label of the previous invoke or nounwind try-range.
240   MCSymbol *LastLabel = Asm->getFunctionBegin();
241 
242   // Whether there is a potentially throwing instruction (currently this means
243   // an ordinary call) between the end of the previous try-range and now.
244   bool SawPotentiallyThrowing = false;
245 
246   // Whether the last CallSite entry was for an invoke.
247   bool PreviousIsInvoke = false;
248 
249   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
250 
251   // Visit all instructions in order of address.
252   for (const auto &MBB : *Asm->MF) {
253     if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
254       // We start a call-site range upon function entry and at the beginning of
255       // every basic block section.
256       CallSiteRanges.push_back(
257           {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
258            Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
259            Asm->getMBBExceptionSym(MBB), CallSites.size()});
260       PreviousIsInvoke = false;
261       SawPotentiallyThrowing = false;
262       LastLabel = nullptr;
263     }
264 
265     if (MBB.isEHPad())
266       CallSiteRanges.back().IsLPRange = true;
267 
268     for (const auto &MI : MBB) {
269       if (!MI.isEHLabel()) {
270         if (MI.isCall())
271           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
272         continue;
273       }
274 
275       // End of the previous try-range?
276       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
277       if (BeginLabel == LastLabel)
278         SawPotentiallyThrowing = false;
279 
280       // Beginning of a new try-range?
281       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
282       if (L == PadMap.end())
283         // Nope, it was just some random label.
284         continue;
285 
286       const PadRange &P = L->second;
287       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
288       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
289              "Inconsistent landing pad map!");
290 
291       // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
292       // If some instruction between the previous try-range and this one may
293       // throw, create a call-site entry with no landing pad for the region
294       // between the try-ranges.
295       if (SawPotentiallyThrowing &&
296           (Asm->MAI->usesCFIForEH() ||
297            Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
298         CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
299         PreviousIsInvoke = false;
300       }
301 
302       LastLabel = LandingPad->EndLabels[P.RangeIndex];
303       assert(BeginLabel && LastLabel && "Invalid landing pad!");
304 
305       if (!LandingPad->LandingPadLabel) {
306         // Create a gap.
307         PreviousIsInvoke = false;
308       } else {
309         // This try-range is for an invoke.
310         CallSiteEntry Site = {
311           BeginLabel,
312           LastLabel,
313           LandingPad,
314           FirstActions[P.PadIndex]
315         };
316 
317         // Try to merge with the previous call-site. SJLJ doesn't do this
318         if (PreviousIsInvoke && !IsSJLJ) {
319           CallSiteEntry &Prev = CallSites.back();
320           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
321             // Extend the range of the previous entry.
322             Prev.EndLabel = Site.EndLabel;
323             continue;
324           }
325         }
326 
327         // Otherwise, create a new call-site.
328         if (!IsSJLJ)
329           CallSites.push_back(Site);
330         else {
331           // SjLj EH must maintain the call sites in the order assigned
332           // to them by the SjLjPrepare pass.
333           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
334           if (CallSites.size() < SiteNo)
335             CallSites.resize(SiteNo);
336           CallSites[SiteNo - 1] = Site;
337         }
338         PreviousIsInvoke = true;
339       }
340     }
341 
342     // We end the call-site range upon function exit and at the end of every
343     // basic block section.
344     if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
345       // If some instruction between the previous try-range and the end of the
346       // function may throw, create a call-site entry with no landing pad for
347       // the region following the try-range.
348       if (SawPotentiallyThrowing && !IsSJLJ) {
349         CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
350                               nullptr, 0};
351         CallSites.push_back(Site);
352         SawPotentiallyThrowing = false;
353       }
354       CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
355     }
356   }
357 }
358 
359 /// Emit landing pads and actions.
360 ///
361 /// The general organization of the table is complex, but the basic concepts are
362 /// easy.  First there is a header which describes the location and organization
363 /// of the three components that follow.
364 ///
365 ///  1. The landing pad site information describes the range of code covered by
366 ///     the try.  In our case it's an accumulation of the ranges covered by the
367 ///     invokes in the try.  There is also a reference to the landing pad that
368 ///     handles the exception once processed.  Finally an index into the actions
369 ///     table.
370 ///  2. The action table, in our case, is composed of pairs of type IDs and next
371 ///     action offset.  Starting with the action index from the landing pad
372 ///     site, each type ID is checked for a match to the current exception.  If
373 ///     it matches then the exception and type id are passed on to the landing
374 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
375 ///     with a next action of zero.  If no type id is found then the frame is
376 ///     unwound and handling continues.
377 ///  3. Type ID table contains references to all the C++ typeinfo for all
378 ///     catches in the function.  This tables is reverse indexed base 1.
379 ///
380 /// Returns the starting symbol of an exception table.
381 MCSymbol *EHStreamer::emitExceptionTable() {
382   const MachineFunction *MF = Asm->MF;
383   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
384   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
385   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
386 
387   // Sort the landing pads in order of their type ids.  This is used to fold
388   // duplicate actions.
389   SmallVector<const LandingPadInfo *, 64> LandingPads;
390   LandingPads.reserve(PadInfos.size());
391 
392   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
393     LandingPads.push_back(&PadInfos[i]);
394 
395   // Order landing pads lexicographically by type id.
396   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
397     return L->TypeIds < R->TypeIds;
398   });
399 
400   // Compute the actions table and gather the first action index for each
401   // landing pad site.
402   SmallVector<ActionEntry, 32> Actions;
403   SmallVector<unsigned, 64> FirstActions;
404   computeActionsTable(LandingPads, Actions, FirstActions);
405 
406   // Compute the call-site table and call-site ranges. Normally, there is only
407   // one call-site-range which covers the whole funciton. With
408   // -basic-block-sections, there is one call-site-range per basic block
409   // section.
410   SmallVector<CallSiteEntry, 64> CallSites;
411   SmallVector<CallSiteRange, 4> CallSiteRanges;
412   computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
413 
414   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
415   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
416   bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
417   unsigned CallSiteEncoding =
418       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
419                Asm->getObjFileLowering().getCallSiteEncoding();
420   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
421 
422   // Type infos.
423   MCSection *LSDASection =
424       Asm->getObjFileLowering().getSectionForLSDA(MF->getFunction(), Asm->TM);
425   unsigned TTypeEncoding;
426 
427   if (!HaveTTData) {
428     // If there is no TypeInfo, then we just explicitly say that we're omitting
429     // that bit.
430     TTypeEncoding = dwarf::DW_EH_PE_omit;
431   } else {
432     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
433     // pick a type encoding for them.  We're about to emit a list of pointers to
434     // typeinfo objects at the end of the LSDA.  However, unless we're in static
435     // mode, this reference will require a relocation by the dynamic linker.
436     //
437     // Because of this, we have a couple of options:
438     //
439     //   1) If we are in -static mode, we can always use an absolute reference
440     //      from the LSDA, because the static linker will resolve it.
441     //
442     //   2) Otherwise, if the LSDA section is writable, we can output the direct
443     //      reference to the typeinfo and allow the dynamic linker to relocate
444     //      it.  Since it is in a writable section, the dynamic linker won't
445     //      have a problem.
446     //
447     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
448     //      we need to use some form of indirection.  For example, on Darwin,
449     //      we can output a statically-relocatable reference to a dyld stub. The
450     //      offset to the stub is constant, but the contents are in a section
451     //      that is updated by the dynamic linker.  This is easy enough, but we
452     //      need to tell the personality function of the unwinder to indirect
453     //      through the dyld stub.
454     //
455     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
456     // somewhere.  This predicate should be moved to a shared location that is
457     // in target-independent code.
458     //
459     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
460   }
461 
462   // Begin the exception table.
463   // Sometimes we want not to emit the data into separate section (e.g. ARM
464   // EHABI). In this case LSDASection will be NULL.
465   if (LSDASection)
466     Asm->OutStreamer->SwitchSection(LSDASection);
467   Asm->emitAlignment(Align(4));
468 
469   // Emit the LSDA.
470   MCSymbol *GCCETSym =
471     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
472                                       Twine(Asm->getFunctionNumber()));
473   Asm->OutStreamer->emitLabel(GCCETSym);
474   MCSymbol *CstEndLabel = Asm->createTempSymbol(
475       CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
476 
477   MCSymbol *TTBaseLabel = nullptr;
478   if (HaveTTData)
479     TTBaseLabel = Asm->createTempSymbol("ttbase");
480 
481   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
482 
483   // Helper for emitting references (offsets) for type table and the end of the
484   // call-site table (which marks the beginning of the action table).
485   //  * For Itanium, these references will be emitted for every callsite range.
486   //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
487   auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
488     Asm->emitEncodingByte(TTypeEncoding, "@TType");
489     if (HaveTTData) {
490       // N.B.: There is a dependency loop between the size of the TTBase uleb128
491       // here and the amount of padding before the aligned type table. The
492       // assembler must sometimes pad this uleb128 or insert extra padding
493       // before the type table. See PR35809 or GNU as bug 4029.
494       MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
495       Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
496       Asm->OutStreamer->emitLabel(TTBaseRefLabel);
497     }
498 
499     // The Action table follows the call-site table. So we emit the
500     // label difference from here (start of the call-site table for SJLJ and
501     // Wasm, and start of a call-site range for Itanium) to the end of the
502     // whole call-site table (end of the last call-site range for Itanium).
503     MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
504     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
505     Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
506     Asm->OutStreamer->emitLabel(CstBeginLabel);
507   };
508 
509   // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
510   // For some platforms, the system assembler does not accept the form of
511   // `.uleb128 label2 - label1`. In those situations, we would need to calculate
512   // the size between label1 and label2 manually.
513   // In this case, we would need to calculate the LSDA size and the call
514   // site table size.
515   auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
516     assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
517            "Targets supporting .uleb128 do not need to take this path.");
518     if (CallSiteRanges.size() > 1)
519       report_fatal_error(
520           "-fbasic-block-sections is not yet supported on "
521           "platforms that do not have general LEB128 directive support.");
522 
523     uint64_t CallSiteTableSize = 0;
524     const CallSiteRange &CSRange = CallSiteRanges.back();
525     for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
526          CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
527       const CallSiteEntry &S = CallSites[CallSiteIdx];
528       // Each call site entry consists of 3 udata4 fields (12 bytes) and
529       // 1 ULEB128 field.
530       CallSiteTableSize += 12 + getULEB128Size(S.Action);
531       assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
532     }
533 
534     Asm->emitEncodingByte(TTypeEncoding, "@TType");
535     if (HaveTTData) {
536       const unsigned ByteSizeOfCallSiteOffset =
537           getULEB128Size(CallSiteTableSize);
538       uint64_t ActionTableSize = 0;
539       for (const ActionEntry &Action : Actions) {
540         // Each action entry consists of two SLEB128 fields.
541         ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
542                            getSLEB128Size(Action.NextAction);
543         assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
544       }
545 
546       const unsigned TypeInfoSize =
547           Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
548 
549       const uint64_t LSDASizeBeforeAlign =
550           1                          // Call site encoding byte.
551           + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
552           + CallSiteTableSize        // Call site table content.
553           + ActionTableSize;         // Action table content.
554 
555       const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
556       const unsigned ByteSizeOfLSDAWithoutAlign =
557           getULEB128Size(LSDASizeWithoutAlign);
558       const uint64_t DisplacementBeforeAlign =
559           2 // LPStartEncoding and TypeTableEncoding.
560           + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
561 
562       // The type info area starts with 4 byte alignment.
563       const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
564       uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
565       const unsigned ByteSizeOfLSDAWithAlign =
566           getULEB128Size(LSDASizeWithAlign);
567 
568       // The LSDASizeWithAlign could use 1 byte less padding for alignment
569       // when the data we use to represent the LSDA Size "needs" to be 1 byte
570       // larger than the one previously calculated without alignment.
571       if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
572         LSDASizeWithAlign -= 1;
573 
574       Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
575                                             ByteSizeOfLSDAWithAlign);
576     }
577 
578     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
579     Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
580   };
581 
582   // SjLj / Wasm Exception handling
583   if (IsSJLJ || IsWasm) {
584     Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
585 
586     // emit the LSDA header.
587     Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
588     EmitTypeTableRefAndCallSiteTableEndRef();
589 
590     unsigned idx = 0;
591     for (SmallVectorImpl<CallSiteEntry>::const_iterator
592          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
593       const CallSiteEntry &S = *I;
594 
595       // Index of the call site entry.
596       if (VerboseAsm) {
597         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
598         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
599       }
600       Asm->emitULEB128(idx);
601 
602       // Offset of the first associated action record, relative to the start of
603       // the action table. This value is biased by 1 (1 indicates the start of
604       // the action table), and 0 indicates that there are no actions.
605       if (VerboseAsm) {
606         if (S.Action == 0)
607           Asm->OutStreamer->AddComment("  Action: cleanup");
608         else
609           Asm->OutStreamer->AddComment("  Action: " +
610                                        Twine((S.Action - 1) / 2 + 1));
611       }
612       Asm->emitULEB128(S.Action);
613     }
614     Asm->OutStreamer->emitLabel(CstEndLabel);
615   } else {
616     // Itanium LSDA exception handling
617 
618     // The call-site table is a list of all call sites that may throw an
619     // exception (including C++ 'throw' statements) in the procedure
620     // fragment. It immediately follows the LSDA header. Each entry indicates,
621     // for a given call, the first corresponding action record and corresponding
622     // landing pad.
623     //
624     // The table begins with the number of bytes, stored as an LEB128
625     // compressed, unsigned integer. The records immediately follow the record
626     // count. They are sorted in increasing call-site address. Each record
627     // indicates:
628     //
629     //   * The position of the call-site.
630     //   * The position of the landing pad.
631     //   * The first action record for that call site.
632     //
633     // A missing entry in the call-site table indicates that a call is not
634     // supposed to throw.
635 
636     assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
637 
638     // There should be only one call-site range which includes all the landing
639     // pads. Find that call-site range here.
640     const CallSiteRange *LandingPadRange = nullptr;
641     for (const CallSiteRange &CSRange : CallSiteRanges) {
642       if (CSRange.IsLPRange) {
643         assert(LandingPadRange == nullptr &&
644                "All landing pads must be in a single callsite range.");
645         LandingPadRange = &CSRange;
646       }
647     }
648 
649     // The call-site table is split into its call-site ranges, each being
650     // emitted as:
651     //              [ LPStartEncoding | LPStart ]
652     //              [ TypeTableEncoding | TypeTableOffset ]
653     //              [ CallSiteEncoding | CallSiteTableEndOffset ]
654     // cst_begin -> { call-site entries contained in this range }
655     //
656     // and is followed by the next call-site range.
657     //
658     // For each call-site range, CallSiteTableEndOffset is computed as the
659     // difference between cst_begin of that range and the last call-site-table's
660     // end label. This offset is used to find the action table.
661 
662     unsigned Entry = 0;
663     for (const CallSiteRange &CSRange : CallSiteRanges) {
664       if (CSRange.CallSiteBeginIdx != 0) {
665         // Align the call-site range for all ranges except the first. The
666         // first range is already aligned due to the exception table alignment.
667         Asm->emitAlignment(Align(4));
668       }
669       Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
670 
671       // Emit the LSDA header.
672       // If only one call-site range exists, LPStart is omitted as it is the
673       // same as the function entry.
674       if (CallSiteRanges.size() == 1) {
675         Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
676       } else if (!Asm->isPositionIndependent()) {
677         // For more than one call-site ranges, LPStart must be explicitly
678         // specified.
679         // For non-PIC we can simply use the absolute value.
680         Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
681         Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
682                                           Asm->MAI->getCodePointerSize());
683       } else {
684         // For PIC mode, we Emit a PC-relative address for LPStart.
685         Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
686         MCContext &Context = Asm->OutStreamer->getContext();
687         MCSymbol *Dot = Context.createTempSymbol();
688         Asm->OutStreamer->emitLabel(Dot);
689         Asm->OutStreamer->emitValue(
690             MCBinaryExpr::createSub(
691                 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
692                                         Context),
693                 MCSymbolRefExpr::create(Dot, Context), Context),
694             Asm->MAI->getCodePointerSize());
695       }
696 
697       if (HasLEB128Directives)
698         EmitTypeTableRefAndCallSiteTableEndRef();
699       else
700         EmitTypeTableOffsetAndCallSiteTableOffset();
701 
702       for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
703            CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
704         const CallSiteEntry &S = CallSites[CallSiteIdx];
705 
706         MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
707         MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
708 
709         MCSymbol *BeginLabel = S.BeginLabel;
710         if (!BeginLabel)
711           BeginLabel = EHFuncBeginSym;
712         MCSymbol *EndLabel = S.EndLabel;
713         if (!EndLabel)
714           EndLabel = EHFuncEndSym;
715 
716         // Offset of the call site relative to the start of the procedure.
717         if (VerboseAsm)
718           Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
719                                        " <<");
720         Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
721         if (VerboseAsm)
722           Asm->OutStreamer->AddComment(Twine("  Call between ") +
723                                        BeginLabel->getName() + " and " +
724                                        EndLabel->getName());
725         Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
726 
727         // Offset of the landing pad relative to the start of the landing pad
728         // fragment.
729         if (!S.LPad) {
730           if (VerboseAsm)
731             Asm->OutStreamer->AddComment("    has no landing pad");
732           Asm->emitCallSiteValue(0, CallSiteEncoding);
733         } else {
734           if (VerboseAsm)
735             Asm->OutStreamer->AddComment(Twine("    jumps to ") +
736                                          S.LPad->LandingPadLabel->getName());
737           Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
738                                   LandingPadRange->FragmentBeginLabel,
739                                   CallSiteEncoding);
740         }
741 
742         // Offset of the first associated action record, relative to the start
743         // of the action table. This value is biased by 1 (1 indicates the start
744         // of the action table), and 0 indicates that there are no actions.
745         if (VerboseAsm) {
746           if (S.Action == 0)
747             Asm->OutStreamer->AddComment("  On action: cleanup");
748           else
749             Asm->OutStreamer->AddComment("  On action: " +
750                                          Twine((S.Action - 1) / 2 + 1));
751         }
752         Asm->emitULEB128(S.Action);
753       }
754     }
755     Asm->OutStreamer->emitLabel(CstEndLabel);
756   }
757 
758   // Emit the Action Table.
759   int Entry = 0;
760   for (SmallVectorImpl<ActionEntry>::const_iterator
761          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
762     const ActionEntry &Action = *I;
763 
764     if (VerboseAsm) {
765       // Emit comments that decode the action table.
766       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
767     }
768 
769     // Type Filter
770     //
771     //   Used by the runtime to match the type of the thrown exception to the
772     //   type of the catch clauses or the types in the exception specification.
773     if (VerboseAsm) {
774       if (Action.ValueForTypeID > 0)
775         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
776                                      Twine(Action.ValueForTypeID));
777       else if (Action.ValueForTypeID < 0)
778         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
779                                      Twine(Action.ValueForTypeID));
780       else
781         Asm->OutStreamer->AddComment("  Cleanup");
782     }
783     Asm->emitSLEB128(Action.ValueForTypeID);
784 
785     // Action Record
786     if (VerboseAsm) {
787       if (Action.Previous == unsigned(-1)) {
788         Asm->OutStreamer->AddComment("  No further actions");
789       } else {
790         Asm->OutStreamer->AddComment("  Continue to action " +
791                                      Twine(Action.Previous + 1));
792       }
793     }
794     Asm->emitSLEB128(Action.NextAction);
795   }
796 
797   if (HaveTTData) {
798     Asm->emitAlignment(Align(4));
799     emitTypeInfos(TTypeEncoding, TTBaseLabel);
800   }
801 
802   Asm->emitAlignment(Align(4));
803   return GCCETSym;
804 }
805 
806 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
807   const MachineFunction *MF = Asm->MF;
808   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
809   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
810 
811   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
812 
813   int Entry = 0;
814   // Emit the Catch TypeInfos.
815   if (VerboseAsm && !TypeInfos.empty()) {
816     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
817     Asm->OutStreamer->AddBlankLine();
818     Entry = TypeInfos.size();
819   }
820 
821   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
822                                           TypeInfos.rend())) {
823     if (VerboseAsm)
824       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
825     Asm->emitTTypeReference(GV, TTypeEncoding);
826   }
827 
828   Asm->OutStreamer->emitLabel(TTBaseLabel);
829 
830   // Emit the Exception Specifications.
831   if (VerboseAsm && !FilterIds.empty()) {
832     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
833     Asm->OutStreamer->AddBlankLine();
834     Entry = 0;
835   }
836   for (std::vector<unsigned>::const_iterator
837          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
838     unsigned TypeID = *I;
839     if (VerboseAsm) {
840       --Entry;
841       if (isFilterEHSelector(TypeID))
842         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
843     }
844 
845     Asm->emitULEB128(TypeID);
846   }
847 }
848