1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing exception info into assembly files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "EHStreamer.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/Dwarf.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineOperand.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/MC/MCStreamer.h" 26 #include "llvm/MC/MCSymbol.h" 27 #include "llvm/MC/MCTargetOptions.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/LEB128.h" 30 #include "llvm/Target/TargetLoweringObjectFile.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstdint> 34 #include <vector> 35 36 using namespace llvm; 37 38 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 39 40 EHStreamer::~EHStreamer() = default; 41 42 /// How many leading type ids two landing pads have in common. 43 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 44 const LandingPadInfo *R) { 45 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 46 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end()) 47 .first - 48 LIds.begin(); 49 } 50 51 /// Compute the actions table and gather the first action index for each landing 52 /// pad site. 53 void EHStreamer::computeActionsTable( 54 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 55 SmallVectorImpl<ActionEntry> &Actions, 56 SmallVectorImpl<unsigned> &FirstActions) { 57 // The action table follows the call-site table in the LSDA. The individual 58 // records are of two types: 59 // 60 // * Catch clause 61 // * Exception specification 62 // 63 // The two record kinds have the same format, with only small differences. 64 // They are distinguished by the "switch value" field: Catch clauses 65 // (TypeInfos) have strictly positive switch values, and exception 66 // specifications (FilterIds) have strictly negative switch values. Value 0 67 // indicates a catch-all clause. 68 // 69 // Negative type IDs index into FilterIds. Positive type IDs index into 70 // TypeInfos. The value written for a positive type ID is just the type ID 71 // itself. For a negative type ID, however, the value written is the 72 // (negative) byte offset of the corresponding FilterIds entry. The byte 73 // offset is usually equal to the type ID (because the FilterIds entries are 74 // written using a variable width encoding, which outputs one byte per entry 75 // as long as the value written is not too large) but can differ. This kind 76 // of complication does not occur for positive type IDs because type infos are 77 // output using a fixed width encoding. FilterOffsets[i] holds the byte 78 // offset corresponding to FilterIds[i]. 79 80 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds(); 81 SmallVector<int, 16> FilterOffsets; 82 FilterOffsets.reserve(FilterIds.size()); 83 int Offset = -1; 84 85 for (unsigned FilterId : FilterIds) { 86 FilterOffsets.push_back(Offset); 87 Offset -= getULEB128Size(FilterId); 88 } 89 90 FirstActions.reserve(LandingPads.size()); 91 92 int FirstAction = 0; 93 unsigned SizeActions = 0; // Total size of all action entries for a function 94 const LandingPadInfo *PrevLPI = nullptr; 95 96 for (const LandingPadInfo *LPI : LandingPads) { 97 const std::vector<int> &TypeIds = LPI->TypeIds; 98 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 99 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad 100 101 if (NumShared < TypeIds.size()) { 102 // Size of one action entry (typeid + next action) 103 unsigned SizeActionEntry = 0; 104 unsigned PrevAction = (unsigned)-1; 105 106 if (NumShared) { 107 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 108 assert(Actions.size()); 109 PrevAction = Actions.size() - 1; 110 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) + 111 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 112 113 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 114 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 115 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 116 SizeActionEntry += -Actions[PrevAction].NextAction; 117 PrevAction = Actions[PrevAction].Previous; 118 } 119 } 120 121 // Compute the actions. 122 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 123 int TypeID = TypeIds[J]; 124 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 125 int ValueForTypeID = 126 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; 127 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 128 129 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0; 130 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction); 131 SizeSiteActions += SizeActionEntry; 132 133 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 134 Actions.push_back(Action); 135 PrevAction = Actions.size() - 1; 136 } 137 138 // Record the first action of the landing pad site. 139 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1; 140 } // else identical - re-use previous FirstAction 141 142 // Information used when creating the call-site table. The action record 143 // field of the call site record is the offset of the first associated 144 // action record, relative to the start of the actions table. This value is 145 // biased by 1 (1 indicating the start of the actions table), and 0 146 // indicates that there are no actions. 147 FirstActions.push_back(FirstAction); 148 149 // Compute this sites contribution to size. 150 SizeActions += SizeSiteActions; 151 152 PrevLPI = LPI; 153 } 154 } 155 156 /// Return `true' if this is a call to a function marked `nounwind'. Return 157 /// `false' otherwise. 158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 159 assert(MI->isCall() && "This should be a call instruction!"); 160 161 bool MarkedNoUnwind = false; 162 bool SawFunc = false; 163 164 for (const MachineOperand &MO : MI->operands()) { 165 if (!MO.isGlobal()) continue; 166 167 const Function *F = dyn_cast<Function>(MO.getGlobal()); 168 if (!F) continue; 169 170 if (SawFunc) { 171 // Be conservative. If we have more than one function operand for this 172 // call, then we can't make the assumption that it's the callee and 173 // not a parameter to the call. 174 // 175 // FIXME: Determine if there's a way to say that `F' is the callee or 176 // parameter. 177 MarkedNoUnwind = false; 178 break; 179 } 180 181 MarkedNoUnwind = F->doesNotThrow(); 182 SawFunc = true; 183 } 184 185 return MarkedNoUnwind; 186 } 187 188 void EHStreamer::computePadMap( 189 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 190 RangeMapType &PadMap) { 191 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 192 // by try-range labels when lowered). Ordinary calls do not, so appropriate 193 // try-ranges for them need be deduced so we can put them in the LSDA. 194 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 195 const LandingPadInfo *LandingPad = LandingPads[i]; 196 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 197 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 198 MCSymbol *EndLabel = LandingPad->BeginLabels[j]; 199 // If we have deleted the code for a given invoke after registering it in 200 // the LandingPad label list, the associated symbols will not have been 201 // emitted. In that case, ignore this callsite entry. 202 if (!BeginLabel->isDefined() || !EndLabel->isDefined()) 203 continue; 204 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 205 PadRange P = { i, j }; 206 PadMap[BeginLabel] = P; 207 } 208 } 209 } 210 211 /// Compute the call-site table. The entry for an invoke has a try-range 212 /// containing the call, a non-zero landing pad, and an appropriate action. The 213 /// entry for an ordinary call has a try-range containing the call and zero for 214 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 215 /// must not be contained in the try-range of any entry - they form gaps in the 216 /// table. Entries must be ordered by try-range address. 217 /// 218 /// Call-sites are split into one or more call-site ranges associated with 219 /// different sections of the function. 220 /// 221 /// - Without -basic-block-sections, all call-sites are grouped into one 222 /// call-site-range corresponding to the function section. 223 /// 224 /// - With -basic-block-sections, one call-site range is created for each 225 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively 226 // set to the beginning and ending of the corresponding section and its 227 // ExceptionLabel set to the exception symbol dedicated for this section. 228 // Later, one LSDA header will be emitted for each call-site range with its 229 // call-sites following. The action table and type info table will be 230 // shared across all ranges. 231 void EHStreamer::computeCallSiteTable( 232 SmallVectorImpl<CallSiteEntry> &CallSites, 233 SmallVectorImpl<CallSiteRange> &CallSiteRanges, 234 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 235 const SmallVectorImpl<unsigned> &FirstActions) { 236 RangeMapType PadMap; 237 computePadMap(LandingPads, PadMap); 238 239 // The end label of the previous invoke or nounwind try-range. 240 MCSymbol *LastLabel = Asm->getFunctionBegin(); 241 242 // Whether there is a potentially throwing instruction (currently this means 243 // an ordinary call) between the end of the previous try-range and now. 244 bool SawPotentiallyThrowing = false; 245 246 // Whether the last CallSite entry was for an invoke. 247 bool PreviousIsInvoke = false; 248 249 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 250 251 // Visit all instructions in order of address. 252 for (const auto &MBB : *Asm->MF) { 253 if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) { 254 // We start a call-site range upon function entry and at the beginning of 255 // every basic block section. 256 CallSiteRanges.push_back( 257 {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel, 258 Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel, 259 Asm->getMBBExceptionSym(MBB), CallSites.size()}); 260 PreviousIsInvoke = false; 261 SawPotentiallyThrowing = false; 262 LastLabel = nullptr; 263 } 264 265 if (MBB.isEHPad()) 266 CallSiteRanges.back().IsLPRange = true; 267 268 for (const auto &MI : MBB) { 269 if (!MI.isEHLabel()) { 270 if (MI.isCall()) 271 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 272 continue; 273 } 274 275 // End of the previous try-range? 276 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 277 if (BeginLabel == LastLabel) 278 SawPotentiallyThrowing = false; 279 280 // Beginning of a new try-range? 281 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 282 if (L == PadMap.end()) 283 // Nope, it was just some random label. 284 continue; 285 286 const PadRange &P = L->second; 287 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 288 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 289 "Inconsistent landing pad map!"); 290 291 // For Dwarf and AIX exception handling (SjLj handling doesn't use this). 292 // If some instruction between the previous try-range and this one may 293 // throw, create a call-site entry with no landing pad for the region 294 // between the try-ranges. 295 if (SawPotentiallyThrowing && 296 (Asm->MAI->usesCFIForEH() || 297 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) { 298 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0}); 299 PreviousIsInvoke = false; 300 } 301 302 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 303 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 304 305 if (!LandingPad->LandingPadLabel) { 306 // Create a gap. 307 PreviousIsInvoke = false; 308 } else { 309 // This try-range is for an invoke. 310 CallSiteEntry Site = { 311 BeginLabel, 312 LastLabel, 313 LandingPad, 314 FirstActions[P.PadIndex] 315 }; 316 317 // Try to merge with the previous call-site. SJLJ doesn't do this 318 if (PreviousIsInvoke && !IsSJLJ) { 319 CallSiteEntry &Prev = CallSites.back(); 320 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { 321 // Extend the range of the previous entry. 322 Prev.EndLabel = Site.EndLabel; 323 continue; 324 } 325 } 326 327 // Otherwise, create a new call-site. 328 if (!IsSJLJ) 329 CallSites.push_back(Site); 330 else { 331 // SjLj EH must maintain the call sites in the order assigned 332 // to them by the SjLjPrepare pass. 333 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel); 334 if (CallSites.size() < SiteNo) 335 CallSites.resize(SiteNo); 336 CallSites[SiteNo - 1] = Site; 337 } 338 PreviousIsInvoke = true; 339 } 340 } 341 342 // We end the call-site range upon function exit and at the end of every 343 // basic block section. 344 if (&MBB == &Asm->MF->back() || MBB.isEndSection()) { 345 // If some instruction between the previous try-range and the end of the 346 // function may throw, create a call-site entry with no landing pad for 347 // the region following the try-range. 348 if (SawPotentiallyThrowing && !IsSJLJ) { 349 CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel, 350 nullptr, 0}; 351 CallSites.push_back(Site); 352 SawPotentiallyThrowing = false; 353 } 354 CallSiteRanges.back().CallSiteEndIdx = CallSites.size(); 355 } 356 } 357 } 358 359 /// Emit landing pads and actions. 360 /// 361 /// The general organization of the table is complex, but the basic concepts are 362 /// easy. First there is a header which describes the location and organization 363 /// of the three components that follow. 364 /// 365 /// 1. The landing pad site information describes the range of code covered by 366 /// the try. In our case it's an accumulation of the ranges covered by the 367 /// invokes in the try. There is also a reference to the landing pad that 368 /// handles the exception once processed. Finally an index into the actions 369 /// table. 370 /// 2. The action table, in our case, is composed of pairs of type IDs and next 371 /// action offset. Starting with the action index from the landing pad 372 /// site, each type ID is checked for a match to the current exception. If 373 /// it matches then the exception and type id are passed on to the landing 374 /// pad. Otherwise the next action is looked up. This chain is terminated 375 /// with a next action of zero. If no type id is found then the frame is 376 /// unwound and handling continues. 377 /// 3. Type ID table contains references to all the C++ typeinfo for all 378 /// catches in the function. This tables is reverse indexed base 1. 379 /// 380 /// Returns the starting symbol of an exception table. 381 MCSymbol *EHStreamer::emitExceptionTable() { 382 const MachineFunction *MF = Asm->MF; 383 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 384 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 385 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads(); 386 387 // Sort the landing pads in order of their type ids. This is used to fold 388 // duplicate actions. 389 SmallVector<const LandingPadInfo *, 64> LandingPads; 390 LandingPads.reserve(PadInfos.size()); 391 392 for (const LandingPadInfo &LPI : PadInfos) { 393 // If a landing-pad has an associated label, but the label wasn't ever 394 // emitted, then skip it. (This can occur if the landingpad's MBB was 395 // deleted). 396 if (LPI.LandingPadLabel && !LPI.LandingPadLabel->isDefined()) 397 continue; 398 LandingPads.push_back(&LPI); 399 } 400 401 // Order landing pads lexicographically by type id. 402 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) { 403 return L->TypeIds < R->TypeIds; 404 }); 405 406 // Compute the actions table and gather the first action index for each 407 // landing pad site. 408 SmallVector<ActionEntry, 32> Actions; 409 SmallVector<unsigned, 64> FirstActions; 410 computeActionsTable(LandingPads, Actions, FirstActions); 411 412 // Compute the call-site table and call-site ranges. Normally, there is only 413 // one call-site-range which covers the whole function. With 414 // -basic-block-sections, there is one call-site-range per basic block 415 // section. 416 SmallVector<CallSiteEntry, 64> CallSites; 417 SmallVector<CallSiteRange, 4> CallSiteRanges; 418 computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions); 419 420 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 421 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm; 422 bool HasLEB128Directives = Asm->MAI->hasLEB128Directives(); 423 unsigned CallSiteEncoding = 424 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) : 425 Asm->getObjFileLowering().getCallSiteEncoding(); 426 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty(); 427 428 // Type infos. 429 MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA( 430 MF->getFunction(), *Asm->CurrentFnSym, Asm->TM); 431 unsigned TTypeEncoding; 432 433 if (!HaveTTData) { 434 // If there is no TypeInfo, then we just explicitly say that we're omitting 435 // that bit. 436 TTypeEncoding = dwarf::DW_EH_PE_omit; 437 } else { 438 // Okay, we have actual filters or typeinfos to emit. As such, we need to 439 // pick a type encoding for them. We're about to emit a list of pointers to 440 // typeinfo objects at the end of the LSDA. However, unless we're in static 441 // mode, this reference will require a relocation by the dynamic linker. 442 // 443 // Because of this, we have a couple of options: 444 // 445 // 1) If we are in -static mode, we can always use an absolute reference 446 // from the LSDA, because the static linker will resolve it. 447 // 448 // 2) Otherwise, if the LSDA section is writable, we can output the direct 449 // reference to the typeinfo and allow the dynamic linker to relocate 450 // it. Since it is in a writable section, the dynamic linker won't 451 // have a problem. 452 // 453 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 454 // we need to use some form of indirection. For example, on Darwin, 455 // we can output a statically-relocatable reference to a dyld stub. The 456 // offset to the stub is constant, but the contents are in a section 457 // that is updated by the dynamic linker. This is easy enough, but we 458 // need to tell the personality function of the unwinder to indirect 459 // through the dyld stub. 460 // 461 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 462 // somewhere. This predicate should be moved to a shared location that is 463 // in target-independent code. 464 // 465 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 466 } 467 468 // Begin the exception table. 469 // Sometimes we want not to emit the data into separate section (e.g. ARM 470 // EHABI). In this case LSDASection will be NULL. 471 if (LSDASection) 472 Asm->OutStreamer->switchSection(LSDASection); 473 Asm->emitAlignment(Align(4)); 474 475 // Emit the LSDA. 476 MCSymbol *GCCETSym = 477 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ 478 Twine(Asm->getFunctionNumber())); 479 Asm->OutStreamer->emitLabel(GCCETSym); 480 MCSymbol *CstEndLabel = Asm->createTempSymbol( 481 CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end"); 482 483 MCSymbol *TTBaseLabel = nullptr; 484 if (HaveTTData) 485 TTBaseLabel = Asm->createTempSymbol("ttbase"); 486 487 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 488 489 // Helper for emitting references (offsets) for type table and the end of the 490 // call-site table (which marks the beginning of the action table). 491 // * For Itanium, these references will be emitted for every callsite range. 492 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header. 493 auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() { 494 Asm->emitEncodingByte(TTypeEncoding, "@TType"); 495 if (HaveTTData) { 496 // N.B.: There is a dependency loop between the size of the TTBase uleb128 497 // here and the amount of padding before the aligned type table. The 498 // assembler must sometimes pad this uleb128 or insert extra padding 499 // before the type table. See PR35809 or GNU as bug 4029. 500 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref"); 501 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel); 502 Asm->OutStreamer->emitLabel(TTBaseRefLabel); 503 } 504 505 // The Action table follows the call-site table. So we emit the 506 // label difference from here (start of the call-site table for SJLJ and 507 // Wasm, and start of a call-site range for Itanium) to the end of the 508 // whole call-site table (end of the last call-site range for Itanium). 509 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin"); 510 Asm->emitEncodingByte(CallSiteEncoding, "Call site"); 511 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel); 512 Asm->OutStreamer->emitLabel(CstBeginLabel); 513 }; 514 515 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef. 516 // For some platforms, the system assembler does not accept the form of 517 // `.uleb128 label2 - label1`. In those situations, we would need to calculate 518 // the size between label1 and label2 manually. 519 // In this case, we would need to calculate the LSDA size and the call 520 // site table size. 521 auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() { 522 assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives && 523 "Targets supporting .uleb128 do not need to take this path."); 524 if (CallSiteRanges.size() > 1) 525 report_fatal_error( 526 "-fbasic-block-sections is not yet supported on " 527 "platforms that do not have general LEB128 directive support."); 528 529 uint64_t CallSiteTableSize = 0; 530 const CallSiteRange &CSRange = CallSiteRanges.back(); 531 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; 532 CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) { 533 const CallSiteEntry &S = CallSites[CallSiteIdx]; 534 // Each call site entry consists of 3 udata4 fields (12 bytes) and 535 // 1 ULEB128 field. 536 CallSiteTableSize += 12 + getULEB128Size(S.Action); 537 assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows."); 538 } 539 540 Asm->emitEncodingByte(TTypeEncoding, "@TType"); 541 if (HaveTTData) { 542 const unsigned ByteSizeOfCallSiteOffset = 543 getULEB128Size(CallSiteTableSize); 544 uint64_t ActionTableSize = 0; 545 for (const ActionEntry &Action : Actions) { 546 // Each action entry consists of two SLEB128 fields. 547 ActionTableSize += getSLEB128Size(Action.ValueForTypeID) + 548 getSLEB128Size(Action.NextAction); 549 assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows."); 550 } 551 552 const unsigned TypeInfoSize = 553 Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size(); 554 555 const uint64_t LSDASizeBeforeAlign = 556 1 // Call site encoding byte. 557 + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize. 558 + CallSiteTableSize // Call site table content. 559 + ActionTableSize; // Action table content. 560 561 const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize; 562 const unsigned ByteSizeOfLSDAWithoutAlign = 563 getULEB128Size(LSDASizeWithoutAlign); 564 const uint64_t DisplacementBeforeAlign = 565 2 // LPStartEncoding and TypeTableEncoding. 566 + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign; 567 568 // The type info area starts with 4 byte alignment. 569 const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4; 570 uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal; 571 const unsigned ByteSizeOfLSDAWithAlign = 572 getULEB128Size(LSDASizeWithAlign); 573 574 // The LSDASizeWithAlign could use 1 byte less padding for alignment 575 // when the data we use to represent the LSDA Size "needs" to be 1 byte 576 // larger than the one previously calculated without alignment. 577 if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign) 578 LSDASizeWithAlign -= 1; 579 580 Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign, 581 ByteSizeOfLSDAWithAlign); 582 } 583 584 Asm->emitEncodingByte(CallSiteEncoding, "Call site"); 585 Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize); 586 }; 587 588 // SjLj / Wasm Exception handling 589 if (IsSJLJ || IsWasm) { 590 Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front())); 591 592 // emit the LSDA header. 593 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 594 EmitTypeTableRefAndCallSiteTableEndRef(); 595 596 unsigned idx = 0; 597 for (SmallVectorImpl<CallSiteEntry>::const_iterator 598 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 599 const CallSiteEntry &S = *I; 600 601 // Index of the call site entry. 602 if (VerboseAsm) { 603 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); 604 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); 605 } 606 Asm->emitULEB128(idx); 607 608 // Offset of the first associated action record, relative to the start of 609 // the action table. This value is biased by 1 (1 indicates the start of 610 // the action table), and 0 indicates that there are no actions. 611 if (VerboseAsm) { 612 if (S.Action == 0) 613 Asm->OutStreamer->AddComment(" Action: cleanup"); 614 else 615 Asm->OutStreamer->AddComment(" Action: " + 616 Twine((S.Action - 1) / 2 + 1)); 617 } 618 Asm->emitULEB128(S.Action); 619 } 620 Asm->OutStreamer->emitLabel(CstEndLabel); 621 } else { 622 // Itanium LSDA exception handling 623 624 // The call-site table is a list of all call sites that may throw an 625 // exception (including C++ 'throw' statements) in the procedure 626 // fragment. It immediately follows the LSDA header. Each entry indicates, 627 // for a given call, the first corresponding action record and corresponding 628 // landing pad. 629 // 630 // The table begins with the number of bytes, stored as an LEB128 631 // compressed, unsigned integer. The records immediately follow the record 632 // count. They are sorted in increasing call-site address. Each record 633 // indicates: 634 // 635 // * The position of the call-site. 636 // * The position of the landing pad. 637 // * The first action record for that call site. 638 // 639 // A missing entry in the call-site table indicates that a call is not 640 // supposed to throw. 641 642 assert(CallSiteRanges.size() != 0 && "No call-site ranges!"); 643 644 // There should be only one call-site range which includes all the landing 645 // pads. Find that call-site range here. 646 const CallSiteRange *LandingPadRange = nullptr; 647 for (const CallSiteRange &CSRange : CallSiteRanges) { 648 if (CSRange.IsLPRange) { 649 assert(LandingPadRange == nullptr && 650 "All landing pads must be in a single callsite range."); 651 LandingPadRange = &CSRange; 652 } 653 } 654 655 // The call-site table is split into its call-site ranges, each being 656 // emitted as: 657 // [ LPStartEncoding | LPStart ] 658 // [ TypeTableEncoding | TypeTableOffset ] 659 // [ CallSiteEncoding | CallSiteTableEndOffset ] 660 // cst_begin -> { call-site entries contained in this range } 661 // 662 // and is followed by the next call-site range. 663 // 664 // For each call-site range, CallSiteTableEndOffset is computed as the 665 // difference between cst_begin of that range and the last call-site-table's 666 // end label. This offset is used to find the action table. 667 668 unsigned Entry = 0; 669 for (const CallSiteRange &CSRange : CallSiteRanges) { 670 if (CSRange.CallSiteBeginIdx != 0) { 671 // Align the call-site range for all ranges except the first. The 672 // first range is already aligned due to the exception table alignment. 673 Asm->emitAlignment(Align(4)); 674 } 675 Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel); 676 677 // Emit the LSDA header. 678 // LPStart is omitted if either we have a single call-site range (in which 679 // case the function entry is treated as @LPStart) or if this function has 680 // no landing pads (in which case @LPStart is undefined). 681 if (CallSiteRanges.size() == 1 || LandingPadRange == nullptr) { 682 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 683 } else if (!Asm->isPositionIndependent()) { 684 // For more than one call-site ranges, LPStart must be explicitly 685 // specified. 686 // For non-PIC we can simply use the absolute value. 687 Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart"); 688 Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel, 689 Asm->MAI->getCodePointerSize()); 690 } else { 691 // For PIC mode, we Emit a PC-relative address for LPStart. 692 Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart"); 693 MCContext &Context = Asm->OutStreamer->getContext(); 694 MCSymbol *Dot = Context.createTempSymbol(); 695 Asm->OutStreamer->emitLabel(Dot); 696 Asm->OutStreamer->emitValue( 697 MCBinaryExpr::createSub( 698 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel, 699 Context), 700 MCSymbolRefExpr::create(Dot, Context), Context), 701 Asm->MAI->getCodePointerSize()); 702 } 703 704 if (HasLEB128Directives) 705 EmitTypeTableRefAndCallSiteTableEndRef(); 706 else 707 EmitTypeTableOffsetAndCallSiteTableOffset(); 708 709 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; 710 CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) { 711 const CallSiteEntry &S = CallSites[CallSiteIdx]; 712 713 MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel; 714 MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel; 715 716 MCSymbol *BeginLabel = S.BeginLabel; 717 if (!BeginLabel) 718 BeginLabel = EHFuncBeginSym; 719 MCSymbol *EndLabel = S.EndLabel; 720 if (!EndLabel) 721 EndLabel = EHFuncEndSym; 722 723 // Offset of the call site relative to the start of the procedure. 724 if (VerboseAsm) 725 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + 726 " <<"); 727 Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding); 728 if (VerboseAsm) 729 Asm->OutStreamer->AddComment(Twine(" Call between ") + 730 BeginLabel->getName() + " and " + 731 EndLabel->getName()); 732 Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding); 733 734 // Offset of the landing pad relative to the start of the landing pad 735 // fragment. 736 if (!S.LPad) { 737 if (VerboseAsm) 738 Asm->OutStreamer->AddComment(" has no landing pad"); 739 Asm->emitCallSiteValue(0, CallSiteEncoding); 740 } else { 741 if (VerboseAsm) 742 Asm->OutStreamer->AddComment(Twine(" jumps to ") + 743 S.LPad->LandingPadLabel->getName()); 744 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel, 745 LandingPadRange->FragmentBeginLabel, 746 CallSiteEncoding); 747 } 748 749 // Offset of the first associated action record, relative to the start 750 // of the action table. This value is biased by 1 (1 indicates the start 751 // of the action table), and 0 indicates that there are no actions. 752 if (VerboseAsm) { 753 if (S.Action == 0) 754 Asm->OutStreamer->AddComment(" On action: cleanup"); 755 else 756 Asm->OutStreamer->AddComment(" On action: " + 757 Twine((S.Action - 1) / 2 + 1)); 758 } 759 Asm->emitULEB128(S.Action); 760 } 761 } 762 Asm->OutStreamer->emitLabel(CstEndLabel); 763 } 764 765 // Emit the Action Table. 766 int Entry = 0; 767 for (const ActionEntry &Action : Actions) { 768 if (VerboseAsm) { 769 // Emit comments that decode the action table. 770 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); 771 } 772 773 // Type Filter 774 // 775 // Used by the runtime to match the type of the thrown exception to the 776 // type of the catch clauses or the types in the exception specification. 777 if (VerboseAsm) { 778 if (Action.ValueForTypeID > 0) 779 Asm->OutStreamer->AddComment(" Catch TypeInfo " + 780 Twine(Action.ValueForTypeID)); 781 else if (Action.ValueForTypeID < 0) 782 Asm->OutStreamer->AddComment(" Filter TypeInfo " + 783 Twine(Action.ValueForTypeID)); 784 else 785 Asm->OutStreamer->AddComment(" Cleanup"); 786 } 787 Asm->emitSLEB128(Action.ValueForTypeID); 788 789 // Action Record 790 if (VerboseAsm) { 791 if (Action.Previous == unsigned(-1)) { 792 Asm->OutStreamer->AddComment(" No further actions"); 793 } else { 794 Asm->OutStreamer->AddComment(" Continue to action " + 795 Twine(Action.Previous + 1)); 796 } 797 } 798 Asm->emitSLEB128(Action.NextAction); 799 } 800 801 if (HaveTTData) { 802 Asm->emitAlignment(Align(4)); 803 emitTypeInfos(TTypeEncoding, TTBaseLabel); 804 } 805 806 Asm->emitAlignment(Align(4)); 807 return GCCETSym; 808 } 809 810 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) { 811 const MachineFunction *MF = Asm->MF; 812 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 813 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 814 815 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 816 817 int Entry = 0; 818 // Emit the Catch TypeInfos. 819 if (VerboseAsm && !TypeInfos.empty()) { 820 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); 821 Asm->OutStreamer->addBlankLine(); 822 Entry = TypeInfos.size(); 823 } 824 825 for (const GlobalValue *GV : llvm::reverse(TypeInfos)) { 826 if (VerboseAsm) 827 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); 828 Asm->emitTTypeReference(GV, TTypeEncoding); 829 } 830 831 Asm->OutStreamer->emitLabel(TTBaseLabel); 832 833 // Emit the Exception Specifications. 834 if (VerboseAsm && !FilterIds.empty()) { 835 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); 836 Asm->OutStreamer->addBlankLine(); 837 Entry = 0; 838 } 839 for (std::vector<unsigned>::const_iterator 840 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 841 unsigned TypeID = *I; 842 if (VerboseAsm) { 843 --Entry; 844 if (isFilterEHSelector(TypeID)) 845 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); 846 } 847 848 Asm->emitULEB128(TypeID); 849 } 850 } 851