xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40 
41 EHStreamer::~EHStreamer() = default;
42 
43 /// How many leading type ids two landing pads have in common.
44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45                                    const LandingPadInfo *R) {
46   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47   return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
48              .first -
49          LIds.begin();
50 }
51 
52 /// Compute the actions table and gather the first action index for each landing
53 /// pad site.
54 void EHStreamer::computeActionsTable(
55     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
56     SmallVectorImpl<ActionEntry> &Actions,
57     SmallVectorImpl<unsigned> &FirstActions) {
58   // The action table follows the call-site table in the LSDA. The individual
59   // records are of two types:
60   //
61   //   * Catch clause
62   //   * Exception specification
63   //
64   // The two record kinds have the same format, with only small differences.
65   // They are distinguished by the "switch value" field: Catch clauses
66   // (TypeInfos) have strictly positive switch values, and exception
67   // specifications (FilterIds) have strictly negative switch values. Value 0
68   // indicates a catch-all clause.
69   //
70   // Negative type IDs index into FilterIds. Positive type IDs index into
71   // TypeInfos.  The value written for a positive type ID is just the type ID
72   // itself.  For a negative type ID, however, the value written is the
73   // (negative) byte offset of the corresponding FilterIds entry.  The byte
74   // offset is usually equal to the type ID (because the FilterIds entries are
75   // written using a variable width encoding, which outputs one byte per entry
76   // as long as the value written is not too large) but can differ.  This kind
77   // of complication does not occur for positive type IDs because type infos are
78   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
79   // offset corresponding to FilterIds[i].
80 
81   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
82   SmallVector<int, 16> FilterOffsets;
83   FilterOffsets.reserve(FilterIds.size());
84   int Offset = -1;
85 
86   for (unsigned FilterId : FilterIds) {
87     FilterOffsets.push_back(Offset);
88     Offset -= getULEB128Size(FilterId);
89   }
90 
91   FirstActions.reserve(LandingPads.size());
92 
93   int FirstAction = 0;
94   unsigned SizeActions = 0; // Total size of all action entries for a function
95   const LandingPadInfo *PrevLPI = nullptr;
96 
97   for (const LandingPadInfo *LPI : LandingPads) {
98     const std::vector<int> &TypeIds = LPI->TypeIds;
99     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
100     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
101 
102     if (NumShared < TypeIds.size()) {
103       // Size of one action entry (typeid + next action)
104       unsigned SizeActionEntry = 0;
105       unsigned PrevAction = (unsigned)-1;
106 
107       if (NumShared) {
108         unsigned SizePrevIds = PrevLPI->TypeIds.size();
109         assert(Actions.size());
110         PrevAction = Actions.size() - 1;
111         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
112                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
113 
114         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
115           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
116           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
117           SizeActionEntry += -Actions[PrevAction].NextAction;
118           PrevAction = Actions[PrevAction].Previous;
119         }
120       }
121 
122       // Compute the actions.
123       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
124         int TypeID = TypeIds[J];
125         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
126         int ValueForTypeID =
127             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
128         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
129 
130         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
131         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
132         SizeSiteActions += SizeActionEntry;
133 
134         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
135         Actions.push_back(Action);
136         PrevAction = Actions.size() - 1;
137       }
138 
139       // Record the first action of the landing pad site.
140       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
141     } // else identical - re-use previous FirstAction
142 
143     // Information used when creating the call-site table. The action record
144     // field of the call site record is the offset of the first associated
145     // action record, relative to the start of the actions table. This value is
146     // biased by 1 (1 indicating the start of the actions table), and 0
147     // indicates that there are no actions.
148     FirstActions.push_back(FirstAction);
149 
150     // Compute this sites contribution to size.
151     SizeActions += SizeSiteActions;
152 
153     PrevLPI = LPI;
154   }
155 }
156 
157 /// Return `true' if this is a call to a function marked `nounwind'. Return
158 /// `false' otherwise.
159 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
160   assert(MI->isCall() && "This should be a call instruction!");
161 
162   bool MarkedNoUnwind = false;
163   bool SawFunc = false;
164 
165   for (const MachineOperand &MO : MI->operands()) {
166     if (!MO.isGlobal()) continue;
167 
168     const Function *F = dyn_cast<Function>(MO.getGlobal());
169     if (!F) continue;
170 
171     if (SawFunc) {
172       // Be conservative. If we have more than one function operand for this
173       // call, then we can't make the assumption that it's the callee and
174       // not a parameter to the call.
175       //
176       // FIXME: Determine if there's a way to say that `F' is the callee or
177       // parameter.
178       MarkedNoUnwind = false;
179       break;
180     }
181 
182     MarkedNoUnwind = F->doesNotThrow();
183     SawFunc = true;
184   }
185 
186   return MarkedNoUnwind;
187 }
188 
189 void EHStreamer::computePadMap(
190     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
191     RangeMapType &PadMap) {
192   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
193   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
194   // try-ranges for them need be deduced so we can put them in the LSDA.
195   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
196     const LandingPadInfo *LandingPad = LandingPads[i];
197     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
198       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
199       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
200       PadRange P = { i, j };
201       PadMap[BeginLabel] = P;
202     }
203   }
204 }
205 
206 /// Compute the call-site table.  The entry for an invoke has a try-range
207 /// containing the call, a non-zero landing pad, and an appropriate action.  The
208 /// entry for an ordinary call has a try-range containing the call and zero for
209 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
210 /// must not be contained in the try-range of any entry - they form gaps in the
211 /// table.  Entries must be ordered by try-range address.
212 ///
213 /// Call-sites are split into one or more call-site ranges associated with
214 /// different sections of the function.
215 ///
216 ///   - Without -basic-block-sections, all call-sites are grouped into one
217 ///     call-site-range corresponding to the function section.
218 ///
219 ///   - With -basic-block-sections, one call-site range is created for each
220 ///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
221 //      set to the beginning and ending of the corresponding section and its
222 //      ExceptionLabel set to the exception symbol dedicated for this section.
223 //      Later, one LSDA header will be emitted for each call-site range with its
224 //      call-sites following. The action table and type info table will be
225 //      shared across all ranges.
226 void EHStreamer::computeCallSiteTable(
227     SmallVectorImpl<CallSiteEntry> &CallSites,
228     SmallVectorImpl<CallSiteRange> &CallSiteRanges,
229     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
230     const SmallVectorImpl<unsigned> &FirstActions) {
231   RangeMapType PadMap;
232   computePadMap(LandingPads, PadMap);
233 
234   // The end label of the previous invoke or nounwind try-range.
235   MCSymbol *LastLabel = Asm->getFunctionBegin();
236 
237   // Whether there is a potentially throwing instruction (currently this means
238   // an ordinary call) between the end of the previous try-range and now.
239   bool SawPotentiallyThrowing = false;
240 
241   // Whether the last CallSite entry was for an invoke.
242   bool PreviousIsInvoke = false;
243 
244   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
245 
246   // Visit all instructions in order of address.
247   for (const auto &MBB : *Asm->MF) {
248     if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
249       // We start a call-site range upon function entry and at the beginning of
250       // every basic block section.
251       CallSiteRanges.push_back(
252           {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
253            Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
254            Asm->getMBBExceptionSym(MBB), CallSites.size()});
255       PreviousIsInvoke = false;
256       SawPotentiallyThrowing = false;
257       LastLabel = nullptr;
258     }
259 
260     if (MBB.isEHPad())
261       CallSiteRanges.back().IsLPRange = true;
262 
263     for (const auto &MI : MBB) {
264       if (!MI.isEHLabel()) {
265         if (MI.isCall())
266           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
267         continue;
268       }
269 
270       // End of the previous try-range?
271       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
272       if (BeginLabel == LastLabel)
273         SawPotentiallyThrowing = false;
274 
275       // Beginning of a new try-range?
276       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
277       if (L == PadMap.end())
278         // Nope, it was just some random label.
279         continue;
280 
281       const PadRange &P = L->second;
282       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
283       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
284              "Inconsistent landing pad map!");
285 
286       // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
287       // If some instruction between the previous try-range and this one may
288       // throw, create a call-site entry with no landing pad for the region
289       // between the try-ranges.
290       if (SawPotentiallyThrowing &&
291           (Asm->MAI->usesCFIForEH() ||
292            Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
293         CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
294         PreviousIsInvoke = false;
295       }
296 
297       LastLabel = LandingPad->EndLabels[P.RangeIndex];
298       assert(BeginLabel && LastLabel && "Invalid landing pad!");
299 
300       if (!LandingPad->LandingPadLabel) {
301         // Create a gap.
302         PreviousIsInvoke = false;
303       } else {
304         // This try-range is for an invoke.
305         CallSiteEntry Site = {
306           BeginLabel,
307           LastLabel,
308           LandingPad,
309           FirstActions[P.PadIndex]
310         };
311 
312         // Try to merge with the previous call-site. SJLJ doesn't do this
313         if (PreviousIsInvoke && !IsSJLJ) {
314           CallSiteEntry &Prev = CallSites.back();
315           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
316             // Extend the range of the previous entry.
317             Prev.EndLabel = Site.EndLabel;
318             continue;
319           }
320         }
321 
322         // Otherwise, create a new call-site.
323         if (!IsSJLJ)
324           CallSites.push_back(Site);
325         else {
326           // SjLj EH must maintain the call sites in the order assigned
327           // to them by the SjLjPrepare pass.
328           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
329           if (CallSites.size() < SiteNo)
330             CallSites.resize(SiteNo);
331           CallSites[SiteNo - 1] = Site;
332         }
333         PreviousIsInvoke = true;
334       }
335     }
336 
337     // We end the call-site range upon function exit and at the end of every
338     // basic block section.
339     if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
340       // If some instruction between the previous try-range and the end of the
341       // function may throw, create a call-site entry with no landing pad for
342       // the region following the try-range.
343       if (SawPotentiallyThrowing && !IsSJLJ) {
344         CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
345                               nullptr, 0};
346         CallSites.push_back(Site);
347         SawPotentiallyThrowing = false;
348       }
349       CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
350     }
351   }
352 }
353 
354 /// Emit landing pads and actions.
355 ///
356 /// The general organization of the table is complex, but the basic concepts are
357 /// easy.  First there is a header which describes the location and organization
358 /// of the three components that follow.
359 ///
360 ///  1. The landing pad site information describes the range of code covered by
361 ///     the try.  In our case it's an accumulation of the ranges covered by the
362 ///     invokes in the try.  There is also a reference to the landing pad that
363 ///     handles the exception once processed.  Finally an index into the actions
364 ///     table.
365 ///  2. The action table, in our case, is composed of pairs of type IDs and next
366 ///     action offset.  Starting with the action index from the landing pad
367 ///     site, each type ID is checked for a match to the current exception.  If
368 ///     it matches then the exception and type id are passed on to the landing
369 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
370 ///     with a next action of zero.  If no type id is found then the frame is
371 ///     unwound and handling continues.
372 ///  3. Type ID table contains references to all the C++ typeinfo for all
373 ///     catches in the function.  This tables is reverse indexed base 1.
374 ///
375 /// Returns the starting symbol of an exception table.
376 MCSymbol *EHStreamer::emitExceptionTable() {
377   const MachineFunction *MF = Asm->MF;
378   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
379   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
380   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
381 
382   // Sort the landing pads in order of their type ids.  This is used to fold
383   // duplicate actions.
384   SmallVector<const LandingPadInfo *, 64> LandingPads;
385   LandingPads.reserve(PadInfos.size());
386 
387   for (const LandingPadInfo &LPI : PadInfos)
388     LandingPads.push_back(&LPI);
389 
390   // Order landing pads lexicographically by type id.
391   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
392     return L->TypeIds < R->TypeIds;
393   });
394 
395   // Compute the actions table and gather the first action index for each
396   // landing pad site.
397   SmallVector<ActionEntry, 32> Actions;
398   SmallVector<unsigned, 64> FirstActions;
399   computeActionsTable(LandingPads, Actions, FirstActions);
400 
401   // Compute the call-site table and call-site ranges. Normally, there is only
402   // one call-site-range which covers the whole funciton. With
403   // -basic-block-sections, there is one call-site-range per basic block
404   // section.
405   SmallVector<CallSiteEntry, 64> CallSites;
406   SmallVector<CallSiteRange, 4> CallSiteRanges;
407   computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
408 
409   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
410   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
411   bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
412   unsigned CallSiteEncoding =
413       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
414                Asm->getObjFileLowering().getCallSiteEncoding();
415   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
416 
417   // Type infos.
418   MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
419       MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
420   unsigned TTypeEncoding;
421 
422   if (!HaveTTData) {
423     // If there is no TypeInfo, then we just explicitly say that we're omitting
424     // that bit.
425     TTypeEncoding = dwarf::DW_EH_PE_omit;
426   } else {
427     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
428     // pick a type encoding for them.  We're about to emit a list of pointers to
429     // typeinfo objects at the end of the LSDA.  However, unless we're in static
430     // mode, this reference will require a relocation by the dynamic linker.
431     //
432     // Because of this, we have a couple of options:
433     //
434     //   1) If we are in -static mode, we can always use an absolute reference
435     //      from the LSDA, because the static linker will resolve it.
436     //
437     //   2) Otherwise, if the LSDA section is writable, we can output the direct
438     //      reference to the typeinfo and allow the dynamic linker to relocate
439     //      it.  Since it is in a writable section, the dynamic linker won't
440     //      have a problem.
441     //
442     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
443     //      we need to use some form of indirection.  For example, on Darwin,
444     //      we can output a statically-relocatable reference to a dyld stub. The
445     //      offset to the stub is constant, but the contents are in a section
446     //      that is updated by the dynamic linker.  This is easy enough, but we
447     //      need to tell the personality function of the unwinder to indirect
448     //      through the dyld stub.
449     //
450     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
451     // somewhere.  This predicate should be moved to a shared location that is
452     // in target-independent code.
453     //
454     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
455   }
456 
457   // Begin the exception table.
458   // Sometimes we want not to emit the data into separate section (e.g. ARM
459   // EHABI). In this case LSDASection will be NULL.
460   if (LSDASection)
461     Asm->OutStreamer->SwitchSection(LSDASection);
462   Asm->emitAlignment(Align(4));
463 
464   // Emit the LSDA.
465   MCSymbol *GCCETSym =
466     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
467                                       Twine(Asm->getFunctionNumber()));
468   Asm->OutStreamer->emitLabel(GCCETSym);
469   MCSymbol *CstEndLabel = Asm->createTempSymbol(
470       CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
471 
472   MCSymbol *TTBaseLabel = nullptr;
473   if (HaveTTData)
474     TTBaseLabel = Asm->createTempSymbol("ttbase");
475 
476   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
477 
478   // Helper for emitting references (offsets) for type table and the end of the
479   // call-site table (which marks the beginning of the action table).
480   //  * For Itanium, these references will be emitted for every callsite range.
481   //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
482   auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
483     Asm->emitEncodingByte(TTypeEncoding, "@TType");
484     if (HaveTTData) {
485       // N.B.: There is a dependency loop between the size of the TTBase uleb128
486       // here and the amount of padding before the aligned type table. The
487       // assembler must sometimes pad this uleb128 or insert extra padding
488       // before the type table. See PR35809 or GNU as bug 4029.
489       MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
490       Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
491       Asm->OutStreamer->emitLabel(TTBaseRefLabel);
492     }
493 
494     // The Action table follows the call-site table. So we emit the
495     // label difference from here (start of the call-site table for SJLJ and
496     // Wasm, and start of a call-site range for Itanium) to the end of the
497     // whole call-site table (end of the last call-site range for Itanium).
498     MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
499     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
500     Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
501     Asm->OutStreamer->emitLabel(CstBeginLabel);
502   };
503 
504   // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
505   // For some platforms, the system assembler does not accept the form of
506   // `.uleb128 label2 - label1`. In those situations, we would need to calculate
507   // the size between label1 and label2 manually.
508   // In this case, we would need to calculate the LSDA size and the call
509   // site table size.
510   auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
511     assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
512            "Targets supporting .uleb128 do not need to take this path.");
513     if (CallSiteRanges.size() > 1)
514       report_fatal_error(
515           "-fbasic-block-sections is not yet supported on "
516           "platforms that do not have general LEB128 directive support.");
517 
518     uint64_t CallSiteTableSize = 0;
519     const CallSiteRange &CSRange = CallSiteRanges.back();
520     for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
521          CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
522       const CallSiteEntry &S = CallSites[CallSiteIdx];
523       // Each call site entry consists of 3 udata4 fields (12 bytes) and
524       // 1 ULEB128 field.
525       CallSiteTableSize += 12 + getULEB128Size(S.Action);
526       assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
527     }
528 
529     Asm->emitEncodingByte(TTypeEncoding, "@TType");
530     if (HaveTTData) {
531       const unsigned ByteSizeOfCallSiteOffset =
532           getULEB128Size(CallSiteTableSize);
533       uint64_t ActionTableSize = 0;
534       for (const ActionEntry &Action : Actions) {
535         // Each action entry consists of two SLEB128 fields.
536         ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
537                            getSLEB128Size(Action.NextAction);
538         assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
539       }
540 
541       const unsigned TypeInfoSize =
542           Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
543 
544       const uint64_t LSDASizeBeforeAlign =
545           1                          // Call site encoding byte.
546           + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
547           + CallSiteTableSize        // Call site table content.
548           + ActionTableSize;         // Action table content.
549 
550       const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
551       const unsigned ByteSizeOfLSDAWithoutAlign =
552           getULEB128Size(LSDASizeWithoutAlign);
553       const uint64_t DisplacementBeforeAlign =
554           2 // LPStartEncoding and TypeTableEncoding.
555           + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
556 
557       // The type info area starts with 4 byte alignment.
558       const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
559       uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
560       const unsigned ByteSizeOfLSDAWithAlign =
561           getULEB128Size(LSDASizeWithAlign);
562 
563       // The LSDASizeWithAlign could use 1 byte less padding for alignment
564       // when the data we use to represent the LSDA Size "needs" to be 1 byte
565       // larger than the one previously calculated without alignment.
566       if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
567         LSDASizeWithAlign -= 1;
568 
569       Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
570                                             ByteSizeOfLSDAWithAlign);
571     }
572 
573     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
574     Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
575   };
576 
577   // SjLj / Wasm Exception handling
578   if (IsSJLJ || IsWasm) {
579     Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
580 
581     // emit the LSDA header.
582     Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
583     EmitTypeTableRefAndCallSiteTableEndRef();
584 
585     unsigned idx = 0;
586     for (SmallVectorImpl<CallSiteEntry>::const_iterator
587          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
588       const CallSiteEntry &S = *I;
589 
590       // Index of the call site entry.
591       if (VerboseAsm) {
592         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
593         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
594       }
595       Asm->emitULEB128(idx);
596 
597       // Offset of the first associated action record, relative to the start of
598       // the action table. This value is biased by 1 (1 indicates the start of
599       // the action table), and 0 indicates that there are no actions.
600       if (VerboseAsm) {
601         if (S.Action == 0)
602           Asm->OutStreamer->AddComment("  Action: cleanup");
603         else
604           Asm->OutStreamer->AddComment("  Action: " +
605                                        Twine((S.Action - 1) / 2 + 1));
606       }
607       Asm->emitULEB128(S.Action);
608     }
609     Asm->OutStreamer->emitLabel(CstEndLabel);
610   } else {
611     // Itanium LSDA exception handling
612 
613     // The call-site table is a list of all call sites that may throw an
614     // exception (including C++ 'throw' statements) in the procedure
615     // fragment. It immediately follows the LSDA header. Each entry indicates,
616     // for a given call, the first corresponding action record and corresponding
617     // landing pad.
618     //
619     // The table begins with the number of bytes, stored as an LEB128
620     // compressed, unsigned integer. The records immediately follow the record
621     // count. They are sorted in increasing call-site address. Each record
622     // indicates:
623     //
624     //   * The position of the call-site.
625     //   * The position of the landing pad.
626     //   * The first action record for that call site.
627     //
628     // A missing entry in the call-site table indicates that a call is not
629     // supposed to throw.
630 
631     assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
632 
633     // There should be only one call-site range which includes all the landing
634     // pads. Find that call-site range here.
635     const CallSiteRange *LandingPadRange = nullptr;
636     for (const CallSiteRange &CSRange : CallSiteRanges) {
637       if (CSRange.IsLPRange) {
638         assert(LandingPadRange == nullptr &&
639                "All landing pads must be in a single callsite range.");
640         LandingPadRange = &CSRange;
641       }
642     }
643 
644     // The call-site table is split into its call-site ranges, each being
645     // emitted as:
646     //              [ LPStartEncoding | LPStart ]
647     //              [ TypeTableEncoding | TypeTableOffset ]
648     //              [ CallSiteEncoding | CallSiteTableEndOffset ]
649     // cst_begin -> { call-site entries contained in this range }
650     //
651     // and is followed by the next call-site range.
652     //
653     // For each call-site range, CallSiteTableEndOffset is computed as the
654     // difference between cst_begin of that range and the last call-site-table's
655     // end label. This offset is used to find the action table.
656 
657     unsigned Entry = 0;
658     for (const CallSiteRange &CSRange : CallSiteRanges) {
659       if (CSRange.CallSiteBeginIdx != 0) {
660         // Align the call-site range for all ranges except the first. The
661         // first range is already aligned due to the exception table alignment.
662         Asm->emitAlignment(Align(4));
663       }
664       Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
665 
666       // Emit the LSDA header.
667       // If only one call-site range exists, LPStart is omitted as it is the
668       // same as the function entry.
669       if (CallSiteRanges.size() == 1) {
670         Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
671       } else if (!Asm->isPositionIndependent()) {
672         // For more than one call-site ranges, LPStart must be explicitly
673         // specified.
674         // For non-PIC we can simply use the absolute value.
675         Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
676         Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
677                                           Asm->MAI->getCodePointerSize());
678       } else {
679         // For PIC mode, we Emit a PC-relative address for LPStart.
680         Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
681         MCContext &Context = Asm->OutStreamer->getContext();
682         MCSymbol *Dot = Context.createTempSymbol();
683         Asm->OutStreamer->emitLabel(Dot);
684         Asm->OutStreamer->emitValue(
685             MCBinaryExpr::createSub(
686                 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
687                                         Context),
688                 MCSymbolRefExpr::create(Dot, Context), Context),
689             Asm->MAI->getCodePointerSize());
690       }
691 
692       if (HasLEB128Directives)
693         EmitTypeTableRefAndCallSiteTableEndRef();
694       else
695         EmitTypeTableOffsetAndCallSiteTableOffset();
696 
697       for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
698            CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
699         const CallSiteEntry &S = CallSites[CallSiteIdx];
700 
701         MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
702         MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
703 
704         MCSymbol *BeginLabel = S.BeginLabel;
705         if (!BeginLabel)
706           BeginLabel = EHFuncBeginSym;
707         MCSymbol *EndLabel = S.EndLabel;
708         if (!EndLabel)
709           EndLabel = EHFuncEndSym;
710 
711         // Offset of the call site relative to the start of the procedure.
712         if (VerboseAsm)
713           Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
714                                        " <<");
715         Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
716         if (VerboseAsm)
717           Asm->OutStreamer->AddComment(Twine("  Call between ") +
718                                        BeginLabel->getName() + " and " +
719                                        EndLabel->getName());
720         Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
721 
722         // Offset of the landing pad relative to the start of the landing pad
723         // fragment.
724         if (!S.LPad) {
725           if (VerboseAsm)
726             Asm->OutStreamer->AddComment("    has no landing pad");
727           Asm->emitCallSiteValue(0, CallSiteEncoding);
728         } else {
729           if (VerboseAsm)
730             Asm->OutStreamer->AddComment(Twine("    jumps to ") +
731                                          S.LPad->LandingPadLabel->getName());
732           Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
733                                   LandingPadRange->FragmentBeginLabel,
734                                   CallSiteEncoding);
735         }
736 
737         // Offset of the first associated action record, relative to the start
738         // of the action table. This value is biased by 1 (1 indicates the start
739         // of the action table), and 0 indicates that there are no actions.
740         if (VerboseAsm) {
741           if (S.Action == 0)
742             Asm->OutStreamer->AddComment("  On action: cleanup");
743           else
744             Asm->OutStreamer->AddComment("  On action: " +
745                                          Twine((S.Action - 1) / 2 + 1));
746         }
747         Asm->emitULEB128(S.Action);
748       }
749     }
750     Asm->OutStreamer->emitLabel(CstEndLabel);
751   }
752 
753   // Emit the Action Table.
754   int Entry = 0;
755   for (const ActionEntry &Action : Actions) {
756     if (VerboseAsm) {
757       // Emit comments that decode the action table.
758       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
759     }
760 
761     // Type Filter
762     //
763     //   Used by the runtime to match the type of the thrown exception to the
764     //   type of the catch clauses or the types in the exception specification.
765     if (VerboseAsm) {
766       if (Action.ValueForTypeID > 0)
767         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
768                                      Twine(Action.ValueForTypeID));
769       else if (Action.ValueForTypeID < 0)
770         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
771                                      Twine(Action.ValueForTypeID));
772       else
773         Asm->OutStreamer->AddComment("  Cleanup");
774     }
775     Asm->emitSLEB128(Action.ValueForTypeID);
776 
777     // Action Record
778     if (VerboseAsm) {
779       if (Action.Previous == unsigned(-1)) {
780         Asm->OutStreamer->AddComment("  No further actions");
781       } else {
782         Asm->OutStreamer->AddComment("  Continue to action " +
783                                      Twine(Action.Previous + 1));
784       }
785     }
786     Asm->emitSLEB128(Action.NextAction);
787   }
788 
789   if (HaveTTData) {
790     Asm->emitAlignment(Align(4));
791     emitTypeInfos(TTypeEncoding, TTBaseLabel);
792   }
793 
794   Asm->emitAlignment(Align(4));
795   return GCCETSym;
796 }
797 
798 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
799   const MachineFunction *MF = Asm->MF;
800   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
801   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
802 
803   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
804 
805   int Entry = 0;
806   // Emit the Catch TypeInfos.
807   if (VerboseAsm && !TypeInfos.empty()) {
808     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
809     Asm->OutStreamer->AddBlankLine();
810     Entry = TypeInfos.size();
811   }
812 
813   for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
814     if (VerboseAsm)
815       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
816     Asm->emitTTypeReference(GV, TTypeEncoding);
817   }
818 
819   Asm->OutStreamer->emitLabel(TTBaseLabel);
820 
821   // Emit the Exception Specifications.
822   if (VerboseAsm && !FilterIds.empty()) {
823     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
824     Asm->OutStreamer->AddBlankLine();
825     Entry = 0;
826   }
827   for (std::vector<unsigned>::const_iterator
828          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
829     unsigned TypeID = *I;
830     if (VerboseAsm) {
831       --Entry;
832       if (isFilterEHSelector(TypeID))
833         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
834     }
835 
836     Asm->emitULEB128(TypeID);
837   }
838 }
839