1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 164 "Stuff")), 165 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 166 167 static constexpr unsigned ULEB128PadSize = 4; 168 169 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 170 getActiveStreamer().emitInt8( 171 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 172 : dwarf::OperationEncodingString(Op)); 173 } 174 175 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 176 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 177 } 178 179 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 180 getActiveStreamer().emitULEB128(Value, Twine(Value)); 181 } 182 183 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 184 getActiveStreamer().emitInt8(Value, Twine(Value)); 185 } 186 187 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 188 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 189 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 190 } 191 192 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 193 llvm::Register MachineReg) { 194 // This information is not available while emitting .debug_loc entries. 195 return false; 196 } 197 198 void DebugLocDwarfExpression::enableTemporaryBuffer() { 199 assert(!IsBuffering && "Already buffering?"); 200 if (!TmpBuf) 201 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 202 IsBuffering = true; 203 } 204 205 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 206 207 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 208 return TmpBuf ? TmpBuf->Bytes.size() : 0; 209 } 210 211 void DebugLocDwarfExpression::commitTemporaryBuffer() { 212 if (!TmpBuf) 213 return; 214 for (auto Byte : enumerate(TmpBuf->Bytes)) { 215 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 216 ? TmpBuf->Comments[Byte.index()].c_str() 217 : ""; 218 OutBS.emitInt8(Byte.value(), Comment); 219 } 220 TmpBuf->Bytes.clear(); 221 TmpBuf->Comments.clear(); 222 } 223 224 const DIType *DbgVariable::getType() const { 225 return getVariable()->getType(); 226 } 227 228 /// Get .debug_loc entry for the instruction range starting at MI. 229 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 230 const DIExpression *Expr = MI->getDebugExpression(); 231 assert(MI->getNumOperands() == 4); 232 if (MI->getDebugOperand(0).isReg()) { 233 const auto &RegOp = MI->getDebugOperand(0); 234 const auto &Op1 = MI->getDebugOffset(); 235 // If the second operand is an immediate, this is a 236 // register-indirect address. 237 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 238 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 239 return DbgValueLoc(Expr, MLoc); 240 } 241 if (MI->getDebugOperand(0).isTargetIndex()) { 242 const auto &Op = MI->getDebugOperand(0); 243 return DbgValueLoc(Expr, 244 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 245 } 246 if (MI->getDebugOperand(0).isImm()) 247 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 248 if (MI->getDebugOperand(0).isFPImm()) 249 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 250 if (MI->getDebugOperand(0).isCImm()) 251 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 252 253 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 254 } 255 256 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 257 assert(FrameIndexExprs.empty() && "Already initialized?"); 258 assert(!ValueLoc.get() && "Already initialized?"); 259 260 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 261 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 262 "Wrong inlined-at"); 263 264 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 265 if (auto *E = DbgValue->getDebugExpression()) 266 if (E->getNumElements()) 267 FrameIndexExprs.push_back({0, E}); 268 } 269 270 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 271 if (FrameIndexExprs.size() == 1) 272 return FrameIndexExprs; 273 274 assert(llvm::all_of(FrameIndexExprs, 275 [](const FrameIndexExpr &A) { 276 return A.Expr->isFragment(); 277 }) && 278 "multiple FI expressions without DW_OP_LLVM_fragment"); 279 llvm::sort(FrameIndexExprs, 280 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 281 return A.Expr->getFragmentInfo()->OffsetInBits < 282 B.Expr->getFragmentInfo()->OffsetInBits; 283 }); 284 285 return FrameIndexExprs; 286 } 287 288 void DbgVariable::addMMIEntry(const DbgVariable &V) { 289 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 290 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 291 assert(V.getVariable() == getVariable() && "conflicting variable"); 292 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 293 294 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 295 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 296 297 // FIXME: This logic should not be necessary anymore, as we now have proper 298 // deduplication. However, without it, we currently run into the assertion 299 // below, which means that we are likely dealing with broken input, i.e. two 300 // non-fragment entries for the same variable at different frame indices. 301 if (FrameIndexExprs.size()) { 302 auto *Expr = FrameIndexExprs.back().Expr; 303 if (!Expr || !Expr->isFragment()) 304 return; 305 } 306 307 for (const auto &FIE : V.FrameIndexExprs) 308 // Ignore duplicate entries. 309 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 310 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 311 })) 312 FrameIndexExprs.push_back(FIE); 313 314 assert((FrameIndexExprs.size() == 1 || 315 llvm::all_of(FrameIndexExprs, 316 [](FrameIndexExpr &FIE) { 317 return FIE.Expr && FIE.Expr->isFragment(); 318 })) && 319 "conflicting locations for variable"); 320 } 321 322 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 323 bool GenerateTypeUnits, 324 DebuggerKind Tuning, 325 const Triple &TT) { 326 // Honor an explicit request. 327 if (AccelTables != AccelTableKind::Default) 328 return AccelTables; 329 330 // Accelerator tables with type units are currently not supported. 331 if (GenerateTypeUnits) 332 return AccelTableKind::None; 333 334 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 335 // always implies debug_names. For lower standard versions we use apple 336 // accelerator tables on apple platforms and debug_names elsewhere. 337 if (DwarfVersion >= 5) 338 return AccelTableKind::Dwarf; 339 if (Tuning == DebuggerKind::LLDB) 340 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 341 : AccelTableKind::Dwarf; 342 return AccelTableKind::None; 343 } 344 345 DwarfDebug::DwarfDebug(AsmPrinter *A) 346 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 347 InfoHolder(A, "info_string", DIEValueAllocator), 348 SkeletonHolder(A, "skel_string", DIEValueAllocator), 349 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 350 const Triple &TT = Asm->TM.getTargetTriple(); 351 352 // Make sure we know our "debugger tuning". The target option takes 353 // precedence; fall back to triple-based defaults. 354 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 355 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 356 else if (IsDarwin) 357 DebuggerTuning = DebuggerKind::LLDB; 358 else if (TT.isPS4CPU()) 359 DebuggerTuning = DebuggerKind::SCE; 360 else 361 DebuggerTuning = DebuggerKind::GDB; 362 363 if (DwarfInlinedStrings == Default) 364 UseInlineStrings = TT.isNVPTX(); 365 else 366 UseInlineStrings = DwarfInlinedStrings == Enable; 367 368 UseLocSection = !TT.isNVPTX(); 369 370 HasAppleExtensionAttributes = tuneForLLDB(); 371 372 // Handle split DWARF. 373 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 374 375 // SCE defaults to linkage names only for abstract subprograms. 376 if (DwarfLinkageNames == DefaultLinkageNames) 377 UseAllLinkageNames = !tuneForSCE(); 378 else 379 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 380 381 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 382 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 383 : MMI->getModule()->getDwarfVersion(); 384 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 385 DwarfVersion = 386 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 387 388 bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 && 389 DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 390 TT.isArch64Bit() && // DWARF64 requires 64-bit relocations. 391 TT.isOSBinFormatELF(); // Support only ELF for now. 392 393 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 394 395 // Use sections as references. Force for NVPTX. 396 if (DwarfSectionsAsReferences == Default) 397 UseSectionsAsReferences = TT.isNVPTX(); 398 else 399 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 400 401 // Don't generate type units for unsupported object file formats. 402 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 403 A->TM.getTargetTriple().isOSBinFormatWasm()) && 404 GenerateDwarfTypeUnits; 405 406 TheAccelTableKind = computeAccelTableKind( 407 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 408 409 // Work around a GDB bug. GDB doesn't support the standard opcode; 410 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 411 // is defined as of DWARF 3. 412 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 413 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 414 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 415 416 // GDB does not fully support the DWARF 4 representation for bitfields. 417 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 418 419 // The DWARF v5 string offsets table has - possibly shared - contributions 420 // from each compile and type unit each preceded by a header. The string 421 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 422 // a monolithic string offsets table without any header. 423 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 424 425 // Emit call-site-param debug info for GDB and LLDB, if the target supports 426 // the debug entry values feature. It can also be enabled explicitly. 427 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 428 429 // It is unclear if the GCC .debug_macro extension is well-specified 430 // for split DWARF. For now, do not allow LLVM to emit it. 431 UseDebugMacroSection = 432 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 433 if (DwarfOpConvert == Default) 434 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 435 else 436 EnableOpConvert = (DwarfOpConvert == Enable); 437 438 // Split DWARF would benefit object size significantly by trading reductions 439 // in address pool usage for slightly increased range list encodings. 440 if (DwarfVersion >= 5) { 441 MinimizeAddr = MinimizeAddrInV5Option; 442 // FIXME: In the future, enable this by default for Split DWARF where the 443 // tradeoff is more pronounced due to being able to offload the range 444 // lists to the dwo file and shrink object files/reduce relocations there. 445 if (MinimizeAddr == MinimizeAddrInV5::Default) 446 MinimizeAddr = MinimizeAddrInV5::Disabled; 447 } 448 449 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 450 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 451 : dwarf::DWARF32); 452 } 453 454 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 455 DwarfDebug::~DwarfDebug() = default; 456 457 static bool isObjCClass(StringRef Name) { 458 return Name.startswith("+") || Name.startswith("-"); 459 } 460 461 static bool hasObjCCategory(StringRef Name) { 462 if (!isObjCClass(Name)) 463 return false; 464 465 return Name.find(") ") != StringRef::npos; 466 } 467 468 static void getObjCClassCategory(StringRef In, StringRef &Class, 469 StringRef &Category) { 470 if (!hasObjCCategory(In)) { 471 Class = In.slice(In.find('[') + 1, In.find(' ')); 472 Category = ""; 473 return; 474 } 475 476 Class = In.slice(In.find('[') + 1, In.find('(')); 477 Category = In.slice(In.find('[') + 1, In.find(' ')); 478 } 479 480 static StringRef getObjCMethodName(StringRef In) { 481 return In.slice(In.find(' ') + 1, In.find(']')); 482 } 483 484 // Add the various names to the Dwarf accelerator table names. 485 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 486 const DISubprogram *SP, DIE &Die) { 487 if (getAccelTableKind() != AccelTableKind::Apple && 488 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 489 return; 490 491 if (!SP->isDefinition()) 492 return; 493 494 if (SP->getName() != "") 495 addAccelName(CU, SP->getName(), Die); 496 497 // If the linkage name is different than the name, go ahead and output that as 498 // well into the name table. Only do that if we are going to actually emit 499 // that name. 500 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 501 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 502 addAccelName(CU, SP->getLinkageName(), Die); 503 504 // If this is an Objective-C selector name add it to the ObjC accelerator 505 // too. 506 if (isObjCClass(SP->getName())) { 507 StringRef Class, Category; 508 getObjCClassCategory(SP->getName(), Class, Category); 509 addAccelObjC(CU, Class, Die); 510 if (Category != "") 511 addAccelObjC(CU, Category, Die); 512 // Also add the base method name to the name table. 513 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 514 } 515 } 516 517 /// Check whether we should create a DIE for the given Scope, return true 518 /// if we don't create a DIE (the corresponding DIE is null). 519 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 520 if (Scope->isAbstractScope()) 521 return false; 522 523 // We don't create a DIE if there is no Range. 524 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 525 if (Ranges.empty()) 526 return true; 527 528 if (Ranges.size() > 1) 529 return false; 530 531 // We don't create a DIE if we have a single Range and the end label 532 // is null. 533 return !getLabelAfterInsn(Ranges.front().second); 534 } 535 536 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 537 F(CU); 538 if (auto *SkelCU = CU.getSkeleton()) 539 if (CU.getCUNode()->getSplitDebugInlining()) 540 F(*SkelCU); 541 } 542 543 bool DwarfDebug::shareAcrossDWOCUs() const { 544 return SplitDwarfCrossCuReferences; 545 } 546 547 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 548 LexicalScope *Scope) { 549 assert(Scope && Scope->getScopeNode()); 550 assert(Scope->isAbstractScope()); 551 assert(!Scope->getInlinedAt()); 552 553 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 554 555 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 556 // was inlined from another compile unit. 557 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 558 // Avoid building the original CU if it won't be used 559 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 560 else { 561 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 562 if (auto *SkelCU = CU.getSkeleton()) { 563 (shareAcrossDWOCUs() ? CU : SrcCU) 564 .constructAbstractSubprogramScopeDIE(Scope); 565 if (CU.getCUNode()->getSplitDebugInlining()) 566 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 567 } else 568 CU.constructAbstractSubprogramScopeDIE(Scope); 569 } 570 } 571 572 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 573 DICompileUnit *Unit = SP->getUnit(); 574 assert(SP->isDefinition() && "Subprogram not a definition"); 575 assert(Unit && "Subprogram definition without parent unit"); 576 auto &CU = getOrCreateDwarfCompileUnit(Unit); 577 return *CU.getOrCreateSubprogramDIE(SP); 578 } 579 580 /// Represents a parameter whose call site value can be described by applying a 581 /// debug expression to a register in the forwarded register worklist. 582 struct FwdRegParamInfo { 583 /// The described parameter register. 584 unsigned ParamReg; 585 586 /// Debug expression that has been built up when walking through the 587 /// instruction chain that produces the parameter's value. 588 const DIExpression *Expr; 589 }; 590 591 /// Register worklist for finding call site values. 592 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 593 594 /// Append the expression \p Addition to \p Original and return the result. 595 static const DIExpression *combineDIExpressions(const DIExpression *Original, 596 const DIExpression *Addition) { 597 std::vector<uint64_t> Elts = Addition->getElements().vec(); 598 // Avoid multiple DW_OP_stack_values. 599 if (Original->isImplicit() && Addition->isImplicit()) 600 erase_value(Elts, dwarf::DW_OP_stack_value); 601 const DIExpression *CombinedExpr = 602 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 603 return CombinedExpr; 604 } 605 606 /// Emit call site parameter entries that are described by the given value and 607 /// debug expression. 608 template <typename ValT> 609 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 610 ArrayRef<FwdRegParamInfo> DescribedParams, 611 ParamSet &Params) { 612 for (auto Param : DescribedParams) { 613 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 614 615 // TODO: Entry value operations can currently not be combined with any 616 // other expressions, so we can't emit call site entries in those cases. 617 if (ShouldCombineExpressions && Expr->isEntryValue()) 618 continue; 619 620 // If a parameter's call site value is produced by a chain of 621 // instructions we may have already created an expression for the 622 // parameter when walking through the instructions. Append that to the 623 // base expression. 624 const DIExpression *CombinedExpr = 625 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 626 : Expr; 627 assert((!CombinedExpr || CombinedExpr->isValid()) && 628 "Combined debug expression is invalid"); 629 630 DbgValueLoc DbgLocVal(CombinedExpr, Val); 631 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 632 Params.push_back(CSParm); 633 ++NumCSParams; 634 } 635 } 636 637 /// Add \p Reg to the worklist, if it's not already present, and mark that the 638 /// given parameter registers' values can (potentially) be described using 639 /// that register and an debug expression. 640 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 641 const DIExpression *Expr, 642 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 643 auto I = Worklist.insert({Reg, {}}); 644 auto &ParamsForFwdReg = I.first->second; 645 for (auto Param : ParamsToAdd) { 646 assert(none_of(ParamsForFwdReg, 647 [Param](const FwdRegParamInfo &D) { 648 return D.ParamReg == Param.ParamReg; 649 }) && 650 "Same parameter described twice by forwarding reg"); 651 652 // If a parameter's call site value is produced by a chain of 653 // instructions we may have already created an expression for the 654 // parameter when walking through the instructions. Append that to the 655 // new expression. 656 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 657 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 658 } 659 } 660 661 /// Interpret values loaded into registers by \p CurMI. 662 static void interpretValues(const MachineInstr *CurMI, 663 FwdRegWorklist &ForwardedRegWorklist, 664 ParamSet &Params) { 665 666 const MachineFunction *MF = CurMI->getMF(); 667 const DIExpression *EmptyExpr = 668 DIExpression::get(MF->getFunction().getContext(), {}); 669 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 670 const auto &TII = *MF->getSubtarget().getInstrInfo(); 671 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 672 673 // If an instruction defines more than one item in the worklist, we may run 674 // into situations where a worklist register's value is (potentially) 675 // described by the previous value of another register that is also defined 676 // by that instruction. 677 // 678 // This can for example occur in cases like this: 679 // 680 // $r1 = mov 123 681 // $r0, $r1 = mvrr $r1, 456 682 // call @foo, $r0, $r1 683 // 684 // When describing $r1's value for the mvrr instruction, we need to make sure 685 // that we don't finalize an entry value for $r0, as that is dependent on the 686 // previous value of $r1 (123 rather than 456). 687 // 688 // In order to not have to distinguish between those cases when finalizing 689 // entry values, we simply postpone adding new parameter registers to the 690 // worklist, by first keeping them in this temporary container until the 691 // instruction has been handled. 692 FwdRegWorklist TmpWorklistItems; 693 694 // If the MI is an instruction defining one or more parameters' forwarding 695 // registers, add those defines. 696 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 697 SmallSetVector<unsigned, 4> &Defs) { 698 if (MI.isDebugInstr()) 699 return; 700 701 for (const MachineOperand &MO : MI.operands()) { 702 if (MO.isReg() && MO.isDef() && 703 Register::isPhysicalRegister(MO.getReg())) { 704 for (auto FwdReg : ForwardedRegWorklist) 705 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 706 Defs.insert(FwdReg.first); 707 } 708 } 709 }; 710 711 // Set of worklist registers that are defined by this instruction. 712 SmallSetVector<unsigned, 4> FwdRegDefs; 713 714 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 715 if (FwdRegDefs.empty()) 716 return; 717 718 for (auto ParamFwdReg : FwdRegDefs) { 719 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 720 if (ParamValue->first.isImm()) { 721 int64_t Val = ParamValue->first.getImm(); 722 finishCallSiteParams(Val, ParamValue->second, 723 ForwardedRegWorklist[ParamFwdReg], Params); 724 } else if (ParamValue->first.isReg()) { 725 Register RegLoc = ParamValue->first.getReg(); 726 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 727 Register FP = TRI.getFrameRegister(*MF); 728 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 729 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 730 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 731 finishCallSiteParams(MLoc, ParamValue->second, 732 ForwardedRegWorklist[ParamFwdReg], Params); 733 } else { 734 // ParamFwdReg was described by the non-callee saved register 735 // RegLoc. Mark that the call site values for the parameters are 736 // dependent on that register instead of ParamFwdReg. Since RegLoc 737 // may be a register that will be handled in this iteration, we 738 // postpone adding the items to the worklist, and instead keep them 739 // in a temporary container. 740 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 741 ForwardedRegWorklist[ParamFwdReg]); 742 } 743 } 744 } 745 } 746 747 // Remove all registers that this instruction defines from the worklist. 748 for (auto ParamFwdReg : FwdRegDefs) 749 ForwardedRegWorklist.erase(ParamFwdReg); 750 751 // Now that we are done handling this instruction, add items from the 752 // temporary worklist to the real one. 753 for (auto New : TmpWorklistItems) 754 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 755 TmpWorklistItems.clear(); 756 } 757 758 static bool interpretNextInstr(const MachineInstr *CurMI, 759 FwdRegWorklist &ForwardedRegWorklist, 760 ParamSet &Params) { 761 // Skip bundle headers. 762 if (CurMI->isBundle()) 763 return true; 764 765 // If the next instruction is a call we can not interpret parameter's 766 // forwarding registers or we finished the interpretation of all 767 // parameters. 768 if (CurMI->isCall()) 769 return false; 770 771 if (ForwardedRegWorklist.empty()) 772 return false; 773 774 // Avoid NOP description. 775 if (CurMI->getNumOperands() == 0) 776 return true; 777 778 interpretValues(CurMI, ForwardedRegWorklist, Params); 779 780 return true; 781 } 782 783 /// Try to interpret values loaded into registers that forward parameters 784 /// for \p CallMI. Store parameters with interpreted value into \p Params. 785 static void collectCallSiteParameters(const MachineInstr *CallMI, 786 ParamSet &Params) { 787 const MachineFunction *MF = CallMI->getMF(); 788 auto CalleesMap = MF->getCallSitesInfo(); 789 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 790 791 // There is no information for the call instruction. 792 if (CallFwdRegsInfo == CalleesMap.end()) 793 return; 794 795 const MachineBasicBlock *MBB = CallMI->getParent(); 796 797 // Skip the call instruction. 798 auto I = std::next(CallMI->getReverseIterator()); 799 800 FwdRegWorklist ForwardedRegWorklist; 801 802 const DIExpression *EmptyExpr = 803 DIExpression::get(MF->getFunction().getContext(), {}); 804 805 // Add all the forwarding registers into the ForwardedRegWorklist. 806 for (auto ArgReg : CallFwdRegsInfo->second) { 807 bool InsertedReg = 808 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 809 .second; 810 assert(InsertedReg && "Single register used to forward two arguments?"); 811 (void)InsertedReg; 812 } 813 814 // Do not emit CSInfo for undef forwarding registers. 815 for (auto &MO : CallMI->uses()) 816 if (MO.isReg() && MO.isUndef()) 817 ForwardedRegWorklist.erase(MO.getReg()); 818 819 // We erase, from the ForwardedRegWorklist, those forwarding registers for 820 // which we successfully describe a loaded value (by using 821 // the describeLoadedValue()). For those remaining arguments in the working 822 // list, for which we do not describe a loaded value by 823 // the describeLoadedValue(), we try to generate an entry value expression 824 // for their call site value description, if the call is within the entry MBB. 825 // TODO: Handle situations when call site parameter value can be described 826 // as the entry value within basic blocks other than the first one. 827 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 828 829 // Search for a loading value in forwarding registers inside call delay slot. 830 if (CallMI->hasDelaySlot()) { 831 auto Suc = std::next(CallMI->getIterator()); 832 // Only one-instruction delay slot is supported. 833 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 834 (void)BundleEnd; 835 assert(std::next(Suc) == BundleEnd && 836 "More than one instruction in call delay slot"); 837 // Try to interpret value loaded by instruction. 838 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 839 return; 840 } 841 842 // Search for a loading value in forwarding registers. 843 for (; I != MBB->rend(); ++I) { 844 // Try to interpret values loaded by instruction. 845 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 846 return; 847 } 848 849 // Emit the call site parameter's value as an entry value. 850 if (ShouldTryEmitEntryVals) { 851 // Create an expression where the register's entry value is used. 852 DIExpression *EntryExpr = DIExpression::get( 853 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 854 for (auto RegEntry : ForwardedRegWorklist) { 855 MachineLocation MLoc(RegEntry.first); 856 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 857 } 858 } 859 } 860 861 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 862 DwarfCompileUnit &CU, DIE &ScopeDIE, 863 const MachineFunction &MF) { 864 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 865 // the subprogram is required to have one. 866 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 867 return; 868 869 // Use DW_AT_call_all_calls to express that call site entries are present 870 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 871 // because one of its requirements is not met: call site entries for 872 // optimized-out calls are elided. 873 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 874 875 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 876 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 877 878 // Delay slot support check. 879 auto delaySlotSupported = [&](const MachineInstr &MI) { 880 if (!MI.isBundledWithSucc()) 881 return false; 882 auto Suc = std::next(MI.getIterator()); 883 auto CallInstrBundle = getBundleStart(MI.getIterator()); 884 (void)CallInstrBundle; 885 auto DelaySlotBundle = getBundleStart(Suc); 886 (void)DelaySlotBundle; 887 // Ensure that label after call is following delay slot instruction. 888 // Ex. CALL_INSTRUCTION { 889 // DELAY_SLOT_INSTRUCTION } 890 // LABEL_AFTER_CALL 891 assert(getLabelAfterInsn(&*CallInstrBundle) == 892 getLabelAfterInsn(&*DelaySlotBundle) && 893 "Call and its successor instruction don't have same label after."); 894 return true; 895 }; 896 897 // Emit call site entries for each call or tail call in the function. 898 for (const MachineBasicBlock &MBB : MF) { 899 for (const MachineInstr &MI : MBB.instrs()) { 900 // Bundles with call in them will pass the isCall() test below but do not 901 // have callee operand information so skip them here. Iterator will 902 // eventually reach the call MI. 903 if (MI.isBundle()) 904 continue; 905 906 // Skip instructions which aren't calls. Both calls and tail-calling jump 907 // instructions (e.g TAILJMPd64) are classified correctly here. 908 if (!MI.isCandidateForCallSiteEntry()) 909 continue; 910 911 // Skip instructions marked as frame setup, as they are not interesting to 912 // the user. 913 if (MI.getFlag(MachineInstr::FrameSetup)) 914 continue; 915 916 // Check if delay slot support is enabled. 917 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 918 return; 919 920 // If this is a direct call, find the callee's subprogram. 921 // In the case of an indirect call find the register that holds 922 // the callee. 923 const MachineOperand &CalleeOp = MI.getOperand(0); 924 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 925 continue; 926 927 unsigned CallReg = 0; 928 DIE *CalleeDIE = nullptr; 929 const Function *CalleeDecl = nullptr; 930 if (CalleeOp.isReg()) { 931 CallReg = CalleeOp.getReg(); 932 if (!CallReg) 933 continue; 934 } else { 935 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 936 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 937 continue; 938 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 939 940 if (CalleeSP->isDefinition()) { 941 // Ensure that a subprogram DIE for the callee is available in the 942 // appropriate CU. 943 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 944 } else { 945 // Create the declaration DIE if it is missing. This is required to 946 // support compilation of old bitcode with an incomplete list of 947 // retained metadata. 948 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 949 } 950 assert(CalleeDIE && "Must have a DIE for the callee"); 951 } 952 953 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 954 955 bool IsTail = TII->isTailCall(MI); 956 957 // If MI is in a bundle, the label was created after the bundle since 958 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 959 // to search for that label below. 960 const MachineInstr *TopLevelCallMI = 961 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 962 963 // For non-tail calls, the return PC is needed to disambiguate paths in 964 // the call graph which could lead to some target function. For tail 965 // calls, no return PC information is needed, unless tuning for GDB in 966 // DWARF4 mode in which case we fake a return PC for compatibility. 967 const MCSymbol *PCAddr = 968 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 969 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 970 : nullptr; 971 972 // For tail calls, it's necessary to record the address of the branch 973 // instruction so that the debugger can show where the tail call occurred. 974 const MCSymbol *CallAddr = 975 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 976 977 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 978 979 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 980 << (CalleeDecl ? CalleeDecl->getName() 981 : StringRef(MF.getSubtarget() 982 .getRegisterInfo() 983 ->getName(CallReg))) 984 << (IsTail ? " [IsTail]" : "") << "\n"); 985 986 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 987 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 988 989 // Optionally emit call-site-param debug info. 990 if (emitDebugEntryValues()) { 991 ParamSet Params; 992 // Try to interpret values of call site parameters. 993 collectCallSiteParameters(&MI, Params); 994 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 995 } 996 } 997 } 998 } 999 1000 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1001 if (!U.hasDwarfPubSections()) 1002 return; 1003 1004 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1005 } 1006 1007 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1008 DwarfCompileUnit &NewCU) { 1009 DIE &Die = NewCU.getUnitDie(); 1010 StringRef FN = DIUnit->getFilename(); 1011 1012 StringRef Producer = DIUnit->getProducer(); 1013 StringRef Flags = DIUnit->getFlags(); 1014 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1015 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1016 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1017 } else 1018 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1019 1020 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1021 DIUnit->getSourceLanguage()); 1022 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1023 StringRef SysRoot = DIUnit->getSysRoot(); 1024 if (!SysRoot.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1026 StringRef SDK = DIUnit->getSDK(); 1027 if (!SDK.empty()) 1028 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1029 1030 // Add DW_str_offsets_base to the unit DIE, except for split units. 1031 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1032 NewCU.addStringOffsetsStart(); 1033 1034 if (!useSplitDwarf()) { 1035 NewCU.initStmtList(); 1036 1037 // If we're using split dwarf the compilation dir is going to be in the 1038 // skeleton CU and so we don't need to duplicate it here. 1039 if (!CompilationDir.empty()) 1040 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1041 addGnuPubAttributes(NewCU, Die); 1042 } 1043 1044 if (useAppleExtensionAttributes()) { 1045 if (DIUnit->isOptimized()) 1046 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1047 1048 StringRef Flags = DIUnit->getFlags(); 1049 if (!Flags.empty()) 1050 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1051 1052 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1053 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1054 dwarf::DW_FORM_data1, RVer); 1055 } 1056 1057 if (DIUnit->getDWOId()) { 1058 // This CU is either a clang module DWO or a skeleton CU. 1059 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1060 DIUnit->getDWOId()); 1061 if (!DIUnit->getSplitDebugFilename().empty()) { 1062 // This is a prefabricated skeleton CU. 1063 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1064 ? dwarf::DW_AT_dwo_name 1065 : dwarf::DW_AT_GNU_dwo_name; 1066 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1067 } 1068 } 1069 } 1070 // Create new DwarfCompileUnit for the given metadata node with tag 1071 // DW_TAG_compile_unit. 1072 DwarfCompileUnit & 1073 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1074 if (auto *CU = CUMap.lookup(DIUnit)) 1075 return *CU; 1076 1077 CompilationDir = DIUnit->getDirectory(); 1078 1079 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1080 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1081 DwarfCompileUnit &NewCU = *OwnedUnit; 1082 InfoHolder.addUnit(std::move(OwnedUnit)); 1083 1084 for (auto *IE : DIUnit->getImportedEntities()) 1085 NewCU.addImportedEntity(IE); 1086 1087 // LTO with assembly output shares a single line table amongst multiple CUs. 1088 // To avoid the compilation directory being ambiguous, let the line table 1089 // explicitly describe the directory of all files, never relying on the 1090 // compilation directory. 1091 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1092 Asm->OutStreamer->emitDwarfFile0Directive( 1093 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1094 DIUnit->getSource(), NewCU.getUniqueID()); 1095 1096 if (useSplitDwarf()) { 1097 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1098 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1099 } else { 1100 finishUnitAttributes(DIUnit, NewCU); 1101 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1102 } 1103 1104 CUMap.insert({DIUnit, &NewCU}); 1105 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1106 return NewCU; 1107 } 1108 1109 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1110 const DIImportedEntity *N) { 1111 if (isa<DILocalScope>(N->getScope())) 1112 return; 1113 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1114 D->addChild(TheCU.constructImportedEntityDIE(N)); 1115 } 1116 1117 /// Sort and unique GVEs by comparing their fragment offset. 1118 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1119 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1120 llvm::sort( 1121 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1122 // Sort order: first null exprs, then exprs without fragment 1123 // info, then sort by fragment offset in bits. 1124 // FIXME: Come up with a more comprehensive comparator so 1125 // the sorting isn't non-deterministic, and so the following 1126 // std::unique call works correctly. 1127 if (!A.Expr || !B.Expr) 1128 return !!B.Expr; 1129 auto FragmentA = A.Expr->getFragmentInfo(); 1130 auto FragmentB = B.Expr->getFragmentInfo(); 1131 if (!FragmentA || !FragmentB) 1132 return !!FragmentB; 1133 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1134 }); 1135 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1136 [](DwarfCompileUnit::GlobalExpr A, 1137 DwarfCompileUnit::GlobalExpr B) { 1138 return A.Expr == B.Expr; 1139 }), 1140 GVEs.end()); 1141 return GVEs; 1142 } 1143 1144 // Emit all Dwarf sections that should come prior to the content. Create 1145 // global DIEs and emit initial debug info sections. This is invoked by 1146 // the target AsmPrinter. 1147 void DwarfDebug::beginModule(Module *M) { 1148 DebugHandlerBase::beginModule(M); 1149 1150 if (!Asm || !MMI->hasDebugInfo()) 1151 return; 1152 1153 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1154 M->debug_compile_units_end()); 1155 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1156 assert(MMI->hasDebugInfo() && 1157 "DebugInfoAvailabilty unexpectedly not initialized"); 1158 SingleCU = NumDebugCUs == 1; 1159 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1160 GVMap; 1161 for (const GlobalVariable &Global : M->globals()) { 1162 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1163 Global.getDebugInfo(GVs); 1164 for (auto *GVE : GVs) 1165 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1166 } 1167 1168 // Create the symbol that designates the start of the unit's contribution 1169 // to the string offsets table. In a split DWARF scenario, only the skeleton 1170 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1171 if (useSegmentedStringOffsetsTable()) 1172 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1173 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1174 1175 1176 // Create the symbols that designates the start of the DWARF v5 range list 1177 // and locations list tables. They are located past the table headers. 1178 if (getDwarfVersion() >= 5) { 1179 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1180 Holder.setRnglistsTableBaseSym( 1181 Asm->createTempSymbol("rnglists_table_base")); 1182 1183 if (useSplitDwarf()) 1184 InfoHolder.setRnglistsTableBaseSym( 1185 Asm->createTempSymbol("rnglists_dwo_table_base")); 1186 } 1187 1188 // Create the symbol that points to the first entry following the debug 1189 // address table (.debug_addr) header. 1190 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1191 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1192 1193 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1194 // FIXME: Move local imported entities into a list attached to the 1195 // subprogram, then this search won't be needed and a 1196 // getImportedEntities().empty() test should go below with the rest. 1197 bool HasNonLocalImportedEntities = llvm::any_of( 1198 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1199 return !isa<DILocalScope>(IE->getScope()); 1200 }); 1201 1202 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1203 CUNode->getRetainedTypes().empty() && 1204 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1205 continue; 1206 1207 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1208 1209 // Global Variables. 1210 for (auto *GVE : CUNode->getGlobalVariables()) { 1211 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1212 // already know about the variable and it isn't adding a constant 1213 // expression. 1214 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1215 auto *Expr = GVE->getExpression(); 1216 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1217 GVMapEntry.push_back({nullptr, Expr}); 1218 } 1219 DenseSet<DIGlobalVariable *> Processed; 1220 for (auto *GVE : CUNode->getGlobalVariables()) { 1221 DIGlobalVariable *GV = GVE->getVariable(); 1222 if (Processed.insert(GV).second) 1223 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1224 } 1225 1226 for (auto *Ty : CUNode->getEnumTypes()) { 1227 // The enum types array by design contains pointers to 1228 // MDNodes rather than DIRefs. Unique them here. 1229 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1230 } 1231 for (auto *Ty : CUNode->getRetainedTypes()) { 1232 // The retained types array by design contains pointers to 1233 // MDNodes rather than DIRefs. Unique them here. 1234 if (DIType *RT = dyn_cast<DIType>(Ty)) 1235 // There is no point in force-emitting a forward declaration. 1236 CU.getOrCreateTypeDIE(RT); 1237 } 1238 // Emit imported_modules last so that the relevant context is already 1239 // available. 1240 for (auto *IE : CUNode->getImportedEntities()) 1241 constructAndAddImportedEntityDIE(CU, IE); 1242 } 1243 } 1244 1245 void DwarfDebug::finishEntityDefinitions() { 1246 for (const auto &Entity : ConcreteEntities) { 1247 DIE *Die = Entity->getDIE(); 1248 assert(Die); 1249 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1250 // in the ConcreteEntities list, rather than looking it up again here. 1251 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1252 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1253 assert(Unit); 1254 Unit->finishEntityDefinition(Entity.get()); 1255 } 1256 } 1257 1258 void DwarfDebug::finishSubprogramDefinitions() { 1259 for (const DISubprogram *SP : ProcessedSPNodes) { 1260 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1261 forBothCUs( 1262 getOrCreateDwarfCompileUnit(SP->getUnit()), 1263 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1264 } 1265 } 1266 1267 void DwarfDebug::finalizeModuleInfo() { 1268 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1269 1270 finishSubprogramDefinitions(); 1271 1272 finishEntityDefinitions(); 1273 1274 // Include the DWO file name in the hash if there's more than one CU. 1275 // This handles ThinLTO's situation where imported CUs may very easily be 1276 // duplicate with the same CU partially imported into another ThinLTO unit. 1277 StringRef DWOName; 1278 if (CUMap.size() > 1) 1279 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1280 1281 // Handle anything that needs to be done on a per-unit basis after 1282 // all other generation. 1283 for (const auto &P : CUMap) { 1284 auto &TheCU = *P.second; 1285 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1286 continue; 1287 // Emit DW_AT_containing_type attribute to connect types with their 1288 // vtable holding type. 1289 TheCU.constructContainingTypeDIEs(); 1290 1291 // Add CU specific attributes if we need to add any. 1292 // If we're splitting the dwarf out now that we've got the entire 1293 // CU then add the dwo id to it. 1294 auto *SkCU = TheCU.getSkeleton(); 1295 1296 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1297 1298 if (HasSplitUnit) { 1299 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1300 ? dwarf::DW_AT_dwo_name 1301 : dwarf::DW_AT_GNU_dwo_name; 1302 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1303 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1304 Asm->TM.Options.MCOptions.SplitDwarfFile); 1305 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1306 Asm->TM.Options.MCOptions.SplitDwarfFile); 1307 // Emit a unique identifier for this CU. 1308 uint64_t ID = 1309 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1310 if (getDwarfVersion() >= 5) { 1311 TheCU.setDWOId(ID); 1312 SkCU->setDWOId(ID); 1313 } else { 1314 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1315 dwarf::DW_FORM_data8, ID); 1316 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1317 dwarf::DW_FORM_data8, ID); 1318 } 1319 1320 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1321 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1322 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1323 Sym, Sym); 1324 } 1325 } else if (SkCU) { 1326 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1327 } 1328 1329 // If we have code split among multiple sections or non-contiguous 1330 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1331 // remain in the .o file, otherwise add a DW_AT_low_pc. 1332 // FIXME: We should use ranges allow reordering of code ala 1333 // .subsections_via_symbols in mach-o. This would mean turning on 1334 // ranges for all subprogram DIEs for mach-o. 1335 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1336 1337 if (unsigned NumRanges = TheCU.getRanges().size()) { 1338 if (NumRanges > 1 && useRangesSection()) 1339 // A DW_AT_low_pc attribute may also be specified in combination with 1340 // DW_AT_ranges to specify the default base address for use in 1341 // location lists (see Section 2.6.2) and range lists (see Section 1342 // 2.17.3). 1343 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1344 else 1345 U.setBaseAddress(TheCU.getRanges().front().Begin); 1346 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1347 } 1348 1349 // We don't keep track of which addresses are used in which CU so this 1350 // is a bit pessimistic under LTO. 1351 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1352 U.addAddrTableBase(); 1353 1354 if (getDwarfVersion() >= 5) { 1355 if (U.hasRangeLists()) 1356 U.addRnglistsBase(); 1357 1358 if (!DebugLocs.getLists().empty()) { 1359 if (!useSplitDwarf()) 1360 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1361 DebugLocs.getSym(), 1362 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1363 } 1364 } 1365 1366 auto *CUNode = cast<DICompileUnit>(P.first); 1367 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1368 // attribute. 1369 if (CUNode->getMacros()) { 1370 if (UseDebugMacroSection) { 1371 if (useSplitDwarf()) 1372 TheCU.addSectionDelta( 1373 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1374 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1375 else { 1376 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1377 ? dwarf::DW_AT_macros 1378 : dwarf::DW_AT_GNU_macros; 1379 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1380 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1381 } 1382 } else { 1383 if (useSplitDwarf()) 1384 TheCU.addSectionDelta( 1385 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1386 U.getMacroLabelBegin(), 1387 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1388 else 1389 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1390 U.getMacroLabelBegin(), 1391 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1392 } 1393 } 1394 } 1395 1396 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1397 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1398 if (CUNode->getDWOId()) 1399 getOrCreateDwarfCompileUnit(CUNode); 1400 1401 // Compute DIE offsets and sizes. 1402 InfoHolder.computeSizeAndOffsets(); 1403 if (useSplitDwarf()) 1404 SkeletonHolder.computeSizeAndOffsets(); 1405 } 1406 1407 // Emit all Dwarf sections that should come after the content. 1408 void DwarfDebug::endModule() { 1409 assert(CurFn == nullptr); 1410 assert(CurMI == nullptr); 1411 1412 for (const auto &P : CUMap) { 1413 auto &CU = *P.second; 1414 CU.createBaseTypeDIEs(); 1415 } 1416 1417 // If we aren't actually generating debug info (check beginModule - 1418 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1419 if (!Asm || !MMI->hasDebugInfo()) 1420 return; 1421 1422 // Finalize the debug info for the module. 1423 finalizeModuleInfo(); 1424 1425 if (useSplitDwarf()) 1426 // Emit debug_loc.dwo/debug_loclists.dwo section. 1427 emitDebugLocDWO(); 1428 else 1429 // Emit debug_loc/debug_loclists section. 1430 emitDebugLoc(); 1431 1432 // Corresponding abbreviations into a abbrev section. 1433 emitAbbreviations(); 1434 1435 // Emit all the DIEs into a debug info section. 1436 emitDebugInfo(); 1437 1438 // Emit info into a debug aranges section. 1439 if (GenerateARangeSection) 1440 emitDebugARanges(); 1441 1442 // Emit info into a debug ranges section. 1443 emitDebugRanges(); 1444 1445 if (useSplitDwarf()) 1446 // Emit info into a debug macinfo.dwo section. 1447 emitDebugMacinfoDWO(); 1448 else 1449 // Emit info into a debug macinfo/macro section. 1450 emitDebugMacinfo(); 1451 1452 emitDebugStr(); 1453 1454 if (useSplitDwarf()) { 1455 emitDebugStrDWO(); 1456 emitDebugInfoDWO(); 1457 emitDebugAbbrevDWO(); 1458 emitDebugLineDWO(); 1459 emitDebugRangesDWO(); 1460 } 1461 1462 emitDebugAddr(); 1463 1464 // Emit info into the dwarf accelerator table sections. 1465 switch (getAccelTableKind()) { 1466 case AccelTableKind::Apple: 1467 emitAccelNames(); 1468 emitAccelObjC(); 1469 emitAccelNamespaces(); 1470 emitAccelTypes(); 1471 break; 1472 case AccelTableKind::Dwarf: 1473 emitAccelDebugNames(); 1474 break; 1475 case AccelTableKind::None: 1476 break; 1477 case AccelTableKind::Default: 1478 llvm_unreachable("Default should have already been resolved."); 1479 } 1480 1481 // Emit the pubnames and pubtypes sections if requested. 1482 emitDebugPubSections(); 1483 1484 // clean up. 1485 // FIXME: AbstractVariables.clear(); 1486 } 1487 1488 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1489 const DINode *Node, 1490 const MDNode *ScopeNode) { 1491 if (CU.getExistingAbstractEntity(Node)) 1492 return; 1493 1494 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1495 cast<DILocalScope>(ScopeNode))); 1496 } 1497 1498 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1499 const DINode *Node, const MDNode *ScopeNode) { 1500 if (CU.getExistingAbstractEntity(Node)) 1501 return; 1502 1503 if (LexicalScope *Scope = 1504 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1505 CU.createAbstractEntity(Node, Scope); 1506 } 1507 1508 // Collect variable information from side table maintained by MF. 1509 void DwarfDebug::collectVariableInfoFromMFTable( 1510 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1511 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1512 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1513 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1514 if (!VI.Var) 1515 continue; 1516 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1517 "Expected inlined-at fields to agree"); 1518 1519 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1520 Processed.insert(Var); 1521 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1522 1523 // If variable scope is not found then skip this variable. 1524 if (!Scope) { 1525 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1526 << ", no variable scope found\n"); 1527 continue; 1528 } 1529 1530 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1531 auto RegVar = std::make_unique<DbgVariable>( 1532 cast<DILocalVariable>(Var.first), Var.second); 1533 RegVar->initializeMMI(VI.Expr, VI.Slot); 1534 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1535 << "\n"); 1536 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1537 DbgVar->addMMIEntry(*RegVar); 1538 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1539 MFVars.insert({Var, RegVar.get()}); 1540 ConcreteEntities.push_back(std::move(RegVar)); 1541 } 1542 } 1543 } 1544 1545 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1546 /// enclosing lexical scope. The check ensures there are no other instructions 1547 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1548 /// either open or otherwise rolls off the end of the scope. 1549 static bool validThroughout(LexicalScopes &LScopes, 1550 const MachineInstr *DbgValue, 1551 const MachineInstr *RangeEnd, 1552 const InstructionOrdering &Ordering) { 1553 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1554 auto MBB = DbgValue->getParent(); 1555 auto DL = DbgValue->getDebugLoc(); 1556 auto *LScope = LScopes.findLexicalScope(DL); 1557 // Scope doesn't exist; this is a dead DBG_VALUE. 1558 if (!LScope) 1559 return false; 1560 auto &LSRange = LScope->getRanges(); 1561 if (LSRange.size() == 0) 1562 return false; 1563 1564 const MachineInstr *LScopeBegin = LSRange.front().first; 1565 // If the scope starts before the DBG_VALUE then we may have a negative 1566 // result. Otherwise the location is live coming into the scope and we 1567 // can skip the following checks. 1568 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1569 // Exit if the lexical scope begins outside of the current block. 1570 if (LScopeBegin->getParent() != MBB) 1571 return false; 1572 1573 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1574 for (++Pred; Pred != MBB->rend(); ++Pred) { 1575 if (Pred->getFlag(MachineInstr::FrameSetup)) 1576 break; 1577 auto PredDL = Pred->getDebugLoc(); 1578 if (!PredDL || Pred->isMetaInstruction()) 1579 continue; 1580 // Check whether the instruction preceding the DBG_VALUE is in the same 1581 // (sub)scope as the DBG_VALUE. 1582 if (DL->getScope() == PredDL->getScope()) 1583 return false; 1584 auto *PredScope = LScopes.findLexicalScope(PredDL); 1585 if (!PredScope || LScope->dominates(PredScope)) 1586 return false; 1587 } 1588 } 1589 1590 // If the range of the DBG_VALUE is open-ended, report success. 1591 if (!RangeEnd) 1592 return true; 1593 1594 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1595 // throughout the function. This is a hack, presumably for DWARF v2 and not 1596 // necessarily correct. It would be much better to use a dbg.declare instead 1597 // if we know the constant is live throughout the scope. 1598 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1599 return true; 1600 1601 // Test if the location terminates before the end of the scope. 1602 const MachineInstr *LScopeEnd = LSRange.back().second; 1603 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1604 return false; 1605 1606 // There's a single location which starts at the scope start, and ends at or 1607 // after the scope end. 1608 return true; 1609 } 1610 1611 /// Build the location list for all DBG_VALUEs in the function that 1612 /// describe the same variable. The resulting DebugLocEntries will have 1613 /// strict monotonically increasing begin addresses and will never 1614 /// overlap. If the resulting list has only one entry that is valid 1615 /// throughout variable's scope return true. 1616 // 1617 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1618 // different kinds of history map entries. One thing to be aware of is that if 1619 // a debug value is ended by another entry (rather than being valid until the 1620 // end of the function), that entry's instruction may or may not be included in 1621 // the range, depending on if the entry is a clobbering entry (it has an 1622 // instruction that clobbers one or more preceding locations), or if it is an 1623 // (overlapping) debug value entry. This distinction can be seen in the example 1624 // below. The first debug value is ended by the clobbering entry 2, and the 1625 // second and third debug values are ended by the overlapping debug value entry 1626 // 4. 1627 // 1628 // Input: 1629 // 1630 // History map entries [type, end index, mi] 1631 // 1632 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1633 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1634 // 2 | | [Clobber, $reg0 = [...], -, -] 1635 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1636 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1637 // 1638 // Output [start, end) [Value...]: 1639 // 1640 // [0-1) [(reg0, fragment 0, 32)] 1641 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1642 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1643 // [4-) [(@g, fragment 0, 96)] 1644 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1645 const DbgValueHistoryMap::Entries &Entries) { 1646 using OpenRange = 1647 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1648 SmallVector<OpenRange, 4> OpenRanges; 1649 bool isSafeForSingleLocation = true; 1650 const MachineInstr *StartDebugMI = nullptr; 1651 const MachineInstr *EndMI = nullptr; 1652 1653 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1654 const MachineInstr *Instr = EI->getInstr(); 1655 1656 // Remove all values that are no longer live. 1657 size_t Index = std::distance(EB, EI); 1658 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1659 1660 // If we are dealing with a clobbering entry, this iteration will result in 1661 // a location list entry starting after the clobbering instruction. 1662 const MCSymbol *StartLabel = 1663 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1664 assert(StartLabel && 1665 "Forgot label before/after instruction starting a range!"); 1666 1667 const MCSymbol *EndLabel; 1668 if (std::next(EI) == Entries.end()) { 1669 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1670 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1671 if (EI->isClobber()) 1672 EndMI = EI->getInstr(); 1673 } 1674 else if (std::next(EI)->isClobber()) 1675 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1676 else 1677 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1678 assert(EndLabel && "Forgot label after instruction ending a range!"); 1679 1680 if (EI->isDbgValue()) 1681 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1682 1683 // If this history map entry has a debug value, add that to the list of 1684 // open ranges and check if its location is valid for a single value 1685 // location. 1686 if (EI->isDbgValue()) { 1687 // Do not add undef debug values, as they are redundant information in 1688 // the location list entries. An undef debug results in an empty location 1689 // description. If there are any non-undef fragments then padding pieces 1690 // with empty location descriptions will automatically be inserted, and if 1691 // all fragments are undef then the whole location list entry is 1692 // redundant. 1693 if (!Instr->isUndefDebugValue()) { 1694 auto Value = getDebugLocValue(Instr); 1695 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1696 1697 // TODO: Add support for single value fragment locations. 1698 if (Instr->getDebugExpression()->isFragment()) 1699 isSafeForSingleLocation = false; 1700 1701 if (!StartDebugMI) 1702 StartDebugMI = Instr; 1703 } else { 1704 isSafeForSingleLocation = false; 1705 } 1706 } 1707 1708 // Location list entries with empty location descriptions are redundant 1709 // information in DWARF, so do not emit those. 1710 if (OpenRanges.empty()) 1711 continue; 1712 1713 // Omit entries with empty ranges as they do not have any effect in DWARF. 1714 if (StartLabel == EndLabel) { 1715 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1716 continue; 1717 } 1718 1719 SmallVector<DbgValueLoc, 4> Values; 1720 for (auto &R : OpenRanges) 1721 Values.push_back(R.second); 1722 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1723 1724 // Attempt to coalesce the ranges of two otherwise identical 1725 // DebugLocEntries. 1726 auto CurEntry = DebugLoc.rbegin(); 1727 LLVM_DEBUG({ 1728 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1729 for (auto &Value : CurEntry->getValues()) 1730 Value.dump(); 1731 dbgs() << "-----\n"; 1732 }); 1733 1734 auto PrevEntry = std::next(CurEntry); 1735 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1736 DebugLoc.pop_back(); 1737 } 1738 1739 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1740 validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()); 1741 } 1742 1743 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1744 LexicalScope &Scope, 1745 const DINode *Node, 1746 const DILocation *Location, 1747 const MCSymbol *Sym) { 1748 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1749 if (isa<const DILocalVariable>(Node)) { 1750 ConcreteEntities.push_back( 1751 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1752 Location)); 1753 InfoHolder.addScopeVariable(&Scope, 1754 cast<DbgVariable>(ConcreteEntities.back().get())); 1755 } else if (isa<const DILabel>(Node)) { 1756 ConcreteEntities.push_back( 1757 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1758 Location, Sym)); 1759 InfoHolder.addScopeLabel(&Scope, 1760 cast<DbgLabel>(ConcreteEntities.back().get())); 1761 } 1762 return ConcreteEntities.back().get(); 1763 } 1764 1765 // Find variables for each lexical scope. 1766 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1767 const DISubprogram *SP, 1768 DenseSet<InlinedEntity> &Processed) { 1769 // Grab the variable info that was squirreled away in the MMI side-table. 1770 collectVariableInfoFromMFTable(TheCU, Processed); 1771 1772 for (const auto &I : DbgValues) { 1773 InlinedEntity IV = I.first; 1774 if (Processed.count(IV)) 1775 continue; 1776 1777 // Instruction ranges, specifying where IV is accessible. 1778 const auto &HistoryMapEntries = I.second; 1779 if (HistoryMapEntries.empty()) 1780 continue; 1781 1782 LexicalScope *Scope = nullptr; 1783 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1784 if (const DILocation *IA = IV.second) 1785 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1786 else 1787 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1788 // If variable scope is not found then skip this variable. 1789 if (!Scope) 1790 continue; 1791 1792 Processed.insert(IV); 1793 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1794 *Scope, LocalVar, IV.second)); 1795 1796 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1797 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1798 1799 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1800 // If the history map contains a single debug value, there may be an 1801 // additional entry which clobbers the debug value. 1802 size_t HistSize = HistoryMapEntries.size(); 1803 bool SingleValueWithClobber = 1804 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1805 if (HistSize == 1 || SingleValueWithClobber) { 1806 const auto *End = 1807 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1808 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1809 RegVar->initializeDbgValue(MInsn); 1810 continue; 1811 } 1812 } 1813 1814 // Do not emit location lists if .debug_loc secton is disabled. 1815 if (!useLocSection()) 1816 continue; 1817 1818 // Handle multiple DBG_VALUE instructions describing one variable. 1819 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1820 1821 // Build the location list for this variable. 1822 SmallVector<DebugLocEntry, 8> Entries; 1823 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1824 1825 // Check whether buildLocationList managed to merge all locations to one 1826 // that is valid throughout the variable's scope. If so, produce single 1827 // value location. 1828 if (isValidSingleLocation) { 1829 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1830 continue; 1831 } 1832 1833 // If the variable has a DIBasicType, extract it. Basic types cannot have 1834 // unique identifiers, so don't bother resolving the type with the 1835 // identifier map. 1836 const DIBasicType *BT = dyn_cast<DIBasicType>( 1837 static_cast<const Metadata *>(LocalVar->getType())); 1838 1839 // Finalize the entry by lowering it into a DWARF bytestream. 1840 for (auto &Entry : Entries) 1841 Entry.finalize(*Asm, List, BT, TheCU); 1842 } 1843 1844 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1845 // DWARF-related DbgLabel. 1846 for (const auto &I : DbgLabels) { 1847 InlinedEntity IL = I.first; 1848 const MachineInstr *MI = I.second; 1849 if (MI == nullptr) 1850 continue; 1851 1852 LexicalScope *Scope = nullptr; 1853 const DILabel *Label = cast<DILabel>(IL.first); 1854 // The scope could have an extra lexical block file. 1855 const DILocalScope *LocalScope = 1856 Label->getScope()->getNonLexicalBlockFileScope(); 1857 // Get inlined DILocation if it is inlined label. 1858 if (const DILocation *IA = IL.second) 1859 Scope = LScopes.findInlinedScope(LocalScope, IA); 1860 else 1861 Scope = LScopes.findLexicalScope(LocalScope); 1862 // If label scope is not found then skip this label. 1863 if (!Scope) 1864 continue; 1865 1866 Processed.insert(IL); 1867 /// At this point, the temporary label is created. 1868 /// Save the temporary label to DbgLabel entity to get the 1869 /// actually address when generating Dwarf DIE. 1870 MCSymbol *Sym = getLabelBeforeInsn(MI); 1871 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1872 } 1873 1874 // Collect info for variables/labels that were optimized out. 1875 for (const DINode *DN : SP->getRetainedNodes()) { 1876 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1877 continue; 1878 LexicalScope *Scope = nullptr; 1879 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1880 Scope = LScopes.findLexicalScope(DV->getScope()); 1881 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1882 Scope = LScopes.findLexicalScope(DL->getScope()); 1883 } 1884 1885 if (Scope) 1886 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1887 } 1888 } 1889 1890 // Process beginning of an instruction. 1891 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1892 const MachineFunction &MF = *MI->getMF(); 1893 const auto *SP = MF.getFunction().getSubprogram(); 1894 bool NoDebug = 1895 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1896 1897 // Delay slot support check. 1898 auto delaySlotSupported = [](const MachineInstr &MI) { 1899 if (!MI.isBundledWithSucc()) 1900 return false; 1901 auto Suc = std::next(MI.getIterator()); 1902 (void)Suc; 1903 // Ensure that delay slot instruction is successor of the call instruction. 1904 // Ex. CALL_INSTRUCTION { 1905 // DELAY_SLOT_INSTRUCTION } 1906 assert(Suc->isBundledWithPred() && 1907 "Call bundle instructions are out of order"); 1908 return true; 1909 }; 1910 1911 // When describing calls, we need a label for the call instruction. 1912 if (!NoDebug && SP->areAllCallsDescribed() && 1913 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1914 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1915 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1916 bool IsTail = TII->isTailCall(*MI); 1917 // For tail calls, we need the address of the branch instruction for 1918 // DW_AT_call_pc. 1919 if (IsTail) 1920 requestLabelBeforeInsn(MI); 1921 // For non-tail calls, we need the return address for the call for 1922 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1923 // tail calls as well. 1924 requestLabelAfterInsn(MI); 1925 } 1926 1927 DebugHandlerBase::beginInstruction(MI); 1928 if (!CurMI) 1929 return; 1930 1931 if (NoDebug) 1932 return; 1933 1934 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1935 // If the instruction is part of the function frame setup code, do not emit 1936 // any line record, as there is no correspondence with any user code. 1937 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1938 return; 1939 const DebugLoc &DL = MI->getDebugLoc(); 1940 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1941 // the last line number actually emitted, to see if it was line 0. 1942 unsigned LastAsmLine = 1943 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1944 1945 if (DL == PrevInstLoc) { 1946 // If we have an ongoing unspecified location, nothing to do here. 1947 if (!DL) 1948 return; 1949 // We have an explicit location, same as the previous location. 1950 // But we might be coming back to it after a line 0 record. 1951 if (LastAsmLine == 0 && DL.getLine() != 0) { 1952 // Reinstate the source location but not marked as a statement. 1953 const MDNode *Scope = DL.getScope(); 1954 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1955 } 1956 return; 1957 } 1958 1959 if (!DL) { 1960 // We have an unspecified location, which might want to be line 0. 1961 // If we have already emitted a line-0 record, don't repeat it. 1962 if (LastAsmLine == 0) 1963 return; 1964 // If user said Don't Do That, don't do that. 1965 if (UnknownLocations == Disable) 1966 return; 1967 // See if we have a reason to emit a line-0 record now. 1968 // Reasons to emit a line-0 record include: 1969 // - User asked for it (UnknownLocations). 1970 // - Instruction has a label, so it's referenced from somewhere else, 1971 // possibly debug information; we want it to have a source location. 1972 // - Instruction is at the top of a block; we don't want to inherit the 1973 // location from the physically previous (maybe unrelated) block. 1974 if (UnknownLocations == Enable || PrevLabel || 1975 (PrevInstBB && PrevInstBB != MI->getParent())) { 1976 // Preserve the file and column numbers, if we can, to save space in 1977 // the encoded line table. 1978 // Do not update PrevInstLoc, it remembers the last non-0 line. 1979 const MDNode *Scope = nullptr; 1980 unsigned Column = 0; 1981 if (PrevInstLoc) { 1982 Scope = PrevInstLoc.getScope(); 1983 Column = PrevInstLoc.getCol(); 1984 } 1985 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1986 } 1987 return; 1988 } 1989 1990 // We have an explicit location, different from the previous location. 1991 // Don't repeat a line-0 record, but otherwise emit the new location. 1992 // (The new location might be an explicit line 0, which we do emit.) 1993 if (DL.getLine() == 0 && LastAsmLine == 0) 1994 return; 1995 unsigned Flags = 0; 1996 if (DL == PrologEndLoc) { 1997 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1998 PrologEndLoc = DebugLoc(); 1999 } 2000 // If the line changed, we call that a new statement; unless we went to 2001 // line 0 and came back, in which case it is not a new statement. 2002 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2003 if (DL.getLine() && DL.getLine() != OldLine) 2004 Flags |= DWARF2_FLAG_IS_STMT; 2005 2006 const MDNode *Scope = DL.getScope(); 2007 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2008 2009 // If we're not at line 0, remember this location. 2010 if (DL.getLine()) 2011 PrevInstLoc = DL; 2012 } 2013 2014 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2015 // First known non-DBG_VALUE and non-frame setup location marks 2016 // the beginning of the function body. 2017 for (const auto &MBB : *MF) 2018 for (const auto &MI : MBB) 2019 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2020 MI.getDebugLoc()) 2021 return MI.getDebugLoc(); 2022 return DebugLoc(); 2023 } 2024 2025 /// Register a source line with debug info. Returns the unique label that was 2026 /// emitted and which provides correspondence to the source line list. 2027 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2028 const MDNode *S, unsigned Flags, unsigned CUID, 2029 uint16_t DwarfVersion, 2030 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2031 StringRef Fn; 2032 unsigned FileNo = 1; 2033 unsigned Discriminator = 0; 2034 if (auto *Scope = cast_or_null<DIScope>(S)) { 2035 Fn = Scope->getFilename(); 2036 if (Line != 0 && DwarfVersion >= 4) 2037 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2038 Discriminator = LBF->getDiscriminator(); 2039 2040 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2041 .getOrCreateSourceID(Scope->getFile()); 2042 } 2043 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2044 Discriminator, Fn); 2045 } 2046 2047 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2048 unsigned CUID) { 2049 // Get beginning of function. 2050 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2051 // Ensure the compile unit is created if the function is called before 2052 // beginFunction(). 2053 (void)getOrCreateDwarfCompileUnit( 2054 MF.getFunction().getSubprogram()->getUnit()); 2055 // We'd like to list the prologue as "not statements" but GDB behaves 2056 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2057 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2058 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2059 CUID, getDwarfVersion(), getUnits()); 2060 return PrologEndLoc; 2061 } 2062 return DebugLoc(); 2063 } 2064 2065 // Gather pre-function debug information. Assumes being called immediately 2066 // after the function entry point has been emitted. 2067 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2068 CurFn = MF; 2069 2070 auto *SP = MF->getFunction().getSubprogram(); 2071 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2072 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2073 return; 2074 2075 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2076 2077 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2078 // belongs to so that we add to the correct per-cu line table in the 2079 // non-asm case. 2080 if (Asm->OutStreamer->hasRawTextSupport()) 2081 // Use a single line table if we are generating assembly. 2082 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2083 else 2084 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2085 2086 // Record beginning of function. 2087 PrologEndLoc = emitInitialLocDirective( 2088 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2089 } 2090 2091 void DwarfDebug::skippedNonDebugFunction() { 2092 // If we don't have a subprogram for this function then there will be a hole 2093 // in the range information. Keep note of this by setting the previously used 2094 // section to nullptr. 2095 PrevCU = nullptr; 2096 CurFn = nullptr; 2097 } 2098 2099 // Gather and emit post-function debug information. 2100 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2101 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2102 2103 assert(CurFn == MF && 2104 "endFunction should be called with the same function as beginFunction"); 2105 2106 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2107 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2108 2109 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2110 assert(!FnScope || SP == FnScope->getScopeNode()); 2111 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2112 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2113 PrevLabel = nullptr; 2114 CurFn = nullptr; 2115 return; 2116 } 2117 2118 DenseSet<InlinedEntity> Processed; 2119 collectEntityInfo(TheCU, SP, Processed); 2120 2121 // Add the range of this function to the list of ranges for the CU. 2122 // With basic block sections, add ranges for all basic block sections. 2123 for (const auto &R : Asm->MBBSectionRanges) 2124 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2125 2126 // Under -gmlt, skip building the subprogram if there are no inlined 2127 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2128 // is still needed as we need its source location. 2129 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2130 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2131 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2132 assert(InfoHolder.getScopeVariables().empty()); 2133 PrevLabel = nullptr; 2134 CurFn = nullptr; 2135 return; 2136 } 2137 2138 #ifndef NDEBUG 2139 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2140 #endif 2141 // Construct abstract scopes. 2142 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2143 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2144 for (const DINode *DN : SP->getRetainedNodes()) { 2145 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2146 continue; 2147 2148 const MDNode *Scope = nullptr; 2149 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2150 Scope = DV->getScope(); 2151 else if (auto *DL = dyn_cast<DILabel>(DN)) 2152 Scope = DL->getScope(); 2153 else 2154 llvm_unreachable("Unexpected DI type!"); 2155 2156 // Collect info for variables/labels that were optimized out. 2157 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2158 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2159 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2160 } 2161 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2162 } 2163 2164 ProcessedSPNodes.insert(SP); 2165 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2166 if (auto *SkelCU = TheCU.getSkeleton()) 2167 if (!LScopes.getAbstractScopesList().empty() && 2168 TheCU.getCUNode()->getSplitDebugInlining()) 2169 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2170 2171 // Construct call site entries. 2172 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2173 2174 // Clear debug info 2175 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2176 // DbgVariables except those that are also in AbstractVariables (since they 2177 // can be used cross-function) 2178 InfoHolder.getScopeVariables().clear(); 2179 InfoHolder.getScopeLabels().clear(); 2180 PrevLabel = nullptr; 2181 CurFn = nullptr; 2182 } 2183 2184 // Register a source line with debug info. Returns the unique label that was 2185 // emitted and which provides correspondence to the source line list. 2186 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2187 unsigned Flags) { 2188 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2189 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2190 getDwarfVersion(), getUnits()); 2191 } 2192 2193 //===----------------------------------------------------------------------===// 2194 // Emit Methods 2195 //===----------------------------------------------------------------------===// 2196 2197 // Emit the debug info section. 2198 void DwarfDebug::emitDebugInfo() { 2199 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2200 Holder.emitUnits(/* UseOffsets */ false); 2201 } 2202 2203 // Emit the abbreviation section. 2204 void DwarfDebug::emitAbbreviations() { 2205 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2206 2207 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2208 } 2209 2210 void DwarfDebug::emitStringOffsetsTableHeader() { 2211 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2212 Holder.getStringPool().emitStringOffsetsTableHeader( 2213 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2214 Holder.getStringOffsetsStartSym()); 2215 } 2216 2217 template <typename AccelTableT> 2218 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2219 StringRef TableName) { 2220 Asm->OutStreamer->SwitchSection(Section); 2221 2222 // Emit the full data. 2223 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2224 } 2225 2226 void DwarfDebug::emitAccelDebugNames() { 2227 // Don't emit anything if we have no compilation units to index. 2228 if (getUnits().empty()) 2229 return; 2230 2231 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2232 } 2233 2234 // Emit visible names into a hashed accelerator table section. 2235 void DwarfDebug::emitAccelNames() { 2236 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2237 "Names"); 2238 } 2239 2240 // Emit objective C classes and categories into a hashed accelerator table 2241 // section. 2242 void DwarfDebug::emitAccelObjC() { 2243 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2244 "ObjC"); 2245 } 2246 2247 // Emit namespace dies into a hashed accelerator table. 2248 void DwarfDebug::emitAccelNamespaces() { 2249 emitAccel(AccelNamespace, 2250 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2251 "namespac"); 2252 } 2253 2254 // Emit type dies into a hashed accelerator table. 2255 void DwarfDebug::emitAccelTypes() { 2256 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2257 "types"); 2258 } 2259 2260 // Public name handling. 2261 // The format for the various pubnames: 2262 // 2263 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2264 // for the DIE that is named. 2265 // 2266 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2267 // into the CU and the index value is computed according to the type of value 2268 // for the DIE that is named. 2269 // 2270 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2271 // it's the offset within the debug_info/debug_types dwo section, however, the 2272 // reference in the pubname header doesn't change. 2273 2274 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2275 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2276 const DIE *Die) { 2277 // Entities that ended up only in a Type Unit reference the CU instead (since 2278 // the pub entry has offsets within the CU there's no real offset that can be 2279 // provided anyway). As it happens all such entities (namespaces and types, 2280 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2281 // not to be true it would be necessary to persist this information from the 2282 // point at which the entry is added to the index data structure - since by 2283 // the time the index is built from that, the original type/namespace DIE in a 2284 // type unit has already been destroyed so it can't be queried for properties 2285 // like tag, etc. 2286 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2287 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2288 dwarf::GIEL_EXTERNAL); 2289 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2290 2291 // We could have a specification DIE that has our most of our knowledge, 2292 // look for that now. 2293 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2294 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2295 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2296 Linkage = dwarf::GIEL_EXTERNAL; 2297 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2298 Linkage = dwarf::GIEL_EXTERNAL; 2299 2300 switch (Die->getTag()) { 2301 case dwarf::DW_TAG_class_type: 2302 case dwarf::DW_TAG_structure_type: 2303 case dwarf::DW_TAG_union_type: 2304 case dwarf::DW_TAG_enumeration_type: 2305 return dwarf::PubIndexEntryDescriptor( 2306 dwarf::GIEK_TYPE, 2307 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2308 ? dwarf::GIEL_EXTERNAL 2309 : dwarf::GIEL_STATIC); 2310 case dwarf::DW_TAG_typedef: 2311 case dwarf::DW_TAG_base_type: 2312 case dwarf::DW_TAG_subrange_type: 2313 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2314 case dwarf::DW_TAG_namespace: 2315 return dwarf::GIEK_TYPE; 2316 case dwarf::DW_TAG_subprogram: 2317 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2318 case dwarf::DW_TAG_variable: 2319 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2320 case dwarf::DW_TAG_enumerator: 2321 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2322 dwarf::GIEL_STATIC); 2323 default: 2324 return dwarf::GIEK_NONE; 2325 } 2326 } 2327 2328 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2329 /// pubtypes sections. 2330 void DwarfDebug::emitDebugPubSections() { 2331 for (const auto &NU : CUMap) { 2332 DwarfCompileUnit *TheU = NU.second; 2333 if (!TheU->hasDwarfPubSections()) 2334 continue; 2335 2336 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2337 DICompileUnit::DebugNameTableKind::GNU; 2338 2339 Asm->OutStreamer->SwitchSection( 2340 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2341 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2342 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2343 2344 Asm->OutStreamer->SwitchSection( 2345 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2346 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2347 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2348 } 2349 } 2350 2351 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2352 if (useSectionsAsReferences()) 2353 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2354 CU.getDebugSectionOffset()); 2355 else 2356 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2357 } 2358 2359 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2360 DwarfCompileUnit *TheU, 2361 const StringMap<const DIE *> &Globals) { 2362 if (auto *Skeleton = TheU->getSkeleton()) 2363 TheU = Skeleton; 2364 2365 // Emit the header. 2366 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2367 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2368 Asm->emitDwarfUnitLength(EndLabel, BeginLabel, 2369 "Length of Public " + Name + " Info"); 2370 2371 Asm->OutStreamer->emitLabel(BeginLabel); 2372 2373 Asm->OutStreamer->AddComment("DWARF Version"); 2374 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2375 2376 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2377 emitSectionReference(*TheU); 2378 2379 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2380 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2381 2382 // Emit the pubnames for this compilation unit. 2383 for (const auto &GI : Globals) { 2384 const char *Name = GI.getKeyData(); 2385 const DIE *Entity = GI.second; 2386 2387 Asm->OutStreamer->AddComment("DIE offset"); 2388 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2389 2390 if (GnuStyle) { 2391 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2392 Asm->OutStreamer->AddComment( 2393 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2394 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2395 Asm->emitInt8(Desc.toBits()); 2396 } 2397 2398 Asm->OutStreamer->AddComment("External Name"); 2399 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2400 } 2401 2402 Asm->OutStreamer->AddComment("End Mark"); 2403 Asm->emitDwarfLengthOrOffset(0); 2404 Asm->OutStreamer->emitLabel(EndLabel); 2405 } 2406 2407 /// Emit null-terminated strings into a debug str section. 2408 void DwarfDebug::emitDebugStr() { 2409 MCSection *StringOffsetsSection = nullptr; 2410 if (useSegmentedStringOffsetsTable()) { 2411 emitStringOffsetsTableHeader(); 2412 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2413 } 2414 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2415 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2416 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2417 } 2418 2419 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2420 const DebugLocStream::Entry &Entry, 2421 const DwarfCompileUnit *CU) { 2422 auto &&Comments = DebugLocs.getComments(Entry); 2423 auto Comment = Comments.begin(); 2424 auto End = Comments.end(); 2425 2426 // The expressions are inserted into a byte stream rather early (see 2427 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2428 // need to reference a base_type DIE the offset of that DIE is not yet known. 2429 // To deal with this we instead insert a placeholder early and then extract 2430 // it here and replace it with the real reference. 2431 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2432 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2433 DebugLocs.getBytes(Entry).size()), 2434 Asm->getDataLayout().isLittleEndian(), PtrSize); 2435 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2436 2437 using Encoding = DWARFExpression::Operation::Encoding; 2438 uint64_t Offset = 0; 2439 for (auto &Op : Expr) { 2440 assert(Op.getCode() != dwarf::DW_OP_const_type && 2441 "3 operand ops not yet supported"); 2442 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2443 Offset++; 2444 for (unsigned I = 0; I < 2; ++I) { 2445 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2446 continue; 2447 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2448 uint64_t Offset = 2449 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2450 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2451 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2452 // Make sure comments stay aligned. 2453 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2454 if (Comment != End) 2455 Comment++; 2456 } else { 2457 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2458 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2459 } 2460 Offset = Op.getOperandEndOffset(I); 2461 } 2462 assert(Offset == Op.getEndOffset()); 2463 } 2464 } 2465 2466 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2467 const DbgValueLoc &Value, 2468 DwarfExpression &DwarfExpr) { 2469 auto *DIExpr = Value.getExpression(); 2470 DIExpressionCursor ExprCursor(DIExpr); 2471 DwarfExpr.addFragmentOffset(DIExpr); 2472 // Regular entry. 2473 if (Value.isInt()) { 2474 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2475 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2476 DwarfExpr.addSignedConstant(Value.getInt()); 2477 else 2478 DwarfExpr.addUnsignedConstant(Value.getInt()); 2479 } else if (Value.isLocation()) { 2480 MachineLocation Location = Value.getLoc(); 2481 DwarfExpr.setLocation(Location, DIExpr); 2482 DIExpressionCursor Cursor(DIExpr); 2483 2484 if (DIExpr->isEntryValue()) 2485 DwarfExpr.beginEntryValueExpression(Cursor); 2486 2487 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2488 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2489 return; 2490 return DwarfExpr.addExpression(std::move(Cursor)); 2491 } else if (Value.isTargetIndexLocation()) { 2492 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2493 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2494 // encoding is supported. 2495 assert(AP.TM.getTargetTriple().isWasm()); 2496 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2497 DwarfExpr.addExpression(std::move(ExprCursor)); 2498 return; 2499 } else if (Value.isConstantFP()) { 2500 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2501 !ExprCursor) { 2502 DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP); 2503 return; 2504 } 2505 if (Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() <= 2506 64 /*bits*/) 2507 DwarfExpr.addUnsignedConstant( 2508 Value.getConstantFP()->getValueAPF().bitcastToAPInt()); 2509 else 2510 LLVM_DEBUG( 2511 dbgs() 2512 << "Skipped DwarfExpression creation for ConstantFP of size" 2513 << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() 2514 << " bits\n"); 2515 } 2516 DwarfExpr.addExpression(std::move(ExprCursor)); 2517 } 2518 2519 void DebugLocEntry::finalize(const AsmPrinter &AP, 2520 DebugLocStream::ListBuilder &List, 2521 const DIBasicType *BT, 2522 DwarfCompileUnit &TheCU) { 2523 assert(!Values.empty() && 2524 "location list entries without values are redundant"); 2525 assert(Begin != End && "unexpected location list entry with empty range"); 2526 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2527 BufferByteStreamer Streamer = Entry.getStreamer(); 2528 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2529 const DbgValueLoc &Value = Values[0]; 2530 if (Value.isFragment()) { 2531 // Emit all fragments that belong to the same variable and range. 2532 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2533 return P.isFragment(); 2534 }) && "all values are expected to be fragments"); 2535 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2536 2537 for (const auto &Fragment : Values) 2538 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2539 2540 } else { 2541 assert(Values.size() == 1 && "only fragments may have >1 value"); 2542 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2543 } 2544 DwarfExpr.finalize(); 2545 if (DwarfExpr.TagOffset) 2546 List.setTagOffset(*DwarfExpr.TagOffset); 2547 } 2548 2549 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2550 const DwarfCompileUnit *CU) { 2551 // Emit the size. 2552 Asm->OutStreamer->AddComment("Loc expr size"); 2553 if (getDwarfVersion() >= 5) 2554 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2555 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2556 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2557 else { 2558 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2559 // can do. 2560 Asm->emitInt16(0); 2561 return; 2562 } 2563 // Emit the entry. 2564 APByteStreamer Streamer(*Asm); 2565 emitDebugLocEntry(Streamer, Entry, CU); 2566 } 2567 2568 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2569 // that designates the end of the table for the caller to emit when the table is 2570 // complete. 2571 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2572 const DwarfFile &Holder) { 2573 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2574 2575 Asm->OutStreamer->AddComment("Offset entry count"); 2576 Asm->emitInt32(Holder.getRangeLists().size()); 2577 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2578 2579 for (const RangeSpanList &List : Holder.getRangeLists()) 2580 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2581 Asm->getDwarfOffsetByteSize()); 2582 2583 return TableEnd; 2584 } 2585 2586 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2587 // designates the end of the table for the caller to emit when the table is 2588 // complete. 2589 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2590 const DwarfDebug &DD) { 2591 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2592 2593 const auto &DebugLocs = DD.getDebugLocs(); 2594 2595 Asm->OutStreamer->AddComment("Offset entry count"); 2596 Asm->emitInt32(DebugLocs.getLists().size()); 2597 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2598 2599 for (const auto &List : DebugLocs.getLists()) 2600 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2601 Asm->getDwarfOffsetByteSize()); 2602 2603 return TableEnd; 2604 } 2605 2606 template <typename Ranges, typename PayloadEmitter> 2607 static void emitRangeList( 2608 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2609 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2610 unsigned StartxLength, unsigned EndOfList, 2611 StringRef (*StringifyEnum)(unsigned), 2612 bool ShouldUseBaseAddress, 2613 PayloadEmitter EmitPayload) { 2614 2615 auto Size = Asm->MAI->getCodePointerSize(); 2616 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2617 2618 // Emit our symbol so we can find the beginning of the range. 2619 Asm->OutStreamer->emitLabel(Sym); 2620 2621 // Gather all the ranges that apply to the same section so they can share 2622 // a base address entry. 2623 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2624 2625 for (const auto &Range : R) 2626 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2627 2628 const MCSymbol *CUBase = CU.getBaseAddress(); 2629 bool BaseIsSet = false; 2630 for (const auto &P : SectionRanges) { 2631 auto *Base = CUBase; 2632 if (!Base && ShouldUseBaseAddress) { 2633 const MCSymbol *Begin = P.second.front()->Begin; 2634 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2635 if (!UseDwarf5) { 2636 Base = NewBase; 2637 BaseIsSet = true; 2638 Asm->OutStreamer->emitIntValue(-1, Size); 2639 Asm->OutStreamer->AddComment(" base address"); 2640 Asm->OutStreamer->emitSymbolValue(Base, Size); 2641 } else if (NewBase != Begin || P.second.size() > 1) { 2642 // Only use a base address if 2643 // * the existing pool address doesn't match (NewBase != Begin) 2644 // * or, there's more than one entry to share the base address 2645 Base = NewBase; 2646 BaseIsSet = true; 2647 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2648 Asm->emitInt8(BaseAddressx); 2649 Asm->OutStreamer->AddComment(" base address index"); 2650 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2651 } 2652 } else if (BaseIsSet && !UseDwarf5) { 2653 BaseIsSet = false; 2654 assert(!Base); 2655 Asm->OutStreamer->emitIntValue(-1, Size); 2656 Asm->OutStreamer->emitIntValue(0, Size); 2657 } 2658 2659 for (const auto *RS : P.second) { 2660 const MCSymbol *Begin = RS->Begin; 2661 const MCSymbol *End = RS->End; 2662 assert(Begin && "Range without a begin symbol?"); 2663 assert(End && "Range without an end symbol?"); 2664 if (Base) { 2665 if (UseDwarf5) { 2666 // Emit offset_pair when we have a base. 2667 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2668 Asm->emitInt8(OffsetPair); 2669 Asm->OutStreamer->AddComment(" starting offset"); 2670 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2671 Asm->OutStreamer->AddComment(" ending offset"); 2672 Asm->emitLabelDifferenceAsULEB128(End, Base); 2673 } else { 2674 Asm->emitLabelDifference(Begin, Base, Size); 2675 Asm->emitLabelDifference(End, Base, Size); 2676 } 2677 } else if (UseDwarf5) { 2678 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2679 Asm->emitInt8(StartxLength); 2680 Asm->OutStreamer->AddComment(" start index"); 2681 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2682 Asm->OutStreamer->AddComment(" length"); 2683 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2684 } else { 2685 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2686 Asm->OutStreamer->emitSymbolValue(End, Size); 2687 } 2688 EmitPayload(*RS); 2689 } 2690 } 2691 2692 if (UseDwarf5) { 2693 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2694 Asm->emitInt8(EndOfList); 2695 } else { 2696 // Terminate the list with two 0 values. 2697 Asm->OutStreamer->emitIntValue(0, Size); 2698 Asm->OutStreamer->emitIntValue(0, Size); 2699 } 2700 } 2701 2702 // Handles emission of both debug_loclist / debug_loclist.dwo 2703 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2704 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2705 *List.CU, dwarf::DW_LLE_base_addressx, 2706 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2707 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2708 /* ShouldUseBaseAddress */ true, 2709 [&](const DebugLocStream::Entry &E) { 2710 DD.emitDebugLocEntryLocation(E, List.CU); 2711 }); 2712 } 2713 2714 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2715 if (DebugLocs.getLists().empty()) 2716 return; 2717 2718 Asm->OutStreamer->SwitchSection(Sec); 2719 2720 MCSymbol *TableEnd = nullptr; 2721 if (getDwarfVersion() >= 5) 2722 TableEnd = emitLoclistsTableHeader(Asm, *this); 2723 2724 for (const auto &List : DebugLocs.getLists()) 2725 emitLocList(*this, Asm, List); 2726 2727 if (TableEnd) 2728 Asm->OutStreamer->emitLabel(TableEnd); 2729 } 2730 2731 // Emit locations into the .debug_loc/.debug_loclists section. 2732 void DwarfDebug::emitDebugLoc() { 2733 emitDebugLocImpl( 2734 getDwarfVersion() >= 5 2735 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2736 : Asm->getObjFileLowering().getDwarfLocSection()); 2737 } 2738 2739 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2740 void DwarfDebug::emitDebugLocDWO() { 2741 if (getDwarfVersion() >= 5) { 2742 emitDebugLocImpl( 2743 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2744 2745 return; 2746 } 2747 2748 for (const auto &List : DebugLocs.getLists()) { 2749 Asm->OutStreamer->SwitchSection( 2750 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2751 Asm->OutStreamer->emitLabel(List.Label); 2752 2753 for (const auto &Entry : DebugLocs.getEntries(List)) { 2754 // GDB only supports startx_length in pre-standard split-DWARF. 2755 // (in v5 standard loclists, it currently* /only/ supports base_address + 2756 // offset_pair, so the implementations can't really share much since they 2757 // need to use different representations) 2758 // * as of October 2018, at least 2759 // 2760 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2761 // addresses in the address pool to minimize object size/relocations. 2762 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2763 unsigned idx = AddrPool.getIndex(Entry.Begin); 2764 Asm->emitULEB128(idx); 2765 // Also the pre-standard encoding is slightly different, emitting this as 2766 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2767 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2768 emitDebugLocEntryLocation(Entry, List.CU); 2769 } 2770 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2771 } 2772 } 2773 2774 struct ArangeSpan { 2775 const MCSymbol *Start, *End; 2776 }; 2777 2778 // Emit a debug aranges section, containing a CU lookup for any 2779 // address we can tie back to a CU. 2780 void DwarfDebug::emitDebugARanges() { 2781 // Provides a unique id per text section. 2782 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2783 2784 // Filter labels by section. 2785 for (const SymbolCU &SCU : ArangeLabels) { 2786 if (SCU.Sym->isInSection()) { 2787 // Make a note of this symbol and it's section. 2788 MCSection *Section = &SCU.Sym->getSection(); 2789 if (!Section->getKind().isMetadata()) 2790 SectionMap[Section].push_back(SCU); 2791 } else { 2792 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2793 // appear in the output. This sucks as we rely on sections to build 2794 // arange spans. We can do it without, but it's icky. 2795 SectionMap[nullptr].push_back(SCU); 2796 } 2797 } 2798 2799 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2800 2801 for (auto &I : SectionMap) { 2802 MCSection *Section = I.first; 2803 SmallVector<SymbolCU, 8> &List = I.second; 2804 if (List.size() < 1) 2805 continue; 2806 2807 // If we have no section (e.g. common), just write out 2808 // individual spans for each symbol. 2809 if (!Section) { 2810 for (const SymbolCU &Cur : List) { 2811 ArangeSpan Span; 2812 Span.Start = Cur.Sym; 2813 Span.End = nullptr; 2814 assert(Cur.CU); 2815 Spans[Cur.CU].push_back(Span); 2816 } 2817 continue; 2818 } 2819 2820 // Sort the symbols by offset within the section. 2821 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2822 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2823 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2824 2825 // Symbols with no order assigned should be placed at the end. 2826 // (e.g. section end labels) 2827 if (IA == 0) 2828 return false; 2829 if (IB == 0) 2830 return true; 2831 return IA < IB; 2832 }); 2833 2834 // Insert a final terminator. 2835 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2836 2837 // Build spans between each label. 2838 const MCSymbol *StartSym = List[0].Sym; 2839 for (size_t n = 1, e = List.size(); n < e; n++) { 2840 const SymbolCU &Prev = List[n - 1]; 2841 const SymbolCU &Cur = List[n]; 2842 2843 // Try and build the longest span we can within the same CU. 2844 if (Cur.CU != Prev.CU) { 2845 ArangeSpan Span; 2846 Span.Start = StartSym; 2847 Span.End = Cur.Sym; 2848 assert(Prev.CU); 2849 Spans[Prev.CU].push_back(Span); 2850 StartSym = Cur.Sym; 2851 } 2852 } 2853 } 2854 2855 // Start the dwarf aranges section. 2856 Asm->OutStreamer->SwitchSection( 2857 Asm->getObjFileLowering().getDwarfARangesSection()); 2858 2859 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2860 2861 // Build a list of CUs used. 2862 std::vector<DwarfCompileUnit *> CUs; 2863 for (const auto &it : Spans) { 2864 DwarfCompileUnit *CU = it.first; 2865 CUs.push_back(CU); 2866 } 2867 2868 // Sort the CU list (again, to ensure consistent output order). 2869 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2870 return A->getUniqueID() < B->getUniqueID(); 2871 }); 2872 2873 // Emit an arange table for each CU we used. 2874 for (DwarfCompileUnit *CU : CUs) { 2875 std::vector<ArangeSpan> &List = Spans[CU]; 2876 2877 // Describe the skeleton CU's offset and length, not the dwo file's. 2878 if (auto *Skel = CU->getSkeleton()) 2879 CU = Skel; 2880 2881 // Emit size of content not including length itself. 2882 unsigned ContentSize = 2883 sizeof(int16_t) + // DWARF ARange version number 2884 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 2885 // section 2886 sizeof(int8_t) + // Pointer Size (in bytes) 2887 sizeof(int8_t); // Segment Size (in bytes) 2888 2889 unsigned TupleSize = PtrSize * 2; 2890 2891 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2892 unsigned Padding = offsetToAlignment( 2893 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 2894 2895 ContentSize += Padding; 2896 ContentSize += (List.size() + 1) * TupleSize; 2897 2898 // For each compile unit, write the list of spans it covers. 2899 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 2900 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2901 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2902 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2903 emitSectionReference(*CU); 2904 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2905 Asm->emitInt8(PtrSize); 2906 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2907 Asm->emitInt8(0); 2908 2909 Asm->OutStreamer->emitFill(Padding, 0xff); 2910 2911 for (const ArangeSpan &Span : List) { 2912 Asm->emitLabelReference(Span.Start, PtrSize); 2913 2914 // Calculate the size as being from the span start to it's end. 2915 if (Span.End) { 2916 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2917 } else { 2918 // For symbols without an end marker (e.g. common), we 2919 // write a single arange entry containing just that one symbol. 2920 uint64_t Size = SymSize[Span.Start]; 2921 if (Size == 0) 2922 Size = 1; 2923 2924 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2925 } 2926 } 2927 2928 Asm->OutStreamer->AddComment("ARange terminator"); 2929 Asm->OutStreamer->emitIntValue(0, PtrSize); 2930 Asm->OutStreamer->emitIntValue(0, PtrSize); 2931 } 2932 } 2933 2934 /// Emit a single range list. We handle both DWARF v5 and earlier. 2935 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2936 const RangeSpanList &List) { 2937 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2938 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2939 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2940 llvm::dwarf::RangeListEncodingString, 2941 List.CU->getCUNode()->getRangesBaseAddress() || 2942 DD.getDwarfVersion() >= 5, 2943 [](auto) {}); 2944 } 2945 2946 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2947 if (Holder.getRangeLists().empty()) 2948 return; 2949 2950 assert(useRangesSection()); 2951 assert(!CUMap.empty()); 2952 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2953 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2954 })); 2955 2956 Asm->OutStreamer->SwitchSection(Section); 2957 2958 MCSymbol *TableEnd = nullptr; 2959 if (getDwarfVersion() >= 5) 2960 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2961 2962 for (const RangeSpanList &List : Holder.getRangeLists()) 2963 emitRangeList(*this, Asm, List); 2964 2965 if (TableEnd) 2966 Asm->OutStreamer->emitLabel(TableEnd); 2967 } 2968 2969 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2970 /// .debug_rnglists section. 2971 void DwarfDebug::emitDebugRanges() { 2972 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2973 2974 emitDebugRangesImpl(Holder, 2975 getDwarfVersion() >= 5 2976 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2977 : Asm->getObjFileLowering().getDwarfRangesSection()); 2978 } 2979 2980 void DwarfDebug::emitDebugRangesDWO() { 2981 emitDebugRangesImpl(InfoHolder, 2982 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2983 } 2984 2985 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 2986 /// DWARF 4. 2987 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2988 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 2989 enum HeaderFlagMask { 2990 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2991 #include "llvm/BinaryFormat/Dwarf.def" 2992 }; 2993 Asm->OutStreamer->AddComment("Macro information version"); 2994 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 2995 // We emit the line offset flag unconditionally here, since line offset should 2996 // be mostly present. 2997 if (Asm->isDwarf64()) { 2998 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 2999 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3000 } else { 3001 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3002 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3003 } 3004 Asm->OutStreamer->AddComment("debug_line_offset"); 3005 if (DD.useSplitDwarf()) 3006 Asm->emitDwarfLengthOrOffset(0); 3007 else 3008 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3009 } 3010 3011 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3012 for (auto *MN : Nodes) { 3013 if (auto *M = dyn_cast<DIMacro>(MN)) 3014 emitMacro(*M); 3015 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3016 emitMacroFile(*F, U); 3017 else 3018 llvm_unreachable("Unexpected DI type!"); 3019 } 3020 } 3021 3022 void DwarfDebug::emitMacro(DIMacro &M) { 3023 StringRef Name = M.getName(); 3024 StringRef Value = M.getValue(); 3025 3026 // There should be one space between the macro name and the macro value in 3027 // define entries. In undef entries, only the macro name is emitted. 3028 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3029 3030 if (UseDebugMacroSection) { 3031 if (getDwarfVersion() >= 5) { 3032 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3033 ? dwarf::DW_MACRO_define_strx 3034 : dwarf::DW_MACRO_undef_strx; 3035 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3036 Asm->emitULEB128(Type); 3037 Asm->OutStreamer->AddComment("Line Number"); 3038 Asm->emitULEB128(M.getLine()); 3039 Asm->OutStreamer->AddComment("Macro String"); 3040 Asm->emitULEB128( 3041 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3042 } else { 3043 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3044 ? dwarf::DW_MACRO_GNU_define_indirect 3045 : dwarf::DW_MACRO_GNU_undef_indirect; 3046 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3047 Asm->emitULEB128(Type); 3048 Asm->OutStreamer->AddComment("Line Number"); 3049 Asm->emitULEB128(M.getLine()); 3050 Asm->OutStreamer->AddComment("Macro String"); 3051 Asm->emitDwarfSymbolReference( 3052 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3053 } 3054 } else { 3055 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3056 Asm->emitULEB128(M.getMacinfoType()); 3057 Asm->OutStreamer->AddComment("Line Number"); 3058 Asm->emitULEB128(M.getLine()); 3059 Asm->OutStreamer->AddComment("Macro String"); 3060 Asm->OutStreamer->emitBytes(Str); 3061 Asm->emitInt8('\0'); 3062 } 3063 } 3064 3065 void DwarfDebug::emitMacroFileImpl( 3066 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3067 StringRef (*MacroFormToString)(unsigned Form)) { 3068 3069 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3070 Asm->emitULEB128(StartFile); 3071 Asm->OutStreamer->AddComment("Line Number"); 3072 Asm->emitULEB128(MF.getLine()); 3073 Asm->OutStreamer->AddComment("File Number"); 3074 DIFile &F = *MF.getFile(); 3075 if (useSplitDwarf()) 3076 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3077 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3078 Asm->OutContext.getDwarfVersion(), F.getSource())); 3079 else 3080 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3081 handleMacroNodes(MF.getElements(), U); 3082 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3083 Asm->emitULEB128(EndFile); 3084 } 3085 3086 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3087 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3088 // so for readibility/uniformity, We are explicitly emitting those. 3089 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3090 if (UseDebugMacroSection) 3091 emitMacroFileImpl( 3092 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3093 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3094 else 3095 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3096 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3097 } 3098 3099 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3100 for (const auto &P : CUMap) { 3101 auto &TheCU = *P.second; 3102 auto *SkCU = TheCU.getSkeleton(); 3103 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3104 auto *CUNode = cast<DICompileUnit>(P.first); 3105 DIMacroNodeArray Macros = CUNode->getMacros(); 3106 if (Macros.empty()) 3107 continue; 3108 Asm->OutStreamer->SwitchSection(Section); 3109 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3110 if (UseDebugMacroSection) 3111 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3112 handleMacroNodes(Macros, U); 3113 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3114 Asm->emitInt8(0); 3115 } 3116 } 3117 3118 /// Emit macros into a debug macinfo/macro section. 3119 void DwarfDebug::emitDebugMacinfo() { 3120 auto &ObjLower = Asm->getObjFileLowering(); 3121 emitDebugMacinfoImpl(UseDebugMacroSection 3122 ? ObjLower.getDwarfMacroSection() 3123 : ObjLower.getDwarfMacinfoSection()); 3124 } 3125 3126 void DwarfDebug::emitDebugMacinfoDWO() { 3127 auto &ObjLower = Asm->getObjFileLowering(); 3128 emitDebugMacinfoImpl(UseDebugMacroSection 3129 ? ObjLower.getDwarfMacroDWOSection() 3130 : ObjLower.getDwarfMacinfoDWOSection()); 3131 } 3132 3133 // DWARF5 Experimental Separate Dwarf emitters. 3134 3135 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3136 std::unique_ptr<DwarfCompileUnit> NewU) { 3137 3138 if (!CompilationDir.empty()) 3139 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3140 addGnuPubAttributes(*NewU, Die); 3141 3142 SkeletonHolder.addUnit(std::move(NewU)); 3143 } 3144 3145 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3146 3147 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3148 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3149 UnitKind::Skeleton); 3150 DwarfCompileUnit &NewCU = *OwnedUnit; 3151 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3152 3153 NewCU.initStmtList(); 3154 3155 if (useSegmentedStringOffsetsTable()) 3156 NewCU.addStringOffsetsStart(); 3157 3158 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3159 3160 return NewCU; 3161 } 3162 3163 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3164 // compile units that would normally be in debug_info. 3165 void DwarfDebug::emitDebugInfoDWO() { 3166 assert(useSplitDwarf() && "No split dwarf debug info?"); 3167 // Don't emit relocations into the dwo file. 3168 InfoHolder.emitUnits(/* UseOffsets */ true); 3169 } 3170 3171 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3172 // abbreviations for the .debug_info.dwo section. 3173 void DwarfDebug::emitDebugAbbrevDWO() { 3174 assert(useSplitDwarf() && "No split dwarf?"); 3175 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3176 } 3177 3178 void DwarfDebug::emitDebugLineDWO() { 3179 assert(useSplitDwarf() && "No split dwarf?"); 3180 SplitTypeUnitFileTable.Emit( 3181 *Asm->OutStreamer, MCDwarfLineTableParams(), 3182 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3183 } 3184 3185 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3186 assert(useSplitDwarf() && "No split dwarf?"); 3187 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3188 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3189 InfoHolder.getStringOffsetsStartSym()); 3190 } 3191 3192 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3193 // string section and is identical in format to traditional .debug_str 3194 // sections. 3195 void DwarfDebug::emitDebugStrDWO() { 3196 if (useSegmentedStringOffsetsTable()) 3197 emitStringOffsetsTableHeaderDWO(); 3198 assert(useSplitDwarf() && "No split dwarf?"); 3199 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3200 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3201 OffSec, /* UseRelativeOffsets = */ false); 3202 } 3203 3204 // Emit address pool. 3205 void DwarfDebug::emitDebugAddr() { 3206 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3207 } 3208 3209 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3210 if (!useSplitDwarf()) 3211 return nullptr; 3212 const DICompileUnit *DIUnit = CU.getCUNode(); 3213 SplitTypeUnitFileTable.maybeSetRootFile( 3214 DIUnit->getDirectory(), DIUnit->getFilename(), 3215 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3216 return &SplitTypeUnitFileTable; 3217 } 3218 3219 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3220 MD5 Hash; 3221 Hash.update(Identifier); 3222 // ... take the least significant 8 bytes and return those. Our MD5 3223 // implementation always returns its results in little endian, so we actually 3224 // need the "high" word. 3225 MD5::MD5Result Result; 3226 Hash.final(Result); 3227 return Result.high(); 3228 } 3229 3230 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3231 StringRef Identifier, DIE &RefDie, 3232 const DICompositeType *CTy) { 3233 // Fast path if we're building some type units and one has already used the 3234 // address pool we know we're going to throw away all this work anyway, so 3235 // don't bother building dependent types. 3236 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3237 return; 3238 3239 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3240 if (!Ins.second) { 3241 CU.addDIETypeSignature(RefDie, Ins.first->second); 3242 return; 3243 } 3244 3245 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3246 AddrPool.resetUsedFlag(); 3247 3248 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3249 getDwoLineTable(CU)); 3250 DwarfTypeUnit &NewTU = *OwnedUnit; 3251 DIE &UnitDie = NewTU.getUnitDie(); 3252 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3253 3254 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3255 CU.getLanguage()); 3256 3257 uint64_t Signature = makeTypeSignature(Identifier); 3258 NewTU.setTypeSignature(Signature); 3259 Ins.first->second = Signature; 3260 3261 if (useSplitDwarf()) { 3262 MCSection *Section = 3263 getDwarfVersion() <= 4 3264 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3265 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3266 NewTU.setSection(Section); 3267 } else { 3268 MCSection *Section = 3269 getDwarfVersion() <= 4 3270 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3271 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3272 NewTU.setSection(Section); 3273 // Non-split type units reuse the compile unit's line table. 3274 CU.applyStmtList(UnitDie); 3275 } 3276 3277 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3278 // units. 3279 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3280 NewTU.addStringOffsetsStart(); 3281 3282 NewTU.setType(NewTU.createTypeDIE(CTy)); 3283 3284 if (TopLevelType) { 3285 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3286 TypeUnitsUnderConstruction.clear(); 3287 3288 // Types referencing entries in the address table cannot be placed in type 3289 // units. 3290 if (AddrPool.hasBeenUsed()) { 3291 3292 // Remove all the types built while building this type. 3293 // This is pessimistic as some of these types might not be dependent on 3294 // the type that used an address. 3295 for (const auto &TU : TypeUnitsToAdd) 3296 TypeSignatures.erase(TU.second); 3297 3298 // Construct this type in the CU directly. 3299 // This is inefficient because all the dependent types will be rebuilt 3300 // from scratch, including building them in type units, discovering that 3301 // they depend on addresses, throwing them out and rebuilding them. 3302 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3303 return; 3304 } 3305 3306 // If the type wasn't dependent on fission addresses, finish adding the type 3307 // and all its dependent types. 3308 for (auto &TU : TypeUnitsToAdd) { 3309 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3310 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3311 } 3312 } 3313 CU.addDIETypeSignature(RefDie, Signature); 3314 } 3315 3316 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3317 : DD(DD), 3318 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3319 DD->TypeUnitsUnderConstruction.clear(); 3320 DD->AddrPool.resetUsedFlag(); 3321 } 3322 3323 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3324 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3325 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3326 } 3327 3328 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3329 return NonTypeUnitContext(this); 3330 } 3331 3332 // Add the Name along with its companion DIE to the appropriate accelerator 3333 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3334 // AccelTableKind::Apple, we use the table we got as an argument). If 3335 // accelerator tables are disabled, this function does nothing. 3336 template <typename DataT> 3337 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3338 AccelTable<DataT> &AppleAccel, StringRef Name, 3339 const DIE &Die) { 3340 if (getAccelTableKind() == AccelTableKind::None) 3341 return; 3342 3343 if (getAccelTableKind() != AccelTableKind::Apple && 3344 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3345 return; 3346 3347 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3348 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3349 3350 switch (getAccelTableKind()) { 3351 case AccelTableKind::Apple: 3352 AppleAccel.addName(Ref, Die); 3353 break; 3354 case AccelTableKind::Dwarf: 3355 AccelDebugNames.addName(Ref, Die); 3356 break; 3357 case AccelTableKind::Default: 3358 llvm_unreachable("Default should have already been resolved."); 3359 case AccelTableKind::None: 3360 llvm_unreachable("None handled above"); 3361 } 3362 } 3363 3364 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3365 const DIE &Die) { 3366 addAccelNameImpl(CU, AccelNames, Name, Die); 3367 } 3368 3369 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3370 const DIE &Die) { 3371 // ObjC names go only into the Apple accelerator tables. 3372 if (getAccelTableKind() == AccelTableKind::Apple) 3373 addAccelNameImpl(CU, AccelObjC, Name, Die); 3374 } 3375 3376 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3377 const DIE &Die) { 3378 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3379 } 3380 3381 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3382 const DIE &Die, char Flags) { 3383 addAccelNameImpl(CU, AccelTypes, Name, Die); 3384 } 3385 3386 uint16_t DwarfDebug::getDwarfVersion() const { 3387 return Asm->OutStreamer->getContext().getDwarfVersion(); 3388 } 3389 3390 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3391 if (Asm->getDwarfVersion() >= 4) 3392 return dwarf::Form::DW_FORM_sec_offset; 3393 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3394 "DWARF64 is not defined prior DWARFv3"); 3395 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3396 : dwarf::Form::DW_FORM_data4; 3397 } 3398 3399 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3400 return SectionLabels.find(S)->second; 3401 } 3402 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3403 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3404 if (useSplitDwarf() || getDwarfVersion() >= 5) 3405 AddrPool.getIndex(S); 3406 } 3407 3408 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3409 assert(File); 3410 if (getDwarfVersion() < 5) 3411 return None; 3412 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3413 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3414 return None; 3415 3416 // Convert the string checksum to an MD5Result for the streamer. 3417 // The verifier validates the checksum so we assume it's okay. 3418 // An MD5 checksum is 16 bytes. 3419 std::string ChecksumString = fromHex(Checksum->Value); 3420 MD5::MD5Result CKMem; 3421 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3422 return CKMem; 3423 } 3424