1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 99 cl::Hidden, 100 cl::desc("Generate dwarf aranges"), 101 cl::init(false)); 102 103 static cl::opt<bool> 104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 105 cl::desc("Generate DWARF4 type units."), 106 cl::init(false)); 107 108 static cl::opt<bool> SplitDwarfCrossCuReferences( 109 "split-dwarf-cross-cu-references", cl::Hidden, 110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 111 112 enum DefaultOnOff { Default, Enable, Disable }; 113 114 static cl::opt<DefaultOnOff> UnknownLocations( 115 "use-unknown-locations", cl::Hidden, 116 cl::desc("Make an absence of debug location information explicit."), 117 cl::values(clEnumVal(Default, "At top of block or after label"), 118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 119 cl::init(Default)); 120 121 static cl::opt<AccelTableKind> AccelTables( 122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 123 cl::values(clEnumValN(AccelTableKind::Default, "Default", 124 "Default for platform"), 125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 128 cl::init(AccelTableKind::Default)); 129 130 static cl::opt<DefaultOnOff> 131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 132 cl::desc("Use inlined strings rather than string section."), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), 135 clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 static cl::opt<bool> 139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 140 cl::desc("Disable emission .debug_ranges section."), 141 cl::init(false)); 142 143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 144 "dwarf-sections-as-references", cl::Hidden, 145 cl::desc("Use sections+offset as references rather than labels."), 146 cl::values(clEnumVal(Default, "Default for platform"), 147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 148 cl::init(Default)); 149 150 enum LinkageNameOption { 151 DefaultLinkageNames, 152 AllLinkageNames, 153 AbstractLinkageNames 154 }; 155 156 static cl::opt<LinkageNameOption> 157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 158 cl::desc("Which DWARF linkage-name attributes to emit."), 159 cl::values(clEnumValN(DefaultLinkageNames, "Default", 160 "Default for platform"), 161 clEnumValN(AllLinkageNames, "All", "All"), 162 clEnumValN(AbstractLinkageNames, "Abstract", 163 "Abstract subprograms")), 164 cl::init(DefaultLinkageNames)); 165 166 static const char *const DWARFGroupName = "dwarf"; 167 static const char *const DWARFGroupDescription = "DWARF Emission"; 168 static const char *const DbgTimerName = "writer"; 169 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 170 static constexpr unsigned ULEB128PadSize = 4; 171 172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 173 getActiveStreamer().EmitInt8( 174 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 175 : dwarf::OperationEncodingString(Op)); 176 } 177 178 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 179 getActiveStreamer().EmitSLEB128(Value, Twine(Value)); 180 } 181 182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 183 getActiveStreamer().EmitULEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 187 getActiveStreamer().EmitInt8(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 191 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 192 getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize); 193 } 194 195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 196 unsigned MachineReg) { 197 // This information is not available while emitting .debug_loc entries. 198 return false; 199 } 200 201 void DebugLocDwarfExpression::enableTemporaryBuffer() { 202 assert(!IsBuffering && "Already buffering?"); 203 if (!TmpBuf) 204 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 205 IsBuffering = true; 206 } 207 208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 209 210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 211 return TmpBuf ? TmpBuf->Bytes.size() : 0; 212 } 213 214 void DebugLocDwarfExpression::commitTemporaryBuffer() { 215 if (!TmpBuf) 216 return; 217 for (auto Byte : enumerate(TmpBuf->Bytes)) { 218 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 219 ? TmpBuf->Comments[Byte.index()].c_str() 220 : ""; 221 OutBS.EmitInt8(Byte.value(), Comment); 222 } 223 TmpBuf->Bytes.clear(); 224 TmpBuf->Comments.clear(); 225 } 226 227 const DIType *DbgVariable::getType() const { 228 return getVariable()->getType(); 229 } 230 231 /// Get .debug_loc entry for the instruction range starting at MI. 232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 233 const DIExpression *Expr = MI->getDebugExpression(); 234 assert(MI->getNumOperands() == 4); 235 if (MI->getOperand(0).isReg()) { 236 auto RegOp = MI->getOperand(0); 237 auto Op1 = MI->getOperand(1); 238 // If the second operand is an immediate, this is a 239 // register-indirect address. 240 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 241 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 242 return DbgValueLoc(Expr, MLoc); 243 } 244 if (MI->getOperand(0).isTargetIndex()) { 245 auto Op = MI->getOperand(0); 246 return DbgValueLoc(Expr, 247 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 248 } 249 if (MI->getOperand(0).isImm()) 250 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 251 if (MI->getOperand(0).isFPImm()) 252 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 253 if (MI->getOperand(0).isCImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 255 256 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 257 } 258 259 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 260 assert(FrameIndexExprs.empty() && "Already initialized?"); 261 assert(!ValueLoc.get() && "Already initialized?"); 262 263 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 264 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 265 "Wrong inlined-at"); 266 267 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 268 if (auto *E = DbgValue->getDebugExpression()) 269 if (E->getNumElements()) 270 FrameIndexExprs.push_back({0, E}); 271 } 272 273 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 274 if (FrameIndexExprs.size() == 1) 275 return FrameIndexExprs; 276 277 assert(llvm::all_of(FrameIndexExprs, 278 [](const FrameIndexExpr &A) { 279 return A.Expr->isFragment(); 280 }) && 281 "multiple FI expressions without DW_OP_LLVM_fragment"); 282 llvm::sort(FrameIndexExprs, 283 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 284 return A.Expr->getFragmentInfo()->OffsetInBits < 285 B.Expr->getFragmentInfo()->OffsetInBits; 286 }); 287 288 return FrameIndexExprs; 289 } 290 291 void DbgVariable::addMMIEntry(const DbgVariable &V) { 292 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 293 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 294 assert(V.getVariable() == getVariable() && "conflicting variable"); 295 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 296 297 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 298 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 299 300 // FIXME: This logic should not be necessary anymore, as we now have proper 301 // deduplication. However, without it, we currently run into the assertion 302 // below, which means that we are likely dealing with broken input, i.e. two 303 // non-fragment entries for the same variable at different frame indices. 304 if (FrameIndexExprs.size()) { 305 auto *Expr = FrameIndexExprs.back().Expr; 306 if (!Expr || !Expr->isFragment()) 307 return; 308 } 309 310 for (const auto &FIE : V.FrameIndexExprs) 311 // Ignore duplicate entries. 312 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 313 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 314 })) 315 FrameIndexExprs.push_back(FIE); 316 317 assert((FrameIndexExprs.size() == 1 || 318 llvm::all_of(FrameIndexExprs, 319 [](FrameIndexExpr &FIE) { 320 return FIE.Expr && FIE.Expr->isFragment(); 321 })) && 322 "conflicting locations for variable"); 323 } 324 325 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 326 bool GenerateTypeUnits, 327 DebuggerKind Tuning, 328 const Triple &TT) { 329 // Honor an explicit request. 330 if (AccelTables != AccelTableKind::Default) 331 return AccelTables; 332 333 // Accelerator tables with type units are currently not supported. 334 if (GenerateTypeUnits) 335 return AccelTableKind::None; 336 337 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 338 // always implies debug_names. For lower standard versions we use apple 339 // accelerator tables on apple platforms and debug_names elsewhere. 340 if (DwarfVersion >= 5) 341 return AccelTableKind::Dwarf; 342 if (Tuning == DebuggerKind::LLDB) 343 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 344 : AccelTableKind::Dwarf; 345 return AccelTableKind::None; 346 } 347 348 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 349 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 350 InfoHolder(A, "info_string", DIEValueAllocator), 351 SkeletonHolder(A, "skel_string", DIEValueAllocator), 352 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 353 const Triple &TT = Asm->TM.getTargetTriple(); 354 355 // Make sure we know our "debugger tuning". The target option takes 356 // precedence; fall back to triple-based defaults. 357 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 358 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 359 else if (IsDarwin) 360 DebuggerTuning = DebuggerKind::LLDB; 361 else if (TT.isPS4CPU()) 362 DebuggerTuning = DebuggerKind::SCE; 363 else 364 DebuggerTuning = DebuggerKind::GDB; 365 366 if (DwarfInlinedStrings == Default) 367 UseInlineStrings = TT.isNVPTX(); 368 else 369 UseInlineStrings = DwarfInlinedStrings == Enable; 370 371 UseLocSection = !TT.isNVPTX(); 372 373 HasAppleExtensionAttributes = tuneForLLDB(); 374 375 // Handle split DWARF. 376 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 377 378 // SCE defaults to linkage names only for abstract subprograms. 379 if (DwarfLinkageNames == DefaultLinkageNames) 380 UseAllLinkageNames = !tuneForSCE(); 381 else 382 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 383 384 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 385 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 386 : MMI->getModule()->getDwarfVersion(); 387 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 388 DwarfVersion = 389 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 390 391 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 392 393 // Use sections as references. Force for NVPTX. 394 if (DwarfSectionsAsReferences == Default) 395 UseSectionsAsReferences = TT.isNVPTX(); 396 else 397 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 398 399 // Don't generate type units for unsupported object file formats. 400 GenerateTypeUnits = 401 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 402 403 TheAccelTableKind = computeAccelTableKind( 404 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 405 406 // Work around a GDB bug. GDB doesn't support the standard opcode; 407 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 408 // is defined as of DWARF 3. 409 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 410 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 411 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 412 413 // GDB does not fully support the DWARF 4 representation for bitfields. 414 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 415 416 // The DWARF v5 string offsets table has - possibly shared - contributions 417 // from each compile and type unit each preceded by a header. The string 418 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 419 // a monolithic string offsets table without any header. 420 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 421 422 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 423 } 424 425 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 426 DwarfDebug::~DwarfDebug() = default; 427 428 static bool isObjCClass(StringRef Name) { 429 return Name.startswith("+") || Name.startswith("-"); 430 } 431 432 static bool hasObjCCategory(StringRef Name) { 433 if (!isObjCClass(Name)) 434 return false; 435 436 return Name.find(") ") != StringRef::npos; 437 } 438 439 static void getObjCClassCategory(StringRef In, StringRef &Class, 440 StringRef &Category) { 441 if (!hasObjCCategory(In)) { 442 Class = In.slice(In.find('[') + 1, In.find(' ')); 443 Category = ""; 444 return; 445 } 446 447 Class = In.slice(In.find('[') + 1, In.find('(')); 448 Category = In.slice(In.find('[') + 1, In.find(' ')); 449 } 450 451 static StringRef getObjCMethodName(StringRef In) { 452 return In.slice(In.find(' ') + 1, In.find(']')); 453 } 454 455 // Add the various names to the Dwarf accelerator table names. 456 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 457 const DISubprogram *SP, DIE &Die) { 458 if (getAccelTableKind() != AccelTableKind::Apple && 459 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 460 return; 461 462 if (!SP->isDefinition()) 463 return; 464 465 if (SP->getName() != "") 466 addAccelName(CU, SP->getName(), Die); 467 468 // If the linkage name is different than the name, go ahead and output that as 469 // well into the name table. Only do that if we are going to actually emit 470 // that name. 471 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 472 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 473 addAccelName(CU, SP->getLinkageName(), Die); 474 475 // If this is an Objective-C selector name add it to the ObjC accelerator 476 // too. 477 if (isObjCClass(SP->getName())) { 478 StringRef Class, Category; 479 getObjCClassCategory(SP->getName(), Class, Category); 480 addAccelObjC(CU, Class, Die); 481 if (Category != "") 482 addAccelObjC(CU, Category, Die); 483 // Also add the base method name to the name table. 484 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 485 } 486 } 487 488 /// Check whether we should create a DIE for the given Scope, return true 489 /// if we don't create a DIE (the corresponding DIE is null). 490 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 491 if (Scope->isAbstractScope()) 492 return false; 493 494 // We don't create a DIE if there is no Range. 495 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 496 if (Ranges.empty()) 497 return true; 498 499 if (Ranges.size() > 1) 500 return false; 501 502 // We don't create a DIE if we have a single Range and the end label 503 // is null. 504 return !getLabelAfterInsn(Ranges.front().second); 505 } 506 507 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 508 F(CU); 509 if (auto *SkelCU = CU.getSkeleton()) 510 if (CU.getCUNode()->getSplitDebugInlining()) 511 F(*SkelCU); 512 } 513 514 bool DwarfDebug::shareAcrossDWOCUs() const { 515 return SplitDwarfCrossCuReferences; 516 } 517 518 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 519 LexicalScope *Scope) { 520 assert(Scope && Scope->getScopeNode()); 521 assert(Scope->isAbstractScope()); 522 assert(!Scope->getInlinedAt()); 523 524 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 525 526 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 527 // was inlined from another compile unit. 528 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 529 // Avoid building the original CU if it won't be used 530 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 531 else { 532 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 533 if (auto *SkelCU = CU.getSkeleton()) { 534 (shareAcrossDWOCUs() ? CU : SrcCU) 535 .constructAbstractSubprogramScopeDIE(Scope); 536 if (CU.getCUNode()->getSplitDebugInlining()) 537 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 538 } else 539 CU.constructAbstractSubprogramScopeDIE(Scope); 540 } 541 } 542 543 /// Try to interpret values loaded into registers that forward parameters 544 /// for \p CallMI. Store parameters with interpreted value into \p Params. 545 static void collectCallSiteParameters(const MachineInstr *CallMI, 546 ParamSet &Params) { 547 auto *MF = CallMI->getMF(); 548 auto CalleesMap = MF->getCallSitesInfo(); 549 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 550 551 // There is no information for the call instruction. 552 if (CallFwdRegsInfo == CalleesMap.end()) 553 return; 554 555 auto *MBB = CallMI->getParent(); 556 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 557 const auto &TII = MF->getSubtarget().getInstrInfo(); 558 const auto &TLI = MF->getSubtarget().getTargetLowering(); 559 560 // Skip the call instruction. 561 auto I = std::next(CallMI->getReverseIterator()); 562 563 DenseSet<unsigned> ForwardedRegWorklist; 564 // Add all the forwarding registers into the ForwardedRegWorklist. 565 for (auto ArgReg : CallFwdRegsInfo->second) { 566 bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second; 567 assert(InsertedReg && "Single register used to forward two arguments?"); 568 (void)InsertedReg; 569 } 570 571 // We erase, from the ForwardedRegWorklist, those forwarding registers for 572 // which we successfully describe a loaded value (by using 573 // the describeLoadedValue()). For those remaining arguments in the working 574 // list, for which we do not describe a loaded value by 575 // the describeLoadedValue(), we try to generate an entry value expression 576 // for their call site value desctipion, if the call is within the entry MBB. 577 // The RegsForEntryValues maps a forwarding register into the register holding 578 // the entry value. 579 // TODO: Handle situations when call site parameter value can be described 580 // as the entry value within basic blocks other then the first one. 581 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 582 DenseMap<unsigned, unsigned> RegsForEntryValues; 583 584 // If the MI is an instruction defining one or more parameters' forwarding 585 // registers, add those defines. We can currently only describe forwarded 586 // registers that are explicitly defined, but keep track of implicit defines 587 // also to remove those registers from the work list. 588 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 589 SmallVectorImpl<unsigned> &Explicit, 590 SmallVectorImpl<unsigned> &Implicit) { 591 if (MI.isDebugInstr()) 592 return; 593 594 for (const MachineOperand &MO : MI.operands()) { 595 if (MO.isReg() && MO.isDef() && 596 Register::isPhysicalRegister(MO.getReg())) { 597 for (auto FwdReg : ForwardedRegWorklist) { 598 if (TRI->regsOverlap(FwdReg, MO.getReg())) { 599 if (MO.isImplicit()) 600 Implicit.push_back(FwdReg); 601 else 602 Explicit.push_back(FwdReg); 603 } 604 } 605 } 606 } 607 }; 608 609 auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) { 610 unsigned FwdReg = Reg; 611 if (ShouldTryEmitEntryVals) { 612 auto EntryValReg = RegsForEntryValues.find(Reg); 613 if (EntryValReg != RegsForEntryValues.end()) 614 FwdReg = EntryValReg->second; 615 } 616 617 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 618 Params.push_back(CSParm); 619 ++NumCSParams; 620 }; 621 622 // Search for a loading value in forwarding registers. 623 for (; I != MBB->rend(); ++I) { 624 // Skip bundle headers. 625 if (I->isBundle()) 626 continue; 627 628 // If the next instruction is a call we can not interpret parameter's 629 // forwarding registers or we finished the interpretation of all parameters. 630 if (I->isCall()) 631 return; 632 633 if (ForwardedRegWorklist.empty()) 634 return; 635 636 SmallVector<unsigned, 4> ExplicitFwdRegDefs; 637 SmallVector<unsigned, 4> ImplicitFwdRegDefs; 638 getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs); 639 if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty()) 640 continue; 641 642 // If the MI clobbers more then one forwarding register we must remove 643 // all of them from the working list. 644 for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs)) 645 ForwardedRegWorklist.erase(Reg); 646 647 for (auto ParamFwdReg : ExplicitFwdRegDefs) { 648 if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) { 649 if (ParamValue->first.isImm()) { 650 int64_t Val = ParamValue->first.getImm(); 651 DbgValueLoc DbgLocVal(ParamValue->second, Val); 652 finishCallSiteParam(DbgLocVal, ParamFwdReg); 653 } else if (ParamValue->first.isReg()) { 654 Register RegLoc = ParamValue->first.getReg(); 655 // TODO: For now, there is no use of describing the value loaded into the 656 // register that is also the source registers (e.g. $r0 = add $r0, x). 657 if (ParamFwdReg == RegLoc) 658 continue; 659 660 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 661 Register FP = TRI->getFrameRegister(*MF); 662 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 663 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 664 DbgValueLoc DbgLocVal(ParamValue->second, 665 MachineLocation(RegLoc, 666 /*IsIndirect=*/IsSPorFP)); 667 finishCallSiteParam(DbgLocVal, ParamFwdReg); 668 // TODO: Add support for entry value plus an expression. 669 } else if (ShouldTryEmitEntryVals && 670 ParamValue->second->getNumElements() == 0) { 671 ForwardedRegWorklist.insert(RegLoc); 672 RegsForEntryValues[RegLoc] = ParamFwdReg; 673 } 674 } 675 } 676 } 677 } 678 679 // Emit the call site parameter's value as an entry value. 680 if (ShouldTryEmitEntryVals) { 681 // Create an expression where the register's entry value is used. 682 DIExpression *EntryExpr = DIExpression::get( 683 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 684 for (auto RegEntry : ForwardedRegWorklist) { 685 unsigned FwdReg = RegEntry; 686 auto EntryValReg = RegsForEntryValues.find(RegEntry); 687 if (EntryValReg != RegsForEntryValues.end()) 688 FwdReg = EntryValReg->second; 689 690 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry)); 691 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 692 Params.push_back(CSParm); 693 ++NumCSParams; 694 } 695 } 696 } 697 698 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 699 DwarfCompileUnit &CU, DIE &ScopeDIE, 700 const MachineFunction &MF) { 701 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 702 // the subprogram is required to have one. 703 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 704 return; 705 706 // Use DW_AT_call_all_calls to express that call site entries are present 707 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 708 // because one of its requirements is not met: call site entries for 709 // optimized-out calls are elided. 710 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 711 712 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 713 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 714 bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB(); 715 716 // Emit call site entries for each call or tail call in the function. 717 for (const MachineBasicBlock &MBB : MF) { 718 for (const MachineInstr &MI : MBB.instrs()) { 719 // Bundles with call in them will pass the isCall() test below but do not 720 // have callee operand information so skip them here. Iterator will 721 // eventually reach the call MI. 722 if (MI.isBundle()) 723 continue; 724 725 // Skip instructions which aren't calls. Both calls and tail-calling jump 726 // instructions (e.g TAILJMPd64) are classified correctly here. 727 if (!MI.isCall()) 728 continue; 729 730 // TODO: Add support for targets with delay slots (see: beginInstruction). 731 if (MI.hasDelaySlot()) 732 return; 733 734 // If this is a direct call, find the callee's subprogram. 735 // In the case of an indirect call find the register that holds 736 // the callee. 737 const MachineOperand &CalleeOp = MI.getOperand(0); 738 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 739 continue; 740 741 unsigned CallReg = 0; 742 const DISubprogram *CalleeSP = nullptr; 743 const Function *CalleeDecl = nullptr; 744 if (CalleeOp.isReg()) { 745 CallReg = CalleeOp.getReg(); 746 if (!CallReg) 747 continue; 748 } else { 749 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 750 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 751 continue; 752 CalleeSP = CalleeDecl->getSubprogram(); 753 } 754 755 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 756 757 bool IsTail = TII->isTailCall(MI); 758 759 // If MI is in a bundle, the label was created after the bundle since 760 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 761 // to search for that label below. 762 const MachineInstr *TopLevelCallMI = 763 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 764 765 // For tail calls, for non-gdb tuning, no return PC information is needed. 766 // For regular calls (and tail calls in GDB tuning), the return PC 767 // is needed to disambiguate paths in the call graph which could lead to 768 // some target function. 769 const MCExpr *PCOffset = 770 (IsTail && !tuneForGDB()) 771 ? nullptr 772 : getFunctionLocalOffsetAfterInsn(TopLevelCallMI); 773 774 // Return address of a call-like instruction for a normal call or a 775 // jump-like instruction for a tail call. This is needed for 776 // GDB + DWARF 4 tuning. 777 const MCSymbol *PCAddr = 778 ApplyGNUExtensions 779 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 780 : nullptr; 781 782 assert((IsTail || PCOffset || PCAddr) && 783 "Call without return PC information"); 784 785 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 786 << (CalleeDecl ? CalleeDecl->getName() 787 : StringRef(MF.getSubtarget() 788 .getRegisterInfo() 789 ->getName(CallReg))) 790 << (IsTail ? " [IsTail]" : "") << "\n"); 791 792 DIE &CallSiteDIE = 793 CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr, 794 PCOffset, CallReg); 795 796 // GDB and LLDB support call site parameter debug info. 797 if (Asm->TM.Options.EnableDebugEntryValues && 798 (tuneForGDB() || tuneForLLDB())) { 799 ParamSet Params; 800 // Try to interpret values of call site parameters. 801 collectCallSiteParameters(&MI, Params); 802 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 803 } 804 } 805 } 806 } 807 808 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 809 if (!U.hasDwarfPubSections()) 810 return; 811 812 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 813 } 814 815 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 816 DwarfCompileUnit &NewCU) { 817 DIE &Die = NewCU.getUnitDie(); 818 StringRef FN = DIUnit->getFilename(); 819 820 StringRef Producer = DIUnit->getProducer(); 821 StringRef Flags = DIUnit->getFlags(); 822 if (!Flags.empty() && !useAppleExtensionAttributes()) { 823 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 824 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 825 } else 826 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 827 828 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 829 DIUnit->getSourceLanguage()); 830 NewCU.addString(Die, dwarf::DW_AT_name, FN); 831 832 // Add DW_str_offsets_base to the unit DIE, except for split units. 833 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 834 NewCU.addStringOffsetsStart(); 835 836 if (!useSplitDwarf()) { 837 NewCU.initStmtList(); 838 839 // If we're using split dwarf the compilation dir is going to be in the 840 // skeleton CU and so we don't need to duplicate it here. 841 if (!CompilationDir.empty()) 842 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 843 844 addGnuPubAttributes(NewCU, Die); 845 } 846 847 if (useAppleExtensionAttributes()) { 848 if (DIUnit->isOptimized()) 849 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 850 851 StringRef Flags = DIUnit->getFlags(); 852 if (!Flags.empty()) 853 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 854 855 if (unsigned RVer = DIUnit->getRuntimeVersion()) 856 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 857 dwarf::DW_FORM_data1, RVer); 858 } 859 860 if (DIUnit->getDWOId()) { 861 // This CU is either a clang module DWO or a skeleton CU. 862 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 863 DIUnit->getDWOId()); 864 if (!DIUnit->getSplitDebugFilename().empty()) { 865 // This is a prefabricated skeleton CU. 866 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 867 ? dwarf::DW_AT_dwo_name 868 : dwarf::DW_AT_GNU_dwo_name; 869 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 870 } 871 } 872 } 873 // Create new DwarfCompileUnit for the given metadata node with tag 874 // DW_TAG_compile_unit. 875 DwarfCompileUnit & 876 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 877 if (auto *CU = CUMap.lookup(DIUnit)) 878 return *CU; 879 880 CompilationDir = DIUnit->getDirectory(); 881 882 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 883 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 884 DwarfCompileUnit &NewCU = *OwnedUnit; 885 InfoHolder.addUnit(std::move(OwnedUnit)); 886 887 for (auto *IE : DIUnit->getImportedEntities()) 888 NewCU.addImportedEntity(IE); 889 890 // LTO with assembly output shares a single line table amongst multiple CUs. 891 // To avoid the compilation directory being ambiguous, let the line table 892 // explicitly describe the directory of all files, never relying on the 893 // compilation directory. 894 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 895 Asm->OutStreamer->emitDwarfFile0Directive( 896 CompilationDir, DIUnit->getFilename(), 897 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 898 NewCU.getUniqueID()); 899 900 if (useSplitDwarf()) { 901 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 902 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 903 } else { 904 finishUnitAttributes(DIUnit, NewCU); 905 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 906 } 907 908 // Create DIEs for function declarations used for call site debug info. 909 for (auto Scope : DIUnit->getRetainedTypes()) 910 if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope)) 911 NewCU.getOrCreateSubprogramDIE(SP); 912 913 CUMap.insert({DIUnit, &NewCU}); 914 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 915 return NewCU; 916 } 917 918 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 919 const DIImportedEntity *N) { 920 if (isa<DILocalScope>(N->getScope())) 921 return; 922 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 923 D->addChild(TheCU.constructImportedEntityDIE(N)); 924 } 925 926 /// Sort and unique GVEs by comparing their fragment offset. 927 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 928 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 929 llvm::sort( 930 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 931 // Sort order: first null exprs, then exprs without fragment 932 // info, then sort by fragment offset in bits. 933 // FIXME: Come up with a more comprehensive comparator so 934 // the sorting isn't non-deterministic, and so the following 935 // std::unique call works correctly. 936 if (!A.Expr || !B.Expr) 937 return !!B.Expr; 938 auto FragmentA = A.Expr->getFragmentInfo(); 939 auto FragmentB = B.Expr->getFragmentInfo(); 940 if (!FragmentA || !FragmentB) 941 return !!FragmentB; 942 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 943 }); 944 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 945 [](DwarfCompileUnit::GlobalExpr A, 946 DwarfCompileUnit::GlobalExpr B) { 947 return A.Expr == B.Expr; 948 }), 949 GVEs.end()); 950 return GVEs; 951 } 952 953 // Emit all Dwarf sections that should come prior to the content. Create 954 // global DIEs and emit initial debug info sections. This is invoked by 955 // the target AsmPrinter. 956 void DwarfDebug::beginModule() { 957 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 958 DWARFGroupDescription, TimePassesIsEnabled); 959 if (DisableDebugInfoPrinting) { 960 MMI->setDebugInfoAvailability(false); 961 return; 962 } 963 964 const Module *M = MMI->getModule(); 965 966 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 967 M->debug_compile_units_end()); 968 // Tell MMI whether we have debug info. 969 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 970 "DebugInfoAvailabilty initialized unexpectedly"); 971 SingleCU = NumDebugCUs == 1; 972 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 973 GVMap; 974 for (const GlobalVariable &Global : M->globals()) { 975 SmallVector<DIGlobalVariableExpression *, 1> GVs; 976 Global.getDebugInfo(GVs); 977 for (auto *GVE : GVs) 978 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 979 } 980 981 // Create the symbol that designates the start of the unit's contribution 982 // to the string offsets table. In a split DWARF scenario, only the skeleton 983 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 984 if (useSegmentedStringOffsetsTable()) 985 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 986 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 987 988 989 // Create the symbols that designates the start of the DWARF v5 range list 990 // and locations list tables. They are located past the table headers. 991 if (getDwarfVersion() >= 5) { 992 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 993 Holder.setRnglistsTableBaseSym( 994 Asm->createTempSymbol("rnglists_table_base")); 995 996 if (useSplitDwarf()) 997 InfoHolder.setRnglistsTableBaseSym( 998 Asm->createTempSymbol("rnglists_dwo_table_base")); 999 } 1000 1001 // Create the symbol that points to the first entry following the debug 1002 // address table (.debug_addr) header. 1003 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1004 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1005 1006 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1007 // FIXME: Move local imported entities into a list attached to the 1008 // subprogram, then this search won't be needed and a 1009 // getImportedEntities().empty() test should go below with the rest. 1010 bool HasNonLocalImportedEntities = llvm::any_of( 1011 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1012 return !isa<DILocalScope>(IE->getScope()); 1013 }); 1014 1015 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1016 CUNode->getRetainedTypes().empty() && 1017 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1018 continue; 1019 1020 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1021 1022 // Global Variables. 1023 for (auto *GVE : CUNode->getGlobalVariables()) { 1024 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1025 // already know about the variable and it isn't adding a constant 1026 // expression. 1027 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1028 auto *Expr = GVE->getExpression(); 1029 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1030 GVMapEntry.push_back({nullptr, Expr}); 1031 } 1032 DenseSet<DIGlobalVariable *> Processed; 1033 for (auto *GVE : CUNode->getGlobalVariables()) { 1034 DIGlobalVariable *GV = GVE->getVariable(); 1035 if (Processed.insert(GV).second) 1036 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1037 } 1038 1039 for (auto *Ty : CUNode->getEnumTypes()) { 1040 // The enum types array by design contains pointers to 1041 // MDNodes rather than DIRefs. Unique them here. 1042 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1043 } 1044 for (auto *Ty : CUNode->getRetainedTypes()) { 1045 // The retained types array by design contains pointers to 1046 // MDNodes rather than DIRefs. Unique them here. 1047 if (DIType *RT = dyn_cast<DIType>(Ty)) 1048 // There is no point in force-emitting a forward declaration. 1049 CU.getOrCreateTypeDIE(RT); 1050 } 1051 // Emit imported_modules last so that the relevant context is already 1052 // available. 1053 for (auto *IE : CUNode->getImportedEntities()) 1054 constructAndAddImportedEntityDIE(CU, IE); 1055 } 1056 } 1057 1058 void DwarfDebug::finishEntityDefinitions() { 1059 for (const auto &Entity : ConcreteEntities) { 1060 DIE *Die = Entity->getDIE(); 1061 assert(Die); 1062 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1063 // in the ConcreteEntities list, rather than looking it up again here. 1064 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1065 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1066 assert(Unit); 1067 Unit->finishEntityDefinition(Entity.get()); 1068 } 1069 } 1070 1071 void DwarfDebug::finishSubprogramDefinitions() { 1072 for (const DISubprogram *SP : ProcessedSPNodes) { 1073 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1074 forBothCUs( 1075 getOrCreateDwarfCompileUnit(SP->getUnit()), 1076 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1077 } 1078 } 1079 1080 void DwarfDebug::finalizeModuleInfo() { 1081 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1082 1083 finishSubprogramDefinitions(); 1084 1085 finishEntityDefinitions(); 1086 1087 // Include the DWO file name in the hash if there's more than one CU. 1088 // This handles ThinLTO's situation where imported CUs may very easily be 1089 // duplicate with the same CU partially imported into another ThinLTO unit. 1090 StringRef DWOName; 1091 if (CUMap.size() > 1) 1092 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1093 1094 // Handle anything that needs to be done on a per-unit basis after 1095 // all other generation. 1096 for (const auto &P : CUMap) { 1097 auto &TheCU = *P.second; 1098 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1099 continue; 1100 // Emit DW_AT_containing_type attribute to connect types with their 1101 // vtable holding type. 1102 TheCU.constructContainingTypeDIEs(); 1103 1104 // Add CU specific attributes if we need to add any. 1105 // If we're splitting the dwarf out now that we've got the entire 1106 // CU then add the dwo id to it. 1107 auto *SkCU = TheCU.getSkeleton(); 1108 1109 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1110 1111 if (HasSplitUnit) { 1112 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1113 ? dwarf::DW_AT_dwo_name 1114 : dwarf::DW_AT_GNU_dwo_name; 1115 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1116 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1117 Asm->TM.Options.MCOptions.SplitDwarfFile); 1118 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1119 Asm->TM.Options.MCOptions.SplitDwarfFile); 1120 // Emit a unique identifier for this CU. 1121 uint64_t ID = 1122 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1123 if (getDwarfVersion() >= 5) { 1124 TheCU.setDWOId(ID); 1125 SkCU->setDWOId(ID); 1126 } else { 1127 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1128 dwarf::DW_FORM_data8, ID); 1129 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1130 dwarf::DW_FORM_data8, ID); 1131 } 1132 1133 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1134 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1135 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1136 Sym, Sym); 1137 } 1138 } else if (SkCU) { 1139 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1140 } 1141 1142 // If we have code split among multiple sections or non-contiguous 1143 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1144 // remain in the .o file, otherwise add a DW_AT_low_pc. 1145 // FIXME: We should use ranges allow reordering of code ala 1146 // .subsections_via_symbols in mach-o. This would mean turning on 1147 // ranges for all subprogram DIEs for mach-o. 1148 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1149 1150 if (unsigned NumRanges = TheCU.getRanges().size()) { 1151 if (NumRanges > 1 && useRangesSection()) 1152 // A DW_AT_low_pc attribute may also be specified in combination with 1153 // DW_AT_ranges to specify the default base address for use in 1154 // location lists (see Section 2.6.2) and range lists (see Section 1155 // 2.17.3). 1156 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1157 else 1158 U.setBaseAddress(TheCU.getRanges().front().Begin); 1159 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1160 } 1161 1162 // We don't keep track of which addresses are used in which CU so this 1163 // is a bit pessimistic under LTO. 1164 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1165 (getDwarfVersion() >= 5 || HasSplitUnit)) 1166 U.addAddrTableBase(); 1167 1168 if (getDwarfVersion() >= 5) { 1169 if (U.hasRangeLists()) 1170 U.addRnglistsBase(); 1171 1172 if (!DebugLocs.getLists().empty()) { 1173 if (!useSplitDwarf()) 1174 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1175 DebugLocs.getSym(), 1176 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1177 } 1178 } 1179 1180 auto *CUNode = cast<DICompileUnit>(P.first); 1181 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1182 if (CUNode->getMacros()) { 1183 if (useSplitDwarf()) 1184 TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1185 U.getMacroLabelBegin(), 1186 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1187 else 1188 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1189 U.getMacroLabelBegin(), 1190 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1191 } 1192 } 1193 1194 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1195 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1196 if (CUNode->getDWOId()) 1197 getOrCreateDwarfCompileUnit(CUNode); 1198 1199 // Compute DIE offsets and sizes. 1200 InfoHolder.computeSizeAndOffsets(); 1201 if (useSplitDwarf()) 1202 SkeletonHolder.computeSizeAndOffsets(); 1203 } 1204 1205 // Emit all Dwarf sections that should come after the content. 1206 void DwarfDebug::endModule() { 1207 assert(CurFn == nullptr); 1208 assert(CurMI == nullptr); 1209 1210 for (const auto &P : CUMap) { 1211 auto &CU = *P.second; 1212 CU.createBaseTypeDIEs(); 1213 } 1214 1215 // If we aren't actually generating debug info (check beginModule - 1216 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1217 // llvm.dbg.cu metadata node) 1218 if (!MMI->hasDebugInfo()) 1219 return; 1220 1221 // Finalize the debug info for the module. 1222 finalizeModuleInfo(); 1223 1224 emitDebugStr(); 1225 1226 if (useSplitDwarf()) 1227 // Emit debug_loc.dwo/debug_loclists.dwo section. 1228 emitDebugLocDWO(); 1229 else 1230 // Emit debug_loc/debug_loclists section. 1231 emitDebugLoc(); 1232 1233 // Corresponding abbreviations into a abbrev section. 1234 emitAbbreviations(); 1235 1236 // Emit all the DIEs into a debug info section. 1237 emitDebugInfo(); 1238 1239 // Emit info into a debug aranges section. 1240 if (GenerateARangeSection) 1241 emitDebugARanges(); 1242 1243 // Emit info into a debug ranges section. 1244 emitDebugRanges(); 1245 1246 if (useSplitDwarf()) 1247 // Emit info into a debug macinfo.dwo section. 1248 emitDebugMacinfoDWO(); 1249 else 1250 // Emit info into a debug macinfo section. 1251 emitDebugMacinfo(); 1252 1253 if (useSplitDwarf()) { 1254 emitDebugStrDWO(); 1255 emitDebugInfoDWO(); 1256 emitDebugAbbrevDWO(); 1257 emitDebugLineDWO(); 1258 emitDebugRangesDWO(); 1259 } 1260 1261 emitDebugAddr(); 1262 1263 // Emit info into the dwarf accelerator table sections. 1264 switch (getAccelTableKind()) { 1265 case AccelTableKind::Apple: 1266 emitAccelNames(); 1267 emitAccelObjC(); 1268 emitAccelNamespaces(); 1269 emitAccelTypes(); 1270 break; 1271 case AccelTableKind::Dwarf: 1272 emitAccelDebugNames(); 1273 break; 1274 case AccelTableKind::None: 1275 break; 1276 case AccelTableKind::Default: 1277 llvm_unreachable("Default should have already been resolved."); 1278 } 1279 1280 // Emit the pubnames and pubtypes sections if requested. 1281 emitDebugPubSections(); 1282 1283 // clean up. 1284 // FIXME: AbstractVariables.clear(); 1285 } 1286 1287 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1288 const DINode *Node, 1289 const MDNode *ScopeNode) { 1290 if (CU.getExistingAbstractEntity(Node)) 1291 return; 1292 1293 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1294 cast<DILocalScope>(ScopeNode))); 1295 } 1296 1297 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1298 const DINode *Node, const MDNode *ScopeNode) { 1299 if (CU.getExistingAbstractEntity(Node)) 1300 return; 1301 1302 if (LexicalScope *Scope = 1303 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1304 CU.createAbstractEntity(Node, Scope); 1305 } 1306 1307 // Collect variable information from side table maintained by MF. 1308 void DwarfDebug::collectVariableInfoFromMFTable( 1309 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1310 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1311 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1312 if (!VI.Var) 1313 continue; 1314 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1315 "Expected inlined-at fields to agree"); 1316 1317 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1318 Processed.insert(Var); 1319 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1320 1321 // If variable scope is not found then skip this variable. 1322 if (!Scope) 1323 continue; 1324 1325 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1326 auto RegVar = std::make_unique<DbgVariable>( 1327 cast<DILocalVariable>(Var.first), Var.second); 1328 RegVar->initializeMMI(VI.Expr, VI.Slot); 1329 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1330 DbgVar->addMMIEntry(*RegVar); 1331 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1332 MFVars.insert({Var, RegVar.get()}); 1333 ConcreteEntities.push_back(std::move(RegVar)); 1334 } 1335 } 1336 } 1337 1338 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1339 /// enclosing lexical scope. The check ensures there are no other instructions 1340 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1341 /// either open or otherwise rolls off the end of the scope. 1342 static bool validThroughout(LexicalScopes &LScopes, 1343 const MachineInstr *DbgValue, 1344 const MachineInstr *RangeEnd) { 1345 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1346 auto MBB = DbgValue->getParent(); 1347 auto DL = DbgValue->getDebugLoc(); 1348 auto *LScope = LScopes.findLexicalScope(DL); 1349 // Scope doesn't exist; this is a dead DBG_VALUE. 1350 if (!LScope) 1351 return false; 1352 auto &LSRange = LScope->getRanges(); 1353 if (LSRange.size() == 0) 1354 return false; 1355 1356 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1357 const MachineInstr *LScopeBegin = LSRange.front().first; 1358 // Early exit if the lexical scope begins outside of the current block. 1359 if (LScopeBegin->getParent() != MBB) 1360 return false; 1361 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1362 for (++Pred; Pred != MBB->rend(); ++Pred) { 1363 if (Pred->getFlag(MachineInstr::FrameSetup)) 1364 break; 1365 auto PredDL = Pred->getDebugLoc(); 1366 if (!PredDL || Pred->isMetaInstruction()) 1367 continue; 1368 // Check whether the instruction preceding the DBG_VALUE is in the same 1369 // (sub)scope as the DBG_VALUE. 1370 if (DL->getScope() == PredDL->getScope()) 1371 return false; 1372 auto *PredScope = LScopes.findLexicalScope(PredDL); 1373 if (!PredScope || LScope->dominates(PredScope)) 1374 return false; 1375 } 1376 1377 // If the range of the DBG_VALUE is open-ended, report success. 1378 if (!RangeEnd) 1379 return true; 1380 1381 // Fail if there are instructions belonging to our scope in another block. 1382 const MachineInstr *LScopeEnd = LSRange.back().second; 1383 if (LScopeEnd->getParent() != MBB) 1384 return false; 1385 1386 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1387 // throughout the function. This is a hack, presumably for DWARF v2 and not 1388 // necessarily correct. It would be much better to use a dbg.declare instead 1389 // if we know the constant is live throughout the scope. 1390 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1391 return true; 1392 1393 return false; 1394 } 1395 1396 /// Build the location list for all DBG_VALUEs in the function that 1397 /// describe the same variable. The resulting DebugLocEntries will have 1398 /// strict monotonically increasing begin addresses and will never 1399 /// overlap. If the resulting list has only one entry that is valid 1400 /// throughout variable's scope return true. 1401 // 1402 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1403 // different kinds of history map entries. One thing to be aware of is that if 1404 // a debug value is ended by another entry (rather than being valid until the 1405 // end of the function), that entry's instruction may or may not be included in 1406 // the range, depending on if the entry is a clobbering entry (it has an 1407 // instruction that clobbers one or more preceding locations), or if it is an 1408 // (overlapping) debug value entry. This distinction can be seen in the example 1409 // below. The first debug value is ended by the clobbering entry 2, and the 1410 // second and third debug values are ended by the overlapping debug value entry 1411 // 4. 1412 // 1413 // Input: 1414 // 1415 // History map entries [type, end index, mi] 1416 // 1417 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1418 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1419 // 2 | | [Clobber, $reg0 = [...], -, -] 1420 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1421 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1422 // 1423 // Output [start, end) [Value...]: 1424 // 1425 // [0-1) [(reg0, fragment 0, 32)] 1426 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1427 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1428 // [4-) [(@g, fragment 0, 96)] 1429 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1430 const DbgValueHistoryMap::Entries &Entries) { 1431 using OpenRange = 1432 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1433 SmallVector<OpenRange, 4> OpenRanges; 1434 bool isSafeForSingleLocation = true; 1435 const MachineInstr *StartDebugMI = nullptr; 1436 const MachineInstr *EndMI = nullptr; 1437 1438 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1439 const MachineInstr *Instr = EI->getInstr(); 1440 1441 // Remove all values that are no longer live. 1442 size_t Index = std::distance(EB, EI); 1443 auto Last = 1444 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1445 OpenRanges.erase(Last, OpenRanges.end()); 1446 1447 // If we are dealing with a clobbering entry, this iteration will result in 1448 // a location list entry starting after the clobbering instruction. 1449 const MCSymbol *StartLabel = 1450 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1451 assert(StartLabel && 1452 "Forgot label before/after instruction starting a range!"); 1453 1454 const MCSymbol *EndLabel; 1455 if (std::next(EI) == Entries.end()) { 1456 EndLabel = Asm->getFunctionEnd(); 1457 if (EI->isClobber()) 1458 EndMI = EI->getInstr(); 1459 } 1460 else if (std::next(EI)->isClobber()) 1461 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1462 else 1463 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1464 assert(EndLabel && "Forgot label after instruction ending a range!"); 1465 1466 if (EI->isDbgValue()) 1467 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1468 1469 // If this history map entry has a debug value, add that to the list of 1470 // open ranges and check if its location is valid for a single value 1471 // location. 1472 if (EI->isDbgValue()) { 1473 // Do not add undef debug values, as they are redundant information in 1474 // the location list entries. An undef debug results in an empty location 1475 // description. If there are any non-undef fragments then padding pieces 1476 // with empty location descriptions will automatically be inserted, and if 1477 // all fragments are undef then the whole location list entry is 1478 // redundant. 1479 if (!Instr->isUndefDebugValue()) { 1480 auto Value = getDebugLocValue(Instr); 1481 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1482 1483 // TODO: Add support for single value fragment locations. 1484 if (Instr->getDebugExpression()->isFragment()) 1485 isSafeForSingleLocation = false; 1486 1487 if (!StartDebugMI) 1488 StartDebugMI = Instr; 1489 } else { 1490 isSafeForSingleLocation = false; 1491 } 1492 } 1493 1494 // Location list entries with empty location descriptions are redundant 1495 // information in DWARF, so do not emit those. 1496 if (OpenRanges.empty()) 1497 continue; 1498 1499 // Omit entries with empty ranges as they do not have any effect in DWARF. 1500 if (StartLabel == EndLabel) { 1501 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1502 continue; 1503 } 1504 1505 SmallVector<DbgValueLoc, 4> Values; 1506 for (auto &R : OpenRanges) 1507 Values.push_back(R.second); 1508 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1509 1510 // Attempt to coalesce the ranges of two otherwise identical 1511 // DebugLocEntries. 1512 auto CurEntry = DebugLoc.rbegin(); 1513 LLVM_DEBUG({ 1514 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1515 for (auto &Value : CurEntry->getValues()) 1516 Value.dump(); 1517 dbgs() << "-----\n"; 1518 }); 1519 1520 auto PrevEntry = std::next(CurEntry); 1521 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1522 DebugLoc.pop_back(); 1523 } 1524 1525 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1526 validThroughout(LScopes, StartDebugMI, EndMI); 1527 } 1528 1529 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1530 LexicalScope &Scope, 1531 const DINode *Node, 1532 const DILocation *Location, 1533 const MCSymbol *Sym) { 1534 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1535 if (isa<const DILocalVariable>(Node)) { 1536 ConcreteEntities.push_back( 1537 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1538 Location)); 1539 InfoHolder.addScopeVariable(&Scope, 1540 cast<DbgVariable>(ConcreteEntities.back().get())); 1541 } else if (isa<const DILabel>(Node)) { 1542 ConcreteEntities.push_back( 1543 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1544 Location, Sym)); 1545 InfoHolder.addScopeLabel(&Scope, 1546 cast<DbgLabel>(ConcreteEntities.back().get())); 1547 } 1548 return ConcreteEntities.back().get(); 1549 } 1550 1551 // Find variables for each lexical scope. 1552 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1553 const DISubprogram *SP, 1554 DenseSet<InlinedEntity> &Processed) { 1555 // Grab the variable info that was squirreled away in the MMI side-table. 1556 collectVariableInfoFromMFTable(TheCU, Processed); 1557 1558 for (const auto &I : DbgValues) { 1559 InlinedEntity IV = I.first; 1560 if (Processed.count(IV)) 1561 continue; 1562 1563 // Instruction ranges, specifying where IV is accessible. 1564 const auto &HistoryMapEntries = I.second; 1565 if (HistoryMapEntries.empty()) 1566 continue; 1567 1568 LexicalScope *Scope = nullptr; 1569 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1570 if (const DILocation *IA = IV.second) 1571 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1572 else 1573 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1574 // If variable scope is not found then skip this variable. 1575 if (!Scope) 1576 continue; 1577 1578 Processed.insert(IV); 1579 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1580 *Scope, LocalVar, IV.second)); 1581 1582 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1583 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1584 1585 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1586 // If the history map contains a single debug value, there may be an 1587 // additional entry which clobbers the debug value. 1588 size_t HistSize = HistoryMapEntries.size(); 1589 bool SingleValueWithClobber = 1590 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1591 if (HistSize == 1 || SingleValueWithClobber) { 1592 const auto *End = 1593 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1594 if (validThroughout(LScopes, MInsn, End)) { 1595 RegVar->initializeDbgValue(MInsn); 1596 continue; 1597 } 1598 } 1599 1600 // Do not emit location lists if .debug_loc secton is disabled. 1601 if (!useLocSection()) 1602 continue; 1603 1604 // Handle multiple DBG_VALUE instructions describing one variable. 1605 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1606 1607 // Build the location list for this variable. 1608 SmallVector<DebugLocEntry, 8> Entries; 1609 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1610 1611 // Check whether buildLocationList managed to merge all locations to one 1612 // that is valid throughout the variable's scope. If so, produce single 1613 // value location. 1614 if (isValidSingleLocation) { 1615 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1616 continue; 1617 } 1618 1619 // If the variable has a DIBasicType, extract it. Basic types cannot have 1620 // unique identifiers, so don't bother resolving the type with the 1621 // identifier map. 1622 const DIBasicType *BT = dyn_cast<DIBasicType>( 1623 static_cast<const Metadata *>(LocalVar->getType())); 1624 1625 // Finalize the entry by lowering it into a DWARF bytestream. 1626 for (auto &Entry : Entries) 1627 Entry.finalize(*Asm, List, BT, TheCU); 1628 } 1629 1630 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1631 // DWARF-related DbgLabel. 1632 for (const auto &I : DbgLabels) { 1633 InlinedEntity IL = I.first; 1634 const MachineInstr *MI = I.second; 1635 if (MI == nullptr) 1636 continue; 1637 1638 LexicalScope *Scope = nullptr; 1639 const DILabel *Label = cast<DILabel>(IL.first); 1640 // The scope could have an extra lexical block file. 1641 const DILocalScope *LocalScope = 1642 Label->getScope()->getNonLexicalBlockFileScope(); 1643 // Get inlined DILocation if it is inlined label. 1644 if (const DILocation *IA = IL.second) 1645 Scope = LScopes.findInlinedScope(LocalScope, IA); 1646 else 1647 Scope = LScopes.findLexicalScope(LocalScope); 1648 // If label scope is not found then skip this label. 1649 if (!Scope) 1650 continue; 1651 1652 Processed.insert(IL); 1653 /// At this point, the temporary label is created. 1654 /// Save the temporary label to DbgLabel entity to get the 1655 /// actually address when generating Dwarf DIE. 1656 MCSymbol *Sym = getLabelBeforeInsn(MI); 1657 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1658 } 1659 1660 // Collect info for variables/labels that were optimized out. 1661 for (const DINode *DN : SP->getRetainedNodes()) { 1662 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1663 continue; 1664 LexicalScope *Scope = nullptr; 1665 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1666 Scope = LScopes.findLexicalScope(DV->getScope()); 1667 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1668 Scope = LScopes.findLexicalScope(DL->getScope()); 1669 } 1670 1671 if (Scope) 1672 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1673 } 1674 } 1675 1676 // Process beginning of an instruction. 1677 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1678 DebugHandlerBase::beginInstruction(MI); 1679 assert(CurMI); 1680 1681 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1682 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1683 return; 1684 1685 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1686 // If the instruction is part of the function frame setup code, do not emit 1687 // any line record, as there is no correspondence with any user code. 1688 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1689 return; 1690 const DebugLoc &DL = MI->getDebugLoc(); 1691 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1692 // the last line number actually emitted, to see if it was line 0. 1693 unsigned LastAsmLine = 1694 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1695 1696 // Request a label after the call in order to emit AT_return_pc information 1697 // in call site entries. TODO: Add support for targets with delay slots. 1698 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1699 requestLabelAfterInsn(MI); 1700 1701 if (DL == PrevInstLoc) { 1702 // If we have an ongoing unspecified location, nothing to do here. 1703 if (!DL) 1704 return; 1705 // We have an explicit location, same as the previous location. 1706 // But we might be coming back to it after a line 0 record. 1707 if (LastAsmLine == 0 && DL.getLine() != 0) { 1708 // Reinstate the source location but not marked as a statement. 1709 const MDNode *Scope = DL.getScope(); 1710 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1711 } 1712 return; 1713 } 1714 1715 if (!DL) { 1716 // We have an unspecified location, which might want to be line 0. 1717 // If we have already emitted a line-0 record, don't repeat it. 1718 if (LastAsmLine == 0) 1719 return; 1720 // If user said Don't Do That, don't do that. 1721 if (UnknownLocations == Disable) 1722 return; 1723 // See if we have a reason to emit a line-0 record now. 1724 // Reasons to emit a line-0 record include: 1725 // - User asked for it (UnknownLocations). 1726 // - Instruction has a label, so it's referenced from somewhere else, 1727 // possibly debug information; we want it to have a source location. 1728 // - Instruction is at the top of a block; we don't want to inherit the 1729 // location from the physically previous (maybe unrelated) block. 1730 if (UnknownLocations == Enable || PrevLabel || 1731 (PrevInstBB && PrevInstBB != MI->getParent())) { 1732 // Preserve the file and column numbers, if we can, to save space in 1733 // the encoded line table. 1734 // Do not update PrevInstLoc, it remembers the last non-0 line. 1735 const MDNode *Scope = nullptr; 1736 unsigned Column = 0; 1737 if (PrevInstLoc) { 1738 Scope = PrevInstLoc.getScope(); 1739 Column = PrevInstLoc.getCol(); 1740 } 1741 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1742 } 1743 return; 1744 } 1745 1746 // We have an explicit location, different from the previous location. 1747 // Don't repeat a line-0 record, but otherwise emit the new location. 1748 // (The new location might be an explicit line 0, which we do emit.) 1749 if (DL.getLine() == 0 && LastAsmLine == 0) 1750 return; 1751 unsigned Flags = 0; 1752 if (DL == PrologEndLoc) { 1753 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1754 PrologEndLoc = DebugLoc(); 1755 } 1756 // If the line changed, we call that a new statement; unless we went to 1757 // line 0 and came back, in which case it is not a new statement. 1758 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1759 if (DL.getLine() && DL.getLine() != OldLine) 1760 Flags |= DWARF2_FLAG_IS_STMT; 1761 1762 const MDNode *Scope = DL.getScope(); 1763 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1764 1765 // If we're not at line 0, remember this location. 1766 if (DL.getLine()) 1767 PrevInstLoc = DL; 1768 } 1769 1770 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1771 // First known non-DBG_VALUE and non-frame setup location marks 1772 // the beginning of the function body. 1773 for (const auto &MBB : *MF) 1774 for (const auto &MI : MBB) 1775 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1776 MI.getDebugLoc()) 1777 return MI.getDebugLoc(); 1778 return DebugLoc(); 1779 } 1780 1781 /// Register a source line with debug info. Returns the unique label that was 1782 /// emitted and which provides correspondence to the source line list. 1783 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1784 const MDNode *S, unsigned Flags, unsigned CUID, 1785 uint16_t DwarfVersion, 1786 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1787 StringRef Fn; 1788 unsigned FileNo = 1; 1789 unsigned Discriminator = 0; 1790 if (auto *Scope = cast_or_null<DIScope>(S)) { 1791 Fn = Scope->getFilename(); 1792 if (Line != 0 && DwarfVersion >= 4) 1793 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1794 Discriminator = LBF->getDiscriminator(); 1795 1796 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1797 .getOrCreateSourceID(Scope->getFile()); 1798 } 1799 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1800 Discriminator, Fn); 1801 } 1802 1803 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1804 unsigned CUID) { 1805 // Get beginning of function. 1806 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1807 // Ensure the compile unit is created if the function is called before 1808 // beginFunction(). 1809 (void)getOrCreateDwarfCompileUnit( 1810 MF.getFunction().getSubprogram()->getUnit()); 1811 // We'd like to list the prologue as "not statements" but GDB behaves 1812 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1813 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1814 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1815 CUID, getDwarfVersion(), getUnits()); 1816 return PrologEndLoc; 1817 } 1818 return DebugLoc(); 1819 } 1820 1821 // Gather pre-function debug information. Assumes being called immediately 1822 // after the function entry point has been emitted. 1823 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1824 CurFn = MF; 1825 1826 auto *SP = MF->getFunction().getSubprogram(); 1827 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1828 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1829 return; 1830 1831 SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(), 1832 Asm->getFunctionBegin())); 1833 1834 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1835 1836 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1837 // belongs to so that we add to the correct per-cu line table in the 1838 // non-asm case. 1839 if (Asm->OutStreamer->hasRawTextSupport()) 1840 // Use a single line table if we are generating assembly. 1841 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1842 else 1843 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1844 1845 // Record beginning of function. 1846 PrologEndLoc = emitInitialLocDirective( 1847 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1848 } 1849 1850 void DwarfDebug::skippedNonDebugFunction() { 1851 // If we don't have a subprogram for this function then there will be a hole 1852 // in the range information. Keep note of this by setting the previously used 1853 // section to nullptr. 1854 PrevCU = nullptr; 1855 CurFn = nullptr; 1856 } 1857 1858 // Gather and emit post-function debug information. 1859 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1860 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1861 1862 assert(CurFn == MF && 1863 "endFunction should be called with the same function as beginFunction"); 1864 1865 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1866 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1867 1868 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1869 assert(!FnScope || SP == FnScope->getScopeNode()); 1870 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1871 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1872 PrevLabel = nullptr; 1873 CurFn = nullptr; 1874 return; 1875 } 1876 1877 DenseSet<InlinedEntity> Processed; 1878 collectEntityInfo(TheCU, SP, Processed); 1879 1880 // Add the range of this function to the list of ranges for the CU. 1881 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1882 1883 // Under -gmlt, skip building the subprogram if there are no inlined 1884 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1885 // is still needed as we need its source location. 1886 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1887 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1888 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1889 assert(InfoHolder.getScopeVariables().empty()); 1890 PrevLabel = nullptr; 1891 CurFn = nullptr; 1892 return; 1893 } 1894 1895 #ifndef NDEBUG 1896 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1897 #endif 1898 // Construct abstract scopes. 1899 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1900 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1901 for (const DINode *DN : SP->getRetainedNodes()) { 1902 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1903 continue; 1904 1905 const MDNode *Scope = nullptr; 1906 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 1907 Scope = DV->getScope(); 1908 else if (auto *DL = dyn_cast<DILabel>(DN)) 1909 Scope = DL->getScope(); 1910 else 1911 llvm_unreachable("Unexpected DI type!"); 1912 1913 // Collect info for variables/labels that were optimized out. 1914 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 1915 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1916 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 1917 } 1918 constructAbstractSubprogramScopeDIE(TheCU, AScope); 1919 } 1920 1921 ProcessedSPNodes.insert(SP); 1922 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 1923 if (auto *SkelCU = TheCU.getSkeleton()) 1924 if (!LScopes.getAbstractScopesList().empty() && 1925 TheCU.getCUNode()->getSplitDebugInlining()) 1926 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1927 1928 // Construct call site entries. 1929 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 1930 1931 // Clear debug info 1932 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1933 // DbgVariables except those that are also in AbstractVariables (since they 1934 // can be used cross-function) 1935 InfoHolder.getScopeVariables().clear(); 1936 InfoHolder.getScopeLabels().clear(); 1937 PrevLabel = nullptr; 1938 CurFn = nullptr; 1939 } 1940 1941 // Register a source line with debug info. Returns the unique label that was 1942 // emitted and which provides correspondence to the source line list. 1943 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1944 unsigned Flags) { 1945 ::recordSourceLine(*Asm, Line, Col, S, Flags, 1946 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 1947 getDwarfVersion(), getUnits()); 1948 } 1949 1950 //===----------------------------------------------------------------------===// 1951 // Emit Methods 1952 //===----------------------------------------------------------------------===// 1953 1954 // Emit the debug info section. 1955 void DwarfDebug::emitDebugInfo() { 1956 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1957 Holder.emitUnits(/* UseOffsets */ false); 1958 } 1959 1960 // Emit the abbreviation section. 1961 void DwarfDebug::emitAbbreviations() { 1962 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1963 1964 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1965 } 1966 1967 void DwarfDebug::emitStringOffsetsTableHeader() { 1968 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1969 Holder.getStringPool().emitStringOffsetsTableHeader( 1970 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 1971 Holder.getStringOffsetsStartSym()); 1972 } 1973 1974 template <typename AccelTableT> 1975 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 1976 StringRef TableName) { 1977 Asm->OutStreamer->SwitchSection(Section); 1978 1979 // Emit the full data. 1980 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 1981 } 1982 1983 void DwarfDebug::emitAccelDebugNames() { 1984 // Don't emit anything if we have no compilation units to index. 1985 if (getUnits().empty()) 1986 return; 1987 1988 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 1989 } 1990 1991 // Emit visible names into a hashed accelerator table section. 1992 void DwarfDebug::emitAccelNames() { 1993 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1994 "Names"); 1995 } 1996 1997 // Emit objective C classes and categories into a hashed accelerator table 1998 // section. 1999 void DwarfDebug::emitAccelObjC() { 2000 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2001 "ObjC"); 2002 } 2003 2004 // Emit namespace dies into a hashed accelerator table. 2005 void DwarfDebug::emitAccelNamespaces() { 2006 emitAccel(AccelNamespace, 2007 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2008 "namespac"); 2009 } 2010 2011 // Emit type dies into a hashed accelerator table. 2012 void DwarfDebug::emitAccelTypes() { 2013 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2014 "types"); 2015 } 2016 2017 // Public name handling. 2018 // The format for the various pubnames: 2019 // 2020 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2021 // for the DIE that is named. 2022 // 2023 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2024 // into the CU and the index value is computed according to the type of value 2025 // for the DIE that is named. 2026 // 2027 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2028 // it's the offset within the debug_info/debug_types dwo section, however, the 2029 // reference in the pubname header doesn't change. 2030 2031 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2032 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2033 const DIE *Die) { 2034 // Entities that ended up only in a Type Unit reference the CU instead (since 2035 // the pub entry has offsets within the CU there's no real offset that can be 2036 // provided anyway). As it happens all such entities (namespaces and types, 2037 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2038 // not to be true it would be necessary to persist this information from the 2039 // point at which the entry is added to the index data structure - since by 2040 // the time the index is built from that, the original type/namespace DIE in a 2041 // type unit has already been destroyed so it can't be queried for properties 2042 // like tag, etc. 2043 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2044 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2045 dwarf::GIEL_EXTERNAL); 2046 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2047 2048 // We could have a specification DIE that has our most of our knowledge, 2049 // look for that now. 2050 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2051 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2052 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2053 Linkage = dwarf::GIEL_EXTERNAL; 2054 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2055 Linkage = dwarf::GIEL_EXTERNAL; 2056 2057 switch (Die->getTag()) { 2058 case dwarf::DW_TAG_class_type: 2059 case dwarf::DW_TAG_structure_type: 2060 case dwarf::DW_TAG_union_type: 2061 case dwarf::DW_TAG_enumeration_type: 2062 return dwarf::PubIndexEntryDescriptor( 2063 dwarf::GIEK_TYPE, 2064 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2065 ? dwarf::GIEL_EXTERNAL 2066 : dwarf::GIEL_STATIC); 2067 case dwarf::DW_TAG_typedef: 2068 case dwarf::DW_TAG_base_type: 2069 case dwarf::DW_TAG_subrange_type: 2070 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2071 case dwarf::DW_TAG_namespace: 2072 return dwarf::GIEK_TYPE; 2073 case dwarf::DW_TAG_subprogram: 2074 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2075 case dwarf::DW_TAG_variable: 2076 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2077 case dwarf::DW_TAG_enumerator: 2078 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2079 dwarf::GIEL_STATIC); 2080 default: 2081 return dwarf::GIEK_NONE; 2082 } 2083 } 2084 2085 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2086 /// pubtypes sections. 2087 void DwarfDebug::emitDebugPubSections() { 2088 for (const auto &NU : CUMap) { 2089 DwarfCompileUnit *TheU = NU.second; 2090 if (!TheU->hasDwarfPubSections()) 2091 continue; 2092 2093 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2094 DICompileUnit::DebugNameTableKind::GNU; 2095 2096 Asm->OutStreamer->SwitchSection( 2097 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2098 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2099 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2100 2101 Asm->OutStreamer->SwitchSection( 2102 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2103 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2104 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2105 } 2106 } 2107 2108 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2109 if (useSectionsAsReferences()) 2110 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(), 2111 CU.getDebugSectionOffset()); 2112 else 2113 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2114 } 2115 2116 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2117 DwarfCompileUnit *TheU, 2118 const StringMap<const DIE *> &Globals) { 2119 if (auto *Skeleton = TheU->getSkeleton()) 2120 TheU = Skeleton; 2121 2122 // Emit the header. 2123 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2124 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2125 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2126 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 2127 2128 Asm->OutStreamer->EmitLabel(BeginLabel); 2129 2130 Asm->OutStreamer->AddComment("DWARF Version"); 2131 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2132 2133 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2134 emitSectionReference(*TheU); 2135 2136 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2137 Asm->emitInt32(TheU->getLength()); 2138 2139 // Emit the pubnames for this compilation unit. 2140 for (const auto &GI : Globals) { 2141 const char *Name = GI.getKeyData(); 2142 const DIE *Entity = GI.second; 2143 2144 Asm->OutStreamer->AddComment("DIE offset"); 2145 Asm->emitInt32(Entity->getOffset()); 2146 2147 if (GnuStyle) { 2148 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2149 Asm->OutStreamer->AddComment( 2150 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2151 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2152 Asm->emitInt8(Desc.toBits()); 2153 } 2154 2155 Asm->OutStreamer->AddComment("External Name"); 2156 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2157 } 2158 2159 Asm->OutStreamer->AddComment("End Mark"); 2160 Asm->emitInt32(0); 2161 Asm->OutStreamer->EmitLabel(EndLabel); 2162 } 2163 2164 /// Emit null-terminated strings into a debug str section. 2165 void DwarfDebug::emitDebugStr() { 2166 MCSection *StringOffsetsSection = nullptr; 2167 if (useSegmentedStringOffsetsTable()) { 2168 emitStringOffsetsTableHeader(); 2169 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2170 } 2171 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2172 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2173 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2174 } 2175 2176 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2177 const DebugLocStream::Entry &Entry, 2178 const DwarfCompileUnit *CU) { 2179 auto &&Comments = DebugLocs.getComments(Entry); 2180 auto Comment = Comments.begin(); 2181 auto End = Comments.end(); 2182 2183 // The expressions are inserted into a byte stream rather early (see 2184 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2185 // need to reference a base_type DIE the offset of that DIE is not yet known. 2186 // To deal with this we instead insert a placeholder early and then extract 2187 // it here and replace it with the real reference. 2188 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2189 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2190 DebugLocs.getBytes(Entry).size()), 2191 Asm->getDataLayout().isLittleEndian(), PtrSize); 2192 DWARFExpression Expr(Data, getDwarfVersion(), PtrSize); 2193 2194 using Encoding = DWARFExpression::Operation::Encoding; 2195 uint64_t Offset = 0; 2196 for (auto &Op : Expr) { 2197 assert(Op.getCode() != dwarf::DW_OP_const_type && 2198 "3 operand ops not yet supported"); 2199 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2200 Offset++; 2201 for (unsigned I = 0; I < 2; ++I) { 2202 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2203 continue; 2204 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2205 if (CU) { 2206 uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2207 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2208 Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize); 2209 } else { 2210 // Emit a reference to the 'generic type'. 2211 Asm->EmitULEB128(0, nullptr, ULEB128PadSize); 2212 } 2213 // Make sure comments stay aligned. 2214 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2215 if (Comment != End) 2216 Comment++; 2217 } else { 2218 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2219 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2220 } 2221 Offset = Op.getOperandEndOffset(I); 2222 } 2223 assert(Offset == Op.getEndOffset()); 2224 } 2225 } 2226 2227 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2228 const DbgValueLoc &Value, 2229 DwarfExpression &DwarfExpr) { 2230 auto *DIExpr = Value.getExpression(); 2231 DIExpressionCursor ExprCursor(DIExpr); 2232 DwarfExpr.addFragmentOffset(DIExpr); 2233 // Regular entry. 2234 if (Value.isInt()) { 2235 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2236 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2237 DwarfExpr.addSignedConstant(Value.getInt()); 2238 else 2239 DwarfExpr.addUnsignedConstant(Value.getInt()); 2240 } else if (Value.isLocation()) { 2241 MachineLocation Location = Value.getLoc(); 2242 if (Location.isIndirect()) 2243 DwarfExpr.setMemoryLocationKind(); 2244 DIExpressionCursor Cursor(DIExpr); 2245 2246 if (DIExpr->isEntryValue()) { 2247 DwarfExpr.setEntryValueFlag(); 2248 DwarfExpr.beginEntryValueExpression(Cursor); 2249 } 2250 2251 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2252 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2253 return; 2254 return DwarfExpr.addExpression(std::move(Cursor)); 2255 } else if (Value.isTargetIndexLocation()) { 2256 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2257 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2258 // encoding is supported. 2259 DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset); 2260 } else if (Value.isConstantFP()) { 2261 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2262 DwarfExpr.addUnsignedConstant(RawBytes); 2263 } 2264 DwarfExpr.addExpression(std::move(ExprCursor)); 2265 } 2266 2267 void DebugLocEntry::finalize(const AsmPrinter &AP, 2268 DebugLocStream::ListBuilder &List, 2269 const DIBasicType *BT, 2270 DwarfCompileUnit &TheCU) { 2271 assert(!Values.empty() && 2272 "location list entries without values are redundant"); 2273 assert(Begin != End && "unexpected location list entry with empty range"); 2274 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2275 BufferByteStreamer Streamer = Entry.getStreamer(); 2276 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2277 const DbgValueLoc &Value = Values[0]; 2278 if (Value.isFragment()) { 2279 // Emit all fragments that belong to the same variable and range. 2280 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2281 return P.isFragment(); 2282 }) && "all values are expected to be fragments"); 2283 assert(std::is_sorted(Values.begin(), Values.end()) && 2284 "fragments are expected to be sorted"); 2285 2286 for (auto Fragment : Values) 2287 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2288 2289 } else { 2290 assert(Values.size() == 1 && "only fragments may have >1 value"); 2291 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2292 } 2293 DwarfExpr.finalize(); 2294 if (DwarfExpr.TagOffset) 2295 List.setTagOffset(*DwarfExpr.TagOffset); 2296 } 2297 2298 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2299 const DwarfCompileUnit *CU) { 2300 // Emit the size. 2301 Asm->OutStreamer->AddComment("Loc expr size"); 2302 if (getDwarfVersion() >= 5) 2303 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size()); 2304 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2305 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2306 else { 2307 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2308 // can do. 2309 Asm->emitInt16(0); 2310 return; 2311 } 2312 // Emit the entry. 2313 APByteStreamer Streamer(*Asm); 2314 emitDebugLocEntry(Streamer, Entry, CU); 2315 } 2316 2317 // Emit the common part of the DWARF 5 range/locations list tables header. 2318 static void emitListsTableHeaderStart(AsmPrinter *Asm, 2319 MCSymbol *TableStart, 2320 MCSymbol *TableEnd) { 2321 // Build the table header, which starts with the length field. 2322 Asm->OutStreamer->AddComment("Length"); 2323 Asm->EmitLabelDifference(TableEnd, TableStart, 4); 2324 Asm->OutStreamer->EmitLabel(TableStart); 2325 // Version number (DWARF v5 and later). 2326 Asm->OutStreamer->AddComment("Version"); 2327 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion()); 2328 // Address size. 2329 Asm->OutStreamer->AddComment("Address size"); 2330 Asm->emitInt8(Asm->MAI->getCodePointerSize()); 2331 // Segment selector size. 2332 Asm->OutStreamer->AddComment("Segment selector size"); 2333 Asm->emitInt8(0); 2334 } 2335 2336 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2337 // that designates the end of the table for the caller to emit when the table is 2338 // complete. 2339 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2340 const DwarfFile &Holder) { 2341 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start"); 2342 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end"); 2343 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2344 2345 Asm->OutStreamer->AddComment("Offset entry count"); 2346 Asm->emitInt32(Holder.getRangeLists().size()); 2347 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym()); 2348 2349 for (const RangeSpanList &List : Holder.getRangeLists()) 2350 Asm->EmitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2351 4); 2352 2353 return TableEnd; 2354 } 2355 2356 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2357 // designates the end of the table for the caller to emit when the table is 2358 // complete. 2359 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2360 const DwarfDebug &DD) { 2361 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start"); 2362 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end"); 2363 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2364 2365 const auto &DebugLocs = DD.getDebugLocs(); 2366 2367 Asm->OutStreamer->AddComment("Offset entry count"); 2368 Asm->emitInt32(DebugLocs.getLists().size()); 2369 Asm->OutStreamer->EmitLabel(DebugLocs.getSym()); 2370 2371 for (const auto &List : DebugLocs.getLists()) 2372 Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2373 2374 return TableEnd; 2375 } 2376 2377 template <typename Ranges, typename PayloadEmitter> 2378 static void emitRangeList( 2379 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2380 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2381 unsigned StartxLength, unsigned EndOfList, 2382 StringRef (*StringifyEnum)(unsigned), 2383 bool ShouldUseBaseAddress, 2384 PayloadEmitter EmitPayload) { 2385 2386 auto Size = Asm->MAI->getCodePointerSize(); 2387 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2388 2389 // Emit our symbol so we can find the beginning of the range. 2390 Asm->OutStreamer->EmitLabel(Sym); 2391 2392 // Gather all the ranges that apply to the same section so they can share 2393 // a base address entry. 2394 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2395 2396 for (const auto &Range : R) 2397 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2398 2399 const MCSymbol *CUBase = CU.getBaseAddress(); 2400 bool BaseIsSet = false; 2401 for (const auto &P : SectionRanges) { 2402 auto *Base = CUBase; 2403 if (!Base && ShouldUseBaseAddress) { 2404 const MCSymbol *Begin = P.second.front()->Begin; 2405 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2406 if (!UseDwarf5) { 2407 Base = NewBase; 2408 BaseIsSet = true; 2409 Asm->OutStreamer->EmitIntValue(-1, Size); 2410 Asm->OutStreamer->AddComment(" base address"); 2411 Asm->OutStreamer->EmitSymbolValue(Base, Size); 2412 } else if (NewBase != Begin || P.second.size() > 1) { 2413 // Only use a base address if 2414 // * the existing pool address doesn't match (NewBase != Begin) 2415 // * or, there's more than one entry to share the base address 2416 Base = NewBase; 2417 BaseIsSet = true; 2418 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2419 Asm->emitInt8(BaseAddressx); 2420 Asm->OutStreamer->AddComment(" base address index"); 2421 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base)); 2422 } 2423 } else if (BaseIsSet && !UseDwarf5) { 2424 BaseIsSet = false; 2425 assert(!Base); 2426 Asm->OutStreamer->EmitIntValue(-1, Size); 2427 Asm->OutStreamer->EmitIntValue(0, Size); 2428 } 2429 2430 for (const auto *RS : P.second) { 2431 const MCSymbol *Begin = RS->Begin; 2432 const MCSymbol *End = RS->End; 2433 assert(Begin && "Range without a begin symbol?"); 2434 assert(End && "Range without an end symbol?"); 2435 if (Base) { 2436 if (UseDwarf5) { 2437 // Emit offset_pair when we have a base. 2438 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2439 Asm->emitInt8(OffsetPair); 2440 Asm->OutStreamer->AddComment(" starting offset"); 2441 Asm->EmitLabelDifferenceAsULEB128(Begin, Base); 2442 Asm->OutStreamer->AddComment(" ending offset"); 2443 Asm->EmitLabelDifferenceAsULEB128(End, Base); 2444 } else { 2445 Asm->EmitLabelDifference(Begin, Base, Size); 2446 Asm->EmitLabelDifference(End, Base, Size); 2447 } 2448 } else if (UseDwarf5) { 2449 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2450 Asm->emitInt8(StartxLength); 2451 Asm->OutStreamer->AddComment(" start index"); 2452 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin)); 2453 Asm->OutStreamer->AddComment(" length"); 2454 Asm->EmitLabelDifferenceAsULEB128(End, Begin); 2455 } else { 2456 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 2457 Asm->OutStreamer->EmitSymbolValue(End, Size); 2458 } 2459 EmitPayload(*RS); 2460 } 2461 } 2462 2463 if (UseDwarf5) { 2464 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2465 Asm->emitInt8(EndOfList); 2466 } else { 2467 // Terminate the list with two 0 values. 2468 Asm->OutStreamer->EmitIntValue(0, Size); 2469 Asm->OutStreamer->EmitIntValue(0, Size); 2470 } 2471 } 2472 2473 // Handles emission of both debug_loclist / debug_loclist.dwo 2474 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2475 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2476 *List.CU, dwarf::DW_LLE_base_addressx, 2477 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2478 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2479 /* ShouldUseBaseAddress */ true, 2480 [&](const DebugLocStream::Entry &E) { 2481 DD.emitDebugLocEntryLocation(E, List.CU); 2482 }); 2483 } 2484 2485 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2486 if (DebugLocs.getLists().empty()) 2487 return; 2488 2489 Asm->OutStreamer->SwitchSection(Sec); 2490 2491 MCSymbol *TableEnd = nullptr; 2492 if (getDwarfVersion() >= 5) 2493 TableEnd = emitLoclistsTableHeader(Asm, *this); 2494 2495 for (const auto &List : DebugLocs.getLists()) 2496 emitLocList(*this, Asm, List); 2497 2498 if (TableEnd) 2499 Asm->OutStreamer->EmitLabel(TableEnd); 2500 } 2501 2502 // Emit locations into the .debug_loc/.debug_loclists section. 2503 void DwarfDebug::emitDebugLoc() { 2504 emitDebugLocImpl( 2505 getDwarfVersion() >= 5 2506 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2507 : Asm->getObjFileLowering().getDwarfLocSection()); 2508 } 2509 2510 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2511 void DwarfDebug::emitDebugLocDWO() { 2512 if (getDwarfVersion() >= 5) { 2513 emitDebugLocImpl( 2514 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2515 2516 return; 2517 } 2518 2519 for (const auto &List : DebugLocs.getLists()) { 2520 Asm->OutStreamer->SwitchSection( 2521 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2522 Asm->OutStreamer->EmitLabel(List.Label); 2523 2524 for (const auto &Entry : DebugLocs.getEntries(List)) { 2525 // GDB only supports startx_length in pre-standard split-DWARF. 2526 // (in v5 standard loclists, it currently* /only/ supports base_address + 2527 // offset_pair, so the implementations can't really share much since they 2528 // need to use different representations) 2529 // * as of October 2018, at least 2530 // Ideally/in v5, this could use SectionLabels to reuse existing addresses 2531 // in the address pool to minimize object size/relocations. 2532 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2533 unsigned idx = AddrPool.getIndex(Entry.Begin); 2534 Asm->EmitULEB128(idx); 2535 // Also the pre-standard encoding is slightly different, emitting this as 2536 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2537 Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4); 2538 emitDebugLocEntryLocation(Entry, List.CU); 2539 } 2540 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2541 } 2542 } 2543 2544 struct ArangeSpan { 2545 const MCSymbol *Start, *End; 2546 }; 2547 2548 // Emit a debug aranges section, containing a CU lookup for any 2549 // address we can tie back to a CU. 2550 void DwarfDebug::emitDebugARanges() { 2551 // Provides a unique id per text section. 2552 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2553 2554 // Filter labels by section. 2555 for (const SymbolCU &SCU : ArangeLabels) { 2556 if (SCU.Sym->isInSection()) { 2557 // Make a note of this symbol and it's section. 2558 MCSection *Section = &SCU.Sym->getSection(); 2559 if (!Section->getKind().isMetadata()) 2560 SectionMap[Section].push_back(SCU); 2561 } else { 2562 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2563 // appear in the output. This sucks as we rely on sections to build 2564 // arange spans. We can do it without, but it's icky. 2565 SectionMap[nullptr].push_back(SCU); 2566 } 2567 } 2568 2569 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2570 2571 for (auto &I : SectionMap) { 2572 MCSection *Section = I.first; 2573 SmallVector<SymbolCU, 8> &List = I.second; 2574 if (List.size() < 1) 2575 continue; 2576 2577 // If we have no section (e.g. common), just write out 2578 // individual spans for each symbol. 2579 if (!Section) { 2580 for (const SymbolCU &Cur : List) { 2581 ArangeSpan Span; 2582 Span.Start = Cur.Sym; 2583 Span.End = nullptr; 2584 assert(Cur.CU); 2585 Spans[Cur.CU].push_back(Span); 2586 } 2587 continue; 2588 } 2589 2590 // Sort the symbols by offset within the section. 2591 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2592 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2593 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2594 2595 // Symbols with no order assigned should be placed at the end. 2596 // (e.g. section end labels) 2597 if (IA == 0) 2598 return false; 2599 if (IB == 0) 2600 return true; 2601 return IA < IB; 2602 }); 2603 2604 // Insert a final terminator. 2605 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2606 2607 // Build spans between each label. 2608 const MCSymbol *StartSym = List[0].Sym; 2609 for (size_t n = 1, e = List.size(); n < e; n++) { 2610 const SymbolCU &Prev = List[n - 1]; 2611 const SymbolCU &Cur = List[n]; 2612 2613 // Try and build the longest span we can within the same CU. 2614 if (Cur.CU != Prev.CU) { 2615 ArangeSpan Span; 2616 Span.Start = StartSym; 2617 Span.End = Cur.Sym; 2618 assert(Prev.CU); 2619 Spans[Prev.CU].push_back(Span); 2620 StartSym = Cur.Sym; 2621 } 2622 } 2623 } 2624 2625 // Start the dwarf aranges section. 2626 Asm->OutStreamer->SwitchSection( 2627 Asm->getObjFileLowering().getDwarfARangesSection()); 2628 2629 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2630 2631 // Build a list of CUs used. 2632 std::vector<DwarfCompileUnit *> CUs; 2633 for (const auto &it : Spans) { 2634 DwarfCompileUnit *CU = it.first; 2635 CUs.push_back(CU); 2636 } 2637 2638 // Sort the CU list (again, to ensure consistent output order). 2639 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2640 return A->getUniqueID() < B->getUniqueID(); 2641 }); 2642 2643 // Emit an arange table for each CU we used. 2644 for (DwarfCompileUnit *CU : CUs) { 2645 std::vector<ArangeSpan> &List = Spans[CU]; 2646 2647 // Describe the skeleton CU's offset and length, not the dwo file's. 2648 if (auto *Skel = CU->getSkeleton()) 2649 CU = Skel; 2650 2651 // Emit size of content not including length itself. 2652 unsigned ContentSize = 2653 sizeof(int16_t) + // DWARF ARange version number 2654 sizeof(int32_t) + // Offset of CU in the .debug_info section 2655 sizeof(int8_t) + // Pointer Size (in bytes) 2656 sizeof(int8_t); // Segment Size (in bytes) 2657 2658 unsigned TupleSize = PtrSize * 2; 2659 2660 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2661 unsigned Padding = 2662 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2663 2664 ContentSize += Padding; 2665 ContentSize += (List.size() + 1) * TupleSize; 2666 2667 // For each compile unit, write the list of spans it covers. 2668 Asm->OutStreamer->AddComment("Length of ARange Set"); 2669 Asm->emitInt32(ContentSize); 2670 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2671 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2672 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2673 emitSectionReference(*CU); 2674 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2675 Asm->emitInt8(PtrSize); 2676 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2677 Asm->emitInt8(0); 2678 2679 Asm->OutStreamer->emitFill(Padding, 0xff); 2680 2681 for (const ArangeSpan &Span : List) { 2682 Asm->EmitLabelReference(Span.Start, PtrSize); 2683 2684 // Calculate the size as being from the span start to it's end. 2685 if (Span.End) { 2686 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 2687 } else { 2688 // For symbols without an end marker (e.g. common), we 2689 // write a single arange entry containing just that one symbol. 2690 uint64_t Size = SymSize[Span.Start]; 2691 if (Size == 0) 2692 Size = 1; 2693 2694 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 2695 } 2696 } 2697 2698 Asm->OutStreamer->AddComment("ARange terminator"); 2699 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2700 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2701 } 2702 } 2703 2704 /// Emit a single range list. We handle both DWARF v5 and earlier. 2705 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2706 const RangeSpanList &List) { 2707 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2708 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2709 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2710 llvm::dwarf::RangeListEncodingString, 2711 List.CU->getCUNode()->getRangesBaseAddress() || 2712 DD.getDwarfVersion() >= 5, 2713 [](auto) {}); 2714 } 2715 2716 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2717 if (Holder.getRangeLists().empty()) 2718 return; 2719 2720 assert(useRangesSection()); 2721 assert(!CUMap.empty()); 2722 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2723 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2724 })); 2725 2726 Asm->OutStreamer->SwitchSection(Section); 2727 2728 MCSymbol *TableEnd = nullptr; 2729 if (getDwarfVersion() >= 5) 2730 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2731 2732 for (const RangeSpanList &List : Holder.getRangeLists()) 2733 emitRangeList(*this, Asm, List); 2734 2735 if (TableEnd) 2736 Asm->OutStreamer->EmitLabel(TableEnd); 2737 } 2738 2739 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2740 /// .debug_rnglists section. 2741 void DwarfDebug::emitDebugRanges() { 2742 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2743 2744 emitDebugRangesImpl(Holder, 2745 getDwarfVersion() >= 5 2746 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2747 : Asm->getObjFileLowering().getDwarfRangesSection()); 2748 } 2749 2750 void DwarfDebug::emitDebugRangesDWO() { 2751 emitDebugRangesImpl(InfoHolder, 2752 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2753 } 2754 2755 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2756 for (auto *MN : Nodes) { 2757 if (auto *M = dyn_cast<DIMacro>(MN)) 2758 emitMacro(*M); 2759 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2760 emitMacroFile(*F, U); 2761 else 2762 llvm_unreachable("Unexpected DI type!"); 2763 } 2764 } 2765 2766 void DwarfDebug::emitMacro(DIMacro &M) { 2767 Asm->EmitULEB128(M.getMacinfoType()); 2768 Asm->EmitULEB128(M.getLine()); 2769 StringRef Name = M.getName(); 2770 StringRef Value = M.getValue(); 2771 Asm->OutStreamer->EmitBytes(Name); 2772 if (!Value.empty()) { 2773 // There should be one space between macro name and macro value. 2774 Asm->emitInt8(' '); 2775 Asm->OutStreamer->EmitBytes(Value); 2776 } 2777 Asm->emitInt8('\0'); 2778 } 2779 2780 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2781 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2782 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 2783 Asm->EmitULEB128(F.getLine()); 2784 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile())); 2785 handleMacroNodes(F.getElements(), U); 2786 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 2787 } 2788 2789 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2790 for (const auto &P : CUMap) { 2791 auto &TheCU = *P.second; 2792 auto *SkCU = TheCU.getSkeleton(); 2793 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2794 auto *CUNode = cast<DICompileUnit>(P.first); 2795 DIMacroNodeArray Macros = CUNode->getMacros(); 2796 if (Macros.empty()) 2797 continue; 2798 Asm->OutStreamer->SwitchSection(Section); 2799 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 2800 handleMacroNodes(Macros, U); 2801 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2802 Asm->emitInt8(0); 2803 } 2804 } 2805 2806 /// Emit macros into a debug macinfo section. 2807 void DwarfDebug::emitDebugMacinfo() { 2808 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection()); 2809 } 2810 2811 void DwarfDebug::emitDebugMacinfoDWO() { 2812 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 2813 } 2814 2815 // DWARF5 Experimental Separate Dwarf emitters. 2816 2817 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2818 std::unique_ptr<DwarfCompileUnit> NewU) { 2819 2820 if (!CompilationDir.empty()) 2821 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2822 2823 addGnuPubAttributes(*NewU, Die); 2824 2825 SkeletonHolder.addUnit(std::move(NewU)); 2826 } 2827 2828 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2829 2830 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2831 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 2832 UnitKind::Skeleton); 2833 DwarfCompileUnit &NewCU = *OwnedUnit; 2834 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2835 2836 NewCU.initStmtList(); 2837 2838 if (useSegmentedStringOffsetsTable()) 2839 NewCU.addStringOffsetsStart(); 2840 2841 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2842 2843 return NewCU; 2844 } 2845 2846 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2847 // compile units that would normally be in debug_info. 2848 void DwarfDebug::emitDebugInfoDWO() { 2849 assert(useSplitDwarf() && "No split dwarf debug info?"); 2850 // Don't emit relocations into the dwo file. 2851 InfoHolder.emitUnits(/* UseOffsets */ true); 2852 } 2853 2854 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2855 // abbreviations for the .debug_info.dwo section. 2856 void DwarfDebug::emitDebugAbbrevDWO() { 2857 assert(useSplitDwarf() && "No split dwarf?"); 2858 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2859 } 2860 2861 void DwarfDebug::emitDebugLineDWO() { 2862 assert(useSplitDwarf() && "No split dwarf?"); 2863 SplitTypeUnitFileTable.Emit( 2864 *Asm->OutStreamer, MCDwarfLineTableParams(), 2865 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2866 } 2867 2868 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2869 assert(useSplitDwarf() && "No split dwarf?"); 2870 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2871 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2872 InfoHolder.getStringOffsetsStartSym()); 2873 } 2874 2875 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2876 // string section and is identical in format to traditional .debug_str 2877 // sections. 2878 void DwarfDebug::emitDebugStrDWO() { 2879 if (useSegmentedStringOffsetsTable()) 2880 emitStringOffsetsTableHeaderDWO(); 2881 assert(useSplitDwarf() && "No split dwarf?"); 2882 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2883 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2884 OffSec, /* UseRelativeOffsets = */ false); 2885 } 2886 2887 // Emit address pool. 2888 void DwarfDebug::emitDebugAddr() { 2889 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2890 } 2891 2892 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2893 if (!useSplitDwarf()) 2894 return nullptr; 2895 const DICompileUnit *DIUnit = CU.getCUNode(); 2896 SplitTypeUnitFileTable.maybeSetRootFile( 2897 DIUnit->getDirectory(), DIUnit->getFilename(), 2898 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2899 return &SplitTypeUnitFileTable; 2900 } 2901 2902 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2903 MD5 Hash; 2904 Hash.update(Identifier); 2905 // ... take the least significant 8 bytes and return those. Our MD5 2906 // implementation always returns its results in little endian, so we actually 2907 // need the "high" word. 2908 MD5::MD5Result Result; 2909 Hash.final(Result); 2910 return Result.high(); 2911 } 2912 2913 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2914 StringRef Identifier, DIE &RefDie, 2915 const DICompositeType *CTy) { 2916 // Fast path if we're building some type units and one has already used the 2917 // address pool we know we're going to throw away all this work anyway, so 2918 // don't bother building dependent types. 2919 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2920 return; 2921 2922 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 2923 if (!Ins.second) { 2924 CU.addDIETypeSignature(RefDie, Ins.first->second); 2925 return; 2926 } 2927 2928 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 2929 AddrPool.resetUsedFlag(); 2930 2931 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 2932 getDwoLineTable(CU)); 2933 DwarfTypeUnit &NewTU = *OwnedUnit; 2934 DIE &UnitDie = NewTU.getUnitDie(); 2935 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 2936 2937 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 2938 CU.getLanguage()); 2939 2940 uint64_t Signature = makeTypeSignature(Identifier); 2941 NewTU.setTypeSignature(Signature); 2942 Ins.first->second = Signature; 2943 2944 if (useSplitDwarf()) { 2945 MCSection *Section = 2946 getDwarfVersion() <= 4 2947 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 2948 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 2949 NewTU.setSection(Section); 2950 } else { 2951 MCSection *Section = 2952 getDwarfVersion() <= 4 2953 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 2954 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 2955 NewTU.setSection(Section); 2956 // Non-split type units reuse the compile unit's line table. 2957 CU.applyStmtList(UnitDie); 2958 } 2959 2960 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 2961 // units. 2962 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 2963 NewTU.addStringOffsetsStart(); 2964 2965 NewTU.setType(NewTU.createTypeDIE(CTy)); 2966 2967 if (TopLevelType) { 2968 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 2969 TypeUnitsUnderConstruction.clear(); 2970 2971 // Types referencing entries in the address table cannot be placed in type 2972 // units. 2973 if (AddrPool.hasBeenUsed()) { 2974 2975 // Remove all the types built while building this type. 2976 // This is pessimistic as some of these types might not be dependent on 2977 // the type that used an address. 2978 for (const auto &TU : TypeUnitsToAdd) 2979 TypeSignatures.erase(TU.second); 2980 2981 // Construct this type in the CU directly. 2982 // This is inefficient because all the dependent types will be rebuilt 2983 // from scratch, including building them in type units, discovering that 2984 // they depend on addresses, throwing them out and rebuilding them. 2985 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 2986 return; 2987 } 2988 2989 // If the type wasn't dependent on fission addresses, finish adding the type 2990 // and all its dependent types. 2991 for (auto &TU : TypeUnitsToAdd) { 2992 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 2993 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 2994 } 2995 } 2996 CU.addDIETypeSignature(RefDie, Signature); 2997 } 2998 2999 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3000 : DD(DD), 3001 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3002 DD->TypeUnitsUnderConstruction.clear(); 3003 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3004 } 3005 3006 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3007 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3008 DD->AddrPool.resetUsedFlag(); 3009 } 3010 3011 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3012 return NonTypeUnitContext(this); 3013 } 3014 3015 // Add the Name along with its companion DIE to the appropriate accelerator 3016 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3017 // AccelTableKind::Apple, we use the table we got as an argument). If 3018 // accelerator tables are disabled, this function does nothing. 3019 template <typename DataT> 3020 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3021 AccelTable<DataT> &AppleAccel, StringRef Name, 3022 const DIE &Die) { 3023 if (getAccelTableKind() == AccelTableKind::None) 3024 return; 3025 3026 if (getAccelTableKind() != AccelTableKind::Apple && 3027 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3028 return; 3029 3030 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3031 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3032 3033 switch (getAccelTableKind()) { 3034 case AccelTableKind::Apple: 3035 AppleAccel.addName(Ref, Die); 3036 break; 3037 case AccelTableKind::Dwarf: 3038 AccelDebugNames.addName(Ref, Die); 3039 break; 3040 case AccelTableKind::Default: 3041 llvm_unreachable("Default should have already been resolved."); 3042 case AccelTableKind::None: 3043 llvm_unreachable("None handled above"); 3044 } 3045 } 3046 3047 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3048 const DIE &Die) { 3049 addAccelNameImpl(CU, AccelNames, Name, Die); 3050 } 3051 3052 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3053 const DIE &Die) { 3054 // ObjC names go only into the Apple accelerator tables. 3055 if (getAccelTableKind() == AccelTableKind::Apple) 3056 addAccelNameImpl(CU, AccelObjC, Name, Die); 3057 } 3058 3059 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3060 const DIE &Die) { 3061 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3062 } 3063 3064 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3065 const DIE &Die, char Flags) { 3066 addAccelNameImpl(CU, AccelTypes, Name, Die); 3067 } 3068 3069 uint16_t DwarfDebug::getDwarfVersion() const { 3070 return Asm->OutStreamer->getContext().getDwarfVersion(); 3071 } 3072 3073 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3074 return SectionLabels.find(S)->second; 3075 } 3076