xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
35 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MD5.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetLoweringObjectFile.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/TargetParser/Triple.h"
57 #include <algorithm>
58 #include <cstddef>
59 #include <iterator>
60 #include <optional>
61 #include <string>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "dwarfdebug"
66 
67 STATISTIC(NumCSParams, "Number of dbg call site params created");
68 
69 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
70     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
71     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
72 
73 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
74                                            cl::Hidden,
75                                            cl::desc("Generate dwarf aranges"),
76                                            cl::init(false));
77 
78 static cl::opt<bool>
79     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
80                            cl::desc("Generate DWARF4 type units."),
81                            cl::init(false));
82 
83 static cl::opt<bool> SplitDwarfCrossCuReferences(
84     "split-dwarf-cross-cu-references", cl::Hidden,
85     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
86 
87 enum DefaultOnOff { Default, Enable, Disable };
88 
89 static cl::opt<DefaultOnOff> UnknownLocations(
90     "use-unknown-locations", cl::Hidden,
91     cl::desc("Make an absence of debug location information explicit."),
92     cl::values(clEnumVal(Default, "At top of block or after label"),
93                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
94     cl::init(Default));
95 
96 static cl::opt<AccelTableKind> AccelTables(
97     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
98     cl::values(clEnumValN(AccelTableKind::Default, "Default",
99                           "Default for platform"),
100                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
101                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
102                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
103     cl::init(AccelTableKind::Default));
104 
105 static cl::opt<DefaultOnOff>
106 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
107                  cl::desc("Use inlined strings rather than string section."),
108                  cl::values(clEnumVal(Default, "Default for platform"),
109                             clEnumVal(Enable, "Enabled"),
110                             clEnumVal(Disable, "Disabled")),
111                  cl::init(Default));
112 
113 static cl::opt<bool>
114     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
115                          cl::desc("Disable emission .debug_ranges section."),
116                          cl::init(false));
117 
118 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
119     "dwarf-sections-as-references", cl::Hidden,
120     cl::desc("Use sections+offset as references rather than labels."),
121     cl::values(clEnumVal(Default, "Default for platform"),
122                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
123     cl::init(Default));
124 
125 static cl::opt<bool>
126     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
127                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
128                      cl::init(false));
129 
130 static cl::opt<DefaultOnOff> DwarfOpConvert(
131     "dwarf-op-convert", cl::Hidden,
132     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
133     cl::values(clEnumVal(Default, "Default for platform"),
134                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
135     cl::init(Default));
136 
137 enum LinkageNameOption {
138   DefaultLinkageNames,
139   AllLinkageNames,
140   AbstractLinkageNames
141 };
142 
143 static cl::opt<LinkageNameOption>
144     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
145                       cl::desc("Which DWARF linkage-name attributes to emit."),
146                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
147                                             "Default for platform"),
148                                  clEnumValN(AllLinkageNames, "All", "All"),
149                                  clEnumValN(AbstractLinkageNames, "Abstract",
150                                             "Abstract subprograms")),
151                       cl::init(DefaultLinkageNames));
152 
153 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
154     "minimize-addr-in-v5", cl::Hidden,
155     cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
156              "address pool entry sharing to reduce relocations/object size"),
157     cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
158                           "Default address minimization strategy"),
159                clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
160                           "Use rnglists for contiguous ranges if that allows "
161                           "using a pre-existing base address"),
162                clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
163                           "Expressions",
164                           "Use exprloc addrx+offset expressions for any "
165                           "address with a prior base address"),
166                clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
167                           "Use addrx+offset extension form for any address "
168                           "with a prior base address"),
169                clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
170                           "Stuff")),
171     cl::init(DwarfDebug::MinimizeAddrInV5::Default));
172 
173 static constexpr unsigned ULEB128PadSize = 4;
174 
175 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
176   getActiveStreamer().emitInt8(
177       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
178                   : dwarf::OperationEncodingString(Op));
179 }
180 
181 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
182   getActiveStreamer().emitSLEB128(Value, Twine(Value));
183 }
184 
185 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
186   getActiveStreamer().emitULEB128(Value, Twine(Value));
187 }
188 
189 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
190   getActiveStreamer().emitInt8(Value, Twine(Value));
191 }
192 
193 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
194   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
195   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
196 }
197 
198 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
199                                               llvm::Register MachineReg) {
200   // This information is not available while emitting .debug_loc entries.
201   return false;
202 }
203 
204 void DebugLocDwarfExpression::enableTemporaryBuffer() {
205   assert(!IsBuffering && "Already buffering?");
206   if (!TmpBuf)
207     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
208   IsBuffering = true;
209 }
210 
211 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
212 
213 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
214   return TmpBuf ? TmpBuf->Bytes.size() : 0;
215 }
216 
217 void DebugLocDwarfExpression::commitTemporaryBuffer() {
218   if (!TmpBuf)
219     return;
220   for (auto Byte : enumerate(TmpBuf->Bytes)) {
221     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
222                               ? TmpBuf->Comments[Byte.index()].c_str()
223                               : "";
224     OutBS.emitInt8(Byte.value(), Comment);
225   }
226   TmpBuf->Bytes.clear();
227   TmpBuf->Comments.clear();
228 }
229 
230 const DIType *DbgVariable::getType() const {
231   return getVariable()->getType();
232 }
233 
234 /// Get .debug_loc entry for the instruction range starting at MI.
235 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
236   const DIExpression *Expr = MI->getDebugExpression();
237   auto SingleLocExprOpt = DIExpression::convertToNonVariadicExpression(Expr);
238   const bool IsVariadic = !SingleLocExprOpt;
239   // If we have a variadic debug value instruction that is equivalent to a
240   // non-variadic instruction, then convert it to non-variadic form here.
241   if (!IsVariadic && !MI->isNonListDebugValue()) {
242     assert(MI->getNumDebugOperands() == 1 &&
243            "Mismatched DIExpression and debug operands for debug instruction.");
244     Expr = *SingleLocExprOpt;
245   }
246   assert(MI->getNumOperands() >= 3);
247   SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
248   for (const MachineOperand &Op : MI->debug_operands()) {
249     if (Op.isReg()) {
250       MachineLocation MLoc(Op.getReg(),
251                            MI->isNonListDebugValue() && MI->isDebugOffsetImm());
252       DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
253     } else if (Op.isTargetIndex()) {
254       DbgValueLocEntries.push_back(
255           DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
256     } else if (Op.isImm())
257       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
258     else if (Op.isFPImm())
259       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
260     else if (Op.isCImm())
261       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
262     else
263       llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
264   }
265   return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
266 }
267 
268 static uint64_t getFragmentOffsetInBits(const DIExpression &Expr) {
269   std::optional<DIExpression::FragmentInfo> Fragment = Expr.getFragmentInfo();
270   return Fragment ? Fragment->OffsetInBits : 0;
271 }
272 
273 bool llvm::operator<(const FrameIndexExpr &LHS, const FrameIndexExpr &RHS) {
274   return getFragmentOffsetInBits(*LHS.Expr) <
275          getFragmentOffsetInBits(*RHS.Expr);
276 }
277 
278 bool llvm::operator<(const EntryValueInfo &LHS, const EntryValueInfo &RHS) {
279   return getFragmentOffsetInBits(LHS.Expr) < getFragmentOffsetInBits(RHS.Expr);
280 }
281 
282 Loc::Single::Single(DbgValueLoc ValueLoc)
283     : ValueLoc(std::make_unique<DbgValueLoc>(ValueLoc)),
284       Expr(ValueLoc.getExpression()) {
285   if (!Expr->getNumElements())
286     Expr = nullptr;
287 }
288 
289 Loc::Single::Single(const MachineInstr *DbgValue)
290     : Single(getDebugLocValue(DbgValue)) {}
291 
292 const std::set<FrameIndexExpr> &Loc::MMI::getFrameIndexExprs() const {
293   return FrameIndexExprs;
294 }
295 
296 void Loc::MMI::addFrameIndexExpr(const DIExpression *Expr, int FI) {
297   FrameIndexExprs.insert({FI, Expr});
298   assert((FrameIndexExprs.size() == 1 ||
299           llvm::all_of(FrameIndexExprs,
300                        [](const FrameIndexExpr &FIE) {
301                          return FIE.Expr && FIE.Expr->isFragment();
302                        })) &&
303          "conflicting locations for variable");
304 }
305 
306 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
307                                             bool GenerateTypeUnits,
308                                             DebuggerKind Tuning,
309                                             const Triple &TT) {
310   // Honor an explicit request.
311   if (AccelTables != AccelTableKind::Default)
312     return AccelTables;
313 
314   // Generating DWARF5 acceleration table.
315   // Currently Split dwarf and non ELF format is not supported.
316   if (GenerateTypeUnits && (DwarfVersion < 5 || !TT.isOSBinFormatELF()))
317     return AccelTableKind::None;
318 
319   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
320   // always implies debug_names. For lower standard versions we use apple
321   // accelerator tables on apple platforms and debug_names elsewhere.
322   if (DwarfVersion >= 5)
323     return AccelTableKind::Dwarf;
324   if (Tuning == DebuggerKind::LLDB)
325     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
326                                    : AccelTableKind::Dwarf;
327   return AccelTableKind::None;
328 }
329 
330 DwarfDebug::DwarfDebug(AsmPrinter *A)
331     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
332       InfoHolder(A, "info_string", DIEValueAllocator),
333       SkeletonHolder(A, "skel_string", DIEValueAllocator),
334       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
335   const Triple &TT = Asm->TM.getTargetTriple();
336 
337   // Make sure we know our "debugger tuning".  The target option takes
338   // precedence; fall back to triple-based defaults.
339   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
340     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
341   else if (IsDarwin)
342     DebuggerTuning = DebuggerKind::LLDB;
343   else if (TT.isPS())
344     DebuggerTuning = DebuggerKind::SCE;
345   else if (TT.isOSAIX())
346     DebuggerTuning = DebuggerKind::DBX;
347   else
348     DebuggerTuning = DebuggerKind::GDB;
349 
350   if (DwarfInlinedStrings == Default)
351     UseInlineStrings = TT.isNVPTX() || tuneForDBX();
352   else
353     UseInlineStrings = DwarfInlinedStrings == Enable;
354 
355   UseLocSection = !TT.isNVPTX();
356 
357   HasAppleExtensionAttributes = tuneForLLDB();
358 
359   // Handle split DWARF.
360   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
361 
362   // SCE defaults to linkage names only for abstract subprograms.
363   if (DwarfLinkageNames == DefaultLinkageNames)
364     UseAllLinkageNames = !tuneForSCE();
365   else
366     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
367 
368   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
369   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
370                                     : MMI->getModule()->getDwarfVersion();
371   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
372   DwarfVersion =
373       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
374 
375   bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
376                  TT.isArch64Bit();    // DWARF64 requires 64-bit relocations.
377 
378   // Support DWARF64
379   // 1: For ELF when requested.
380   // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
381   //    according to the DWARF64 format for 64-bit assembly, so we must use
382   //    DWARF64 in the compiler too for 64-bit mode.
383   Dwarf64 &=
384       ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
385        TT.isOSBinFormatELF()) ||
386       TT.isOSBinFormatXCOFF();
387 
388   if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
389     report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
390 
391   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
392 
393   // Use sections as references. Force for NVPTX.
394   if (DwarfSectionsAsReferences == Default)
395     UseSectionsAsReferences = TT.isNVPTX();
396   else
397     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
398 
399   // Don't generate type units for unsupported object file formats.
400   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
401                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
402                       GenerateDwarfTypeUnits;
403 
404   TheAccelTableKind = computeAccelTableKind(
405       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
406 
407   // Work around a GDB bug. GDB doesn't support the standard opcode;
408   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
409   // is defined as of DWARF 3.
410   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
411   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
412   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
413 
414   UseDWARF2Bitfields = DwarfVersion < 4;
415 
416   // The DWARF v5 string offsets table has - possibly shared - contributions
417   // from each compile and type unit each preceded by a header. The string
418   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
419   // a monolithic string offsets table without any header.
420   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
421 
422   // Emit call-site-param debug info for GDB and LLDB, if the target supports
423   // the debug entry values feature. It can also be enabled explicitly.
424   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
425 
426   // It is unclear if the GCC .debug_macro extension is well-specified
427   // for split DWARF. For now, do not allow LLVM to emit it.
428   UseDebugMacroSection =
429       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
430   if (DwarfOpConvert == Default)
431     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
432   else
433     EnableOpConvert = (DwarfOpConvert == Enable);
434 
435   // Split DWARF would benefit object size significantly by trading reductions
436   // in address pool usage for slightly increased range list encodings.
437   if (DwarfVersion >= 5)
438     MinimizeAddr = MinimizeAddrInV5Option;
439 
440   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
441   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
442                                                         : dwarf::DWARF32);
443 }
444 
445 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
446 DwarfDebug::~DwarfDebug() = default;
447 
448 static bool isObjCClass(StringRef Name) {
449   return Name.starts_with("+") || Name.starts_with("-");
450 }
451 
452 static bool hasObjCCategory(StringRef Name) {
453   if (!isObjCClass(Name))
454     return false;
455 
456   return Name.contains(") ");
457 }
458 
459 static void getObjCClassCategory(StringRef In, StringRef &Class,
460                                  StringRef &Category) {
461   if (!hasObjCCategory(In)) {
462     Class = In.slice(In.find('[') + 1, In.find(' '));
463     Category = "";
464     return;
465   }
466 
467   Class = In.slice(In.find('[') + 1, In.find('('));
468   Category = In.slice(In.find('[') + 1, In.find(' '));
469 }
470 
471 static StringRef getObjCMethodName(StringRef In) {
472   return In.slice(In.find(' ') + 1, In.find(']'));
473 }
474 
475 // Add the various names to the Dwarf accelerator table names.
476 void DwarfDebug::addSubprogramNames(
477     const DwarfUnit &Unit,
478     const DICompileUnit::DebugNameTableKind NameTableKind,
479     const DISubprogram *SP, DIE &Die) {
480   if (getAccelTableKind() != AccelTableKind::Apple &&
481       NameTableKind != DICompileUnit::DebugNameTableKind::Apple &&
482       NameTableKind == DICompileUnit::DebugNameTableKind::None)
483     return;
484 
485   if (!SP->isDefinition())
486     return;
487 
488   if (SP->getName() != "")
489     addAccelName(Unit, NameTableKind, SP->getName(), Die);
490 
491   // If the linkage name is different than the name, go ahead and output that as
492   // well into the name table. Only do that if we are going to actually emit
493   // that name.
494   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
495       (useAllLinkageNames() || InfoHolder.getAbstractScopeDIEs().lookup(SP)))
496     addAccelName(Unit, NameTableKind, SP->getLinkageName(), Die);
497 
498   // If this is an Objective-C selector name add it to the ObjC accelerator
499   // too.
500   if (isObjCClass(SP->getName())) {
501     StringRef Class, Category;
502     getObjCClassCategory(SP->getName(), Class, Category);
503     addAccelObjC(Unit, NameTableKind, Class, Die);
504     if (Category != "")
505       addAccelObjC(Unit, NameTableKind, Category, Die);
506     // Also add the base method name to the name table.
507     addAccelName(Unit, NameTableKind, getObjCMethodName(SP->getName()), Die);
508   }
509 }
510 
511 /// Check whether we should create a DIE for the given Scope, return true
512 /// if we don't create a DIE (the corresponding DIE is null).
513 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
514   if (Scope->isAbstractScope())
515     return false;
516 
517   // We don't create a DIE if there is no Range.
518   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
519   if (Ranges.empty())
520     return true;
521 
522   if (Ranges.size() > 1)
523     return false;
524 
525   // We don't create a DIE if we have a single Range and the end label
526   // is null.
527   return !getLabelAfterInsn(Ranges.front().second);
528 }
529 
530 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
531   F(CU);
532   if (auto *SkelCU = CU.getSkeleton())
533     if (CU.getCUNode()->getSplitDebugInlining())
534       F(*SkelCU);
535 }
536 
537 bool DwarfDebug::shareAcrossDWOCUs() const {
538   return SplitDwarfCrossCuReferences;
539 }
540 
541 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
542                                                      LexicalScope *Scope) {
543   assert(Scope && Scope->getScopeNode());
544   assert(Scope->isAbstractScope());
545   assert(!Scope->getInlinedAt());
546 
547   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
548 
549   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
550   // was inlined from another compile unit.
551   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
552     // Avoid building the original CU if it won't be used
553     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
554   else {
555     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
556     if (auto *SkelCU = CU.getSkeleton()) {
557       (shareAcrossDWOCUs() ? CU : SrcCU)
558           .constructAbstractSubprogramScopeDIE(Scope);
559       if (CU.getCUNode()->getSplitDebugInlining())
560         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
561     } else
562       CU.constructAbstractSubprogramScopeDIE(Scope);
563   }
564 }
565 
566 /// Represents a parameter whose call site value can be described by applying a
567 /// debug expression to a register in the forwarded register worklist.
568 struct FwdRegParamInfo {
569   /// The described parameter register.
570   unsigned ParamReg;
571 
572   /// Debug expression that has been built up when walking through the
573   /// instruction chain that produces the parameter's value.
574   const DIExpression *Expr;
575 };
576 
577 /// Register worklist for finding call site values.
578 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
579 /// Container for the set of registers known to be clobbered on the path to a
580 /// call site.
581 using ClobberedRegSet = SmallSet<Register, 16>;
582 
583 /// Append the expression \p Addition to \p Original and return the result.
584 static const DIExpression *combineDIExpressions(const DIExpression *Original,
585                                                 const DIExpression *Addition) {
586   std::vector<uint64_t> Elts = Addition->getElements().vec();
587   // Avoid multiple DW_OP_stack_values.
588   if (Original->isImplicit() && Addition->isImplicit())
589     llvm::erase(Elts, dwarf::DW_OP_stack_value);
590   const DIExpression *CombinedExpr =
591       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
592   return CombinedExpr;
593 }
594 
595 /// Emit call site parameter entries that are described by the given value and
596 /// debug expression.
597 template <typename ValT>
598 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
599                                  ArrayRef<FwdRegParamInfo> DescribedParams,
600                                  ParamSet &Params) {
601   for (auto Param : DescribedParams) {
602     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
603 
604     // TODO: Entry value operations can currently not be combined with any
605     // other expressions, so we can't emit call site entries in those cases.
606     if (ShouldCombineExpressions && Expr->isEntryValue())
607       continue;
608 
609     // If a parameter's call site value is produced by a chain of
610     // instructions we may have already created an expression for the
611     // parameter when walking through the instructions. Append that to the
612     // base expression.
613     const DIExpression *CombinedExpr =
614         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
615                                  : Expr;
616     assert((!CombinedExpr || CombinedExpr->isValid()) &&
617            "Combined debug expression is invalid");
618 
619     DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
620     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
621     Params.push_back(CSParm);
622     ++NumCSParams;
623   }
624 }
625 
626 /// Add \p Reg to the worklist, if it's not already present, and mark that the
627 /// given parameter registers' values can (potentially) be described using
628 /// that register and an debug expression.
629 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
630                                 const DIExpression *Expr,
631                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
632   auto I = Worklist.insert({Reg, {}});
633   auto &ParamsForFwdReg = I.first->second;
634   for (auto Param : ParamsToAdd) {
635     assert(none_of(ParamsForFwdReg,
636                    [Param](const FwdRegParamInfo &D) {
637                      return D.ParamReg == Param.ParamReg;
638                    }) &&
639            "Same parameter described twice by forwarding reg");
640 
641     // If a parameter's call site value is produced by a chain of
642     // instructions we may have already created an expression for the
643     // parameter when walking through the instructions. Append that to the
644     // new expression.
645     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
646     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
647   }
648 }
649 
650 /// Interpret values loaded into registers by \p CurMI.
651 static void interpretValues(const MachineInstr *CurMI,
652                             FwdRegWorklist &ForwardedRegWorklist,
653                             ParamSet &Params,
654                             ClobberedRegSet &ClobberedRegUnits) {
655 
656   const MachineFunction *MF = CurMI->getMF();
657   const DIExpression *EmptyExpr =
658       DIExpression::get(MF->getFunction().getContext(), {});
659   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
660   const auto &TII = *MF->getSubtarget().getInstrInfo();
661   const auto &TLI = *MF->getSubtarget().getTargetLowering();
662 
663   // If an instruction defines more than one item in the worklist, we may run
664   // into situations where a worklist register's value is (potentially)
665   // described by the previous value of another register that is also defined
666   // by that instruction.
667   //
668   // This can for example occur in cases like this:
669   //
670   //   $r1 = mov 123
671   //   $r0, $r1 = mvrr $r1, 456
672   //   call @foo, $r0, $r1
673   //
674   // When describing $r1's value for the mvrr instruction, we need to make sure
675   // that we don't finalize an entry value for $r0, as that is dependent on the
676   // previous value of $r1 (123 rather than 456).
677   //
678   // In order to not have to distinguish between those cases when finalizing
679   // entry values, we simply postpone adding new parameter registers to the
680   // worklist, by first keeping them in this temporary container until the
681   // instruction has been handled.
682   FwdRegWorklist TmpWorklistItems;
683 
684   // If the MI is an instruction defining one or more parameters' forwarding
685   // registers, add those defines.
686   ClobberedRegSet NewClobberedRegUnits;
687   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
688                                           SmallSetVector<unsigned, 4> &Defs) {
689     if (MI.isDebugInstr())
690       return;
691 
692     for (const MachineOperand &MO : MI.all_defs()) {
693       if (MO.getReg().isPhysical()) {
694         for (auto &FwdReg : ForwardedRegWorklist)
695           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
696             Defs.insert(FwdReg.first);
697         for (MCRegUnit Unit : TRI.regunits(MO.getReg()))
698           NewClobberedRegUnits.insert(Unit);
699       }
700     }
701   };
702 
703   // Set of worklist registers that are defined by this instruction.
704   SmallSetVector<unsigned, 4> FwdRegDefs;
705 
706   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
707   if (FwdRegDefs.empty()) {
708     // Any definitions by this instruction will clobber earlier reg movements.
709     ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
710                              NewClobberedRegUnits.end());
711     return;
712   }
713 
714   // It's possible that we find a copy from a non-volatile register to the param
715   // register, which is clobbered in the meantime. Test for clobbered reg unit
716   // overlaps before completing.
717   auto IsRegClobberedInMeantime = [&](Register Reg) -> bool {
718     for (auto &RegUnit : ClobberedRegUnits)
719       if (TRI.hasRegUnit(Reg, RegUnit))
720         return true;
721     return false;
722   };
723 
724   for (auto ParamFwdReg : FwdRegDefs) {
725     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
726       if (ParamValue->first.isImm()) {
727         int64_t Val = ParamValue->first.getImm();
728         finishCallSiteParams(Val, ParamValue->second,
729                              ForwardedRegWorklist[ParamFwdReg], Params);
730       } else if (ParamValue->first.isReg()) {
731         Register RegLoc = ParamValue->first.getReg();
732         Register SP = TLI.getStackPointerRegisterToSaveRestore();
733         Register FP = TRI.getFrameRegister(*MF);
734         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
735         if (!IsRegClobberedInMeantime(RegLoc) &&
736             (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP)) {
737           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
738           finishCallSiteParams(MLoc, ParamValue->second,
739                                ForwardedRegWorklist[ParamFwdReg], Params);
740         } else {
741           // ParamFwdReg was described by the non-callee saved register
742           // RegLoc. Mark that the call site values for the parameters are
743           // dependent on that register instead of ParamFwdReg. Since RegLoc
744           // may be a register that will be handled in this iteration, we
745           // postpone adding the items to the worklist, and instead keep them
746           // in a temporary container.
747           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
748                               ForwardedRegWorklist[ParamFwdReg]);
749         }
750       }
751     }
752   }
753 
754   // Remove all registers that this instruction defines from the worklist.
755   for (auto ParamFwdReg : FwdRegDefs)
756     ForwardedRegWorklist.erase(ParamFwdReg);
757 
758   // Any definitions by this instruction will clobber earlier reg movements.
759   ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
760                            NewClobberedRegUnits.end());
761 
762   // Now that we are done handling this instruction, add items from the
763   // temporary worklist to the real one.
764   for (auto &New : TmpWorklistItems)
765     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
766   TmpWorklistItems.clear();
767 }
768 
769 static bool interpretNextInstr(const MachineInstr *CurMI,
770                                FwdRegWorklist &ForwardedRegWorklist,
771                                ParamSet &Params,
772                                ClobberedRegSet &ClobberedRegUnits) {
773   // Skip bundle headers.
774   if (CurMI->isBundle())
775     return true;
776 
777   // If the next instruction is a call we can not interpret parameter's
778   // forwarding registers or we finished the interpretation of all
779   // parameters.
780   if (CurMI->isCall())
781     return false;
782 
783   if (ForwardedRegWorklist.empty())
784     return false;
785 
786   // Avoid NOP description.
787   if (CurMI->getNumOperands() == 0)
788     return true;
789 
790   interpretValues(CurMI, ForwardedRegWorklist, Params, ClobberedRegUnits);
791 
792   return true;
793 }
794 
795 /// Try to interpret values loaded into registers that forward parameters
796 /// for \p CallMI. Store parameters with interpreted value into \p Params.
797 static void collectCallSiteParameters(const MachineInstr *CallMI,
798                                       ParamSet &Params) {
799   const MachineFunction *MF = CallMI->getMF();
800   const auto &CalleesMap = MF->getCallSitesInfo();
801   auto CSInfo = CalleesMap.find(CallMI);
802 
803   // There is no information for the call instruction.
804   if (CSInfo == CalleesMap.end())
805     return;
806 
807   const MachineBasicBlock *MBB = CallMI->getParent();
808 
809   // Skip the call instruction.
810   auto I = std::next(CallMI->getReverseIterator());
811 
812   FwdRegWorklist ForwardedRegWorklist;
813 
814   const DIExpression *EmptyExpr =
815       DIExpression::get(MF->getFunction().getContext(), {});
816 
817   // Add all the forwarding registers into the ForwardedRegWorklist.
818   for (const auto &ArgReg : CSInfo->second.ArgRegPairs) {
819     bool InsertedReg =
820         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
821             .second;
822     assert(InsertedReg && "Single register used to forward two arguments?");
823     (void)InsertedReg;
824   }
825 
826   // Do not emit CSInfo for undef forwarding registers.
827   for (const auto &MO : CallMI->uses())
828     if (MO.isReg() && MO.isUndef())
829       ForwardedRegWorklist.erase(MO.getReg());
830 
831   // We erase, from the ForwardedRegWorklist, those forwarding registers for
832   // which we successfully describe a loaded value (by using
833   // the describeLoadedValue()). For those remaining arguments in the working
834   // list, for which we do not describe a loaded value by
835   // the describeLoadedValue(), we try to generate an entry value expression
836   // for their call site value description, if the call is within the entry MBB.
837   // TODO: Handle situations when call site parameter value can be described
838   // as the entry value within basic blocks other than the first one.
839   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
840 
841   // Search for a loading value in forwarding registers inside call delay slot.
842   ClobberedRegSet ClobberedRegUnits;
843   if (CallMI->hasDelaySlot()) {
844     auto Suc = std::next(CallMI->getIterator());
845     // Only one-instruction delay slot is supported.
846     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
847     (void)BundleEnd;
848     assert(std::next(Suc) == BundleEnd &&
849            "More than one instruction in call delay slot");
850     // Try to interpret value loaded by instruction.
851     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params, ClobberedRegUnits))
852       return;
853   }
854 
855   // Search for a loading value in forwarding registers.
856   for (; I != MBB->rend(); ++I) {
857     // Try to interpret values loaded by instruction.
858     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params, ClobberedRegUnits))
859       return;
860   }
861 
862   // Emit the call site parameter's value as an entry value.
863   if (ShouldTryEmitEntryVals) {
864     // Create an expression where the register's entry value is used.
865     DIExpression *EntryExpr = DIExpression::get(
866         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
867     for (auto &RegEntry : ForwardedRegWorklist) {
868       MachineLocation MLoc(RegEntry.first);
869       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
870     }
871   }
872 }
873 
874 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
875                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
876                                             const MachineFunction &MF) {
877   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
878   // the subprogram is required to have one.
879   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
880     return;
881 
882   // Use DW_AT_call_all_calls to express that call site entries are present
883   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
884   // because one of its requirements is not met: call site entries for
885   // optimized-out calls are elided.
886   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
887 
888   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
889   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
890 
891   // Delay slot support check.
892   auto delaySlotSupported = [&](const MachineInstr &MI) {
893     if (!MI.isBundledWithSucc())
894       return false;
895     auto Suc = std::next(MI.getIterator());
896     auto CallInstrBundle = getBundleStart(MI.getIterator());
897     (void)CallInstrBundle;
898     auto DelaySlotBundle = getBundleStart(Suc);
899     (void)DelaySlotBundle;
900     // Ensure that label after call is following delay slot instruction.
901     // Ex. CALL_INSTRUCTION {
902     //       DELAY_SLOT_INSTRUCTION }
903     //      LABEL_AFTER_CALL
904     assert(getLabelAfterInsn(&*CallInstrBundle) ==
905                getLabelAfterInsn(&*DelaySlotBundle) &&
906            "Call and its successor instruction don't have same label after.");
907     return true;
908   };
909 
910   // Emit call site entries for each call or tail call in the function.
911   for (const MachineBasicBlock &MBB : MF) {
912     for (const MachineInstr &MI : MBB.instrs()) {
913       // Bundles with call in them will pass the isCall() test below but do not
914       // have callee operand information so skip them here. Iterator will
915       // eventually reach the call MI.
916       if (MI.isBundle())
917         continue;
918 
919       // Skip instructions which aren't calls. Both calls and tail-calling jump
920       // instructions (e.g TAILJMPd64) are classified correctly here.
921       if (!MI.isCandidateForCallSiteEntry())
922         continue;
923 
924       // Skip instructions marked as frame setup, as they are not interesting to
925       // the user.
926       if (MI.getFlag(MachineInstr::FrameSetup))
927         continue;
928 
929       // Check if delay slot support is enabled.
930       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
931         return;
932 
933       // If this is a direct call, find the callee's subprogram.
934       // In the case of an indirect call find the register that holds
935       // the callee.
936       const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
937       if (!CalleeOp.isGlobal() &&
938           (!CalleeOp.isReg() || !CalleeOp.getReg().isPhysical()))
939         continue;
940 
941       unsigned CallReg = 0;
942       const DISubprogram *CalleeSP = nullptr;
943       const Function *CalleeDecl = nullptr;
944       if (CalleeOp.isReg()) {
945         CallReg = CalleeOp.getReg();
946         if (!CallReg)
947           continue;
948       } else {
949         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
950         if (!CalleeDecl || !CalleeDecl->getSubprogram())
951           continue;
952         CalleeSP = CalleeDecl->getSubprogram();
953       }
954 
955       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
956 
957       bool IsTail = TII->isTailCall(MI);
958 
959       // If MI is in a bundle, the label was created after the bundle since
960       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
961       // to search for that label below.
962       const MachineInstr *TopLevelCallMI =
963           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
964 
965       // For non-tail calls, the return PC is needed to disambiguate paths in
966       // the call graph which could lead to some target function. For tail
967       // calls, no return PC information is needed, unless tuning for GDB in
968       // DWARF4 mode in which case we fake a return PC for compatibility.
969       const MCSymbol *PCAddr =
970           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
971               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
972               : nullptr;
973 
974       // For tail calls, it's necessary to record the address of the branch
975       // instruction so that the debugger can show where the tail call occurred.
976       const MCSymbol *CallAddr =
977           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
978 
979       assert((IsTail || PCAddr) && "Non-tail call without return PC");
980 
981       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
982                         << (CalleeDecl ? CalleeDecl->getName()
983                                        : StringRef(MF.getSubtarget()
984                                                        .getRegisterInfo()
985                                                        ->getName(CallReg)))
986                         << (IsTail ? " [IsTail]" : "") << "\n");
987 
988       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
989           ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
990 
991       // Optionally emit call-site-param debug info.
992       if (emitDebugEntryValues()) {
993         ParamSet Params;
994         // Try to interpret values of call site parameters.
995         collectCallSiteParameters(&MI, Params);
996         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
997       }
998     }
999   }
1000 }
1001 
1002 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1003   if (!U.hasDwarfPubSections())
1004     return;
1005 
1006   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1007 }
1008 
1009 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1010                                       DwarfCompileUnit &NewCU) {
1011   DIE &Die = NewCU.getUnitDie();
1012   StringRef FN = DIUnit->getFilename();
1013 
1014   StringRef Producer = DIUnit->getProducer();
1015   StringRef Flags = DIUnit->getFlags();
1016   if (!Flags.empty() && !useAppleExtensionAttributes()) {
1017     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1018     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1019   } else
1020     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1021 
1022   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1023                 DIUnit->getSourceLanguage());
1024   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1025   StringRef SysRoot = DIUnit->getSysRoot();
1026   if (!SysRoot.empty())
1027     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1028   StringRef SDK = DIUnit->getSDK();
1029   if (!SDK.empty())
1030     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1031 
1032   if (!useSplitDwarf()) {
1033     // Add DW_str_offsets_base to the unit DIE, except for split units.
1034     if (useSegmentedStringOffsetsTable())
1035       NewCU.addStringOffsetsStart();
1036 
1037     NewCU.initStmtList();
1038 
1039     // If we're using split dwarf the compilation dir is going to be in the
1040     // skeleton CU and so we don't need to duplicate it here.
1041     if (!CompilationDir.empty())
1042       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1043     addGnuPubAttributes(NewCU, Die);
1044   }
1045 
1046   if (useAppleExtensionAttributes()) {
1047     if (DIUnit->isOptimized())
1048       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1049 
1050     StringRef Flags = DIUnit->getFlags();
1051     if (!Flags.empty())
1052       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1053 
1054     if (unsigned RVer = DIUnit->getRuntimeVersion())
1055       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1056                     dwarf::DW_FORM_data1, RVer);
1057   }
1058 
1059   if (DIUnit->getDWOId()) {
1060     // This CU is either a clang module DWO or a skeleton CU.
1061     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1062                   DIUnit->getDWOId());
1063     if (!DIUnit->getSplitDebugFilename().empty()) {
1064       // This is a prefabricated skeleton CU.
1065       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1066                                          ? dwarf::DW_AT_dwo_name
1067                                          : dwarf::DW_AT_GNU_dwo_name;
1068       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1069     }
1070   }
1071 }
1072 // Create new DwarfCompileUnit for the given metadata node with tag
1073 // DW_TAG_compile_unit.
1074 DwarfCompileUnit &
1075 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1076   if (auto *CU = CUMap.lookup(DIUnit))
1077     return *CU;
1078 
1079   if (useSplitDwarf() &&
1080       !shareAcrossDWOCUs() &&
1081       (!DIUnit->getSplitDebugInlining() ||
1082        DIUnit->getEmissionKind() == DICompileUnit::FullDebug) &&
1083       !CUMap.empty()) {
1084     return *CUMap.begin()->second;
1085   }
1086   CompilationDir = DIUnit->getDirectory();
1087 
1088   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1089       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1090   DwarfCompileUnit &NewCU = *OwnedUnit;
1091   InfoHolder.addUnit(std::move(OwnedUnit));
1092 
1093   // LTO with assembly output shares a single line table amongst multiple CUs.
1094   // To avoid the compilation directory being ambiguous, let the line table
1095   // explicitly describe the directory of all files, never relying on the
1096   // compilation directory.
1097   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1098     Asm->OutStreamer->emitDwarfFile0Directive(
1099         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1100         DIUnit->getSource(), NewCU.getUniqueID());
1101 
1102   if (useSplitDwarf()) {
1103     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1104     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1105   } else {
1106     finishUnitAttributes(DIUnit, NewCU);
1107     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1108   }
1109 
1110   CUMap.insert({DIUnit, &NewCU});
1111   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1112   return NewCU;
1113 }
1114 
1115 /// Sort and unique GVEs by comparing their fragment offset.
1116 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1117 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1118   llvm::sort(
1119       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1120         // Sort order: first null exprs, then exprs without fragment
1121         // info, then sort by fragment offset in bits.
1122         // FIXME: Come up with a more comprehensive comparator so
1123         // the sorting isn't non-deterministic, and so the following
1124         // std::unique call works correctly.
1125         if (!A.Expr || !B.Expr)
1126           return !!B.Expr;
1127         auto FragmentA = A.Expr->getFragmentInfo();
1128         auto FragmentB = B.Expr->getFragmentInfo();
1129         if (!FragmentA || !FragmentB)
1130           return !!FragmentB;
1131         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1132       });
1133   GVEs.erase(llvm::unique(GVEs,
1134                           [](DwarfCompileUnit::GlobalExpr A,
1135                              DwarfCompileUnit::GlobalExpr B) {
1136                             return A.Expr == B.Expr;
1137                           }),
1138              GVEs.end());
1139   return GVEs;
1140 }
1141 
1142 // Emit all Dwarf sections that should come prior to the content. Create
1143 // global DIEs and emit initial debug info sections. This is invoked by
1144 // the target AsmPrinter.
1145 void DwarfDebug::beginModule(Module *M) {
1146   DebugHandlerBase::beginModule(M);
1147 
1148   if (!Asm || !MMI->hasDebugInfo())
1149     return;
1150 
1151   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1152                                        M->debug_compile_units_end());
1153   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1154   assert(MMI->hasDebugInfo() &&
1155          "DebugInfoAvailabilty unexpectedly not initialized");
1156   SingleCU = NumDebugCUs == 1;
1157   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1158       GVMap;
1159   for (const GlobalVariable &Global : M->globals()) {
1160     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1161     Global.getDebugInfo(GVs);
1162     for (auto *GVE : GVs)
1163       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1164   }
1165 
1166   // Create the symbol that designates the start of the unit's contribution
1167   // to the string offsets table. In a split DWARF scenario, only the skeleton
1168   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1169   if (useSegmentedStringOffsetsTable())
1170     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1171         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1172 
1173 
1174   // Create the symbols that designates the start of the DWARF v5 range list
1175   // and locations list tables. They are located past the table headers.
1176   if (getDwarfVersion() >= 5) {
1177     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1178     Holder.setRnglistsTableBaseSym(
1179         Asm->createTempSymbol("rnglists_table_base"));
1180 
1181     if (useSplitDwarf())
1182       InfoHolder.setRnglistsTableBaseSym(
1183           Asm->createTempSymbol("rnglists_dwo_table_base"));
1184   }
1185 
1186   // Create the symbol that points to the first entry following the debug
1187   // address table (.debug_addr) header.
1188   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1189   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1190 
1191   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1192     if (CUNode->getImportedEntities().empty() &&
1193         CUNode->getEnumTypes().empty() && CUNode->getRetainedTypes().empty() &&
1194         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1195       continue;
1196 
1197     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1198 
1199     // Global Variables.
1200     for (auto *GVE : CUNode->getGlobalVariables()) {
1201       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1202       // already know about the variable and it isn't adding a constant
1203       // expression.
1204       auto &GVMapEntry = GVMap[GVE->getVariable()];
1205       auto *Expr = GVE->getExpression();
1206       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1207         GVMapEntry.push_back({nullptr, Expr});
1208     }
1209 
1210     DenseSet<DIGlobalVariable *> Processed;
1211     for (auto *GVE : CUNode->getGlobalVariables()) {
1212       DIGlobalVariable *GV = GVE->getVariable();
1213       if (Processed.insert(GV).second)
1214         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1215     }
1216 
1217     for (auto *Ty : CUNode->getEnumTypes())
1218       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1219 
1220     for (auto *Ty : CUNode->getRetainedTypes()) {
1221       // The retained types array by design contains pointers to
1222       // MDNodes rather than DIRefs. Unique them here.
1223       if (DIType *RT = dyn_cast<DIType>(Ty))
1224         // There is no point in force-emitting a forward declaration.
1225         CU.getOrCreateTypeDIE(RT);
1226     }
1227   }
1228 }
1229 
1230 void DwarfDebug::finishEntityDefinitions() {
1231   for (const auto &Entity : ConcreteEntities) {
1232     DIE *Die = Entity->getDIE();
1233     assert(Die);
1234     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1235     // in the ConcreteEntities list, rather than looking it up again here.
1236     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1237     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1238     assert(Unit);
1239     Unit->finishEntityDefinition(Entity.get());
1240   }
1241 }
1242 
1243 void DwarfDebug::finishSubprogramDefinitions() {
1244   for (const DISubprogram *SP : ProcessedSPNodes) {
1245     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1246     forBothCUs(
1247         getOrCreateDwarfCompileUnit(SP->getUnit()),
1248         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1249   }
1250 }
1251 
1252 void DwarfDebug::finalizeModuleInfo() {
1253   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1254 
1255   finishSubprogramDefinitions();
1256 
1257   finishEntityDefinitions();
1258 
1259   // Include the DWO file name in the hash if there's more than one CU.
1260   // This handles ThinLTO's situation where imported CUs may very easily be
1261   // duplicate with the same CU partially imported into another ThinLTO unit.
1262   StringRef DWOName;
1263   if (CUMap.size() > 1)
1264     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1265 
1266   bool HasEmittedSplitCU = false;
1267 
1268   // Handle anything that needs to be done on a per-unit basis after
1269   // all other generation.
1270   for (const auto &P : CUMap) {
1271     auto &TheCU = *P.second;
1272     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1273       continue;
1274     // Emit DW_AT_containing_type attribute to connect types with their
1275     // vtable holding type.
1276     TheCU.constructContainingTypeDIEs();
1277 
1278     // Add CU specific attributes if we need to add any.
1279     // If we're splitting the dwarf out now that we've got the entire
1280     // CU then add the dwo id to it.
1281     auto *SkCU = TheCU.getSkeleton();
1282 
1283     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1284 
1285     if (HasSplitUnit) {
1286       (void)HasEmittedSplitCU;
1287       assert((shareAcrossDWOCUs() || !HasEmittedSplitCU) &&
1288              "Multiple CUs emitted into a single dwo file");
1289       HasEmittedSplitCU = true;
1290       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1291                                          ? dwarf::DW_AT_dwo_name
1292                                          : dwarf::DW_AT_GNU_dwo_name;
1293       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1294       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1295                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1296       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1297                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1298       // Emit a unique identifier for this CU.
1299       uint64_t ID =
1300           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1301       if (getDwarfVersion() >= 5) {
1302         TheCU.setDWOId(ID);
1303         SkCU->setDWOId(ID);
1304       } else {
1305         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1306                       dwarf::DW_FORM_data8, ID);
1307         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1308                       dwarf::DW_FORM_data8, ID);
1309       }
1310 
1311       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1312         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1313         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1314                               Sym, Sym);
1315       }
1316     } else if (SkCU) {
1317       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1318     }
1319 
1320     // If we have code split among multiple sections or non-contiguous
1321     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1322     // remain in the .o file, otherwise add a DW_AT_low_pc.
1323     // FIXME: We should use ranges allow reordering of code ala
1324     // .subsections_via_symbols in mach-o. This would mean turning on
1325     // ranges for all subprogram DIEs for mach-o.
1326     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1327 
1328     if (unsigned NumRanges = TheCU.getRanges().size()) {
1329       if (NumRanges > 1 && useRangesSection())
1330         // A DW_AT_low_pc attribute may also be specified in combination with
1331         // DW_AT_ranges to specify the default base address for use in
1332         // location lists (see Section 2.6.2) and range lists (see Section
1333         // 2.17.3).
1334         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1335       else
1336         U.setBaseAddress(TheCU.getRanges().front().Begin);
1337       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1338     }
1339 
1340     // We don't keep track of which addresses are used in which CU so this
1341     // is a bit pessimistic under LTO.
1342     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1343       U.addAddrTableBase();
1344 
1345     if (getDwarfVersion() >= 5) {
1346       if (U.hasRangeLists())
1347         U.addRnglistsBase();
1348 
1349       if (!DebugLocs.getLists().empty() && !useSplitDwarf()) {
1350         U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1351                           DebugLocs.getSym(),
1352                           TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1353       }
1354     }
1355 
1356     auto *CUNode = cast<DICompileUnit>(P.first);
1357     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1358     // attribute.
1359     if (CUNode->getMacros()) {
1360       if (UseDebugMacroSection) {
1361         if (useSplitDwarf())
1362           TheCU.addSectionDelta(
1363               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1364               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1365         else {
1366           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1367                                             ? dwarf::DW_AT_macros
1368                                             : dwarf::DW_AT_GNU_macros;
1369           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1370                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1371         }
1372       } else {
1373         if (useSplitDwarf())
1374           TheCU.addSectionDelta(
1375               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1376               U.getMacroLabelBegin(),
1377               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1378         else
1379           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1380                             U.getMacroLabelBegin(),
1381                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1382       }
1383     }
1384     }
1385 
1386   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1387   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1388     if (CUNode->getDWOId())
1389       getOrCreateDwarfCompileUnit(CUNode);
1390 
1391   // Compute DIE offsets and sizes.
1392   InfoHolder.computeSizeAndOffsets();
1393   if (useSplitDwarf())
1394     SkeletonHolder.computeSizeAndOffsets();
1395 
1396   // Now that offsets are computed, can replace DIEs in debug_names Entry with
1397   // an actual offset.
1398   AccelDebugNames.convertDieToOffset();
1399 }
1400 
1401 // Emit all Dwarf sections that should come after the content.
1402 void DwarfDebug::endModule() {
1403   // Terminate the pending line table.
1404   if (PrevCU)
1405     terminateLineTable(PrevCU);
1406   PrevCU = nullptr;
1407   assert(CurFn == nullptr);
1408   assert(CurMI == nullptr);
1409 
1410   for (const auto &P : CUMap) {
1411     const auto *CUNode = cast<DICompileUnit>(P.first);
1412     DwarfCompileUnit *CU = &*P.second;
1413 
1414     // Emit imported entities.
1415     for (auto *IE : CUNode->getImportedEntities()) {
1416       assert(!isa_and_nonnull<DILocalScope>(IE->getScope()) &&
1417              "Unexpected function-local entity in 'imports' CU field.");
1418       CU->getOrCreateImportedEntityDIE(IE);
1419     }
1420     for (const auto *D : CU->getDeferredLocalDecls()) {
1421       if (auto *IE = dyn_cast<DIImportedEntity>(D))
1422         CU->getOrCreateImportedEntityDIE(IE);
1423       else
1424         llvm_unreachable("Unexpected local retained node!");
1425     }
1426 
1427     // Emit base types.
1428     CU->createBaseTypeDIEs();
1429   }
1430 
1431   // If we aren't actually generating debug info (check beginModule -
1432   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1433   if (!Asm || !MMI->hasDebugInfo())
1434     return;
1435 
1436   // Finalize the debug info for the module.
1437   finalizeModuleInfo();
1438 
1439   if (useSplitDwarf())
1440     // Emit debug_loc.dwo/debug_loclists.dwo section.
1441     emitDebugLocDWO();
1442   else
1443     // Emit debug_loc/debug_loclists section.
1444     emitDebugLoc();
1445 
1446   // Corresponding abbreviations into a abbrev section.
1447   emitAbbreviations();
1448 
1449   // Emit all the DIEs into a debug info section.
1450   emitDebugInfo();
1451 
1452   // Emit info into a debug aranges section.
1453   if (GenerateARangeSection)
1454     emitDebugARanges();
1455 
1456   // Emit info into a debug ranges section.
1457   emitDebugRanges();
1458 
1459   if (useSplitDwarf())
1460   // Emit info into a debug macinfo.dwo section.
1461     emitDebugMacinfoDWO();
1462   else
1463     // Emit info into a debug macinfo/macro section.
1464     emitDebugMacinfo();
1465 
1466   emitDebugStr();
1467 
1468   if (useSplitDwarf()) {
1469     emitDebugStrDWO();
1470     emitDebugInfoDWO();
1471     emitDebugAbbrevDWO();
1472     emitDebugLineDWO();
1473     emitDebugRangesDWO();
1474   }
1475 
1476   emitDebugAddr();
1477 
1478   // Emit info into the dwarf accelerator table sections.
1479   switch (getAccelTableKind()) {
1480   case AccelTableKind::Apple:
1481     emitAccelNames();
1482     emitAccelObjC();
1483     emitAccelNamespaces();
1484     emitAccelTypes();
1485     break;
1486   case AccelTableKind::Dwarf:
1487     emitAccelDebugNames();
1488     break;
1489   case AccelTableKind::None:
1490     break;
1491   case AccelTableKind::Default:
1492     llvm_unreachable("Default should have already been resolved.");
1493   }
1494 
1495   // Emit the pubnames and pubtypes sections if requested.
1496   emitDebugPubSections();
1497 
1498   // clean up.
1499   // FIXME: AbstractVariables.clear();
1500 }
1501 
1502 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1503     const DINode *Node, const MDNode *ScopeNode) {
1504   if (CU.getExistingAbstractEntity(Node))
1505     return;
1506 
1507   if (LexicalScope *Scope =
1508           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1509     CU.createAbstractEntity(Node, Scope);
1510 }
1511 
1512 static const DILocalScope *getRetainedNodeScope(const MDNode *N) {
1513   const DIScope *S;
1514   if (const auto *LV = dyn_cast<DILocalVariable>(N))
1515     S = LV->getScope();
1516   else if (const auto *L = dyn_cast<DILabel>(N))
1517     S = L->getScope();
1518   else if (const auto *IE = dyn_cast<DIImportedEntity>(N))
1519     S = IE->getScope();
1520   else
1521     llvm_unreachable("Unexpected retained node!");
1522 
1523   // Ensure the scope is not a DILexicalBlockFile.
1524   return cast<DILocalScope>(S)->getNonLexicalBlockFileScope();
1525 }
1526 
1527 // Collect variable information from side table maintained by MF.
1528 void DwarfDebug::collectVariableInfoFromMFTable(
1529     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1530   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1531   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1532   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1533     if (!VI.Var)
1534       continue;
1535     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1536            "Expected inlined-at fields to agree");
1537 
1538     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1539     Processed.insert(Var);
1540     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1541 
1542     // If variable scope is not found then skip this variable.
1543     if (!Scope) {
1544       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1545                         << ", no variable scope found\n");
1546       continue;
1547     }
1548 
1549     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1550 
1551     // If we have already seen information for this variable, add to what we
1552     // already know.
1553     if (DbgVariable *PreviousLoc = MFVars.lookup(Var)) {
1554       auto *PreviousMMI = std::get_if<Loc::MMI>(PreviousLoc);
1555       auto *PreviousEntryValue = std::get_if<Loc::EntryValue>(PreviousLoc);
1556       // Previous and new locations are both stack slots (MMI).
1557       if (PreviousMMI && VI.inStackSlot())
1558         PreviousMMI->addFrameIndexExpr(VI.Expr, VI.getStackSlot());
1559       // Previous and new locations are both entry values.
1560       else if (PreviousEntryValue && VI.inEntryValueRegister())
1561         PreviousEntryValue->addExpr(VI.getEntryValueRegister(), *VI.Expr);
1562       else {
1563         // Locations differ, this should (rarely) happen in optimized async
1564         // coroutines.
1565         // Prefer whichever location has an EntryValue.
1566         if (PreviousLoc->holds<Loc::MMI>())
1567           PreviousLoc->emplace<Loc::EntryValue>(VI.getEntryValueRegister(),
1568                                                 *VI.Expr);
1569         LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1570                           << ", conflicting fragment location types\n");
1571       }
1572       continue;
1573     }
1574 
1575     auto RegVar = std::make_unique<DbgVariable>(
1576                     cast<DILocalVariable>(Var.first), Var.second);
1577     if (VI.inStackSlot())
1578       RegVar->emplace<Loc::MMI>(VI.Expr, VI.getStackSlot());
1579     else
1580       RegVar->emplace<Loc::EntryValue>(VI.getEntryValueRegister(), *VI.Expr);
1581     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1582                       << "\n");
1583     InfoHolder.addScopeVariable(Scope, RegVar.get());
1584     MFVars.insert({Var, RegVar.get()});
1585     ConcreteEntities.push_back(std::move(RegVar));
1586   }
1587 }
1588 
1589 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1590 /// enclosing lexical scope. The check ensures there are no other instructions
1591 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1592 /// either open or otherwise rolls off the end of the scope.
1593 static bool validThroughout(LexicalScopes &LScopes,
1594                             const MachineInstr *DbgValue,
1595                             const MachineInstr *RangeEnd,
1596                             const InstructionOrdering &Ordering) {
1597   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1598   auto MBB = DbgValue->getParent();
1599   auto DL = DbgValue->getDebugLoc();
1600   auto *LScope = LScopes.findLexicalScope(DL);
1601   // Scope doesn't exist; this is a dead DBG_VALUE.
1602   if (!LScope)
1603     return false;
1604   auto &LSRange = LScope->getRanges();
1605   if (LSRange.size() == 0)
1606     return false;
1607 
1608   const MachineInstr *LScopeBegin = LSRange.front().first;
1609   // If the scope starts before the DBG_VALUE then we may have a negative
1610   // result. Otherwise the location is live coming into the scope and we
1611   // can skip the following checks.
1612   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1613     // Exit if the lexical scope begins outside of the current block.
1614     if (LScopeBegin->getParent() != MBB)
1615       return false;
1616 
1617     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1618     for (++Pred; Pred != MBB->rend(); ++Pred) {
1619       if (Pred->getFlag(MachineInstr::FrameSetup))
1620         break;
1621       auto PredDL = Pred->getDebugLoc();
1622       if (!PredDL || Pred->isMetaInstruction())
1623         continue;
1624       // Check whether the instruction preceding the DBG_VALUE is in the same
1625       // (sub)scope as the DBG_VALUE.
1626       if (DL->getScope() == PredDL->getScope())
1627         return false;
1628       auto *PredScope = LScopes.findLexicalScope(PredDL);
1629       if (!PredScope || LScope->dominates(PredScope))
1630         return false;
1631     }
1632   }
1633 
1634   // If the range of the DBG_VALUE is open-ended, report success.
1635   if (!RangeEnd)
1636     return true;
1637 
1638   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1639   // throughout the function. This is a hack, presumably for DWARF v2 and not
1640   // necessarily correct. It would be much better to use a dbg.declare instead
1641   // if we know the constant is live throughout the scope.
1642   if (MBB->pred_empty() &&
1643       all_of(DbgValue->debug_operands(),
1644              [](const MachineOperand &Op) { return Op.isImm(); }))
1645     return true;
1646 
1647   // Test if the location terminates before the end of the scope.
1648   const MachineInstr *LScopeEnd = LSRange.back().second;
1649   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1650     return false;
1651 
1652   // There's a single location which starts at the scope start, and ends at or
1653   // after the scope end.
1654   return true;
1655 }
1656 
1657 /// Build the location list for all DBG_VALUEs in the function that
1658 /// describe the same variable. The resulting DebugLocEntries will have
1659 /// strict monotonically increasing begin addresses and will never
1660 /// overlap. If the resulting list has only one entry that is valid
1661 /// throughout variable's scope return true.
1662 //
1663 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1664 // different kinds of history map entries. One thing to be aware of is that if
1665 // a debug value is ended by another entry (rather than being valid until the
1666 // end of the function), that entry's instruction may or may not be included in
1667 // the range, depending on if the entry is a clobbering entry (it has an
1668 // instruction that clobbers one or more preceding locations), or if it is an
1669 // (overlapping) debug value entry. This distinction can be seen in the example
1670 // below. The first debug value is ended by the clobbering entry 2, and the
1671 // second and third debug values are ended by the overlapping debug value entry
1672 // 4.
1673 //
1674 // Input:
1675 //
1676 //   History map entries [type, end index, mi]
1677 //
1678 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1679 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1680 // 2 | |    [Clobber, $reg0 = [...], -, -]
1681 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1682 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1683 //
1684 // Output [start, end) [Value...]:
1685 //
1686 // [0-1)    [(reg0, fragment 0, 32)]
1687 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1688 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1689 // [4-)     [(@g, fragment 0, 96)]
1690 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1691                                    const DbgValueHistoryMap::Entries &Entries) {
1692   using OpenRange =
1693       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1694   SmallVector<OpenRange, 4> OpenRanges;
1695   bool isSafeForSingleLocation = true;
1696   const MachineInstr *StartDebugMI = nullptr;
1697   const MachineInstr *EndMI = nullptr;
1698 
1699   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1700     const MachineInstr *Instr = EI->getInstr();
1701 
1702     // Remove all values that are no longer live.
1703     size_t Index = std::distance(EB, EI);
1704     erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1705 
1706     // If we are dealing with a clobbering entry, this iteration will result in
1707     // a location list entry starting after the clobbering instruction.
1708     const MCSymbol *StartLabel =
1709         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1710     assert(StartLabel &&
1711            "Forgot label before/after instruction starting a range!");
1712 
1713     const MCSymbol *EndLabel;
1714     if (std::next(EI) == Entries.end()) {
1715       const MachineBasicBlock &EndMBB = Asm->MF->back();
1716       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionID()].EndLabel;
1717       if (EI->isClobber())
1718         EndMI = EI->getInstr();
1719     }
1720     else if (std::next(EI)->isClobber())
1721       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1722     else
1723       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1724     assert(EndLabel && "Forgot label after instruction ending a range!");
1725 
1726     if (EI->isDbgValue())
1727       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1728 
1729     // If this history map entry has a debug value, add that to the list of
1730     // open ranges and check if its location is valid for a single value
1731     // location.
1732     if (EI->isDbgValue()) {
1733       // Do not add undef debug values, as they are redundant information in
1734       // the location list entries. An undef debug results in an empty location
1735       // description. If there are any non-undef fragments then padding pieces
1736       // with empty location descriptions will automatically be inserted, and if
1737       // all fragments are undef then the whole location list entry is
1738       // redundant.
1739       if (!Instr->isUndefDebugValue()) {
1740         auto Value = getDebugLocValue(Instr);
1741         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1742 
1743         // TODO: Add support for single value fragment locations.
1744         if (Instr->getDebugExpression()->isFragment())
1745           isSafeForSingleLocation = false;
1746 
1747         if (!StartDebugMI)
1748           StartDebugMI = Instr;
1749       } else {
1750         isSafeForSingleLocation = false;
1751       }
1752     }
1753 
1754     // Location list entries with empty location descriptions are redundant
1755     // information in DWARF, so do not emit those.
1756     if (OpenRanges.empty())
1757       continue;
1758 
1759     // Omit entries with empty ranges as they do not have any effect in DWARF.
1760     if (StartLabel == EndLabel) {
1761       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1762       continue;
1763     }
1764 
1765     SmallVector<DbgValueLoc, 4> Values;
1766     for (auto &R : OpenRanges)
1767       Values.push_back(R.second);
1768 
1769     // With Basic block sections, it is posssible that the StartLabel and the
1770     // Instr are not in the same section.  This happens when the StartLabel is
1771     // the function begin label and the dbg value appears in a basic block
1772     // that is not the entry.  In this case, the range needs to be split to
1773     // span each individual section in the range from StartLabel to EndLabel.
1774     if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
1775         !Instr->getParent()->sameSection(&Asm->MF->front())) {
1776       const MCSymbol *BeginSectionLabel = StartLabel;
1777 
1778       for (const MachineBasicBlock &MBB : *Asm->MF) {
1779         if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
1780           BeginSectionLabel = MBB.getSymbol();
1781 
1782         if (MBB.sameSection(Instr->getParent())) {
1783           DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
1784           break;
1785         }
1786         if (MBB.isEndSection())
1787           DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
1788       }
1789     } else {
1790       DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1791     }
1792 
1793     // Attempt to coalesce the ranges of two otherwise identical
1794     // DebugLocEntries.
1795     auto CurEntry = DebugLoc.rbegin();
1796     LLVM_DEBUG({
1797       dbgs() << CurEntry->getValues().size() << " Values:\n";
1798       for (auto &Value : CurEntry->getValues())
1799         Value.dump();
1800       dbgs() << "-----\n";
1801     });
1802 
1803     auto PrevEntry = std::next(CurEntry);
1804     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1805       DebugLoc.pop_back();
1806   }
1807 
1808   if (!isSafeForSingleLocation ||
1809       !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
1810     return false;
1811 
1812   if (DebugLoc.size() == 1)
1813     return true;
1814 
1815   if (!Asm->MF->hasBBSections())
1816     return false;
1817 
1818   // Check here to see if loclist can be merged into a single range. If not,
1819   // we must keep the split loclists per section.  This does exactly what
1820   // MergeRanges does without sections.  We don't actually merge the ranges
1821   // as the split ranges must be kept intact if this cannot be collapsed
1822   // into a single range.
1823   const MachineBasicBlock *RangeMBB = nullptr;
1824   if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
1825     RangeMBB = &Asm->MF->front();
1826   else
1827     RangeMBB = Entries.begin()->getInstr()->getParent();
1828   auto *CurEntry = DebugLoc.begin();
1829   auto *NextEntry = std::next(CurEntry);
1830   while (NextEntry != DebugLoc.end()) {
1831     // Get the last machine basic block of this section.
1832     while (!RangeMBB->isEndSection())
1833       RangeMBB = RangeMBB->getNextNode();
1834     if (!RangeMBB->getNextNode())
1835       return false;
1836     // CurEntry should end the current section and NextEntry should start
1837     // the next section and the Values must match for these two ranges to be
1838     // merged.
1839     if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
1840         NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
1841         CurEntry->getValues() != NextEntry->getValues())
1842       return false;
1843     RangeMBB = RangeMBB->getNextNode();
1844     CurEntry = NextEntry;
1845     NextEntry = std::next(CurEntry);
1846   }
1847   return true;
1848 }
1849 
1850 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1851                                             LexicalScope &Scope,
1852                                             const DINode *Node,
1853                                             const DILocation *Location,
1854                                             const MCSymbol *Sym) {
1855   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1856   if (isa<const DILocalVariable>(Node)) {
1857     ConcreteEntities.push_back(
1858         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1859                                        Location));
1860     InfoHolder.addScopeVariable(&Scope,
1861         cast<DbgVariable>(ConcreteEntities.back().get()));
1862   } else if (isa<const DILabel>(Node)) {
1863     ConcreteEntities.push_back(
1864         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1865                                     Location, Sym));
1866     InfoHolder.addScopeLabel(&Scope,
1867         cast<DbgLabel>(ConcreteEntities.back().get()));
1868   }
1869   return ConcreteEntities.back().get();
1870 }
1871 
1872 // Find variables for each lexical scope.
1873 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1874                                    const DISubprogram *SP,
1875                                    DenseSet<InlinedEntity> &Processed) {
1876   // Grab the variable info that was squirreled away in the MMI side-table.
1877   collectVariableInfoFromMFTable(TheCU, Processed);
1878 
1879   for (const auto &I : DbgValues) {
1880     InlinedEntity IV = I.first;
1881     if (Processed.count(IV))
1882       continue;
1883 
1884     // Instruction ranges, specifying where IV is accessible.
1885     const auto &HistoryMapEntries = I.second;
1886 
1887     // Try to find any non-empty variable location. Do not create a concrete
1888     // entity if there are no locations.
1889     if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1890       continue;
1891 
1892     LexicalScope *Scope = nullptr;
1893     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1894     if (const DILocation *IA = IV.second)
1895       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1896     else
1897       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1898     // If variable scope is not found then skip this variable.
1899     if (!Scope)
1900       continue;
1901 
1902     Processed.insert(IV);
1903     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1904                                             *Scope, LocalVar, IV.second));
1905 
1906     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1907     assert(MInsn->isDebugValue() && "History must begin with debug value");
1908 
1909     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1910     // If the history map contains a single debug value, there may be an
1911     // additional entry which clobbers the debug value.
1912     size_t HistSize = HistoryMapEntries.size();
1913     bool SingleValueWithClobber =
1914         HistSize == 2 && HistoryMapEntries[1].isClobber();
1915     if (HistSize == 1 || SingleValueWithClobber) {
1916       const auto *End =
1917           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1918       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1919         RegVar->emplace<Loc::Single>(MInsn);
1920         continue;
1921       }
1922     }
1923 
1924     // Do not emit location lists if .debug_loc secton is disabled.
1925     if (!useLocSection())
1926       continue;
1927 
1928     // Handle multiple DBG_VALUE instructions describing one variable.
1929     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar);
1930 
1931     // Build the location list for this variable.
1932     SmallVector<DebugLocEntry, 8> Entries;
1933     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1934 
1935     // Check whether buildLocationList managed to merge all locations to one
1936     // that is valid throughout the variable's scope. If so, produce single
1937     // value location.
1938     if (isValidSingleLocation) {
1939       RegVar->emplace<Loc::Single>(Entries[0].getValues()[0]);
1940       continue;
1941     }
1942 
1943     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1944     // unique identifiers, so don't bother resolving the type with the
1945     // identifier map.
1946     const DIBasicType *BT = dyn_cast<DIBasicType>(
1947         static_cast<const Metadata *>(LocalVar->getType()));
1948 
1949     // Finalize the entry by lowering it into a DWARF bytestream.
1950     for (auto &Entry : Entries)
1951       Entry.finalize(*Asm, List, BT, TheCU);
1952   }
1953 
1954   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1955   // DWARF-related DbgLabel.
1956   for (const auto &I : DbgLabels) {
1957     InlinedEntity IL = I.first;
1958     const MachineInstr *MI = I.second;
1959     if (MI == nullptr)
1960       continue;
1961 
1962     LexicalScope *Scope = nullptr;
1963     const DILabel *Label = cast<DILabel>(IL.first);
1964     // The scope could have an extra lexical block file.
1965     const DILocalScope *LocalScope =
1966         Label->getScope()->getNonLexicalBlockFileScope();
1967     // Get inlined DILocation if it is inlined label.
1968     if (const DILocation *IA = IL.second)
1969       Scope = LScopes.findInlinedScope(LocalScope, IA);
1970     else
1971       Scope = LScopes.findLexicalScope(LocalScope);
1972     // If label scope is not found then skip this label.
1973     if (!Scope)
1974       continue;
1975 
1976     Processed.insert(IL);
1977     /// At this point, the temporary label is created.
1978     /// Save the temporary label to DbgLabel entity to get the
1979     /// actually address when generating Dwarf DIE.
1980     MCSymbol *Sym = getLabelBeforeInsn(MI);
1981     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1982   }
1983 
1984   // Collect info for retained nodes.
1985   for (const DINode *DN : SP->getRetainedNodes()) {
1986     const auto *LS = getRetainedNodeScope(DN);
1987     if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) {
1988       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1989         continue;
1990       LexicalScope *LexS = LScopes.findLexicalScope(LS);
1991       if (LexS)
1992         createConcreteEntity(TheCU, *LexS, DN, nullptr);
1993     } else {
1994       LocalDeclsPerLS[LS].insert(DN);
1995     }
1996   }
1997 }
1998 
1999 // Process beginning of an instruction.
2000 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
2001   const MachineFunction &MF = *MI->getMF();
2002   const auto *SP = MF.getFunction().getSubprogram();
2003   bool NoDebug =
2004       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
2005 
2006   // Delay slot support check.
2007   auto delaySlotSupported = [](const MachineInstr &MI) {
2008     if (!MI.isBundledWithSucc())
2009       return false;
2010     auto Suc = std::next(MI.getIterator());
2011     (void)Suc;
2012     // Ensure that delay slot instruction is successor of the call instruction.
2013     // Ex. CALL_INSTRUCTION {
2014     //        DELAY_SLOT_INSTRUCTION }
2015     assert(Suc->isBundledWithPred() &&
2016            "Call bundle instructions are out of order");
2017     return true;
2018   };
2019 
2020   // When describing calls, we need a label for the call instruction.
2021   if (!NoDebug && SP->areAllCallsDescribed() &&
2022       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
2023       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
2024     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
2025     bool IsTail = TII->isTailCall(*MI);
2026     // For tail calls, we need the address of the branch instruction for
2027     // DW_AT_call_pc.
2028     if (IsTail)
2029       requestLabelBeforeInsn(MI);
2030     // For non-tail calls, we need the return address for the call for
2031     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
2032     // tail calls as well.
2033     requestLabelAfterInsn(MI);
2034   }
2035 
2036   DebugHandlerBase::beginInstruction(MI);
2037   if (!CurMI)
2038     return;
2039 
2040   if (NoDebug)
2041     return;
2042 
2043   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
2044   // If the instruction is part of the function frame setup code, do not emit
2045   // any line record, as there is no correspondence with any user code.
2046   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
2047     return;
2048   const DebugLoc &DL = MI->getDebugLoc();
2049   unsigned Flags = 0;
2050 
2051   if (MI->getFlag(MachineInstr::FrameDestroy) && DL) {
2052     const MachineBasicBlock *MBB = MI->getParent();
2053     if (MBB && (MBB != EpilogBeginBlock)) {
2054       // First time FrameDestroy has been seen in this basic block
2055       EpilogBeginBlock = MBB;
2056       Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
2057     }
2058   }
2059 
2060   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
2061   // the last line number actually emitted, to see if it was line 0.
2062   unsigned LastAsmLine =
2063       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
2064 
2065   bool PrevInstInSameSection =
2066       (!PrevInstBB ||
2067        PrevInstBB->getSectionID() == MI->getParent()->getSectionID());
2068   if (DL == PrevInstLoc && PrevInstInSameSection) {
2069     // If we have an ongoing unspecified location, nothing to do here.
2070     if (!DL)
2071       return;
2072     // We have an explicit location, same as the previous location.
2073     // But we might be coming back to it after a line 0 record.
2074     if ((LastAsmLine == 0 && DL.getLine() != 0) || Flags) {
2075       // Reinstate the source location but not marked as a statement.
2076       const MDNode *Scope = DL.getScope();
2077       recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2078     }
2079     return;
2080   }
2081 
2082   if (!DL) {
2083     // We have an unspecified location, which might want to be line 0.
2084     // If we have already emitted a line-0 record, don't repeat it.
2085     if (LastAsmLine == 0)
2086       return;
2087     // If user said Don't Do That, don't do that.
2088     if (UnknownLocations == Disable)
2089       return;
2090     // See if we have a reason to emit a line-0 record now.
2091     // Reasons to emit a line-0 record include:
2092     // - User asked for it (UnknownLocations).
2093     // - Instruction has a label, so it's referenced from somewhere else,
2094     //   possibly debug information; we want it to have a source location.
2095     // - Instruction is at the top of a block; we don't want to inherit the
2096     //   location from the physically previous (maybe unrelated) block.
2097     if (UnknownLocations == Enable || PrevLabel ||
2098         (PrevInstBB && PrevInstBB != MI->getParent())) {
2099       // Preserve the file and column numbers, if we can, to save space in
2100       // the encoded line table.
2101       // Do not update PrevInstLoc, it remembers the last non-0 line.
2102       const MDNode *Scope = nullptr;
2103       unsigned Column = 0;
2104       if (PrevInstLoc) {
2105         Scope = PrevInstLoc.getScope();
2106         Column = PrevInstLoc.getCol();
2107       }
2108       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2109     }
2110     return;
2111   }
2112 
2113   // We have an explicit location, different from the previous location.
2114   // Don't repeat a line-0 record, but otherwise emit the new location.
2115   // (The new location might be an explicit line 0, which we do emit.)
2116   if (DL.getLine() == 0 && LastAsmLine == 0)
2117     return;
2118   if (DL == PrologEndLoc) {
2119     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2120     PrologEndLoc = DebugLoc();
2121   }
2122   // If the line changed, we call that a new statement; unless we went to
2123   // line 0 and came back, in which case it is not a new statement.
2124   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2125   if (DL.getLine() && DL.getLine() != OldLine)
2126     Flags |= DWARF2_FLAG_IS_STMT;
2127 
2128   const MDNode *Scope = DL.getScope();
2129   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2130 
2131   // If we're not at line 0, remember this location.
2132   if (DL.getLine())
2133     PrevInstLoc = DL;
2134 }
2135 
2136 static std::pair<DebugLoc, bool> findPrologueEndLoc(const MachineFunction *MF) {
2137   // First known non-DBG_VALUE and non-frame setup location marks
2138   // the beginning of the function body.
2139   DebugLoc LineZeroLoc;
2140   const Function &F = MF->getFunction();
2141 
2142   // Some instructions may be inserted into prologue after this function. Must
2143   // keep prologue for these cases.
2144   bool IsEmptyPrologue =
2145       !(F.hasPrologueData() || F.getMetadata(LLVMContext::MD_func_sanitize));
2146   for (const auto &MBB : *MF) {
2147     for (const auto &MI : MBB) {
2148       if (!MI.isMetaInstruction()) {
2149         if (!MI.getFlag(MachineInstr::FrameSetup) && MI.getDebugLoc()) {
2150           // Scan forward to try to find a non-zero line number. The
2151           // prologue_end marks the first breakpoint in the function after the
2152           // frame setup, and a compiler-generated line 0 location is not a
2153           // meaningful breakpoint. If none is found, return the first
2154           // location after the frame setup.
2155           if (MI.getDebugLoc().getLine())
2156             return std::make_pair(MI.getDebugLoc(), IsEmptyPrologue);
2157 
2158           LineZeroLoc = MI.getDebugLoc();
2159         }
2160         IsEmptyPrologue = false;
2161       }
2162     }
2163   }
2164   return std::make_pair(LineZeroLoc, IsEmptyPrologue);
2165 }
2166 
2167 /// Register a source line with debug info. Returns the  unique label that was
2168 /// emitted and which provides correspondence to the source line list.
2169 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2170                              const MDNode *S, unsigned Flags, unsigned CUID,
2171                              uint16_t DwarfVersion,
2172                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2173   StringRef Fn;
2174   unsigned FileNo = 1;
2175   unsigned Discriminator = 0;
2176   if (auto *Scope = cast_or_null<DIScope>(S)) {
2177     Fn = Scope->getFilename();
2178     if (Line != 0 && DwarfVersion >= 4)
2179       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2180         Discriminator = LBF->getDiscriminator();
2181 
2182     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2183                  .getOrCreateSourceID(Scope->getFile());
2184   }
2185   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2186                                          Discriminator, Fn);
2187 }
2188 
2189 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2190                                              unsigned CUID) {
2191   std::pair<DebugLoc, bool> PrologEnd = findPrologueEndLoc(&MF);
2192   DebugLoc PrologEndLoc = PrologEnd.first;
2193   bool IsEmptyPrologue = PrologEnd.second;
2194 
2195   // Get beginning of function.
2196   if (PrologEndLoc) {
2197     // If the prolog is empty, no need to generate scope line for the proc.
2198     if (IsEmptyPrologue)
2199       return PrologEndLoc;
2200 
2201     // Ensure the compile unit is created if the function is called before
2202     // beginFunction().
2203     (void)getOrCreateDwarfCompileUnit(
2204         MF.getFunction().getSubprogram()->getUnit());
2205     // We'd like to list the prologue as "not statements" but GDB behaves
2206     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2207     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2208     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2209                        CUID, getDwarfVersion(), getUnits());
2210     return PrologEndLoc;
2211   }
2212   return DebugLoc();
2213 }
2214 
2215 // Gather pre-function debug information.  Assumes being called immediately
2216 // after the function entry point has been emitted.
2217 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2218   CurFn = MF;
2219 
2220   auto *SP = MF->getFunction().getSubprogram();
2221   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2222   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2223     return;
2224 
2225   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2226 
2227   Asm->OutStreamer->getContext().setDwarfCompileUnitID(
2228       getDwarfCompileUnitIDForLineTable(CU));
2229 
2230   // Record beginning of function.
2231   PrologEndLoc = emitInitialLocDirective(
2232       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2233 }
2234 
2235 unsigned
2236 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
2237   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2238   // belongs to so that we add to the correct per-cu line table in the
2239   // non-asm case.
2240   if (Asm->OutStreamer->hasRawTextSupport())
2241     // Use a single line table if we are generating assembly.
2242     return 0;
2243   else
2244     return CU.getUniqueID();
2245 }
2246 
2247 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) {
2248   const auto &CURanges = CU->getRanges();
2249   auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable(
2250       getDwarfCompileUnitIDForLineTable(*CU));
2251   // Add the last range label for the given CU.
2252   LineTable.getMCLineSections().addEndEntry(
2253       const_cast<MCSymbol *>(CURanges.back().End));
2254 }
2255 
2256 void DwarfDebug::skippedNonDebugFunction() {
2257   // If we don't have a subprogram for this function then there will be a hole
2258   // in the range information. Keep note of this by setting the previously used
2259   // section to nullptr.
2260   // Terminate the pending line table.
2261   if (PrevCU)
2262     terminateLineTable(PrevCU);
2263   PrevCU = nullptr;
2264   CurFn = nullptr;
2265 }
2266 
2267 // Gather and emit post-function debug information.
2268 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2269   const DISubprogram *SP = MF->getFunction().getSubprogram();
2270 
2271   assert(CurFn == MF &&
2272       "endFunction should be called with the same function as beginFunction");
2273 
2274   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2275   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2276 
2277   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2278   assert(!FnScope || SP == FnScope->getScopeNode());
2279   DwarfCompileUnit &TheCU = getOrCreateDwarfCompileUnit(SP->getUnit());
2280   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2281     PrevLabel = nullptr;
2282     CurFn = nullptr;
2283     return;
2284   }
2285 
2286   DenseSet<InlinedEntity> Processed;
2287   collectEntityInfo(TheCU, SP, Processed);
2288 
2289   // Add the range of this function to the list of ranges for the CU.
2290   // With basic block sections, add ranges for all basic block sections.
2291   for (const auto &R : Asm->MBBSectionRanges)
2292     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2293 
2294   // Under -gmlt, skip building the subprogram if there are no inlined
2295   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2296   // is still needed as we need its source location.
2297   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2298       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2299       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2300     for (const auto &R : Asm->MBBSectionRanges)
2301       addArangeLabel(SymbolCU(&TheCU, R.second.BeginLabel));
2302 
2303     assert(InfoHolder.getScopeVariables().empty());
2304     PrevLabel = nullptr;
2305     CurFn = nullptr;
2306     return;
2307   }
2308 
2309 #ifndef NDEBUG
2310   size_t NumAbstractSubprograms = LScopes.getAbstractScopesList().size();
2311 #endif
2312   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2313     const auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2314     for (const DINode *DN : SP->getRetainedNodes()) {
2315       const auto *LS = getRetainedNodeScope(DN);
2316       // Ensure LexicalScope is created for the scope of this node.
2317       auto *LexS = LScopes.getOrCreateAbstractScope(LS);
2318       assert(LexS && "Expected the LexicalScope to be created.");
2319       if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) {
2320         // Collect info for variables/labels that were optimized out.
2321         if (!Processed.insert(InlinedEntity(DN, nullptr)).second ||
2322             TheCU.getExistingAbstractEntity(DN))
2323           continue;
2324         TheCU.createAbstractEntity(DN, LexS);
2325       } else {
2326         // Remember the node if this is a local declarations.
2327         LocalDeclsPerLS[LS].insert(DN);
2328       }
2329       assert(
2330           LScopes.getAbstractScopesList().size() == NumAbstractSubprograms &&
2331           "getOrCreateAbstractScope() inserted an abstract subprogram scope");
2332     }
2333     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2334   }
2335 
2336   ProcessedSPNodes.insert(SP);
2337   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2338   if (auto *SkelCU = TheCU.getSkeleton())
2339     if (!LScopes.getAbstractScopesList().empty() &&
2340         TheCU.getCUNode()->getSplitDebugInlining())
2341       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2342 
2343   // Construct call site entries.
2344   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2345 
2346   // Clear debug info
2347   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2348   // DbgVariables except those that are also in AbstractVariables (since they
2349   // can be used cross-function)
2350   InfoHolder.getScopeVariables().clear();
2351   InfoHolder.getScopeLabels().clear();
2352   LocalDeclsPerLS.clear();
2353   PrevLabel = nullptr;
2354   CurFn = nullptr;
2355 }
2356 
2357 // Register a source line with debug info. Returns the  unique label that was
2358 // emitted and which provides correspondence to the source line list.
2359 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2360                                   unsigned Flags) {
2361   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2362                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2363                      getDwarfVersion(), getUnits());
2364 }
2365 
2366 //===----------------------------------------------------------------------===//
2367 // Emit Methods
2368 //===----------------------------------------------------------------------===//
2369 
2370 // Emit the debug info section.
2371 void DwarfDebug::emitDebugInfo() {
2372   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2373   Holder.emitUnits(/* UseOffsets */ false);
2374 }
2375 
2376 // Emit the abbreviation section.
2377 void DwarfDebug::emitAbbreviations() {
2378   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2379 
2380   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2381 }
2382 
2383 void DwarfDebug::emitStringOffsetsTableHeader() {
2384   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2385   Holder.getStringPool().emitStringOffsetsTableHeader(
2386       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2387       Holder.getStringOffsetsStartSym());
2388 }
2389 
2390 template <typename AccelTableT>
2391 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2392                            StringRef TableName) {
2393   Asm->OutStreamer->switchSection(Section);
2394 
2395   // Emit the full data.
2396   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2397 }
2398 
2399 void DwarfDebug::emitAccelDebugNames() {
2400   // Don't emit anything if we have no compilation units to index.
2401   if (getUnits().empty())
2402     return;
2403 
2404   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2405 }
2406 
2407 // Emit visible names into a hashed accelerator table section.
2408 void DwarfDebug::emitAccelNames() {
2409   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2410             "Names");
2411 }
2412 
2413 // Emit objective C classes and categories into a hashed accelerator table
2414 // section.
2415 void DwarfDebug::emitAccelObjC() {
2416   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2417             "ObjC");
2418 }
2419 
2420 // Emit namespace dies into a hashed accelerator table.
2421 void DwarfDebug::emitAccelNamespaces() {
2422   emitAccel(AccelNamespace,
2423             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2424             "namespac");
2425 }
2426 
2427 // Emit type dies into a hashed accelerator table.
2428 void DwarfDebug::emitAccelTypes() {
2429   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2430             "types");
2431 }
2432 
2433 // Public name handling.
2434 // The format for the various pubnames:
2435 //
2436 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2437 // for the DIE that is named.
2438 //
2439 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2440 // into the CU and the index value is computed according to the type of value
2441 // for the DIE that is named.
2442 //
2443 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2444 // it's the offset within the debug_info/debug_types dwo section, however, the
2445 // reference in the pubname header doesn't change.
2446 
2447 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2448 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2449                                                         const DIE *Die) {
2450   // Entities that ended up only in a Type Unit reference the CU instead (since
2451   // the pub entry has offsets within the CU there's no real offset that can be
2452   // provided anyway). As it happens all such entities (namespaces and types,
2453   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2454   // not to be true it would be necessary to persist this information from the
2455   // point at which the entry is added to the index data structure - since by
2456   // the time the index is built from that, the original type/namespace DIE in a
2457   // type unit has already been destroyed so it can't be queried for properties
2458   // like tag, etc.
2459   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2460     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2461                                           dwarf::GIEL_EXTERNAL);
2462   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2463 
2464   // We could have a specification DIE that has our most of our knowledge,
2465   // look for that now.
2466   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2467     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2468     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2469       Linkage = dwarf::GIEL_EXTERNAL;
2470   } else if (Die->findAttribute(dwarf::DW_AT_external))
2471     Linkage = dwarf::GIEL_EXTERNAL;
2472 
2473   switch (Die->getTag()) {
2474   case dwarf::DW_TAG_class_type:
2475   case dwarf::DW_TAG_structure_type:
2476   case dwarf::DW_TAG_union_type:
2477   case dwarf::DW_TAG_enumeration_type:
2478     return dwarf::PubIndexEntryDescriptor(
2479         dwarf::GIEK_TYPE,
2480         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2481             ? dwarf::GIEL_EXTERNAL
2482             : dwarf::GIEL_STATIC);
2483   case dwarf::DW_TAG_typedef:
2484   case dwarf::DW_TAG_base_type:
2485   case dwarf::DW_TAG_subrange_type:
2486   case dwarf::DW_TAG_template_alias:
2487     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2488   case dwarf::DW_TAG_namespace:
2489     return dwarf::GIEK_TYPE;
2490   case dwarf::DW_TAG_subprogram:
2491     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2492   case dwarf::DW_TAG_variable:
2493     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2494   case dwarf::DW_TAG_enumerator:
2495     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2496                                           dwarf::GIEL_STATIC);
2497   default:
2498     return dwarf::GIEK_NONE;
2499   }
2500 }
2501 
2502 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2503 /// pubtypes sections.
2504 void DwarfDebug::emitDebugPubSections() {
2505   for (const auto &NU : CUMap) {
2506     DwarfCompileUnit *TheU = NU.second;
2507     if (!TheU->hasDwarfPubSections())
2508       continue;
2509 
2510     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2511                     DICompileUnit::DebugNameTableKind::GNU;
2512 
2513     Asm->OutStreamer->switchSection(
2514         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2515                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2516     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2517 
2518     Asm->OutStreamer->switchSection(
2519         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2520                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2521     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2522   }
2523 }
2524 
2525 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2526   if (useSectionsAsReferences())
2527     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2528                          CU.getDebugSectionOffset());
2529   else
2530     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2531 }
2532 
2533 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2534                                      DwarfCompileUnit *TheU,
2535                                      const StringMap<const DIE *> &Globals) {
2536   if (auto *Skeleton = TheU->getSkeleton())
2537     TheU = Skeleton;
2538 
2539   // Emit the header.
2540   MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2541       "pub" + Name, "Length of Public " + Name + " Info");
2542 
2543   Asm->OutStreamer->AddComment("DWARF Version");
2544   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2545 
2546   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2547   emitSectionReference(*TheU);
2548 
2549   Asm->OutStreamer->AddComment("Compilation Unit Length");
2550   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2551 
2552   // Emit the pubnames for this compilation unit.
2553   SmallVector<std::pair<StringRef, const DIE *>, 0> Vec;
2554   for (const auto &GI : Globals)
2555     Vec.emplace_back(GI.first(), GI.second);
2556   llvm::sort(Vec, [](auto &A, auto &B) {
2557     return A.second->getOffset() < B.second->getOffset();
2558   });
2559   for (const auto &[Name, Entity] : Vec) {
2560     Asm->OutStreamer->AddComment("DIE offset");
2561     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2562 
2563     if (GnuStyle) {
2564       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2565       Asm->OutStreamer->AddComment(
2566           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2567           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2568       Asm->emitInt8(Desc.toBits());
2569     }
2570 
2571     Asm->OutStreamer->AddComment("External Name");
2572     Asm->OutStreamer->emitBytes(StringRef(Name.data(), Name.size() + 1));
2573   }
2574 
2575   Asm->OutStreamer->AddComment("End Mark");
2576   Asm->emitDwarfLengthOrOffset(0);
2577   Asm->OutStreamer->emitLabel(EndLabel);
2578 }
2579 
2580 /// Emit null-terminated strings into a debug str section.
2581 void DwarfDebug::emitDebugStr() {
2582   MCSection *StringOffsetsSection = nullptr;
2583   if (useSegmentedStringOffsetsTable()) {
2584     emitStringOffsetsTableHeader();
2585     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2586   }
2587   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2588   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2589                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2590 }
2591 
2592 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2593                                    const DebugLocStream::Entry &Entry,
2594                                    const DwarfCompileUnit *CU) {
2595   auto &&Comments = DebugLocs.getComments(Entry);
2596   auto Comment = Comments.begin();
2597   auto End = Comments.end();
2598 
2599   // The expressions are inserted into a byte stream rather early (see
2600   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2601   // need to reference a base_type DIE the offset of that DIE is not yet known.
2602   // To deal with this we instead insert a placeholder early and then extract
2603   // it here and replace it with the real reference.
2604   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2605   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2606                                     DebugLocs.getBytes(Entry).size()),
2607                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2608   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2609 
2610   using Encoding = DWARFExpression::Operation::Encoding;
2611   uint64_t Offset = 0;
2612   for (const auto &Op : Expr) {
2613     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2614            "3 operand ops not yet supported");
2615     assert(!Op.getSubCode() && "SubOps not yet supported");
2616     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2617     Offset++;
2618     for (unsigned I = 0; I < Op.getDescription().Op.size(); ++I) {
2619       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2620         unsigned Length =
2621           Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die);
2622         // Make sure comments stay aligned.
2623         for (unsigned J = 0; J < Length; ++J)
2624           if (Comment != End)
2625             Comment++;
2626       } else {
2627         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2628           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2629       }
2630       Offset = Op.getOperandEndOffset(I);
2631     }
2632     assert(Offset == Op.getEndOffset());
2633   }
2634 }
2635 
2636 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2637                                    const DbgValueLoc &Value,
2638                                    DwarfExpression &DwarfExpr) {
2639   auto *DIExpr = Value.getExpression();
2640   DIExpressionCursor ExprCursor(DIExpr);
2641   DwarfExpr.addFragmentOffset(DIExpr);
2642 
2643   // If the DIExpr is an Entry Value, we want to follow the same code path
2644   // regardless of whether the DBG_VALUE is variadic or not.
2645   if (DIExpr && DIExpr->isEntryValue()) {
2646     // Entry values can only be a single register with no additional DIExpr,
2647     // so just add it directly.
2648     assert(Value.getLocEntries().size() == 1);
2649     assert(Value.getLocEntries()[0].isLocation());
2650     MachineLocation Location = Value.getLocEntries()[0].getLoc();
2651     DwarfExpr.setLocation(Location, DIExpr);
2652 
2653     DwarfExpr.beginEntryValueExpression(ExprCursor);
2654 
2655     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2656     if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2657       return;
2658     return DwarfExpr.addExpression(std::move(ExprCursor));
2659   }
2660 
2661   // Regular entry.
2662   auto EmitValueLocEntry = [&DwarfExpr, &BT,
2663                             &AP](const DbgValueLocEntry &Entry,
2664                                  DIExpressionCursor &Cursor) -> bool {
2665     if (Entry.isInt()) {
2666       if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2667                  BT->getEncoding() == dwarf::DW_ATE_signed_char))
2668         DwarfExpr.addSignedConstant(Entry.getInt());
2669       else
2670         DwarfExpr.addUnsignedConstant(Entry.getInt());
2671     } else if (Entry.isLocation()) {
2672       MachineLocation Location = Entry.getLoc();
2673       if (Location.isIndirect())
2674         DwarfExpr.setMemoryLocationKind();
2675 
2676       const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2677       if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2678         return false;
2679     } else if (Entry.isTargetIndexLocation()) {
2680       TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2681       // TODO TargetIndexLocation is a target-independent. Currently only the
2682       // WebAssembly-specific encoding is supported.
2683       assert(AP.TM.getTargetTriple().isWasm());
2684       DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2685     } else if (Entry.isConstantFP()) {
2686       if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2687           !Cursor) {
2688         DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2689       } else if (Entry.getConstantFP()
2690                      ->getValueAPF()
2691                      .bitcastToAPInt()
2692                      .getBitWidth() <= 64 /*bits*/) {
2693         DwarfExpr.addUnsignedConstant(
2694             Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2695       } else {
2696         LLVM_DEBUG(
2697             dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2698                    << Entry.getConstantFP()
2699                           ->getValueAPF()
2700                           .bitcastToAPInt()
2701                           .getBitWidth()
2702                    << " bits\n");
2703         return false;
2704       }
2705     }
2706     return true;
2707   };
2708 
2709   if (!Value.isVariadic()) {
2710     if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2711       return;
2712     DwarfExpr.addExpression(std::move(ExprCursor));
2713     return;
2714   }
2715 
2716   // If any of the location entries are registers with the value 0, then the
2717   // location is undefined.
2718   if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2719         return Entry.isLocation() && !Entry.getLoc().getReg();
2720       }))
2721     return;
2722 
2723   DwarfExpr.addExpression(
2724       std::move(ExprCursor),
2725       [EmitValueLocEntry, &Value](unsigned Idx,
2726                                   DIExpressionCursor &Cursor) -> bool {
2727         return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2728       });
2729 }
2730 
2731 void DebugLocEntry::finalize(const AsmPrinter &AP,
2732                              DebugLocStream::ListBuilder &List,
2733                              const DIBasicType *BT,
2734                              DwarfCompileUnit &TheCU) {
2735   assert(!Values.empty() &&
2736          "location list entries without values are redundant");
2737   assert(Begin != End && "unexpected location list entry with empty range");
2738   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2739   BufferByteStreamer Streamer = Entry.getStreamer();
2740   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2741   const DbgValueLoc &Value = Values[0];
2742   if (Value.isFragment()) {
2743     // Emit all fragments that belong to the same variable and range.
2744     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2745           return P.isFragment();
2746         }) && "all values are expected to be fragments");
2747     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2748 
2749     for (const auto &Fragment : Values)
2750       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2751 
2752   } else {
2753     assert(Values.size() == 1 && "only fragments may have >1 value");
2754     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2755   }
2756   DwarfExpr.finalize();
2757   if (DwarfExpr.TagOffset)
2758     List.setTagOffset(*DwarfExpr.TagOffset);
2759 }
2760 
2761 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2762                                            const DwarfCompileUnit *CU) {
2763   // Emit the size.
2764   Asm->OutStreamer->AddComment("Loc expr size");
2765   if (getDwarfVersion() >= 5)
2766     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2767   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2768     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2769   else {
2770     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2771     // can do.
2772     Asm->emitInt16(0);
2773     return;
2774   }
2775   // Emit the entry.
2776   APByteStreamer Streamer(*Asm);
2777   emitDebugLocEntry(Streamer, Entry, CU);
2778 }
2779 
2780 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2781 // that designates the end of the table for the caller to emit when the table is
2782 // complete.
2783 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2784                                          const DwarfFile &Holder) {
2785   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2786 
2787   Asm->OutStreamer->AddComment("Offset entry count");
2788   Asm->emitInt32(Holder.getRangeLists().size());
2789   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2790 
2791   for (const RangeSpanList &List : Holder.getRangeLists())
2792     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2793                              Asm->getDwarfOffsetByteSize());
2794 
2795   return TableEnd;
2796 }
2797 
2798 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2799 // designates the end of the table for the caller to emit when the table is
2800 // complete.
2801 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2802                                          const DwarfDebug &DD) {
2803   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2804 
2805   const auto &DebugLocs = DD.getDebugLocs();
2806 
2807   Asm->OutStreamer->AddComment("Offset entry count");
2808   Asm->emitInt32(DebugLocs.getLists().size());
2809   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2810 
2811   for (const auto &List : DebugLocs.getLists())
2812     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2813                              Asm->getDwarfOffsetByteSize());
2814 
2815   return TableEnd;
2816 }
2817 
2818 template <typename Ranges, typename PayloadEmitter>
2819 static void emitRangeList(
2820     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2821     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2822     unsigned StartxLength, unsigned EndOfList,
2823     StringRef (*StringifyEnum)(unsigned),
2824     bool ShouldUseBaseAddress,
2825     PayloadEmitter EmitPayload) {
2826 
2827   auto Size = Asm->MAI->getCodePointerSize();
2828   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2829 
2830   // Emit our symbol so we can find the beginning of the range.
2831   Asm->OutStreamer->emitLabel(Sym);
2832 
2833   // Gather all the ranges that apply to the same section so they can share
2834   // a base address entry.
2835   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2836 
2837   for (const auto &Range : R)
2838     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2839 
2840   const MCSymbol *CUBase = CU.getBaseAddress();
2841   bool BaseIsSet = false;
2842   for (const auto &P : SectionRanges) {
2843     auto *Base = CUBase;
2844     if (!Base && ShouldUseBaseAddress) {
2845       const MCSymbol *Begin = P.second.front()->Begin;
2846       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2847       if (!UseDwarf5) {
2848         Base = NewBase;
2849         BaseIsSet = true;
2850         Asm->OutStreamer->emitIntValue(-1, Size);
2851         Asm->OutStreamer->AddComment("  base address");
2852         Asm->OutStreamer->emitSymbolValue(Base, Size);
2853       } else if (NewBase != Begin || P.second.size() > 1) {
2854         // Only use a base address if
2855         //  * the existing pool address doesn't match (NewBase != Begin)
2856         //  * or, there's more than one entry to share the base address
2857         Base = NewBase;
2858         BaseIsSet = true;
2859         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2860         Asm->emitInt8(BaseAddressx);
2861         Asm->OutStreamer->AddComment("  base address index");
2862         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2863       }
2864     } else if (BaseIsSet && !UseDwarf5) {
2865       BaseIsSet = false;
2866       assert(!Base);
2867       Asm->OutStreamer->emitIntValue(-1, Size);
2868       Asm->OutStreamer->emitIntValue(0, Size);
2869     }
2870 
2871     for (const auto *RS : P.second) {
2872       const MCSymbol *Begin = RS->Begin;
2873       const MCSymbol *End = RS->End;
2874       assert(Begin && "Range without a begin symbol?");
2875       assert(End && "Range without an end symbol?");
2876       if (Base) {
2877         if (UseDwarf5) {
2878           // Emit offset_pair when we have a base.
2879           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2880           Asm->emitInt8(OffsetPair);
2881           Asm->OutStreamer->AddComment("  starting offset");
2882           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2883           Asm->OutStreamer->AddComment("  ending offset");
2884           Asm->emitLabelDifferenceAsULEB128(End, Base);
2885         } else {
2886           Asm->emitLabelDifference(Begin, Base, Size);
2887           Asm->emitLabelDifference(End, Base, Size);
2888         }
2889       } else if (UseDwarf5) {
2890         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2891         Asm->emitInt8(StartxLength);
2892         Asm->OutStreamer->AddComment("  start index");
2893         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2894         Asm->OutStreamer->AddComment("  length");
2895         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2896       } else {
2897         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2898         Asm->OutStreamer->emitSymbolValue(End, Size);
2899       }
2900       EmitPayload(*RS);
2901     }
2902   }
2903 
2904   if (UseDwarf5) {
2905     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2906     Asm->emitInt8(EndOfList);
2907   } else {
2908     // Terminate the list with two 0 values.
2909     Asm->OutStreamer->emitIntValue(0, Size);
2910     Asm->OutStreamer->emitIntValue(0, Size);
2911   }
2912 }
2913 
2914 // Handles emission of both debug_loclist / debug_loclist.dwo
2915 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2916   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2917                 *List.CU, dwarf::DW_LLE_base_addressx,
2918                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2919                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2920                 /* ShouldUseBaseAddress */ true,
2921                 [&](const DebugLocStream::Entry &E) {
2922                   DD.emitDebugLocEntryLocation(E, List.CU);
2923                 });
2924 }
2925 
2926 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2927   if (DebugLocs.getLists().empty())
2928     return;
2929 
2930   Asm->OutStreamer->switchSection(Sec);
2931 
2932   MCSymbol *TableEnd = nullptr;
2933   if (getDwarfVersion() >= 5)
2934     TableEnd = emitLoclistsTableHeader(Asm, *this);
2935 
2936   for (const auto &List : DebugLocs.getLists())
2937     emitLocList(*this, Asm, List);
2938 
2939   if (TableEnd)
2940     Asm->OutStreamer->emitLabel(TableEnd);
2941 }
2942 
2943 // Emit locations into the .debug_loc/.debug_loclists section.
2944 void DwarfDebug::emitDebugLoc() {
2945   emitDebugLocImpl(
2946       getDwarfVersion() >= 5
2947           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2948           : Asm->getObjFileLowering().getDwarfLocSection());
2949 }
2950 
2951 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2952 void DwarfDebug::emitDebugLocDWO() {
2953   if (getDwarfVersion() >= 5) {
2954     emitDebugLocImpl(
2955         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2956 
2957     return;
2958   }
2959 
2960   for (const auto &List : DebugLocs.getLists()) {
2961     Asm->OutStreamer->switchSection(
2962         Asm->getObjFileLowering().getDwarfLocDWOSection());
2963     Asm->OutStreamer->emitLabel(List.Label);
2964 
2965     for (const auto &Entry : DebugLocs.getEntries(List)) {
2966       // GDB only supports startx_length in pre-standard split-DWARF.
2967       // (in v5 standard loclists, it currently* /only/ supports base_address +
2968       // offset_pair, so the implementations can't really share much since they
2969       // need to use different representations)
2970       // * as of October 2018, at least
2971       //
2972       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2973       // addresses in the address pool to minimize object size/relocations.
2974       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2975       unsigned idx = AddrPool.getIndex(Entry.Begin);
2976       Asm->emitULEB128(idx);
2977       // Also the pre-standard encoding is slightly different, emitting this as
2978       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2979       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2980       emitDebugLocEntryLocation(Entry, List.CU);
2981     }
2982     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2983   }
2984 }
2985 
2986 struct ArangeSpan {
2987   const MCSymbol *Start, *End;
2988 };
2989 
2990 // Emit a debug aranges section, containing a CU lookup for any
2991 // address we can tie back to a CU.
2992 void DwarfDebug::emitDebugARanges() {
2993   if (ArangeLabels.empty())
2994     return;
2995 
2996   // Provides a unique id per text section.
2997   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2998 
2999   // Filter labels by section.
3000   for (const SymbolCU &SCU : ArangeLabels) {
3001     if (SCU.Sym->isInSection()) {
3002       // Make a note of this symbol and it's section.
3003       MCSection *Section = &SCU.Sym->getSection();
3004       SectionMap[Section].push_back(SCU);
3005     } else {
3006       // Some symbols (e.g. common/bss on mach-o) can have no section but still
3007       // appear in the output. This sucks as we rely on sections to build
3008       // arange spans. We can do it without, but it's icky.
3009       SectionMap[nullptr].push_back(SCU);
3010     }
3011   }
3012 
3013   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
3014 
3015   for (auto &I : SectionMap) {
3016     MCSection *Section = I.first;
3017     SmallVector<SymbolCU, 8> &List = I.second;
3018     assert(!List.empty());
3019 
3020     // If we have no section (e.g. common), just write out
3021     // individual spans for each symbol.
3022     if (!Section) {
3023       for (const SymbolCU &Cur : List) {
3024         ArangeSpan Span;
3025         Span.Start = Cur.Sym;
3026         Span.End = nullptr;
3027         assert(Cur.CU);
3028         Spans[Cur.CU].push_back(Span);
3029       }
3030       continue;
3031     }
3032 
3033     // Insert a final terminator.
3034     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
3035 
3036     // Build spans between each label.
3037     const MCSymbol *StartSym = List[0].Sym;
3038     for (size_t n = 1, e = List.size(); n < e; n++) {
3039       const SymbolCU &Prev = List[n - 1];
3040       const SymbolCU &Cur = List[n];
3041 
3042       // Try and build the longest span we can within the same CU.
3043       if (Cur.CU != Prev.CU) {
3044         ArangeSpan Span;
3045         Span.Start = StartSym;
3046         Span.End = Cur.Sym;
3047         assert(Prev.CU);
3048         Spans[Prev.CU].push_back(Span);
3049         StartSym = Cur.Sym;
3050       }
3051     }
3052   }
3053 
3054   // Start the dwarf aranges section.
3055   Asm->OutStreamer->switchSection(
3056       Asm->getObjFileLowering().getDwarfARangesSection());
3057 
3058   unsigned PtrSize = Asm->MAI->getCodePointerSize();
3059 
3060   // Build a list of CUs used.
3061   std::vector<DwarfCompileUnit *> CUs;
3062   for (const auto &it : Spans) {
3063     DwarfCompileUnit *CU = it.first;
3064     CUs.push_back(CU);
3065   }
3066 
3067   // Sort the CU list (again, to ensure consistent output order).
3068   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
3069     return A->getUniqueID() < B->getUniqueID();
3070   });
3071 
3072   // Emit an arange table for each CU we used.
3073   for (DwarfCompileUnit *CU : CUs) {
3074     std::vector<ArangeSpan> &List = Spans[CU];
3075 
3076     // Describe the skeleton CU's offset and length, not the dwo file's.
3077     if (auto *Skel = CU->getSkeleton())
3078       CU = Skel;
3079 
3080     // Emit size of content not including length itself.
3081     unsigned ContentSize =
3082         sizeof(int16_t) +               // DWARF ARange version number
3083         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
3084                                         // section
3085         sizeof(int8_t) +                // Pointer Size (in bytes)
3086         sizeof(int8_t);                 // Segment Size (in bytes)
3087 
3088     unsigned TupleSize = PtrSize * 2;
3089 
3090     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
3091     unsigned Padding = offsetToAlignment(
3092         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
3093 
3094     ContentSize += Padding;
3095     ContentSize += (List.size() + 1) * TupleSize;
3096 
3097     // For each compile unit, write the list of spans it covers.
3098     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
3099     Asm->OutStreamer->AddComment("DWARF Arange version number");
3100     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
3101     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
3102     emitSectionReference(*CU);
3103     Asm->OutStreamer->AddComment("Address Size (in bytes)");
3104     Asm->emitInt8(PtrSize);
3105     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
3106     Asm->emitInt8(0);
3107 
3108     Asm->OutStreamer->emitFill(Padding, 0xff);
3109 
3110     for (const ArangeSpan &Span : List) {
3111       Asm->emitLabelReference(Span.Start, PtrSize);
3112 
3113       // Calculate the size as being from the span start to its end.
3114       //
3115       // If the size is zero, then round it up to one byte. The DWARF
3116       // specification requires that entries in this table have nonzero
3117       // lengths.
3118       auto SizeRef = SymSize.find(Span.Start);
3119       if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) {
3120         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
3121       } else {
3122         // For symbols without an end marker (e.g. common), we
3123         // write a single arange entry containing just that one symbol.
3124         uint64_t Size;
3125         if (SizeRef == SymSize.end() || SizeRef->second == 0)
3126           Size = 1;
3127         else
3128           Size = SizeRef->second;
3129 
3130         Asm->OutStreamer->emitIntValue(Size, PtrSize);
3131       }
3132     }
3133 
3134     Asm->OutStreamer->AddComment("ARange terminator");
3135     Asm->OutStreamer->emitIntValue(0, PtrSize);
3136     Asm->OutStreamer->emitIntValue(0, PtrSize);
3137   }
3138 }
3139 
3140 /// Emit a single range list. We handle both DWARF v5 and earlier.
3141 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
3142                           const RangeSpanList &List) {
3143   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
3144                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3145                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3146                 llvm::dwarf::RangeListEncodingString,
3147                 List.CU->getCUNode()->getRangesBaseAddress() ||
3148                     DD.getDwarfVersion() >= 5,
3149                 [](auto) {});
3150 }
3151 
3152 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3153   if (Holder.getRangeLists().empty())
3154     return;
3155 
3156   assert(useRangesSection());
3157   assert(!CUMap.empty());
3158   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3159     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3160   }));
3161 
3162   Asm->OutStreamer->switchSection(Section);
3163 
3164   MCSymbol *TableEnd = nullptr;
3165   if (getDwarfVersion() >= 5)
3166     TableEnd = emitRnglistsTableHeader(Asm, Holder);
3167 
3168   for (const RangeSpanList &List : Holder.getRangeLists())
3169     emitRangeList(*this, Asm, List);
3170 
3171   if (TableEnd)
3172     Asm->OutStreamer->emitLabel(TableEnd);
3173 }
3174 
3175 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
3176 /// .debug_rnglists section.
3177 void DwarfDebug::emitDebugRanges() {
3178   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3179 
3180   emitDebugRangesImpl(Holder,
3181                       getDwarfVersion() >= 5
3182                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3183                           : Asm->getObjFileLowering().getDwarfRangesSection());
3184 }
3185 
3186 void DwarfDebug::emitDebugRangesDWO() {
3187   emitDebugRangesImpl(InfoHolder,
3188                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3189 }
3190 
3191 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
3192 /// DWARF 4.
3193 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3194                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3195   enum HeaderFlagMask {
3196 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3197 #include "llvm/BinaryFormat/Dwarf.def"
3198   };
3199   Asm->OutStreamer->AddComment("Macro information version");
3200   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3201   // We emit the line offset flag unconditionally here, since line offset should
3202   // be mostly present.
3203   if (Asm->isDwarf64()) {
3204     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3205     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3206   } else {
3207     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3208     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3209   }
3210   Asm->OutStreamer->AddComment("debug_line_offset");
3211   if (DD.useSplitDwarf())
3212     Asm->emitDwarfLengthOrOffset(0);
3213   else
3214     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3215 }
3216 
3217 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3218   for (auto *MN : Nodes) {
3219     if (auto *M = dyn_cast<DIMacro>(MN))
3220       emitMacro(*M);
3221     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3222       emitMacroFile(*F, U);
3223     else
3224       llvm_unreachable("Unexpected DI type!");
3225   }
3226 }
3227 
3228 void DwarfDebug::emitMacro(DIMacro &M) {
3229   StringRef Name = M.getName();
3230   StringRef Value = M.getValue();
3231 
3232   // There should be one space between the macro name and the macro value in
3233   // define entries. In undef entries, only the macro name is emitted.
3234   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3235 
3236   if (UseDebugMacroSection) {
3237     if (getDwarfVersion() >= 5) {
3238       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3239                           ? dwarf::DW_MACRO_define_strx
3240                           : dwarf::DW_MACRO_undef_strx;
3241       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3242       Asm->emitULEB128(Type);
3243       Asm->OutStreamer->AddComment("Line Number");
3244       Asm->emitULEB128(M.getLine());
3245       Asm->OutStreamer->AddComment("Macro String");
3246       Asm->emitULEB128(
3247           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3248     } else {
3249       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3250                           ? dwarf::DW_MACRO_GNU_define_indirect
3251                           : dwarf::DW_MACRO_GNU_undef_indirect;
3252       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3253       Asm->emitULEB128(Type);
3254       Asm->OutStreamer->AddComment("Line Number");
3255       Asm->emitULEB128(M.getLine());
3256       Asm->OutStreamer->AddComment("Macro String");
3257       Asm->emitDwarfSymbolReference(
3258           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3259     }
3260   } else {
3261     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3262     Asm->emitULEB128(M.getMacinfoType());
3263     Asm->OutStreamer->AddComment("Line Number");
3264     Asm->emitULEB128(M.getLine());
3265     Asm->OutStreamer->AddComment("Macro String");
3266     Asm->OutStreamer->emitBytes(Str);
3267     Asm->emitInt8('\0');
3268   }
3269 }
3270 
3271 void DwarfDebug::emitMacroFileImpl(
3272     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3273     StringRef (*MacroFormToString)(unsigned Form)) {
3274 
3275   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3276   Asm->emitULEB128(StartFile);
3277   Asm->OutStreamer->AddComment("Line Number");
3278   Asm->emitULEB128(MF.getLine());
3279   Asm->OutStreamer->AddComment("File Number");
3280   DIFile &F = *MF.getFile();
3281   if (useSplitDwarf())
3282     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3283         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3284         Asm->OutContext.getDwarfVersion(), F.getSource()));
3285   else
3286     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3287   handleMacroNodes(MF.getElements(), U);
3288   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3289   Asm->emitULEB128(EndFile);
3290 }
3291 
3292 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3293   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3294   // so for readibility/uniformity, We are explicitly emitting those.
3295   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3296   if (UseDebugMacroSection)
3297     emitMacroFileImpl(
3298         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3299         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3300   else
3301     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3302                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3303 }
3304 
3305 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3306   for (const auto &P : CUMap) {
3307     auto &TheCU = *P.second;
3308     auto *SkCU = TheCU.getSkeleton();
3309     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3310     auto *CUNode = cast<DICompileUnit>(P.first);
3311     DIMacroNodeArray Macros = CUNode->getMacros();
3312     if (Macros.empty())
3313       continue;
3314     Asm->OutStreamer->switchSection(Section);
3315     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3316     if (UseDebugMacroSection)
3317       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3318     handleMacroNodes(Macros, U);
3319     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3320     Asm->emitInt8(0);
3321   }
3322 }
3323 
3324 /// Emit macros into a debug macinfo/macro section.
3325 void DwarfDebug::emitDebugMacinfo() {
3326   auto &ObjLower = Asm->getObjFileLowering();
3327   emitDebugMacinfoImpl(UseDebugMacroSection
3328                            ? ObjLower.getDwarfMacroSection()
3329                            : ObjLower.getDwarfMacinfoSection());
3330 }
3331 
3332 void DwarfDebug::emitDebugMacinfoDWO() {
3333   auto &ObjLower = Asm->getObjFileLowering();
3334   emitDebugMacinfoImpl(UseDebugMacroSection
3335                            ? ObjLower.getDwarfMacroDWOSection()
3336                            : ObjLower.getDwarfMacinfoDWOSection());
3337 }
3338 
3339 // DWARF5 Experimental Separate Dwarf emitters.
3340 
3341 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3342                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3343 
3344   if (!CompilationDir.empty())
3345     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3346   addGnuPubAttributes(*NewU, Die);
3347 
3348   SkeletonHolder.addUnit(std::move(NewU));
3349 }
3350 
3351 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3352 
3353   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3354       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3355       UnitKind::Skeleton);
3356   DwarfCompileUnit &NewCU = *OwnedUnit;
3357   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3358 
3359   NewCU.initStmtList();
3360 
3361   if (useSegmentedStringOffsetsTable())
3362     NewCU.addStringOffsetsStart();
3363 
3364   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3365 
3366   return NewCU;
3367 }
3368 
3369 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3370 // compile units that would normally be in debug_info.
3371 void DwarfDebug::emitDebugInfoDWO() {
3372   assert(useSplitDwarf() && "No split dwarf debug info?");
3373   // Don't emit relocations into the dwo file.
3374   InfoHolder.emitUnits(/* UseOffsets */ true);
3375 }
3376 
3377 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3378 // abbreviations for the .debug_info.dwo section.
3379 void DwarfDebug::emitDebugAbbrevDWO() {
3380   assert(useSplitDwarf() && "No split dwarf?");
3381   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3382 }
3383 
3384 void DwarfDebug::emitDebugLineDWO() {
3385   assert(useSplitDwarf() && "No split dwarf?");
3386   SplitTypeUnitFileTable.Emit(
3387       *Asm->OutStreamer, MCDwarfLineTableParams(),
3388       Asm->getObjFileLowering().getDwarfLineDWOSection());
3389 }
3390 
3391 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3392   assert(useSplitDwarf() && "No split dwarf?");
3393   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3394       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3395       InfoHolder.getStringOffsetsStartSym());
3396 }
3397 
3398 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3399 // string section and is identical in format to traditional .debug_str
3400 // sections.
3401 void DwarfDebug::emitDebugStrDWO() {
3402   if (useSegmentedStringOffsetsTable())
3403     emitStringOffsetsTableHeaderDWO();
3404   assert(useSplitDwarf() && "No split dwarf?");
3405   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3406   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3407                          OffSec, /* UseRelativeOffsets = */ false);
3408 }
3409 
3410 // Emit address pool.
3411 void DwarfDebug::emitDebugAddr() {
3412   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3413 }
3414 
3415 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3416   if (!useSplitDwarf())
3417     return nullptr;
3418   const DICompileUnit *DIUnit = CU.getCUNode();
3419   SplitTypeUnitFileTable.maybeSetRootFile(
3420       DIUnit->getDirectory(), DIUnit->getFilename(),
3421       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3422   return &SplitTypeUnitFileTable;
3423 }
3424 
3425 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3426   MD5 Hash;
3427   Hash.update(Identifier);
3428   // ... take the least significant 8 bytes and return those. Our MD5
3429   // implementation always returns its results in little endian, so we actually
3430   // need the "high" word.
3431   MD5::MD5Result Result;
3432   Hash.final(Result);
3433   return Result.high();
3434 }
3435 
3436 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3437                                       StringRef Identifier, DIE &RefDie,
3438                                       const DICompositeType *CTy) {
3439   // Fast path if we're building some type units and one has already used the
3440   // address pool we know we're going to throw away all this work anyway, so
3441   // don't bother building dependent types.
3442   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3443     return;
3444 
3445   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3446   if (!Ins.second) {
3447     CU.addDIETypeSignature(RefDie, Ins.first->second);
3448     return;
3449   }
3450 
3451   setCurrentDWARF5AccelTable(DWARF5AccelTableKind::TU);
3452   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3453   AddrPool.resetUsedFlag();
3454 
3455   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(
3456       CU, Asm, this, &InfoHolder, NumTypeUnitsCreated++, getDwoLineTable(CU));
3457   DwarfTypeUnit &NewTU = *OwnedUnit;
3458   DIE &UnitDie = NewTU.getUnitDie();
3459   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3460 
3461   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3462                 CU.getLanguage());
3463 
3464   uint64_t Signature = makeTypeSignature(Identifier);
3465   NewTU.setTypeSignature(Signature);
3466   Ins.first->second = Signature;
3467 
3468   if (useSplitDwarf()) {
3469     // Although multiple type units can have the same signature, they are not
3470     // guranteed to be bit identical. When LLDB uses .debug_names it needs to
3471     // know from which CU a type unit came from. These two attrbutes help it to
3472     // figure that out.
3473     if (getDwarfVersion() >= 5) {
3474       if (!CompilationDir.empty())
3475         NewTU.addString(UnitDie, dwarf::DW_AT_comp_dir, CompilationDir);
3476       NewTU.addString(UnitDie, dwarf::DW_AT_dwo_name,
3477                       Asm->TM.Options.MCOptions.SplitDwarfFile);
3478     }
3479     MCSection *Section =
3480         getDwarfVersion() <= 4
3481             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3482             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3483     NewTU.setSection(Section);
3484   } else {
3485     MCSection *Section =
3486         getDwarfVersion() <= 4
3487             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3488             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3489     NewTU.setSection(Section);
3490     // Non-split type units reuse the compile unit's line table.
3491     CU.applyStmtList(UnitDie);
3492   }
3493 
3494   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3495   // units.
3496   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3497     NewTU.addStringOffsetsStart();
3498 
3499   NewTU.setType(NewTU.createTypeDIE(CTy));
3500 
3501   if (TopLevelType) {
3502     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3503     TypeUnitsUnderConstruction.clear();
3504 
3505     // Types referencing entries in the address table cannot be placed in type
3506     // units.
3507     if (AddrPool.hasBeenUsed()) {
3508       AccelTypeUnitsDebugNames.clear();
3509       // Remove all the types built while building this type.
3510       // This is pessimistic as some of these types might not be dependent on
3511       // the type that used an address.
3512       for (const auto &TU : TypeUnitsToAdd)
3513         TypeSignatures.erase(TU.second);
3514 
3515       // Construct this type in the CU directly.
3516       // This is inefficient because all the dependent types will be rebuilt
3517       // from scratch, including building them in type units, discovering that
3518       // they depend on addresses, throwing them out and rebuilding them.
3519       setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU);
3520       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3521       return;
3522     }
3523 
3524     // If the type wasn't dependent on fission addresses, finish adding the type
3525     // and all its dependent types.
3526     for (auto &TU : TypeUnitsToAdd) {
3527       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3528       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3529       if (getDwarfVersion() >= 5 &&
3530           getAccelTableKind() == AccelTableKind::Dwarf) {
3531         if (useSplitDwarf())
3532           AccelDebugNames.addTypeUnitSignature(*TU.first);
3533         else
3534           AccelDebugNames.addTypeUnitSymbol(*TU.first);
3535       }
3536     }
3537     AccelTypeUnitsDebugNames.convertDieToOffset();
3538     AccelDebugNames.addTypeEntries(AccelTypeUnitsDebugNames);
3539     AccelTypeUnitsDebugNames.clear();
3540     setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU);
3541   }
3542   CU.addDIETypeSignature(RefDie, Signature);
3543 }
3544 
3545 // Add the Name along with its companion DIE to the appropriate accelerator
3546 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3547 // AccelTableKind::Apple, we use the table we got as an argument). If
3548 // accelerator tables are disabled, this function does nothing.
3549 template <typename DataT>
3550 void DwarfDebug::addAccelNameImpl(
3551     const DwarfUnit &Unit,
3552     const DICompileUnit::DebugNameTableKind NameTableKind,
3553     AccelTable<DataT> &AppleAccel, StringRef Name, const DIE &Die) {
3554   if (getAccelTableKind() == AccelTableKind::None ||
3555       Unit.getUnitDie().getTag() == dwarf::DW_TAG_skeleton_unit || Name.empty())
3556     return;
3557 
3558   if (getAccelTableKind() != AccelTableKind::Apple &&
3559       NameTableKind != DICompileUnit::DebugNameTableKind::Apple &&
3560       NameTableKind != DICompileUnit::DebugNameTableKind::Default)
3561     return;
3562 
3563   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3564   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3565 
3566   switch (getAccelTableKind()) {
3567   case AccelTableKind::Apple:
3568     AppleAccel.addName(Ref, Die);
3569     break;
3570   case AccelTableKind::Dwarf: {
3571     DWARF5AccelTable &Current = getCurrentDWARF5AccelTable();
3572     assert(((&Current == &AccelTypeUnitsDebugNames) ||
3573             ((&Current == &AccelDebugNames) &&
3574              (Unit.getUnitDie().getTag() != dwarf::DW_TAG_type_unit))) &&
3575                "Kind is CU but TU is being processed.");
3576     assert(((&Current == &AccelDebugNames) ||
3577             ((&Current == &AccelTypeUnitsDebugNames) &&
3578              (Unit.getUnitDie().getTag() == dwarf::DW_TAG_type_unit))) &&
3579                "Kind is TU but CU is being processed.");
3580     // The type unit can be discarded, so need to add references to final
3581     // acceleration table once we know it's complete and we emit it.
3582     Current.addName(Ref, Die, Unit.getUniqueID(),
3583                     Unit.getUnitDie().getTag() == dwarf::DW_TAG_type_unit);
3584     break;
3585   }
3586   case AccelTableKind::Default:
3587     llvm_unreachable("Default should have already been resolved.");
3588   case AccelTableKind::None:
3589     llvm_unreachable("None handled above");
3590   }
3591 }
3592 
3593 void DwarfDebug::addAccelName(
3594     const DwarfUnit &Unit,
3595     const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3596     const DIE &Die) {
3597   addAccelNameImpl(Unit, NameTableKind, AccelNames, Name, Die);
3598 }
3599 
3600 void DwarfDebug::addAccelObjC(
3601     const DwarfUnit &Unit,
3602     const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3603     const DIE &Die) {
3604   // ObjC names go only into the Apple accelerator tables.
3605   if (getAccelTableKind() == AccelTableKind::Apple)
3606     addAccelNameImpl(Unit, NameTableKind, AccelObjC, Name, Die);
3607 }
3608 
3609 void DwarfDebug::addAccelNamespace(
3610     const DwarfUnit &Unit,
3611     const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3612     const DIE &Die) {
3613   addAccelNameImpl(Unit, NameTableKind, AccelNamespace, Name, Die);
3614 }
3615 
3616 void DwarfDebug::addAccelType(
3617     const DwarfUnit &Unit,
3618     const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name,
3619     const DIE &Die, char Flags) {
3620   addAccelNameImpl(Unit, NameTableKind, AccelTypes, Name, Die);
3621 }
3622 
3623 uint16_t DwarfDebug::getDwarfVersion() const {
3624   return Asm->OutStreamer->getContext().getDwarfVersion();
3625 }
3626 
3627 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3628   if (Asm->getDwarfVersion() >= 4)
3629     return dwarf::Form::DW_FORM_sec_offset;
3630   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3631          "DWARF64 is not defined prior DWARFv3");
3632   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3633                           : dwarf::Form::DW_FORM_data4;
3634 }
3635 
3636 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3637   return SectionLabels.lookup(S);
3638 }
3639 
3640 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3641   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3642     if (useSplitDwarf() || getDwarfVersion() >= 5)
3643       AddrPool.getIndex(S);
3644 }
3645 
3646 std::optional<MD5::MD5Result>
3647 DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3648   assert(File);
3649   if (getDwarfVersion() < 5)
3650     return std::nullopt;
3651   std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3652   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3653     return std::nullopt;
3654 
3655   // Convert the string checksum to an MD5Result for the streamer.
3656   // The verifier validates the checksum so we assume it's okay.
3657   // An MD5 checksum is 16 bytes.
3658   std::string ChecksumString = fromHex(Checksum->Value);
3659   MD5::MD5Result CKMem;
3660   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data());
3661   return CKMem;
3662 }
3663 
3664 bool DwarfDebug::alwaysUseRanges(const DwarfCompileUnit &CU) const {
3665   if (MinimizeAddr == MinimizeAddrInV5::Ranges)
3666     return true;
3667   if (MinimizeAddr != MinimizeAddrInV5::Default)
3668     return false;
3669   if (useSplitDwarf())
3670     return true;
3671   return false;
3672 }
3673