xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "dwarfdebug"
87 
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
89 
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                          cl::desc("Disable debug info printing"));
93 
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97 
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99                                            cl::Hidden,
100                                            cl::desc("Generate dwarf aranges"),
101                                            cl::init(false));
102 
103 static cl::opt<bool>
104     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105                            cl::desc("Generate DWARF4 type units."),
106                            cl::init(false));
107 
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109     "split-dwarf-cross-cu-references", cl::Hidden,
110     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
111 
112 enum DefaultOnOff { Default, Enable, Disable };
113 
114 static cl::opt<DefaultOnOff> UnknownLocations(
115     "use-unknown-locations", cl::Hidden,
116     cl::desc("Make an absence of debug location information explicit."),
117     cl::values(clEnumVal(Default, "At top of block or after label"),
118                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119     cl::init(Default));
120 
121 static cl::opt<AccelTableKind> AccelTables(
122     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123     cl::values(clEnumValN(AccelTableKind::Default, "Default",
124                           "Default for platform"),
125                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128     cl::init(AccelTableKind::Default));
129 
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132                  cl::desc("Use inlined strings rather than string section."),
133                  cl::values(clEnumVal(Default, "Default for platform"),
134                             clEnumVal(Enable, "Enabled"),
135                             clEnumVal(Disable, "Disabled")),
136                  cl::init(Default));
137 
138 static cl::opt<bool>
139     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140                          cl::desc("Disable emission .debug_ranges section."),
141                          cl::init(false));
142 
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144     "dwarf-sections-as-references", cl::Hidden,
145     cl::desc("Use sections+offset as references rather than labels."),
146     cl::values(clEnumVal(Default, "Default for platform"),
147                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148     cl::init(Default));
149 
150 enum LinkageNameOption {
151   DefaultLinkageNames,
152   AllLinkageNames,
153   AbstractLinkageNames
154 };
155 
156 static cl::opt<LinkageNameOption>
157     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158                       cl::desc("Which DWARF linkage-name attributes to emit."),
159                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
160                                             "Default for platform"),
161                                  clEnumValN(AllLinkageNames, "All", "All"),
162                                  clEnumValN(AbstractLinkageNames, "Abstract",
163                                             "Abstract subprograms")),
164                       cl::init(DefaultLinkageNames));
165 
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
171 
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173   getActiveStreamer().EmitInt8(
174       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175                   : dwarf::OperationEncodingString(Op));
176 }
177 
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179   getActiveStreamer().EmitSLEB128(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183   getActiveStreamer().EmitULEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187   getActiveStreamer().EmitInt8(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192   getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
193 }
194 
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196                                               unsigned MachineReg) {
197   // This information is not available while emitting .debug_loc entries.
198   return false;
199 }
200 
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202   assert(!IsBuffering && "Already buffering?");
203   if (!TmpBuf)
204     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205   IsBuffering = true;
206 }
207 
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
209 
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211   return TmpBuf ? TmpBuf->Bytes.size() : 0;
212 }
213 
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
215   if (!TmpBuf)
216     return;
217   for (auto Byte : enumerate(TmpBuf->Bytes)) {
218     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219                               ? TmpBuf->Comments[Byte.index()].c_str()
220                               : "";
221     OutBS.EmitInt8(Byte.value(), Comment);
222   }
223   TmpBuf->Bytes.clear();
224   TmpBuf->Comments.clear();
225 }
226 
227 const DIType *DbgVariable::getType() const {
228   return getVariable()->getType();
229 }
230 
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233   const DIExpression *Expr = MI->getDebugExpression();
234   assert(MI->getNumOperands() == 4);
235   if (MI->getOperand(0).isReg()) {
236     auto RegOp = MI->getOperand(0);
237     auto Op1 = MI->getOperand(1);
238     // If the second operand is an immediate, this is a
239     // register-indirect address.
240     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242     return DbgValueLoc(Expr, MLoc);
243   }
244   if (MI->getOperand(0).isTargetIndex()) {
245     auto Op = MI->getOperand(0);
246     return DbgValueLoc(Expr,
247                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
248   }
249   if (MI->getOperand(0).isImm())
250     return DbgValueLoc(Expr, MI->getOperand(0).getImm());
251   if (MI->getOperand(0).isFPImm())
252     return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
253   if (MI->getOperand(0).isCImm())
254     return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
255 
256   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
257 }
258 
259 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
260   assert(FrameIndexExprs.empty() && "Already initialized?");
261   assert(!ValueLoc.get() && "Already initialized?");
262 
263   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
264   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
265          "Wrong inlined-at");
266 
267   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
268   if (auto *E = DbgValue->getDebugExpression())
269     if (E->getNumElements())
270       FrameIndexExprs.push_back({0, E});
271 }
272 
273 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
274   if (FrameIndexExprs.size() == 1)
275     return FrameIndexExprs;
276 
277   assert(llvm::all_of(FrameIndexExprs,
278                       [](const FrameIndexExpr &A) {
279                         return A.Expr->isFragment();
280                       }) &&
281          "multiple FI expressions without DW_OP_LLVM_fragment");
282   llvm::sort(FrameIndexExprs,
283              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
284                return A.Expr->getFragmentInfo()->OffsetInBits <
285                       B.Expr->getFragmentInfo()->OffsetInBits;
286              });
287 
288   return FrameIndexExprs;
289 }
290 
291 void DbgVariable::addMMIEntry(const DbgVariable &V) {
292   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
293   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
294   assert(V.getVariable() == getVariable() && "conflicting variable");
295   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
296 
297   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
298   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
299 
300   // FIXME: This logic should not be necessary anymore, as we now have proper
301   // deduplication. However, without it, we currently run into the assertion
302   // below, which means that we are likely dealing with broken input, i.e. two
303   // non-fragment entries for the same variable at different frame indices.
304   if (FrameIndexExprs.size()) {
305     auto *Expr = FrameIndexExprs.back().Expr;
306     if (!Expr || !Expr->isFragment())
307       return;
308   }
309 
310   for (const auto &FIE : V.FrameIndexExprs)
311     // Ignore duplicate entries.
312     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
313           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
314         }))
315       FrameIndexExprs.push_back(FIE);
316 
317   assert((FrameIndexExprs.size() == 1 ||
318           llvm::all_of(FrameIndexExprs,
319                        [](FrameIndexExpr &FIE) {
320                          return FIE.Expr && FIE.Expr->isFragment();
321                        })) &&
322          "conflicting locations for variable");
323 }
324 
325 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
326                                             bool GenerateTypeUnits,
327                                             DebuggerKind Tuning,
328                                             const Triple &TT) {
329   // Honor an explicit request.
330   if (AccelTables != AccelTableKind::Default)
331     return AccelTables;
332 
333   // Accelerator tables with type units are currently not supported.
334   if (GenerateTypeUnits)
335     return AccelTableKind::None;
336 
337   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
338   // always implies debug_names. For lower standard versions we use apple
339   // accelerator tables on apple platforms and debug_names elsewhere.
340   if (DwarfVersion >= 5)
341     return AccelTableKind::Dwarf;
342   if (Tuning == DebuggerKind::LLDB)
343     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
344                                    : AccelTableKind::Dwarf;
345   return AccelTableKind::None;
346 }
347 
348 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
349     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
350       InfoHolder(A, "info_string", DIEValueAllocator),
351       SkeletonHolder(A, "skel_string", DIEValueAllocator),
352       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
353   const Triple &TT = Asm->TM.getTargetTriple();
354 
355   // Make sure we know our "debugger tuning".  The target option takes
356   // precedence; fall back to triple-based defaults.
357   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
358     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
359   else if (IsDarwin)
360     DebuggerTuning = DebuggerKind::LLDB;
361   else if (TT.isPS4CPU())
362     DebuggerTuning = DebuggerKind::SCE;
363   else
364     DebuggerTuning = DebuggerKind::GDB;
365 
366   if (DwarfInlinedStrings == Default)
367     UseInlineStrings = TT.isNVPTX();
368   else
369     UseInlineStrings = DwarfInlinedStrings == Enable;
370 
371   UseLocSection = !TT.isNVPTX();
372 
373   HasAppleExtensionAttributes = tuneForLLDB();
374 
375   // Handle split DWARF.
376   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
377 
378   // SCE defaults to linkage names only for abstract subprograms.
379   if (DwarfLinkageNames == DefaultLinkageNames)
380     UseAllLinkageNames = !tuneForSCE();
381   else
382     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
383 
384   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
385   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
386                                     : MMI->getModule()->getDwarfVersion();
387   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
388   DwarfVersion =
389       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
390 
391   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
392 
393   // Use sections as references. Force for NVPTX.
394   if (DwarfSectionsAsReferences == Default)
395     UseSectionsAsReferences = TT.isNVPTX();
396   else
397     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
398 
399   // Don't generate type units for unsupported object file formats.
400   GenerateTypeUnits =
401       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
402 
403   TheAccelTableKind = computeAccelTableKind(
404       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
405 
406   // Work around a GDB bug. GDB doesn't support the standard opcode;
407   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
408   // is defined as of DWARF 3.
409   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
410   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
411   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
412 
413   // GDB does not fully support the DWARF 4 representation for bitfields.
414   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
415 
416   // The DWARF v5 string offsets table has - possibly shared - contributions
417   // from each compile and type unit each preceded by a header. The string
418   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
419   // a monolithic string offsets table without any header.
420   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
421 
422   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
423 }
424 
425 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
426 DwarfDebug::~DwarfDebug() = default;
427 
428 static bool isObjCClass(StringRef Name) {
429   return Name.startswith("+") || Name.startswith("-");
430 }
431 
432 static bool hasObjCCategory(StringRef Name) {
433   if (!isObjCClass(Name))
434     return false;
435 
436   return Name.find(") ") != StringRef::npos;
437 }
438 
439 static void getObjCClassCategory(StringRef In, StringRef &Class,
440                                  StringRef &Category) {
441   if (!hasObjCCategory(In)) {
442     Class = In.slice(In.find('[') + 1, In.find(' '));
443     Category = "";
444     return;
445   }
446 
447   Class = In.slice(In.find('[') + 1, In.find('('));
448   Category = In.slice(In.find('[') + 1, In.find(' '));
449 }
450 
451 static StringRef getObjCMethodName(StringRef In) {
452   return In.slice(In.find(' ') + 1, In.find(']'));
453 }
454 
455 // Add the various names to the Dwarf accelerator table names.
456 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
457                                     const DISubprogram *SP, DIE &Die) {
458   if (getAccelTableKind() != AccelTableKind::Apple &&
459       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
460     return;
461 
462   if (!SP->isDefinition())
463     return;
464 
465   if (SP->getName() != "")
466     addAccelName(CU, SP->getName(), Die);
467 
468   // If the linkage name is different than the name, go ahead and output that as
469   // well into the name table. Only do that if we are going to actually emit
470   // that name.
471   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
472       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
473     addAccelName(CU, SP->getLinkageName(), Die);
474 
475   // If this is an Objective-C selector name add it to the ObjC accelerator
476   // too.
477   if (isObjCClass(SP->getName())) {
478     StringRef Class, Category;
479     getObjCClassCategory(SP->getName(), Class, Category);
480     addAccelObjC(CU, Class, Die);
481     if (Category != "")
482       addAccelObjC(CU, Category, Die);
483     // Also add the base method name to the name table.
484     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
485   }
486 }
487 
488 /// Check whether we should create a DIE for the given Scope, return true
489 /// if we don't create a DIE (the corresponding DIE is null).
490 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
491   if (Scope->isAbstractScope())
492     return false;
493 
494   // We don't create a DIE if there is no Range.
495   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
496   if (Ranges.empty())
497     return true;
498 
499   if (Ranges.size() > 1)
500     return false;
501 
502   // We don't create a DIE if we have a single Range and the end label
503   // is null.
504   return !getLabelAfterInsn(Ranges.front().second);
505 }
506 
507 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
508   F(CU);
509   if (auto *SkelCU = CU.getSkeleton())
510     if (CU.getCUNode()->getSplitDebugInlining())
511       F(*SkelCU);
512 }
513 
514 bool DwarfDebug::shareAcrossDWOCUs() const {
515   return SplitDwarfCrossCuReferences;
516 }
517 
518 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
519                                                      LexicalScope *Scope) {
520   assert(Scope && Scope->getScopeNode());
521   assert(Scope->isAbstractScope());
522   assert(!Scope->getInlinedAt());
523 
524   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
525 
526   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
527   // was inlined from another compile unit.
528   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
529     // Avoid building the original CU if it won't be used
530     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
531   else {
532     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
533     if (auto *SkelCU = CU.getSkeleton()) {
534       (shareAcrossDWOCUs() ? CU : SrcCU)
535           .constructAbstractSubprogramScopeDIE(Scope);
536       if (CU.getCUNode()->getSplitDebugInlining())
537         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
538     } else
539       CU.constructAbstractSubprogramScopeDIE(Scope);
540   }
541 }
542 
543 /// Try to interpret values loaded into registers that forward parameters
544 /// for \p CallMI. Store parameters with interpreted value into \p Params.
545 static void collectCallSiteParameters(const MachineInstr *CallMI,
546                                       ParamSet &Params) {
547   auto *MF = CallMI->getMF();
548   auto CalleesMap = MF->getCallSitesInfo();
549   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
550 
551   // There is no information for the call instruction.
552   if (CallFwdRegsInfo == CalleesMap.end())
553     return;
554 
555   auto *MBB = CallMI->getParent();
556   const auto &TRI = MF->getSubtarget().getRegisterInfo();
557   const auto &TII = MF->getSubtarget().getInstrInfo();
558   const auto &TLI = MF->getSubtarget().getTargetLowering();
559 
560   // Skip the call instruction.
561   auto I = std::next(CallMI->getReverseIterator());
562 
563   DenseSet<unsigned> ForwardedRegWorklist;
564   // Add all the forwarding registers into the ForwardedRegWorklist.
565   for (auto ArgReg : CallFwdRegsInfo->second) {
566     bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
567     assert(InsertedReg && "Single register used to forward two arguments?");
568     (void)InsertedReg;
569   }
570 
571   // We erase, from the ForwardedRegWorklist, those forwarding registers for
572   // which we successfully describe a loaded value (by using
573   // the describeLoadedValue()). For those remaining arguments in the working
574   // list, for which we do not describe a loaded value by
575   // the describeLoadedValue(), we try to generate an entry value expression
576   // for their call site value desctipion, if the call is within the entry MBB.
577   // The RegsForEntryValues maps a forwarding register into the register holding
578   // the entry value.
579   // TODO: Handle situations when call site parameter value can be described
580   // as the entry value within basic blocks other then the first one.
581   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
582   DenseMap<unsigned, unsigned> RegsForEntryValues;
583 
584   // If the MI is an instruction defining one or more parameters' forwarding
585   // registers, add those defines. We can currently only describe forwarded
586   // registers that are explicitly defined, but keep track of implicit defines
587   // also to remove those registers from the work list.
588   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
589                                           SmallVectorImpl<unsigned> &Explicit,
590                                           SmallVectorImpl<unsigned> &Implicit) {
591     if (MI.isDebugInstr())
592       return;
593 
594     for (const MachineOperand &MO : MI.operands()) {
595       if (MO.isReg() && MO.isDef() &&
596           Register::isPhysicalRegister(MO.getReg())) {
597         for (auto FwdReg : ForwardedRegWorklist) {
598           if (TRI->regsOverlap(FwdReg, MO.getReg())) {
599             if (MO.isImplicit())
600               Implicit.push_back(FwdReg);
601             else
602               Explicit.push_back(FwdReg);
603           }
604         }
605       }
606     }
607   };
608 
609   auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
610     unsigned FwdReg = Reg;
611     if (ShouldTryEmitEntryVals) {
612       auto EntryValReg = RegsForEntryValues.find(Reg);
613       if (EntryValReg != RegsForEntryValues.end())
614         FwdReg = EntryValReg->second;
615     }
616 
617     DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
618     Params.push_back(CSParm);
619     ++NumCSParams;
620   };
621 
622   // Search for a loading value in forwarding registers.
623   for (; I != MBB->rend(); ++I) {
624     // Skip bundle headers.
625     if (I->isBundle())
626       continue;
627 
628     // If the next instruction is a call we can not interpret parameter's
629     // forwarding registers or we finished the interpretation of all parameters.
630     if (I->isCall())
631       return;
632 
633     if (ForwardedRegWorklist.empty())
634       return;
635 
636     SmallVector<unsigned, 4> ExplicitFwdRegDefs;
637     SmallVector<unsigned, 4> ImplicitFwdRegDefs;
638     getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
639     if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
640       continue;
641 
642     // If the MI clobbers more then one forwarding register we must remove
643     // all of them from the working list.
644     for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
645       ForwardedRegWorklist.erase(Reg);
646 
647     for (auto ParamFwdReg : ExplicitFwdRegDefs) {
648       if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) {
649         if (ParamValue->first.isImm()) {
650           int64_t Val = ParamValue->first.getImm();
651           DbgValueLoc DbgLocVal(ParamValue->second, Val);
652           finishCallSiteParam(DbgLocVal, ParamFwdReg);
653         } else if (ParamValue->first.isReg()) {
654           Register RegLoc = ParamValue->first.getReg();
655           // TODO: For now, there is no use of describing the value loaded into the
656           //       register that is also the source registers (e.g. $r0 = add $r0, x).
657           if (ParamFwdReg == RegLoc)
658             continue;
659 
660           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
661           Register FP = TRI->getFrameRegister(*MF);
662           bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
663           if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
664             DbgValueLoc DbgLocVal(ParamValue->second,
665                                   MachineLocation(RegLoc,
666                                                   /*IsIndirect=*/IsSPorFP));
667             finishCallSiteParam(DbgLocVal, ParamFwdReg);
668           // TODO: Add support for entry value plus an expression.
669           } else if (ShouldTryEmitEntryVals &&
670                      ParamValue->second->getNumElements() == 0) {
671             ForwardedRegWorklist.insert(RegLoc);
672             RegsForEntryValues[RegLoc] = ParamFwdReg;
673           }
674         }
675       }
676     }
677   }
678 
679   // Emit the call site parameter's value as an entry value.
680   if (ShouldTryEmitEntryVals) {
681     // Create an expression where the register's entry value is used.
682     DIExpression *EntryExpr = DIExpression::get(
683         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
684     for (auto RegEntry : ForwardedRegWorklist) {
685       unsigned FwdReg = RegEntry;
686       auto EntryValReg = RegsForEntryValues.find(RegEntry);
687         if (EntryValReg != RegsForEntryValues.end())
688           FwdReg = EntryValReg->second;
689 
690       DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
691       DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
692       Params.push_back(CSParm);
693       ++NumCSParams;
694     }
695   }
696 }
697 
698 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
699                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
700                                             const MachineFunction &MF) {
701   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
702   // the subprogram is required to have one.
703   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
704     return;
705 
706   // Use DW_AT_call_all_calls to express that call site entries are present
707   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
708   // because one of its requirements is not met: call site entries for
709   // optimized-out calls are elided.
710   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
711 
712   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
713   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
714   bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();
715 
716   // Emit call site entries for each call or tail call in the function.
717   for (const MachineBasicBlock &MBB : MF) {
718     for (const MachineInstr &MI : MBB.instrs()) {
719       // Bundles with call in them will pass the isCall() test below but do not
720       // have callee operand information so skip them here. Iterator will
721       // eventually reach the call MI.
722       if (MI.isBundle())
723         continue;
724 
725       // Skip instructions which aren't calls. Both calls and tail-calling jump
726       // instructions (e.g TAILJMPd64) are classified correctly here.
727       if (!MI.isCall())
728         continue;
729 
730       // TODO: Add support for targets with delay slots (see: beginInstruction).
731       if (MI.hasDelaySlot())
732         return;
733 
734       // If this is a direct call, find the callee's subprogram.
735       // In the case of an indirect call find the register that holds
736       // the callee.
737       const MachineOperand &CalleeOp = MI.getOperand(0);
738       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
739         continue;
740 
741       unsigned CallReg = 0;
742       const DISubprogram *CalleeSP = nullptr;
743       const Function *CalleeDecl = nullptr;
744       if (CalleeOp.isReg()) {
745         CallReg = CalleeOp.getReg();
746         if (!CallReg)
747           continue;
748       } else {
749         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
750         if (!CalleeDecl || !CalleeDecl->getSubprogram())
751           continue;
752         CalleeSP = CalleeDecl->getSubprogram();
753       }
754 
755       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
756 
757       bool IsTail = TII->isTailCall(MI);
758 
759       // If MI is in a bundle, the label was created after the bundle since
760       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
761       // to search for that label below.
762       const MachineInstr *TopLevelCallMI =
763           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
764 
765       // For tail calls, for non-gdb tuning, no return PC information is needed.
766       // For regular calls (and tail calls in GDB tuning), the return PC
767       // is needed to disambiguate paths in the call graph which could lead to
768       // some target function.
769       const MCExpr *PCOffset =
770           (IsTail && !tuneForGDB())
771               ? nullptr
772               : getFunctionLocalOffsetAfterInsn(TopLevelCallMI);
773 
774       // Return address of a call-like instruction for a normal call or a
775       // jump-like instruction for a tail call. This is needed for
776       // GDB + DWARF 4 tuning.
777       const MCSymbol *PCAddr =
778           ApplyGNUExtensions
779               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
780               : nullptr;
781 
782       assert((IsTail || PCOffset || PCAddr) &&
783              "Call without return PC information");
784 
785       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
786                         << (CalleeDecl ? CalleeDecl->getName()
787                                        : StringRef(MF.getSubtarget()
788                                                        .getRegisterInfo()
789                                                        ->getName(CallReg)))
790                         << (IsTail ? " [IsTail]" : "") << "\n");
791 
792       DIE &CallSiteDIE =
793             CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
794                                          PCOffset, CallReg);
795 
796       // GDB and LLDB support call site parameter debug info.
797       if (Asm->TM.Options.EnableDebugEntryValues &&
798           (tuneForGDB() || tuneForLLDB())) {
799         ParamSet Params;
800         // Try to interpret values of call site parameters.
801         collectCallSiteParameters(&MI, Params);
802         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
803       }
804     }
805   }
806 }
807 
808 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
809   if (!U.hasDwarfPubSections())
810     return;
811 
812   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
813 }
814 
815 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
816                                       DwarfCompileUnit &NewCU) {
817   DIE &Die = NewCU.getUnitDie();
818   StringRef FN = DIUnit->getFilename();
819 
820   StringRef Producer = DIUnit->getProducer();
821   StringRef Flags = DIUnit->getFlags();
822   if (!Flags.empty() && !useAppleExtensionAttributes()) {
823     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
824     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
825   } else
826     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
827 
828   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
829                 DIUnit->getSourceLanguage());
830   NewCU.addString(Die, dwarf::DW_AT_name, FN);
831 
832   // Add DW_str_offsets_base to the unit DIE, except for split units.
833   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
834     NewCU.addStringOffsetsStart();
835 
836   if (!useSplitDwarf()) {
837     NewCU.initStmtList();
838 
839     // If we're using split dwarf the compilation dir is going to be in the
840     // skeleton CU and so we don't need to duplicate it here.
841     if (!CompilationDir.empty())
842       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
843 
844     addGnuPubAttributes(NewCU, Die);
845   }
846 
847   if (useAppleExtensionAttributes()) {
848     if (DIUnit->isOptimized())
849       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
850 
851     StringRef Flags = DIUnit->getFlags();
852     if (!Flags.empty())
853       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
854 
855     if (unsigned RVer = DIUnit->getRuntimeVersion())
856       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
857                     dwarf::DW_FORM_data1, RVer);
858   }
859 
860   if (DIUnit->getDWOId()) {
861     // This CU is either a clang module DWO or a skeleton CU.
862     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
863                   DIUnit->getDWOId());
864     if (!DIUnit->getSplitDebugFilename().empty()) {
865       // This is a prefabricated skeleton CU.
866       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
867                                          ? dwarf::DW_AT_dwo_name
868                                          : dwarf::DW_AT_GNU_dwo_name;
869       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
870     }
871   }
872 }
873 // Create new DwarfCompileUnit for the given metadata node with tag
874 // DW_TAG_compile_unit.
875 DwarfCompileUnit &
876 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
877   if (auto *CU = CUMap.lookup(DIUnit))
878     return *CU;
879 
880   CompilationDir = DIUnit->getDirectory();
881 
882   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
883       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
884   DwarfCompileUnit &NewCU = *OwnedUnit;
885   InfoHolder.addUnit(std::move(OwnedUnit));
886 
887   for (auto *IE : DIUnit->getImportedEntities())
888     NewCU.addImportedEntity(IE);
889 
890   // LTO with assembly output shares a single line table amongst multiple CUs.
891   // To avoid the compilation directory being ambiguous, let the line table
892   // explicitly describe the directory of all files, never relying on the
893   // compilation directory.
894   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
895     Asm->OutStreamer->emitDwarfFile0Directive(
896         CompilationDir, DIUnit->getFilename(),
897         NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
898         NewCU.getUniqueID());
899 
900   if (useSplitDwarf()) {
901     NewCU.setSkeleton(constructSkeletonCU(NewCU));
902     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
903   } else {
904     finishUnitAttributes(DIUnit, NewCU);
905     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
906   }
907 
908   // Create DIEs for function declarations used for call site debug info.
909   for (auto Scope : DIUnit->getRetainedTypes())
910     if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
911       NewCU.getOrCreateSubprogramDIE(SP);
912 
913   CUMap.insert({DIUnit, &NewCU});
914   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
915   return NewCU;
916 }
917 
918 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
919                                                   const DIImportedEntity *N) {
920   if (isa<DILocalScope>(N->getScope()))
921     return;
922   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
923     D->addChild(TheCU.constructImportedEntityDIE(N));
924 }
925 
926 /// Sort and unique GVEs by comparing their fragment offset.
927 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
928 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
929   llvm::sort(
930       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
931         // Sort order: first null exprs, then exprs without fragment
932         // info, then sort by fragment offset in bits.
933         // FIXME: Come up with a more comprehensive comparator so
934         // the sorting isn't non-deterministic, and so the following
935         // std::unique call works correctly.
936         if (!A.Expr || !B.Expr)
937           return !!B.Expr;
938         auto FragmentA = A.Expr->getFragmentInfo();
939         auto FragmentB = B.Expr->getFragmentInfo();
940         if (!FragmentA || !FragmentB)
941           return !!FragmentB;
942         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
943       });
944   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
945                          [](DwarfCompileUnit::GlobalExpr A,
946                             DwarfCompileUnit::GlobalExpr B) {
947                            return A.Expr == B.Expr;
948                          }),
949              GVEs.end());
950   return GVEs;
951 }
952 
953 // Emit all Dwarf sections that should come prior to the content. Create
954 // global DIEs and emit initial debug info sections. This is invoked by
955 // the target AsmPrinter.
956 void DwarfDebug::beginModule() {
957   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
958                      DWARFGroupDescription, TimePassesIsEnabled);
959   if (DisableDebugInfoPrinting) {
960     MMI->setDebugInfoAvailability(false);
961     return;
962   }
963 
964   const Module *M = MMI->getModule();
965 
966   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
967                                        M->debug_compile_units_end());
968   // Tell MMI whether we have debug info.
969   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
970          "DebugInfoAvailabilty initialized unexpectedly");
971   SingleCU = NumDebugCUs == 1;
972   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
973       GVMap;
974   for (const GlobalVariable &Global : M->globals()) {
975     SmallVector<DIGlobalVariableExpression *, 1> GVs;
976     Global.getDebugInfo(GVs);
977     for (auto *GVE : GVs)
978       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
979   }
980 
981   // Create the symbol that designates the start of the unit's contribution
982   // to the string offsets table. In a split DWARF scenario, only the skeleton
983   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
984   if (useSegmentedStringOffsetsTable())
985     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
986         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
987 
988 
989   // Create the symbols that designates the start of the DWARF v5 range list
990   // and locations list tables. They are located past the table headers.
991   if (getDwarfVersion() >= 5) {
992     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
993     Holder.setRnglistsTableBaseSym(
994         Asm->createTempSymbol("rnglists_table_base"));
995 
996     if (useSplitDwarf())
997       InfoHolder.setRnglistsTableBaseSym(
998           Asm->createTempSymbol("rnglists_dwo_table_base"));
999   }
1000 
1001   // Create the symbol that points to the first entry following the debug
1002   // address table (.debug_addr) header.
1003   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1004   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1005 
1006   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1007     // FIXME: Move local imported entities into a list attached to the
1008     // subprogram, then this search won't be needed and a
1009     // getImportedEntities().empty() test should go below with the rest.
1010     bool HasNonLocalImportedEntities = llvm::any_of(
1011         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1012           return !isa<DILocalScope>(IE->getScope());
1013         });
1014 
1015     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1016         CUNode->getRetainedTypes().empty() &&
1017         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1018       continue;
1019 
1020     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1021 
1022     // Global Variables.
1023     for (auto *GVE : CUNode->getGlobalVariables()) {
1024       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1025       // already know about the variable and it isn't adding a constant
1026       // expression.
1027       auto &GVMapEntry = GVMap[GVE->getVariable()];
1028       auto *Expr = GVE->getExpression();
1029       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1030         GVMapEntry.push_back({nullptr, Expr});
1031     }
1032     DenseSet<DIGlobalVariable *> Processed;
1033     for (auto *GVE : CUNode->getGlobalVariables()) {
1034       DIGlobalVariable *GV = GVE->getVariable();
1035       if (Processed.insert(GV).second)
1036         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1037     }
1038 
1039     for (auto *Ty : CUNode->getEnumTypes()) {
1040       // The enum types array by design contains pointers to
1041       // MDNodes rather than DIRefs. Unique them here.
1042       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1043     }
1044     for (auto *Ty : CUNode->getRetainedTypes()) {
1045       // The retained types array by design contains pointers to
1046       // MDNodes rather than DIRefs. Unique them here.
1047       if (DIType *RT = dyn_cast<DIType>(Ty))
1048           // There is no point in force-emitting a forward declaration.
1049           CU.getOrCreateTypeDIE(RT);
1050     }
1051     // Emit imported_modules last so that the relevant context is already
1052     // available.
1053     for (auto *IE : CUNode->getImportedEntities())
1054       constructAndAddImportedEntityDIE(CU, IE);
1055   }
1056 }
1057 
1058 void DwarfDebug::finishEntityDefinitions() {
1059   for (const auto &Entity : ConcreteEntities) {
1060     DIE *Die = Entity->getDIE();
1061     assert(Die);
1062     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1063     // in the ConcreteEntities list, rather than looking it up again here.
1064     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1065     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1066     assert(Unit);
1067     Unit->finishEntityDefinition(Entity.get());
1068   }
1069 }
1070 
1071 void DwarfDebug::finishSubprogramDefinitions() {
1072   for (const DISubprogram *SP : ProcessedSPNodes) {
1073     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1074     forBothCUs(
1075         getOrCreateDwarfCompileUnit(SP->getUnit()),
1076         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1077   }
1078 }
1079 
1080 void DwarfDebug::finalizeModuleInfo() {
1081   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1082 
1083   finishSubprogramDefinitions();
1084 
1085   finishEntityDefinitions();
1086 
1087   // Include the DWO file name in the hash if there's more than one CU.
1088   // This handles ThinLTO's situation where imported CUs may very easily be
1089   // duplicate with the same CU partially imported into another ThinLTO unit.
1090   StringRef DWOName;
1091   if (CUMap.size() > 1)
1092     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1093 
1094   // Handle anything that needs to be done on a per-unit basis after
1095   // all other generation.
1096   for (const auto &P : CUMap) {
1097     auto &TheCU = *P.second;
1098     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1099       continue;
1100     // Emit DW_AT_containing_type attribute to connect types with their
1101     // vtable holding type.
1102     TheCU.constructContainingTypeDIEs();
1103 
1104     // Add CU specific attributes if we need to add any.
1105     // If we're splitting the dwarf out now that we've got the entire
1106     // CU then add the dwo id to it.
1107     auto *SkCU = TheCU.getSkeleton();
1108 
1109     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1110 
1111     if (HasSplitUnit) {
1112       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1113                                          ? dwarf::DW_AT_dwo_name
1114                                          : dwarf::DW_AT_GNU_dwo_name;
1115       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1116       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1117                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1118       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1119                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1120       // Emit a unique identifier for this CU.
1121       uint64_t ID =
1122           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1123       if (getDwarfVersion() >= 5) {
1124         TheCU.setDWOId(ID);
1125         SkCU->setDWOId(ID);
1126       } else {
1127         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1128                       dwarf::DW_FORM_data8, ID);
1129         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1130                       dwarf::DW_FORM_data8, ID);
1131       }
1132 
1133       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1134         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1135         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1136                               Sym, Sym);
1137       }
1138     } else if (SkCU) {
1139       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1140     }
1141 
1142     // If we have code split among multiple sections or non-contiguous
1143     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1144     // remain in the .o file, otherwise add a DW_AT_low_pc.
1145     // FIXME: We should use ranges allow reordering of code ala
1146     // .subsections_via_symbols in mach-o. This would mean turning on
1147     // ranges for all subprogram DIEs for mach-o.
1148     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1149 
1150     if (unsigned NumRanges = TheCU.getRanges().size()) {
1151       if (NumRanges > 1 && useRangesSection())
1152         // A DW_AT_low_pc attribute may also be specified in combination with
1153         // DW_AT_ranges to specify the default base address for use in
1154         // location lists (see Section 2.6.2) and range lists (see Section
1155         // 2.17.3).
1156         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1157       else
1158         U.setBaseAddress(TheCU.getRanges().front().Begin);
1159       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1160     }
1161 
1162     // We don't keep track of which addresses are used in which CU so this
1163     // is a bit pessimistic under LTO.
1164     if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) &&
1165         (getDwarfVersion() >= 5 || HasSplitUnit))
1166       U.addAddrTableBase();
1167 
1168     if (getDwarfVersion() >= 5) {
1169       if (U.hasRangeLists())
1170         U.addRnglistsBase();
1171 
1172       if (!DebugLocs.getLists().empty()) {
1173         if (!useSplitDwarf())
1174           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1175                             DebugLocs.getSym(),
1176                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1177       }
1178     }
1179 
1180     auto *CUNode = cast<DICompileUnit>(P.first);
1181     // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1182     if (CUNode->getMacros()) {
1183       if (useSplitDwarf())
1184         TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1185                             U.getMacroLabelBegin(),
1186                             TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1187       else
1188         U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1189                           U.getMacroLabelBegin(),
1190                           TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1191     }
1192   }
1193 
1194   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1195   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1196     if (CUNode->getDWOId())
1197       getOrCreateDwarfCompileUnit(CUNode);
1198 
1199   // Compute DIE offsets and sizes.
1200   InfoHolder.computeSizeAndOffsets();
1201   if (useSplitDwarf())
1202     SkeletonHolder.computeSizeAndOffsets();
1203 }
1204 
1205 // Emit all Dwarf sections that should come after the content.
1206 void DwarfDebug::endModule() {
1207   assert(CurFn == nullptr);
1208   assert(CurMI == nullptr);
1209 
1210   for (const auto &P : CUMap) {
1211     auto &CU = *P.second;
1212     CU.createBaseTypeDIEs();
1213   }
1214 
1215   // If we aren't actually generating debug info (check beginModule -
1216   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1217   // llvm.dbg.cu metadata node)
1218   if (!MMI->hasDebugInfo())
1219     return;
1220 
1221   // Finalize the debug info for the module.
1222   finalizeModuleInfo();
1223 
1224   emitDebugStr();
1225 
1226   if (useSplitDwarf())
1227     // Emit debug_loc.dwo/debug_loclists.dwo section.
1228     emitDebugLocDWO();
1229   else
1230     // Emit debug_loc/debug_loclists section.
1231     emitDebugLoc();
1232 
1233   // Corresponding abbreviations into a abbrev section.
1234   emitAbbreviations();
1235 
1236   // Emit all the DIEs into a debug info section.
1237   emitDebugInfo();
1238 
1239   // Emit info into a debug aranges section.
1240   if (GenerateARangeSection)
1241     emitDebugARanges();
1242 
1243   // Emit info into a debug ranges section.
1244   emitDebugRanges();
1245 
1246   if (useSplitDwarf())
1247   // Emit info into a debug macinfo.dwo section.
1248     emitDebugMacinfoDWO();
1249   else
1250   // Emit info into a debug macinfo section.
1251     emitDebugMacinfo();
1252 
1253   if (useSplitDwarf()) {
1254     emitDebugStrDWO();
1255     emitDebugInfoDWO();
1256     emitDebugAbbrevDWO();
1257     emitDebugLineDWO();
1258     emitDebugRangesDWO();
1259   }
1260 
1261   emitDebugAddr();
1262 
1263   // Emit info into the dwarf accelerator table sections.
1264   switch (getAccelTableKind()) {
1265   case AccelTableKind::Apple:
1266     emitAccelNames();
1267     emitAccelObjC();
1268     emitAccelNamespaces();
1269     emitAccelTypes();
1270     break;
1271   case AccelTableKind::Dwarf:
1272     emitAccelDebugNames();
1273     break;
1274   case AccelTableKind::None:
1275     break;
1276   case AccelTableKind::Default:
1277     llvm_unreachable("Default should have already been resolved.");
1278   }
1279 
1280   // Emit the pubnames and pubtypes sections if requested.
1281   emitDebugPubSections();
1282 
1283   // clean up.
1284   // FIXME: AbstractVariables.clear();
1285 }
1286 
1287 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1288                                                const DINode *Node,
1289                                                const MDNode *ScopeNode) {
1290   if (CU.getExistingAbstractEntity(Node))
1291     return;
1292 
1293   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1294                                        cast<DILocalScope>(ScopeNode)));
1295 }
1296 
1297 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1298     const DINode *Node, const MDNode *ScopeNode) {
1299   if (CU.getExistingAbstractEntity(Node))
1300     return;
1301 
1302   if (LexicalScope *Scope =
1303           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1304     CU.createAbstractEntity(Node, Scope);
1305 }
1306 
1307 // Collect variable information from side table maintained by MF.
1308 void DwarfDebug::collectVariableInfoFromMFTable(
1309     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1310   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1311   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1312     if (!VI.Var)
1313       continue;
1314     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1315            "Expected inlined-at fields to agree");
1316 
1317     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1318     Processed.insert(Var);
1319     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1320 
1321     // If variable scope is not found then skip this variable.
1322     if (!Scope)
1323       continue;
1324 
1325     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1326     auto RegVar = std::make_unique<DbgVariable>(
1327                     cast<DILocalVariable>(Var.first), Var.second);
1328     RegVar->initializeMMI(VI.Expr, VI.Slot);
1329     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1330       DbgVar->addMMIEntry(*RegVar);
1331     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1332       MFVars.insert({Var, RegVar.get()});
1333       ConcreteEntities.push_back(std::move(RegVar));
1334     }
1335   }
1336 }
1337 
1338 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1339 /// enclosing lexical scope. The check ensures there are no other instructions
1340 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1341 /// either open or otherwise rolls off the end of the scope.
1342 static bool validThroughout(LexicalScopes &LScopes,
1343                             const MachineInstr *DbgValue,
1344                             const MachineInstr *RangeEnd) {
1345   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1346   auto MBB = DbgValue->getParent();
1347   auto DL = DbgValue->getDebugLoc();
1348   auto *LScope = LScopes.findLexicalScope(DL);
1349   // Scope doesn't exist; this is a dead DBG_VALUE.
1350   if (!LScope)
1351     return false;
1352   auto &LSRange = LScope->getRanges();
1353   if (LSRange.size() == 0)
1354     return false;
1355 
1356   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1357   const MachineInstr *LScopeBegin = LSRange.front().first;
1358   // Early exit if the lexical scope begins outside of the current block.
1359   if (LScopeBegin->getParent() != MBB)
1360     return false;
1361   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1362   for (++Pred; Pred != MBB->rend(); ++Pred) {
1363     if (Pred->getFlag(MachineInstr::FrameSetup))
1364       break;
1365     auto PredDL = Pred->getDebugLoc();
1366     if (!PredDL || Pred->isMetaInstruction())
1367       continue;
1368     // Check whether the instruction preceding the DBG_VALUE is in the same
1369     // (sub)scope as the DBG_VALUE.
1370     if (DL->getScope() == PredDL->getScope())
1371       return false;
1372     auto *PredScope = LScopes.findLexicalScope(PredDL);
1373     if (!PredScope || LScope->dominates(PredScope))
1374       return false;
1375   }
1376 
1377   // If the range of the DBG_VALUE is open-ended, report success.
1378   if (!RangeEnd)
1379     return true;
1380 
1381   // Fail if there are instructions belonging to our scope in another block.
1382   const MachineInstr *LScopeEnd = LSRange.back().second;
1383   if (LScopeEnd->getParent() != MBB)
1384     return false;
1385 
1386   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1387   // throughout the function. This is a hack, presumably for DWARF v2 and not
1388   // necessarily correct. It would be much better to use a dbg.declare instead
1389   // if we know the constant is live throughout the scope.
1390   if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1391     return true;
1392 
1393   return false;
1394 }
1395 
1396 /// Build the location list for all DBG_VALUEs in the function that
1397 /// describe the same variable. The resulting DebugLocEntries will have
1398 /// strict monotonically increasing begin addresses and will never
1399 /// overlap. If the resulting list has only one entry that is valid
1400 /// throughout variable's scope return true.
1401 //
1402 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1403 // different kinds of history map entries. One thing to be aware of is that if
1404 // a debug value is ended by another entry (rather than being valid until the
1405 // end of the function), that entry's instruction may or may not be included in
1406 // the range, depending on if the entry is a clobbering entry (it has an
1407 // instruction that clobbers one or more preceding locations), or if it is an
1408 // (overlapping) debug value entry. This distinction can be seen in the example
1409 // below. The first debug value is ended by the clobbering entry 2, and the
1410 // second and third debug values are ended by the overlapping debug value entry
1411 // 4.
1412 //
1413 // Input:
1414 //
1415 //   History map entries [type, end index, mi]
1416 //
1417 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1418 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1419 // 2 | |    [Clobber, $reg0 = [...], -, -]
1420 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1421 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1422 //
1423 // Output [start, end) [Value...]:
1424 //
1425 // [0-1)    [(reg0, fragment 0, 32)]
1426 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1427 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1428 // [4-)     [(@g, fragment 0, 96)]
1429 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1430                                    const DbgValueHistoryMap::Entries &Entries) {
1431   using OpenRange =
1432       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1433   SmallVector<OpenRange, 4> OpenRanges;
1434   bool isSafeForSingleLocation = true;
1435   const MachineInstr *StartDebugMI = nullptr;
1436   const MachineInstr *EndMI = nullptr;
1437 
1438   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1439     const MachineInstr *Instr = EI->getInstr();
1440 
1441     // Remove all values that are no longer live.
1442     size_t Index = std::distance(EB, EI);
1443     auto Last =
1444         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1445     OpenRanges.erase(Last, OpenRanges.end());
1446 
1447     // If we are dealing with a clobbering entry, this iteration will result in
1448     // a location list entry starting after the clobbering instruction.
1449     const MCSymbol *StartLabel =
1450         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1451     assert(StartLabel &&
1452            "Forgot label before/after instruction starting a range!");
1453 
1454     const MCSymbol *EndLabel;
1455     if (std::next(EI) == Entries.end()) {
1456       EndLabel = Asm->getFunctionEnd();
1457       if (EI->isClobber())
1458         EndMI = EI->getInstr();
1459     }
1460     else if (std::next(EI)->isClobber())
1461       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1462     else
1463       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1464     assert(EndLabel && "Forgot label after instruction ending a range!");
1465 
1466     if (EI->isDbgValue())
1467       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1468 
1469     // If this history map entry has a debug value, add that to the list of
1470     // open ranges and check if its location is valid for a single value
1471     // location.
1472     if (EI->isDbgValue()) {
1473       // Do not add undef debug values, as they are redundant information in
1474       // the location list entries. An undef debug results in an empty location
1475       // description. If there are any non-undef fragments then padding pieces
1476       // with empty location descriptions will automatically be inserted, and if
1477       // all fragments are undef then the whole location list entry is
1478       // redundant.
1479       if (!Instr->isUndefDebugValue()) {
1480         auto Value = getDebugLocValue(Instr);
1481         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1482 
1483         // TODO: Add support for single value fragment locations.
1484         if (Instr->getDebugExpression()->isFragment())
1485           isSafeForSingleLocation = false;
1486 
1487         if (!StartDebugMI)
1488           StartDebugMI = Instr;
1489       } else {
1490         isSafeForSingleLocation = false;
1491       }
1492     }
1493 
1494     // Location list entries with empty location descriptions are redundant
1495     // information in DWARF, so do not emit those.
1496     if (OpenRanges.empty())
1497       continue;
1498 
1499     // Omit entries with empty ranges as they do not have any effect in DWARF.
1500     if (StartLabel == EndLabel) {
1501       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1502       continue;
1503     }
1504 
1505     SmallVector<DbgValueLoc, 4> Values;
1506     for (auto &R : OpenRanges)
1507       Values.push_back(R.second);
1508     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1509 
1510     // Attempt to coalesce the ranges of two otherwise identical
1511     // DebugLocEntries.
1512     auto CurEntry = DebugLoc.rbegin();
1513     LLVM_DEBUG({
1514       dbgs() << CurEntry->getValues().size() << " Values:\n";
1515       for (auto &Value : CurEntry->getValues())
1516         Value.dump();
1517       dbgs() << "-----\n";
1518     });
1519 
1520     auto PrevEntry = std::next(CurEntry);
1521     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1522       DebugLoc.pop_back();
1523   }
1524 
1525   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1526          validThroughout(LScopes, StartDebugMI, EndMI);
1527 }
1528 
1529 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1530                                             LexicalScope &Scope,
1531                                             const DINode *Node,
1532                                             const DILocation *Location,
1533                                             const MCSymbol *Sym) {
1534   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1535   if (isa<const DILocalVariable>(Node)) {
1536     ConcreteEntities.push_back(
1537         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1538                                        Location));
1539     InfoHolder.addScopeVariable(&Scope,
1540         cast<DbgVariable>(ConcreteEntities.back().get()));
1541   } else if (isa<const DILabel>(Node)) {
1542     ConcreteEntities.push_back(
1543         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1544                                     Location, Sym));
1545     InfoHolder.addScopeLabel(&Scope,
1546         cast<DbgLabel>(ConcreteEntities.back().get()));
1547   }
1548   return ConcreteEntities.back().get();
1549 }
1550 
1551 // Find variables for each lexical scope.
1552 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1553                                    const DISubprogram *SP,
1554                                    DenseSet<InlinedEntity> &Processed) {
1555   // Grab the variable info that was squirreled away in the MMI side-table.
1556   collectVariableInfoFromMFTable(TheCU, Processed);
1557 
1558   for (const auto &I : DbgValues) {
1559     InlinedEntity IV = I.first;
1560     if (Processed.count(IV))
1561       continue;
1562 
1563     // Instruction ranges, specifying where IV is accessible.
1564     const auto &HistoryMapEntries = I.second;
1565     if (HistoryMapEntries.empty())
1566       continue;
1567 
1568     LexicalScope *Scope = nullptr;
1569     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1570     if (const DILocation *IA = IV.second)
1571       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1572     else
1573       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1574     // If variable scope is not found then skip this variable.
1575     if (!Scope)
1576       continue;
1577 
1578     Processed.insert(IV);
1579     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1580                                             *Scope, LocalVar, IV.second));
1581 
1582     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1583     assert(MInsn->isDebugValue() && "History must begin with debug value");
1584 
1585     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1586     // If the history map contains a single debug value, there may be an
1587     // additional entry which clobbers the debug value.
1588     size_t HistSize = HistoryMapEntries.size();
1589     bool SingleValueWithClobber =
1590         HistSize == 2 && HistoryMapEntries[1].isClobber();
1591     if (HistSize == 1 || SingleValueWithClobber) {
1592       const auto *End =
1593           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1594       if (validThroughout(LScopes, MInsn, End)) {
1595         RegVar->initializeDbgValue(MInsn);
1596         continue;
1597       }
1598     }
1599 
1600     // Do not emit location lists if .debug_loc secton is disabled.
1601     if (!useLocSection())
1602       continue;
1603 
1604     // Handle multiple DBG_VALUE instructions describing one variable.
1605     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1606 
1607     // Build the location list for this variable.
1608     SmallVector<DebugLocEntry, 8> Entries;
1609     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1610 
1611     // Check whether buildLocationList managed to merge all locations to one
1612     // that is valid throughout the variable's scope. If so, produce single
1613     // value location.
1614     if (isValidSingleLocation) {
1615       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1616       continue;
1617     }
1618 
1619     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1620     // unique identifiers, so don't bother resolving the type with the
1621     // identifier map.
1622     const DIBasicType *BT = dyn_cast<DIBasicType>(
1623         static_cast<const Metadata *>(LocalVar->getType()));
1624 
1625     // Finalize the entry by lowering it into a DWARF bytestream.
1626     for (auto &Entry : Entries)
1627       Entry.finalize(*Asm, List, BT, TheCU);
1628   }
1629 
1630   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1631   // DWARF-related DbgLabel.
1632   for (const auto &I : DbgLabels) {
1633     InlinedEntity IL = I.first;
1634     const MachineInstr *MI = I.second;
1635     if (MI == nullptr)
1636       continue;
1637 
1638     LexicalScope *Scope = nullptr;
1639     const DILabel *Label = cast<DILabel>(IL.first);
1640     // The scope could have an extra lexical block file.
1641     const DILocalScope *LocalScope =
1642         Label->getScope()->getNonLexicalBlockFileScope();
1643     // Get inlined DILocation if it is inlined label.
1644     if (const DILocation *IA = IL.second)
1645       Scope = LScopes.findInlinedScope(LocalScope, IA);
1646     else
1647       Scope = LScopes.findLexicalScope(LocalScope);
1648     // If label scope is not found then skip this label.
1649     if (!Scope)
1650       continue;
1651 
1652     Processed.insert(IL);
1653     /// At this point, the temporary label is created.
1654     /// Save the temporary label to DbgLabel entity to get the
1655     /// actually address when generating Dwarf DIE.
1656     MCSymbol *Sym = getLabelBeforeInsn(MI);
1657     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1658   }
1659 
1660   // Collect info for variables/labels that were optimized out.
1661   for (const DINode *DN : SP->getRetainedNodes()) {
1662     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1663       continue;
1664     LexicalScope *Scope = nullptr;
1665     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1666       Scope = LScopes.findLexicalScope(DV->getScope());
1667     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1668       Scope = LScopes.findLexicalScope(DL->getScope());
1669     }
1670 
1671     if (Scope)
1672       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1673   }
1674 }
1675 
1676 // Process beginning of an instruction.
1677 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1678   DebugHandlerBase::beginInstruction(MI);
1679   assert(CurMI);
1680 
1681   const auto *SP = MI->getMF()->getFunction().getSubprogram();
1682   if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1683     return;
1684 
1685   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1686   // If the instruction is part of the function frame setup code, do not emit
1687   // any line record, as there is no correspondence with any user code.
1688   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1689     return;
1690   const DebugLoc &DL = MI->getDebugLoc();
1691   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1692   // the last line number actually emitted, to see if it was line 0.
1693   unsigned LastAsmLine =
1694       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1695 
1696   // Request a label after the call in order to emit AT_return_pc information
1697   // in call site entries. TODO: Add support for targets with delay slots.
1698   if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1699     requestLabelAfterInsn(MI);
1700 
1701   if (DL == PrevInstLoc) {
1702     // If we have an ongoing unspecified location, nothing to do here.
1703     if (!DL)
1704       return;
1705     // We have an explicit location, same as the previous location.
1706     // But we might be coming back to it after a line 0 record.
1707     if (LastAsmLine == 0 && DL.getLine() != 0) {
1708       // Reinstate the source location but not marked as a statement.
1709       const MDNode *Scope = DL.getScope();
1710       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1711     }
1712     return;
1713   }
1714 
1715   if (!DL) {
1716     // We have an unspecified location, which might want to be line 0.
1717     // If we have already emitted a line-0 record, don't repeat it.
1718     if (LastAsmLine == 0)
1719       return;
1720     // If user said Don't Do That, don't do that.
1721     if (UnknownLocations == Disable)
1722       return;
1723     // See if we have a reason to emit a line-0 record now.
1724     // Reasons to emit a line-0 record include:
1725     // - User asked for it (UnknownLocations).
1726     // - Instruction has a label, so it's referenced from somewhere else,
1727     //   possibly debug information; we want it to have a source location.
1728     // - Instruction is at the top of a block; we don't want to inherit the
1729     //   location from the physically previous (maybe unrelated) block.
1730     if (UnknownLocations == Enable || PrevLabel ||
1731         (PrevInstBB && PrevInstBB != MI->getParent())) {
1732       // Preserve the file and column numbers, if we can, to save space in
1733       // the encoded line table.
1734       // Do not update PrevInstLoc, it remembers the last non-0 line.
1735       const MDNode *Scope = nullptr;
1736       unsigned Column = 0;
1737       if (PrevInstLoc) {
1738         Scope = PrevInstLoc.getScope();
1739         Column = PrevInstLoc.getCol();
1740       }
1741       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1742     }
1743     return;
1744   }
1745 
1746   // We have an explicit location, different from the previous location.
1747   // Don't repeat a line-0 record, but otherwise emit the new location.
1748   // (The new location might be an explicit line 0, which we do emit.)
1749   if (DL.getLine() == 0 && LastAsmLine == 0)
1750     return;
1751   unsigned Flags = 0;
1752   if (DL == PrologEndLoc) {
1753     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1754     PrologEndLoc = DebugLoc();
1755   }
1756   // If the line changed, we call that a new statement; unless we went to
1757   // line 0 and came back, in which case it is not a new statement.
1758   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1759   if (DL.getLine() && DL.getLine() != OldLine)
1760     Flags |= DWARF2_FLAG_IS_STMT;
1761 
1762   const MDNode *Scope = DL.getScope();
1763   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1764 
1765   // If we're not at line 0, remember this location.
1766   if (DL.getLine())
1767     PrevInstLoc = DL;
1768 }
1769 
1770 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1771   // First known non-DBG_VALUE and non-frame setup location marks
1772   // the beginning of the function body.
1773   for (const auto &MBB : *MF)
1774     for (const auto &MI : MBB)
1775       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1776           MI.getDebugLoc())
1777         return MI.getDebugLoc();
1778   return DebugLoc();
1779 }
1780 
1781 /// Register a source line with debug info. Returns the  unique label that was
1782 /// emitted and which provides correspondence to the source line list.
1783 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1784                              const MDNode *S, unsigned Flags, unsigned CUID,
1785                              uint16_t DwarfVersion,
1786                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1787   StringRef Fn;
1788   unsigned FileNo = 1;
1789   unsigned Discriminator = 0;
1790   if (auto *Scope = cast_or_null<DIScope>(S)) {
1791     Fn = Scope->getFilename();
1792     if (Line != 0 && DwarfVersion >= 4)
1793       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1794         Discriminator = LBF->getDiscriminator();
1795 
1796     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1797                  .getOrCreateSourceID(Scope->getFile());
1798   }
1799   Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1800                                          Discriminator, Fn);
1801 }
1802 
1803 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1804                                              unsigned CUID) {
1805   // Get beginning of function.
1806   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1807     // Ensure the compile unit is created if the function is called before
1808     // beginFunction().
1809     (void)getOrCreateDwarfCompileUnit(
1810         MF.getFunction().getSubprogram()->getUnit());
1811     // We'd like to list the prologue as "not statements" but GDB behaves
1812     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1813     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1814     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1815                        CUID, getDwarfVersion(), getUnits());
1816     return PrologEndLoc;
1817   }
1818   return DebugLoc();
1819 }
1820 
1821 // Gather pre-function debug information.  Assumes being called immediately
1822 // after the function entry point has been emitted.
1823 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1824   CurFn = MF;
1825 
1826   auto *SP = MF->getFunction().getSubprogram();
1827   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1828   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1829     return;
1830 
1831   SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
1832                                       Asm->getFunctionBegin()));
1833 
1834   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1835 
1836   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1837   // belongs to so that we add to the correct per-cu line table in the
1838   // non-asm case.
1839   if (Asm->OutStreamer->hasRawTextSupport())
1840     // Use a single line table if we are generating assembly.
1841     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1842   else
1843     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1844 
1845   // Record beginning of function.
1846   PrologEndLoc = emitInitialLocDirective(
1847       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1848 }
1849 
1850 void DwarfDebug::skippedNonDebugFunction() {
1851   // If we don't have a subprogram for this function then there will be a hole
1852   // in the range information. Keep note of this by setting the previously used
1853   // section to nullptr.
1854   PrevCU = nullptr;
1855   CurFn = nullptr;
1856 }
1857 
1858 // Gather and emit post-function debug information.
1859 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1860   const DISubprogram *SP = MF->getFunction().getSubprogram();
1861 
1862   assert(CurFn == MF &&
1863       "endFunction should be called with the same function as beginFunction");
1864 
1865   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1866   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1867 
1868   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1869   assert(!FnScope || SP == FnScope->getScopeNode());
1870   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1871   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1872     PrevLabel = nullptr;
1873     CurFn = nullptr;
1874     return;
1875   }
1876 
1877   DenseSet<InlinedEntity> Processed;
1878   collectEntityInfo(TheCU, SP, Processed);
1879 
1880   // Add the range of this function to the list of ranges for the CU.
1881   TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1882 
1883   // Under -gmlt, skip building the subprogram if there are no inlined
1884   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1885   // is still needed as we need its source location.
1886   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1887       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1888       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1889     assert(InfoHolder.getScopeVariables().empty());
1890     PrevLabel = nullptr;
1891     CurFn = nullptr;
1892     return;
1893   }
1894 
1895 #ifndef NDEBUG
1896   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1897 #endif
1898   // Construct abstract scopes.
1899   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1900     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1901     for (const DINode *DN : SP->getRetainedNodes()) {
1902       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1903         continue;
1904 
1905       const MDNode *Scope = nullptr;
1906       if (auto *DV = dyn_cast<DILocalVariable>(DN))
1907         Scope = DV->getScope();
1908       else if (auto *DL = dyn_cast<DILabel>(DN))
1909         Scope = DL->getScope();
1910       else
1911         llvm_unreachable("Unexpected DI type!");
1912 
1913       // Collect info for variables/labels that were optimized out.
1914       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1915       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1916              && "ensureAbstractEntityIsCreated inserted abstract scopes");
1917     }
1918     constructAbstractSubprogramScopeDIE(TheCU, AScope);
1919   }
1920 
1921   ProcessedSPNodes.insert(SP);
1922   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1923   if (auto *SkelCU = TheCU.getSkeleton())
1924     if (!LScopes.getAbstractScopesList().empty() &&
1925         TheCU.getCUNode()->getSplitDebugInlining())
1926       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1927 
1928   // Construct call site entries.
1929   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1930 
1931   // Clear debug info
1932   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1933   // DbgVariables except those that are also in AbstractVariables (since they
1934   // can be used cross-function)
1935   InfoHolder.getScopeVariables().clear();
1936   InfoHolder.getScopeLabels().clear();
1937   PrevLabel = nullptr;
1938   CurFn = nullptr;
1939 }
1940 
1941 // Register a source line with debug info. Returns the  unique label that was
1942 // emitted and which provides correspondence to the source line list.
1943 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1944                                   unsigned Flags) {
1945   ::recordSourceLine(*Asm, Line, Col, S, Flags,
1946                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1947                      getDwarfVersion(), getUnits());
1948 }
1949 
1950 //===----------------------------------------------------------------------===//
1951 // Emit Methods
1952 //===----------------------------------------------------------------------===//
1953 
1954 // Emit the debug info section.
1955 void DwarfDebug::emitDebugInfo() {
1956   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1957   Holder.emitUnits(/* UseOffsets */ false);
1958 }
1959 
1960 // Emit the abbreviation section.
1961 void DwarfDebug::emitAbbreviations() {
1962   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1963 
1964   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1965 }
1966 
1967 void DwarfDebug::emitStringOffsetsTableHeader() {
1968   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1969   Holder.getStringPool().emitStringOffsetsTableHeader(
1970       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1971       Holder.getStringOffsetsStartSym());
1972 }
1973 
1974 template <typename AccelTableT>
1975 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1976                            StringRef TableName) {
1977   Asm->OutStreamer->SwitchSection(Section);
1978 
1979   // Emit the full data.
1980   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1981 }
1982 
1983 void DwarfDebug::emitAccelDebugNames() {
1984   // Don't emit anything if we have no compilation units to index.
1985   if (getUnits().empty())
1986     return;
1987 
1988   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1989 }
1990 
1991 // Emit visible names into a hashed accelerator table section.
1992 void DwarfDebug::emitAccelNames() {
1993   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1994             "Names");
1995 }
1996 
1997 // Emit objective C classes and categories into a hashed accelerator table
1998 // section.
1999 void DwarfDebug::emitAccelObjC() {
2000   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2001             "ObjC");
2002 }
2003 
2004 // Emit namespace dies into a hashed accelerator table.
2005 void DwarfDebug::emitAccelNamespaces() {
2006   emitAccel(AccelNamespace,
2007             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2008             "namespac");
2009 }
2010 
2011 // Emit type dies into a hashed accelerator table.
2012 void DwarfDebug::emitAccelTypes() {
2013   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2014             "types");
2015 }
2016 
2017 // Public name handling.
2018 // The format for the various pubnames:
2019 //
2020 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2021 // for the DIE that is named.
2022 //
2023 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2024 // into the CU and the index value is computed according to the type of value
2025 // for the DIE that is named.
2026 //
2027 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2028 // it's the offset within the debug_info/debug_types dwo section, however, the
2029 // reference in the pubname header doesn't change.
2030 
2031 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2032 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2033                                                         const DIE *Die) {
2034   // Entities that ended up only in a Type Unit reference the CU instead (since
2035   // the pub entry has offsets within the CU there's no real offset that can be
2036   // provided anyway). As it happens all such entities (namespaces and types,
2037   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2038   // not to be true it would be necessary to persist this information from the
2039   // point at which the entry is added to the index data structure - since by
2040   // the time the index is built from that, the original type/namespace DIE in a
2041   // type unit has already been destroyed so it can't be queried for properties
2042   // like tag, etc.
2043   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2044     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2045                                           dwarf::GIEL_EXTERNAL);
2046   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2047 
2048   // We could have a specification DIE that has our most of our knowledge,
2049   // look for that now.
2050   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2051     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2052     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2053       Linkage = dwarf::GIEL_EXTERNAL;
2054   } else if (Die->findAttribute(dwarf::DW_AT_external))
2055     Linkage = dwarf::GIEL_EXTERNAL;
2056 
2057   switch (Die->getTag()) {
2058   case dwarf::DW_TAG_class_type:
2059   case dwarf::DW_TAG_structure_type:
2060   case dwarf::DW_TAG_union_type:
2061   case dwarf::DW_TAG_enumeration_type:
2062     return dwarf::PubIndexEntryDescriptor(
2063         dwarf::GIEK_TYPE,
2064         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2065             ? dwarf::GIEL_EXTERNAL
2066             : dwarf::GIEL_STATIC);
2067   case dwarf::DW_TAG_typedef:
2068   case dwarf::DW_TAG_base_type:
2069   case dwarf::DW_TAG_subrange_type:
2070     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2071   case dwarf::DW_TAG_namespace:
2072     return dwarf::GIEK_TYPE;
2073   case dwarf::DW_TAG_subprogram:
2074     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2075   case dwarf::DW_TAG_variable:
2076     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2077   case dwarf::DW_TAG_enumerator:
2078     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2079                                           dwarf::GIEL_STATIC);
2080   default:
2081     return dwarf::GIEK_NONE;
2082   }
2083 }
2084 
2085 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2086 /// pubtypes sections.
2087 void DwarfDebug::emitDebugPubSections() {
2088   for (const auto &NU : CUMap) {
2089     DwarfCompileUnit *TheU = NU.second;
2090     if (!TheU->hasDwarfPubSections())
2091       continue;
2092 
2093     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2094                     DICompileUnit::DebugNameTableKind::GNU;
2095 
2096     Asm->OutStreamer->SwitchSection(
2097         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2098                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2099     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2100 
2101     Asm->OutStreamer->SwitchSection(
2102         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2103                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2104     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2105   }
2106 }
2107 
2108 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2109   if (useSectionsAsReferences())
2110     Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2111                          CU.getDebugSectionOffset());
2112   else
2113     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2114 }
2115 
2116 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2117                                      DwarfCompileUnit *TheU,
2118                                      const StringMap<const DIE *> &Globals) {
2119   if (auto *Skeleton = TheU->getSkeleton())
2120     TheU = Skeleton;
2121 
2122   // Emit the header.
2123   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2124   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2125   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2126   Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2127 
2128   Asm->OutStreamer->EmitLabel(BeginLabel);
2129 
2130   Asm->OutStreamer->AddComment("DWARF Version");
2131   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2132 
2133   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2134   emitSectionReference(*TheU);
2135 
2136   Asm->OutStreamer->AddComment("Compilation Unit Length");
2137   Asm->emitInt32(TheU->getLength());
2138 
2139   // Emit the pubnames for this compilation unit.
2140   for (const auto &GI : Globals) {
2141     const char *Name = GI.getKeyData();
2142     const DIE *Entity = GI.second;
2143 
2144     Asm->OutStreamer->AddComment("DIE offset");
2145     Asm->emitInt32(Entity->getOffset());
2146 
2147     if (GnuStyle) {
2148       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2149       Asm->OutStreamer->AddComment(
2150           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2151           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2152       Asm->emitInt8(Desc.toBits());
2153     }
2154 
2155     Asm->OutStreamer->AddComment("External Name");
2156     Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2157   }
2158 
2159   Asm->OutStreamer->AddComment("End Mark");
2160   Asm->emitInt32(0);
2161   Asm->OutStreamer->EmitLabel(EndLabel);
2162 }
2163 
2164 /// Emit null-terminated strings into a debug str section.
2165 void DwarfDebug::emitDebugStr() {
2166   MCSection *StringOffsetsSection = nullptr;
2167   if (useSegmentedStringOffsetsTable()) {
2168     emitStringOffsetsTableHeader();
2169     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2170   }
2171   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2172   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2173                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2174 }
2175 
2176 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2177                                    const DebugLocStream::Entry &Entry,
2178                                    const DwarfCompileUnit *CU) {
2179   auto &&Comments = DebugLocs.getComments(Entry);
2180   auto Comment = Comments.begin();
2181   auto End = Comments.end();
2182 
2183   // The expressions are inserted into a byte stream rather early (see
2184   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2185   // need to reference a base_type DIE the offset of that DIE is not yet known.
2186   // To deal with this we instead insert a placeholder early and then extract
2187   // it here and replace it with the real reference.
2188   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2189   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2190                                     DebugLocs.getBytes(Entry).size()),
2191                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2192   DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2193 
2194   using Encoding = DWARFExpression::Operation::Encoding;
2195   uint64_t Offset = 0;
2196   for (auto &Op : Expr) {
2197     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2198            "3 operand ops not yet supported");
2199     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2200     Offset++;
2201     for (unsigned I = 0; I < 2; ++I) {
2202       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2203         continue;
2204       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2205           if (CU) {
2206             uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2207             assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2208             Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2209           } else {
2210             // Emit a reference to the 'generic type'.
2211             Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2212           }
2213           // Make sure comments stay aligned.
2214           for (unsigned J = 0; J < ULEB128PadSize; ++J)
2215             if (Comment != End)
2216               Comment++;
2217       } else {
2218         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2219           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2220       }
2221       Offset = Op.getOperandEndOffset(I);
2222     }
2223     assert(Offset == Op.getEndOffset());
2224   }
2225 }
2226 
2227 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2228                                    const DbgValueLoc &Value,
2229                                    DwarfExpression &DwarfExpr) {
2230   auto *DIExpr = Value.getExpression();
2231   DIExpressionCursor ExprCursor(DIExpr);
2232   DwarfExpr.addFragmentOffset(DIExpr);
2233   // Regular entry.
2234   if (Value.isInt()) {
2235     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2236                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2237       DwarfExpr.addSignedConstant(Value.getInt());
2238     else
2239       DwarfExpr.addUnsignedConstant(Value.getInt());
2240   } else if (Value.isLocation()) {
2241     MachineLocation Location = Value.getLoc();
2242     if (Location.isIndirect())
2243       DwarfExpr.setMemoryLocationKind();
2244     DIExpressionCursor Cursor(DIExpr);
2245 
2246     if (DIExpr->isEntryValue()) {
2247       DwarfExpr.setEntryValueFlag();
2248       DwarfExpr.beginEntryValueExpression(Cursor);
2249     }
2250 
2251     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2252     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2253       return;
2254     return DwarfExpr.addExpression(std::move(Cursor));
2255   } else if (Value.isTargetIndexLocation()) {
2256     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2257     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2258     // encoding is supported.
2259     DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset);
2260   } else if (Value.isConstantFP()) {
2261     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2262     DwarfExpr.addUnsignedConstant(RawBytes);
2263   }
2264   DwarfExpr.addExpression(std::move(ExprCursor));
2265 }
2266 
2267 void DebugLocEntry::finalize(const AsmPrinter &AP,
2268                              DebugLocStream::ListBuilder &List,
2269                              const DIBasicType *BT,
2270                              DwarfCompileUnit &TheCU) {
2271   assert(!Values.empty() &&
2272          "location list entries without values are redundant");
2273   assert(Begin != End && "unexpected location list entry with empty range");
2274   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2275   BufferByteStreamer Streamer = Entry.getStreamer();
2276   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2277   const DbgValueLoc &Value = Values[0];
2278   if (Value.isFragment()) {
2279     // Emit all fragments that belong to the same variable and range.
2280     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2281           return P.isFragment();
2282         }) && "all values are expected to be fragments");
2283     assert(std::is_sorted(Values.begin(), Values.end()) &&
2284            "fragments are expected to be sorted");
2285 
2286     for (auto Fragment : Values)
2287       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2288 
2289   } else {
2290     assert(Values.size() == 1 && "only fragments may have >1 value");
2291     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2292   }
2293   DwarfExpr.finalize();
2294   if (DwarfExpr.TagOffset)
2295     List.setTagOffset(*DwarfExpr.TagOffset);
2296 }
2297 
2298 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2299                                            const DwarfCompileUnit *CU) {
2300   // Emit the size.
2301   Asm->OutStreamer->AddComment("Loc expr size");
2302   if (getDwarfVersion() >= 5)
2303     Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2304   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2305     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2306   else {
2307     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2308     // can do.
2309     Asm->emitInt16(0);
2310     return;
2311   }
2312   // Emit the entry.
2313   APByteStreamer Streamer(*Asm);
2314   emitDebugLocEntry(Streamer, Entry, CU);
2315 }
2316 
2317 // Emit the common part of the DWARF 5 range/locations list tables header.
2318 static void emitListsTableHeaderStart(AsmPrinter *Asm,
2319                                       MCSymbol *TableStart,
2320                                       MCSymbol *TableEnd) {
2321   // Build the table header, which starts with the length field.
2322   Asm->OutStreamer->AddComment("Length");
2323   Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2324   Asm->OutStreamer->EmitLabel(TableStart);
2325   // Version number (DWARF v5 and later).
2326   Asm->OutStreamer->AddComment("Version");
2327   Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2328   // Address size.
2329   Asm->OutStreamer->AddComment("Address size");
2330   Asm->emitInt8(Asm->MAI->getCodePointerSize());
2331   // Segment selector size.
2332   Asm->OutStreamer->AddComment("Segment selector size");
2333   Asm->emitInt8(0);
2334 }
2335 
2336 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2337 // that designates the end of the table for the caller to emit when the table is
2338 // complete.
2339 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2340                                          const DwarfFile &Holder) {
2341   MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2342   MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2343   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2344 
2345   Asm->OutStreamer->AddComment("Offset entry count");
2346   Asm->emitInt32(Holder.getRangeLists().size());
2347   Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2348 
2349   for (const RangeSpanList &List : Holder.getRangeLists())
2350     Asm->EmitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2351                              4);
2352 
2353   return TableEnd;
2354 }
2355 
2356 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2357 // designates the end of the table for the caller to emit when the table is
2358 // complete.
2359 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2360                                          const DwarfDebug &DD) {
2361   MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2362   MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2363   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2364 
2365   const auto &DebugLocs = DD.getDebugLocs();
2366 
2367   Asm->OutStreamer->AddComment("Offset entry count");
2368   Asm->emitInt32(DebugLocs.getLists().size());
2369   Asm->OutStreamer->EmitLabel(DebugLocs.getSym());
2370 
2371   for (const auto &List : DebugLocs.getLists())
2372     Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2373 
2374   return TableEnd;
2375 }
2376 
2377 template <typename Ranges, typename PayloadEmitter>
2378 static void emitRangeList(
2379     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2380     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2381     unsigned StartxLength, unsigned EndOfList,
2382     StringRef (*StringifyEnum)(unsigned),
2383     bool ShouldUseBaseAddress,
2384     PayloadEmitter EmitPayload) {
2385 
2386   auto Size = Asm->MAI->getCodePointerSize();
2387   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2388 
2389   // Emit our symbol so we can find the beginning of the range.
2390   Asm->OutStreamer->EmitLabel(Sym);
2391 
2392   // Gather all the ranges that apply to the same section so they can share
2393   // a base address entry.
2394   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2395 
2396   for (const auto &Range : R)
2397     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2398 
2399   const MCSymbol *CUBase = CU.getBaseAddress();
2400   bool BaseIsSet = false;
2401   for (const auto &P : SectionRanges) {
2402     auto *Base = CUBase;
2403     if (!Base && ShouldUseBaseAddress) {
2404       const MCSymbol *Begin = P.second.front()->Begin;
2405       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2406       if (!UseDwarf5) {
2407         Base = NewBase;
2408         BaseIsSet = true;
2409         Asm->OutStreamer->EmitIntValue(-1, Size);
2410         Asm->OutStreamer->AddComment("  base address");
2411         Asm->OutStreamer->EmitSymbolValue(Base, Size);
2412       } else if (NewBase != Begin || P.second.size() > 1) {
2413         // Only use a base address if
2414         //  * the existing pool address doesn't match (NewBase != Begin)
2415         //  * or, there's more than one entry to share the base address
2416         Base = NewBase;
2417         BaseIsSet = true;
2418         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2419         Asm->emitInt8(BaseAddressx);
2420         Asm->OutStreamer->AddComment("  base address index");
2421         Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2422       }
2423     } else if (BaseIsSet && !UseDwarf5) {
2424       BaseIsSet = false;
2425       assert(!Base);
2426       Asm->OutStreamer->EmitIntValue(-1, Size);
2427       Asm->OutStreamer->EmitIntValue(0, Size);
2428     }
2429 
2430     for (const auto *RS : P.second) {
2431       const MCSymbol *Begin = RS->Begin;
2432       const MCSymbol *End = RS->End;
2433       assert(Begin && "Range without a begin symbol?");
2434       assert(End && "Range without an end symbol?");
2435       if (Base) {
2436         if (UseDwarf5) {
2437           // Emit offset_pair when we have a base.
2438           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2439           Asm->emitInt8(OffsetPair);
2440           Asm->OutStreamer->AddComment("  starting offset");
2441           Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2442           Asm->OutStreamer->AddComment("  ending offset");
2443           Asm->EmitLabelDifferenceAsULEB128(End, Base);
2444         } else {
2445           Asm->EmitLabelDifference(Begin, Base, Size);
2446           Asm->EmitLabelDifference(End, Base, Size);
2447         }
2448       } else if (UseDwarf5) {
2449         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2450         Asm->emitInt8(StartxLength);
2451         Asm->OutStreamer->AddComment("  start index");
2452         Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2453         Asm->OutStreamer->AddComment("  length");
2454         Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2455       } else {
2456         Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2457         Asm->OutStreamer->EmitSymbolValue(End, Size);
2458       }
2459       EmitPayload(*RS);
2460     }
2461   }
2462 
2463   if (UseDwarf5) {
2464     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2465     Asm->emitInt8(EndOfList);
2466   } else {
2467     // Terminate the list with two 0 values.
2468     Asm->OutStreamer->EmitIntValue(0, Size);
2469     Asm->OutStreamer->EmitIntValue(0, Size);
2470   }
2471 }
2472 
2473 // Handles emission of both debug_loclist / debug_loclist.dwo
2474 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2475   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2476                 *List.CU, dwarf::DW_LLE_base_addressx,
2477                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2478                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2479                 /* ShouldUseBaseAddress */ true,
2480                 [&](const DebugLocStream::Entry &E) {
2481                   DD.emitDebugLocEntryLocation(E, List.CU);
2482                 });
2483 }
2484 
2485 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2486   if (DebugLocs.getLists().empty())
2487     return;
2488 
2489   Asm->OutStreamer->SwitchSection(Sec);
2490 
2491   MCSymbol *TableEnd = nullptr;
2492   if (getDwarfVersion() >= 5)
2493     TableEnd = emitLoclistsTableHeader(Asm, *this);
2494 
2495   for (const auto &List : DebugLocs.getLists())
2496     emitLocList(*this, Asm, List);
2497 
2498   if (TableEnd)
2499     Asm->OutStreamer->EmitLabel(TableEnd);
2500 }
2501 
2502 // Emit locations into the .debug_loc/.debug_loclists section.
2503 void DwarfDebug::emitDebugLoc() {
2504   emitDebugLocImpl(
2505       getDwarfVersion() >= 5
2506           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2507           : Asm->getObjFileLowering().getDwarfLocSection());
2508 }
2509 
2510 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2511 void DwarfDebug::emitDebugLocDWO() {
2512   if (getDwarfVersion() >= 5) {
2513     emitDebugLocImpl(
2514         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2515 
2516     return;
2517   }
2518 
2519   for (const auto &List : DebugLocs.getLists()) {
2520     Asm->OutStreamer->SwitchSection(
2521         Asm->getObjFileLowering().getDwarfLocDWOSection());
2522     Asm->OutStreamer->EmitLabel(List.Label);
2523 
2524     for (const auto &Entry : DebugLocs.getEntries(List)) {
2525       // GDB only supports startx_length in pre-standard split-DWARF.
2526       // (in v5 standard loclists, it currently* /only/ supports base_address +
2527       // offset_pair, so the implementations can't really share much since they
2528       // need to use different representations)
2529       // * as of October 2018, at least
2530       // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2531       // in the address pool to minimize object size/relocations.
2532       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2533       unsigned idx = AddrPool.getIndex(Entry.Begin);
2534       Asm->EmitULEB128(idx);
2535       // Also the pre-standard encoding is slightly different, emitting this as
2536       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2537       Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
2538       emitDebugLocEntryLocation(Entry, List.CU);
2539     }
2540     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2541   }
2542 }
2543 
2544 struct ArangeSpan {
2545   const MCSymbol *Start, *End;
2546 };
2547 
2548 // Emit a debug aranges section, containing a CU lookup for any
2549 // address we can tie back to a CU.
2550 void DwarfDebug::emitDebugARanges() {
2551   // Provides a unique id per text section.
2552   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2553 
2554   // Filter labels by section.
2555   for (const SymbolCU &SCU : ArangeLabels) {
2556     if (SCU.Sym->isInSection()) {
2557       // Make a note of this symbol and it's section.
2558       MCSection *Section = &SCU.Sym->getSection();
2559       if (!Section->getKind().isMetadata())
2560         SectionMap[Section].push_back(SCU);
2561     } else {
2562       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2563       // appear in the output. This sucks as we rely on sections to build
2564       // arange spans. We can do it without, but it's icky.
2565       SectionMap[nullptr].push_back(SCU);
2566     }
2567   }
2568 
2569   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2570 
2571   for (auto &I : SectionMap) {
2572     MCSection *Section = I.first;
2573     SmallVector<SymbolCU, 8> &List = I.second;
2574     if (List.size() < 1)
2575       continue;
2576 
2577     // If we have no section (e.g. common), just write out
2578     // individual spans for each symbol.
2579     if (!Section) {
2580       for (const SymbolCU &Cur : List) {
2581         ArangeSpan Span;
2582         Span.Start = Cur.Sym;
2583         Span.End = nullptr;
2584         assert(Cur.CU);
2585         Spans[Cur.CU].push_back(Span);
2586       }
2587       continue;
2588     }
2589 
2590     // Sort the symbols by offset within the section.
2591     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2592       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2593       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2594 
2595       // Symbols with no order assigned should be placed at the end.
2596       // (e.g. section end labels)
2597       if (IA == 0)
2598         return false;
2599       if (IB == 0)
2600         return true;
2601       return IA < IB;
2602     });
2603 
2604     // Insert a final terminator.
2605     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2606 
2607     // Build spans between each label.
2608     const MCSymbol *StartSym = List[0].Sym;
2609     for (size_t n = 1, e = List.size(); n < e; n++) {
2610       const SymbolCU &Prev = List[n - 1];
2611       const SymbolCU &Cur = List[n];
2612 
2613       // Try and build the longest span we can within the same CU.
2614       if (Cur.CU != Prev.CU) {
2615         ArangeSpan Span;
2616         Span.Start = StartSym;
2617         Span.End = Cur.Sym;
2618         assert(Prev.CU);
2619         Spans[Prev.CU].push_back(Span);
2620         StartSym = Cur.Sym;
2621       }
2622     }
2623   }
2624 
2625   // Start the dwarf aranges section.
2626   Asm->OutStreamer->SwitchSection(
2627       Asm->getObjFileLowering().getDwarfARangesSection());
2628 
2629   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2630 
2631   // Build a list of CUs used.
2632   std::vector<DwarfCompileUnit *> CUs;
2633   for (const auto &it : Spans) {
2634     DwarfCompileUnit *CU = it.first;
2635     CUs.push_back(CU);
2636   }
2637 
2638   // Sort the CU list (again, to ensure consistent output order).
2639   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2640     return A->getUniqueID() < B->getUniqueID();
2641   });
2642 
2643   // Emit an arange table for each CU we used.
2644   for (DwarfCompileUnit *CU : CUs) {
2645     std::vector<ArangeSpan> &List = Spans[CU];
2646 
2647     // Describe the skeleton CU's offset and length, not the dwo file's.
2648     if (auto *Skel = CU->getSkeleton())
2649       CU = Skel;
2650 
2651     // Emit size of content not including length itself.
2652     unsigned ContentSize =
2653         sizeof(int16_t) + // DWARF ARange version number
2654         sizeof(int32_t) + // Offset of CU in the .debug_info section
2655         sizeof(int8_t) +  // Pointer Size (in bytes)
2656         sizeof(int8_t);   // Segment Size (in bytes)
2657 
2658     unsigned TupleSize = PtrSize * 2;
2659 
2660     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2661     unsigned Padding =
2662         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2663 
2664     ContentSize += Padding;
2665     ContentSize += (List.size() + 1) * TupleSize;
2666 
2667     // For each compile unit, write the list of spans it covers.
2668     Asm->OutStreamer->AddComment("Length of ARange Set");
2669     Asm->emitInt32(ContentSize);
2670     Asm->OutStreamer->AddComment("DWARF Arange version number");
2671     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2672     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2673     emitSectionReference(*CU);
2674     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2675     Asm->emitInt8(PtrSize);
2676     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2677     Asm->emitInt8(0);
2678 
2679     Asm->OutStreamer->emitFill(Padding, 0xff);
2680 
2681     for (const ArangeSpan &Span : List) {
2682       Asm->EmitLabelReference(Span.Start, PtrSize);
2683 
2684       // Calculate the size as being from the span start to it's end.
2685       if (Span.End) {
2686         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2687       } else {
2688         // For symbols without an end marker (e.g. common), we
2689         // write a single arange entry containing just that one symbol.
2690         uint64_t Size = SymSize[Span.Start];
2691         if (Size == 0)
2692           Size = 1;
2693 
2694         Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2695       }
2696     }
2697 
2698     Asm->OutStreamer->AddComment("ARange terminator");
2699     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2700     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2701   }
2702 }
2703 
2704 /// Emit a single range list. We handle both DWARF v5 and earlier.
2705 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2706                           const RangeSpanList &List) {
2707   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2708                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2709                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2710                 llvm::dwarf::RangeListEncodingString,
2711                 List.CU->getCUNode()->getRangesBaseAddress() ||
2712                     DD.getDwarfVersion() >= 5,
2713                 [](auto) {});
2714 }
2715 
2716 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2717   if (Holder.getRangeLists().empty())
2718     return;
2719 
2720   assert(useRangesSection());
2721   assert(!CUMap.empty());
2722   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2723     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2724   }));
2725 
2726   Asm->OutStreamer->SwitchSection(Section);
2727 
2728   MCSymbol *TableEnd = nullptr;
2729   if (getDwarfVersion() >= 5)
2730     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2731 
2732   for (const RangeSpanList &List : Holder.getRangeLists())
2733     emitRangeList(*this, Asm, List);
2734 
2735   if (TableEnd)
2736     Asm->OutStreamer->EmitLabel(TableEnd);
2737 }
2738 
2739 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2740 /// .debug_rnglists section.
2741 void DwarfDebug::emitDebugRanges() {
2742   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2743 
2744   emitDebugRangesImpl(Holder,
2745                       getDwarfVersion() >= 5
2746                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2747                           : Asm->getObjFileLowering().getDwarfRangesSection());
2748 }
2749 
2750 void DwarfDebug::emitDebugRangesDWO() {
2751   emitDebugRangesImpl(InfoHolder,
2752                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2753 }
2754 
2755 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2756   for (auto *MN : Nodes) {
2757     if (auto *M = dyn_cast<DIMacro>(MN))
2758       emitMacro(*M);
2759     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2760       emitMacroFile(*F, U);
2761     else
2762       llvm_unreachable("Unexpected DI type!");
2763   }
2764 }
2765 
2766 void DwarfDebug::emitMacro(DIMacro &M) {
2767   Asm->EmitULEB128(M.getMacinfoType());
2768   Asm->EmitULEB128(M.getLine());
2769   StringRef Name = M.getName();
2770   StringRef Value = M.getValue();
2771   Asm->OutStreamer->EmitBytes(Name);
2772   if (!Value.empty()) {
2773     // There should be one space between macro name and macro value.
2774     Asm->emitInt8(' ');
2775     Asm->OutStreamer->EmitBytes(Value);
2776   }
2777   Asm->emitInt8('\0');
2778 }
2779 
2780 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2781   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2782   Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2783   Asm->EmitULEB128(F.getLine());
2784   Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2785   handleMacroNodes(F.getElements(), U);
2786   Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2787 }
2788 
2789 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
2790   for (const auto &P : CUMap) {
2791     auto &TheCU = *P.second;
2792     auto *SkCU = TheCU.getSkeleton();
2793     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2794     auto *CUNode = cast<DICompileUnit>(P.first);
2795     DIMacroNodeArray Macros = CUNode->getMacros();
2796     if (Macros.empty())
2797       continue;
2798     Asm->OutStreamer->SwitchSection(Section);
2799     Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2800     handleMacroNodes(Macros, U);
2801     Asm->OutStreamer->AddComment("End Of Macro List Mark");
2802     Asm->emitInt8(0);
2803   }
2804 }
2805 
2806 /// Emit macros into a debug macinfo section.
2807 void DwarfDebug::emitDebugMacinfo() {
2808   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection());
2809 }
2810 
2811 void DwarfDebug::emitDebugMacinfoDWO() {
2812   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection());
2813 }
2814 
2815 // DWARF5 Experimental Separate Dwarf emitters.
2816 
2817 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2818                                   std::unique_ptr<DwarfCompileUnit> NewU) {
2819 
2820   if (!CompilationDir.empty())
2821     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2822 
2823   addGnuPubAttributes(*NewU, Die);
2824 
2825   SkeletonHolder.addUnit(std::move(NewU));
2826 }
2827 
2828 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2829 
2830   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2831       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
2832       UnitKind::Skeleton);
2833   DwarfCompileUnit &NewCU = *OwnedUnit;
2834   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2835 
2836   NewCU.initStmtList();
2837 
2838   if (useSegmentedStringOffsetsTable())
2839     NewCU.addStringOffsetsStart();
2840 
2841   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2842 
2843   return NewCU;
2844 }
2845 
2846 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2847 // compile units that would normally be in debug_info.
2848 void DwarfDebug::emitDebugInfoDWO() {
2849   assert(useSplitDwarf() && "No split dwarf debug info?");
2850   // Don't emit relocations into the dwo file.
2851   InfoHolder.emitUnits(/* UseOffsets */ true);
2852 }
2853 
2854 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2855 // abbreviations for the .debug_info.dwo section.
2856 void DwarfDebug::emitDebugAbbrevDWO() {
2857   assert(useSplitDwarf() && "No split dwarf?");
2858   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2859 }
2860 
2861 void DwarfDebug::emitDebugLineDWO() {
2862   assert(useSplitDwarf() && "No split dwarf?");
2863   SplitTypeUnitFileTable.Emit(
2864       *Asm->OutStreamer, MCDwarfLineTableParams(),
2865       Asm->getObjFileLowering().getDwarfLineDWOSection());
2866 }
2867 
2868 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2869   assert(useSplitDwarf() && "No split dwarf?");
2870   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2871       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2872       InfoHolder.getStringOffsetsStartSym());
2873 }
2874 
2875 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2876 // string section and is identical in format to traditional .debug_str
2877 // sections.
2878 void DwarfDebug::emitDebugStrDWO() {
2879   if (useSegmentedStringOffsetsTable())
2880     emitStringOffsetsTableHeaderDWO();
2881   assert(useSplitDwarf() && "No split dwarf?");
2882   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2883   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2884                          OffSec, /* UseRelativeOffsets = */ false);
2885 }
2886 
2887 // Emit address pool.
2888 void DwarfDebug::emitDebugAddr() {
2889   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2890 }
2891 
2892 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2893   if (!useSplitDwarf())
2894     return nullptr;
2895   const DICompileUnit *DIUnit = CU.getCUNode();
2896   SplitTypeUnitFileTable.maybeSetRootFile(
2897       DIUnit->getDirectory(), DIUnit->getFilename(),
2898       CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2899   return &SplitTypeUnitFileTable;
2900 }
2901 
2902 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2903   MD5 Hash;
2904   Hash.update(Identifier);
2905   // ... take the least significant 8 bytes and return those. Our MD5
2906   // implementation always returns its results in little endian, so we actually
2907   // need the "high" word.
2908   MD5::MD5Result Result;
2909   Hash.final(Result);
2910   return Result.high();
2911 }
2912 
2913 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2914                                       StringRef Identifier, DIE &RefDie,
2915                                       const DICompositeType *CTy) {
2916   // Fast path if we're building some type units and one has already used the
2917   // address pool we know we're going to throw away all this work anyway, so
2918   // don't bother building dependent types.
2919   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2920     return;
2921 
2922   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2923   if (!Ins.second) {
2924     CU.addDIETypeSignature(RefDie, Ins.first->second);
2925     return;
2926   }
2927 
2928   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2929   AddrPool.resetUsedFlag();
2930 
2931   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2932                                                     getDwoLineTable(CU));
2933   DwarfTypeUnit &NewTU = *OwnedUnit;
2934   DIE &UnitDie = NewTU.getUnitDie();
2935   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2936 
2937   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2938                 CU.getLanguage());
2939 
2940   uint64_t Signature = makeTypeSignature(Identifier);
2941   NewTU.setTypeSignature(Signature);
2942   Ins.first->second = Signature;
2943 
2944   if (useSplitDwarf()) {
2945     MCSection *Section =
2946         getDwarfVersion() <= 4
2947             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2948             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2949     NewTU.setSection(Section);
2950   } else {
2951     MCSection *Section =
2952         getDwarfVersion() <= 4
2953             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2954             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2955     NewTU.setSection(Section);
2956     // Non-split type units reuse the compile unit's line table.
2957     CU.applyStmtList(UnitDie);
2958   }
2959 
2960   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2961   // units.
2962   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2963     NewTU.addStringOffsetsStart();
2964 
2965   NewTU.setType(NewTU.createTypeDIE(CTy));
2966 
2967   if (TopLevelType) {
2968     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2969     TypeUnitsUnderConstruction.clear();
2970 
2971     // Types referencing entries in the address table cannot be placed in type
2972     // units.
2973     if (AddrPool.hasBeenUsed()) {
2974 
2975       // Remove all the types built while building this type.
2976       // This is pessimistic as some of these types might not be dependent on
2977       // the type that used an address.
2978       for (const auto &TU : TypeUnitsToAdd)
2979         TypeSignatures.erase(TU.second);
2980 
2981       // Construct this type in the CU directly.
2982       // This is inefficient because all the dependent types will be rebuilt
2983       // from scratch, including building them in type units, discovering that
2984       // they depend on addresses, throwing them out and rebuilding them.
2985       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2986       return;
2987     }
2988 
2989     // If the type wasn't dependent on fission addresses, finish adding the type
2990     // and all its dependent types.
2991     for (auto &TU : TypeUnitsToAdd) {
2992       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2993       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
2994     }
2995   }
2996   CU.addDIETypeSignature(RefDie, Signature);
2997 }
2998 
2999 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3000     : DD(DD),
3001       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3002   DD->TypeUnitsUnderConstruction.clear();
3003   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3004 }
3005 
3006 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3007   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3008   DD->AddrPool.resetUsedFlag();
3009 }
3010 
3011 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3012   return NonTypeUnitContext(this);
3013 }
3014 
3015 // Add the Name along with its companion DIE to the appropriate accelerator
3016 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3017 // AccelTableKind::Apple, we use the table we got as an argument). If
3018 // accelerator tables are disabled, this function does nothing.
3019 template <typename DataT>
3020 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3021                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3022                                   const DIE &Die) {
3023   if (getAccelTableKind() == AccelTableKind::None)
3024     return;
3025 
3026   if (getAccelTableKind() != AccelTableKind::Apple &&
3027       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3028     return;
3029 
3030   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3031   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3032 
3033   switch (getAccelTableKind()) {
3034   case AccelTableKind::Apple:
3035     AppleAccel.addName(Ref, Die);
3036     break;
3037   case AccelTableKind::Dwarf:
3038     AccelDebugNames.addName(Ref, Die);
3039     break;
3040   case AccelTableKind::Default:
3041     llvm_unreachable("Default should have already been resolved.");
3042   case AccelTableKind::None:
3043     llvm_unreachable("None handled above");
3044   }
3045 }
3046 
3047 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3048                               const DIE &Die) {
3049   addAccelNameImpl(CU, AccelNames, Name, Die);
3050 }
3051 
3052 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3053                               const DIE &Die) {
3054   // ObjC names go only into the Apple accelerator tables.
3055   if (getAccelTableKind() == AccelTableKind::Apple)
3056     addAccelNameImpl(CU, AccelObjC, Name, Die);
3057 }
3058 
3059 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3060                                    const DIE &Die) {
3061   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3062 }
3063 
3064 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3065                               const DIE &Die, char Flags) {
3066   addAccelNameImpl(CU, AccelTypes, Name, Die);
3067 }
3068 
3069 uint16_t DwarfDebug::getDwarfVersion() const {
3070   return Asm->OutStreamer->getContext().getDwarfVersion();
3071 }
3072 
3073 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3074   return SectionLabels.find(S)->second;
3075 }
3076