1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 99 cl::Hidden, 100 cl::desc("Generate dwarf aranges"), 101 cl::init(false)); 102 103 static cl::opt<bool> 104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 105 cl::desc("Generate DWARF4 type units."), 106 cl::init(false)); 107 108 static cl::opt<bool> SplitDwarfCrossCuReferences( 109 "split-dwarf-cross-cu-references", cl::Hidden, 110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 111 112 enum DefaultOnOff { Default, Enable, Disable }; 113 114 static cl::opt<DefaultOnOff> UnknownLocations( 115 "use-unknown-locations", cl::Hidden, 116 cl::desc("Make an absence of debug location information explicit."), 117 cl::values(clEnumVal(Default, "At top of block or after label"), 118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 119 cl::init(Default)); 120 121 static cl::opt<AccelTableKind> AccelTables( 122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 123 cl::values(clEnumValN(AccelTableKind::Default, "Default", 124 "Default for platform"), 125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 128 cl::init(AccelTableKind::Default)); 129 130 static cl::opt<DefaultOnOff> 131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 132 cl::desc("Use inlined strings rather than string section."), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), 135 clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 static cl::opt<bool> 139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 140 cl::desc("Disable emission .debug_ranges section."), 141 cl::init(false)); 142 143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 144 "dwarf-sections-as-references", cl::Hidden, 145 cl::desc("Use sections+offset as references rather than labels."), 146 cl::values(clEnumVal(Default, "Default for platform"), 147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 148 cl::init(Default)); 149 150 enum LinkageNameOption { 151 DefaultLinkageNames, 152 AllLinkageNames, 153 AbstractLinkageNames 154 }; 155 156 static cl::opt<LinkageNameOption> 157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 158 cl::desc("Which DWARF linkage-name attributes to emit."), 159 cl::values(clEnumValN(DefaultLinkageNames, "Default", 160 "Default for platform"), 161 clEnumValN(AllLinkageNames, "All", "All"), 162 clEnumValN(AbstractLinkageNames, "Abstract", 163 "Abstract subprograms")), 164 cl::init(DefaultLinkageNames)); 165 166 static const char *const DWARFGroupName = "dwarf"; 167 static const char *const DWARFGroupDescription = "DWARF Emission"; 168 static const char *const DbgTimerName = "writer"; 169 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 170 static constexpr unsigned ULEB128PadSize = 4; 171 172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 173 getActiveStreamer().EmitInt8( 174 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 175 : dwarf::OperationEncodingString(Op)); 176 } 177 178 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 179 getActiveStreamer().EmitSLEB128(Value, Twine(Value)); 180 } 181 182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 183 getActiveStreamer().EmitULEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 187 getActiveStreamer().EmitInt8(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 191 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 192 getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize); 193 } 194 195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 196 unsigned MachineReg) { 197 // This information is not available while emitting .debug_loc entries. 198 return false; 199 } 200 201 void DebugLocDwarfExpression::enableTemporaryBuffer() { 202 assert(!IsBuffering && "Already buffering?"); 203 if (!TmpBuf) 204 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 205 IsBuffering = true; 206 } 207 208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 209 210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 211 return TmpBuf ? TmpBuf->Bytes.size() : 0; 212 } 213 214 void DebugLocDwarfExpression::commitTemporaryBuffer() { 215 if (!TmpBuf) 216 return; 217 for (auto Byte : enumerate(TmpBuf->Bytes)) { 218 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 219 ? TmpBuf->Comments[Byte.index()].c_str() 220 : ""; 221 OutBS.EmitInt8(Byte.value(), Comment); 222 } 223 TmpBuf->Bytes.clear(); 224 TmpBuf->Comments.clear(); 225 } 226 227 const DIType *DbgVariable::getType() const { 228 return getVariable()->getType(); 229 } 230 231 /// Get .debug_loc entry for the instruction range starting at MI. 232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 233 const DIExpression *Expr = MI->getDebugExpression(); 234 assert(MI->getNumOperands() == 4); 235 if (MI->getOperand(0).isReg()) { 236 auto RegOp = MI->getOperand(0); 237 auto Op1 = MI->getOperand(1); 238 // If the second operand is an immediate, this is a 239 // register-indirect address. 240 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 241 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 242 return DbgValueLoc(Expr, MLoc); 243 } 244 if (MI->getOperand(0).isImm()) 245 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 246 if (MI->getOperand(0).isFPImm()) 247 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 248 if (MI->getOperand(0).isCImm()) 249 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 250 251 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 252 } 253 254 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 255 assert(FrameIndexExprs.empty() && "Already initialized?"); 256 assert(!ValueLoc.get() && "Already initialized?"); 257 258 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 259 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 260 "Wrong inlined-at"); 261 262 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 263 if (auto *E = DbgValue->getDebugExpression()) 264 if (E->getNumElements()) 265 FrameIndexExprs.push_back({0, E}); 266 } 267 268 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 269 if (FrameIndexExprs.size() == 1) 270 return FrameIndexExprs; 271 272 assert(llvm::all_of(FrameIndexExprs, 273 [](const FrameIndexExpr &A) { 274 return A.Expr->isFragment(); 275 }) && 276 "multiple FI expressions without DW_OP_LLVM_fragment"); 277 llvm::sort(FrameIndexExprs, 278 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 279 return A.Expr->getFragmentInfo()->OffsetInBits < 280 B.Expr->getFragmentInfo()->OffsetInBits; 281 }); 282 283 return FrameIndexExprs; 284 } 285 286 void DbgVariable::addMMIEntry(const DbgVariable &V) { 287 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 288 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 289 assert(V.getVariable() == getVariable() && "conflicting variable"); 290 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 291 292 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 293 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 294 295 // FIXME: This logic should not be necessary anymore, as we now have proper 296 // deduplication. However, without it, we currently run into the assertion 297 // below, which means that we are likely dealing with broken input, i.e. two 298 // non-fragment entries for the same variable at different frame indices. 299 if (FrameIndexExprs.size()) { 300 auto *Expr = FrameIndexExprs.back().Expr; 301 if (!Expr || !Expr->isFragment()) 302 return; 303 } 304 305 for (const auto &FIE : V.FrameIndexExprs) 306 // Ignore duplicate entries. 307 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 308 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 309 })) 310 FrameIndexExprs.push_back(FIE); 311 312 assert((FrameIndexExprs.size() == 1 || 313 llvm::all_of(FrameIndexExprs, 314 [](FrameIndexExpr &FIE) { 315 return FIE.Expr && FIE.Expr->isFragment(); 316 })) && 317 "conflicting locations for variable"); 318 } 319 320 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 321 bool GenerateTypeUnits, 322 DebuggerKind Tuning, 323 const Triple &TT) { 324 // Honor an explicit request. 325 if (AccelTables != AccelTableKind::Default) 326 return AccelTables; 327 328 // Accelerator tables with type units are currently not supported. 329 if (GenerateTypeUnits) 330 return AccelTableKind::None; 331 332 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 333 // always implies debug_names. For lower standard versions we use apple 334 // accelerator tables on apple platforms and debug_names elsewhere. 335 if (DwarfVersion >= 5) 336 return AccelTableKind::Dwarf; 337 if (Tuning == DebuggerKind::LLDB) 338 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 339 : AccelTableKind::Dwarf; 340 return AccelTableKind::None; 341 } 342 343 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 344 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 345 InfoHolder(A, "info_string", DIEValueAllocator), 346 SkeletonHolder(A, "skel_string", DIEValueAllocator), 347 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 348 const Triple &TT = Asm->TM.getTargetTriple(); 349 350 // Make sure we know our "debugger tuning". The target option takes 351 // precedence; fall back to triple-based defaults. 352 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 353 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 354 else if (IsDarwin) 355 DebuggerTuning = DebuggerKind::LLDB; 356 else if (TT.isPS4CPU()) 357 DebuggerTuning = DebuggerKind::SCE; 358 else 359 DebuggerTuning = DebuggerKind::GDB; 360 361 if (DwarfInlinedStrings == Default) 362 UseInlineStrings = TT.isNVPTX(); 363 else 364 UseInlineStrings = DwarfInlinedStrings == Enable; 365 366 UseLocSection = !TT.isNVPTX(); 367 368 HasAppleExtensionAttributes = tuneForLLDB(); 369 370 // Handle split DWARF. 371 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 372 373 // SCE defaults to linkage names only for abstract subprograms. 374 if (DwarfLinkageNames == DefaultLinkageNames) 375 UseAllLinkageNames = !tuneForSCE(); 376 else 377 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 378 379 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 380 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 381 : MMI->getModule()->getDwarfVersion(); 382 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 383 DwarfVersion = 384 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 385 386 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 387 388 // Use sections as references. Force for NVPTX. 389 if (DwarfSectionsAsReferences == Default) 390 UseSectionsAsReferences = TT.isNVPTX(); 391 else 392 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 393 394 // Don't generate type units for unsupported object file formats. 395 GenerateTypeUnits = 396 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 397 398 TheAccelTableKind = computeAccelTableKind( 399 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 400 401 // Work around a GDB bug. GDB doesn't support the standard opcode; 402 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 403 // is defined as of DWARF 3. 404 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 405 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 406 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 407 408 // GDB does not fully support the DWARF 4 representation for bitfields. 409 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 410 411 // The DWARF v5 string offsets table has - possibly shared - contributions 412 // from each compile and type unit each preceded by a header. The string 413 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 414 // a monolithic string offsets table without any header. 415 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 416 417 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 418 } 419 420 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 421 DwarfDebug::~DwarfDebug() = default; 422 423 static bool isObjCClass(StringRef Name) { 424 return Name.startswith("+") || Name.startswith("-"); 425 } 426 427 static bool hasObjCCategory(StringRef Name) { 428 if (!isObjCClass(Name)) 429 return false; 430 431 return Name.find(") ") != StringRef::npos; 432 } 433 434 static void getObjCClassCategory(StringRef In, StringRef &Class, 435 StringRef &Category) { 436 if (!hasObjCCategory(In)) { 437 Class = In.slice(In.find('[') + 1, In.find(' ')); 438 Category = ""; 439 return; 440 } 441 442 Class = In.slice(In.find('[') + 1, In.find('(')); 443 Category = In.slice(In.find('[') + 1, In.find(' ')); 444 } 445 446 static StringRef getObjCMethodName(StringRef In) { 447 return In.slice(In.find(' ') + 1, In.find(']')); 448 } 449 450 // Add the various names to the Dwarf accelerator table names. 451 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 452 const DISubprogram *SP, DIE &Die) { 453 if (getAccelTableKind() != AccelTableKind::Apple && 454 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 455 return; 456 457 if (!SP->isDefinition()) 458 return; 459 460 if (SP->getName() != "") 461 addAccelName(CU, SP->getName(), Die); 462 463 // If the linkage name is different than the name, go ahead and output that as 464 // well into the name table. Only do that if we are going to actually emit 465 // that name. 466 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 467 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 468 addAccelName(CU, SP->getLinkageName(), Die); 469 470 // If this is an Objective-C selector name add it to the ObjC accelerator 471 // too. 472 if (isObjCClass(SP->getName())) { 473 StringRef Class, Category; 474 getObjCClassCategory(SP->getName(), Class, Category); 475 addAccelObjC(CU, Class, Die); 476 if (Category != "") 477 addAccelObjC(CU, Category, Die); 478 // Also add the base method name to the name table. 479 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 480 } 481 } 482 483 /// Check whether we should create a DIE for the given Scope, return true 484 /// if we don't create a DIE (the corresponding DIE is null). 485 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 486 if (Scope->isAbstractScope()) 487 return false; 488 489 // We don't create a DIE if there is no Range. 490 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 491 if (Ranges.empty()) 492 return true; 493 494 if (Ranges.size() > 1) 495 return false; 496 497 // We don't create a DIE if we have a single Range and the end label 498 // is null. 499 return !getLabelAfterInsn(Ranges.front().second); 500 } 501 502 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 503 F(CU); 504 if (auto *SkelCU = CU.getSkeleton()) 505 if (CU.getCUNode()->getSplitDebugInlining()) 506 F(*SkelCU); 507 } 508 509 bool DwarfDebug::shareAcrossDWOCUs() const { 510 return SplitDwarfCrossCuReferences; 511 } 512 513 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 514 LexicalScope *Scope) { 515 assert(Scope && Scope->getScopeNode()); 516 assert(Scope->isAbstractScope()); 517 assert(!Scope->getInlinedAt()); 518 519 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 520 521 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 522 // was inlined from another compile unit. 523 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 524 // Avoid building the original CU if it won't be used 525 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 526 else { 527 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 528 if (auto *SkelCU = CU.getSkeleton()) { 529 (shareAcrossDWOCUs() ? CU : SrcCU) 530 .constructAbstractSubprogramScopeDIE(Scope); 531 if (CU.getCUNode()->getSplitDebugInlining()) 532 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 533 } else 534 CU.constructAbstractSubprogramScopeDIE(Scope); 535 } 536 } 537 538 /// Try to interpret values loaded into registers that forward parameters 539 /// for \p CallMI. Store parameters with interpreted value into \p Params. 540 static void collectCallSiteParameters(const MachineInstr *CallMI, 541 ParamSet &Params) { 542 auto *MF = CallMI->getMF(); 543 auto CalleesMap = MF->getCallSitesInfo(); 544 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 545 546 // There is no information for the call instruction. 547 if (CallFwdRegsInfo == CalleesMap.end()) 548 return; 549 550 auto *MBB = CallMI->getParent(); 551 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 552 const auto &TII = MF->getSubtarget().getInstrInfo(); 553 const auto &TLI = MF->getSubtarget().getTargetLowering(); 554 555 // Skip the call instruction. 556 auto I = std::next(CallMI->getReverseIterator()); 557 558 DenseSet<unsigned> ForwardedRegWorklist; 559 // Add all the forwarding registers into the ForwardedRegWorklist. 560 for (auto ArgReg : CallFwdRegsInfo->second) { 561 bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second; 562 assert(InsertedReg && "Single register used to forward two arguments?"); 563 (void)InsertedReg; 564 } 565 566 // We erase, from the ForwardedRegWorklist, those forwarding registers for 567 // which we successfully describe a loaded value (by using 568 // the describeLoadedValue()). For those remaining arguments in the working 569 // list, for which we do not describe a loaded value by 570 // the describeLoadedValue(), we try to generate an entry value expression 571 // for their call site value desctipion, if the call is within the entry MBB. 572 // The RegsForEntryValues maps a forwarding register into the register holding 573 // the entry value. 574 // TODO: Handle situations when call site parameter value can be described 575 // as the entry value within basic blocks other then the first one. 576 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 577 DenseMap<unsigned, unsigned> RegsForEntryValues; 578 579 // If the MI is an instruction defining one or more parameters' forwarding 580 // registers, add those defines. We can currently only describe forwarded 581 // registers that are explicitly defined, but keep track of implicit defines 582 // also to remove those registers from the work list. 583 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 584 SmallVectorImpl<unsigned> &Explicit, 585 SmallVectorImpl<unsigned> &Implicit) { 586 if (MI.isDebugInstr()) 587 return; 588 589 for (const MachineOperand &MO : MI.operands()) { 590 if (MO.isReg() && MO.isDef() && 591 Register::isPhysicalRegister(MO.getReg())) { 592 for (auto FwdReg : ForwardedRegWorklist) { 593 if (TRI->regsOverlap(FwdReg, MO.getReg())) { 594 if (MO.isImplicit()) 595 Implicit.push_back(FwdReg); 596 else 597 Explicit.push_back(FwdReg); 598 break; 599 } 600 } 601 } 602 } 603 }; 604 605 auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) { 606 unsigned FwdReg = Reg; 607 if (ShouldTryEmitEntryVals) { 608 auto EntryValReg = RegsForEntryValues.find(Reg); 609 if (EntryValReg != RegsForEntryValues.end()) 610 FwdReg = EntryValReg->second; 611 } 612 613 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 614 Params.push_back(CSParm); 615 ++NumCSParams; 616 }; 617 618 // Search for a loading value in forwaring registers. 619 for (; I != MBB->rend(); ++I) { 620 // If the next instruction is a call we can not interpret parameter's 621 // forwarding registers or we finished the interpretation of all parameters. 622 if (I->isCall()) 623 return; 624 625 if (ForwardedRegWorklist.empty()) 626 return; 627 628 SmallVector<unsigned, 4> ExplicitFwdRegDefs; 629 SmallVector<unsigned, 4> ImplicitFwdRegDefs; 630 getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs); 631 if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty()) 632 continue; 633 634 // If the MI clobbers more then one forwarding register we must remove 635 // all of them from the working list. 636 for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs)) 637 ForwardedRegWorklist.erase(Reg); 638 639 // The describeLoadedValue() hook currently does not have any information 640 // about which register it should describe in case of multiple defines, so 641 // for now we only handle instructions where a forwarded register is (at 642 // least partially) defined by the instruction's single explicit define. 643 if (I->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs.empty()) 644 continue; 645 unsigned Reg = ExplicitFwdRegDefs[0]; 646 647 if (auto ParamValue = TII->describeLoadedValue(*I)) { 648 if (ParamValue->first.isImm()) { 649 int64_t Val = ParamValue->first.getImm(); 650 DbgValueLoc DbgLocVal(ParamValue->second, Val); 651 finishCallSiteParam(DbgLocVal, Reg); 652 } else if (ParamValue->first.isReg()) { 653 Register RegLoc = ParamValue->first.getReg(); 654 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 655 Register FP = TRI->getFrameRegister(*MF); 656 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 657 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 658 DbgValueLoc DbgLocVal(ParamValue->second, 659 MachineLocation(RegLoc, 660 /*IsIndirect=*/IsSPorFP)); 661 finishCallSiteParam(DbgLocVal, Reg); 662 } else if (ShouldTryEmitEntryVals) { 663 ForwardedRegWorklist.insert(RegLoc); 664 RegsForEntryValues[RegLoc] = Reg; 665 } 666 } 667 } 668 } 669 670 // Emit the call site parameter's value as an entry value. 671 if (ShouldTryEmitEntryVals) { 672 // Create an expression where the register's entry value is used. 673 DIExpression *EntryExpr = DIExpression::get( 674 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 675 for (auto RegEntry : ForwardedRegWorklist) { 676 unsigned FwdReg = RegEntry; 677 auto EntryValReg = RegsForEntryValues.find(RegEntry); 678 if (EntryValReg != RegsForEntryValues.end()) 679 FwdReg = EntryValReg->second; 680 681 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry)); 682 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 683 Params.push_back(CSParm); 684 ++NumCSParams; 685 } 686 } 687 } 688 689 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 690 DwarfCompileUnit &CU, DIE &ScopeDIE, 691 const MachineFunction &MF) { 692 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 693 // the subprogram is required to have one. 694 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 695 return; 696 697 // Use DW_AT_call_all_calls to express that call site entries are present 698 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 699 // because one of its requirements is not met: call site entries for 700 // optimized-out calls are elided. 701 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 702 703 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 704 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 705 bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB(); 706 707 // Emit call site entries for each call or tail call in the function. 708 for (const MachineBasicBlock &MBB : MF) { 709 for (const MachineInstr &MI : MBB.instrs()) { 710 // Skip instructions which aren't calls. Both calls and tail-calling jump 711 // instructions (e.g TAILJMPd64) are classified correctly here. 712 if (!MI.isCall()) 713 continue; 714 715 // TODO: Add support for targets with delay slots (see: beginInstruction). 716 if (MI.hasDelaySlot()) 717 return; 718 719 // If this is a direct call, find the callee's subprogram. 720 // In the case of an indirect call find the register that holds 721 // the callee. 722 const MachineOperand &CalleeOp = MI.getOperand(0); 723 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 724 continue; 725 726 unsigned CallReg = 0; 727 const DISubprogram *CalleeSP = nullptr; 728 const Function *CalleeDecl = nullptr; 729 if (CalleeOp.isReg()) { 730 CallReg = CalleeOp.getReg(); 731 if (!CallReg) 732 continue; 733 } else { 734 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 735 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 736 continue; 737 CalleeSP = CalleeDecl->getSubprogram(); 738 } 739 740 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 741 742 bool IsTail = TII->isTailCall(MI); 743 744 // For tail calls, for non-gdb tuning, no return PC information is needed. 745 // For regular calls (and tail calls in GDB tuning), the return PC 746 // is needed to disambiguate paths in the call graph which could lead to 747 // some target function. 748 const MCExpr *PCOffset = 749 (IsTail && !tuneForGDB()) ? nullptr 750 : getFunctionLocalOffsetAfterInsn(&MI); 751 752 // Address of a call-like instruction for a normal call or a jump-like 753 // instruction for a tail call. This is needed for GDB + DWARF 4 tuning. 754 const MCSymbol *PCAddr = 755 ApplyGNUExtensions ? const_cast<MCSymbol*>(getLabelAfterInsn(&MI)) 756 : nullptr; 757 758 assert((IsTail || PCOffset || PCAddr) && 759 "Call without return PC information"); 760 761 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 762 << (CalleeDecl ? CalleeDecl->getName() 763 : StringRef(MF.getSubtarget() 764 .getRegisterInfo() 765 ->getName(CallReg))) 766 << (IsTail ? " [IsTail]" : "") << "\n"); 767 768 DIE &CallSiteDIE = 769 CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr, 770 PCOffset, CallReg); 771 772 // GDB and LLDB support call site parameter debug info. 773 if (Asm->TM.Options.EnableDebugEntryValues && 774 (tuneForGDB() || tuneForLLDB())) { 775 ParamSet Params; 776 // Try to interpret values of call site parameters. 777 collectCallSiteParameters(&MI, Params); 778 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 779 } 780 } 781 } 782 } 783 784 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 785 if (!U.hasDwarfPubSections()) 786 return; 787 788 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 789 } 790 791 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 792 DwarfCompileUnit &NewCU) { 793 DIE &Die = NewCU.getUnitDie(); 794 StringRef FN = DIUnit->getFilename(); 795 796 StringRef Producer = DIUnit->getProducer(); 797 StringRef Flags = DIUnit->getFlags(); 798 if (!Flags.empty() && !useAppleExtensionAttributes()) { 799 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 800 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 801 } else 802 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 803 804 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 805 DIUnit->getSourceLanguage()); 806 NewCU.addString(Die, dwarf::DW_AT_name, FN); 807 808 // Add DW_str_offsets_base to the unit DIE, except for split units. 809 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 810 NewCU.addStringOffsetsStart(); 811 812 if (!useSplitDwarf()) { 813 NewCU.initStmtList(); 814 815 // If we're using split dwarf the compilation dir is going to be in the 816 // skeleton CU and so we don't need to duplicate it here. 817 if (!CompilationDir.empty()) 818 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 819 820 addGnuPubAttributes(NewCU, Die); 821 } 822 823 if (useAppleExtensionAttributes()) { 824 if (DIUnit->isOptimized()) 825 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 826 827 StringRef Flags = DIUnit->getFlags(); 828 if (!Flags.empty()) 829 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 830 831 if (unsigned RVer = DIUnit->getRuntimeVersion()) 832 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 833 dwarf::DW_FORM_data1, RVer); 834 } 835 836 if (DIUnit->getDWOId()) { 837 // This CU is either a clang module DWO or a skeleton CU. 838 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 839 DIUnit->getDWOId()); 840 if (!DIUnit->getSplitDebugFilename().empty()) 841 // This is a prefabricated skeleton CU. 842 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 843 DIUnit->getSplitDebugFilename()); 844 } 845 } 846 // Create new DwarfCompileUnit for the given metadata node with tag 847 // DW_TAG_compile_unit. 848 DwarfCompileUnit & 849 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 850 if (auto *CU = CUMap.lookup(DIUnit)) 851 return *CU; 852 853 CompilationDir = DIUnit->getDirectory(); 854 855 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 856 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 857 DwarfCompileUnit &NewCU = *OwnedUnit; 858 InfoHolder.addUnit(std::move(OwnedUnit)); 859 860 for (auto *IE : DIUnit->getImportedEntities()) 861 NewCU.addImportedEntity(IE); 862 863 // LTO with assembly output shares a single line table amongst multiple CUs. 864 // To avoid the compilation directory being ambiguous, let the line table 865 // explicitly describe the directory of all files, never relying on the 866 // compilation directory. 867 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 868 Asm->OutStreamer->emitDwarfFile0Directive( 869 CompilationDir, DIUnit->getFilename(), 870 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 871 NewCU.getUniqueID()); 872 873 if (useSplitDwarf()) { 874 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 875 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 876 } else { 877 finishUnitAttributes(DIUnit, NewCU); 878 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 879 } 880 881 // Create DIEs for function declarations used for call site debug info. 882 for (auto Scope : DIUnit->getRetainedTypes()) 883 if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope)) 884 NewCU.getOrCreateSubprogramDIE(SP); 885 886 CUMap.insert({DIUnit, &NewCU}); 887 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 888 return NewCU; 889 } 890 891 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 892 const DIImportedEntity *N) { 893 if (isa<DILocalScope>(N->getScope())) 894 return; 895 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 896 D->addChild(TheCU.constructImportedEntityDIE(N)); 897 } 898 899 /// Sort and unique GVEs by comparing their fragment offset. 900 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 901 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 902 llvm::sort( 903 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 904 // Sort order: first null exprs, then exprs without fragment 905 // info, then sort by fragment offset in bits. 906 // FIXME: Come up with a more comprehensive comparator so 907 // the sorting isn't non-deterministic, and so the following 908 // std::unique call works correctly. 909 if (!A.Expr || !B.Expr) 910 return !!B.Expr; 911 auto FragmentA = A.Expr->getFragmentInfo(); 912 auto FragmentB = B.Expr->getFragmentInfo(); 913 if (!FragmentA || !FragmentB) 914 return !!FragmentB; 915 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 916 }); 917 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 918 [](DwarfCompileUnit::GlobalExpr A, 919 DwarfCompileUnit::GlobalExpr B) { 920 return A.Expr == B.Expr; 921 }), 922 GVEs.end()); 923 return GVEs; 924 } 925 926 // Emit all Dwarf sections that should come prior to the content. Create 927 // global DIEs and emit initial debug info sections. This is invoked by 928 // the target AsmPrinter. 929 void DwarfDebug::beginModule() { 930 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 931 DWARFGroupDescription, TimePassesIsEnabled); 932 if (DisableDebugInfoPrinting) { 933 MMI->setDebugInfoAvailability(false); 934 return; 935 } 936 937 const Module *M = MMI->getModule(); 938 939 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 940 M->debug_compile_units_end()); 941 // Tell MMI whether we have debug info. 942 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 943 "DebugInfoAvailabilty initialized unexpectedly"); 944 SingleCU = NumDebugCUs == 1; 945 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 946 GVMap; 947 for (const GlobalVariable &Global : M->globals()) { 948 SmallVector<DIGlobalVariableExpression *, 1> GVs; 949 Global.getDebugInfo(GVs); 950 for (auto *GVE : GVs) 951 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 952 } 953 954 // Create the symbol that designates the start of the unit's contribution 955 // to the string offsets table. In a split DWARF scenario, only the skeleton 956 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 957 if (useSegmentedStringOffsetsTable()) 958 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 959 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 960 961 962 // Create the symbols that designates the start of the DWARF v5 range list 963 // and locations list tables. They are located past the table headers. 964 if (getDwarfVersion() >= 5) { 965 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 966 Holder.setRnglistsTableBaseSym( 967 Asm->createTempSymbol("rnglists_table_base")); 968 969 if (useSplitDwarf()) 970 InfoHolder.setRnglistsTableBaseSym( 971 Asm->createTempSymbol("rnglists_dwo_table_base")); 972 } 973 974 // Create the symbol that points to the first entry following the debug 975 // address table (.debug_addr) header. 976 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 977 978 for (DICompileUnit *CUNode : M->debug_compile_units()) { 979 // FIXME: Move local imported entities into a list attached to the 980 // subprogram, then this search won't be needed and a 981 // getImportedEntities().empty() test should go below with the rest. 982 bool HasNonLocalImportedEntities = llvm::any_of( 983 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 984 return !isa<DILocalScope>(IE->getScope()); 985 }); 986 987 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 988 CUNode->getRetainedTypes().empty() && 989 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 990 continue; 991 992 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 993 994 // Global Variables. 995 for (auto *GVE : CUNode->getGlobalVariables()) { 996 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 997 // already know about the variable and it isn't adding a constant 998 // expression. 999 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1000 auto *Expr = GVE->getExpression(); 1001 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1002 GVMapEntry.push_back({nullptr, Expr}); 1003 } 1004 DenseSet<DIGlobalVariable *> Processed; 1005 for (auto *GVE : CUNode->getGlobalVariables()) { 1006 DIGlobalVariable *GV = GVE->getVariable(); 1007 if (Processed.insert(GV).second) 1008 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1009 } 1010 1011 for (auto *Ty : CUNode->getEnumTypes()) { 1012 // The enum types array by design contains pointers to 1013 // MDNodes rather than DIRefs. Unique them here. 1014 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1015 } 1016 for (auto *Ty : CUNode->getRetainedTypes()) { 1017 // The retained types array by design contains pointers to 1018 // MDNodes rather than DIRefs. Unique them here. 1019 if (DIType *RT = dyn_cast<DIType>(Ty)) 1020 // There is no point in force-emitting a forward declaration. 1021 CU.getOrCreateTypeDIE(RT); 1022 } 1023 // Emit imported_modules last so that the relevant context is already 1024 // available. 1025 for (auto *IE : CUNode->getImportedEntities()) 1026 constructAndAddImportedEntityDIE(CU, IE); 1027 } 1028 } 1029 1030 void DwarfDebug::finishEntityDefinitions() { 1031 for (const auto &Entity : ConcreteEntities) { 1032 DIE *Die = Entity->getDIE(); 1033 assert(Die); 1034 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1035 // in the ConcreteEntities list, rather than looking it up again here. 1036 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1037 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1038 assert(Unit); 1039 Unit->finishEntityDefinition(Entity.get()); 1040 } 1041 } 1042 1043 void DwarfDebug::finishSubprogramDefinitions() { 1044 for (const DISubprogram *SP : ProcessedSPNodes) { 1045 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1046 forBothCUs( 1047 getOrCreateDwarfCompileUnit(SP->getUnit()), 1048 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1049 } 1050 } 1051 1052 void DwarfDebug::finalizeModuleInfo() { 1053 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1054 1055 finishSubprogramDefinitions(); 1056 1057 finishEntityDefinitions(); 1058 1059 // Include the DWO file name in the hash if there's more than one CU. 1060 // This handles ThinLTO's situation where imported CUs may very easily be 1061 // duplicate with the same CU partially imported into another ThinLTO unit. 1062 StringRef DWOName; 1063 if (CUMap.size() > 1) 1064 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1065 1066 // Handle anything that needs to be done on a per-unit basis after 1067 // all other generation. 1068 for (const auto &P : CUMap) { 1069 auto &TheCU = *P.second; 1070 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1071 continue; 1072 // Emit DW_AT_containing_type attribute to connect types with their 1073 // vtable holding type. 1074 TheCU.constructContainingTypeDIEs(); 1075 1076 // Add CU specific attributes if we need to add any. 1077 // If we're splitting the dwarf out now that we've got the entire 1078 // CU then add the dwo id to it. 1079 auto *SkCU = TheCU.getSkeleton(); 1080 if (useSplitDwarf() && !TheCU.getUnitDie().children().empty()) { 1081 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1082 TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name, 1083 Asm->TM.Options.MCOptions.SplitDwarfFile); 1084 SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name, 1085 Asm->TM.Options.MCOptions.SplitDwarfFile); 1086 // Emit a unique identifier for this CU. 1087 uint64_t ID = 1088 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1089 if (getDwarfVersion() >= 5) { 1090 TheCU.setDWOId(ID); 1091 SkCU->setDWOId(ID); 1092 } else { 1093 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1094 dwarf::DW_FORM_data8, ID); 1095 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1096 dwarf::DW_FORM_data8, ID); 1097 } 1098 1099 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1100 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1101 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1102 Sym, Sym); 1103 } 1104 } else if (SkCU) { 1105 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1106 } 1107 1108 // If we have code split among multiple sections or non-contiguous 1109 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1110 // remain in the .o file, otherwise add a DW_AT_low_pc. 1111 // FIXME: We should use ranges allow reordering of code ala 1112 // .subsections_via_symbols in mach-o. This would mean turning on 1113 // ranges for all subprogram DIEs for mach-o. 1114 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1115 1116 if (unsigned NumRanges = TheCU.getRanges().size()) { 1117 if (NumRanges > 1 && useRangesSection()) 1118 // A DW_AT_low_pc attribute may also be specified in combination with 1119 // DW_AT_ranges to specify the default base address for use in 1120 // location lists (see Section 2.6.2) and range lists (see Section 1121 // 2.17.3). 1122 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1123 else 1124 U.setBaseAddress(TheCU.getRanges().front().Begin); 1125 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1126 } 1127 1128 // We don't keep track of which addresses are used in which CU so this 1129 // is a bit pessimistic under LTO. 1130 if (!AddrPool.isEmpty() && 1131 (getDwarfVersion() >= 5 || 1132 (SkCU && !TheCU.getUnitDie().children().empty()))) 1133 U.addAddrTableBase(); 1134 1135 if (getDwarfVersion() >= 5) { 1136 if (U.hasRangeLists()) 1137 U.addRnglistsBase(); 1138 1139 if (!DebugLocs.getLists().empty() && !useSplitDwarf()) { 1140 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1141 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1142 DebugLocs.getSym(), 1143 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1144 } 1145 } 1146 1147 auto *CUNode = cast<DICompileUnit>(P.first); 1148 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1149 if (CUNode->getMacros()) 1150 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1151 U.getMacroLabelBegin(), 1152 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1153 } 1154 1155 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1156 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1157 if (CUNode->getDWOId()) 1158 getOrCreateDwarfCompileUnit(CUNode); 1159 1160 // Compute DIE offsets and sizes. 1161 InfoHolder.computeSizeAndOffsets(); 1162 if (useSplitDwarf()) 1163 SkeletonHolder.computeSizeAndOffsets(); 1164 } 1165 1166 // Emit all Dwarf sections that should come after the content. 1167 void DwarfDebug::endModule() { 1168 assert(CurFn == nullptr); 1169 assert(CurMI == nullptr); 1170 1171 for (const auto &P : CUMap) { 1172 auto &CU = *P.second; 1173 CU.createBaseTypeDIEs(); 1174 } 1175 1176 // If we aren't actually generating debug info (check beginModule - 1177 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1178 // llvm.dbg.cu metadata node) 1179 if (!MMI->hasDebugInfo()) 1180 return; 1181 1182 // Finalize the debug info for the module. 1183 finalizeModuleInfo(); 1184 1185 emitDebugStr(); 1186 1187 if (useSplitDwarf()) 1188 emitDebugLocDWO(); 1189 else 1190 // Emit info into a debug loc section. 1191 emitDebugLoc(); 1192 1193 // Corresponding abbreviations into a abbrev section. 1194 emitAbbreviations(); 1195 1196 // Emit all the DIEs into a debug info section. 1197 emitDebugInfo(); 1198 1199 // Emit info into a debug aranges section. 1200 if (GenerateARangeSection) 1201 emitDebugARanges(); 1202 1203 // Emit info into a debug ranges section. 1204 emitDebugRanges(); 1205 1206 // Emit info into a debug macinfo section. 1207 emitDebugMacinfo(); 1208 1209 if (useSplitDwarf()) { 1210 emitDebugStrDWO(); 1211 emitDebugInfoDWO(); 1212 emitDebugAbbrevDWO(); 1213 emitDebugLineDWO(); 1214 emitDebugRangesDWO(); 1215 } 1216 1217 emitDebugAddr(); 1218 1219 // Emit info into the dwarf accelerator table sections. 1220 switch (getAccelTableKind()) { 1221 case AccelTableKind::Apple: 1222 emitAccelNames(); 1223 emitAccelObjC(); 1224 emitAccelNamespaces(); 1225 emitAccelTypes(); 1226 break; 1227 case AccelTableKind::Dwarf: 1228 emitAccelDebugNames(); 1229 break; 1230 case AccelTableKind::None: 1231 break; 1232 case AccelTableKind::Default: 1233 llvm_unreachable("Default should have already been resolved."); 1234 } 1235 1236 // Emit the pubnames and pubtypes sections if requested. 1237 emitDebugPubSections(); 1238 1239 // clean up. 1240 // FIXME: AbstractVariables.clear(); 1241 } 1242 1243 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1244 const DINode *Node, 1245 const MDNode *ScopeNode) { 1246 if (CU.getExistingAbstractEntity(Node)) 1247 return; 1248 1249 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1250 cast<DILocalScope>(ScopeNode))); 1251 } 1252 1253 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1254 const DINode *Node, const MDNode *ScopeNode) { 1255 if (CU.getExistingAbstractEntity(Node)) 1256 return; 1257 1258 if (LexicalScope *Scope = 1259 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1260 CU.createAbstractEntity(Node, Scope); 1261 } 1262 1263 // Collect variable information from side table maintained by MF. 1264 void DwarfDebug::collectVariableInfoFromMFTable( 1265 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1266 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1267 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1268 if (!VI.Var) 1269 continue; 1270 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1271 "Expected inlined-at fields to agree"); 1272 1273 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1274 Processed.insert(Var); 1275 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1276 1277 // If variable scope is not found then skip this variable. 1278 if (!Scope) 1279 continue; 1280 1281 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1282 auto RegVar = std::make_unique<DbgVariable>( 1283 cast<DILocalVariable>(Var.first), Var.second); 1284 RegVar->initializeMMI(VI.Expr, VI.Slot); 1285 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1286 DbgVar->addMMIEntry(*RegVar); 1287 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1288 MFVars.insert({Var, RegVar.get()}); 1289 ConcreteEntities.push_back(std::move(RegVar)); 1290 } 1291 } 1292 } 1293 1294 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1295 /// enclosing lexical scope. The check ensures there are no other instructions 1296 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1297 /// either open or otherwise rolls off the end of the scope. 1298 static bool validThroughout(LexicalScopes &LScopes, 1299 const MachineInstr *DbgValue, 1300 const MachineInstr *RangeEnd) { 1301 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1302 auto MBB = DbgValue->getParent(); 1303 auto DL = DbgValue->getDebugLoc(); 1304 auto *LScope = LScopes.findLexicalScope(DL); 1305 // Scope doesn't exist; this is a dead DBG_VALUE. 1306 if (!LScope) 1307 return false; 1308 auto &LSRange = LScope->getRanges(); 1309 if (LSRange.size() == 0) 1310 return false; 1311 1312 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1313 const MachineInstr *LScopeBegin = LSRange.front().first; 1314 // Early exit if the lexical scope begins outside of the current block. 1315 if (LScopeBegin->getParent() != MBB) 1316 return false; 1317 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1318 for (++Pred; Pred != MBB->rend(); ++Pred) { 1319 if (Pred->getFlag(MachineInstr::FrameSetup)) 1320 break; 1321 auto PredDL = Pred->getDebugLoc(); 1322 if (!PredDL || Pred->isMetaInstruction()) 1323 continue; 1324 // Check whether the instruction preceding the DBG_VALUE is in the same 1325 // (sub)scope as the DBG_VALUE. 1326 if (DL->getScope() == PredDL->getScope()) 1327 return false; 1328 auto *PredScope = LScopes.findLexicalScope(PredDL); 1329 if (!PredScope || LScope->dominates(PredScope)) 1330 return false; 1331 } 1332 1333 // If the range of the DBG_VALUE is open-ended, report success. 1334 if (!RangeEnd) 1335 return true; 1336 1337 // Fail if there are instructions belonging to our scope in another block. 1338 const MachineInstr *LScopeEnd = LSRange.back().second; 1339 if (LScopeEnd->getParent() != MBB) 1340 return false; 1341 1342 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1343 // throughout the function. This is a hack, presumably for DWARF v2 and not 1344 // necessarily correct. It would be much better to use a dbg.declare instead 1345 // if we know the constant is live throughout the scope. 1346 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1347 return true; 1348 1349 return false; 1350 } 1351 1352 /// Build the location list for all DBG_VALUEs in the function that 1353 /// describe the same variable. The resulting DebugLocEntries will have 1354 /// strict monotonically increasing begin addresses and will never 1355 /// overlap. If the resulting list has only one entry that is valid 1356 /// throughout variable's scope return true. 1357 // 1358 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1359 // different kinds of history map entries. One thing to be aware of is that if 1360 // a debug value is ended by another entry (rather than being valid until the 1361 // end of the function), that entry's instruction may or may not be included in 1362 // the range, depending on if the entry is a clobbering entry (it has an 1363 // instruction that clobbers one or more preceding locations), or if it is an 1364 // (overlapping) debug value entry. This distinction can be seen in the example 1365 // below. The first debug value is ended by the clobbering entry 2, and the 1366 // second and third debug values are ended by the overlapping debug value entry 1367 // 4. 1368 // 1369 // Input: 1370 // 1371 // History map entries [type, end index, mi] 1372 // 1373 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1374 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1375 // 2 | | [Clobber, $reg0 = [...], -, -] 1376 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1377 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1378 // 1379 // Output [start, end) [Value...]: 1380 // 1381 // [0-1) [(reg0, fragment 0, 32)] 1382 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1383 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1384 // [4-) [(@g, fragment 0, 96)] 1385 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1386 const DbgValueHistoryMap::Entries &Entries) { 1387 using OpenRange = 1388 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1389 SmallVector<OpenRange, 4> OpenRanges; 1390 bool isSafeForSingleLocation = true; 1391 const MachineInstr *StartDebugMI = nullptr; 1392 const MachineInstr *EndMI = nullptr; 1393 1394 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1395 const MachineInstr *Instr = EI->getInstr(); 1396 1397 // Remove all values that are no longer live. 1398 size_t Index = std::distance(EB, EI); 1399 auto Last = 1400 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1401 OpenRanges.erase(Last, OpenRanges.end()); 1402 1403 // If we are dealing with a clobbering entry, this iteration will result in 1404 // a location list entry starting after the clobbering instruction. 1405 const MCSymbol *StartLabel = 1406 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1407 assert(StartLabel && 1408 "Forgot label before/after instruction starting a range!"); 1409 1410 const MCSymbol *EndLabel; 1411 if (std::next(EI) == Entries.end()) { 1412 EndLabel = Asm->getFunctionEnd(); 1413 if (EI->isClobber()) 1414 EndMI = EI->getInstr(); 1415 } 1416 else if (std::next(EI)->isClobber()) 1417 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1418 else 1419 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1420 assert(EndLabel && "Forgot label after instruction ending a range!"); 1421 1422 if (EI->isDbgValue()) 1423 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1424 1425 // If this history map entry has a debug value, add that to the list of 1426 // open ranges and check if its location is valid for a single value 1427 // location. 1428 if (EI->isDbgValue()) { 1429 // Do not add undef debug values, as they are redundant information in 1430 // the location list entries. An undef debug results in an empty location 1431 // description. If there are any non-undef fragments then padding pieces 1432 // with empty location descriptions will automatically be inserted, and if 1433 // all fragments are undef then the whole location list entry is 1434 // redundant. 1435 if (!Instr->isUndefDebugValue()) { 1436 auto Value = getDebugLocValue(Instr); 1437 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1438 1439 // TODO: Add support for single value fragment locations. 1440 if (Instr->getDebugExpression()->isFragment()) 1441 isSafeForSingleLocation = false; 1442 1443 if (!StartDebugMI) 1444 StartDebugMI = Instr; 1445 } else { 1446 isSafeForSingleLocation = false; 1447 } 1448 } 1449 1450 // Location list entries with empty location descriptions are redundant 1451 // information in DWARF, so do not emit those. 1452 if (OpenRanges.empty()) 1453 continue; 1454 1455 // Omit entries with empty ranges as they do not have any effect in DWARF. 1456 if (StartLabel == EndLabel) { 1457 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1458 continue; 1459 } 1460 1461 SmallVector<DbgValueLoc, 4> Values; 1462 for (auto &R : OpenRanges) 1463 Values.push_back(R.second); 1464 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1465 1466 // Attempt to coalesce the ranges of two otherwise identical 1467 // DebugLocEntries. 1468 auto CurEntry = DebugLoc.rbegin(); 1469 LLVM_DEBUG({ 1470 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1471 for (auto &Value : CurEntry->getValues()) 1472 Value.dump(); 1473 dbgs() << "-----\n"; 1474 }); 1475 1476 auto PrevEntry = std::next(CurEntry); 1477 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1478 DebugLoc.pop_back(); 1479 } 1480 1481 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1482 validThroughout(LScopes, StartDebugMI, EndMI); 1483 } 1484 1485 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1486 LexicalScope &Scope, 1487 const DINode *Node, 1488 const DILocation *Location, 1489 const MCSymbol *Sym) { 1490 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1491 if (isa<const DILocalVariable>(Node)) { 1492 ConcreteEntities.push_back( 1493 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1494 Location)); 1495 InfoHolder.addScopeVariable(&Scope, 1496 cast<DbgVariable>(ConcreteEntities.back().get())); 1497 } else if (isa<const DILabel>(Node)) { 1498 ConcreteEntities.push_back( 1499 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1500 Location, Sym)); 1501 InfoHolder.addScopeLabel(&Scope, 1502 cast<DbgLabel>(ConcreteEntities.back().get())); 1503 } 1504 return ConcreteEntities.back().get(); 1505 } 1506 1507 // Find variables for each lexical scope. 1508 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1509 const DISubprogram *SP, 1510 DenseSet<InlinedEntity> &Processed) { 1511 // Grab the variable info that was squirreled away in the MMI side-table. 1512 collectVariableInfoFromMFTable(TheCU, Processed); 1513 1514 for (const auto &I : DbgValues) { 1515 InlinedEntity IV = I.first; 1516 if (Processed.count(IV)) 1517 continue; 1518 1519 // Instruction ranges, specifying where IV is accessible. 1520 const auto &HistoryMapEntries = I.second; 1521 if (HistoryMapEntries.empty()) 1522 continue; 1523 1524 LexicalScope *Scope = nullptr; 1525 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1526 if (const DILocation *IA = IV.second) 1527 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1528 else 1529 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1530 // If variable scope is not found then skip this variable. 1531 if (!Scope) 1532 continue; 1533 1534 Processed.insert(IV); 1535 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1536 *Scope, LocalVar, IV.second)); 1537 1538 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1539 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1540 1541 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1542 // If the history map contains a single debug value, there may be an 1543 // additional entry which clobbers the debug value. 1544 size_t HistSize = HistoryMapEntries.size(); 1545 bool SingleValueWithClobber = 1546 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1547 if (HistSize == 1 || SingleValueWithClobber) { 1548 const auto *End = 1549 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1550 if (validThroughout(LScopes, MInsn, End)) { 1551 RegVar->initializeDbgValue(MInsn); 1552 continue; 1553 } 1554 } 1555 1556 // Do not emit location lists if .debug_loc secton is disabled. 1557 if (!useLocSection()) 1558 continue; 1559 1560 // Handle multiple DBG_VALUE instructions describing one variable. 1561 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1562 1563 // Build the location list for this variable. 1564 SmallVector<DebugLocEntry, 8> Entries; 1565 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1566 1567 // Check whether buildLocationList managed to merge all locations to one 1568 // that is valid throughout the variable's scope. If so, produce single 1569 // value location. 1570 if (isValidSingleLocation) { 1571 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1572 continue; 1573 } 1574 1575 // If the variable has a DIBasicType, extract it. Basic types cannot have 1576 // unique identifiers, so don't bother resolving the type with the 1577 // identifier map. 1578 const DIBasicType *BT = dyn_cast<DIBasicType>( 1579 static_cast<const Metadata *>(LocalVar->getType())); 1580 1581 // Finalize the entry by lowering it into a DWARF bytestream. 1582 for (auto &Entry : Entries) 1583 Entry.finalize(*Asm, List, BT, TheCU); 1584 } 1585 1586 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1587 // DWARF-related DbgLabel. 1588 for (const auto &I : DbgLabels) { 1589 InlinedEntity IL = I.first; 1590 const MachineInstr *MI = I.second; 1591 if (MI == nullptr) 1592 continue; 1593 1594 LexicalScope *Scope = nullptr; 1595 const DILabel *Label = cast<DILabel>(IL.first); 1596 // The scope could have an extra lexical block file. 1597 const DILocalScope *LocalScope = 1598 Label->getScope()->getNonLexicalBlockFileScope(); 1599 // Get inlined DILocation if it is inlined label. 1600 if (const DILocation *IA = IL.second) 1601 Scope = LScopes.findInlinedScope(LocalScope, IA); 1602 else 1603 Scope = LScopes.findLexicalScope(LocalScope); 1604 // If label scope is not found then skip this label. 1605 if (!Scope) 1606 continue; 1607 1608 Processed.insert(IL); 1609 /// At this point, the temporary label is created. 1610 /// Save the temporary label to DbgLabel entity to get the 1611 /// actually address when generating Dwarf DIE. 1612 MCSymbol *Sym = getLabelBeforeInsn(MI); 1613 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1614 } 1615 1616 // Collect info for variables/labels that were optimized out. 1617 for (const DINode *DN : SP->getRetainedNodes()) { 1618 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1619 continue; 1620 LexicalScope *Scope = nullptr; 1621 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1622 Scope = LScopes.findLexicalScope(DV->getScope()); 1623 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1624 Scope = LScopes.findLexicalScope(DL->getScope()); 1625 } 1626 1627 if (Scope) 1628 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1629 } 1630 } 1631 1632 // Process beginning of an instruction. 1633 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1634 DebugHandlerBase::beginInstruction(MI); 1635 assert(CurMI); 1636 1637 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1638 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1639 return; 1640 1641 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1642 // If the instruction is part of the function frame setup code, do not emit 1643 // any line record, as there is no correspondence with any user code. 1644 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1645 return; 1646 const DebugLoc &DL = MI->getDebugLoc(); 1647 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1648 // the last line number actually emitted, to see if it was line 0. 1649 unsigned LastAsmLine = 1650 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1651 1652 // Request a label after the call in order to emit AT_return_pc information 1653 // in call site entries. TODO: Add support for targets with delay slots. 1654 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1655 requestLabelAfterInsn(MI); 1656 1657 if (DL == PrevInstLoc) { 1658 // If we have an ongoing unspecified location, nothing to do here. 1659 if (!DL) 1660 return; 1661 // We have an explicit location, same as the previous location. 1662 // But we might be coming back to it after a line 0 record. 1663 if (LastAsmLine == 0 && DL.getLine() != 0) { 1664 // Reinstate the source location but not marked as a statement. 1665 const MDNode *Scope = DL.getScope(); 1666 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1667 } 1668 return; 1669 } 1670 1671 if (!DL) { 1672 // We have an unspecified location, which might want to be line 0. 1673 // If we have already emitted a line-0 record, don't repeat it. 1674 if (LastAsmLine == 0) 1675 return; 1676 // If user said Don't Do That, don't do that. 1677 if (UnknownLocations == Disable) 1678 return; 1679 // See if we have a reason to emit a line-0 record now. 1680 // Reasons to emit a line-0 record include: 1681 // - User asked for it (UnknownLocations). 1682 // - Instruction has a label, so it's referenced from somewhere else, 1683 // possibly debug information; we want it to have a source location. 1684 // - Instruction is at the top of a block; we don't want to inherit the 1685 // location from the physically previous (maybe unrelated) block. 1686 if (UnknownLocations == Enable || PrevLabel || 1687 (PrevInstBB && PrevInstBB != MI->getParent())) { 1688 // Preserve the file and column numbers, if we can, to save space in 1689 // the encoded line table. 1690 // Do not update PrevInstLoc, it remembers the last non-0 line. 1691 const MDNode *Scope = nullptr; 1692 unsigned Column = 0; 1693 if (PrevInstLoc) { 1694 Scope = PrevInstLoc.getScope(); 1695 Column = PrevInstLoc.getCol(); 1696 } 1697 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1698 } 1699 return; 1700 } 1701 1702 // We have an explicit location, different from the previous location. 1703 // Don't repeat a line-0 record, but otherwise emit the new location. 1704 // (The new location might be an explicit line 0, which we do emit.) 1705 if (DL.getLine() == 0 && LastAsmLine == 0) 1706 return; 1707 unsigned Flags = 0; 1708 if (DL == PrologEndLoc) { 1709 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1710 PrologEndLoc = DebugLoc(); 1711 } 1712 // If the line changed, we call that a new statement; unless we went to 1713 // line 0 and came back, in which case it is not a new statement. 1714 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1715 if (DL.getLine() && DL.getLine() != OldLine) 1716 Flags |= DWARF2_FLAG_IS_STMT; 1717 1718 const MDNode *Scope = DL.getScope(); 1719 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1720 1721 // If we're not at line 0, remember this location. 1722 if (DL.getLine()) 1723 PrevInstLoc = DL; 1724 } 1725 1726 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1727 // First known non-DBG_VALUE and non-frame setup location marks 1728 // the beginning of the function body. 1729 for (const auto &MBB : *MF) 1730 for (const auto &MI : MBB) 1731 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1732 MI.getDebugLoc()) 1733 return MI.getDebugLoc(); 1734 return DebugLoc(); 1735 } 1736 1737 /// Register a source line with debug info. Returns the unique label that was 1738 /// emitted and which provides correspondence to the source line list. 1739 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1740 const MDNode *S, unsigned Flags, unsigned CUID, 1741 uint16_t DwarfVersion, 1742 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1743 StringRef Fn; 1744 unsigned FileNo = 1; 1745 unsigned Discriminator = 0; 1746 if (auto *Scope = cast_or_null<DIScope>(S)) { 1747 Fn = Scope->getFilename(); 1748 if (Line != 0 && DwarfVersion >= 4) 1749 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1750 Discriminator = LBF->getDiscriminator(); 1751 1752 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1753 .getOrCreateSourceID(Scope->getFile()); 1754 } 1755 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1756 Discriminator, Fn); 1757 } 1758 1759 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1760 unsigned CUID) { 1761 // Get beginning of function. 1762 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1763 // Ensure the compile unit is created if the function is called before 1764 // beginFunction(). 1765 (void)getOrCreateDwarfCompileUnit( 1766 MF.getFunction().getSubprogram()->getUnit()); 1767 // We'd like to list the prologue as "not statements" but GDB behaves 1768 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1769 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1770 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1771 CUID, getDwarfVersion(), getUnits()); 1772 return PrologEndLoc; 1773 } 1774 return DebugLoc(); 1775 } 1776 1777 // Gather pre-function debug information. Assumes being called immediately 1778 // after the function entry point has been emitted. 1779 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1780 CurFn = MF; 1781 1782 auto *SP = MF->getFunction().getSubprogram(); 1783 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1784 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1785 return; 1786 1787 SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(), 1788 Asm->getFunctionBegin())); 1789 1790 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1791 1792 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1793 // belongs to so that we add to the correct per-cu line table in the 1794 // non-asm case. 1795 if (Asm->OutStreamer->hasRawTextSupport()) 1796 // Use a single line table if we are generating assembly. 1797 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1798 else 1799 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1800 1801 // Record beginning of function. 1802 PrologEndLoc = emitInitialLocDirective( 1803 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1804 } 1805 1806 void DwarfDebug::skippedNonDebugFunction() { 1807 // If we don't have a subprogram for this function then there will be a hole 1808 // in the range information. Keep note of this by setting the previously used 1809 // section to nullptr. 1810 PrevCU = nullptr; 1811 CurFn = nullptr; 1812 } 1813 1814 // Gather and emit post-function debug information. 1815 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1816 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1817 1818 assert(CurFn == MF && 1819 "endFunction should be called with the same function as beginFunction"); 1820 1821 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1822 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1823 1824 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1825 assert(!FnScope || SP == FnScope->getScopeNode()); 1826 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1827 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1828 PrevLabel = nullptr; 1829 CurFn = nullptr; 1830 return; 1831 } 1832 1833 DenseSet<InlinedEntity> Processed; 1834 collectEntityInfo(TheCU, SP, Processed); 1835 1836 // Add the range of this function to the list of ranges for the CU. 1837 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1838 1839 // Under -gmlt, skip building the subprogram if there are no inlined 1840 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1841 // is still needed as we need its source location. 1842 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1843 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1844 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1845 assert(InfoHolder.getScopeVariables().empty()); 1846 PrevLabel = nullptr; 1847 CurFn = nullptr; 1848 return; 1849 } 1850 1851 #ifndef NDEBUG 1852 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1853 #endif 1854 // Construct abstract scopes. 1855 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1856 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1857 for (const DINode *DN : SP->getRetainedNodes()) { 1858 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1859 continue; 1860 1861 const MDNode *Scope = nullptr; 1862 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 1863 Scope = DV->getScope(); 1864 else if (auto *DL = dyn_cast<DILabel>(DN)) 1865 Scope = DL->getScope(); 1866 else 1867 llvm_unreachable("Unexpected DI type!"); 1868 1869 // Collect info for variables/labels that were optimized out. 1870 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 1871 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1872 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 1873 } 1874 constructAbstractSubprogramScopeDIE(TheCU, AScope); 1875 } 1876 1877 ProcessedSPNodes.insert(SP); 1878 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 1879 if (auto *SkelCU = TheCU.getSkeleton()) 1880 if (!LScopes.getAbstractScopesList().empty() && 1881 TheCU.getCUNode()->getSplitDebugInlining()) 1882 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1883 1884 // Construct call site entries. 1885 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 1886 1887 // Clear debug info 1888 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1889 // DbgVariables except those that are also in AbstractVariables (since they 1890 // can be used cross-function) 1891 InfoHolder.getScopeVariables().clear(); 1892 InfoHolder.getScopeLabels().clear(); 1893 PrevLabel = nullptr; 1894 CurFn = nullptr; 1895 } 1896 1897 // Register a source line with debug info. Returns the unique label that was 1898 // emitted and which provides correspondence to the source line list. 1899 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1900 unsigned Flags) { 1901 ::recordSourceLine(*Asm, Line, Col, S, Flags, 1902 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 1903 getDwarfVersion(), getUnits()); 1904 } 1905 1906 //===----------------------------------------------------------------------===// 1907 // Emit Methods 1908 //===----------------------------------------------------------------------===// 1909 1910 // Emit the debug info section. 1911 void DwarfDebug::emitDebugInfo() { 1912 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1913 Holder.emitUnits(/* UseOffsets */ false); 1914 } 1915 1916 // Emit the abbreviation section. 1917 void DwarfDebug::emitAbbreviations() { 1918 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1919 1920 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1921 } 1922 1923 void DwarfDebug::emitStringOffsetsTableHeader() { 1924 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1925 Holder.getStringPool().emitStringOffsetsTableHeader( 1926 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 1927 Holder.getStringOffsetsStartSym()); 1928 } 1929 1930 template <typename AccelTableT> 1931 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 1932 StringRef TableName) { 1933 Asm->OutStreamer->SwitchSection(Section); 1934 1935 // Emit the full data. 1936 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 1937 } 1938 1939 void DwarfDebug::emitAccelDebugNames() { 1940 // Don't emit anything if we have no compilation units to index. 1941 if (getUnits().empty()) 1942 return; 1943 1944 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 1945 } 1946 1947 // Emit visible names into a hashed accelerator table section. 1948 void DwarfDebug::emitAccelNames() { 1949 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1950 "Names"); 1951 } 1952 1953 // Emit objective C classes and categories into a hashed accelerator table 1954 // section. 1955 void DwarfDebug::emitAccelObjC() { 1956 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 1957 "ObjC"); 1958 } 1959 1960 // Emit namespace dies into a hashed accelerator table. 1961 void DwarfDebug::emitAccelNamespaces() { 1962 emitAccel(AccelNamespace, 1963 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 1964 "namespac"); 1965 } 1966 1967 // Emit type dies into a hashed accelerator table. 1968 void DwarfDebug::emitAccelTypes() { 1969 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 1970 "types"); 1971 } 1972 1973 // Public name handling. 1974 // The format for the various pubnames: 1975 // 1976 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 1977 // for the DIE that is named. 1978 // 1979 // gnu pubnames - offset/index value/name tuples where the offset is the offset 1980 // into the CU and the index value is computed according to the type of value 1981 // for the DIE that is named. 1982 // 1983 // For type units the offset is the offset of the skeleton DIE. For split dwarf 1984 // it's the offset within the debug_info/debug_types dwo section, however, the 1985 // reference in the pubname header doesn't change. 1986 1987 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 1988 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 1989 const DIE *Die) { 1990 // Entities that ended up only in a Type Unit reference the CU instead (since 1991 // the pub entry has offsets within the CU there's no real offset that can be 1992 // provided anyway). As it happens all such entities (namespaces and types, 1993 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 1994 // not to be true it would be necessary to persist this information from the 1995 // point at which the entry is added to the index data structure - since by 1996 // the time the index is built from that, the original type/namespace DIE in a 1997 // type unit has already been destroyed so it can't be queried for properties 1998 // like tag, etc. 1999 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2000 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2001 dwarf::GIEL_EXTERNAL); 2002 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2003 2004 // We could have a specification DIE that has our most of our knowledge, 2005 // look for that now. 2006 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2007 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2008 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2009 Linkage = dwarf::GIEL_EXTERNAL; 2010 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2011 Linkage = dwarf::GIEL_EXTERNAL; 2012 2013 switch (Die->getTag()) { 2014 case dwarf::DW_TAG_class_type: 2015 case dwarf::DW_TAG_structure_type: 2016 case dwarf::DW_TAG_union_type: 2017 case dwarf::DW_TAG_enumeration_type: 2018 return dwarf::PubIndexEntryDescriptor( 2019 dwarf::GIEK_TYPE, 2020 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2021 ? dwarf::GIEL_EXTERNAL 2022 : dwarf::GIEL_STATIC); 2023 case dwarf::DW_TAG_typedef: 2024 case dwarf::DW_TAG_base_type: 2025 case dwarf::DW_TAG_subrange_type: 2026 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2027 case dwarf::DW_TAG_namespace: 2028 return dwarf::GIEK_TYPE; 2029 case dwarf::DW_TAG_subprogram: 2030 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2031 case dwarf::DW_TAG_variable: 2032 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2033 case dwarf::DW_TAG_enumerator: 2034 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2035 dwarf::GIEL_STATIC); 2036 default: 2037 return dwarf::GIEK_NONE; 2038 } 2039 } 2040 2041 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2042 /// pubtypes sections. 2043 void DwarfDebug::emitDebugPubSections() { 2044 for (const auto &NU : CUMap) { 2045 DwarfCompileUnit *TheU = NU.second; 2046 if (!TheU->hasDwarfPubSections()) 2047 continue; 2048 2049 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2050 DICompileUnit::DebugNameTableKind::GNU; 2051 2052 Asm->OutStreamer->SwitchSection( 2053 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2054 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2055 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2056 2057 Asm->OutStreamer->SwitchSection( 2058 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2059 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2060 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2061 } 2062 } 2063 2064 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2065 if (useSectionsAsReferences()) 2066 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(), 2067 CU.getDebugSectionOffset()); 2068 else 2069 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2070 } 2071 2072 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2073 DwarfCompileUnit *TheU, 2074 const StringMap<const DIE *> &Globals) { 2075 if (auto *Skeleton = TheU->getSkeleton()) 2076 TheU = Skeleton; 2077 2078 // Emit the header. 2079 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2080 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2081 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2082 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 2083 2084 Asm->OutStreamer->EmitLabel(BeginLabel); 2085 2086 Asm->OutStreamer->AddComment("DWARF Version"); 2087 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2088 2089 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2090 emitSectionReference(*TheU); 2091 2092 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2093 Asm->emitInt32(TheU->getLength()); 2094 2095 // Emit the pubnames for this compilation unit. 2096 for (const auto &GI : Globals) { 2097 const char *Name = GI.getKeyData(); 2098 const DIE *Entity = GI.second; 2099 2100 Asm->OutStreamer->AddComment("DIE offset"); 2101 Asm->emitInt32(Entity->getOffset()); 2102 2103 if (GnuStyle) { 2104 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2105 Asm->OutStreamer->AddComment( 2106 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2107 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2108 Asm->emitInt8(Desc.toBits()); 2109 } 2110 2111 Asm->OutStreamer->AddComment("External Name"); 2112 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2113 } 2114 2115 Asm->OutStreamer->AddComment("End Mark"); 2116 Asm->emitInt32(0); 2117 Asm->OutStreamer->EmitLabel(EndLabel); 2118 } 2119 2120 /// Emit null-terminated strings into a debug str section. 2121 void DwarfDebug::emitDebugStr() { 2122 MCSection *StringOffsetsSection = nullptr; 2123 if (useSegmentedStringOffsetsTable()) { 2124 emitStringOffsetsTableHeader(); 2125 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2126 } 2127 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2128 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2129 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2130 } 2131 2132 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2133 const DebugLocStream::Entry &Entry, 2134 const DwarfCompileUnit *CU) { 2135 auto &&Comments = DebugLocs.getComments(Entry); 2136 auto Comment = Comments.begin(); 2137 auto End = Comments.end(); 2138 2139 // The expressions are inserted into a byte stream rather early (see 2140 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2141 // need to reference a base_type DIE the offset of that DIE is not yet known. 2142 // To deal with this we instead insert a placeholder early and then extract 2143 // it here and replace it with the real reference. 2144 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2145 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2146 DebugLocs.getBytes(Entry).size()), 2147 Asm->getDataLayout().isLittleEndian(), PtrSize); 2148 DWARFExpression Expr(Data, getDwarfVersion(), PtrSize); 2149 2150 using Encoding = DWARFExpression::Operation::Encoding; 2151 uint64_t Offset = 0; 2152 for (auto &Op : Expr) { 2153 assert(Op.getCode() != dwarf::DW_OP_const_type && 2154 "3 operand ops not yet supported"); 2155 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2156 Offset++; 2157 for (unsigned I = 0; I < 2; ++I) { 2158 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2159 continue; 2160 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2161 if (CU) { 2162 uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2163 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2164 Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize); 2165 } else { 2166 // Emit a reference to the 'generic type'. 2167 Asm->EmitULEB128(0, nullptr, ULEB128PadSize); 2168 } 2169 // Make sure comments stay aligned. 2170 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2171 if (Comment != End) 2172 Comment++; 2173 } else { 2174 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2175 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2176 } 2177 Offset = Op.getOperandEndOffset(I); 2178 } 2179 assert(Offset == Op.getEndOffset()); 2180 } 2181 } 2182 2183 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2184 const DbgValueLoc &Value, 2185 DwarfExpression &DwarfExpr) { 2186 auto *DIExpr = Value.getExpression(); 2187 DIExpressionCursor ExprCursor(DIExpr); 2188 DwarfExpr.addFragmentOffset(DIExpr); 2189 // Regular entry. 2190 if (Value.isInt()) { 2191 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2192 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2193 DwarfExpr.addSignedConstant(Value.getInt()); 2194 else 2195 DwarfExpr.addUnsignedConstant(Value.getInt()); 2196 } else if (Value.isLocation()) { 2197 MachineLocation Location = Value.getLoc(); 2198 if (Location.isIndirect()) 2199 DwarfExpr.setMemoryLocationKind(); 2200 DIExpressionCursor Cursor(DIExpr); 2201 2202 if (DIExpr->isEntryValue()) { 2203 DwarfExpr.setEntryValueFlag(); 2204 DwarfExpr.beginEntryValueExpression(Cursor); 2205 } 2206 2207 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2208 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2209 return; 2210 return DwarfExpr.addExpression(std::move(Cursor)); 2211 } else if (Value.isConstantFP()) { 2212 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2213 DwarfExpr.addUnsignedConstant(RawBytes); 2214 } 2215 DwarfExpr.addExpression(std::move(ExprCursor)); 2216 } 2217 2218 void DebugLocEntry::finalize(const AsmPrinter &AP, 2219 DebugLocStream::ListBuilder &List, 2220 const DIBasicType *BT, 2221 DwarfCompileUnit &TheCU) { 2222 assert(!Values.empty() && 2223 "location list entries without values are redundant"); 2224 assert(Begin != End && "unexpected location list entry with empty range"); 2225 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2226 BufferByteStreamer Streamer = Entry.getStreamer(); 2227 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2228 const DbgValueLoc &Value = Values[0]; 2229 if (Value.isFragment()) { 2230 // Emit all fragments that belong to the same variable and range. 2231 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2232 return P.isFragment(); 2233 }) && "all values are expected to be fragments"); 2234 assert(std::is_sorted(Values.begin(), Values.end()) && 2235 "fragments are expected to be sorted"); 2236 2237 for (auto Fragment : Values) 2238 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2239 2240 } else { 2241 assert(Values.size() == 1 && "only fragments may have >1 value"); 2242 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2243 } 2244 DwarfExpr.finalize(); 2245 } 2246 2247 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2248 const DwarfCompileUnit *CU) { 2249 // Emit the size. 2250 Asm->OutStreamer->AddComment("Loc expr size"); 2251 if (getDwarfVersion() >= 5) 2252 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size()); 2253 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2254 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2255 else { 2256 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2257 // can do. 2258 Asm->emitInt16(0); 2259 return; 2260 } 2261 // Emit the entry. 2262 APByteStreamer Streamer(*Asm); 2263 emitDebugLocEntry(Streamer, Entry, CU); 2264 } 2265 2266 // Emit the common part of the DWARF 5 range/locations list tables header. 2267 static void emitListsTableHeaderStart(AsmPrinter *Asm, 2268 MCSymbol *TableStart, 2269 MCSymbol *TableEnd) { 2270 // Build the table header, which starts with the length field. 2271 Asm->OutStreamer->AddComment("Length"); 2272 Asm->EmitLabelDifference(TableEnd, TableStart, 4); 2273 Asm->OutStreamer->EmitLabel(TableStart); 2274 // Version number (DWARF v5 and later). 2275 Asm->OutStreamer->AddComment("Version"); 2276 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion()); 2277 // Address size. 2278 Asm->OutStreamer->AddComment("Address size"); 2279 Asm->emitInt8(Asm->MAI->getCodePointerSize()); 2280 // Segment selector size. 2281 Asm->OutStreamer->AddComment("Segment selector size"); 2282 Asm->emitInt8(0); 2283 } 2284 2285 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2286 // that designates the end of the table for the caller to emit when the table is 2287 // complete. 2288 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2289 const DwarfFile &Holder) { 2290 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start"); 2291 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end"); 2292 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2293 2294 Asm->OutStreamer->AddComment("Offset entry count"); 2295 Asm->emitInt32(Holder.getRangeLists().size()); 2296 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym()); 2297 2298 for (const RangeSpanList &List : Holder.getRangeLists()) 2299 Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(), 2300 4); 2301 2302 return TableEnd; 2303 } 2304 2305 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2306 // designates the end of the table for the caller to emit when the table is 2307 // complete. 2308 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2309 const DwarfDebug &DD) { 2310 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start"); 2311 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end"); 2312 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2313 2314 const auto &DebugLocs = DD.getDebugLocs(); 2315 2316 // FIXME: Generate the offsets table and use DW_FORM_loclistx with the 2317 // DW_AT_loclists_base attribute. Until then set the number of offsets to 0. 2318 Asm->OutStreamer->AddComment("Offset entry count"); 2319 Asm->emitInt32(0); 2320 Asm->OutStreamer->EmitLabel(DebugLocs.getSym()); 2321 2322 return TableEnd; 2323 } 2324 2325 template <typename Ranges, typename PayloadEmitter> 2326 static void emitRangeList( 2327 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2328 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2329 unsigned StartxLength, unsigned EndOfList, 2330 StringRef (*StringifyEnum)(unsigned), 2331 bool ShouldUseBaseAddress, 2332 PayloadEmitter EmitPayload) { 2333 2334 auto Size = Asm->MAI->getCodePointerSize(); 2335 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2336 2337 // Emit our symbol so we can find the beginning of the range. 2338 Asm->OutStreamer->EmitLabel(Sym); 2339 2340 // Gather all the ranges that apply to the same section so they can share 2341 // a base address entry. 2342 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2343 2344 for (const auto &Range : R) 2345 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2346 2347 const MCSymbol *CUBase = CU.getBaseAddress(); 2348 bool BaseIsSet = false; 2349 for (const auto &P : SectionRanges) { 2350 auto *Base = CUBase; 2351 if (!Base && ShouldUseBaseAddress) { 2352 const MCSymbol *Begin = P.second.front()->Begin; 2353 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2354 if (!UseDwarf5) { 2355 Base = NewBase; 2356 BaseIsSet = true; 2357 Asm->OutStreamer->EmitIntValue(-1, Size); 2358 Asm->OutStreamer->AddComment(" base address"); 2359 Asm->OutStreamer->EmitSymbolValue(Base, Size); 2360 } else if (NewBase != Begin || P.second.size() > 1) { 2361 // Only use a base address if 2362 // * the existing pool address doesn't match (NewBase != Begin) 2363 // * or, there's more than one entry to share the base address 2364 Base = NewBase; 2365 BaseIsSet = true; 2366 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2367 Asm->emitInt8(BaseAddressx); 2368 Asm->OutStreamer->AddComment(" base address index"); 2369 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base)); 2370 } 2371 } else if (BaseIsSet && !UseDwarf5) { 2372 BaseIsSet = false; 2373 assert(!Base); 2374 Asm->OutStreamer->EmitIntValue(-1, Size); 2375 Asm->OutStreamer->EmitIntValue(0, Size); 2376 } 2377 2378 for (const auto *RS : P.second) { 2379 const MCSymbol *Begin = RS->Begin; 2380 const MCSymbol *End = RS->End; 2381 assert(Begin && "Range without a begin symbol?"); 2382 assert(End && "Range without an end symbol?"); 2383 if (Base) { 2384 if (UseDwarf5) { 2385 // Emit offset_pair when we have a base. 2386 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2387 Asm->emitInt8(OffsetPair); 2388 Asm->OutStreamer->AddComment(" starting offset"); 2389 Asm->EmitLabelDifferenceAsULEB128(Begin, Base); 2390 Asm->OutStreamer->AddComment(" ending offset"); 2391 Asm->EmitLabelDifferenceAsULEB128(End, Base); 2392 } else { 2393 Asm->EmitLabelDifference(Begin, Base, Size); 2394 Asm->EmitLabelDifference(End, Base, Size); 2395 } 2396 } else if (UseDwarf5) { 2397 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2398 Asm->emitInt8(StartxLength); 2399 Asm->OutStreamer->AddComment(" start index"); 2400 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin)); 2401 Asm->OutStreamer->AddComment(" length"); 2402 Asm->EmitLabelDifferenceAsULEB128(End, Begin); 2403 } else { 2404 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 2405 Asm->OutStreamer->EmitSymbolValue(End, Size); 2406 } 2407 EmitPayload(*RS); 2408 } 2409 } 2410 2411 if (UseDwarf5) { 2412 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2413 Asm->emitInt8(EndOfList); 2414 } else { 2415 // Terminate the list with two 0 values. 2416 Asm->OutStreamer->EmitIntValue(0, Size); 2417 Asm->OutStreamer->EmitIntValue(0, Size); 2418 } 2419 } 2420 2421 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2422 emitRangeList( 2423 DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), *List.CU, 2424 dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair, 2425 dwarf::DW_LLE_startx_length, dwarf::DW_LLE_end_of_list, 2426 llvm::dwarf::LocListEncodingString, 2427 /* ShouldUseBaseAddress */ true, 2428 [&](const DebugLocStream::Entry &E) { 2429 DD.emitDebugLocEntryLocation(E, List.CU); 2430 }); 2431 } 2432 2433 // Emit locations into the .debug_loc/.debug_rnglists section. 2434 void DwarfDebug::emitDebugLoc() { 2435 if (DebugLocs.getLists().empty()) 2436 return; 2437 2438 MCSymbol *TableEnd = nullptr; 2439 if (getDwarfVersion() >= 5) { 2440 Asm->OutStreamer->SwitchSection( 2441 Asm->getObjFileLowering().getDwarfLoclistsSection()); 2442 TableEnd = emitLoclistsTableHeader(Asm, *this); 2443 } else { 2444 Asm->OutStreamer->SwitchSection( 2445 Asm->getObjFileLowering().getDwarfLocSection()); 2446 } 2447 2448 for (const auto &List : DebugLocs.getLists()) 2449 emitLocList(*this, Asm, List); 2450 2451 if (TableEnd) 2452 Asm->OutStreamer->EmitLabel(TableEnd); 2453 } 2454 2455 void DwarfDebug::emitDebugLocDWO() { 2456 for (const auto &List : DebugLocs.getLists()) { 2457 Asm->OutStreamer->SwitchSection( 2458 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2459 Asm->OutStreamer->EmitLabel(List.Label); 2460 for (const auto &Entry : DebugLocs.getEntries(List)) { 2461 // GDB only supports startx_length in pre-standard split-DWARF. 2462 // (in v5 standard loclists, it currently* /only/ supports base_address + 2463 // offset_pair, so the implementations can't really share much since they 2464 // need to use different representations) 2465 // * as of October 2018, at least 2466 // Ideally/in v5, this could use SectionLabels to reuse existing addresses 2467 // in the address pool to minimize object size/relocations. 2468 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2469 unsigned idx = AddrPool.getIndex(Entry.Begin); 2470 Asm->EmitULEB128(idx); 2471 Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4); 2472 2473 emitDebugLocEntryLocation(Entry, List.CU); 2474 } 2475 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2476 } 2477 } 2478 2479 struct ArangeSpan { 2480 const MCSymbol *Start, *End; 2481 }; 2482 2483 // Emit a debug aranges section, containing a CU lookup for any 2484 // address we can tie back to a CU. 2485 void DwarfDebug::emitDebugARanges() { 2486 // Provides a unique id per text section. 2487 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2488 2489 // Filter labels by section. 2490 for (const SymbolCU &SCU : ArangeLabels) { 2491 if (SCU.Sym->isInSection()) { 2492 // Make a note of this symbol and it's section. 2493 MCSection *Section = &SCU.Sym->getSection(); 2494 if (!Section->getKind().isMetadata()) 2495 SectionMap[Section].push_back(SCU); 2496 } else { 2497 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2498 // appear in the output. This sucks as we rely on sections to build 2499 // arange spans. We can do it without, but it's icky. 2500 SectionMap[nullptr].push_back(SCU); 2501 } 2502 } 2503 2504 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2505 2506 for (auto &I : SectionMap) { 2507 MCSection *Section = I.first; 2508 SmallVector<SymbolCU, 8> &List = I.second; 2509 if (List.size() < 1) 2510 continue; 2511 2512 // If we have no section (e.g. common), just write out 2513 // individual spans for each symbol. 2514 if (!Section) { 2515 for (const SymbolCU &Cur : List) { 2516 ArangeSpan Span; 2517 Span.Start = Cur.Sym; 2518 Span.End = nullptr; 2519 assert(Cur.CU); 2520 Spans[Cur.CU].push_back(Span); 2521 } 2522 continue; 2523 } 2524 2525 // Sort the symbols by offset within the section. 2526 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2527 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2528 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2529 2530 // Symbols with no order assigned should be placed at the end. 2531 // (e.g. section end labels) 2532 if (IA == 0) 2533 return false; 2534 if (IB == 0) 2535 return true; 2536 return IA < IB; 2537 }); 2538 2539 // Insert a final terminator. 2540 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2541 2542 // Build spans between each label. 2543 const MCSymbol *StartSym = List[0].Sym; 2544 for (size_t n = 1, e = List.size(); n < e; n++) { 2545 const SymbolCU &Prev = List[n - 1]; 2546 const SymbolCU &Cur = List[n]; 2547 2548 // Try and build the longest span we can within the same CU. 2549 if (Cur.CU != Prev.CU) { 2550 ArangeSpan Span; 2551 Span.Start = StartSym; 2552 Span.End = Cur.Sym; 2553 assert(Prev.CU); 2554 Spans[Prev.CU].push_back(Span); 2555 StartSym = Cur.Sym; 2556 } 2557 } 2558 } 2559 2560 // Start the dwarf aranges section. 2561 Asm->OutStreamer->SwitchSection( 2562 Asm->getObjFileLowering().getDwarfARangesSection()); 2563 2564 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2565 2566 // Build a list of CUs used. 2567 std::vector<DwarfCompileUnit *> CUs; 2568 for (const auto &it : Spans) { 2569 DwarfCompileUnit *CU = it.first; 2570 CUs.push_back(CU); 2571 } 2572 2573 // Sort the CU list (again, to ensure consistent output order). 2574 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2575 return A->getUniqueID() < B->getUniqueID(); 2576 }); 2577 2578 // Emit an arange table for each CU we used. 2579 for (DwarfCompileUnit *CU : CUs) { 2580 std::vector<ArangeSpan> &List = Spans[CU]; 2581 2582 // Describe the skeleton CU's offset and length, not the dwo file's. 2583 if (auto *Skel = CU->getSkeleton()) 2584 CU = Skel; 2585 2586 // Emit size of content not including length itself. 2587 unsigned ContentSize = 2588 sizeof(int16_t) + // DWARF ARange version number 2589 sizeof(int32_t) + // Offset of CU in the .debug_info section 2590 sizeof(int8_t) + // Pointer Size (in bytes) 2591 sizeof(int8_t); // Segment Size (in bytes) 2592 2593 unsigned TupleSize = PtrSize * 2; 2594 2595 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2596 unsigned Padding = 2597 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2598 2599 ContentSize += Padding; 2600 ContentSize += (List.size() + 1) * TupleSize; 2601 2602 // For each compile unit, write the list of spans it covers. 2603 Asm->OutStreamer->AddComment("Length of ARange Set"); 2604 Asm->emitInt32(ContentSize); 2605 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2606 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2607 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2608 emitSectionReference(*CU); 2609 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2610 Asm->emitInt8(PtrSize); 2611 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2612 Asm->emitInt8(0); 2613 2614 Asm->OutStreamer->emitFill(Padding, 0xff); 2615 2616 for (const ArangeSpan &Span : List) { 2617 Asm->EmitLabelReference(Span.Start, PtrSize); 2618 2619 // Calculate the size as being from the span start to it's end. 2620 if (Span.End) { 2621 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 2622 } else { 2623 // For symbols without an end marker (e.g. common), we 2624 // write a single arange entry containing just that one symbol. 2625 uint64_t Size = SymSize[Span.Start]; 2626 if (Size == 0) 2627 Size = 1; 2628 2629 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 2630 } 2631 } 2632 2633 Asm->OutStreamer->AddComment("ARange terminator"); 2634 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2635 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2636 } 2637 } 2638 2639 /// Emit a single range list. We handle both DWARF v5 and earlier. 2640 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2641 const RangeSpanList &List) { 2642 emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(), 2643 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2644 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2645 llvm::dwarf::RangeListEncodingString, 2646 List.getCU().getCUNode()->getRangesBaseAddress() || 2647 DD.getDwarfVersion() >= 5, 2648 [](auto) {}); 2649 } 2650 2651 static void emitDebugRangesImpl(DwarfDebug &DD, AsmPrinter *Asm, 2652 const DwarfFile &Holder, MCSymbol *TableEnd) { 2653 for (const RangeSpanList &List : Holder.getRangeLists()) 2654 emitRangeList(DD, Asm, List); 2655 2656 if (TableEnd) 2657 Asm->OutStreamer->EmitLabel(TableEnd); 2658 } 2659 2660 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2661 /// .debug_rnglists section. 2662 void DwarfDebug::emitDebugRanges() { 2663 if (CUMap.empty()) 2664 return; 2665 2666 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2667 2668 if (Holder.getRangeLists().empty()) 2669 return; 2670 2671 assert(useRangesSection()); 2672 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2673 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2674 })); 2675 2676 // Start the dwarf ranges section. 2677 MCSymbol *TableEnd = nullptr; 2678 if (getDwarfVersion() >= 5) { 2679 Asm->OutStreamer->SwitchSection( 2680 Asm->getObjFileLowering().getDwarfRnglistsSection()); 2681 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2682 } else 2683 Asm->OutStreamer->SwitchSection( 2684 Asm->getObjFileLowering().getDwarfRangesSection()); 2685 2686 emitDebugRangesImpl(*this, Asm, Holder, TableEnd); 2687 } 2688 2689 void DwarfDebug::emitDebugRangesDWO() { 2690 assert(useSplitDwarf()); 2691 2692 if (CUMap.empty()) 2693 return; 2694 2695 const auto &Holder = InfoHolder; 2696 2697 if (Holder.getRangeLists().empty()) 2698 return; 2699 2700 assert(getDwarfVersion() >= 5); 2701 assert(useRangesSection()); 2702 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2703 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2704 })); 2705 2706 // Start the dwarf ranges section. 2707 Asm->OutStreamer->SwitchSection( 2708 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2709 MCSymbol *TableEnd = emitRnglistsTableHeader(Asm, Holder); 2710 2711 emitDebugRangesImpl(*this, Asm, Holder, TableEnd); 2712 } 2713 2714 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2715 for (auto *MN : Nodes) { 2716 if (auto *M = dyn_cast<DIMacro>(MN)) 2717 emitMacro(*M); 2718 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2719 emitMacroFile(*F, U); 2720 else 2721 llvm_unreachable("Unexpected DI type!"); 2722 } 2723 } 2724 2725 void DwarfDebug::emitMacro(DIMacro &M) { 2726 Asm->EmitULEB128(M.getMacinfoType()); 2727 Asm->EmitULEB128(M.getLine()); 2728 StringRef Name = M.getName(); 2729 StringRef Value = M.getValue(); 2730 Asm->OutStreamer->EmitBytes(Name); 2731 if (!Value.empty()) { 2732 // There should be one space between macro name and macro value. 2733 Asm->emitInt8(' '); 2734 Asm->OutStreamer->EmitBytes(Value); 2735 } 2736 Asm->emitInt8('\0'); 2737 } 2738 2739 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2740 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2741 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 2742 Asm->EmitULEB128(F.getLine()); 2743 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile())); 2744 handleMacroNodes(F.getElements(), U); 2745 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 2746 } 2747 2748 /// Emit macros into a debug macinfo section. 2749 void DwarfDebug::emitDebugMacinfo() { 2750 if (CUMap.empty()) 2751 return; 2752 2753 if (llvm::all_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2754 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2755 })) 2756 return; 2757 2758 // Start the dwarf macinfo section. 2759 Asm->OutStreamer->SwitchSection( 2760 Asm->getObjFileLowering().getDwarfMacinfoSection()); 2761 2762 for (const auto &P : CUMap) { 2763 auto &TheCU = *P.second; 2764 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 2765 continue; 2766 auto *SkCU = TheCU.getSkeleton(); 2767 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2768 auto *CUNode = cast<DICompileUnit>(P.first); 2769 DIMacroNodeArray Macros = CUNode->getMacros(); 2770 if (!Macros.empty()) { 2771 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 2772 handleMacroNodes(Macros, U); 2773 } 2774 } 2775 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2776 Asm->emitInt8(0); 2777 } 2778 2779 // DWARF5 Experimental Separate Dwarf emitters. 2780 2781 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2782 std::unique_ptr<DwarfCompileUnit> NewU) { 2783 2784 if (!CompilationDir.empty()) 2785 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2786 2787 addGnuPubAttributes(*NewU, Die); 2788 2789 SkeletonHolder.addUnit(std::move(NewU)); 2790 } 2791 2792 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2793 2794 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2795 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); 2796 DwarfCompileUnit &NewCU = *OwnedUnit; 2797 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2798 2799 NewCU.initStmtList(); 2800 2801 if (useSegmentedStringOffsetsTable()) 2802 NewCU.addStringOffsetsStart(); 2803 2804 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2805 2806 return NewCU; 2807 } 2808 2809 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2810 // compile units that would normally be in debug_info. 2811 void DwarfDebug::emitDebugInfoDWO() { 2812 assert(useSplitDwarf() && "No split dwarf debug info?"); 2813 // Don't emit relocations into the dwo file. 2814 InfoHolder.emitUnits(/* UseOffsets */ true); 2815 } 2816 2817 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2818 // abbreviations for the .debug_info.dwo section. 2819 void DwarfDebug::emitDebugAbbrevDWO() { 2820 assert(useSplitDwarf() && "No split dwarf?"); 2821 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2822 } 2823 2824 void DwarfDebug::emitDebugLineDWO() { 2825 assert(useSplitDwarf() && "No split dwarf?"); 2826 SplitTypeUnitFileTable.Emit( 2827 *Asm->OutStreamer, MCDwarfLineTableParams(), 2828 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2829 } 2830 2831 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2832 assert(useSplitDwarf() && "No split dwarf?"); 2833 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2834 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2835 InfoHolder.getStringOffsetsStartSym()); 2836 } 2837 2838 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2839 // string section and is identical in format to traditional .debug_str 2840 // sections. 2841 void DwarfDebug::emitDebugStrDWO() { 2842 if (useSegmentedStringOffsetsTable()) 2843 emitStringOffsetsTableHeaderDWO(); 2844 assert(useSplitDwarf() && "No split dwarf?"); 2845 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2846 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2847 OffSec, /* UseRelativeOffsets = */ false); 2848 } 2849 2850 // Emit address pool. 2851 void DwarfDebug::emitDebugAddr() { 2852 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2853 } 2854 2855 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2856 if (!useSplitDwarf()) 2857 return nullptr; 2858 const DICompileUnit *DIUnit = CU.getCUNode(); 2859 SplitTypeUnitFileTable.maybeSetRootFile( 2860 DIUnit->getDirectory(), DIUnit->getFilename(), 2861 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2862 return &SplitTypeUnitFileTable; 2863 } 2864 2865 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2866 MD5 Hash; 2867 Hash.update(Identifier); 2868 // ... take the least significant 8 bytes and return those. Our MD5 2869 // implementation always returns its results in little endian, so we actually 2870 // need the "high" word. 2871 MD5::MD5Result Result; 2872 Hash.final(Result); 2873 return Result.high(); 2874 } 2875 2876 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2877 StringRef Identifier, DIE &RefDie, 2878 const DICompositeType *CTy) { 2879 // Fast path if we're building some type units and one has already used the 2880 // address pool we know we're going to throw away all this work anyway, so 2881 // don't bother building dependent types. 2882 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2883 return; 2884 2885 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 2886 if (!Ins.second) { 2887 CU.addDIETypeSignature(RefDie, Ins.first->second); 2888 return; 2889 } 2890 2891 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 2892 AddrPool.resetUsedFlag(); 2893 2894 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 2895 getDwoLineTable(CU)); 2896 DwarfTypeUnit &NewTU = *OwnedUnit; 2897 DIE &UnitDie = NewTU.getUnitDie(); 2898 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 2899 2900 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 2901 CU.getLanguage()); 2902 2903 uint64_t Signature = makeTypeSignature(Identifier); 2904 NewTU.setTypeSignature(Signature); 2905 Ins.first->second = Signature; 2906 2907 if (useSplitDwarf()) { 2908 MCSection *Section = 2909 getDwarfVersion() <= 4 2910 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 2911 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 2912 NewTU.setSection(Section); 2913 } else { 2914 MCSection *Section = 2915 getDwarfVersion() <= 4 2916 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 2917 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 2918 NewTU.setSection(Section); 2919 // Non-split type units reuse the compile unit's line table. 2920 CU.applyStmtList(UnitDie); 2921 } 2922 2923 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 2924 // units. 2925 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 2926 NewTU.addStringOffsetsStart(); 2927 2928 NewTU.setType(NewTU.createTypeDIE(CTy)); 2929 2930 if (TopLevelType) { 2931 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 2932 TypeUnitsUnderConstruction.clear(); 2933 2934 // Types referencing entries in the address table cannot be placed in type 2935 // units. 2936 if (AddrPool.hasBeenUsed()) { 2937 2938 // Remove all the types built while building this type. 2939 // This is pessimistic as some of these types might not be dependent on 2940 // the type that used an address. 2941 for (const auto &TU : TypeUnitsToAdd) 2942 TypeSignatures.erase(TU.second); 2943 2944 // Construct this type in the CU directly. 2945 // This is inefficient because all the dependent types will be rebuilt 2946 // from scratch, including building them in type units, discovering that 2947 // they depend on addresses, throwing them out and rebuilding them. 2948 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 2949 return; 2950 } 2951 2952 // If the type wasn't dependent on fission addresses, finish adding the type 2953 // and all its dependent types. 2954 for (auto &TU : TypeUnitsToAdd) { 2955 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 2956 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 2957 } 2958 } 2959 CU.addDIETypeSignature(RefDie, Signature); 2960 } 2961 2962 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 2963 : DD(DD), 2964 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 2965 DD->TypeUnitsUnderConstruction.clear(); 2966 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 2967 } 2968 2969 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 2970 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 2971 DD->AddrPool.resetUsedFlag(); 2972 } 2973 2974 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 2975 return NonTypeUnitContext(this); 2976 } 2977 2978 // Add the Name along with its companion DIE to the appropriate accelerator 2979 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 2980 // AccelTableKind::Apple, we use the table we got as an argument). If 2981 // accelerator tables are disabled, this function does nothing. 2982 template <typename DataT> 2983 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 2984 AccelTable<DataT> &AppleAccel, StringRef Name, 2985 const DIE &Die) { 2986 if (getAccelTableKind() == AccelTableKind::None) 2987 return; 2988 2989 if (getAccelTableKind() != AccelTableKind::Apple && 2990 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 2991 return; 2992 2993 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2994 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 2995 2996 switch (getAccelTableKind()) { 2997 case AccelTableKind::Apple: 2998 AppleAccel.addName(Ref, Die); 2999 break; 3000 case AccelTableKind::Dwarf: 3001 AccelDebugNames.addName(Ref, Die); 3002 break; 3003 case AccelTableKind::Default: 3004 llvm_unreachable("Default should have already been resolved."); 3005 case AccelTableKind::None: 3006 llvm_unreachable("None handled above"); 3007 } 3008 } 3009 3010 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3011 const DIE &Die) { 3012 addAccelNameImpl(CU, AccelNames, Name, Die); 3013 } 3014 3015 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3016 const DIE &Die) { 3017 // ObjC names go only into the Apple accelerator tables. 3018 if (getAccelTableKind() == AccelTableKind::Apple) 3019 addAccelNameImpl(CU, AccelObjC, Name, Die); 3020 } 3021 3022 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3023 const DIE &Die) { 3024 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3025 } 3026 3027 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3028 const DIE &Die, char Flags) { 3029 addAccelNameImpl(CU, AccelTypes, Name, Die); 3030 } 3031 3032 uint16_t DwarfDebug::getDwarfVersion() const { 3033 return Asm->OutStreamer->getContext().getDwarfVersion(); 3034 } 3035 3036 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3037 return SectionLabels.find(S)->second; 3038 } 3039